

www.imstat.org/aihp

Errata for Perturbation by non-local operators

Zhen-Qing Chen^a and Jie-Ming Wang^b

^aDepartment of Mathematics, University of Washington, Seattle, WA 98195, USA. E-mail: zqchen@uw.edu ^bSchool of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: wangjm@bit.edu.cn

Received 2 January 2020; accepted 2 January 2020

There is a gap in the proof of (3.19) in [1, Theorem 3.6] in that the constant C_{14} in [1, (3.22)] depends on $r^{1/\alpha}\lambda$ rather than $\lambda > 0$ and so when applying [1, Lemma 3.4] it gives a new A_0 depending also on r. This gap affects only the proof of (1.16) of [1, Theorem 1.1(v)] (or [1, (3.23)]). The rest of [1, Theorem 3.6] including the estimates (3.20)–(3.21), (3.6) and (3.8) hold without any issue. The proof of (3.19) in [1, Theorem 3.6] works if we drop λ and replace $M_{b,\lambda}$ defined in [1, (1.13)] by $||b||_{\infty}$.

In this errata, instead of establishing [1, (3.19)], we show directly that the estimate (1.16) of [1, Theorem 1.1(v)] hold for every $\lambda > 0$. We point out that all the main results stated in the Introduction of [1] remain true.

First note that by Lemma 0.1 below, Lemmas 3.1 and 3.4, Theorems 3.6 and 3.7 of [1] hold for $\lambda = +\infty$ with (3.2), (3.11), (3.12), (3.19) and (3.23) being replaced by

$$|q^b|_n(t,x,y) \le C_{11} (\|b\|_{\infty} C_7 c)^n g_1(t,x,y), \quad t \in (0,T], x, y \in \mathbb{R}^d,$$
(3.2')

$$\left|q_{n+1}^{b}(t,x,y)\right| \le C_{13}2^{-n} \|b\|_{\infty} p_{1}(t,x,y) \quad \text{for } t \in (0,1] \text{ and } x, y \in \mathbb{R}^{d},$$
(3.11')

$$\left|\mathcal{S}_{x}^{b}q_{n}^{b}(t,x,y)\right| \leq C_{12}\|b\|_{\infty}2^{-n}f_{0}(t,x,y) \quad \text{for } t \in (0,1] \text{ and } x, y \in \mathbb{R}^{d},$$
(3.12')

$$\left|q_{n}^{b}(t,x,y)\right| \leq C_{14} 2^{-n} \left(t^{-d/\alpha} \wedge \left(\frac{t}{|x-y|^{d+\alpha}} + \frac{\|b\|_{\infty}t}{|x-y|^{d+\beta}}\right)\right)$$
(3.19)

and

$$\left|q^{b}(t,x,y)\right| \leq 2C_{14} \left(t^{-d/\alpha} \wedge \left(\frac{t}{|x-y|^{d+\alpha}} + \frac{\|b\|_{\infty} t}{|x-y|^{d+\beta}} \right) \right), \tag{3.23'}$$

respectively, where the constant *c* is the one in Lemma 0.1 and that the constant A_0 in [1, Lemma 3.4] can be chosen to be smaller than $1/(2C_{12})$. This gives the existence and uniqueness of the fundamental solution $q^b(t, x, y)$ and all the stated properties in [1, Theorem 1.1] except that we need to replace $p_{M_{b,\lambda}}$ by $p_{\|b\|_{\infty}}$ in the estimate [1, (1.16)].

For $a \ge 0$, denote by $p_a(t, x, y)$ the fundamental solution of $\Delta^{\alpha/2} + a \Delta^{\beta/2}$. Recall that for each $\lambda > 0$ and $a \ge 0$, $f_{a,\lambda}(t, x, y)$ is defined as in [1, (2.6)], and that $f_{a,\infty}(t, x, y) = f_0(t, x, y)$, which is given by [1, (2.1)].

By a similar argument as [1, Lemma 2.5], one obtains the following inequality.

Lemma 0.1. There exists $c = c(d, \alpha, \beta) > 0$ such that for all $t \in (0, 1]$ and $x, y \in \mathbb{R}^d$,

$$\int_0^t \int_{\mathbb{R}^d} p_1(t-s, x, z) f_0(s, z, y) \, dz \, ds \le c p_1(t, x, y).$$

Errata

Note that (3.23') in particular implies that for every A > 0, there is a positive constant $C_0 = C_0(d, \alpha, \beta, A) \ge 1$ so that for any *b* with $||b||_{\infty} \le A$,

$$\left|q^{b}(t,x,y)\right| \leq C_{0}p_{1}(t,x,y) \quad \text{on } (0,1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}.$$

$$(0.1)$$

The following is an immediate consequence of [1, Lemma 2.4].

Lemma 0.2. For each $\lambda > 0$, there is a constant $C = C(d, \alpha, \beta, \lambda) > 0$ such that for every $a \in [0, 1]$,

$$\int_0^t \int_{\mathbb{R}^d} f_{a,\lambda}(s,z,y) \, dz \, ds \le C t^{1-\beta/\alpha}, \quad t \in (0,1], \, y \in \mathbb{R}^d.$$

$$(0.2)$$

Lemma 0.3. For each $\lambda > 0$, there exists $C_1 = C_1(d, \alpha, \beta, A, \lambda) > 0$ such that for any b with $||b||_{\infty} \le A$ and for every $a \in [0, 1]$ and for every $t \in (0, 1]$ and $x, y \in \mathbb{R}^d$,

$$\int_0^t \int_{\mathbb{R}^d} \left| q^b(t-s,x,z) \right| f_{a,\lambda}(s,z,y) \, dz \, ds \le C_1 p_a(t,x,y) + \int_0^t \int_{|x-z| > |x-y|/2} \left| q^b(t-s,x,z) \right| f_{a,\lambda}(s,z,y) \, dz \, ds.$$

Proof. Let $I = \int_0^t \int_{\mathbb{R}^d} |q^b(t-s, x, z)| f_{a,\lambda}(s, z, y) dz ds$. By (0.1) and a similar proof as that for [1, Lemma 2.5], there exists $c_1 > 0$ independent of $a \in [0, 1]$ such that $I \le c_1 t^{-d/\alpha}$ for $|x - y| \le t^{1/\alpha}$. Hence by [1, (1.10)], there exists $c_2 > 0$ such that $I \le c_2 p_a(t, x, y)$ for every $a \in [0, 1]$ and $|x - y| \le t^{1/\alpha}$.

Next assume that $|x - y| > t^{1/\alpha}$. We divide *I* into two parts of the integrals on $|x - z| \le |x - y|/2$ and on |x - z| > |x - y|/2. By (0.1) and a similar argument as that for [1, Lemma 2.5] with p_1 in place of g_a , there exists $c_3 > 0$ independent of $a \in [0, 1]$ such that the first integral

$$\int_0^t \int_{|x-z| \le |x-y|/2} \left| q^b(t-s,x,z) \right| f_{a,\lambda}(s,z,y) \, dz \, ds \le c_3 \left(\frac{t}{|x-y|^{d+\alpha}} + \frac{at}{|x-y|^{d+\beta}} \right) \le c_4 p_a(t,x,y).$$

This completes the proof.

Lemma 0.4. For each $\lambda > 0$ and A > 0, there exists $C_k = C_k(d, \alpha, \beta, A, \lambda) > 1, k = 2, 3$ such that for any b with $\|b\|_{\infty} \le A$ and for every $t \in (0, 1]$ and $x, y \in \mathbb{R}^d$,

$$\left|q^{b}(t,x,y)\right| \leq C_{2} p_{M_{b,\lambda}/A}(t,x,y) + C_{3} \int_{0}^{t} \int_{|x-z| > |x-y|/2} \left|q^{b}(t-s,x,z)\right| f_{M_{b,\lambda}/A,\lambda}(s,z,y) \, dz \, ds. \tag{0.3}$$

Proof. By [1, Theorem 1.1(ii)], $q^b(t, x, y)$ satisfies the following Duhamel's formula

$$q^{b}(t,x,y) = p_{0}(t,x,y) + \int_{0}^{t} \int_{\mathbb{R}^{d}} q^{b}(t-s,x,z) \mathcal{S}_{z}^{b} p_{0}(s,z,y) \, dz \, ds, \quad t > 0, x, y \in \mathbb{R}^{d}.$$
(0.4)

Note that since $M_{b,\lambda}/A \leq 1$, there exists $c_1 > 0$, independent of λ and A, such that $p_0(t, x, y) \leq c_1 p_{M_{b,\lambda}/A}(t, x, y)$ for $t \in (0, 1]$ and $x, y \in \mathbb{R}^d$. Moreover, by [1, (3.1)], there exists $c_2 > 0$ such that

$$\left|\mathcal{S}_{z}^{b} p_{0}(s, z, y)\right| \leq c_{2} f_{M_{b,\lambda}/A,\lambda}(s, z, y), \quad s \in (0, 1], z, y \in \mathbb{R}^{d}$$

Then the desired conclusion follows from (0.4) and Lemma 0.3 with $a = M_{b,\lambda}/A$.

Define $|\tilde{q}_{1}^{b}(t, x, y)| := C_{2} p_{M_{b,\lambda}/A}(t, x, y)$ and

$$\left|\tilde{q}_{n}^{b}(t,x,y)\right| := C_{3} \int_{0}^{t} \int_{|x-z| > |x-y|/2} \left|\tilde{q}_{n-1}^{b}(t-s,x,z)\right| f_{M_{b,\lambda}/A,\lambda}(s,z,y) \, dz \, ds, \quad n \ge 2.$$

Define

$$H_1(t, x, y) := C_3 \int_0^t \int_{|x-z| > |x-y|/2} \left| q^b(t-s, x, z) \right| f_{M_{b,\lambda}/A,\lambda}(s, z, y) \, dz \, ds$$

and

$$II_n(t, x, y) := C_3 \int_0^t \int_{|x-z| > |x-y|/2} II_{n-1}(t-s, x, z) f_{M_{b,\lambda}/A,\lambda}(s, z, y) \, dz \, ds, \quad n \ge 2.$$

Applying Lemma 0.4 recursively, we have for $n \ge 1$,

$$\left|q^{b}(t,x,y)\right| \leq \sum_{k=1}^{n} \left|\tilde{q}_{k}^{b}(t,x,y)\right| + H_{n}.$$
(0.5)

Lemma 0.5. For each $\lambda > 0$, there exists $C_4 = C_4(d, \alpha, \beta, \lambda) > 0$ such that for every $a \in [0, 1]$ and every $t \in (0, 1]$, $x, y \in \mathbb{R}^d$,

$$\int_0^t \int_{\{|x-z| > |x-y|/2\}} p_a(t-s,x,z) f_{a,\lambda}(s,z,y) \, dz \, ds \le C_4 t^{1-\beta/\alpha} p_a(t,x,y). \tag{0.6}$$

Proof. We consider the Lemma in two cases when $|x - y| \le t^{1/\alpha}$ and when $|x - y| > t^{1/\alpha}$. When $|x - y| \le t^{1/\alpha}$, we can estimate the larger item $\int_0^t \int_{\mathbb{R}^d} p_a(t - s, x, z) f_{a,\lambda}(s, z, y) dz ds$. Then by an argument very similar to that for [1, Lemma 2.5] but with p_a and Lemma 0.2 in place of g_a and [1, Lemma 2.4] there, we can obtain the desired conclusion.

By Lemma 0.5 with $a = M_{b,\lambda}/A$ and induction, we have the following result.

Lemma 0.6. *For every* $\lambda > 0$ *and* $n \ge 1$ *, we have*

$$\left|\tilde{q}_{n}^{b}(t,x,y)\right| \leq C_{2} \left(C_{3}C_{4}t^{1-\beta/\alpha}\right)^{n-1} p_{M_{b,\lambda}/A}(t,x,y) \text{ for } t \in (0,1] \text{ and } x, y \in \mathbb{R}^{d}.$$

By (0.1), $|q^b(t, x, y)| \leq C_0 p_1(t, x, y)$. On the other hand, it follows from the definition that $f_{a,\lambda}(s, z, y) \leq f_{1,\lambda}(s, z, y)$ for every $a \in [0, 1]$ and $\lambda > 0$. Hence, by induction, we conclude again from Lemma 0.5 with a = 1 the following estimate.

Lemma 0.7. *For every* $\lambda > 0$ *and* $n \ge 1$ *, we have*

$$II_n(t, x, y) \le C_0 (C_3 C_4 t^{1-\beta/\alpha})^n p_1(t, x, y) \quad for \ t \in (0, 1] \ and \ x, y \in \mathbb{R}^d.$$

Now we can show that [1, Theorem 1.1(v)] holds.

Theorem 0.8. For each A > 0 and $\lambda > 0$, there exists a constant $C_5 = C_5(d, \alpha, \beta, A, \lambda) > 0$ such that for any b with $\|b\|_{\infty} \le A$ and for every $t \in (0, 1]$ and $x, y \in \mathbb{R}^d$,

$$\left|q^{b}(t,x,y)\right| \leq C_{5} p_{M_{b,\lambda}}(t,x,y)$$

Proof. Let $t_0 := (2C_3C_4)^{-\alpha/(\alpha-\beta)}$. By (0.5) and Lemmas 0.6 and 0.7, for $t \in (0, t_0]$ and $x, y \in \mathbb{R}^d$,

$$|q^{b}(t, x, y)| \leq C_{2} \sum_{k=1}^{n} 2^{-(k-1)} p_{M_{b,\lambda}/A}(t, x, y) + C_{0} 2^{-n} p_{1}(t, x, y).$$

Passing $n \to \infty$ yields the desired estimate for $t \in (0, t_0)$. We then use Chapman–Kolmogrov equation to extend it to all $t \in (0, 1]$ and $x, y \in \mathbb{R}^d$.

762

Errata

Acknowledgements

We thank Moritz Kassmann and Karol Szczypkowski for pointing out the gap in the proof of (3.19) in [1, Theorem 3.6].

References

[1] Z.-Q. Chen and J.-M. Wang. Perturbation by non-local operators. Ann. Inst. Henri Poincaré Probab. Stat. 54 (2) (2018) 606–639. MR3795061