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There is a gap in the proof of (3.19) in [1, Theorem 3.6] in that the constant C14 in [1, (3.22)] depends on r1/αλ

rather than λ > 0 and so when applying [1, Lemma 3.4] it gives a new A0 depending also on r . This gap affects
only the proof of (1.16) of [1, Theorem 1.1(v)] (or [1, (3.23)]). The rest of [1, Theorem 3.6] including the estimates
(3.20)–(3.21), (3.6) and (3.8) hold without any issue. The proof of (3.19) in [1, Theorem 3.6] works if we drop λ and
replace Mb,λ defined in [1, (1.13)] by ‖b‖∞.

In this errata, instead of establishing [1, (3.19)], we show directly that the estimate (1.16) of [1, Theorem 1.1(v)]
hold for every λ > 0. We point out that all the main results stated in the Introduction of [1] remain true.

First note that by Lemma 0.1 below, Lemmas 3.1 and 3.4, Theorems 3.6 and 3.7 of [1] hold for λ = +∞ with (3.2),
(3.11), (3.12), (3.19) and (3.23) being replaced by
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∣∣
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respectively, where the constant c is the one in Lemma 0.1 and that the constant A0 in [1, Lemma 3.4] can be chosen
to be smaller than 1/(2C12). This gives the existence and uniqueness of the fundamental solution qb(t, x, y) and all
the stated properties in [1, Theorem 1.1] except that we need to replace pMb,λ

by p‖b‖∞ in the estimate [1, (1.16)].
For a ≥ 0, denote by pa(t, x, y) the fundamental solution of �α/2 + a�β/2. Recall that for each λ > 0 and a ≥ 0,

fa,λ(t, x, y) is defined as in [1, (2.6)], and that fa,∞(t, x, y) = f0(t, x, y), which is given by [1, (2.1)].
By a similar argument as [1, Lemma 2.5], one obtains the following inequality.

Lemma 0.1. There exists c = c(d,α,β) > 0 such that for all t ∈ (0,1] and x, y ∈R
d ,

∫ t

0

∫
Rd

p1(t − s, x, z)f0(s, z, y) dz ds ≤ cp1(t, x, y).
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Note that (3.23′) in particular implies that for every A > 0, there is a positive constant C0 = C0(d,α,β,A) ≥ 1 so
that for any b with ‖b‖∞ ≤ A,

∣∣qb(t, x, y)
∣∣ ≤ C0p1(t, x, y) on (0,1] ×R

d ×R
d . (0.1)

The following is an immediate consequence of [1, Lemma 2.4].

Lemma 0.2. For each λ > 0, there is a constant C = C(d,α,β,λ) > 0 such that for every a ∈ [0,1],
∫ t

0

∫
Rd

fa,λ(s, z, y) dz ds ≤ Ct1−β/α, t ∈ (0,1], y ∈ R
d . (0.2)

Lemma 0.3. For each λ > 0, there exists C1 = C1(d,α,β,A,λ) > 0 such that for any b with ‖b‖∞ ≤ A and for
every a ∈ [0,1] and for every t ∈ (0,1] and x, y ∈R

d ,

∫ t

0

∫
Rd

∣∣qb(t −s, x, z)
∣∣fa,λ(s, z, y) dz ds ≤ C1pa(t, x, y)+

∫ t

0

∫
|x−z|>|x−y|/2

∣∣qb(t −s, x, z)
∣∣fa,λ(s, z, y) dz ds.

Proof. Let I = ∫ t

0

∫
Rd |qb(t − s, x, z)|fa,λ(s, z, y) dz ds. By (0.1) and a similar proof as that for [1, Lemma 2.5], there

exists c1 > 0 independent of a ∈ [0,1] such that I ≤ c1t
−d/α for |x − y| ≤ t1/α . Hence by [1, (1.10)], there exists

c2 > 0 such that I ≤ c2pa(t, x, y) for every a ∈ [0,1] and |x − y| ≤ t1/α .
Next assume that |x −y| > t1/α . We divide I into two parts of the integrals on |x − z| ≤ |x − y|/2 and on |x − z| >

|x − y|/2. By (0.1) and a similar argument as that for [1, Lemma 2.5] with p1 in place of ga , there exists c3 > 0
independent of a ∈ [0,1] such that the first integral

∫ t

0

∫
|x−z|≤|x−y|/2

∣∣qb(t − s, x, z)
∣∣fa,λ(s, z, y) dz ds ≤ c3

(
t

|x − y|d+α
+ at

|x − y|d+β

)
≤ c4pa(t, x, y).

This completes the proof. �

Lemma 0.4. For each λ > 0 and A > 0, there exists Ck = Ck(d,α,β,A,λ) > 1, k = 2,3 such that for any b with
‖b‖∞ ≤ A and for every t ∈ (0,1] and x, y ∈R

d ,

∣∣qb(t, x, y)
∣∣ ≤ C2pMb,λ/A(t, x, y) + C3

∫ t

0

∫
|x−z|>|x−y|/2

∣∣qb(t − s, x, z)
∣∣fMb,λ/A,λ(s, z, y) dz ds. (0.3)

Proof. By [1, Theorem 1.1(ii)], qb(t, x, y) satisfies the following Duhamel’s formula

qb(t, x, y) = p0(t, x, y) +
∫ t

0

∫
Rd

qb(t − s, x, z)Sb
z p0(s, z, y) dz ds, t > 0, x, y ∈ R

d . (0.4)

Note that since Mb,λ/A ≤ 1, there exists c1 > 0, independent of λ and A, such that p0(t, x, y) ≤ c1pMb,λ/A(t, x, y)

for t ∈ (0,1] and x, y ∈R
d . Moreover, by [1, (3.1)], there exists c2 > 0 such that

∣∣Sb
z p0(s, z, y)

∣∣ ≤ c2fMb,λ/A,λ(s, z, y), s ∈ (0,1], z, y ∈ R
d .

Then the desired conclusion follows from (0.4) and Lemma 0.3 with a = Mb,λ/A. �

Define |q̃b
1 (t, x, y)| := C2pMb,λ/A(t, x, y) and

∣∣q̃b
n(t, x, y)

∣∣ := C3

∫ t

0

∫
|x−z|>|x−y|/2

∣∣q̃b
n−1(t − s, x, z)

∣∣fMb,λ/A,λ(s, z, y) dz ds, n ≥ 2.
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Define

II1(t, x, y) := C3

∫ t

0

∫
|x−z|>|x−y|/2

∣∣qb(t − s, x, z)
∣∣fMb,λ/A,λ(s, z, y) dz ds

and

IIn(t, x, y) := C3

∫ t

0

∫
|x−z|>|x−y|/2

IIn−1(t − s, x, z)fMb,λ/A,λ(s, z, y) dz ds, n ≥ 2.

Applying Lemma 0.4 recursively, we have for n ≥ 1,

∣∣qb(t, x, y)
∣∣ ≤

n∑
k=1

∣∣q̃b
k (t, x, y)

∣∣ + IIn. (0.5)

Lemma 0.5. For each λ > 0, there exists C4 = C4(d,α,β,λ) > 0 such that for every a ∈ [0,1] and every t ∈ (0,1],
x, y ∈ R

d ,
∫ t

0

∫
{|x−z|>|x−y|/2}

pa(t − s, x, z)fa,λ(s, z, y) dz ds ≤ C4t
1−β/αpa(t, x, y). (0.6)

Proof. We consider the Lemma in two cases when |x − y| ≤ t1/α and when |x − y| > t1/α . When |x − y| ≤ t1/α ,
we can estimate the larger item

∫ t

0

∫
Rd pa(t − s, x, z)fa,λ(s, z, y) dz ds. Then by an argument very similar to that for

[1, Lemma 2.5] but with pa and Lemma 0.2 in place of ga and [1, Lemma 2.4] there, we can obtain the desired
conclusion. �

By Lemma 0.5 with a = Mb,λ/A and induction, we have the following result.

Lemma 0.6. For every λ > 0 and n ≥ 1, we have

∣∣q̃b
n(t, x, y)

∣∣ ≤ C2
(
C3C4t

1−β/α
)n−1

pMb,λ/A(t, x, y) for t ∈ (0,1] and x, y ∈R
d .

By (0.1), |qb(t, x, y)| ≤ C0p1(t, x, y). On the other hand, it follows from the definition that fa,λ(s, z, y) ≤
f1,λ(s, z, y) for every a ∈ [0,1] and λ > 0. Hence, by induction, we conclude again from Lemma 0.5 with a = 1
the following estimate.

Lemma 0.7. For every λ > 0 and n ≥ 1, we have

IIn(t, x, y) ≤ C0
(
C3C4t

1−β/α
)n

p1(t, x, y) for t ∈ (0,1] and x, y ∈ R
d .

Now we can show that [1, Theorem 1.1(v)] holds.

Theorem 0.8. For each A > 0 and λ > 0, there exists a constant C5 = C5(d,α,β,A,λ) > 0 such that for any b with
‖b‖∞ ≤ A and for every t ∈ (0,1] and x, y ∈R

d ,
∣∣qb(t, x, y)

∣∣ ≤ C5pMb,λ
(t, x, y).

Proof. Let t0 := (2C3C4)
−α/(α−β). By (0.5) and Lemmas 0.6 and 0.7, for t ∈ (0, t0] and x, y ∈ R

d ,

∣∣qb(t, x, y)
∣∣ ≤ C2

n∑
k=1

2−(k−1)pMb,λ/A(t, x, y) + C02−np1(t, x, y).

Passing n → ∞ yields the desired estimate for t ∈ (0, t0). We then use Chapman–Kolmogrov equation to extend it to
all t ∈ (0,1] and x, y ∈R

d . �
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