# Errata for Perturbation by non-local operators 

Zhen-Qing Chen ${ }^{\text {a }}$ and Jie-Ming Wang ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, University of Washington, Seattle, WA 98195, USA. E-mail: zqchen @uw.edu<br>${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: wangjm@bit.edu.cn

Received 2 January 2020; accepted 2 January 2020

There is a gap in the proof of (3.19) in [1, Theorem 3.6] in that the constant $C_{14}$ in [1, (3.22)] depends on $r^{1 / \alpha} \lambda$ rather than $\lambda>0$ and so when applying [1, Lemma 3.4] it gives a new $A_{0}$ depending also on $r$. This gap affects only the proof of (1.16) of [1, Theorem 1.1(v)] (or [1, (3.23)]). The rest of [1, Theorem 3.6] including the estimates (3.20)-(3.21), (3.6) and (3.8) hold without any issue. The proof of (3.19) in [1, Theorem 3.6] works if we drop $\lambda$ and replace $M_{b, \lambda}$ defined in $[1,(1.13)]$ by $\|b\|_{\infty}$.

In this errata, instead of establishing [1, (3.19)], we show directly that the estimate (1.16) of [1, Theorem 1.1(v)] hold for every $\lambda>0$. We point out that all the main results stated in the Introduction of [1] remain true.

First note that by Lemma 0.1 below, Lemmas 3.1 and 3.4, Theorems 3.6 and 3.7 of [1] hold for $\lambda=+\infty$ with (3.2), (3.11), (3.12), (3.19) and (3.23) being replaced by

$$
\begin{align*}
& \left|q^{b}\right|_{n}(t, x, y) \leq C_{11}\left(\|b\|_{\infty} C_{7} c\right)^{n} g_{1}(t, x, y), \quad t \in(0, T], x, y \in \mathbb{R}^{d}  \tag{3.2'}\\
& \left|q_{n+1}^{b}(t, x, y)\right| \leq C_{13} 2^{-n}\|b\|_{\infty} p_{1}(t, x, y) \quad \text { for } t \in(0,1] \text { and } x, y \in \mathbb{R}^{d} \\
& \left|\mathcal{S}_{x}^{b} q_{n}^{b}(t, x, y)\right| \leq C_{12}\|b\|_{\infty} 2^{-n} f_{0}(t, x, y) \quad \text { for } t \in(0,1] \text { and } x, y \in \mathbb{R}^{d}  \tag{3.12'}\\
& \left|q_{n}^{b}(t, x, y)\right| \leq C_{14} 2^{-n}\left(t^{-d / \alpha} \wedge\left(\frac{t}{|x-y|^{d+\alpha}}+\frac{\|b\|_{\infty} t}{|x-y|^{d+\beta}}\right)\right) \tag{3.19'}
\end{align*}
$$

and

$$
\begin{equation*}
\left|q^{b}(t, x, y)\right| \leq 2 C_{14}\left(t^{-d / \alpha} \wedge\left(\frac{t}{|x-y|^{d+\alpha}}+\frac{\|b\|_{\infty} t}{|x-y|^{d+\beta}}\right)\right), \tag{3.23'}
\end{equation*}
$$

respectively, where the constant $c$ is the one in Lemma 0.1 and that the constant $A_{0}$ in [1, Lemma 3.4] can be chosen to be smaller than $1 /\left(2 C_{12}\right)$. This gives the existence and uniqueness of the fundamental solution $q^{b}(t, x, y)$ and all the stated properties in [1, Theorem 1.1] except that we need to replace $p_{M_{b, \lambda}}$ by $p_{\|b\|_{\infty}}$ in the estimate [1, (1.16)].

For $a \geq 0$, denote by $p_{a}(t, x, y)$ the fundamental solution of $\Delta^{\alpha / 2}+a \Delta^{\beta / 2}$. Recall that for each $\lambda>0$ and $a \geq 0$, $f_{a, \lambda}(t, x, y)$ is defined as in $[1,(2.6)]$, and that $f_{a, \infty}(t, x, y)=f_{0}(t, x, y)$, which is given by $[1,(2.1)]$.

By a similar argument as [1, Lemma 2.5], one obtains the following inequality.
Lemma 0.1. There exists $c=c(d, \alpha, \beta)>0$ such that for all $t \in(0,1]$ and $x, y \in \mathbb{R}^{d}$,

$$
\int_{0}^{t} \int_{\mathbb{R}^{d}} p_{1}(t-s, x, z) f_{0}(s, z, y) d z d s \leq c p_{1}(t, x, y) .
$$

Note that (3.23') in particular implies that for every $A>0$, there is a positive constant $C_{0}=C_{0}(d, \alpha, \beta, A) \geq 1$ so that for any $b$ with $\|b\|_{\infty} \leq A$,

$$
\begin{equation*}
\left|q^{b}(t, x, y)\right| \leq C_{0} p_{1}(t, x, y) \quad \text { on }(0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d} . \tag{0.1}
\end{equation*}
$$

The following is an immediate consequence of [1, Lemma 2.4].
Lemma 0.2. For each $\lambda>0$, there is a constant $C=C(d, \alpha, \beta, \lambda)>0$ such that for every $a \in[0,1]$,

$$
\begin{equation*}
\int_{0}^{t} \int_{\mathbb{R}^{d}} f_{a, \lambda}(s, z, y) d z d s \leq C t^{1-\beta / \alpha}, \quad t \in(0,1], y \in \mathbb{R}^{d} . \tag{0.2}
\end{equation*}
$$

Lemma 0.3. For each $\lambda>0$, there exists $C_{1}=C_{1}(d, \alpha, \beta, A, \lambda)>0$ such that for any $b$ with $\|b\|_{\infty} \leq A$ and for every $a \in[0,1]$ and for every $t \in(0,1]$ and $x, y \in \mathbb{R}^{d}$,

$$
\int_{0}^{t} \int_{\mathbb{R}^{d}}\left|q^{b}(t-s, x, z)\right| f_{a, \lambda}(s, z, y) d z d s \leq C_{1} p_{a}(t, x, y)+\int_{0}^{t} \int_{|x-z|>|x-y| / 2}\left|q^{b}(t-s, x, z)\right| f_{a, \lambda}(s, z, y) d z d s
$$

Proof. Let $I=\int_{0}^{t} \int_{\mathbb{R}^{d}}\left|q^{b}(t-s, x, z)\right| f_{a, \lambda}(s, z, y) d z d s$. By (0.1) and a similar proof as that for [1, Lemma 2.5], there exists $c_{1}>0$ independent of $a \in[0,1]$ such that $I \leq c_{1} t^{-d / \alpha}$ for $|x-y| \leq t^{1 / \alpha}$. Hence by [1, (1.10)], there exists $c_{2}>0$ such that $I \leq c_{2} p_{a}(t, x, y)$ for every $a \in[0,1]$ and $|x-y| \leq t^{1 / \alpha}$.

Next assume that $|x-y|>t^{1 / \alpha}$. We divide $I$ into two parts of the integrals on $|x-z| \leq|x-y| / 2$ and on $|x-z|>$ $|x-y| / 2$. By (0.1) and a similar argument as that for [1, Lemma 2.5] with $p_{1}$ in place of $g_{a}$, there exists $c_{3}>0$ independent of $a \in[0,1]$ such that the first integral

$$
\int_{0}^{t} \int_{|x-z| \leq|x-y| / 2}\left|q^{b}(t-s, x, z)\right| f_{a, \lambda}(s, z, y) d z d s \leq c_{3}\left(\frac{t}{|x-y|^{d+\alpha}}+\frac{a t}{|x-y|^{d+\beta}}\right) \leq c_{4} p_{a}(t, x, y) .
$$

This completes the proof.
Lemma 0.4. For each $\lambda>0$ and $A>0$, there exists $C_{k}=C_{k}(d, \alpha, \beta, A, \lambda)>1, k=2,3$ such that for any $b$ with $\|b\|_{\infty} \leq A$ and for every $t \in(0,1]$ and $x, y \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\left|q^{b}(t, x, y)\right| \leq C_{2} p_{M_{b, \lambda} / A}(t, x, y)+C_{3} \int_{0}^{t} \int_{|x-z|>|x-y| / 2}\left|q^{b}(t-s, x, z)\right| f_{M_{b, \lambda} / A, \lambda}(s, z, y) d z d s \tag{0.3}
\end{equation*}
$$

Proof. By [1, Theorem 1.1(ii)], $q^{b}(t, x, y)$ satisfies the following Duhamel's formula

$$
\begin{equation*}
q^{b}(t, x, y)=p_{0}(t, x, y)+\int_{0}^{t} \int_{\mathbb{R}^{d}} q^{b}(t-s, x, z) \mathcal{S}_{z}^{b} p_{0}(s, z, y) d z d s, \quad t>0, x, y \in \mathbb{R}^{d} \tag{0.4}
\end{equation*}
$$

Note that since $M_{b, \lambda} / A \leq 1$, there exists $c_{1}>0$, independent of $\lambda$ and $A$, such that $p_{0}(t, x, y) \leq c_{1} p_{M_{b, \lambda} / A}(t, x, y)$ for $t \in(0,1]$ and $x, y \in \mathbb{R}^{d}$. Moreover, by [1, (3.1)], there exists $c_{2}>0$ such that

$$
\left|\mathcal{S}_{z}^{b} p_{0}(s, z, y)\right| \leq c_{2} f_{M_{b, \lambda} / A, \lambda}(s, z, y), \quad s \in(0,1], z, y \in \mathbb{R}^{d}
$$

Then the desired conclusion follows from (0.4) and Lemma 0.3 with $a=M_{b, \lambda} / A$.
Define $\left|\tilde{q}_{1}^{b}(t, x, y)\right|:=C_{2} p_{M_{b, \lambda} / A}(t, x, y)$ and

$$
\left|\tilde{q}_{n}^{b}(t, x, y)\right|:=C_{3} \int_{0}^{t} \int_{|x-z|>|x-y| / 2}\left|\tilde{q}_{n-1}^{b}(t-s, x, z)\right| f_{M_{b, \lambda} / A, \lambda}(s, z, y) d z d s, \quad n \geq 2
$$

Define

$$
I I_{1}(t, x, y):=C_{3} \int_{0}^{t} \int_{|x-z|>|x-y| / 2}\left|q^{b}(t-s, x, z)\right| f_{M_{b, \lambda} / A, \lambda}(s, z, y) d z d s
$$

and

$$
I I_{n}(t, x, y):=C_{3} \int_{0}^{t} \int_{|x-z|>|x-y| / 2} I I_{n-1}(t-s, x, z) f_{M_{b, \lambda} / A, \lambda}(s, z, y) d z d s, \quad n \geq 2 .
$$

Applying Lemma 0.4 recursively, we have for $n \geq 1$,

$$
\begin{equation*}
\left|q^{b}(t, x, y)\right| \leq \sum_{k=1}^{n}\left|\tilde{q}_{k}^{b}(t, x, y)\right|+I I_{n} . \tag{0.5}
\end{equation*}
$$

Lemma 0.5. For each $\lambda>0$, there exists $C_{4}=C_{4}(d, \alpha, \beta, \lambda)>0$ such that for every $a \in[0,1]$ and every $t \in(0,1]$, $x, y \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\int_{0}^{t} \int_{\{|x-z|>|x-y| / 2\}} p_{a}(t-s, x, z) f_{a, \lambda}(s, z, y) d z d s \leq C_{4} t^{1-\beta / \alpha} p_{a}(t, x, y) . \tag{0.6}
\end{equation*}
$$

Proof. We consider the Lemma in two cases when $|x-y| \leq t^{1 / \alpha}$ and when $|x-y|>t^{1 / \alpha}$. When $|x-y| \leq t^{1 / \alpha}$, we can estimate the larger item $\int_{0}^{t} \int_{\mathbb{R}^{d}} p_{a}(t-s, x, z) f_{a, \lambda}(s, z, y) d z d s$. Then by an argument very similar to that for [1, Lemma 2.5] but with $p_{a}$ and Lemma 0.2 in place of $g_{a}$ and [1, Lemma 2.4] there, we can obtain the desired conclusion.

By Lemma 0.5 with $a=M_{b, \lambda} / A$ and induction, we have the following result.
Lemma 0.6. For every $\lambda>0$ and $n \geq 1$, we have

$$
\left|\tilde{q}_{n}^{b}(t, x, y)\right| \leq C_{2}\left(C_{3} C_{4} t^{1-\beta / \alpha}\right)^{n-1} p_{M_{b, \lambda} / A}(t, x, y) \quad \text { for } t \in(0,1] \text { and } x, y \in \mathbb{R}^{d}
$$

By (0.1), $\left|q^{b}(t, x, y)\right| \leq C_{0} p_{1}(t, x, y)$. On the other hand, it follows from the definition that $f_{a, \lambda}(s, z, y) \leq$ $f_{1, \lambda}(s, z, y)$ for every $a \in[0,1]$ and $\lambda>0$. Hence, by induction, we conclude again from Lemma 0.5 with $a=1$ the following estimate.

Lemma 0.7. For every $\lambda>0$ and $n \geq 1$, we have

$$
I I_{n}(t, x, y) \leq C_{0}\left(C_{3} C_{4} t^{1-\beta / \alpha}\right)^{n} p_{1}(t, x, y) \quad \text { for } t \in(0,1] \text { and } x, y \in \mathbb{R}^{d} .
$$

Now we can show that [1, Theorem 1.1(v)] holds.
Theorem 0.8. For each $A>0$ and $\lambda>0$, there exists a constant $C_{5}=C_{5}(d, \alpha, \beta, A, \lambda)>0$ such that for any $b$ with $\|b\|_{\infty} \leq A$ and for every $t \in(0,1]$ and $x, y \in \mathbb{R}^{d}$,

$$
\left|q^{b}(t, x, y)\right| \leq C_{5} p_{M_{b, \lambda}}(t, x, y) .
$$

Proof. Let $t_{0}:=\left(2 C_{3} C_{4}\right)^{-\alpha /(\alpha-\beta)}$. By (0.5) and Lemmas 0.6 and 0.7 , for $t \in\left(0, t_{0}\right]$ and $x, y \in \mathbb{R}^{d}$,

$$
\left|q^{b}(t, x, y)\right| \leq C_{2} \sum_{k=1}^{n} 2^{-(k-1)} p_{M_{b, \lambda} / A}(t, x, y)+C_{0} 2^{-n} p_{1}(t, x, y) .
$$

Passing $n \rightarrow \infty$ yields the desired estimate for $t \in\left(0, t_{0}\right)$. We then use Chapman-Kolmogrov equation to extend it to all $t \in(0,1]$ and $x, y \in \mathbb{R}^{d}$.

## Acknowledgements

We thank Moritz Kassmann and Karol Szczypkowski for pointing out the gap in the proof of (3.19) in [1, Theorem 3.6].

## References

[1] Z.-Q. Chen and J.-M. Wang. Perturbation by non-local operators. Ann. Inst. Henri Poincaré Probab. Stat. 54 (2) (2018) 606-639. MR3795061

