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Abstract. We study the asymptotic behaviour of the nodal length of random 2d-spherical harmonics f� of high degree � → ∞, i.e.
the length of their zero set f −1

�
(0). It is found that the nodal lengths are asymptotically equivalent, in the L2-sense, to the “sample

trispectrum”, i.e., the integral of H4(f�(x)), the fourth-order Hermite polynomial of the values of f�. A particular by-product of this is
a Quantitative Central Limit Theorem (in Wasserstein distance) for the nodal length, in the high energy limit.

Résumé. Nous étudions le comportement asymptotique de la longueur nodale de fonctions propres aléatoires f� du Laplacien sphé-
rique pour valeurs propres très élevés � → +∞, c’est-à-dire la longueur de leur ensemble de niveau zéro f −1

�
(0). Nous démontrons que

la longueur nodale est asymptotiquement équivalente, au sens de L2, au « sample trispectrum », c’est-à-dire l’intégral de H4(f�(x)),
le polynôme de Hermite d’ordre quatre évalué en f�. Une conséquence de ce résultat est un Théorème Central Limite quantitatif (dans
le sens de la distance de Wasserstein) pour la longueur nodale, quand l’énergie tend vers l’infini.
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1. Introduction and main results

1.1. Background

Let S2 be the unit 2d sphere and �S2 be the Laplace-Beltrami operator on S
2. It is well-known that the spectrum of �S2

consists of the numbers λ� = �(� + 1) with � ∈ Z≥0, and the eigenspace corresponding to λ� is the (2� + 1)-dimensional
linear space of degree � spherical harmonics. For � ≥ 0 let {Y�m(·)}m=−�,...,� be an arbitrary L2-orthonormal basis of real
valued spherical harmonics

Y�m : S2 → R

satisfying

�S2Y�m + λ�Y�m = 0, Y�m : S2 → R.

On S
2 we consider a family of Gaussian random fields (defined on a suitable probability space (�,F,P))

f�(x) =
√

4π

2� + 1

�∑
m=−�

a�mY�m(x), (1.1)

where the coefficients {a�m}m=−�,...,� are i.i.d. standard Gaussian random variables (zero mean and unit variance); it is
immediate to see that the law of the process {f�(·)} is invariant with respect to the choice of a L2-orthonormal basis
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{Y�m}. The random fields {f�(x), x ∈ S
2} are centred, Gaussian and isotropic, satisfying

�S2f� + λ�f� = 0;
these are the random degree-� spherical harmonics. From the addition formula for spherical harmonics [13, (3.42)], the
covariance function of f� is given by

E
[
f�(x) · f�(y)

]= P�

(
cosd(x, y)

)
,

where P� are the Legendre polynomials, and d(x, y) is the spherical geodesic distance between x and y, d(x, y) =
arccos(〈x, y〉). The random spherical harmonics naturally arise from the spectral analysis of isotropic spherical random
fields (e.g. [4,6,7]), and Quantum Chaos (e.g. [13,27]); their geometry is of significant interest.

In this paper, we shall focus on the nodal length of the random fields {f�(·)}, i.e. the length of the nodal line:

L� := len
{
f −1

� (0)
}
.

Here {L�}�≥0 is a sequence of random variables; Yau’s conjecture [28], asserts that the nodal volume of Laplace eigen-
functions on smooth n-manifolds is commensurable with the square root of the eigenvalue. An application of Yau’s
conjecture, established [9] for all analytic manifolds, on the sample functions f� implies that one has, for some absolute
constants C ≥ c > 0

c
√

λ� ≤ L� ≤ C
√

λ� for all � ≥ 1. (1.2)

The lower bound in (1.2) was recently established [12] for all smooth manifolds.
While the expected value of L� was computed [18] by a standard application of the Kac–Rice formula to be

E[L�] =
{

λ�

2

}1/2

× 2π;

evaluating the variance proved to be more subtle, and was shown [26] to be asymptotic to

Var{L�} = log�

32
+ O(1). (1.3)

It follows that the “generic” (Gaussian) spherical eigenfunctions obey a stronger law than (1.2), with normalised nodal
length L�

�
converging (in mean square and hence in probability) to a positive constant.

1.2. Main results

In this work, we take our random eigenfunctions to be defined on a suitable probability space {�,F,P} and we are
interested in the analysis of the fluctuations of the nodal length around its expected value; in particular a (quantitative)
central limit theorem will be established for the (centred and standardized) fluctuations of L�. This convergence is a rather
straightforward corollary of a deeper result, namely the asymptotic equivalence (in the L2(�) sense) of the nodal length
and the sample trispectrum of {f�}, i.e., the integral of H4(f�(x)), where H4 is the fourth-order Hermite polynomial; we
recall that

H4(u) = u4 − 6u2 + 3.

More precisely, let us define the sequence of centred random variables

M� := −1

4

√
�(� + 1)

2

1

4!
∫
S2

H4
(
f�(x)

)
dx = −1

4

√
�(� + 1)

2

1

4!h�;4, (1.4)

h�;4 :=
∫
S2

H4
(
f�(x)

)
dx, � = 1,2, . . . ; (1.5)

the sequence {h�;4} (which we call the sample trispectrum of f�) was studied earlier, and indeed building upon [15,
Lemma 3.2], it is immediate to establish the following:
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Lemma 1.1. As � → ∞, we have

Var{M�} = 1

32
log� + O(1). (1.6)

By means of Kac–Rice formula [1,2,26], the spherical nodal length L� can be formally written as

L� =
∫
S2

∥∥∇f�(x)
∥∥δ(f�(x)

)
dx, (1.7)

where δ(·) denotes the Dirac delta function and ‖·‖ the standard Euclidean norm in R
2; this representation can be shown to

hold almost surely in �, and it is shown in Appendices A and B that it also holds in L2(�). Denote by L̃� the standardized
nodal length, i.e.,

L̃� := L� −EL�√
Var(L�)

. (1.8)

Note that the variance of M� is asymptotic to the one of L�, i.e.

Var{L�}
Var{M�} = 1 + O

(
1

log�

)
, as � → ∞;

we shall also standardize the zero-mean sequence {M�}, writing

M̃� := M�√
Var(M�)

. (1.9)

The main contribution of the present manuscript is establishing the following asymptotic representation for L̃�:

Theorem 1.2. As � → ∞, we have that

E
[{L̃� − M̃�}2]= O

(
1

log�

)
,

and thus in particular

L̃� = M̃� + Op

(
1√

log�

)
.

In other words, after centering and normalization the spherical nodal lengths (1.8) and the sample trispectrum (1.9) are
asymptotically equivalent in L2(�) (and thus in probability and in law). Now recall that the Wasserstein distance between
two random variables X and Y is given by (see e.g. [19, Appendix C])

dW (X,Y ) = sup
h:‖h‖Lip≤1

∣∣Eh(X) − Eh(Y )
∣∣;

convergence in mean-square implies convergence in Wasserstein distance, and both imply convergence in distribution.
Let N (0,1) denote a standard Gaussian random variable; in view of the aforementioned CLT [15] on {M̃�}, it follows
directly from Theorem 1.2 that:

Corollary 1.3. As � → ∞, we have that

dW

(
L̃�,N (0,1)

)= O

(
1√

log�

)
.

Hence we obtain here a new Quantitative Central Limit Theorem (in Wasserstein distance) for the spherical nodal
length.
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1.3. Discussion and overview of some related literature

Theorem 1.2 is closely related to the recent characterization of the asymptotic distribution for the nodal length of arith-
metic random waves, i.e. Gaussian eigenfunctions on the two-dimensional torus T2, which was established in [17]. The
approach in the latter paper can be summarized as follows: the nodal length can be decomposed into so-called Wiener-
Chaos components, i.e., it can be projected on the orthogonal subspaces of L2(�) spanned by linear combinations of
multiple Hermite polynomials of degree q; more precisely, we have the orthogonal decomposition

L2(�) =
∞⊕

q=0

Hq,

where Hq denotes the qth Wiener chaos, i.e., the linear span of Hermite polynomials of order q , and hence

Ln =
∞∑

q=0

Proj[Ln|q], (1.10)

where Ln denotes the nodal length of Gaussian arithmetic random waves of degree n = a2 + b2, where n,a, b ∈ N, and
Proj[·|q] projection on Hq , see [11,17] for details. For arithmetic random waves, all the terms {Proj[Ln|q], q odd} in the
expansion (1.10) vanish for symmetry reasons, and so does the term corresponding to q = 2. The latter phenomenon is
one interpretation of the so-called Berry’s cancellation (see [3]), i.e. the fact that the nodal length variance is of order
of magnitude smaller than the natural scaling. Indeed it has been shown [17,20] that the term corresponding to q = 2
dominates the fluctuations of the boundary length of excursion sets for arithmetic random waves for any threshold value
z �= 0; for z = 0 it vanishes, and the dominating term is the projection onto the 4th order chaos.

The asymptotic domination of the second-order chaos for z �= 0, and its disappearance for z = 0, have been shown
recently to occur for other geometric functionals of excursion sets of random eigenfunctions in a variety of circum-
stances, such as the excursion area and the Defect ([14–16,21] covering all dimensions d ≥ 2), and the Euler-Poincaré
characteristic [5,6] (see also [8]). The fact that a single chaos dominates clearly allows for a much neater derivation of
asymptotic distribution results; in particular, quantitative central limit theorems have been given [6,14–16] for various ge-
ometric functionals of random spherical harmonics, in the high-energy limit where λ� → ∞; on the torus the asymptotic
behaviour is more complicated, depending on the different subsequences as n grows [11,17,22] for the nodal length of
arithmetic random waves, and [23] for nodal intersections of arithmetic random waves against a fixed curve.

The results we shall give here confirm the asymptotic dominance of the fourth-order component; in this sense, they
are analogous to those in [17] for the case of the torus. On the other hand, here we are able to obtain a neater expression
for the leading term, which is of independent interest, and makes the derivation of a Quantitative Central Limit Theorem
much more elegant. In fact, rather than studying the asymptotic behaviour of the fourth-order chaos (which is a sum of
six terms involving the eigenfunctions and their gradients), we establish the asymptotically full correlation of the nodal
length with a term which can be evaluated in terms of the eigenfunctions themselves, and not their gradient components.
The resulting approximation (valid in the mean square sense) is therefore surprisingly simple, and the quantitative central
limit theorem follows as an immediate consequence. We believe that this technique can be applicable to other examples
of geometric functionals for random spherical harmonics.

As mentioned earlier, the approach we use in this paper does not require to study directly the asymptotic behaviour of
the full components in the fourth-order chaos, as it was done earlier in [17] for eigenfunctions on the torus. On the other
hand it is obvious that the random variables M� ∈ H4, and a quick inspection to the proof of our main result reveals that
we have also the following asymptotic equivalence: As � → ∞, we have that

Corr
{
Proj[L�|4],M�

}= 1 + O

(
1

log�

)
,

and hence

E
[{

Proj[L̃�|4] − M̃�

}2]= O

(
1

log�

)
=⇒ Proj[L̃�|4] = M̃� + Op

(
1√

log�

)
.

Likewise, as � → ∞, we also have that

Var
{
Proj[L�|4]}= log�

32
+ O(1) ⇒ Var{Proj[L�|4]}

Var{L�} = 1 + O

(
1

log�

)
,
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and hence

E
[{
L̃� − Proj[L̃�|4]}2]= O

(
1

log�

)
=⇒ L̃� = Proj[L̃�|4] + Op

(
1√

log�

)
.

In other words, it does follow from our results that the fourth-order chaos projection dominates the high-frequency be-
haviour of the spherical nodal length, as for the two-dimensional toroidal eigenfunctions.

As discussed before, the nodal length of random spherical harmonics can be viewed as the special case (for z = 0) of
the boundary length of excursion sets (L�(z), say, with L� := L�(0)). For z �= 0, it was shown in [20, Proposition 7.3.1]
(see also [6, Section 1.2.2] and [17, Remark 2.4]) that the dominant term corresponds to the second order chaos, which
can be expressed as

Proj
[
L�(z)|2

]= 2

{
λ�

2

}1/2√
π

8

{
z2φ(z)

} 1

2!
∫
S2

H2
(
f�(x)

)
dx,

a component that vanishes identically for z = 0 (here, as usual, φ(z) denotes the density function of a standard Gaussian
variable). On the other hand, for the nodal case from the results in this paper one obtains the related expression

Proj
[
L�(0)|4]= −

{
λ�

2

}1/2√
π

8
φ(0)

1

4!
{∫

S2
H4
(
f�(x)

)
dx + Op

(
1

�

)}
.

It is instructive to compare these expressions with the results provided by the Gaussian Kinematic Formula (see e.g.,
[1,25]) for the expected value of the boundary length, which in terms of Wiener-chaos projections can be written in this
framework as

E
[
L�(z)

]= Proj
[
L�(z)|0

]= 2

{
λ�

2

}1/2√
π

8
φ(z)

∫
S2

H0
(
f�(x)

)
dx.

We leave as an issue for further research to determine whether similarly neat expressions can be shown to hold in greater
generality, i.e. in dimension greater than two, for higher-order chaos projections, or for different geometric functionals.

1.4. Outline of the paper

In Section 2 we discuss some issues concerning the L2 expansion of the spherical nodal length into Wiener chaos
components, and we present the analytic expression for the fourth-order chaos (which corresponds to the leading non-
deterministic term); in Section 3 we give the proofs of the two main Theorems, which are largely based on a Key Proposi-
tion whose proof is collected in Section 4. Appendices A and B collect the justification for the L2 expansion of the nodal
length into Hermite polynomials and some elementary facts about the covariances of random spherical harmonics and
their derivatives.

2. The L2 expansion of nodal length

In this section, we present the Wiener chaos expansion of the nodal length L� as in (1.7). The details of this derivation are
similar to those given in [17] (see also [10]). Let us first recall the expression for the projection coefficients in the Hermite
expansions of the two-dimensional norm and the Dirac δ-function. For independent, standard Gaussian variables ζ, η the
expansion of the Euclidean norms has been been established to be (see i.e., [10,17])

∥∥(ζ, η)
∥∥=

∞∑
q=0

∑
n,m:2n+2m=q

α2n,2m

(2n)!(2m)!H2n(ζ )H2m(η),

where (ζ, η) ∈R
2 and

α2n,2m :=
√

π

2

(2n)!(2m)!
n!m!

1

2n+m
pn+m

(
1

4

)
,

and pN is the swinging factorial coefficient

pN(x) :=
N∑

j=0

(−1)j (−1)N
(

N

j

)
(2j + 1)!

(j !)2
xj .
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For the first few terms we have

α00 =
√

π

2
; α02 = 1

2

√
π

2
; α04 = −3

8

√
π

2
.

On the other hand, the first few coefficients for the expansion into Wiener chaoses of the Dirac delta function δ-function
are given by ([10,17]):

β0 = 1√
2π

; β2 = − 1√
2π

; β4 = 3√
2π

.

The Wiener-chaos decompositions need to be evaluated on variables of unit variance; this requires dividing the derivatives
by

√
�(� + 1)/2 ∼ �/

√
2 (here and everywhere else a� ∼ b� means that the ratio between the two sequences converges to

unity as � → ∞). The L2(�) expansion of the nodal length (1.7) then takes the form

L� −EL� =
√

�(� + 1)

2

∞∑
q=2

q∑
u=0

u∑
k=0

αk,u−kβq−u

k!(u − k)!(q − u)!

×
∫
S2

Hq−u

(
f�(x)

)
Hk

(
∂1;xf�(x)√
�(� + 1)/2

)
Hu−k

(
∂2;xf�(x)√
�(� + 1)/2

)
dx

=
∞∑

q=2

∫
S2

��(x;q)dx,

where

��(x;q) :=
√

�(� + 1)

2

q∑
u=0

u∑
k=0

αk,u−kβq−u

k!(u − k)!(q − u)!Hq−u

(
f�(x)

)
Hk

(
∂1;xf�(x)√
�(� + 1)/2

)
Hu−k

(
∂2;xf�(x)√
�(� + 1)/2

)
;

here, we are using spherical coordinates (colatitude θ , longitude ϕ) and for x = (θx, ϕx) we are using the notation

∂1;x = ∂

∂θ

∣∣∣∣
θ=θx

, ∂2;x = 1

sin θ

∂

∂ϕ

∣∣∣∣
θ=θx ,ϕ=ϕx

.

In particular, the projection of the nodal length on the fourth-order chaos has the expression

Proj[L̃�|4] =
∫
S2

��(x;4) dx

=
√

�(� + 1)

2

{
α00β4

4!
∫
S2

H4
(
f�(x)

)
dx + α20β2

2!2!
∫
S2

H2
(
f�(x)

)
H2

(
∂1;xf�(x)√
�(� + 1)/2

)
dx

+ α40β0

4!
∫
S2

H4

(
∂1;xf�(x)√
�(� + 1)/2

)
dx + α22β0

2!2!
∫
S2

H2

(
∂1;xf�(x)√
�(� + 1)/2

)
H2

(
∂2;xf�(x)√
�(� + 1)/2

)
dx

+ α02β2

2!2!
∫
S2

H2
(
f�(x)

)
H2

(
∂2;xf�(x)√
�(� + 1)/2

)
dx + α04β0

4!
∫
S2

H4

(
∂2;xf�(x)√
�(� + 1)/2

)
dx

}
. (2.1)

3. Proof of the main results (Theorem 1.2 and Corollary 1.3)

3.1. Proof of Lemma 1.1

Proof. Before we proceed with the proof, we need to introduce some more notation: we shall write x = (0,0) for the
“North Pole” and y(θ) = (0, θ) for the points on the meridian where ϕ = 0. It is now sufficient to note that

Var{M�} = �(� + 1)

2 × 42 × 242
×E

[{∫
S2

H4(f�) sin θ dθ

}2]
= �(� + 1)

2 × 42 × 242
× 576

log�

�2
+ O(1) = 1

32
log� + O(1),
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where we have used the asymptotic result [15, Lemma 3.2]

E

[{∫
S2

H4
(
f�(x)

)
dx

}2]
= 576

log�

�2
+ O

(
1

�2

)
, as � → ∞. �

Now we transform variables as

ψ := Lθ, for L :=
(

� + 1

2

)
,whence y(θ) = y

(
ψ

L

)
;

also, let us define the following 2-point cross-correlation function

J�(ψ;4) :=
[
−1

4

√
�(� + 1)

2

1

4!
]

× 8π2

L
E

{
��(x;4)H4

(
f�

(
y

(
ψ

L

)))}
. (3.1)

Our main result will follow from the following Key Proposition:

Proposition 3.1. For any constant C > 0, uniformly over � we have, for 0 < ψ < C,

J�(ψ;4) = O(�), (3.2)

and, for C < ψ < Lπ
2 ,

J�(ψ;4) = 1

64

1

ψ sin ψ
L

+ 5

64

cos 4ψ

ψ sin ψ
L

− 3

16

sin 2ψ

ψ sin ψ
L

+ O

(
1

ψ2

1

sin ψ
L

)
+ O

(
1

�

1

ψ sin ψ
L

)
. (3.3)

The proof of this Proposition is given later in Section 4; with this result at hand, we can proceed with the proof of
Theorem 1.2 as follows.

3.2. Proof of Theorem 1.2

Proof. To establish Theorem 1.2, it is clearly sufficient to show that, as � → ∞,

Corr{L�,M�} = 1 + O

(
1

log�

)
,

and to this end we will prove the equivalent

Cov{L�,M�} = log�

32
+ O(1)

(cf. (1.3) and (1.6)); here, as usual Corr and Cov denote correlation and covariance (respectively), while the O(1) term is
uniform in ε. By continuity of the inner product in L2 spaces, we need to prove that

Cov{L�,M�} = lim
ε→0

Cov{L�;ε,M�} = log�

32
+ O(1),

where

L�;ε :=
∫
S2

∥∥∇f�(x)
∥∥χε

(
f�(x)

)
dx, χε(·) := 1

2ε
I[−ε,ε](·).

Now define the “approximate local nodal length”

��;ε(x) := ∥∥∇f�(x)
∥∥χε

(
f�(x)

)
,

where IA(·) denotes the characteristic function of the set A. The newly defined ��;ε(x) is an isotropic random field on S
2

admitting the L2(�) expansion

��;ε(x) = E��;ε(x) +
∞∑

q=2

��;ε(x;q);
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moreover, as established in Appendices A and B, we have the L2(�) convergence

lim
ε→0

∫
S2

��;ε(x) dx = lim
ε→0

∫
S2

{∥∥∇f�(x)
∥∥χε

(
f�(x)

)}= L�.

Note also that �ε(x),H4(f�(y)) are both in L2(S2 × �) and they are isotropic, and thus

Cov{L�;ε,M�} = −1

4

√
�(� + 1)

2

1

4! Cov

{∫
S2

�ε(x),

∫
S2

H4
(
f�(y)

)
dy

}

= −1

4

√
�(� + 1)

2

1

4!
∫
S2

∫
S2
E
{
�ε(x)H4

(
f�(y)

)}
dx dy

= −1

4

√
�(� + 1)

2

1

4!
∫
S2

∫
S2
E

{ ∞∑
q=2

��;ε(x;q)H4
(
f�(y)

)}
dx dy

=
[
−1

4

√
�(� + 1)

2

1

4!
]

× 8π2
∫ π

0
E

{ ∞∑
q=2

��;ε(x;q)H4
(
f�

(
y(θ)

))}
sin θ dθ

=
[
−1

4

√
�(� + 1)

2

1

4!
]

× 8π2
∫ π

0
E
{
��;ε(x;4)H4

(
f�

(
y(θ)

))}
sin θ dθ.

The integrand E{��;ε(x;4)H4(f�(y(θ)))} can be computed explicitly and it is easily seen to be absolutely bounded for
fixed �, uniformly over ε, see Proposition 3.1 above. Hence by the Dominated Convergence Theorem we may exchange
the limit and the integral, and we have that

Cov{L�,M�} = lim
ε→0

Cov
{
Lε

�,M�

}
=
[
−1

4

√
�(� + 1)

2

1

4!
]

× 8π2 lim
ε→0

∫ π

0
E
{
��;ε(x;4)H4

(
f�

(
y(θ)

))}
sin θ dθ

=
[
−1

4

√
�(� + 1)

2

1

4!
]

× 8π2
∫ π

0
lim
ε→0

E
{
��;ε(x;4)H4

(
f�

(
y(θ)

))}
sin θ dθ

=
[
−1

4

√
�(� + 1)

2

1

4!
]

× 8π2
∫ π

0
E
{
��(x;4)H4

(
f�

(
y(θ)

))}
sin θ dθ.

We can now rewrite, using (3.1)

Cov{L�,M�} =
∫ Lπ

0
J�(ψ;4) sin

ψ

L
dψ, (3.4)

where we recall that L/� = 1 + o(1), as � → ∞. It is now sufficient to notice that

Cov{L�,M�} =
∫ C

0
J�(ψ;4) sin

ψ

L
dψ + 2

∫ Lπ/2

C

J�(ψ;4) sin
ψ

L
dψ. (3.5)

For the first summand in (3.5) we have easily∣∣∣∣∫ C

0
J�(ψ;4) sin

ψ

L
dψ

∣∣∣∣≤ const × �

∫ C

0

∣∣∣∣sin
ψ

L

∣∣∣∣dψ ≤ �

L

∫ C

0
ψ dψ = O(1), as � → ∞.

For the second sum in (3.5), using Proposition 3.1 and integrating we obtain

2
∫ Lπ/2

C

J�(ψ;4) sin
ψ

L
dψ

= 1

L

∫ Lπ/2

C

1

sin2 ψ
L

{
1

32
+ 5

32
cos 4ψ − 3

8
sin 2ψ

}
sin

ψ

L
dψ
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+ O

(
1

L

∫ Lπ/2

C

1

ψ

1

sin2 ψ
L

sin
ψ

L
dψ

)
+ O

(
1

L

∫ Lπ/2

C

1

�

1

sin2 ψ
L

sin
ψ

L
dψ

)

=
∫ Lπ/2

C

1

ψ

{
1

32
+ 5

32
cos 4ψ − 3

8
sin 2ψ

}
dψ

+ O

(∫ Lπ/2

C

1

ψ2
dψ

)
+ O

(
1

L

∫ Lπ/2

C

1

�

1

sin ψ
L

dψ

)

= log�

32
+ O(1) + O

(
log�

�

)
,

as claimed. �

Remark 3.2. As mentioned in the Introduction, our main result could equivalently be stated as

Corr
{
L�,Proj[L�|4]},Corr

{
Proj[L�|4],M�

}→ 1

and thus

Proj[L̃�|4] = −
√

�(� + 1)

2

1

4 × 24

∫
S2

H4
(
f�(x)

)
dx + O(1),

L̃� = −
√

�(� + 1)

2

1

4 × 24

∫
S2

H4
(
f�(x)

)
dx + O(1),

both equivalences holding in the L2(�) sense.

3.3. Proof of the Central Limit Theorem (Corollary 1.3)

Recall that h�;4 is defined in (1.5). It was shown [15, Lemma 3.3] that the so-called fourth-order cumulant of h�;4

cum4{h�;4} := E
[
h4

�;4
]− 3

{
E
[
h4

�;4
]}2

satisfies cum4{h�;4} ≈ �−4, i.e. the ratio between the left and right-hand sides is bounded above and below by finite,
strictly positive constants. Taking into account the normalizing factors, it means that M̃� satisfies

cum4{M̃�} = cum4{M�}
V ar2(M�)

= 322

log2 �

(
−1

4

√
�(� + 1)

2

1

4!
)4

cum4{h�;4} = O

(
1

log2 �

)
,

where we have exploited definitions of the sequences {M�,M̃�} and standard properties of the cumulants. Let us now
recall the so-called Stein-Malliavin bound by Nourdin–Peccati, stating that for a standardized random variable F which
belong to the q−th order Wiener chaos Hq we have the bound (see [19, Theorem 5.2.6])

dW

(
F,N (0,1)

)≤√2q − 2

3πq
cum4{F }.

Now the sequence {M̃�} is indeed standardized and belongs to the Wiener chaos for q = 4, so that we have

dW

(
M̃�,N (0,1)

)≤√ 1

2π

{
cum4{M̃�}

}= O

(
1

log�

)
.

As a simple application of the triangle inequality for dW (see [19, Appendix C]), for � → ∞

dW

(
L̃�,N (0,1)

)≤ dW

(
M̃�,N (0,1)

)+√E[L̃� − M̃�]2 = O

(
1√

log�

)
,

and the statement of Corollary 1.3 follows.
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4. Proof of Proposition 3.1

Proof. It is convenient to introduce some further notation, recalling (2.1) and writing

��(x;4) = A�(x) + B�(x) + C�(x) + D�(x) + E�(x) + F�(x),

where√
�(� + 1)

2

3

2

1

4!H4
(
f�(x)

)=: A�(x), (4.1)

−
√

�(� + 1)

2

1

4

1

2!2!H2(f�)H2

(
∂1;xf�(x)√
�(� + 1)/2

)
=: B�(x), (4.2)

−
√

�(� + 1)

2

3

16

1

4!H4

(
∂1;xf�(x)√
�(� + 1)/2

)
=: C�(x), (4.3)

+3

2

1

2!2!H2

(
∂1;xf�(x)√
�(� + 1)/2

)
H2

(
∂2;xf�(x)√
�(� + 1)/2

)
=: D�(x), (4.4)

−1

4

1

2!2!H2
(
f�(x)

)
H2

(
∂2;xf�(x)√
�(� + 1)/2

)
=: E�(x), (4.5)

− 3

16

1

4!H4

(
∂2;xf�(x)√
�(� + 1)/2

)
=: F�(x), (4.6)

and also

M� := −1

4

√
�(� + 1)

2

1

4!
∫
S2

H4
(
f�(x)

)
dx =

∫
S2

M�(x)dx,

M�(x) := −1

4

√
�(� + 1)

2

1

4!H4
(
f�(x)

)
.

(4.7)

For the computations to follow, recall that we focus on x = (0,0) (the “North Pole”) and y(θ) = (θ,0) (the “Greenwich
meridian”). By repeated application of the well-known Diagram Formula (see e.g. [13, Section 4.3.1]), we have

E

[
H2

(
∂1;xf�(x)√
�(� + 1)/2

)
H2

(
∂2;xf�(x)√
�(� + 1)/2

)
H4
(
f�

(
y(θ)

))]
= 4! 4

�2(� + 1)2

{
E
[
∂1;xf�(x)f�

(
y(θ)

)]}2{
E
[
∂2;xf�(x)f�

(
y(θ)

)]}2 = 0,

in view of (A.3); likewise

E

[
H2
(
f�(x)

)
H2

(
∂2;xf�(x)√
�(� + 1)/2

)
H4
(
f�

(
y(θ)

))]
= 4! 2

�(� + 1)

{
E
[
f�(x)f�

(
y(θ)

)]}2{
E
[
∂2;xf�(x)f�

(
y(θ)

)]}2 = 0,

and

E

[
H4

(
∂2;xf�(x)√
�(� + 1)/2

)
H4
(
f�

(
y(θ)

))]
= 4! 4

�2(� + 1)2

{
E
[
∂2;xf�(x)f�

(
y(θ)

)]}4 = 0.

As a consequence, using definitions (4.4), (4.5), (4.6) and (4.7) we have that

E
[
D�(x)M�(y(θ)

]= E
[
E�(x)M�(y(θ)

]= E
[
F�(x)M�(y(θ)

]≡ 0
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for all θ ∈ [0,π]. In the sequel, it is sufficient to focus on A�(·),B�(·) and C�(·). The proof of (3.2) is rather straightfor-
ward; indeed, as a simple application of the Cauchy–Schwartz inequality, we have that

E
[
H4
(
f�(x)

)
H4
(
f�

(
y(θ)

))]≤ E
[{

H4
(
f�(x)

)}2]= 24,

E

[
H2
(
f�(x)

)
H2

(
∂1;xf�(x)√
�(� + 1)/2

)
H4
(
f�

(
y(θ)

))]

≤
√
E

[{
H2
(
f�(x)

)
H2

(
∂1;xf�(x)√
�(� + 1)/2

)}2]
E
[{

H4
(
f�(x)

)}2]= 24

and analogously

E

[
H4

(
∂1;xf�(x)√
�(� + 1)/2

)
H4
(
f�

(
y(θ)

))]

≤
√
E

[{
H4

(
∂1;xf�(x)√
�(� + 1)/2

)}2]
E
[{

H4
(
f�(x)

)}2]= 24.

It then follows that∣∣J�(ψ;4)
∣∣ = 8π2

∣∣∣∣E[{A�(x) + B�(x) + C�(x)
}
M�

(
y

(
ψ

L

))]∣∣∣∣
≤ 8π2

L

{∣∣∣∣E[A�(x)M�

(
y

(
ψ

L

))]∣∣∣∣+ ∣∣∣∣E[B�(x)M�

(
y

(
ψ

L

))]∣∣∣∣+ ∣∣∣∣E[C�(x)M�

(
y

(
ψ

L

))]∣∣∣∣}
≤ 24

�(� + 1)

2L
8π2

{
3

2

1

4!
1

4

1

4! + 1

4

1

2!2!
1

4

1

4! + 3

16

1

4!
1

4

1

4!
}

= O(�),

as claimed.
We now turn to proving (3.3). Using (A.1), (A.2) and the Diagram Formula we can write explicitly

E
[
A�(x)M�

(
y(θ)

)]= −�(� + 1)

2

3

2

1

4!
1

4

1

4! × 4!P 4
� (cos θ)

= −�(� + 1)

2

1

64
P 4

� (cos θ), (4.8)

E
[
B�(x)M�

(
y(θ)

)]= �(� + 1)

2

1

4

1

2!2!
1

4

1

4! × 4! 2

�(� + 1)
P 2

� (cos θ)
{
P ′

�(cos θ)
}2

= �(� + 1)

2

1

64

2

�(� + 1)
P 2

� (cos θ)
{
P ′

�(cos θ)
}2

, (4.9)

E
[
C�(x)M�

(
y(θ)

)]= �(� + 1)

2

3

16

1

4!
1

4

1

4! × 4

�2(� + 1)2
4!{P ′

�(cos θ) sin θ
}4

= �(� + 1)

2

3

16

1

4!
1

�2(� + 1)2

{
P ′

�(cos θ) sin θ
}4

. (4.10)

Now recall that (see Appendices A and B)

P�

(
cos

ψ

L

)
=
√

2

π� sin ψ
L

(
sin

(
ψ + π

4

)
+ O

(
1

ψ

))
,

P ′
�

(
cos

ψ

L

)
=
√

2

π� sin3 ψ
L

(
� sin

(
ψ − π

4

)
+ O(1)

)
.

Let us also mention the following standard trigonometric identities that are used repeatedly in our arguments:{
sin

(
ψ − π

4

)}4

=
{√

2

2
sinψ −

√
2

2
cosψ

}4

= 3

8
− 1

8
cos 4ψ − 1

2
sin 2ψ,
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sin

(
ψ + π

4

)}4

= 3

8
− 1

8
cos 4ψ + 1

2
sin 2ψ,

and

(1 + sin 2ψ)(1 − sin 2ψ) = 1 + cos 4ψ

2
.

Substituting the latter expressions into (4.8), we obtain that

8π2
E
[
A�(x)M�

(
y(θ)

)] = −�(� + 1)

2

1

8
π2P 4

� (cos θ)

= −�(� + 1)

2

1

8
π2
[√

2

π� sin ψ
L

(
sin

(
ψ + π

4

)
+ O

(
1

ψ

))]4

= −�(� + 1)

2

1

8
π2 22

π2�2 sin2 ψ
L

{
sin

(
ψ + π

4

)}4

+ O

(
1

ψ

1

sin2 ψ
L

)

= −�(� + 1)

2

1

2�2 sin2 ψ
L

{
3

8
− 1

8
cos 4ψ + 1

2
sin 2ψ

}
+ O

(
1

ψ

1

sin2 ψ
L

)

= − 1

4 sin2 ψ
L

{
3

8
− 1

8
cos 4ψ + 1

2
sin 2ψ

}
+ O

(
1

ψ

1

sin2 ψ
L

)
+ O

(
1

�

1

sin2 ψ
L

)
.

Likewise for (4.9)

8π2
E
[
B�(x)M�

(
y(θ)

)]
= �(� + 1)

2

1

8
π2 2

�(� + 1)
P 2

� (cos θ)
{
P ′

�(cos θ) sin θ
}2

= 1

8
π2
[√

2

π� sin ψ
L

(
sin

(
ψ + π

4

)
+ O

(
1

ψ

))]2[√ 2

π� sin3 ψ
L

(
� sin

(
ψ − π

4

)
+ O(1)

)
sin

ψ

L

]2

= 1

8
π2 2

π� sin ψ
L

sin2
(

ψ + π

4

)
2

π� sin ψ
L

�2 sin2
(

ψ − π

4

)
+ O

(
1

� sin2 ψ
L

)

= 1

2

1

sin ψ
L

sin2
(

ψ + π

4

)
1

sin ψ
L

sin2
(

ψ − π

4

)
+ O

(
1

� sin2 ψ
L

)

= 1

2

1

sin ψ
L

{√
2

2
sinψ −

√
2

2
cosψ

}2 1

sin ψ
L

{√
2

2
sinψ −

√
2

2
cosψ

}2

+ O

(
1

� sin2 ψ
L

)

= 1

2

1

sin ψ
L

1

4
{sinψ + cosψ}2 1

sin ψ
L

{sinψ − cosψ}2 + O

(
1

� sin2 ψ
L

)

= 1

2

1

sin2 ψ
L

1

4

{
sin2 ψ − cos2 ψ

}2 + O

(
1

� sin2 ψ
L

)
= 1

2

1

sin2 ψ
L

1

4

{
1 − 2 cos2 ψ

}2 + O

(
1

� sin2 ψ
L

)

= 1

2

1

sin2 ψ
L

1 + cos 4ψ

8
+ O

(
1

� sin2 ψ
L

)
.

Finally, for (4.10)

8π2
E
[
C�(x)M�

(
y(θ)

)]
= �(� + 1)

2

3

2
π2 1

4!
1

�2(� + 1)2

{
P ′

�(cos θ) sin θ
}4
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= 3

4

1

4!π
2 1

�(� + 1)

{√
2

π� sin3 ψ
L

(
� sin

(
ψ − π

4

)
+ O(1)

)
sin

ψ

L

}4

= 3

4

1

4!π
2 1

�(� + 1)

22

π2�2 sin2 ψ
L

�4 sin4
(

ψ − π

4

)
+ O

(
1

� sin2 ψ
L

)

= 1

8

1

sin2 ψ
L

[
3

8
− 1

8
cos 4ψ − 1

2
sin 2ψ

]
+ O

(
1

� sin2 ψ
L

)

= 1

8

1

sin2 ψ
L

[
3

8
− 1

8
cos 4ψ − 1

2
sin 2ψ

]
+ O

(
1

� sin2 ψ
L

)
.

Thus, summing (4.8), (4.9) and (4.10) we obtain

J�(ψ;4) = − 1

4L sin2 ψ
L

{
3

8
− 1

8
cos 4ψ + 1

2
sin 2ψ

}
+ O

(
1

ψ

1

sin2 ψ
L

)
+ O

(
1

�

1

sin2 ψ
L

)

+ 1

2

1

L sin2 ψ
L

1 + cos 4ψ

8
+ O

(
1

� sin2 ψ
L

)

+ 1

8

1

L sin2 ψ
L

[
3

8
− 1

8
cos 4ψ − 1

2
sin 2ψ

]
+ O

(
1

� sin2 ψ
L

)

= 1

64

1

L sin2 ψ
L

+ 5

64

cos 4ψ

L sin2 ψ
L

− 3

16

sin 2ψ

L sin2 ψ
L

+ O

(
1

ψ

1

L sin2 ψ
L

)
+ O

(
1

�

1

L sin2 ψ
L

)

= 1

64

1

ψ sin ψ
L

+ 5

64

cos 4ψ

ψ sin ψ
L

− 3

16

sin 2ψ

ψ sin ψ
L

+ O

(
1

ψ2

1

sin ψ
L

)
+ O

(
1

�

1

ψ sin ψ
L

)
, (4.11)

as claimed. �

Remark 4.1. The variance of the spherical nodal length is written [26, Proposition 2.7] as

Var{L�} =
∫ Lπ

0
4π2 �(� + 1)

L

{
K�(ψ) − 1

4

}
sin

(
ψ

L

)
dψ.

Here K�(·) represents the two-point correlation function of the nodal length, defined as

K�(ψ) = 1

2π

√
1 − P 2

� (cos ψ
L

)

E

[∥∥∇f�(N)
∥∥ ·
∥∥∥∥∇f�

(
ψ

L

)∥∥∥∥∣∣∣f�(N) = f�

(
ψ

L

)
= 0

]
.

It was shown [26] that one has

K�(ψ) − 1

4
= 1

2

sin 2ψ

π� sin ψ
L

+ 9

32

cos 2ψ

π�ψ sin ψ
L

+ 1

256

1

π2�ψ sin ψ
L

+
27
64 sin 2ψ − 75

256 cos 4ψ

π2�ψ sin ψ
L

+ O

(
1

ψ3
+ 1

�ψ

)
.

To compare this result with those in the present paper, let us note that

4π2 �(� + 1)

L

{
K�(ψ) − 1

4

}
= 1

64
· 1

ψ sin ψ
L

+ oscillatory or lower order terms,

in perfect analogy with the two-point cross-correlation function (4.11), used to compute the covariance

Cov{L�,M�} =
∫ Lπ

0
J�(ψ;4) sin

(
ψ

L

)
dψ,
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satisfying

J�(ψ;4) = 1

64

1

ψ sin ψ
L

+ oscillatory or lower order terms.

Appendix A: Some background material

For completeness, in this Appendix we record some basic facts about covariances of random spherical harmonics and
their derivatives; all the expressions to follow are rather standard and have been repeatedly exploited in the literature. Let
us first recall that for arbitrary coordinates x = (θx, ϕx), y = (θy, ϕy) we have

〈x, y〉 = cos θx cos θy + sin θx sin θy cos(ϕx − ϕy).

It is then elementary to show that

E
[
f�(x)∂1;yf�(y)

]= P ′
�

(〈x, y〉){− cos θx sin θy + sin θx cos θy cos(ϕx − ϕy)
}
,

E
[
f�(x)∂2;yf�(y)

]= P ′
�

(〈x, y〉) sin θx sin(ϕx − ϕy),

E
[
∂1;xf�(x)∂1;yf�(y)

]
= P ′′

�

(〈x, y〉){− cos θx sin θy + sin θx cos θy cos(ϕx − ϕy)
}{− sin θx cos θy + cos θx sin θy cos(ϕx − ϕy)

}
+ P ′

�

(〈x, y〉){sin θx sin θy + cos θx cos θy cos(ϕx − ϕy)
}
,

E
[
∂1;xf�(x)∂2;yf�(y)

]
= −P ′′

�

(〈x, y〉){sin θx cos θy + cos θx sin θy cos(ϕx − ϕy)
}

sin θx sin(ϕx − ϕy)

− P ′
�

(〈x, y〉) cos θx sin(ϕx − ϕy),

E
[
∂2;xf�(x)∂2;yf�(y)

]= −P ′′
�

(〈x, y〉) sin θx sin θy sin2(ϕx − ϕy) + P ′
�

(〈x, y〉) cos(ϕx − ϕy).

In particular, the result we exploited several times in this paper are obtained setting x = (0,0), y = (θ,0):

E
[
f�(x)f�(y)

]= P�(cos θ), (A.1)

E
[
f�(x)∂1;yf�(y)

]= −P ′
�(cos θ) sin θ, (A.2)

E
[
f�(x)∂2;yf�(y)

]= E
[
f�(y)∂2;yf�(x)

]= 0, (A.3)

E
[
∂1;xf�(x)∂1;yf�(y)

]= P ′
�(cos θ) cos θ − P ′′

� (cos θ) sin2 θ, (A.4)

E
[
∂1;xf�(x)∂2;yf�(y)

]= E
[
∂1;xf�(y)∂2;yf�(x)

]= 0, (A.5)

E
[
∂2;xf�(x)∂2;yf�(y)

]= P ′
�(cos θ). (A.6)

On the other hand, the following very useful expansions are proved [26, LemmaB.3], and hold uniformly for C < ψ < Lπ
2

(recall that L := � + 1
2 ):

P�

(
cos

ψ

L

)
=
√

2

π� sin ψ
L

(
sin

(
ψ + π

4

)
+ O

(
1

ψ

))
,

P ′
�

(
cos

ψ

L

)
=
√

2

π� sin3 ψ
L

(
� sin

(
ψ − π

4

)
+ O(1)

)
,

P ′′
�

(
cos

ψ

L

)
= − �2

sin2 ψ
L

P�

(
cos

ψ

L

)
+ 2

sin2 ψ
L

P ′
�

(
cos

ψ

L

)
+ O

(
�3

ψ5/2

)
.
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Appendix B: The L2 approximation

We know that the nodal length is defined almost-surely by

lim
ε→0

∫
S2

χε

(
f�(x)

)∥∥∇f�(x)
∥∥dx;

the almost-sure convergence follows from the standard argument ([24, Lemma 3.1]), as χε(·) = 1
2ε
I[−ε,ε](·) is integrable

and f� is smooth we have, using the co-area formula [1, p. 169]∫
S2

χε

(
f�(x)

)∥∥∇f�(x)
∥∥dx =

∫
R

{∫
f −1

� (s)

χε

(
f�(x)

)}
ds.

Since

χε

(
f�(x)

)= {0 for x : f�(x) > ε,
1
2ε

for x : f�(x) ≤ ε

we obtain∫
R

{∫
f −1

� (s)

χε

(
f�(x)

)}
ds = 1

2ε

∫ ε

−ε

Vol
[
f −1

� (s)
]
ds → Vol

[
f −1

� (0)
]
, as ε → 0,

since the function s → Vol[f −1
� (s)] is continuous for regular (Morse) functions. We now want to show that the conver-

gence occurs also in the L2 sense; as convergence holds almost surely, it is sufficient to show that

lim
ε→0

E
[
L2

�;ε
]= E

[
L2

�

]
.

Note that

E
[
L2

�;ε
] = E

[{∫
S2

{
χε

(
f�(x)

)∥∥∇f�(x)
∥∥}dx

}2]

= E

[{∫
R

∫
f�(x)=u

χε

(
f�(x)

)
dx du

}2]

= E

[{∫
R

L�(u)χε(u)du

}2]
.

It is easy to see that the application u → E[{L�(u)}2] is continuous, where

E
[
L2

�(u)
] =

∫
S2×S2

E
[∥∥∇f�(x1)

∥∥∥∥∇f�(x2)
∥∥|f�(x1) = u,f�(x2) = u

]
φf�(x1),f�(x2)(u,u) dx1 dx2

= 8π2
∫ π

0
E
[∥∥∇f�(N)

∥∥∥∥∇f�

(
y(θ)

)∥∥|f�(N) = u,f�

(
y(θ)

)= u
]
φf�(N),f�(y(θ))(u,u) sin θ dθ.

To check continuity, it is enough to show that the Dominated Convergence Theorem holds; we first note that

φf�(N),f�(y(θ))(u,u) sin θ ≤ φf�(N),f�(y(θ))(0,0) sin θ

= 1

2π

√
1 − P 2

� (cos θ)

sin θ = O(1),

uniformly over θ . On the other hand, to evaluate

E
[∥∥∇f�(x1)

∥∥∥∥∇f�(x2)
∥∥|f�(N) = u,f�

(
y(θ)

)= u
]

we can use Cauchy–Schwartz inequality, and bound

E
[
w2

i |f�(N) = u,f�

(
y(θ)

)= u
]= Var

[
wi |f�(N) = u,f�

(
y(θ)

)= u
]+ {E[wi |f�(N) = u,f�

(
y(θ)

)= u
]}2

,
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for i = 1,2,3,4, where⎛⎜⎜⎝
w1
w2
w3
w4

⎞⎟⎟⎠ :=
(∇f�(x1)

∇f�(x2)

)
.

Note first that, by standard properties of Gaussian conditional distributions

Var
[
wi |f�(N) = u,f�

(
y(θ)

)= u
]= Var

[
wi |f�(N) = 0, f�

(
y(θ)

)= 0
]
,

and the quantities on the right-hand sides have been shown to be uniformly bounded over θ in [26]. On the other hand, a
direct computation along the same lines as in [26, Appendix A] shows that

E

⎡⎢⎢⎣
w1
w2
w3
w4

∣∣∣∣∣∣∣∣f�(N) = u,f�

(
y(θ)

)= u

⎤⎥⎥⎦= BT
� (θ)A−1

� (θ)

(
u

u

)
,

where

BT
� (θ) =

⎛⎜⎜⎝
−P ′

�(cos θ) sin θ 0
0 0
0 P ′

�(cos θ) sin θ

0 0

⎞⎟⎟⎠ ,

A−1
� (θ) = 1

1 − P 2
� (cos θ)

(
1 −P�(cos θ)

−P�(cos θ) 1

)
,

so that the conditional expected value can be written as

1

1 − P 2
� (cos θ)

⎛⎜⎜⎝
−P ′

�(cos θ) sin θ P ′
�(cos θ)P�(cos θ) sin θ

0 0
−P ′

�(cos θ)P�(cos θ) sin θ P ′
�(cos θ) sin θ

0 0

⎞⎟⎟⎠(u

u

)

= 1

1 − P 2
� (cos θ)

⎛⎜⎜⎝
uP ′

�(cos θ) sin θ(P�(cos θ) − 1)

0
uP ′

�(cos θ) sin θ(1 − P�(cos θ))

0

⎞⎟⎟⎠= 1

1 + P�(cos θ)

⎛⎜⎜⎝
−uP ′

�(cos θ) sin θ

0
uP ′

�(cos θ) sin θ

0

⎞⎟⎟⎠ .

This vector function is immediately seen to be uniformly bounded over θ , whence the Dominated Convergence Theo-
rem holds. Hence

E
[
L2

�

] ≤ lim inf
ε→0

E

[{∫
S2

{
χε

(
f�(x)

)∥∥∇f�(x)
∥∥}dx

}2]
= lim inf

ε→0
E
[
L2

�;ε
]

≤ lim sup
ε→0

E
[
L2

�;ε
]

= lim sup
ε→0

E

[{∫
S2

{
χε

(
f�(x)

)∥∥∇f�(x)
∥∥}dx

}2]

= lim sup
ε→0

E

[{∫
R

L�(u)χε(u)du

}2]
≤ lim sup

ε→0

∫
R

E
[
L2

�(u)
]
χε(u)du = E

[
L2

�

]
.

We have thus shown that E[L2
�;ε] → E[L2

�], and the proof is complete.
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