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Abstract. We consider the stable matching of two independent Poisson processes in R
d under an asymmetric color restriction. Blue

points can only match to red points, while red points can match to points of either color. It is unknown whether there exists a choice
of intensities of the red and blue processes under which all points are matched. We prove that for any fixed intensities, there are
unmatched blue points in sufficiently high dimension. Indeed, if the ratio of red to blue intensities is ρ then the intensity of unmatched
blue points converges to e−ρ/(1 + ρ) as d → ∞. We also establish analogous results for certain multi-color variants. Our proof uses
stable matching on the Poisson-weighted infinite tree (PWIT), which can be analyzed via differential equations. The PWIT has been
used in many settings as a scaling limit for models involving complete graphs with independent edge weights, but as far as we are
aware, this is the first presentation of a rigorous application to high-dimensional Euclidean space. Finally, we analyze the asymmetric
matching problem under a hierarchical metric, and show that there are unmatched points for all intensities.

Résumé. Nous considérons l’appariement stable de deux processus de Poisson indépendants dans Rd , sous une contrainte asymme-
trique sur les couleurs. Un point bleu ne peut être apparié qu’à un point rouge, tandis qu’un point rouge peut être apparié soit à un
point rouge soit à un point bleu. On ne sait pas s’il existe un choix d’intensités des processus bleu et rouge tel que tous les points sont
appariés. Nous démontrons que pour toutes intensités fixes, il y a des points bleus non-appariés en dimension suffisamment elevée. En
effet, si le rapport de l’intensité des points rouges à l’intensité des points bleus est ρ, l’intensité des points bleus non-appariés tend vers
e−ρ/(1 + ρ) quand d → ∞. On établit aussi des résultats analogues pour certaines variantes à multiples couleurs. La preuve utilise un
modèle d’appariement stable sur l’arbre infini pondéré de Poisson (PWIT), qui peut être analysé par des équations différentielles. Le
PWIT a été utilisé dans de nombreux contextes comme limite d’échelle pour des modèles impliquant des graphes complets pondérés
de variables aléatoires indépendants, mais à notre connaissance, celle-ci est la première présentation d’une application rigoureuse à
l’espace euclidien en haute dimension. Finalement, on analyse le problème d’appariement asymétrique sous une métrique hiérarchique,
et on démontre qu’il existe des points non-appariés pour tout choix d’intensités.
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1. Introduction

1.1. Stable matching in R
d

Let S be a set of points in R
d , and let M be a matching of S. For each x ∈ S, write dM(x) for the distance of x from its

partner in the matching M , with dM(x) = ∞ if x is unmatched by M .
A pair of distinct points x, y ∈ S is an unstable pair for the matching M if |x − y| < min(dM(x), dM(y)). If M has

no unstable pairs, then it is said to be a stable matching (as introduced by Gale and Shapley [10]). We can interpret this
definition by saying that each point would like to find a partner as near as possible to itself (and would prefer any partner
rather than remaining unmatched), and that a matching M is stable if there is no pair of points that would both prefer to
be matched to each other over their situation in M .

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/19-AIHP984
mailto:holroyd@uw.edu
http://aeholroyd.org
mailto:martin@stats.ox.ac.uk
http://www.stats.ox.ac.uk/%7Emartin
mailto:yuval@yuvalperes.com
http://yuvalperes.com


Stable matchings via the PWIT 827

Holroyd, Pemantle, Peres and Schramm [11] studied stable matching for the points of a homogenous Poisson process.
They showed that with probability 1, there exists a unique stable matching, under which every point is matched. Let the
random variable X represent the distance of a typical point of the process to its partner in this stable matching. Then
Theorem 5 of [11] says that EXd = ∞, but P(X > r) ≤ Cr−d for some constant C = C(d) < ∞.

Now suppose that the points of the process are of two types; each point is independently coloured blue with probability
p ∈ (0,1) and red with probability 1 − p. Restrict to matchings in which a red point and a blue point may be matched,
but two points of the same colour may not be matched. Correspondingly the definition of unstable pair is restricted to
pairs consisting of one red point and one blue point; the definition of a stable matching is otherwise unchanged. Again, it
is shown in [11] that with probability 1 there exists a unique stable matching. If p = 1/2 (so that the model is symmetric
between red and blue) then with probability 1, every point is matched; it is shown that the distribution of the distance
from a typical point to its partner has a polynomial tail (although for d ≥ 2 there is a gap between the upper and lower
bounds on the exponent). On the other hand, suppose p < 1/2. Then with probability 1, all blue points are matched, and
a positive density of red points remain unmatched.

For the models above, the question of whether the stable matching is perfect (i.e. whether every point is matched) is
easy to answer using arguments involving translation invariance, ergodicity and mass transport (although many interesting
questions remain about the nature of the matching). In this paper we study natural variants where, in contrast, the question
of whether the stable matching is perfect already presents a challenge.

Again suppose the points of a Poisson process in R
d are colored independently blue (with probability p) or red (with

probability 1 − p). We now consider an asymmetric rule, under which red-red and red-blue matches are allowed, while
blue-blue matches are forbidden. Subject to this restriction, each point prefers to be matched at as short a distance as
possible. From Proposition 2.1 below, we will be able to obtain that with probability 1 a stable matching exists and is
unique. Let M be this stable matching. From the ergodicity of the Poisson process, the intensity of the set of red points
matched by M to blue points is an almost sure constant, and the same is true for the set of blue points matched by M to
red points. By a mass transport argument, these intensities are equal.

If p > 1/2, then there must be some blue points left unmatched. In fact, it is easy to see that this is still the case for
some p < 1/2, since some pairs of red points will be matched to each other (for example, any pair which are each other’s
nearest neighbours). We conjecture that this remains true for all p > 0. As far as we are aware, this is not known for any
d . Here we make the following progress towards the conjecture: for any fixed p > 0, if d is sufficiently large, then there
are unmatched blue points.

Theorem 1. For a Poisson process of intensity 1 in R
d in which each point independently is blue with probability p ∈

(0,1) and red with probability 1 − p, consider the asymmetric two-type stable matching, under which only red-red and
red-blue matches are allowed. For fixed p, the intensity of unmatched blue points converges to pe−(1−p)/p as d → ∞.
For a non-zero density of unmatched blue points, it suffices to take d > c

p
e1/p , where c is some absolute constant.

See Figure 1 for simulations of the asymmetric two-type model in a two-dimensional torus. The two simulations use
the same random set of points, but some blue points in the upper picture become red in the lower picture. Can the reader
find a blue point that is matched in the upper picture but unmatched in the lower one?

We next consider a multi-type symmetric model. Suppose that there are k different colours, and each point of the
Poisson process independently receives colour i with probability pi , where (p1, . . . , pk) is a probability vector.

Any two points of different colours can be matched, but two points of the same colour may not be matched.
Again, Proposition 2.1 will yield that there exists a unique stable matching. If p1 > 1/2, then with probability 1,

some points of colour 1 will remain unmatched in this stable matching. We conjecture that this remains true whenever
p1 > max2≤i≤k pi . We show that for a given collection p1, . . . , pk , this is true for sufficiently large d .

Theorem 2. Fix a probability vector (p1, . . . , pk). Consider the multi-type symmetric stable matching of a Poisson pro-
cess of rate 1 in R

d with k colours, where pi gives the probability of colour i. Suppose p1 > max2≤i≤k pi . Then there exists
some strictly positive λ = λ(p1, . . . , pk) such that the intensity of unmatched type-1 points converges to λ as d → ∞. In
the case where pi are equal for all i ≥ 2, we have λ = (p1 − p2)

k−1p
−(k−2)
1 .

Our method to prove Theorems 1 and 2 involves the analysis of stable matchings on the Poisson-weighted infinite tree
(or PWIT). The PWIT was introduced by Aldous and Steele [3] and has been used in many contexts to provide a scaling
limit of complete graphs with independent edge-weights, for example in the setting of minimal-weight spanning trees and
invasion percolation [1,3,14], random assignment problems [2,13], and random matrices [5–7]. Here we show how it also
arises naturally as a limit of Poisson processes in high-dimensional Euclidean space, under appropriate rescaling; as far
as we know, this is the first such application of the PWIT.
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Fig. 1. The two-color asymmetric model (with red-red and red-blue matches allowed) for uniformly distributed points in a two-dimensional torus.
Unmatched points are shown larger. Top: 2000 red and 1000 blue points. Bottom: 2500 red and 500 blue points.

We make some brief observations illustrating some of the difficulty of obtaining results about the models considered
in Theorems 1 and 2.

In the symmetric model of Theorem 2, note that for any i, the probability that there are unmatched points of type
i is 0 or 1, by ergodicity. If pi = pj then by symmetry this probability is the same for i and for j , but there can’t be
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unmatched points of two different colours, so the probability must be 0. Consider for example k = 3 and p1 < p2 = p3.
By the above argument, with probability 1 there are no unmatched points of type 2 or 3. One would naturally conjecture
that also no points of type 1 (which has lower intensity) are unmatched – however, there is no obvious monotonicity for
the model in Euclidean space, and this conjecture does not seem easy to prove, even taking d large. (Our comparison
with the PWIT could be used to show that the intensity of unmatched points of type 1 can be made as small as desired by
taking d sufficiently large, but it is not clear that it will help in showing that the density is 0 for some d .)

Meanwhile for the asymmetric two-type model, Theorem 1 implies that for given p0 > 0, for sufficiently large d there
exist unmatched blue points with probability 1 for any probability p > p0 of blue points. One might naturally imagine
that for any fixed d , if there are unmatched blue points for some given p0, then the same is true for any p > p0. However,
this monotonicity property also appears difficult to prove. (Note that one can easily find finite configurations of points
such that removing a blue point increases the number of unmatched blue points.)

Underlying both Theorem 1 and Theorem 2 is a more general property, namely that for the model of a stable matching
of a rate-1 Poisson process in R

d with a given distribution of colours and a given rule about which colour-pairings are
allowed, the intensity of unmatched points of a given colour converges as d → ∞; its limit can be identified as the
probability, in a corresponding stable matching model on the PWIT, that the root has the given colour and is unmatched.
We state this more general result after we have given a formal definition of the PWIT and the stable matching model on
it; see Theorem 4 at the end of Section 5 for the formulation.

1.2. Asymmetric two-type matching on a hierarchical graph

We also consider the asymmetric two-type model in a case where the distance function is given by a hierarchical metric.
In this case we can indeed show that there are unmatched points for every value of p (as we conjectured above for the
stable matching with respect to Euclidean distance in R

d ).
Consider the distance on R+ defined by

ρ(x, y) = 2− sup{k∈Z:�2kx�=�2ky�}. (1.1)

This is an ultrametric (that is, a metric such that ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)} for all x, y, z).
Let p ∈ (0,1). Consider a Poisson process of rate λ > 0 on R+. As above, let each point independently be coloured

blue with probability p and red with probability 1 − p; red-red and red-blue matches are allowed, but not blue-blue.

Theorem 3. Fix λ > 0 and p ∈ (0,1). Consider the two-type asymmetric stable matching model for a Poisson process
on R+ with rate λ, in which each point is independently blue with probability p and red with probability 1 − p. With
probability 1, there are infinitely many stable matchings with respect to the hierarchical metric ρ, and all these matchings
have infinitely many unmatched blue points. In fact, there exists c = c(λ,p) > 0 such that, with probability 1, for all large
enough R the number of unmatched blue points in the interval [0,R] is at least cR for all stable matchings.

There exist multiple stable matchings with respect to ρ since a point can be equidistant from several others. However,
these stable matchings are all closely related to each other in the following way. Take a dyadic interval [2km,2k(m + 1))

for some integers m ≥ 0 and k, and, for a given stable matching, consider the set of points in the interval that are not
matched to another point in the interval (equivalently, that are not matched at distance 2k or less). This set cannot include
both a red point and a blue point, and also cannot include two red points. We write Nk(m) for the number of blue points
minus the number of red points in the set, which is in {−1,0,1,2, . . . }.

Then we have

Nk(m) = g
(
Nk−1(2m),Nk−1(2m + 1)

)
(1.2)

where g : {−1,0,1,2, . . . }2 	→ {−1,0,1,2, . . . } is defined by

g(a, b) =
{

0 if a = b = −1

a + b otherwise.

Also Nk(m) is uniquely determined whenever the interval has at most one point. By starting from a partition into dyadic
intervals each of which contain at most one point and applying (1.2) recursively, we obtain that the values Nk(m) are in
fact the same for any stable matching.

By translation invariance, Nk(m),m ∈ Z are i.i.d. for every k, and (1.2) yields a recursion in k for the distribution of
Nk(m), which we analyse in order to prove Theorem 3.

One could also consider a version in R
d for d ≥ 2 based on dyadic d-cubes rather than dyadic intervals, or indeed a

more general model p-adic model for all p ≥ 2. The result and the analysis would be very similar.
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1.3. Related work

The recent article [4] treats general (not necessarily stable) translation-invariant matchings of Poisson processes of mul-
tiple colors under arbitrary color-matching rules (and indeed generalized matchings in which three or points may be
matched to each other). The optimal tail behavior of such matchings in R

d is analyzed in terms of the dimension d , the
matching rule, and the color intensities. It turns out that convex geometry in the space of intensity vectors plays a key
role.

In [9], stable matchings of various kinds are shown to be intimately tied to two-player games. In particular, the asym-
metric matching rule of Theorem 1 is related to a game called “fussy friendly frogs”: Alice places a frog on a point of the
Poisson process, then Bob places another frog on a distinct point; subsequently the players take turns to move either frog
in such a way that the two frogs get closer, but they are never allowed to be both on blue points or on the same point; a
player with no legal move loses. Theorem 1 implies that this game is a first-player win in sufficiently high dimension.

1.4. Plan of the paper

In Section 2 we set up a formal framework for stable matchings on weighted graphs, and give a result which guarantees
existence and uniqueness of the stable matching for several of the multi-type models that we consider in the paper. The
required conditions are that the weights involving any given vertex are distinct and have no accumulation points, and that
there are no infinite descending paths (in the sense of [8]).

In Section 3 we describe the PWIT and explain how it arises as a scaling limit of high-dimensional Poisson processes.
We then investigate various stable matching models on the PWIT (where the recursive structure of the graph makes certain
exact computations possible).

The comparison between the stable matching models for the PWIT and for the Poisson process in R
d is formally

developed in Section 4. In Sections 5, 6 and 7 we complete the proofs of the main results. We conclude the article with
some open problems.

2. Stable matching on general weighted graphs

In this section we give a result guaranteeing the existence and uniqueness of a stable matching for a general class of
models based on a symmetric distance function (which need not be a metric), or, in other words, an edge-weighted graph.
In particular, the framework will cover the various multi-type models considered above. (A pair of points whose types are
incompatible will not be joined by an edge in the graph.)

Suppose we have a set V and a symmetric function � : V ×V →R+ ∪{∞} with �(x, x) = ∞ for all x. We call �(x, y)

the weight associated to the pair {x, y}; we think of it as the weight of the edge {x, y} in a weighted graph with vertex set
V and vertex set E� := {{x, y} : �(x, y) < ∞}, with the case �(x, y) = ∞ corresponding to the absence of an edge.

Let a matching of (V ,E�) be a function M : V → V that is an involution, i.e. M(M(x)) = x for all x ∈ V , and such
that �(x,M(x)) < ∞ whenever M(x) �= x.

If x �= y and M(x) = y (in which case also M(y) = x) then we say that x and y are matched by M (or that y is the
partner of x in M); if M(x) = x then we say that x is unmatched by M .

Given a matching M , define dM : V →R+ ∪ {∞} by

dM(x) = �
(
x,M(x)

)
. (2.1)

The matching M of (V ,E�) is stable (with respect to the function �) if

�(x, y) ≥ min
(
dM(x), dM(y)

)
for all x and y. (2.2)

We can interpret this definition as follows. Each point x has an order of preference among the other points; it prefers to
have a partner y such that �(x, y) is as small as possible (but will remain unmatched rather than being matched to another
y with �(x, y) = ∞).

Proposition 2.1. Let V be finite or countably infinite. Suppose that the function � satsfies the following conditions.

(i) Distinct weights: there are no x, y, z ∈ V with y �= z such that �(x, y) = �(x, z) < ∞.
(ii) Locally finite: for all x ∈ V and all r < ∞, the set {y ∈ V : �(x, y) < r} is finite.

(iii) No infinite descending paths: there is no sequence of elements x0, x1, x2, . . . of V such that �(x0, x1) > �(x1, x2) >

�(x2, x3) > · · · .
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Then there exists a unique stable matching M of (V ,E�). If x and y are two points both left unmatched by M , then
�(x, y) = ∞.

Proposition 2.1 applies to the models in Theorems 1 and 2, as well as to the following more general setting. Let G be
an undirected graph with vertex set {1, . . . , k} with no parallel edges but possibly with self-loops. An edge between i and
j indicates that points of colours i and j are allowed to be matched to each other (in which case we say that colours i

and j are compatible). For the asymmetric model of Theorem 1, G is one edge with a self-loop at one end; for Theorem 2
it is a complete graph without self-loops. Given a probability vector (p1, . . . , pk), consider a Poisson process on R

d of
intensity 1; let V be the set of all the points of the process, and let each x ∈ V independently be given colour i with
probability pi , for 1 ≤ i ≤ k. For two points x, y ∈ V of respective colours i and j we let �(x, y) = |x − y| if i and j are
compatible, and �(x, y) = ∞ otherwise.

In the above setting, conditions (i) and (ii) in Proposition 2.1 hold with probability 1 by basic properties of the Poisson
process. The fact that the Poisson process has no infinite descending paths with probability 1 is a special case of The-
orem 4.1 of Daley and Last [8], so condition (iii) also holds. Hence indeed, for the models of Theorems 1 and 2, with
probability 1 there exists a unique stable matching, and the same is true in the more general setting given in Theorem 4 at
the end of Section 5,

We will also apply Proposition 2.1 to the PWIT in Section 3 and to a variant of the hierarchical metric on R in Section 6.
We also make a useful observation about the information necessary to determine whether or not a given vertex x is

matched within some given distance R. A descending path from x with weights less than R is a sequence x0, x1, x2, . . . , xk

with x0 = x and

R > �(x0, x1) > �(x1, x2) > · · · > �(xk−1, xk). (2.3)

Let V
↓
R (x) and E

↓
R(x) be the sets of all vertices and respectively all edges that are contained in any such path.

Proposition 2.2. If conditions (i), (ii), (iii) of Proposition 2.1 hold, then for all x ∈ V and all R > 0, the set E
↓
R(x) is finite.

To determine whether x is matched along an edge of weight less than R in the stable matching (i.e. whether dM(x) < R

where M is the stable matching) it suffices to know E
↓
R(x) and the collection of edge-weights {�(y, z) : {y, z} ∈ E

↓
R(x)}.

Finally, note that the definition of stable matching only uses the relative ordering of edge-weights. If the weights are
rescaled by applying the same strictly increasing function to each finite weight, the set of stable matchings does not
change. Combining this with Proposition 2.2, we can in fact transfer information about stable matchings from one graph
to another, if the local structure of the sets of descending paths agrees in a suitable sense:

Proposition 2.3. Suppose that the set V , with associated edge-weight function �, and the set Ṽ , with associated edge-
weight function �̃, both satisfy conditions (i), (ii), (iii) of Proposition 2.1. Let M and M̃ be the stable matchings of V and
Ṽ respectively. Given x̃ ∈ Ṽ and R̃ > 0, define Ṽ

↓
R̃

(̃x) ⊆ Ṽ and Ẽ
↓
R̃
(̃x) with respect to the function �̃ in the same way that

V
↓
R (x) ⊆ V and E

↓
R(x) were defined with respect to the function �.

Let f be a strictly increasing function f : R+ ∪ {∞} →R+ ∪ {∞} such that f (∞) = ∞. Suppose there is a bijection
φ from V

↓
R (x) to Ṽ

↓
f (R)(̃x) with φ(x) = x̃, such that for each u,v ∈ V

↓
R (x), {u,v} ∈ E

↓
R(x) iff {φ(u),φ(v)} ∈ Ẽ

↓
R̃

, and in

that case �̃(φ(u),φ(v)) = f (�(u, v)). Then �(x,M(x)) < R iff �̃(̃x, M̃(̃x)) < f (R).

We prove Propositions 2.1, 2.2 and 2.3 in Section 7. The proof is based on an inductive construction to identify edges
which must be included in any stable matching, related to the approach used in [11] for the special cases of one-type and
symmetric two-type matchings in R

d with weights given by Euclidean distance.

3. The Poisson-weighted infinite tree

3.1. Definition of the PWIT

The Poisson-weighted infinite tree, or PWIT, is an edge-weighted graph with vertex set

N
↓ =

∞⋃
k=0

N
k = {∅,1,2, . . . ,11,12, . . . ,21,22, . . . ,111,112, . . . },
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and edges {v, vj} for each v ∈N
↓ and j ∈N. We say that vj is a child of v. For each v ∈ N

↓, let (t
(v)
j : j = 1,2,3, . . . ) be

the points of a Poisson process of rate 1 on R+ in increasing order, and let these processes be independent for different v.
Then let t

(v)
j be the weight associated to the edge {v, vj} (which we will also sometimes write as t (v, vj)).

The PWIT was introduced by Aldous and Steele [3] and often arises in applications as a scaling limit of the complete
graph with edges weighted by i.i.d. random variables. We will explain how it also gives a scaling limit of a Poisson
process in high-dimensional Euclidean space. Stable matchings on the PWIT can be analysed quite precisely, and we will
be able to use them to study the behaviour of stable matchings in R

d for large d .
First we mention briefly the way in which the PWIT arises as a limit of the weighted complete graph. This can be

formalised in many different ways; in particular the framework of local weak convergence is often used (see for example
[3]), but the following less technical approach gives the essential idea. Consider the complete graph Kn with i.i.d. weights
attached to the edges which are, say, exponential with rate 1/n. Fix some vertex v and some “radius” R > 0, and consider
the subgraph of Kn created by the collection of all paths from v which have total weight at most R. Similarly we can
consider the subtree of the PWIT created by the collection of all paths from the root which have total weight at most R.
Then for any given R, we can couple the complete graph with the PWIT so that, with probability tending to 1 as n → ∞,
there is an isomorphism between these two subgraphs which identifies v with the root of the PWIT, and which preserves
the edge weights.

Now we motivate informally the idea of the PWIT as a limit of the Poisson process in R
d as d → ∞. Let

ωd = πd/2

�(1 + d
2 )

.

Then the volume of a ball of radius r in R
d is ωdrd .

Consider a Poisson process of rate 1 in R
d , as seen from a “typical point”, located at the origin and denoted by O .

(We will make this notion precise by considering the Palm version of the Poisson process in Section 4.) The point O will
correspond to the root of the PWIT. Let x1, x2, x3, . . . be the other points of the process, written in order of their distance
from O . Then the sequence ωd |x1|d ,ωd |x2|d ,ωd |x3|d , . . . forms a Poisson process of rate 1 on R+. Rescaled in this way,
these distances correspond to the weights t

∅

1 , t
∅

2 , t
∅

3 , . . . on the edges connecting the root of the PWIT to its children.

Note that ω
1/d
d |x1| converges in probability to 1 as d → ∞. In fact, for any ε > 0, the probability that there exists a

point of the process within distance ω
−1/d
d (1 − ε) of O decays exponentially with d , while the expected number of points

within distance ω
−1/d
d (1 + ε) increases exponentially.

Now consider in turn the points closest to x1. Other than the origin, let these points be x1,1, x1,2, x1,3, . . . in order of
distance from x1. Similarly rescaled, their distances from x1 again converge to a Poisson process, and ω

1/d
d |x1,1 − x1|

converges in probability to 1 as d → ∞. On the other hand, for large d , we expect x1 and x1,1 − x1 to be approximately
orthogonal, so that x1,1 is at distance approximately

√
2ω

−1/d
d from O . In particular, x1,1 is not among the nearest

neighbours of O (we expect to find exponentially many closer points).
We can extend by considering paths from the origin consisting of distinct points x0 = O,x1, x2, . . . , xk , in which each

xj is one of the m nearest neighbours of xj−1. For given k and m, with high probability as d → ∞ no such path ends in
a point xk which is one of the m nearest neighbours of O . This explains why the acyclic structure of the PWIT gives an
appropriate limit for the graph of near neighbours in the Poisson process on R

d .
In this way we could give a result similar to that mentioned for the complete graph above, comparing the structure of the

PWIT and the Poisson process restricted to paths of total (rescaled) weight R, corresponding to local weak convergence.
(This mode of convergence would be sufficient, for example, to obtain convergence of the minimal spanning tree on the
points of a Poisson process in a finite box of Rd to the minimal spanning forest of the PWIT – see Theorem 5.4 of [3] for
a general result concerning covergence of the minimal spanning tree under local weak convergence.) However, to analyse
stable matchings we need a different mode of convergence, concerning the subgraph obtained by taking all descending
paths from the root (in the PWIT) or the origin (in R

d ) with weights (or distances) less than R; in the same way as at (2.3),
a descending path is a path such that the successive edge weights (or distances) form a decreasing sequence. We show
that with high probability as d → ∞, the collection of descending paths in the two models can be coupled so that (after
rescaling of distance) their graph structure is identical in the sense of Proposition 2.3. This will allow us to approximate
certain intensities in the stable matching model in R

d (for example, the intensity of points of a given type which are not
matched by the stable matching) by probabilities involving the matching of the root of the PWIT.

Note that while the edge weights of the PWIT correspond to rescaled distances, we do not think of these weights as
defining a graph distance, or indeed giving any metric. The weight (corresponding to rescaled distance) between ∅ and
its child 1 in the PWIT is t

∅

1 ∼ Exp(1), and that between 1 and its child 11 is t1
1 ∼ Exp(1), but, asymptotically as d → ∞,

the rescaled distance between ∅ and its “grandchild” 11 goes to ∞.
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3.2. Stable matchings on the PWIT

In the rest of the section we analyse stable matching problems where the set of points is given by the vertices of the PWIT.
Given a probability vector (p1, . . . , pk), let each vertex of the PWIT have type (or colour) i with probability pi ,

independently for different vertices. (Note then that for each v, the weights of edges from v to its children of colour i

form a Poisson process of rate pi , indepdendently for different i = 1, . . . , k and v ∈N
↓.) As in the spatial models already

considered, the colours determine which pairs of points are allowed to be matched. To apply Proposition 2.1 to the PWIT,
let G be a graph of colour compatibilities as discussed earlier, let V = N

↓ be the set of all vertices of the PWIT, and
for any v ∈ N

↓ and j ∈ N let �(v, vj) = t
(v)
j if the colors of v and vj are compatible; for all other pairs of vertices

u,v ∈ N
↓ (i.e. for incompatible colors or non-neighboring vertices) let �(u, v) = ∞. Note in particular that we do not

allow non-neighbours in the PWIT to be matched to each other.
From elementary properties of the Poisson process, with probability 1, all the weights in the PWIT are distinct, and

any vertex has only finitely many edges with weights falling in any given compact interval. This gives conditions (i) and
(ii) of Proposition 2.1, while condition (iii) on the absence of infinite descending chains will be given by Lemma 4.8
below. So in all the cases of interest, with probability 1 there exists a unique stable matching.

The PWIT has a recursive structure. The subtrees rooted at each child 1,2, . . . of the root ∅ have the structure of
independent copies of the PWIT. We can consider the stable matching problem on any of these subtrees. If j is a child
of the root, along an edge with weight t

(∅)
j , say that j is “available” (to the root) if j is not matched along an edge with

weight less than t
(∅)
j in the stable matching of the subtree rooted at j . Then the root is matched to the nearest of its

children which is both available and has a compatible colour (and is unmatched if no such child exists).

3.2.1. One-type matching
As an introduction we start with the simplest case, where there is only one type of point (so p1 = 1) and any pair {v, vj}
with v ∈ N

↓, j ∈ N may be matched. That is, � is the symmetric function given by

�(v, vj) = t
(v)
j , (3.1)

and �(v,w) = ∞ whenever v and w are not joined by an edge in the PWIT.
For t ≥ 0, let x(t) be the probability that the root is not matched along an edge with weight less than t . By the recursive

structure of the PWIT, conditional on the weights t
(∅)
1 = t1, t

(∅)
2 = t2, . . . from the root to its children, these children are

available independently with probabilities x(t1), x(t2), . . . . In fact, the process of available children of the root forms a
inhomogeneous Poisson process with rate x(t) on R+. The root is matched to the first point of this process. So x(t) is
given by the probability that this process has no points in [0, t), giving

x(t) = exp

{
−

∫ t

0
x(u)du

}
.

Hence we have

x′(t) = −x(t)2. (3.2)

Using x(0) = 1 gives the exact solution x(t) = 1/(t + 1). Since x(t) → 0 as t → ∞, the root is matched with probability
1. (However, since

∫ ∞
0 x(t) dt = ∞, the weight of the edge along which it is matched has infinite mean.)

3.2.2. Asymmetric two-type matching
Now we study the asymmetric two-type model corresponding to the one studied in Theorem 1 for points in R

d . Let each
vertex of the PWIT independently be red with probability 1−ε and blue with probability ε. Red-red and red-blue matches
are allowed, but blue-blue matches are not. That is, the function � is defined as at (3.1) except that now �(v, vj) = ∞ if v

and vj are both blue.
Let r(t) be the probability that the root is red and not matched along an edge of weight less than t , and b(t) the

probability that the root is blue and not matched along an edge of weight less than t . By an analogous argument to
the one-type case above, the processes of available red and blue children of the root form independent inhomogeneous
Poisson processes of rates r(t) and b(t) on R+.

We have

r(t) = (1 − ε) exp

{
−

∫ t

0

[
r(u) + b(u)

]
du

}
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b(t) = ε exp

{
−

∫ t

0
r(u) du

}
,

so that

r ′(t) = −r(t)
(
r(t) + b(t)

)
b′(t) = −b(t)r(t),

(3.3)

with initial conditions r(0) = 1 − ε and b(0) = ε. Certainly r(t) → 0 as t → ∞ (for example we have r ′(t) < −r(t)2, so
by comparison to (3.2), r(t) < 1/(t + 1)). We can ask whether or not there are unmatched blue points; that is, does b(t)

also converge to 0 as t → ∞?
Write R(t) = − log r(t) and B(t) = − logb(t). Then R and B are increasing with t , and R(t) → ∞ as t → ∞. We

can derive B as a function of R, and ask whether B → ∞ as R → ∞.
We have

R′ = − r ′

r
= r + b = e−R + e−B

B ′ = −b′

b
= r = e−R,

which gives

dR

dB
= e−R + e−B

e−R
= 1 + eR−B,

leading to d(R−B)
dB

= eR−B which has general solution

R − B = − log(−B + c).

We see that as B ↑ c, R → ∞. Hence for the original system B(t) → c as t → ∞.
To find c, we use r(0) = 1 − ε and b(0) = ε, so that R(0) = − log(1 − ε) and B(0) = − log ε; this gives gives

c = 1−ε
ε

+ log 1
ε

.
Then b(t) → b(∞) = e−B(∞) = e−c = εe−1/ε+1 = e−1/ε+1b(0).
So we see that a proportion e−1/ε+1 of the blue points remain unmatched (or, more formally, this is the conditional

probability that the root remains unmatched, given that it is blue).
Figure 2 shows a numerical solution of the system (3.3) with initial values r(0) = 0.75 and b(0) = 0.25.

Fig. 2. Numerical solution of the system (3.3) describing the evolution of the asymmetric two-type system on the PWIT, with r(0) = 0.75 and
b(0) = 0.25. As t → ∞, r(t) decays exponentially to 0 and b(t) converges to b(∞) ≈ 0.0124.
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3.2.3. Symmetric multi-type matching
Now we turn to the model corresponding to the setting of Theorem 2, in which there are k types with probabilities
p1, . . . , pk , and two points may be matched if their types are different. Now we define � as at (3.1) unless v and vj have
the same colour, in which case �(v, vj) is infinite.

Let xi(t) be the probability that the root itself has type i and is not matched along an edge of weight less than t . As
before, the weights of edges from the root leading to available children of type i form inhomogeneous Poisson processes
of rates xi(t), independently for i = 1,2, . . . , k.

Then xi(0) = pi and

x′
i (t) = −xi(t)

∑
j �=i

xj (t). (3.4)

Writing Xi(t) = − logxi(t) this gives

X′
i (t) = −x′

i (t)

xi(t)

=
∑
j �=i

xj (t), (3.5)

and so

X′
i (t) − X′

j (t) = xj (t) − xi(t)

= e−Xj (t) − e−Xi(t).

Then if xj (t) < xi(t), or equivalently Xi(t) < Xj (t), then the derivative of Xj(t) − Xi(t) is strictly positive. Hence in
particular if pj < pi then xj (t) ≤ xi(t) for all t .

Suppose the maximum initial density is attained by at least two types; say p1 = p2 ≥ pj for all j . Then by symmetry
x1(t) = x2(t) for all t . It’s impossible for a positive proportion of points of two different types to remain unmatched (in
particular, the root would have an unmatched child of a different colour with probability 1, and this would contradict the
final statement of Proposition 2.1). Hence in this case all points are matched.

Suppose on the other hand that there is a unique type with highest initital probability. Then we will show that a positive
proportion of points of this type remain unmatched:

Proposition 3.1. If p1 > pj for all j > 1, then limt→∞ x1(t) > 0.

Proof. Without loss of generality, assume that p1 > p2 ≥ p3 ≥ · · · ≥ pk . As noted above, then also x2(t) ≥ xj (t) for all
t and all 3 ≤ j ≤ k. Since only the type with maximum initial probability can have points left unmatched, we know that
x2(t) → 0, i.e. X2(t) → ∞. Now write Z(t) = X2(t) − X1(t). From (3.5), we get

dZ(t)

dX2(t)
= d(X2(t) − X1(t))

dX2(t)

= x1(t) − x2(t)∑
j>1 xj (t)

= exp(−X1(t)) − exp(−X2(t))

exp(−X1(t)) + ∑
j≥3 exp(−Xj(t))

≥ exp(−X1(t)) − exp(−X2(t))

exp(−X1(t)) + (k − 2) exp(−X2(t))

= exp(−X2(t))(exp(Z(t)) − 1)

exp(−X2(t))(exp(Z(t)) + (k − 2))

= exp(Z(t)) − 1

exp(Z(t)) + (k − 2)

= 1 − k − 1

exp(Z(t)) + (k − 2)
.
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This derivative is always positive since Z(t) > 0 for all t ; hence in fact Z(t) is increasing as a function of X2(t), and
this derivative is bounded away from 0. So Z(t) → ∞ as X2(t) → ∞, i.e. as t → ∞.

This gives that X2(t) − X1(t) → ∞, i.e. that x2(t)/x1(t) → 0. Then also xj (t)/x1(t) → 0 for all j > 1.
So for some t ,

x1(t) > x2(t) + · · · + xk(t). (3.6)

Now the intuition is that since, looking at points unmatched within weight t , the density of type-1 points is higher than
the density of all other types put together, it is impossible to match all the type-1 points. To see this directly, one can use
(3.5) to observe that the derivative of x1(t) − ∑

j≥2 xj (t) is always non-negative (heurisitically, this reflects the fact that
each match involves at most one type-1 point and at least one point of another type); combining with (3.6) gives that x1(t)

stays bounded away from 0 as t → ∞. �

Remark 3.2. In the case where pi,1 ≤ i ≤ k take only two distinct values, we can solve exactly. Consider for example the
case where p1 > p2 = · · · = pk , which (up to reordering) is the only such case where some points will remain unmatched.

Then by symmetry between all coordinates except the first,

x′
1(t) = −(k − 1)x1(t)x2(t)

x′
2(t) = −(

x1(t)x2(t) + (k − 2)x2(t)
2).

We get

dx2

dx1
= 1

k − 1
+ k − 2

k − 1

x2

x1
,

which is solved by

x2(t) = x1(t) − cx1(t)
k−2
k−1 .

From the initial values x1(0) = p1, x2(0) = p2 we obtain c = (p1 − p2)p
− k−2

k−1
1 . Then considering t → ∞ and using

x2(∞) = 0, we have

x1(∞) = (p1 − p2)
k−1p

−(k−2)
1

=
(

1 − p2

p1

)k−1

x1(0).

We can interpret the quantity x1(∞)/x1(0) as the “proportion of points of type 1 left unmatched” (more precisely, the
probability that the root is unmatched, given that it has type 1). Looking for asymptotics as the difference between the
initial probabilities becomes small, we can put for example p1 = 1

k
+ (k − 1)δ and p2 = 1

k
− δ. Then we obtain

x1(∞)

x1(0)
=

(
k2δ

1 + k(k − 1)δ

)k−1

∼ k2(k−1)δk−1 as δ ↓ 0.

4. Coupling the PWIT and a Poisson process in R
d

4.1. Palm version

Consider a simple point process in R
d with finite intensity. The Palm version of the process is obtained, informally

speaking, by conditioning on the presence of a point at the origin. One can also describe the Palm version as giving the
distribution of the process “as seen from a typical point”. This notion can be formalised in various equivalent ways. For
example, let � be the point process, let [�] denote the set of its points, and, for y ∈ R

d , let θy(�) denote the process
obtained by translating � by y; then the probability of an event A for the Palm version �↓ of � can be defined by

P
(
�↓ ∈ A

) = E#{x ∈ [�] ∩ [0,1]d : θ−x(�) ∈ A}
E#{x ∈ [�] ∩ [0,1]d} .
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In the case of a Poisson process, the Palm version has a particularly straightforward description; it can be obtained simply
by adding a point at the origin to a configuration drawn from the original measure. See for example Chapter 11 of
Kallenberg [12] for extensive details.

Our multi-type models add information about the colours of the points of the Poisson process. In the language of
[12], this information can be taken as a stationary background. To obtain the Palm version, we add a point at the origin
whose colour is again drawn according to the same distribution as the other points (and independently of the rest of the
configuration).

Intensities of various types of point in the original process can then be related to probabilities involving the point at the
origin in the Palm version. In particular, the intensity of points of type i which are unmatched in the stable matching is
given by the probability that the point at the origin in the Palm version has type i and is unmatched in the stable matching.

4.2. Descending paths

In the PWIT, let a descending path from the root with weights less than T be a sequence v0, v1, . . . , vk of points of N↓,
where v0 is the root, where vi is a child of vi−1 for i = 1,2, . . . , k, and where

T > t(v0, v1) > t(v1, v2) > · · · > t(vk−1, vk),

where t (vi−1, vi) is the weight of the edge between vi−1 and vi .
For the Palm version of the Poisson process in R

d , let a descending path from the origin with distances less than R be
a sequence of distinct points of the process x0, x1, . . . , xk where x0 is the origin and where

R > |x0 − x1| > |x1 − x2| > · · · > |xk−1 − xk|.
For finite T , with probability 1 the set of descending paths from the root within distance T in the PWIT is finite and

contains only finite paths (see Lemma 4.8). (The analogous property is also true for the Palm version of the Poisson
process in R

d ; this is a special case of Theorem 4.1 of Daley and Last [8].)
From Proposition 2.2, we know that for the stable matching on the PWIT, the event that the point at the origin is

matched to a child along an edge with weight less than T is in the sigma-algebra generated by the graph of descending
paths from the origin within distance T (including the information about the colours of points); similarly in R

d for the
event that the origin is matched to a point at distance less than R.

4.3. Description of the coupling

Throughout this section, we consider the Palm version of the Poisson process in R
d . Suppose T and R are related via

T = fd(R) := ωdRd so that a ball of radius R in R
d has volume T .

We aim to couple the collection of descending paths from the root with weights less than T in the PWIT with the
collection of descending paths from the origin with distances less than R in R

d , in such a way that their graph structure
is identical, and such that the weight t of an edge in the PWIT and the distance r between the corresponding points in
R

d are related by t = fd(r) = ωdrd . Specifically, we want to arrange that the hypotheses of Proposition 2.3 are satsfied
with high probability. As in Section 2, let V

↓
R (O) and E

↓
R(O) be the sets of points, and respectively edges, contained in

some descending path from the origin with distances less than R in R
d , and let Ṽ

↓
T (∅) and Ẽ

↓
T (∅) be the set of points,

and respectively edges, contained in some descending path from the root in the PWIT with weights less than T .

Proposition 4.1. There exist absolute constants α > 0 and c such that the following holds. Let T ≥ 1, let d > cT , and let
R = f −1

d (T ).
Then we can couple the PWIT model with the Palm version of the Poisson model in R

d such that with probability at
least 1 − e−αT , there exists a bijective map φ : V ↓

R (O) 	→ Ṽ
↓
T (∅) with the following properties:

(i) vi and φ(vi) have the same colour for all i;
(ii) v0, v1, . . . , vk is a descending path from the origin with weights less than R in R

d if and only if φ(x0),φ(x1), . . . ,

φ(xk) is a descending path from the root with weights less than T in the PWIT, and if so then t (φ(vi−1),φ(vi)) =
fd(|xi − xi=1|) for i = 1,2, . . . , k.

Using this result we can apply Proposition 2.3 to obtain that (with probability at least 1 − e−αT ) the origin in R
d is

matched within distance R if and only if the root of the PWIT is matched within distance T .
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Our strategy is to couple a procedure that explores the collection of descending paths in R
d with one that generates

the collection for the PWIT, aiming to maintain the bijection as described above. If certain events occur for the Poisson
configuration in R

d , the coupling will fail (and we terminate the procedure – on this set we couple the two processes in
an arbitrary way so as to maintain the required marginals); but if the procedure reaches the end then it is guaranteed that
a bijection as described above exists. We will give a lower bound for the probability that the coupling reaches the end
successfully.

First we describe the procedure to explore the collection in R
d . We will abandon this exploration if it ever discovers a

point in R
d that can be arrived at via two different descending paths from the origin within distance R (if this happens, it

is certainly impossible to couple successfully, since in the case of the PWIT the collection of descending paths has a tree
structure).

For a point x ∈ V
↓
R (O), other than the origin, we say the parent of x is the point that precedes it in the descending path

from the origin to x with distance less than R. This is unambiguously defined for as long as the procedure keeps running,
since if more than one such path is ever discovered, the procedure stops.

In fact, we will be more conservative. If we find two points of V
↓
R (O) which are closer than R to each other, and

neither is the parent of the other, we will abandon the procedure. (Note that this must occur if there is any point that can
be arrived at via two different descending paths from the origin within distance R.) Furthermore, we will also abandon
the procedure if it ever finds a parent and child which are closer than R/2 to each other.

We explore space gradually, discovering points of V
↓
R (O) as we proceed. We maintain an ordered list of points which

we have discovered, say x0, x1, . . . , xk , where x0 is the origin. Let r0 = R and for j > 0, let rj be the distance to xj from
its parent, which is xi for some i < j ; note that rj < ri by the descending path property.

We “process” the points in order; to process xj , we look for new points in the open ball Bj := B(xj , rj ), and add any
such new points to the end of the list. These are the points whose parent is xj , i.e. the points which can follow xj in a
descending path.

Suppose our list is x0, . . . , xk , and we are currently processing point xj where j ≤ k. This means that we have already
processed x0, . . . , xj−1, and so the region Aj defined by

Aj := Bj ∩
⋃

0≤i<j

Bi (4.1)

has already been explored, and is known to contain no Poisson points other than xj (if there had been any such point, the
procedure would have terminated at an earlier stage since that point and xj would have been too close to each other.)

Now we describe how to couple this exploration procedure with a process which generates the tree of descending paths
with weights less than T in the PWIT. First a useful observation:

Lemma 4.2. Let r > 0 and t = fd(r). Let x ∈ R
d and let x1, x2, . . . , xk be the points of a Poisson process of rate 1 in

B(x, r). Let ti = fd(|xi − x|). Then t1, t2, . . . , tk are the points of a Poisson process of rate 1 on [0, t].

Proof. This is immediate from basic properties of the Poisson process, and the fact that the ball {y : fd(|y − x|) < s} =
B(x,f −1

d (s)) has volume s. �

We start off with x0 the origin in R
d and v0 the root of the PWIT. For as long as the coupling is successful, at each

stage we have a set of points v0, . . . , vk which have been discovered in the PWIT, and which correspond to the points
x0, . . . , xk discovered in Rd . The root of the PWIT is v0 and corresponds to the origin in R

d , which is x0. If vi is the
parent of vj in the PWIT, let tj be the weight of the edge between vi and vj ; then xi is the parent of xj in the sense
described earlier for Rd , and tj = fd(|xi − xj |).

At the same time as processing xj in R
d , we process vj in the PWIT. Processing vj involves generating the children

of vj which are connected to vj along edges with weights in [0, tj ). Notice that tj is precisely the volume of B(xj , rj ).
Hence we can couple the children of yj in the interval [0, tj ) with a Poisson process of rate 1 in Bj = B(xj , rj ) in such

a way that the weights on the edges from yj and the distances of the points from xj are related according to the scaling
in Lemma 4.2.

Notice that at this stage of the exploration procedure, the new points we discover are not a Poisson process on the
whole of Bj ; as observed above at (4.1), the subset Aj of Bj has already been explored. Hence to generate a set of
children and edge weights according to the correct distribution, we supplement the new points in Bj \ Aj (which are
independent of everything seen in the procedure so far, since this region has not yet been explored so far) with an extra
Poisson process of rate 1 in Aj , again chosen independently of the points in Bj and of everything else seen so far. In this
way we obtain a Poisson process of rate 1 in Bj , which is independent of the previous history of the procedure, and we
use the correspondence in Lemma 4.2 to derive the weights to children of yj which lie in [0, tj ).
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If in fact the extra Poisson process in Aj contains at least one point, we are in trouble, because we cannot maintain the
correspondence between the new points found in R

d and the new vertices added to the PWIT. In this case we abandon the
procedure. However, if this supplementary process in Aj is empty, then we can maintain the bijection and the procedure
continues.

If the procedure finishes (i.e. runs out of new points in R
d to process) without abandoning, then it provides a bijection

between V
↓
R (O) and Ṽ

↓
T (∅) as required for Proposition 4.1.

We summarise the ways that the procedure may fail at step j , i.e. at the step where we process the point xj :

(1) Within Bj \ Aj , we find a child of xj which is within distance R/2 of xj .
(2) Within Bj \ Aj , we find two children of xj which are within distance R of each other.
(3) Within Bj \ Aj , we find a child of xj which is within distance R of a previously discovered point.
(4) The supplementary Poisson process of rate 1 on Aj contains one or more points.

For m = 1,2,3,4, let us write E (m)
j for the event that the procedure successfully completes steps 1, . . . , j − 1, and then

failure type (m) above occurs at step j . (Under this definition it is possible that E (m)
j and E (m′)

j both occur for different m

and m′, but it is not possible that E (m)
j and E (m′)

j ′ both occur for m,m′ ∈ {1,2,3,4} and for different j and j ′.) In the next
section we bound the probabilities of each of these types of failure.

If the procedure does fail at step j , we do not proceed to step j +1. For the sake of being specific about the coupling, let
us say that we we generate the rest of the subtree of the PWIT spanned by Ṽ

↓
T (∅) according to its distribution conditional

on the part of the structure already created at steps 1, . . . , j , and independently of any further information about the
process in R

d .

4.4. Bounding the probability of failure of the coupling

As above, throughout this section we set T = ωdRd , the volume of a ball of radius R in R
d .

Lemma 4.3. For all j , P(E (1)
j ) ≤ ( 1

2 )dT .

Proof. E (1)
j is the probability that the procedure reaches step j , and then we find at least one new point in B(xj ,R/2)\Aj .

Since (independently of everything seen so far) the points in that set form a Poisson process of rate 1, this probability is
bounded above by the volume of B(xj ,R/2), which is (1/2)dT as required. �

Lemma 4.4. If y, z ∈R
d with |y − z| ≥ R/2, then

vol
(
B(y,R) ∩ B(z,R)

) ≤
(

15

16

)d/2

T . (4.2)

Proof. Any point x in the intersection of the two balls is at distance at most h from the midpoint of y and z, where
h2 = R2 − (|y − z|/2)2 ≤ (15/16)R2. (This can be easily checked by considering the plane which contains x, y and z.)
Hence the intersection is contained in a ball of radius h, whose volume is (h/R)dT = (15/16)d/2T . �

Lemma 4.5. For all j , P(E (2)
j \ E (1)

j ) ≤ ( 15
16 )d/2T 2.

Proof. If E (2)
j happens but E (1)

j does not, then at step j we find a pair of new points, say y and y′, which are both between
distance R/2 and R from xj , and are within distance R of each other.

The expected number of such pairs is no more than∫
y

I
(
y ∈ B(xj ,R) \ B(xj ,R/2)

) ∫
y′

I
(
y′ ∈ B(xj ,R) ∩ B(y,R)

)
dy′ dy.

Using (4.2), this is bounded above by

[
volB(xj ,R) − volB(xj ,R/2)

](15

16

)d/2

T

which is less than (15/16)d/2T 2 as desired. �
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Lemma 4.6. For all j and K , P(E (3)
j ∩ {|Ṽ ↓

T (∅)| ≤ K}) ≤ (K − 1)( 15
16 )d/2T .

Proof. If the procedure runs successfully to step j , and |Ṽ ↓
T (∅)| ≤ K , then at step j (when we come to process the point

xj ), the set of already discovered points is x1, . . . , xk for some k with j ≤ k ≤ K .
We want to bound the probability that we then find a new point inside Bj which is within distance R of some xi , i �= j ,

i ≤ k.
This is at most

vol
⋃

i≤k,i �=j

(
B(xi,R) ∩ B(xj ,R)

)
.

But if indeed the procedure has been successful so far, then in particular |xj − xi | ≥ R/2 for all such i. Then using (4.2),
the probability is at most (k − 1)(15/16)d/2T which gives the desired bound. �

Lemma 4.7. For all j , P(E (4)
j ) ≤ (j − 1)( 15

16 )d/2T

Proof. This case is very similar to Lemma 4.6. We wish to bound the probability that at step j , the “supplementary”
Poisson process of rate 1 in the set Aj defined by (4.1) is non-empty. Using the same argument as above, if the procedure
has run successfully up to step j , then each point xi, i < j is at distance at least R/2 from xj . Then the volume of the set
in (4.1) is at most (j − 1)(15/16)d/2T . �

Lemma 4.8. E(|Ṽ ↓
T (∅)|) = eT , and hence

P
(∣∣Ṽ ↓

T (∅)
∣∣ > e2T

) ≤ e−T . (4.3)

Proof. For k ≥ 0, the expected number of descending paths v0, v1, . . . vk with weights less than T in the PWIT, where v0
is the origin, is given by∫

0<tk<···<t1<T

dt1 . . . dtk

which is T k/k!. Since in the PWIT each point is the endpoint of at most one such path, we can sum over k to get
E(|Ṽ ↓

T (∅)|) = eT . The bound in (4.3) then follows by Markov’s inequality. �

Proof of Proposition 4.1. Using the estimate in (4.3), we can combine the four previous bounds using a union bound.
If the procedure fails, then either it does so at step j for some j ≤ e2T , or |Ṽ ↓

T (∅)| > e2T . Then we can combine all
the bounds in Lemmas 4.3, 4.5, 4.6, 4.7 and 4.8 to give

P

( ∞⋃
j=1

4⋃
m=1

E (m)
j

)
≤ P

(∣∣Ṽ ↓
T (∅)

∣∣ > e2T
) + P

( ⋃
1≤j≤e2T

4⋃
m=1

E (m)
j ,

∣∣Ṽ ↓
T (∅)

∣∣ ≤ e2T

)

≤ e−T +
∑

1≤j≤e2T

4∑
m=1

P
(
E (m)

j ,
∣∣Ṽ ↓

T (∅)
∣∣ ≤ e2T

)

≤ e−T + 4
(
e2T

)2
(

15

16

)d/2

T 2

(assuming T ≥ 1). For some constants c and α, this upper bound is less than e−αT for all T ≥ 1 and all d > cT , as
required for Proposition 4.1. �

5. Euclidean model: Proof of Theorems 1 and 2

Proposition 5.1. Consider stable matching for the asymmetric two-type model in R
d where each point is red with prob-

ability 1 − ε and blue with probability ε. Fix any δ > 0. Then there exists c′ = c′(δ) such that for all small enough ε, and
all d > c′ 1

ε
e1/ε , the density of blue points which remain unmatched is in [(1 − δ)εe−1/ε+1, (1 + δ)εe−1/ε + 1].
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Proof. Recall from Section 3.2.2 that r(t) and b(t) are the probabilities that the root of the PWIT is red (or respectively
blue) and is not matched within distance t . We have r(0) = 1 − ε and b(0) = ε, and as t → ∞, r(0) → 0 and b(0) →
b(∞) = εe−1/ε+1.

Correspondingly, write r(d)(t) and b(d)(t) for the probability that, in the Palm version of the model in R
d , the point at

the origin is red (or respectively blue) and is not matched within distance fd(t). By ergodicity of the Poisson process, the
sets of points in R

d which are red, or respectively blue, and unmatched within distance fd(t) have densities r(d)(t) and
b(d)(t) with probability 1. Set also b(d)(∞) = limb(d)(t); then the set of blue points which remain unmatched for ever
has density b(d)(∞) with probability 1.

The density of blue points matched at distance greater than t cannot be greater than the density of red points matched
at distance greater than t (by a mass transport argument). Hence we have that for any t ,

b(d)(t) − r(d)(t) ≤ b(d)(∞) ≤ b(d)(t). (5.1)

From (3.3), b(t) − r(t) has positive derivative at all times, so that b(t) − b(∞) ≤ r(t) − r(∞) = r(t) for all t . Com-
bining with the bound on r(t) just after (3.3), we have that for all t ,

b(t) − b(∞) ≤ r(t) ≤ 1

t
. (5.2)

Now fix some γ > 1, and let T = γ 1
ε
e1/ε = γ e/b(∞) > 1. Suppose that d > cT , where c is given by Proposition 4.1.

We then have that∣∣r(d)(T ) − r(T )
∣∣ + ∣∣b(d)(T ) − b(T )

∣∣ < e−αT . (5.3)

Combining all of (5.1), (5.2), and (5.3), we get

b(d)(∞) ≥ b(d)(T ) − r(d)(T )

≥ b(T ) − r(T ) − ∣∣b(d)(T ) − b(T )
∣∣ − ∣∣r(d)(T ) − r(T )

∣∣
≥ b(∞) − 1

T
− e−αT ,

and

b(d)(∞) ≤ b(d)(T )

≤ b(∞) + (b(T ) − b(∞) + ∣∣b(d)(T ) − b(T )
∣∣

≤ b(∞) + 1

T
+ e−αT .

Since T = γ e/b(∞), for given δ we can choose γ sufficiently large that b(d)(∞) lies in [(1−δ)εe−1/ε+1, (1+δ)εe−1/ε +
1]. Taking c′ = cγ then completes the proof. �

Proof of Theorems 1 and 2. The statement of Theorem 1 follows immediately from Proposition 5.1.
A similar argument leads to Theorem 2 for the symmetric multi-type model. Let x

(d)
i (t) be the density of points of

type i which are not matched within distance t , and let x
(d)
1 (∞) be the density of points which remain unmatched for

ever.
As in Section 3.2.3, define xi(t) to be the probability that the root of the PWIT has type i and is not matched within

distance t . Then as t → ∞, xi(t) → 0 for i > 1 and x1(t) → x1(∞) > 0.
As at (5.1) above, we have

x
(d)
1 (t) −

∑
i>2

x
(d)
i (t) ≤ x

(d)
1 (∞) ≤ x

(d)
1 (t).

For any δ > 0, if T is large enough, then

xi(T ) < δ/2k
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for all i > 1, and also

x1(t) − x1(∞) < δ/2k.

Finally, again if T is large enough, and d > cT where c is given by Proposition 4.1, then∑
i

∣∣x(d)
i (T ) − xi(T )

∣∣ < e−αT < δ/2k.

Combining all these bounds we obtain if T is large enough and d > cT , then |x(d)
1 (∞)−x1(∞)| < δ. Putting λ = x1(∞),

this gives the conclusion of Theorem 2. �

Using the same methods, one can obtain a result on stable matching with a general compatibility graph. Consider again
a stable matching model for a Poisson process of rate 1 in R

d . Let V be the set of points of the process, and let each point
of V independently receive colour i with probability pi , for 1 ≤ i ≤ k, where (p1, . . . , pk) is a probability vector.

As in Section 2, let G be an undirected graph with vertex set {1, . . . , k} with no parallel edges but possibly with self-
loops. An edge between i and j indicates that colours i and j are compatible, i.e. that points of colours i and j are
allowed to be matched to each other; in this case write i ∼ j .

For two points x, y ∈ V of respective colours i and j , let �(x, y) = |x − y| if i ∼ j , and �(x, y) = ∞ otherwise.
For the corresponding stable matching model on the PWIT (with the same vector of colour probabilities (p1, . . . , pk)),

� is defined as explained at the beginning of Section 3.2. Just as in Section 3, we can consider the probability xi(t) that
the root has colour i and is not matched along an edge of weight less than i. We have xi(0) = pi , and

x′
i (t) = −xi(t)

∑
j∼i

xj (t) (5.4)

for each i. Then xi(∞) = limt→∞ xi(t) gives the probability that the root has colour i and is unmatched.

Theorem 4. Fix a probability vector (p1, . . . , pk). Consider a multi-type stable matching of a Poisson process of rate 1
in R

d with k colours, where pi gives the probability of colour i, with compatibility graph G. As d → ∞, the intensity of
unmatched colour-i points converges to the value xi(∞) obtained from (5.4), which is the probability in the corresponding
stable matching model on the PWIT that the root has colour i and is unmatched.

The proof of Theorem 4 can be done using exactly the same approach described in the proof of Theorems 1 and 2
above.

6. Hierarchical model: Proof of Theorem 3

Recall that in the context of Theorem 3, we have a Poisson process of rate λ on R+, in which each point is coloured blue
with probability p and red with probability 1 − p. Red-red and red-blue matches are allowed, but not blue-blue. Given
the hierarchical distance ρ defined by (1.1), let �(x, y) = ρ(x, y), except when both points x and y are blue, in which
case �(x, y) = ∞.

Now we cannot apply Proposition 2.1 directly, since with probability 1 there will be points which are equidistant from
others, and so condition (i) does not hold, and the stable matching for � will not be unique. We can consider instead the
distance ρ̃ on R given by

ρ̃(x, y) = ρ(x, y) + |x − y|.

Correspondingly, for two Poisson points x and y, let �̃(x, y) = �(x, y) + |x − y| (so that �̃(x, y) = ρ̃(x, y) unless both
points are blue, in which case �̃(x, y) = ∞). Now with probability 1, the function �̃ does satisfy the conditions of Propo-
sition 2.1, so that there exists a unique stable matching for �̃.

One can easily show that if �̃(u, v) ≤ �̃(x, y), then also �(u, v) ≤ �(x, y). Using the definition of stable matching, it
follows that if M is stable for �̃, then it is also stable for �. So at least one stable matching for � exists.

Recall that we write Nk(m) for the excess of blue points over red points in the interval [2km,2k(m + 1)] out of those
which are not matched to another point in the interval, i.e. which are not matched at distance k or less. We use the
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recursion at (1.2) for the distribution of Nk(m) as k varies. Define

βk = P
(
Nk(m) is even

)
γk = P

(
Nk(m) is odd and positive

)
δk = P

(
Nk(m) is even and positive

)
First note that for any k,

βk = β2
k−1 + (1 − βk−1)

2

≥ 1/2.

Then

γk+1 = 2γkβk + 2δk(1 − βk − γk)

≥ γk

and

δk+1 ≥ γ 2
k ,

so that

γk+2 = 2γk+1βk+1 + 2δk+1(1 − βk+1 − γk+1)

≥ 2γkβk+1 + 2γ 2
k (1 − βk+1 − γk+1)

= 2γk

1

2
+ 2

(
γk − γ 2

k

)(
βk+1 − 1

2

)
+ 2γ 2

k

(
1

2
− γk+1

)
≥ 2γk

1

2
+ 2γ 2

k

(
1

2
− γk+1

)

≥ γk + γ 2
k

3

as long as γk+1 ≤ 1/3.
So γk will eventually reach 1/3 for some k. (In fact, for any constant c, the number of iterations of the recursion

x → x + x2/3 required to exceed the value c starting from the value x0 is 3(1 + o(1))x−1
0 as x0 → 0.)

Here we have γ0 > λe−λp, since this is the probability that an interval of length 1 contains no red points and exactly one
blue point. Then for some function k0 = k0(λ,p), we have that γk ≥ 1/3 for all k ≥ k0(λ,p). Then also ENk(m) ≥ 1/6
for k ≥ k0(λ,p), since P(Nk(m) ≥ 1) ≥ 1/3, while P(Nk(m) = −1) = P(Nk(m) odd) − γk ≤ 1/2 − 1/3 = 1/6.

Note that, more weakly than (1.2), we have that Nk(m) ≥ Nk−1(2m) + Nk−1(2m + 1).
In particular, for any r > 0, the quantity Nk0+r (m) is bounded below by a sum of 2r independent copies of the random

variable Nk0(0), which has finite mean and is bounded below. Hence, using standard large deviations results, there is
some constant θ > 0 such that for all k ≥ k0,

P
(
Nk(m) < θ2k

) ≤ e−θ2k

.

In particular, the sum of the right-hand side of all k ≥ k0 is finite. We obtain that with probability 1, there exists some K

such that

NK(0) ≥ θ2K, and Nk(1) ≥ θ2k for all k ≥ K. (6.1)

The quantities NK(0) and {Nk(1) : k ≥ K} relate to the intervals [0,2K) and {[2k,2k+1) : k ≥ K} which form a
partition of R+. If indeed (6.1) holds, then (for any stable matching) none of these intervals contains a red point which
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is matched outside the interval. Hence, for any of these intervals, all the blue points which are not matched within the
interval are not matched at all.

Hence in fact the number of unmatched blue points in [0,2k) is at least θ2k for all k ≥ K . Taking R = 2K and c = θ/2
then gives the result of Theorem 3.

7. Existence and uniqueness of a stable matching: Proof of Propositions 2.1, 2.2 and 2.3

Before proving Propositions 2.1 and 2.2, we first note a useful characterisation of a stable matching which holds under
the assumption that the weights of edges from any given point x are all distinct.

For convenience we repeat here the definition given at (2.2); a matching M is stable if

�(x, y) ≥ min
(
dM(x), dM(y)

)
for all x and y. (7.1)

Lemma 7.1. Suppose condition (i) of Proposition 2.1 holds (the distinct weights condition). Then a matching M is stable
iff for all x ∈ V and R ∈ (0,∞),{

dM(x) < R
} ⇔ {∃y such that �(x, y) < R and dM(y) ≥ �(x, y)

}
. (7.2)

Proof. We will show that if the distinct weights condition holds, then (7.1) and (7.2) are equivalent.
Suppose the matching is not stable, so (2.2) fails for some x, y. Then we can choose R with �(x, y) < R <

min{dM(x), dM(y)}, in which case the right side of (7.2) holds but the left side does not. Hence (7.2) also fails.
On the other hand, suppose that (7.1) holds.
If dM(x) ≥ R but the right side of (7.2) were true, then x and y are not partners (since �(x, y) < dM(x)). But by the

distinct weights condition, y does not have a partner z with �(z, y) = �(x, y). Hence in fact dM(y) > �(x, y) strictly; then
�(x, y) < min{dM(x), dM(y)} contradicting (7.1).

Meanwhile if dM(x) < R then x has a partner y with �(x, y) < R and dM(y) = dM(x), so the right side of (7.2) holds.
Hence under (7.1), the left and right sides of (7.2) are equivalent, as required. �

Proof of Propositions 2.1 and 2.2. The underlying idea is essentially the same as was used in [11] for the special
cases of one-type and symmetric two-type models with weights given by distances in R

d . However we will present the
construction rather differently, so as to make explicit the way in which the stable matching is determined by the collections
of descending paths as stated in Proposition 2.2. (The argument in [11] is phrased in terms of the following recursive
construction. Call two points x and y mutually closest if �(x, y) < �(x, z) for all z �= y and �(x, y) < �(z, y) for all
z �= x. Now, given the point configuration, match all mutually closest pairs of points to each other, and then remove them
from the configuration. Now match all pairs which are mutually closest in the remaining set of points; repeat indefinitely.
Lemma 15 of [11] shows that for the models under consideration, this recursive construction yields a stable matching,
which is in fact unique.)

We begin by justifying the first assertion of Proposition 2.2. Consider the subgraph spanned by the edges of E
↓
R(x),

obtained by taking the union of all descending paths from x with weights less than R. From condition (ii), any vertex has
finite degree in this subgraph (since any vertex is incident to only finitely many edges with weight less than R). If there
were infinitely many vertices in this subgraph, then there would be arbitrarily long descending paths from x, and then, by
compactness, an infinite descending path. But this is excluded by condition (iii), so indeed E

↓
R(x) is finite.

Now we argue that in fact we can determine whether dM(x) by inspecting the set E
↓
R(x), as required for Proposi-

tion 2.2. Using Lemma 7.1, it is enough to determine whether dM(y) < �(x, y) for all y with �(x, y) < R.
We proceed by induction on the size of E

↓
R(x). Consider y with �(x, y) < R. Then E

↓
�(x,y)

(y) ⊂ E
↓
R(x) (the inclusion

is strict since the edge (x, y) is included in the second set but not in the first). So for the induction step, we may assume
that we know whether dM(y) < �(x, y) for each such y, and hence indeed we can deduce whether dM(x) < R. The base
of the induction is the case where x is incident to no edges of weight less than R, in which case certainly dM(x) ≥ R.

This completes the proof of Proposition 2.2. The weights of edges in E
↓
R(x) determine whether dM(x) < R, and hence

the weights of all the edges determine the value of dM(x) and so, since the weights of edges incident to x are distinct by
(i), in fact determine M(x). Hence there is at most one stable matching.

To show the existence of a stable matching, note that the inductive procedure above can be used to define a function
dM(x) for x ∈ V which satisfies (7.2). We need to show that this function actually corresponds to a matching M in the
sense of (2.1).

Suppose dM(u) = s < ∞. Then applying (7.2) with x = u and considering both R ≤ s and R > s, we obtain that
for some v, �(u, v) = s and dM(v) ≥ s. Then in turn we can apply (7.2) with x = v and any R > s; because we have u
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with �(v,u) < R and dM(u) ≥ �(u, v) it follows that dM(v) < R, and hence in fact dM(v) = s. Thus there is a point v

satisfying �(u, v) = dM(v) = s, and this point is unique by condition (i). Then define M(u) = v (and similarly M(v) = u).
Meanwhile if dM(u) = ∞, define M(u) = u. Then indeed M is a matching, and satsfies (7.2), and so is stable.
Further, suppose x and y are both unmatched by M , so that dM(x) = dM(y) = ∞. If �(x, y) were finite, then for any

R > �(x, y), again the right side of (7.2) would hold but the left side would not. Hence indeed �(x, y) = ∞ as required
for the final statement of Proposition 2.1.

Finally, in Proposition 2.3 there is a bijection from V
↓
R (x) ⊂ V to Ṽ

↓
f (R)(̃x) ⊂ Ṽ which maps x to x̃ and under which

the edge-weights are related by the strictly increasing function f . The definition of stable matching, and the equivalent
condition in (7.2), use only information about relative orderings of edge-weights; such orderings are preserved when
the edge-weights are rescaled by f . Hence the inductive procedures for determining whether dM(x) < R for the stable
matching M of V , and whether dM̃ (̃x) < f (R) for the stable matching M̃ of Ṽ , proceed identically, and so indeed
dM(x) < R if and only if dM̃ (̃x) < f (R). �

Open problems

Consider a homogeneous Poisson process in R
d in which each point is independently assigned a colour according to a

fixed probability vector.

(i) For the asymmetric two-type stable matching (with only red-blue and red-red matches allowed), do there exist red
and blue probabilities for which all points are matched? The question is open for every d ≥ 1.

(ii) For the asymmetric two-type stable matching in a fixed dimension d , is the intensity of unmatched blue points
non-decreasing in the initial probability of blue points? Is it strictly increasing?

(iii) For the symmetric three-type stable matching (where points of any two distinct colours are allowed to match),
suppose that the probabilities p2, p3 of two of the colours are equal. Symmetry and ergodicity imply that either
all points are matched, or only points of color 1 are unmatched. Are all points matched when p1 < p2 = p3? This
question is open for all d . Are some points unmatched when p1 > p2 = p3? The methods of this paper can be used
to show that the answer is yes for large enough d , but for small d the question is open.

(iv) More generally, for which matching restrictions, probability vectors, and dimensions are all points matched?
(v) Can the PWIT provide information about matching distance in high dimensions? For example, in the case of two-

color stable matching (where only red-blue matches are allowed), with equal probability of red and blue points, the
probability for a typical point to be matched at distance at least r is known [11] to be between r−α and r−β as
r → ∞ where α(d),β(d) ∈ (0,∞), but the bounds on these constants are far apart except when d = 1. What can be
said about their asymptotic behaviour as d → ∞?
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