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Abstract. We give necessary and sufficient conditions for laws of large numbers to hold in L2 for the empirical measure of a large
class of branching Markov processes, including λ-positive systems but also some λ-transient ones, such as the branching Brownian
motion with drift and absorption at 0. This is a significant improvement over previous results on this matter, which had only dealt so
far with λ-positive systems. Our approach is purely probabilistic and is based on spinal decompositions and many-to-few lemmas. In
addition, we characterize when the limit in question is always strictly positive on the event of survival, and use this characterization to
derive a simple method for simulating (quasi-)stationary distributions.

Résumé. Nous obtenons des conditions nécessaires et suffisantes pour des lois des grands nombres dans L2 concernant les mesures
empiriques d’une large classe de processus de Markov branchants, comme le mouvement Brownien branchant avec dérive et absorp-
tion en 0. Cela constitue un pas significatif pour ce genre de résultats qui étaient jusqu’à présent limités aux processus λ-positifs.
Notre approche est purement probabiliste et est basée sur des décompositions en épine (spine) et des lemmes associés. De plus, nous
caractérisons la stricte positivité de la limite quand le processus de branchement survit et utilisons cette caractérisation pour donner
une méthode simple de simulation de distributions (quasi-)stationaires.

MSC: 60F99; 60J80

Keywords: Law of large numbers; Branching Markov processes; Spine decomposition; h-transform; λ-positivity

1. Introduction

Since the late seventies there has been an intensive effort of research dedicated to proving laws of large numbers for gen-
eral branching Markov processes (or BMPs, for short). For us, a BMP will be characterized by the following dynamics:

i. It starts with a single particle located at some point x of a measurable space (J,BJ ).
ii. This particle moves within J according to some prescribed Markovian dynamics.

iii. Independently of its motion, the particle also branches at constant rate r > 0, dying on the spot and giving birth to a
random number of new particles having some prescribed distribution υ on N0.

iv. Each of these new particles then independently mimics the stochastic behavior of its parent, relative to their own
starting point.

Given a BMP ξ = (ξt )t≥0 on some space (J,BJ ), by a law of large numbers (LLN, for short) we shall understand the
following: there exists a nonempty class C ⊆ BJ , a measure ν on (J,BJ ) and a nonnegative random variable D∞ such
that for all pairs B,B ′ ∈ C with ν(B ′) �= 0

ξt (B)

E(ξt (B ′))
−→ ν(B)

ν(B ′)
· D∞ (1)

where, for any A ∈ BJ , we denote by ξt (A) the number of particles of ξ inside the set A at time t . The earliest results
in this regard can be found in [2,5,47,51]. Later, the renovated approach in [39] introducing the notion of spine for the
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branching process sprouted a multitude of new results, see for instance [21,31,32]. In the recent works [15,16], functional
analytic methods were used to obtain results in the setting of branching symmetric Hunt processes. LLNs were also
investigated in the related context of superprocesses, see [13,14,23,24,41]. For a more detailed overview of past results
and recent developments on these matters, we refer the interested reader to [18,20]. See also [36, Section 2.5].

In the study of LLNs, a property which has proved crucial in most of the approaches developed so far is the λ-
positivity of the BMP ξ . Essentially, λ-positivity means that the motion of a certain spine describing the genealogy of
the branching process (which is sometimes referred to in the literature as the immortal particle) is positive recurrent.
To the best of our knowledge, all previous works on the topic have required some form of this hypothesis, with [19,
51] being the only remarkable exceptions we could find. However, recent questions stemming from particle systems
demand a better understanding of BMPs which are not λ-positive. Indeed, there exists a large body of literature studying
empirical measures of population models with mutations and selection [4,6,10–12,17,25,27,44], for which hydrodynamic
limits were obtained on finite time windows [3,6,17,50]. However, it is still an open problem in many of these systems
how to obtain scaling limits of the empirical measure in its stationary regime, see [4,27,44]. Different couplings with
branching Markov processes have been proposed to study this problem, but typically the resulting branching process is
not λ-positive, see for example [4,44]. Thus, this highlights the need of a convergence theory for empirical measures of
branching Markov processes going past this assumption of λ-positivity. A canonical example appearing in this context is
the Branching Brownian Motion with drift and absorption at 0. Kesten introduced this model in his paper [38] from 1978
and stated there that a strong law of large numbers holds for this process whenever it is supercritical, although he did not
provide a proof of this fact nor did he made any similar assertions regarding L2-convergence. As it turns out, the method
of Watanabe in [51] may be adapted to establish the strong LLN for this model, but only in the (strictly smaller) subregion
of the supercritical regime in which the LLN also holds in L2, see Section 3.6 for details. However, it was not until very
recently that the full validity of Kesten’s claim was proved in [43], almost forty years later, building upon the results from
the present article. A weak analogue of this LLN for super-Brownian motion (without drift) was also obtained in [19],
though it does not address the question of convergence in L2.

Once a law of large numbers as in (1) is established, it is then of particular interest to determine whether D∞ > 0 holds
almost surely in the event the branching process survives forever (assuming it is supercritical, so that there is a positive
probability that this occurs). Indeed, assuming that J ∈ C and ν(J ) = 1, it is usually simple to check that the former
statement implies the following convergence for the empirical measure associated with ξ : conditionally on the event of
survival, for all B ∈ C one has that

ξt (B)

ξt (J )
−→ ν(B). (2)

(The sense in which the convergence in (2) holds will depend on that of (1), although for example convergence in prob-
ability in (1) already gives convergence in probability and in Lp for all p ≥ 1 in (2).) In turn, we see that whenever
D∞ > 0 holds almost surely in the event of survival, we obtain a more complete description of the asymptotic behavior
of the branching process as t → +∞:

i. For any B ∈ C with ν(B) �= 0, the number of particles ξt (B) in B grows like its expectation (times D∞, which acts as
a random scale constant).

ii. If J ∈ C and ν(J ) = 1, the proportion of particles ξt (B)
ξt (J )

inside any given set B ∈ C behaves asymptotically as ν (in the
sense of (2)).

Furthermore, we also see that (2) yields a simple and direct method to simulate the distribution ν which, in many cases,
might not be known explicitly. However, showing that D∞ > 0 upon survival is a subtle question (see [29,30] for some
specific examples) and, in fact, it may not always be true, see Section 3.5. In general, the literature addressing this matter
is very limited, specially if not under the λ-positivity assumption and whenever dealing with more involved situations
with absorption and/or infinite state spaces.

Our contribution in this article is two-fold. First, we derive a necessary and sufficient condition for laws of large
numbers to hold in L2 for a wide class of supercritical branching Markov processes having fixed (i.e., not state-dependent)
branching rates and offspring distributions with a finite second moment, which includes many λ-positive systems but also
other highly relevant examples without this property.

More precisely, we show in Theorem 2.6 that, whenever the immortal particle process mentioned above (which is well-
defined even for non-λ-positive systems) has a distribution which is of regular variation as t → ∞ (see Section 2.2 for
details), then (1) holds in L2 if and only if a specific additive martingale associated with ξ is bounded in L2. Furthermore,
we show that, in the latter case, D∞ is precisely the L2-limit of this martingale. Then, in Proposition 2.5, we obtain an
explicit formula for the asymptotic variance of this martingale, so that one can determine whether it is indeed bounded
in L2 by performing a direct computation. Our approach is purely probabilistic and is based solely on simple spinal
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decomposition techniques, namely the “many-to-one/two” lemmas, which allow us to effectively control the particle
correlations as time tends to infinity.

We then focus on studying conditions which guarantee that D∞ > 0 almost surely upon survival, i.e. P(D∞ > 0|
survival) = 1 (notice that this is in fact stronger than just the non-degeneracy of D∞, which only amounts to having
P(D∞ > 0|survival) > 0). In Theorem 2.10 we show that, whenever (1) holds in L2, the equality P(D∞ > 0|survival) =
1 is equivalent to the process ξ being strongly supercritical: heuristically, this means that, in the event of survival, particles
of ξ can never accumulate all together on the boundary of the state space (or, equivalently, that as t → ∞ one can always
see infinitely often at least one particle of ξ lying in the “bulk” of the state space, where by bulk we understand the
region of the state space which is not adjacent to the boundary, see (13) below for a more precise statement). Strong
supercriticality is related to the notion of strong local survival studied in [7] and references mentioned therein, although
we are not aware of any previous connections made between this and the strict positivity of D∞ on survival.

Finally, we illustrate our results through a series of examples. First, Proposition 8.1 shows that any λ-positive system
whose associated immortal particle relaxes sufficiently fast to equilibrium (i.e. it admits a geometric Lyapunov functional
growing sufficiently fast at infinity) verifies our hypotheses and thus satisfies a law of large numbers in L2. Moreover, The-
orem 2.16 shows that, whenever this Lyapunov functional does not grow too fast, the almost sure convergence also holds.
Afterwards, we use this to obtain laws of large numbers for several classic λ-positive systems: branching ergodic motions,
branching Galton–Watson processes, branching contact processes and branching inward/outward Ornstein–Uhlenbeck
processes. Finally, we study the emblematic case of the Branching Brownian Motion with drift and absorption at 0 pre-
sented in [38], which is not λ-positive. For this system we completely characterize the region of parameters for which a
LLN holds in L2 and, in particular, show that it is strictly smaller than the region of parameters for which the process is
supercritical. The method we use to show this is simpler and more general than the one developed by Watanabe in [51],
which relies heavily on Fourier analysis.

As a final remark, we believe that all of our results should also extend to the more general case of non-constant (i.e.
state-dependent) branching rates and/or offspring distributions without any major modifications to our hypotheses nor
to the overall method. However, we chose to leave this outside the scope of the present article since it would somewhat
complicate the overall notation as well as hide the intuition behind our current assumptions.

The rest of the article is structured as follows. In Section 2 we describe the basic setup and notation, and then state
our main results. Section 3 discusses several examples and applications. In Section 4 we recall the many-to-few lemma,
which constitutes one of the main tools of our analysis, while Sections 5, 6, 7 and 8 contain the proofs of our main results.

2. Preliminaries and main results

2.1. Preliminaries

Let X = (Xt )t≥0 be a homogeneous Markov process with cadlag trajectories on some metric space J . We will assume
throughout that:

• X is allowed to have absorbing states, i.e. x ∈ J such that, whenever Xt = x for some t , one has Xs = x for all times
s > t .

• The set ∂∗J of all absorbing states of X belongs to B, the Borel σ -algebra of J .
• J := J − ∂∗J is locally compact and separable.

Let us now recall how the dynamics of a BMP goes:

i. The dynamics starts with a single particle, located initially at some starting point x ∈ J , whose position evolves
according to a copy of the Markov process X.

ii. This initial particle branches at a fixed rate r > 0 (independently of the motion it describes) and, whenever it does so,
it dies and gets replaced at its current position by an independent random number of particles m having some fixed
distribution υ on N0.

iii. Starting from their birth position, now each of these new particles independently mimics the same stochastic behavior
of its parent.

iv. If a particle has 0 children, then it dies and moves to a graveyard state � forever.

A rigorous construction of such dynamics can be given in terms of marked Galton–Watson trees, where particles of our
branching process are identified with the individuals on the GW-tree, each individual carrying a mark which represents the
trajectory of the associated particle, see e.g. [32]. However, since we will not make any explicit use of this construction,
we shall not give the details of it here and instead refer the interested reader to [32, Section 5].
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Given any time t ≥ 0, for each particle u in the dynamics at time t we shall write ut to indicate its position at time t .
Also, we let χt denote the collection of particles in the branching dynamics which are alive at time t , i.e. ut /∈ �. We
identify χt with a finite measure χt on (J ,B) by setting

χt :=
∑
u∈χt

δut .

Furthermore, let ξ t denote the collection of particles u in χt which have not been absorbed yet, i.e. such that ut ∈ J , and
define its induced measure ξt on (J,BJ ) as

ξt =
∑
u∈ξ t

δut .

Finally, we write |ξt | := ξt (J ) for the total mass of ξt , i.e. the number of living particles at time t which have not been
absorbed yet, and define the empirical measure νt as

νt := 1

|ξt | · ξt

with the convention that ∞ · 0 = 0, used whenever |ξt | = 0.
Since throughout most of the article the starting position x of our branching dynamics is fixed, we shall typically omit

the dependence on x of the processes under consideration from the notation, the only exception being throughout Section 7
where we will be forced to work simultaneously with different initial conditions and so writing out this dependence will
become necessary. However, since many of the quantities computed in the sequel will indeed depend on the precise value
of x, we shall use the subscript x in the notation, e.g. by writing Px or Ex , to remind the reader that the process involved
in the corresponding probability or expectation starts at x.

2.2. A necessary and sufficient condition for laws of large numbers in L2

We now begin to present and discuss our main results. Before we can do so, however, we must introduce some assumptions
on our branching dynamics. Our initial assumptions on the underlying motion X are the following.

Assumptions 2.1.

A1. There exists λ ≥ 0 and a nonnegative B-measurable function h : J → R≥0 such that:
i. h(x) = 0 if and only if x ∈ ∂∗J .

ii. The process M = (Mt)t≥0 given by the formula

Mt := h(Xt )

h(X0)
eλt ,

is a (mean-one) square-integrable martingale, i.e. −λ is a (right) eigenvalue of L with associated eigenfunction h

satisfying Ex(h
2(Xt )) < +∞ for all t ≥ 0 and x ∈ J .

A2. There exists a nonempty class of subsets CX ⊆ BJ such that for each x ∈ J and B ∈ CX one has the asymptotic
formula

Px(Xt ∈ B) = h(x)p(t)e−λt
(
ν(B) + sB(x, t)

)
, (3)

for all t > 0, where λ and h are those from (A1) and:
i. ν is a (non-necessarily finite) measure on (J,BJ ) satisfying:

• ν(B) ∈ [0,+∞) for all B ∈ CX ,
• there exists at least one B ′ ∈ CX such that ν(B ′) > 0.

ii. p(t) is a regularly varying function at infinity, i.e. a function p : (0,+∞) → (0,+∞) such that the limit

�(a) := lim
t→+∞

p(at)

p(t)

exists and is finite for all a > 0.
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iii. sB(·, t) converges to zero as t → +∞ uniformly over Jn := {x ∈ J : 1
n

≤ h(x) ≤ n} for each n ∈ N.
iv. There exist t0, sB > 0 such that supx∈J sB(x, t) ≤ sB for all t > t0.

Remark 2.2. Note that, if we consider the change of measure P̃ (also known as h-transform) given by

dP̃

dP

∣∣∣∣
Ft

= Mt, (4)

where (Ft )t≥0 denotes the filtration generated by X, and also define the measure μ on (J,BJ ) via the formula

dμ

dν
= h, (5)

then

Px(Xt ∈ B) = Ex

(
1B(Xt )

) = h(x)e−λt
Ẽx

(
1B

h
(Xt )

)
= h(x)p(t)e−λt

(
ν(B) + sB(x, t)

)
(6)

where Ẽ denotes expectation with respect to the measure P̃ and sB is given by

sB(x, t) := 1

p(t)
Ẽx

(
1B

h
(Xt )

)
− ν(B) = 1

p(t)
Ẽx

(
1B

h
(Xt )

)
− μ

(
1B

h

)
. (7)

Thus, (A2) can be reformulated as the assumption that there exists a regularly varying function p at infinity such that

lim
t→+∞

1

p(t)
Ẽx

(
f (Xt )

) = μ(f ) (8)

for all f of the form f = 1B

h
with B ∈ CX and, moreover, that this limit is uniform over each Jn. In particular, it follows

that, for any B ∈ CX such that ν(B) > 0, the function

�
(x)
B (t) := Ẽx

(
1B

h
(Xt )

)

is of regular variation at infinity. In conclusion, we may regard (A2) as requiring that, under P̃ , the distribution of X be
(in some sense) of regular variation at infinity uniformly over each Jn.

Assumptions 2.1 are satisfied in many different situations. Indeed, as we will see in Section 2.4, the underlying motion
of any λ-positive branching process (see Section 2.4 for a precise definition) is a natural example of system verifying these
conditions, and this already covers a wide range of possibilities: not only are ergodic motions in this category, but also
certain transient systems as well as many examples of almost-surely absorbed motions having ν as their Yaglom limit.
Moreover, as mentioned in the Introduction, Assumptions 2.1 are also satisfied by processes which are not λ-positive,
see [38,51] and Section 3.6 below for Brownian motion with nonpositive drift and absorption at 0 and also [40] for other
examples of Lévy processes satisfying these assumptions.

On the other hand, we point out that the class CX was introduced in Assumptions 2.1 because, in general, one cannot
expect the asymptotics in (3) to be valid for every B ∈ BJ , see Section 3.5. Nevertheless, even if this is not the case one
can still produce convergence results which hold for all B in this smaller class CX . Finally, we observe that in all the
examples of Section 3 the measure ν actually corresponds to the left eigenmeasure of the generator L associated to −λ.
However, this fact will not be used throughout our analysis.

Now, since we are interested in understanding the evolution in L2 of the branching dynamics ξ in the supercritical case
in which |ξt | remains positive for all times t > 0 with positive probability, we must also make the following assumptions
on m and r .

Assumptions 2.3. We shall assume throughout that the pair (m, r) satisfies:

I1. m2 := E(m2) < +∞ and m1 := E(m) > 1.
I2. r(m1 − 1) > λ, where λ is the parameter from Assumptions 2.1.
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It follows from Assumptions 2.3 and Lemmas 4.1–4.3 below that all second moments Ex(|ξt |2) are well-defined for
any x ∈ J and t ≥ 0, and also Ex(|ξt |) → +∞ as t → +∞ for all x as long as there exists at least one B ∈ CX with
ν(B) > 0, which is precisely the case that interests us.

Now, our first result is concerned with the L2-convergence of the so-called Malthusian martingale associated to our
branching dynamics, which we define below.

Definition 2.4. We define the Malthusian martingale D = (Dt )t≥0 as

Dt = D
(x)
t := 1

h(x)

∑
u∈ξ t

h(ut )e
−(r(m1−1)−λ)t .

It follows from the many-to-one lemma in Section 4 and (A1) that D is indeed a martingale. Furthermore, (A1) implies
in fact that D is square-integrable. Being also nonnegative, we know that there exists an almost sure limit D∞. Our first
result is then the following, variants of which can also be found in [33–35,51].

Proposition 2.5. For every x ∈ J we have that

lim
t→+∞Ex

(
D2

t

) = (m2 − m1)

∫ ∞

0
Ex

(
M2

s

)
re−r(m1−1)s ds =: �x,

so that D converges in L2 to D∞ if and only if �x < +∞. In this case, for each x ∈ J we have

Ex(D∞) = 1 and Ex

(
D2∞

) = �x.

We should point out that the �x < +∞ condition is not trivial under Assumptions 2.1, so that L2-convergence may
not always hold, see e.g. Section 3.6. However, the L2-convergence of D is crucial as it dictates the validity of a law of
large numbers in L2 for ξ , as our next result shows.

Theorem 2.6. Let CX ⊆ BJ be any nonempty class of subsets satisfying the conditions in (A2). If for x ∈ J and B,B ′ ∈
CX with ν(B ′) > 0 we define W(B,B ′) = (Wt(B,B ′))t≥0 by the formula

Wt

(
B,B ′) = W

(x)
t

(
B,B ′) := ξt (B)

Ex(ξt (B ′))

(which is well-defined for t large enough since lim inft→+∞ Ex(ξt (B
′)) > 0 by Lemma 4.1 and (3)), then the following

holds:

i. The sequence W(B,B ′) satisfies

lim
t→+∞Ex

(
W 2

t

(
B,B ′)) =

[
ν(B)

ν(B ′)

]2

�x.

In particular, it is bounded in L2 if and only if �x < +∞.
ii. If W(B,B ′) is bounded in L2 then we have that as t → +∞

Wt

(
B,B ′) L2−→ ν(B)

ν(B ′)
· D∞. (9)

In particular, conditionally on the event {D∞ > 0}, we have that as t → +∞

νt

(
B,B ′) := ξt (B)

ξt (B ′)
P−→ ν(B)

ν(B ′)
. (10)

We note that W(B,B ′) will not be a martingale in general, not even when B = B ′ = J due to the presence of absorp-
tion, so that the existence of a limit in L2 whenever it is bounded is by no means a trivial statement. Still, the main idea
behind Theorem 2.6 is that, whenever W(B,B ′) is L2-bounded, it behaves asymptotically as the martingale ν(B)

ν(B ′) ·D and
thus it must also converge.
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2.3. Strict positivity of D∞ on the event of non-extinction

Let us observe that the event  := {D∞ > 0} is contained in the event of non-extinction � := {|ξt | > 0 for all t}. Ideally,
we would like both events to be almost surely equal, i.e.

Px(|�) = 1, (11)

since, in that case, Theorem 2.6 would tell us that, almost surely on the event of non-extinction, for any B ∈ CX with
ν(B) > 0 the number of particles ξt (B) grows like its expectation which, using the results from Section 4, can be explicitly
computed and, furthermore, that these particles distribute themselves according to ν. The following result intends to give
conditions under which the equality in (11) is guaranteed. It is based on the study of the moment generating operator
associated to the branching dynamics, which we define now.

Definition 2.7. Let B denote the class of measurable functions g : (J,BJ ) → ([0,1],B[0,1]), where B[0,1] denotes the
Borel σ -algebra on [0,1]. We define the moment generating operator G :B→B by the formula

G(g)(x) := Ex

( ∏
u∈ξ1

g(u1)

)

with the convention that
∏

u∈∅ = 1, used whenever |ξ1| = 0.

Notice that the fact that G is well-defined, i.e. that G(f ) is measurable for all f ∈ B, follows from the measurability
of the map x �→ Ex(f (Xt )) for all t ≥ 0 and f ∈B, which in turn holds if the process X admits a Markov kernel.

Now, it is immediate to see that 1, the function constantly one on J , is a fixed point of G, i.e. G(1) = 1. Furthermore,
by the branching property of the dynamics one has that the functions

η(x) := Px

(
�c

)
and σ(x) := Px(D∞ = 0) (12)

are also fixed points of G, see Proposition 7.1 and Assumptions 2.8 below.1 Since clearly η ≤ σ and we also have σ �= 1
since Ex(D∞) = 1 for all x ∈ J by Theorem 2.6, if we show that G has at most two fixed points then this would imply
that η ≡ σ and so (11) would follow at once. Unfortunately, it is not always the case that G has only two fixed points,
see e.g. Section 3.5. Hence, we must impose some additional conditions for this to occur. First, we make some further
assumptions.

Assumptions 2.8. Throughout Section 2.3 we will make the following additional assumptions:

B0. The function σ is measurable.
B1. �x < +∞ for all x ∈ J .
B2. For any B ∈ BJ with ν(B) > 0 there exists B∗ ∈ CX such that B∗ ⊆ B and ν(B∗) > 0.
B3. For any pair x �= x′ ∈ J and B ∈ BJ there exists n = n(x, x′,B) ∈N such that

Px′(X1 ∈ B) > 0 =⇒ Px(Xn+1 ∈ B) > 0.

Assumption (B0) will need to be verified on a case-by-case basis, but for example it will always hold if either J is
countable or if the branching dynamics is monotone in its starting position, see [36, Proposition 7.3]. This will be always
the case in all of our applications. Furthermore, (B1) is not really restrictive, as we will focus here only on the case in
which there is convergence in L2. On the other hand, we impose (B2) in order to obtain an appropriate control on the
growth of ξt (B), namely that for each n ∈ N and starting position x ∈ J

lim
t→+∞

[
inf

y∈Jn

Ey

(
ξt (B)

)] = +∞ and lim
t→+∞ ξt (B) = +∞ on {D∞ > 0},

which follows from (B1)–(B2) by Theorem 2.6 (see Section 7 below). Furthermore, typically (B2) is very easy to check,
see [36, Section 9] for details. Finally, (B3) amounts to a sort of irreducibility for the evolution of X when conditioned on
remaining unabsorbed. This notion of irreducibility is different than that of ψ -irreducibility featured in [46] and weaker

1The fact that η is indeed measurable will follow from Proposition 7.1, whereas the measurability of σ is an additional assumption that we will have to
make, see Assumptions 2.8.



272 M. Jonckheere and S. Saglietti

than the standard definition of irreducibility when J is countable. Although not entirely standard, it is nevertheless the
notion which appears naturally in our analysis and it is satisfied in all applications of interest, see [36].

Next, we introduce the notion of strong supercriticality which plays a key role in what follows.

Definition 2.9. We shall say that the branching dynamics ξ = (ξt )t≥0 is strongly supercritical if:

i. ξ is supercritical, i.e. Px(�) > 0.
ii. η(x) = Px(�), where � is the event defined as

� :=
{

lim
t→+∞

[
min
u∈ξ t

�ut

]
= +∞

}

with the convention that minu∈∅ �ut := +∞, used whenever |ξt | = 0.

Note that, provided (i) holds, (ii) is equivalent to the condition Px(�|�) = 0.

One can check (see once again [36, Section 9]) that in all the examples of Section 3 the mapping x �→ �x is bounded
over subsets of J which are at a positive distance from ∂∗J and, on the other hand, that it tends to infinity as x approaches
∂∗J . Thus, one can interpret strong supercriticality as the condition stating that on the event of non-extinction, we can
always see at least one particle lying in the “bulk” of the state space J (away from ∂∗J ) for infinitely many arbitrarily large
times. On the other hand, we will see later in Section 7 that under Assumptions 2.8 strong supercriticality is equivalent to
having

Px

(
lim sup
t→+∞

ξt (B) > 0
)

= Px(�) > 0 (13)

for every x ∈ J and all B ∈ B with ν(B) > 0, which is the analogue in our context of the notion of strong local survival
studied in [7] and other references therein. However, in general it will not be equivalent to the concept of (plain) local
survival introduced in [22], which is said to take place whenever there exists a compact set K ⊆ J such that

Px

(
lim sup
t→+∞

ξt (K) > 0
)

> 0. (14)

See Section 3.5 for further details.
Our next result states that strong supercriticality is a necessary and sufficient condition for G to have exactly two fixed

points whenever under Assumptions 2.8.

Theorem 2.10. If Assumptions 2.1, 2.3 and 2.8 hold, the following statements are equivalent:

i. G has exactly two fixed points, η and 1.
ii. η(x) = σ(x) for all x ∈ J .

iii. η(x) = σ(x) for some x ∈ J .
iv. ξ is strongly supercritical for some starting position x ∈ J .
v. ξ is strongly supercritical for all starting positions x ∈ J .

We note that strong supercriticality is not a trivial condition under our current assumptions, not even for the particular
case of λ-positive systems to be considered in Section 2.4 below. Indeed, Section 3.5 shows an example of a λ-positive
system which satisfies Assumptions 2.1, 2.3 and 2.8 but is not strongly supercritical. In particular, we have in this example
that the random variable D∞ is zero with positive probability on the event � of non-extinction. Nonetheless, whenever
ξ is strongly supercritical this is not the case and so one obtains the following corollary combining both Theorems 2.5
and 2.10.

Corollary 2.11. If Assumptions 2.1, 2.3 and 2.8 hold, and ξ is strongly supercritical then D∞ > 0 almost surely on �. In
particular, for every B,B ′ ∈ CX with ν(B ′) > 0 and starting position x ∈ J we have, conditionally on �, that as t → +∞

νt

(
B,B ′) P−→ ν(B)

ν(B ′)
.

Still, strong supercriticality appears to be a hard condition to check directly, at least in principle. In the extended
version of this article [36], we introduce via examples some general methods to establish strong supercriticality which
apply to a wide range of systems.
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2.4. The case of λ-positive systems

Perhaps the simplest example of an underlying motion satisfying Assumptions 2.1 is that of a λ-positive process, which
we formally introduce now.

Definition 2.12. Given λ ∈ R and a semigroup S = (St )t≥0, we will say that S is λ-positive if there exist a nonnegative
measurable function h : J → [0,+∞) satisfying h|J > 0 and a (not necessarily finite) measure ν on (J ,B), both unique
up to constant multiples, such that:

• St [h] = e−λth for all t ,
• For any nonnegative measurable f : J → R≥0 and all t ,

∫
J

St [f ](x) dν(x) = e−λt

∫
J

f (x) dν(x),

• The function h and the measure ν are such that

ν(h) :=
∫

J

h(x) dν(x) < +∞.

In particular, we shall say that our branching dynamics ξ is λ-positive whenever its associated expectation semigroup
S(ξ) = (S

(ξ)
t )t≥0 is λ-positive according to the definition given above, where for each t ≥ 0 and nonnegative measurable

f : J → R≥0 we define

S
(ξ)
t [f ](x) := Ex

(∑
u∈Nt

f (ut )

)
.

Remark 2.13. Using the many-to-one lemma (Lemma 4.1 below) it is straightforward to see that, in the current case
of a constant branching rate r > 0 (and only in this case), ξ will be λ-positive if and only if the underlying motion X

is (r(m1 − 1) − λ)-positive. For this reason, in the following we shall focus only on λ-positivity of underlying motions
rather than that of branching dynamics, as it makes no difference in our current setting.

Note that if S is a λ-positive Markov semigroup then its right-eigenfunction h satisfies h ≡ 0 on ∂∗J . With this, we
may define a Markov semigroup S̃ = (S̃t )t≥0 on the space J by the formula

S̃t [f ](x) = eλt

h(x)
St [hf ](x)

for any nonnegative BJ -measurable f : J → R≥0, x ∈ J and t ≥ 0, where we set hf ≡ 0 on ∂∗J . We will call S̃ the
h-transform of S. Let us notice that, in the case S is the semigroup belonging to a λ-positive underlying motion X, S̃ is
none other than the semigroup corresponding to X under the h-transform defined in (4). It is straightforward to see that,
if one normalizes h and ν so that ν(h) = 1, then the probability distribution μ on (J,BJ ) defined through the formula

dμ

dν
= h

is invariant for S̃, i.e. for all nonnegative BJ -measurable f : J →R≥0 and all t ≥ 0
∫

J

S̃t [f ](x) dμ(x) =
∫

J

f (x) dμ(x).

Let us assume further that X is ergodic under the h-transform, with limiting distribution μ. Then, for any B ∈ BJ such
that the function 1B

h
is bounded and μ-almost surely continuous, we have

lim
t→+∞ Ẽx

(
1B

h
(Xt )

)
= μ

(
1B

h

)
= ν(B)

as t → +∞, so that by (6) the asymptotic formula (3) holds for any such B by taking p(t) ≡ 1. Hence, we see that such λ-
positive motions fall naturally into the context of Assumptions 2.1. However, neither the uniform convergence of sB over
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each Jn nor the square-integrability of Mt will follow immediately from the ergodicity of X under the h-transform, so that
further conditions will need to be imposed on the process to guarantee them. This is not a disadvantage when compared to
other approaches in the literature, as additional conditions are always imposed in order to obtain a law of large numbers,
see [15,21]. Here, we propose an alternative condition to check the remainder of Assumptions 2.1 in the λ-positive setting
and obtain Theorem 2.6, based on the existence of a Lypaunov functional for the process X under the measure P̃ .

Definition 2.14. A BJ -measurable V : J → R≥0 is called a (geometric) Lyapunov functional for X (under the measure
P̃ ) whenever it satisfies:

V1. There exists t > 0 such that for every R > 0 one can find αR ∈ (0,1) verifying

∣∣Ẽx

(
f (Xt )

) − Ẽy

(
f (Xt )

)∣∣ ≤ 2(1 − αR)‖f ‖∞

for any bounded BJ -measurable f : J →R and all x, y ∈ J such that V (x) + V (y) ≤ R.
V2. There exist constants γ,K > 0 such that for all t ≥ 0 and x ∈ J one has

Ẽx

(
V (Xt )

) ≤ e−γ tV (x) + K.

Having a Lyapunov functional ensures that, under the h-transform P̃ , the process X converges to equilibrium exponen-
tially fast and, furthermore, that it does so uniformly over subsets of J where V is bounded, see Proposition 8.1 below. As
a consequence, one has the following result relating the validity of Theorem 2.6 for λ-positive processes to the existence
of a h-locally bounded Lyapunov functional for X with a large enough growth at infinity.

Proposition 2.15. If X is λ-positive and admits a Lyapunov functional V such that:

V3. V is h-locally bounded, i.e. supx∈Jn
V (x) < +∞ for each n ∈ N,

V4. ‖ h
1+V

‖∞ < +∞,

then Assumptions 2.1 are satisfied for all B ∈ CX , where CX here is given by

CX :=
{
B ∈ BJ :

∥∥∥∥1B

h

∥∥∥∥∞
< +∞

}
. (15)

Furthermore, there exists a constant C = C(r(m1 − 1), λ,V ) > 0 such that for all x ∈ J

�x ≤ C · 1 + V (x)

h(x)
< +∞. (16)

In particular, the convergences in (9) and (10) hold for any x ∈ J and B,B ′ ∈ CX with ν(B ′) > 0, and assumptions
(B1)–(B2) are also satisfied.

Finally, whenever X is λ-positive and admits such a Lyapunov functional, as a matter of fact one can show (9)–(10) in
the almost sure sense provided that, on the other hand, V does not grow too fast at infinity. This is the content of our last
result.

Theorem 2.16. Suppose that ξ is a λ-positive process such that the eigenfunction h is continuous and X admits a
Lyapunov functional V verifying (V3)–(V4). Then, for each starting position x ∈ J such that

�x := (m2 − m1)r

h(x)

∫ ∞

0
Ẽx

(
h(Xs)

(
1 + V (Xs)

))
e−(r(m1−1)−λ)s ds < +∞ (17)

there exists a full P -measure set � = �(x) satisfying that:

i. For any ω ∈ � one has

lim
t→+∞

ξt (B)(ω)

Ex(ξt (B ′))
= ν(B)

ν(B ′)
· D∞(ω) (18)

for all pairs B,B ′ ∈ CX satisfying ν(∂B) = 0 and ν(B ′) > 0, where CX is given by (15).
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ii. For any ω ∈ � ∩  one has

lim
t→+∞

ξt (B)(ω)

ξt (B ′)(ω)
= ν(B)

ν(B ′)
(19)

for all pairs B,B ′ ∈ CX with ν(∂B) = ν(∂B ′) = 0 and ν(B ′) > 0.

Note that Theorem 2.16 can be combined with Theorem 2.10 in order to obtain (19) for any ω ∈ � ∩ � whenever ξ is
strongly supercritical.

3. Examples and applications

We now illustrate our results through a series of examples. We present first the case of generic ergodic motions, which fall
in the category of 0-positive processes, and then proceed on to study four different models with λ-positive motions for
λ > 0. Finally, we conclude in Section 3.6 with our results for the Branching Brownian Motion with a negative drift and
absorption at the origin, which is a canonical example of a system with an underlying motion which is not λ-positive and
constitutes our most significant and novel contribution. Further details as well as the verification that all of our required
assumptions are met in each of the examples can be found in the extended version of the article, [36, Section 9].

3.1. Ergodic motions

Suppose that X is a motion without absorbing states, i.e. J = J , which is ergodic and has stationary probability distribu-
tion ν on (J,BJ ). In this case, it is easy to check that X is 0-positive and verifies (3) with h ≡ 1, p ≡ 1, λ = 0 for any
B ∈ BJ such that

sB(x, t) := Px(Xt ∈ B) − ν(B) −→
t→+∞ 0.

One can then show that Theorem 2.6 holds with CX given by

CX :=
{
B ∈ BJ : lim

t→+∞ sB(·, t) = 0 uniformly over compact sets of J
}
. (20)

In this case, for any starting position x, the random variable D∞ satisfies

Ex(D∞) = 1 and Ex

(
D2∞

) =: �x = m2 − m1

m1 − 1
.

Since there is no absorption here and supx∈J �x < +∞, the corresponding branching dynamics is immediately strongly
supercritical. Thus, if in addition X is irreducible in the sense of (B3) then Corollary 2.11 holds and D∞ > 0 on �.
Finally, if X admits a Lyapunov functional (as defined in Definition 2.14) which is bounded over compact subsets of J

then the contents of Theorem 2.16 can also be shown to hold. See [36, Section 3.1] for details.

3.2. Subcritical Galton–Watson process

Let us now consider λ-positive motions with λ > 0. As a first example, let X be a continuous-time Galton–Watson
process, i.e. a process on J := N0 with transition rates q given for any x ∈N0 and y ∈N

∗ := {−1} ∪N0 by

q(x, x + y) := xρ(y),

where ρ is some probability vector in N
∗ representing the offspring distribution of each individual in the branching

process (minus 1). We assume that X is subcritical, i.e. that −λ := ∑
y yρ(y) < 0, so that X is almost surely absorbed

at 0. If also
∑

y y log(y)ρ(y + 1) < ∞, then X is λ-positive (see [45,49]), with associated eigenfunction h given by
h(x) ∝ x and that ν is a finite measure assigning positive mass to all x ∈ N, although an explicit expression for ν is, in
general, not known.

If ρ has a finite second moment then D is bounded in L2 and thus the contents of Theorem 2.6 all hold in this case.
Furthermore, using h as a Lyapunov functional for X, one can exploit (16) to verify that ξ is strongly supercritical.
Thus, if we suppose that ρ(−1) ∈ (0,1), then X is irreducible (in the classical sense) and, as a consequence, we obtain
Theorem 2.10 and Corollary 2.11. Finally, if ρ has a finite third moment then (17) is satisfied and thus the contents of
Theorem 2.16 also hold.
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3.3. Subcritical contact process on Z
d (modulo translations)

Let Pf (Zd) denote the class of all finite subsets of Zd and Y = (Yt )t≥0 be the contact process on Z
d , i.e. the Markov

process on Pf (Zd) with transition rates q given, for any σ ∈ Pf (Zd) and x ∈ Z
d , by

q
(
σ,σ ∪ {x}) = γ

∣∣{y ∈ σ : |y − x|1 = 1
}∣∣ and q

(
σ,σ − {x}) = 1σ (x),

where γ > 0 is a fixed constant called the infection rate. Observe that Y is translation invariant, so that there are no finite
measures ν �= 0 verifying (3) for Y . This can be fixed if one considers the process modulo translations. Indeed, say that
two non-empty sets σ,σ ′ ∈ Pf (Zd) are equivalent if they are translations of each other. Let J denote the quotient space
obtained from this equivalence and, for any non-empty σ ∈ Pf (Zd), let 〈σ 〉 denote its corresponding equivalence class
in J . Also, set 〈∅〉 := ∅ and J := J ∪ {∅}. Then, we define Xt := 〈Yt 〉. We call X the contact process on Z

d modulo
translations.

It is well-known, see [8], that J is an irreducible class for the process X and that there exists γc = γc(d) > 0 such that
the absorbing state ∅ is reached almost surely if and only if γ ≤ γc. Moreover, it has been shown that for γ < γc then
λ, h and ν as in Assumptions 2.1 indeed exist and that the process is in fact λ-positive, see [1,26], although neither h

nor ν are explicitly known. What is known, however, is that ν is finite and it assigns positive mass to every x ∈ J , see
[26]. Using h again as a Lyapunov functional, one can show that for any subcritical infection rate γ < γc the Malthusian
martingale D is bounded in L2 for all initial conditions ζ and that the branching dynamics ξ is strongly supercritical, so
that the contents of all our main results always hold for this model.

3.4. Recurrent Ornstein–Uhlenbeck process killed at 0

Consider a 1-dimensional recurrent Ornstein–Ulhenbeck process which is killed at 0, i.e. the stopped process X = (Xt )t≥0
on R≥0 defined as Xt := Yt∧τ0 , where τ0 := inf{t ≥ 0 : Yt = 0} and Y is given by the SDE

dYt = −λYt dt + dBt ,

with B a standard (1-dimensional) Brownian motion and λ > 0 a fixed parameter called the drift. It is well-known, see

[42], that X is λ-positive with eigenfunction h(x) :=
√

4λ
π

x (when h, ν are normalized so that ν is a probability measure

and ν(h) = 1) and eigenmeasure ν having density fX(x) := 2λxe−λx2
1(0,+∞)(x) with respect to the Lebesgue measure

l on R. As in the previous example, the Malthusian martingale D is bounded in L2 and the branching dynamics ξ is
strongly supercritical for all starting positions x ∈ (0,+∞), so that the contents of all our main results always hold for
this model.

3.5. Transient Ornstein–Uhlenbeck process

This example was considered originally in [21]. Let X be the process given by the SDE

dXt = λXt dt + dBt ,

with B a standard (1-dimensional) Brownian motion and λ > 0 a fixed parameter called the drift.

In this case, one can see that X is λ-positive with h(x) ∝ exp{− λ
x

2} and ν equal to the Lebesgue measure on R.
Unlike previous examples, here ν is an infinite measure so that, in particular, the asymptotics in (3) does not hold for
every B ∈ BR (for example, it does not hold if B = R because in this case (3) cannot decay exponentially) but, by the
transience of X, it does hold for any B which is bounded. Still, this is enough to yield the following results for any starting
position x:

i. D converges almost surely and in L2 to some random variable D∞ ∈ L2.
ii. The contents of Theorem 2.6 hold with CX the class of bounded Borel subsets of R.

iii. ξ is not strongly supercritical. In fact, 0 < σ(x) < 1 so that σ �= η,1.
iv. �x < +∞, so that the contents of Theorem 2.16 also hold in this case.

Parts (i) and (iv) above can also be found in [21] (together with the L1 convergence of W(B,B ′)), whereas (ii) and (iii)
are new results. On the other hand, we note that it follows from (iv) that for any compact set K ⊆R and x ∈ R we have

Px

(
lim sup
t→+∞

ξt (K) > 0
)

≥ Px() > 0

but, however, from (iii) that ξ is not strongly supercritical. This confirms our statement about the notion of local survival
introduced in (14) being, in general, weaker than strong supercriticality.
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3.6. Brownian motion with drift killed at the origin

Finally, we conclude with an example of an underlying motion which is not λ-positive. Consider a Brownian motion with
negative drift −c < 0 killed at the origin, i.e. the stopped process X = (Xt )t≥0 on R≥0 defined as Xt := Yt∧τ0 , where
τ0 := inf{t ≥ 0 : Yt = 0} and Y is given by SDE

dYt = −c dt + dBt ,

with B a standard (1-dimensional) Brownian motion. It was shown in [48] that the process X satisfies Assumptions 2.1

for λ := c2

2 and CX := B(0,+∞), the class of Borel subsets of (0,+∞), and with h(x) := 1√
2πλ2

xecx , p(t) := t− 3
2 and ν

given by the density fX(x) := 2λxe−cx1(0,+∞)(x) with respect to Lebesgue. However, X is not a λ-positive motion since
one can easily verify that ν(h) = +∞.2 Nonetheless, our approach still applies and we can thus obtain the following for
any starting position x > 0:

i. The martingale D is bounded in L2 if and only if r(m1 − 1) > c2 = 2λ (note that this is strictly contained in the
supercritical region r(m1 − 1) > λ). In this case, the contents of Theorem 2.6 all hold.

ii. ξ is strongly supercritical. In particular, the contents of Theorem 2.10 and Corollary 2.11 all hold.

As underlined in the introduction, the almost sure convergence for r(m1 − 1) > 2λ can already be obtained by the
methods developed by Watanabe in [51]. Moreover, the L1 and almost sure convergences in the entire supercritical region
r(m1 − 1) > λ were recently proved in [43], using some of our results.

4. The many-to-few lemmas

An element which will prove to be crucial in the proof of Theorem 2.6 is the ability to compute the first and second
moments of the process |ξ | = (|ξt |)t≥0 in exact form. We do this with the help of the many-to-few lemmas we state
below. For simplicity, we will state only a reduced version of the many-to-one and many-to-two lemmas, which are all
we need. For the many-to-few lemma in its full generality (and its proof) we refer to [32]. Note that equivalent formulas
for the first and higher moments of additive functionals of the BMP have been known for a long time, e.g. [33–35].

First, we state the many-to-one lemma. It receives this name because it reduces expectations involving random sums
over many particles, i.e. over all those in ξt , to expectations involving only one particle.

Lemma 4.1 (Many-to-one Lemma). Given a nonnegative measurable function f : (J ,B) → R≥0, for every t ≥ 0 and
x ∈ J we have

Ex

(∑
u∈χt

f (ut )

)
= er(m1−1)t

Ex

(
f (Xt )

)
.

Next, we state the many-to-two lemma, used to compute correlations between pairs of particles. Before we can do so,
however, we must introduce the notion of 2-spine for our branching dynamics.

Definition 4.2. Consider the following coupled evolution on J :

i. The dynamics starts with 2 particles, both located initially at some x ∈ J , whose positions evolve together randomly,
i.e. describing the same random trajectory, according to L.

ii. The particles wait for an independent random exponential time E of parameter (m2 − m1)r and then split at their
current position, each of them then evolving independently afterwards according to L.

Now, for i = 1,2, let X(i) = (X
(i)
t )t≥0 be the process which indicates the position of the i-th particle. We call the pair

(X(1),X(2)) a 2-spine associated to the triple (m, r,L) and E its splitting time.

The many-to-two lemma then goes as follows.

2Nor is it λ′-positive for any other λ′ �= c2

2 because otherwise (3) would not hold for λ = c2

2 and all B ∈ B(0,+∞).
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Lemma 4.3 (Many-to-two Lemma). Given any pair of measurable functions f,g : (J ,B) → R≥0, for every t ≥ 0 and
x ∈ J we have

Ex

( ∑
u,v∈χt

f (ut )g(vt )

)
= e2r(m1−1)t

Ex

(
e[Var(m)+(m1−1)2]r(E∧t)f

(
X

(1)
t

)
g
(
X

(2)
t

))
,

where (X(1),X(2)) is a 2-spine associated to (m, r,L) and E denotes its splitting time.

5. Proof of Proposition 2.5

We first compute Ex(D
2
t ) for every t ≥ 0 and x ∈ J . Note that, by the many-to-two lemma and the definition of 2-spine,

a straightforward computation (see the proof of Theorem 2.6 for details) yields that

Ex

(
D2

t

) = 1

h2(x)
Ex

( ∑
u,v∈ξ t

h(ut )h(vt )e
−2(r(m1−1)−λ)t

)

= e2λt

h2(x)
Ex

(
e[Var(m)+(m1−1)2]r(E∧t)h

(
X

(1)
t

)
h
(
X

(2)
t

))

= [1]t + [2]t
where

[1]t := e2λt

h2(x)
Ex

(
e[Var(m)+(m1−1)2]r(E∧t)h2(X(1)

t

)
1{E>t}

) = Ex

(
M2

t

)
e−r(m1−1)t

and

[2]t := (m2 − m1)r

∫ t

0
Ex

(
M2

s E
2
Xs

(Mt−s)
)
e−r(m1−1)s ds.

Now, by (A1) we have that M is a mean-one martingale so that EXs (Mt−s) = 1 for all s ∈ [0, t]. Thus, we obtain that

[2]t = (m2 − m1)r

∫ t

0
Ex

(
M2

s

)
e−r(m1−1)s ds.

Recalling the definition of �x , it is then clear that [2]t → �x as t → +∞ and, on the other hand, that whenever �x <

+∞ we have that lim inft→+∞[1]t → 0, so that lim inft→+∞ Ex(D
2
t ) = �x . But, since limt→+∞ Ex(D

2
t ) always exists

(although it can be +∞, in principle) because (D)2 is a submartingale, we conclude that

lim
t→+∞Ex

(
D2

t

) = �x.

Being D a martingale, this implies that it converges in L2 if and only if �x < +∞ and that, in this case, one has
Ex(D

2∞) = �x . Moreover, since Ex(Dt ) = 1 for all t ≥ 0, it also follows that Ex(D∞) = 1 and so this concludes the
proof.

6. Proof of Theorem 2.6

This section contains the proof of Theorem 2.6. We will split the proof into two parts:

I. First, we will show that, given B,B ′ ∈ CX with ν(B ′) > 0, for any x ∈ J one has

lim
t→+∞Ex

(
W 2

t

(
B,B ′)) =

[
ν(B)

ν(B ′)

]
�x.

II. Then, we use (I) to conclude the convergence in (9) whenever �x < +∞. In particular, the convergence

Wt(B
′,B ′) P−→ D∞ together with (9) yields that for any B ∈ CX

νt

(
B,B ′) P−→ ν(B)

ν(B ′)

as t → +∞, conditionally on the event {D∞ > 0}.



LLNs in L2 for supercritical branching Markov processes 279

We dedicate a separate subsection to each parts, but begin first with a section devoted to proving two auxiliary lemmas to
be used throughout the proof.

6.1. Preliminary lemmas

The first lemma we shall require is the following.

Lemma 6.1. If assumption (A1) holds then for any T > 0 we have

lim
n→+∞

[
sup

t∈[0,T ]
Ex

(
M2

t 1{Xt /∈Jn}
)] = 0. (21)

Proof. Notice that for any t ∈ [0, T ] we have the bound

Ex

(
M2

t 1{Xt /∈Jn}
) ≤ e2λT

h2(x)
· 1

n2
+Ex

((
sup

s∈[0,T ]
M2

s

)
1{sups∈[0,T ] h(Xs)>n}

)

so that it will suffice to show that

lim
n→+∞Ex

((
sup

s∈[0,T ]
M2

s

)
1{sups∈[0,T ] h(Xs)>n}

)
= 0. (22)

But since sups∈[0,T ] M2
s is Px -integrable by Doob’s inequality and (A1), and we also have that

lim
n→+∞1{sups∈[0,T ] h(Xs)>n} = 1{sups∈[0,T ] M2

s =+∞},

where the right-hand side is now Px -almost surely null by the integrability of sups∈[0,T ] M2
s , using the dominated conver-

gence theorem we can conclude (22). �

The second lemma concerns the asymptotic behavior of the function p in (3).

Lemma 6.2. The function p from assumption (A2) satisfies:

i. p has subexponential growth, i.e. limt→+∞ logp(t)
t

= 0.

ii. If we define the function q(t1, t2) := p(t2)
p(t1+t2)

then for any C > 0 we have that

lim sup
t2→+∞

[
sup

t1∈[0,Ct2]
q(t1, t2)

]
=: qC < +∞ and lim

t2→+∞
[

sup
t1∈[0,C]

∣∣q(t1, t2) − 1
∣∣] = 0.

This Lemma follows directly from: (a) Potter’s bounds and (b) the uniform convergence theorem for regularly varying
functions, see for instance [9].

6.2. Part I

Assume first that �x < +∞ and let us show that then one has

lim
t→+∞Ex

(
W 2

t

(
B,B ′)) =

[
ν(B)

ν(B ′)

]2

�x. (23)

To this end, take t > 0 and notice that

Ex

(
W 2

t

(
B,B ′)) = Ex(ξ

2
t (B))

E2
x(ξt (B ′))

. (24)

Let us compute the expectations in the right-hand side of (24) by using the many-to-few lemmas. On the one hand, by the
many-to-one lemma we have that

Ex

(
ξt

(
B ′)) = Ex

(∑
u∈χt

1{ut∈B ′}
)

= er(m1−1)tPx

(
Xt ∈ B ′). (25)
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On the other hand, the many-to-two lemma yields

Ex

(
ξ2
t (B)

) = Ex

( ∑
u,v∈ξ t

1{ut∈B}1{vt∈B}
)

= e2r(m1−1)t
Ex

(
1{X(1)

t ∈B}1{X(2)
t ∈B}e

[Var(m)+(m1−1)2]r(E∧t)
)
.

By separating in cases depending on whether E > t or not, we obtain

Ex

(
ξ2
t (B)

) = (1)t + (2)t ,

where

(1)t := er(m2−1)t
Ex(1{Xt∈B}1{E>t})

and

(2)t := e2r(m1−1)t
Ex

(
1{X(1)

t ∈B}1{X(2)
t ∈B}e

[Var(m)+(m1−1)2]rE1{E≤t}
)
.

Now, using the independence of E from the motion of the 2-spine, the Markov property yields

(1)t = er(m1−1)tPx(Xt ∈ B)

and

(2)t = (m2 − m1)re
2r(m1−1)t

∫ t

0
Px

(
X

(1),s
t ∈ B,X

(2),s
t ∈ B

)
e−r(m1−1)s ds,

where X(1),s and X(2),s are two coupled copies of the Markov process X which coincide until time s and then evolve
independently after s. If we condition on the position of these coupled processes at time s, then we obtain

(2)t = (m2 − m1)re
2r(m1−1)t

∫ t

0
Ex

(
P 2

Xs
(Xt−s ∈ B)

)
e−r(m1−1)s ds. (26)

Now, from (25) and (3) we conclude that

[1]t := (1)t

E2
x(ξt (B ′))

= Px(Xt ∈ B)

Px(Xt ∈ B ′)
· 1

Ex(ξt (B ′))
= ν(B) + sB(x, t)

[ν(B ′) + sB ′(x, t)]2
· 1

h(x)p(t)
e−(r(m1−1)−λ)t

which, by (i) in Lemma 6.2, shows that if t is taken sufficiently large then

∣∣[1]t
∣∣ ≤ 2

ν(B)

ν(B ′)
e− 1

2 (r(m1−1)−λ)t

h(x)
. (27)

Similarly, one has that

[2]t := (2)t

E2
x(ξt (B))

=
∫ t

0
�x,t (s) ds,

where

�x,t (s) := (m2 − m1)r
Ex(P

2
Xs

(Xt−s ∈ B))

P 2
x (Xt ∈ B ′)

e−r(m1−1)s .

To treat the term [2]t we split the integral into three separate parts, i.e. for α ∈ (0,1) and T > 0 to be specified later we
write

[2]t = [a]t + [b]t + [c]t
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where

[a]t :=
∫ t

αt

�x,t (s) ds, [b]t :=
∫ αt

T

�x,t (s) ds, [c]t :=
∫ T

0
�x,t (s) ds.

The first term [a]t deals with the case in which s → t and the asymptotics in (3) for Py(Xt−s ∈ B) may not hold. In this
case, if α is taken close enough to 1 then [a]t tends to zero as t → +∞. Indeed, notice that

Ex

(
P 2

Xs
(Xt−s ∈ B)

) ≤ Ex

(
PXs (Xt−s ∈ B)

) = Px(Xt ∈ B)

by the Markov property, so that

[a]t ≤ (m2 − m1)r
Px(Xt ∈ B)

P 2
x (Xt ∈ B ′)

∫ ∞

αt

e−r(m1−1)s ds = m2 − m1

m1 − 1
e(1−α)r(m1−1)t [1]t .

By recalling (27), if α is chosen sufficiently close to 1 and t taken sufficiently large then

∣∣[a]t
∣∣ ≤ e− 1

4 (r(m1−1)−λ)t . (28)

Similarly to [a]t , the term [b]t can also be made arbitrarily small as t → +∞ if T is large enough. Indeed, if q α
1−α

is the
quantity qC from Lemma 6.2 for C := α

1−α
, then by (3) we have that

�x,t (s) = (m2 − m1)r

[
q(s, t − s)

ν(B ′) + sB ′(x, t)

]2

Ex

(
M2

s

(
ν(B) + sB(Xs, t − s)

)2)
e−r(m1−1)s

≤ (m2 − m1)8rq2
α

1−α

(
ν(B) + sB

ν(B ′)

)2

Ex

(
M2

s

)
e−r(m1−1)s (29)

if s ≤ αt and t is large enough so as to have

• supy∈J,u≥(1−α)t sB(y,u) ≤ sB ,
• q(s, t − s) ≤ 2q α

1−α
(which can be done by (ii) in Lemma 6.2 since s

t−s
≤ α

1−α
),

• sB ′(x, t) ≥ − ν(B ′)
2 ,

so that

∣∣[b]t
∣∣ ≤ 8q2

α
1−α

(
ν(B) + sB

ν(B ′)

)2

· (m2 − m1)

∫ ∞

T

Ex

(
M2

s

)
re−r(m1−1)s ds. (30)

Since �x < +∞, the right-hand side of (30) can be made arbitrarily small if T is chosen sufficiently large depending
on α.

Finally, let us treat the last term [c]t . By (A2) and (ii) in Lemma 6.2, for s ≤ T we may write

�x,t (s) = (m2 − m1)r

ν2(B ′)
(
1 + ot (1)

)
Ex

(
M2

s

(
ν(B) + sB(Xs, t − s)

)2)
e−r(m1−1)s

where ot (1) (which depends on x, t , s and B ′) tends to zero uniformly in s ≤ T as t → +∞. Thus, we may decompose

[c]t = [c1]t + [
c∗

1

]
t

with

[
c∗

1

]
t
= m2 − m1

ν2(B ′)

∫ T

0
Ex

(
M2

s

(
ν(B) + sB(Xs, t − s)

)2)
)re−r(m1−1)s ds

and

∣∣[c1]t
∣∣ ≤ (ν(B) + sB)2

ν2(B ′)
�x

[
sup
s≤T

ot (1)
]
, (31)
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where the right-hand side of (31) tends to zero as t → +∞ since �x < +∞. Finally, given n ∈ N we decompose [c∗
1]t

by splitting the expectation inside into two depending on whether Xs ∈ Jn or not. More precisely, we write[
c∗

1

]
t
= [c2]t + [

c∗
2

]
t

where

[
c∗

2

]
t
= (m2 − m1)

ν2(B ′)

∫ T

0
Ex

(
M2

s

(
ν(B) + sB(Xs, t − s)

)21{Xs∈Jn}
)
re−r(m1−1)s ds

and

∣∣[c2]t
∣∣ ≤ m2 − m1

m1 − 1

(ν(B) + sB)2

ν2(B ′)
sup

s∈[0,T ]
Ex

(
M2

s 1{Xs /∈Jn}
)
. (32)

Notice that the right-hand side of (32) is independent of t and tends to zero as n tends to infinity for any fixed T > 0 by
Lemma 6.1. On the other hand, observe that by (A2) and Lemma 6.1

Ex

(
M2

s

(
ν(B) + sB(Xs, t − s)

)2)1{Xs∈Jn}) = ν2(B)Ex

(
M2

s

)(
1 + ot (1)

)
where the term ot (which depends on x, n, t , s and B) tends to zero uniformly in s ≤ T as t → +∞ since
sups∈[0,T ] Ex(M

2
t ) ≤ 4Ex(M

2
T ) by Doob’s inequality. By repeating the same argument that lead us to (31), we conclude

that [
c∗

2

]
t,h

= [c3]t + [c4]
where

[c4] =
[

ν(B)

ν(B ′)

]2

· (m2 − m1)

∫ T

0
Ex

(
M2

s

)
re−r(m1−1)s ds

and |[c3]t | tends to zero as t → +∞. Thus, we find that if we write � := {1, a, b, c1, c2, c3} then
∣∣∣∣Wt

(
B,B ′) −

[
ν(B)

ν(B ′)

]2

�x

∣∣∣∣ ≤
∑
i∈�

∣∣[i]t ∣∣ +
[

ν(B)

ν(B ′)

]2

· (m2 − m1)

∫ ∞

T

Ex

(
M2

s

)
re−r(m1−1)s ds. (33)

By taking α adequately close to 1, T large enough (depending on α) and then n sufficiently large (depending on T ), the
right-hand side of (33) can be made arbitrarily small for all t large enough and so (23) follows.

Now, let us assume that �x = +∞ and show that limt→+∞ Ex(W
2
t (B,B ′)) = +∞ in this case, proving (23). To see

this, we notice that for any fixed T > 0 we have

Ex

(
W 2

t

(
B,B ′)) ≥ [c]t,0 =

∫ T

0
�x,t,0(s) ds.

If n is chosen large enough so that sups∈[0,T ] Ex(M
2
s 1{Xs /∈Jn}) < 1, then for all t large enough to guarantee that

• infs∈[0,T ]( q(s,t−s)
ν(B ′)+sB′ (x,t)

)2 ≥ 1
2ν2(B ′)

• infs∈[0,T ],y∈Jn(ν(B) + sB(y, t − s))2 ≥ ν2(B)
2 ,

by (29) we obtain

[c]t,0 ≥
[

ν(B)

ν(B ′)

]2
(m2 − m1)

4

∫ T

0
Ex

(
M2

s 1{Xs∈Jn}
)
re−r(m1−1)s ds

≥
[

ν(B)

ν(B ′)

]2
(m2 − m1)

4

∫ T

0
Ex

(
M2

s

)
re−r(m1−1)s ds −

[
ν(B)

ν(B ′)

]2
(m2 − m1)

4(m1 − 1)
.

The right-hand side of this last inequality can be made arbitrarily large by taking T big enough, due to the fact that
�x = +∞. In particular, this implies that

lim
t→+∞Ex

(
W 2

t

(
B,B ′)) = +∞

and thus concludes the proof of Part I.
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6.3. Part II

We now check that, whenever �x < +∞, one has

Wt

(
B,B ′) L2−→ ν(B)

ν(B ′)
· D∞,

for every B,B ′ ∈ CX with ν(B ′) > 0. Notice that by Proposition 2.5 it suffices to show that

lim
t→+∞

∥∥∥∥Wt

(
B,B ′) − ν(B)

ν(B ′)
· Dt

∥∥∥∥
L2

= 0. (34)

Now, observe that

∥∥∥∥Wt

(
B,B ′) − ν(B)

ν(B ′)
· Dt

∥∥∥∥
2

L2
= Ex

(
W 2

t

(
B,B ′)) − 2

ν(B)

ν(B ′)
Ex

(
Wt

(
B,B ′)Dt

) +
[

ν(B)

ν(B ′)

]2

Ex

(
D2

t

)

so that, by (23) and Proposition 2.5, (34) will follow if we show that

lim
t→+∞Ex

(
Wt

(
B,B ′)Dt

) = ν(B)

ν(B ′)
�x.

But this can be done by proceeding exactly as in Part I. We omit the details.
Finally, that

νt

(
B,B ′) P−→ ν(B)

ν(B ′)

conditionally on the event {D∞ > 0} follows from the fact that

Ex(ξt (B
′))

ξt (B ′)
= 1

Wt(B ′,B ′)
P−→ 1

D∞
and

ξt (B)

Ex(ξt (B ′))
= Wt

(
B,B ′) P−→ ν(B)

ν(B ′)
· D∞ (35)

conditionally on the event {D∞ > 0}, which in turn follows from (9). This concludes Part II and thus the proof of
Theorem 2.6.

7. Proof of Theorem 2.10

We also divide the proof of Theorem 2.10, now into four parts. First, we show that η and σ are indeed fixed points of
G and, using (B3), that η and 1 cannot intersect other fixed points of G. Next, we show that (B1)–(B2) imply that our
branching dynamics can be dominated from below by a supercritical Galton–Watson process. Using this domination, we
then show that the notion of strong supercriticality can be reformulated in terms of certain fixed points of the operator G.
Finally, we use this alternative formulation to show both implications of Theorem 2.10.

For improved clarity, throughout this section we shall use the superscript x, i.e. ξ (x) or D(x), to denote the initial
condition of the underlying process whenever it becomes necessary.

7.1. Part I

We begin by checking first that both η and σ are fixed points of G.

Proposition 7.1. The functions η and σ are fixed points of G.

Proof. We begin by showing that η is a fixed point of G. First, observe that the measurability of η follows from the fact
that η = limn→+∞ G(n)(0), where G(n) denotes the n-th composition of G with itself and 0 is the function constantly
equal to 0. Now, to see that it is indeed a fixed point, observe that for any t > 0 and x ∈ J we have the relation

∣∣ξ (x)
1+t

∣∣ =
∑

u∈ξ
(x)
1

∣∣ξ (u1)
t

∣∣,
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which implies that, for any t > 0, |ξ (x)
1+t | equals zero if and only if |ξ (u1)

t | is zero for every u ∈ ξ
(x)

1 . Thus, if we take
t → +∞ then the former yields

1(�(x))c =
∏

u∈ξ
(x)
1

1(�(u1))c . (36)

By taking expectations Ex on the equality in (36), we obtain that η(x) = G(η)(x). Furthermore, since this holds for any
x ∈ J , we conclude that η is a fixed point of G.

Now, to see that σ is a fixed point of G (we already know that it is measurable due to (B0)), we observe the analogous
relation

D
(x)
1+t = 1

h(x)

∑
u∈ξ

(x)
1

h(u1)e
−(r(m1−1)−λ)D

(u1)
t

which, upon taking the limit t → +∞, becomes

D(x)∞ = 1

h(x)

∑
u∈ξ

(x)
1

h(u1)e
−(r(m1−1)−λ)D(u1)∞ .

Since h(y) = 0 if and only if y ∈ ∂∗J , that σ is a fixed point of G now follows as before. �

Next, we use irreducibility to see that η and 1 cannot intersect other fixed points of G.

Proposition 7.2. Assume that (B3) holds. Then, if g is a fixed point of G we have that:

i. η(x) ≤ g(x) ≤ 1 for all x ∈ J .
ii. g(x) = η(x) for some x ∈ J =⇒ g ≡ η.

iii. g(x) = 1 for some x ∈ J =⇒ g ≡ 1.

Proof. We show first that if g is a fixed point of G then η ≤ g ≤ 1. Indeed, the g ≤ 1 inequality is immediate whereas the
η ≤ g inequality follows from the fact that G is an increasing operator, i.e. G(f1) ≤ G(f2) if f1 ≤ f2, together with the
fact that η = limn→+∞ G(n)(0), where G(n) denotes the n-th composition of G with itself and 0 is the function constantly
equal to 0.

Now, let us prove (ii). First, we observe that it is easy to check by induction that for any n ∈N

G(n)(g)(x) = Ex

( ∏
u∈ξn

g(un)

)
.

In particular, if x ∈ J satisfies Px(Xn ∈ {y ∈ J : η(y) < g(y)}) > 0) > 0 for some n ∈ N then, by considering only
evolutions of ξ in which there is no branching until time n, it is clear that

Px

( ∏
u∈ξn

η(un) <
∏
u∈ξn

g(un)

)
> 0

so that

η(x) = G(n)(η)(x) = Ex

( ∏
u∈ξn

η(un)

)
< Ex

( ∏
u∈ξn

g(un)

)
= G(n)(h)(x) = g(x).

Therefore, if η(x) = g(x) then we must have Px(Xn ∈ {y ∈ J : η(y) < g(y)}) = 0 for every n ∈ N. By irreducibility
(assumption (B3)) we then obtain that Px′(X1 ∈ {y ∈ J : η(y) < g(y)}) = 0 and, as a consequence, that Px′(ξ1({y ∈ J :
η(y) < g(y)}) > 0) = 0 holds for every x′ ∈ J since the particle positions (u1)

u∈ξ
(x′)
1

are all distributed as X
(x′)
1 . Since η

and h are fixed points of G, this implies that g(x′) ≤ η(x′) for every x′ ∈ J which, together with (i) shown above, allows
us to conclude that η ≡ g. The proof of (iii) is analogous. �
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7.2. Part II

The following step is to show that, under (B1)–(B2), one has a suitable lower bound on the growth of our dynamics. To
this end, for each n ∈N we define the set

J̃n := {x ∈ J : �x ≤ n} (37)

and then write Ĵn := Jn ∩ J̃n. Notice that the sequence (Ĵn)n∈N is increasing and, furthermore, that
⋃

n∈N Ĵn = J by (B1).
Now, the precise meaning of lower bound on the growth of our dynamics is formulated in the following definition.

Definition 7.3. We say that the lower bound condition holds, and denote it in the sequel by (LB), if for any n ∈ N and
B ∈ BJ with ν(B) > 0 there exists a time Tn,B and a random variable Ln,B satisfying E(Ln,B) > 1 such that for all x ∈ Ĵn

and every t > Tn,B one has

Ln,B � ξt (B)

where � denotes stochastic domination, i.e. for any bounded measurable and increasing f :R→ R one has that

E
(
f (Ln,B)

) ≤ inf
x∈Ĵn

Ex

(
f

(
ξt (B)

))
.

Remark 7.4. Note that, by (B2) and Lemma 4.1 below, for any B ∈ BJ with ν(B) > 0 and x ∈ Jn we have that

Ex

(
ξt (B)

) ≥ Ex

(
ξt

(
B∗)) = h(x)p(t)e(r(m1−1)−λ)t

(
ν
(
B∗) + sB∗(x, t)

)

≥ 1

n
p(t)e(r(m1−1)−λ)t

(
ν
(
B∗) + inf

y∈Jn

sB∗(y, t)
)

(38)

so that, by Lemma 6.2 and (A2), for all t large enough depending on B and n we have that

inf
x∈Ĵn

Ex

(
ξt (B)

)
> 1. (39)

Thus, condition (LB) is simply a stronger form of (39), one in which we ask the entire distributions of the random
variables (ξt (B))

x∈Ĵn
to be uniformly supercritical rather than just their means.

The lower bound (LB) will be the main tool in the proof of Lemma 7.8 in Part III below, which is crucial for proving
Theorem 2.10. Our next result states that (LB) holds under (B2).

Proposition 7.5. Assumption (B2) implies condition (LB).

Proof. Let us fix n ∈N and notice that, by the Cauchy–Schwarz inequality, we have for any x ∈ Jn, B ∈ BJ and K,T ∈N

that

E
2
x

(
ξT (B)1ξT (B)≥K

) ≤ Ex

(
ξ2
T (B)

)
Px

(
ξT (B) ≥ K

)
. (40)

On the other hand, if ν(B) > 0 then it follows from (B2), (38) and Assumptions 2.1 that

lim
T →+∞

[
inf

y∈Jn

Ey

(
ξT (B)

)] = +∞.

Therefore, by (40) we conclude that if T is sufficiently large (depending only on K , n and B) then for all x ∈ Jn we have

Px

(
ξT (B) ≥ K

) ≥ [Ex(ξT (B)) − K]2

Ex(ξ
2
T (B))

≥ 1

2
· E

2
x(ξT (B))

Ex(ξ
2
T (B))

.

Now, a careful inspection of the proof of Theorem 2.6 shows that there exists a constant Cn > 0 and a time Tn > 0 such
that

Ex(ξ
2
T (B))

E2
x(ξT (B))

≤ Cn�x + 1
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for all x ∈ Jn and T > Tn. We stress that Cn and Tn do not depend on x ∈ Jn, only on n and B . Therefore, since
sup

y∈J̃n
�y < +∞, we may take K ∈N sufficiently large and T ∈ N accordingly so that

inf
x∈Ĵn

Px

(
ξT (B) ≥ K

) ≥ 1

K − 1
.

It follows that Ln,B � ξT (B) for any such T and all x ∈ Ĵn, where Ln,B has distribution given by

P(Ln,B = K) = 1

K − 1
= 1 − P(Ln,B = 0).

Since in this case E(Ln,B) = K
K−1 > 1, this concludes the proof. �

7.3. Part III

We continue by using Proposition 7.5 to show that strong supercriticality can be reformulated in terms of certain fixed
points of G. More precisely, we have the following result.

Proposition 7.6. If Assumptions 2.8 are satisfied then ξ (x) is strongly supercritical if and only if the following two
conditions hold:

i. ξ (x) is supercritical, i.e. Px(�) > 0.
ii′. There exists n ∈N such that

Px(�) = Px

(
lim sup
k→+∞

ξk(J̃n) > 0
)

where J̃n is given by (37).

Remark 7.7. Observe that for B ∈ B the function gB defined as

gB(x) := Px

(
lim sup
n→+∞

ξn(B) = 0
)

is a fixed point of G. Indeed, the proof of this statement is analogous to that of Proposition 7.1. Thus, Proposition 7.6
states that ξ (x0) is strongly supercritical if and only if for some n ∈N

g
J̃n

(x0) = η(x0) < 1.

But then by Proposition 7.2 we conclude that the same statement must hold for all x ∈ J , so that ξ (x) is strongly super-
critical for some x ∈ J if and only if it is strongly supercritical for all x ∈ J .

We now prove Proposition 7.6. Let us notice that it suffices to show that (ii) in Definition 2.9 is equivalent to (ii′) in
the statement above. To see the (ii′) =⇒ (ii) implication, notice the inclusions

�c ⊆ � =
⋂
n∈N

{
lim

t→+∞ ξt (J̃n) = 0
}

⊆
⋂
n∈N

{
lim

k→+∞ ξk(J̃n) = 0
}
. (41)

Now, for each n ∈N let us write An := {limk→+∞ ξk(J̃n) = 0}. Notice that, since the sequence (J̃n)n∈N is increasing, we
have that (An)n∈N is decreasing and therefore that

Px

(⋂
n∈N

{
lim

k→+∞ ξk(J̃n) = 0
})

= lim
n→+∞Px(An). (42)

Therefore, if (ii′) holds then it follows that Px(�
c) = Px(An) for some n and, by (41) and (42), we conclude that (ii)

holds. On the other hand, if (ii) holds then by (41) we have

Px

(
�c

) = lim
n→+∞Px

(
lim

t→+∞ ξt (J̃n) = 0
)
. (43)
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Thus, if we show that for all n ∈N sufficiently large so that x ∈ Ĵn and ν(J̃n) > 0 we have

lim
k→+∞ ξ

(x)
k (J̃n) = 0 =⇒ lim

t→+∞ ξ
(x)
t (J̃n+1) = 0 (44)

then, from (43) and the inclusion (�(x))c ⊆ {limk→+∞ ξ
(x)
k (J̃n) = 0}, by iterating (44) we conclude that for n sufficiently

large

Px

(
�c

) ≤ Px

(
lim

k→+∞ ξk(J̃n) = 0
)

≤ lim
m→+∞Px

(
lim

t→+∞ ξt (J̃m) = 0
)

= Px

(
�c

)
,

which immediately gives (ii′). Now, (44) follows at once from the next lemma.

Lemma 7.8. For any m ∈ N and B ∈ BJ such that Ĵm �= ∅ and ν(B) > 0 there exists T ∈ N satisfying that for any
x ∈ Ĵm one has

lim sup
t→+∞

ξ
(x)
t (J̃m) > 0 =⇒ lim

k→+∞ ξ
(x)
kT (B) = +∞.

Proof. The idea is to couple the sequence (ξ
(x)
kT (B))k∈N together with an i.i.d. sequence (Z(n))n∈N of supercritical single-

type Galton–Watson branching processes such that if at least one Z(n) survives on the event {lim supt→+∞ ξ
(x)
t (J̃m) > 0}

then ξkT (B) tends to infinity as k → +∞.
We proceed as follows. First we notice that, since condition (LB) holds by Proposition 7.5, there exists a random

variable Lm,B with E(Lm,B) > 1 and a time T ∈ N such that for all y ∈ Ĵm and t ≥ T we have

Lm,B � ξ
(y)
t (B). (45)

Next, given a fixed x ∈ Ĵm, we define the process V (1) := (V
(1)
j )j∈N by the formula

V
(1)
j := ξ

(x)
jT (B)

and observe that for each j ∈N we have

V
(1)
j+1 ≥

∑
u∈ξ

(x)
jT (B)

ξ
(u)
T (B),

where ξ
(x)

jT (B) denotes the subcollection of particles of ξ
(x)

jT which are located inside the subset B and, for u ∈ ξ
(x)

t ,

ξ (u) is the sub-dynamics of ξ (x) associated to the particle u starting at time t . Since for each u ∈ ξ
(x)

jT (B) we have that

LB,m � ξ
(u)
T (B) by (45), it follows that (by enlarging the current probability space if necessary) one can couple V (1) with

a Galton–Watson process Z(1) := (Z
(1)
j )j∈N with offspring distribution given by Lm,B , in such a way that V

(1)
j ≥ Z

(1)
j

holds for all j ∈ N. Therefore, if Z(1) survives then Z
(1)
j must tend to infinity as j → +∞ and, consequently, so must

ξ
(x)
jT (B). In this case, we decouple ξ (x) from the remaining Z(n) (for n ≥ 2) by taking these to be independent from ξ (x).

If Z(1) dies out, however, we proceed as follows:

i. Define τ (1) := inf{j ∈N : Z(1)
j = 0}. Notice that Z(1) dies out if and only if τ (1) < +∞.

ii. If ξ
(x)
sT (J̃m) = 0 for all s ≥ τ (1), then decouple the (Z(n))n≥2 from ξ as before.

iii. If ξ
(x)
sT (J̃m) > 0 for some (random) s ≥ τ (1), then choose some y ∈ ξ sT (J̃m) at random and define the process V (2) =

(V
(2)
j )j∈N according to the formula

V
(2)
j := ξ

(y)

(�s�−s+j)T (B),

where �s� here denotes the smallest integer greater than or equal to s. Let us observe that, by construction, there
exists a (random) k ∈N such that V

(2)
j ≤ ξ

(x)
(k+j)T (B) for all j ∈ N. By a similar argument than the one carried out for

V (1), it is possible to couple V (2) with a Galton–Watson process Z(2) which is independent of Z(1) but has the same
distribution, in such a way that V

(2)
j ≥ Z

(2)
j for all j ∈ N. If Z(2) survives then, by the considerations above, ξ

(x)
jT must

tend to infinity as j → +∞. If not, then one can repeat this procedure to obtain a branching process Z(3) and so on.
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Since every Z(n) has the same positive probability of survival, it follows that at least one of them will survive on the event
{lim supt→+∞ ξ

(x)
t (J̃m) > 0}, and so the result now follows. �

7.4. Part IV

We now conclude by showing all implications in the statement of Theorem 2.10.
First, let us observe that the condition �x < +∞ implies that σ(x) < 1. Indeed, if �x < +∞ then by Proposition 2.5

we have Ex(D∞) = 1 so that σ(x) = Px(D∞ = 0) < 1 necessarily holds. Thus, if (B1) holds then σ �= 1 and therefore
(i) must imply (ii).

That (ii) =⇒ (iii) is obvious, so we move on to (iii) =⇒ (iv). Take x ∈ J such that η(x) = σ(x). Note that, by the ar-
gument given above, σ(x) < 1 so that if η(x) = σ(x) then ξ (x) is supercritical. It remains to verify (ii′) of Proposition 7.6.
But (B2) together with Theorem 2.6 and (38) imply that for any B ∈ BJ with ν(B) > 0

lim sup
n→+∞

Px

(
ξn(B) = 0|) ≤ lim sup

n→+∞
Px

(
ξn

(
B∗) = 0|) = 0,

from which a straightforward calculation yields that

Px

({
lim sup
n→+∞

ξn(B) > 0
}

∩ 
)

= Px().

Therefore, since we also have the inequalities

Px

({
lim sup
n→+∞

ξn(B) > 0
}

∩ 
)

≤ Px

(
lim sup
n→+∞

ξn(B) > 0
)

≤ Px(�),

if η(x) = σ(x) then we have Px(�) = Px() and so (ii′) follows. This shows that (iii) =⇒ (iv).
The implication (iv) =⇒ (v) is also obvious, so it remains to show (v) =⇒ (i). For this purpose, we note that, if g �= 1

is a fixed point of G, Proposition 7.2 yields that g(y) < 1 for all y ∈ J . Thus, by (B2) one can find B ∈ CX with ν(B) > 0
and ε > 0 such that supy∈B g(y) < 1 − ε. Now, since g is a fixed point of G, we have

g(x) = lim
n→+∞G(n)(g)(x) = lim

n→+∞Ex

( ∏
u∈ξn

g(un)

)
≤ lim inf

n→+∞Ex

(
(1 − ε)ξn(B)

)

where for the last inequality we have used the fact that g ≤ 1. Moreover, let us observe that

Ex

(
(1 − ε)ξn(B)

) ≤ Px

(|ξn| = 0
) + Px

(
�c ∩ {|ξn| > 0

}) +Ex

(
(1 − ε)ξn(B)1�

)
, (46)

where, since {|ξ (x)
n | > 0} ↘ �(x) as n → +∞, we have that

lim
n→+∞Px

(|ξn| = 0
) = η(x) and lim

n→+∞Px

(
�c ∩ {|ξn| > 0

}) = Px

(
�c ∩ �

) = 0.

Hence, if we could show that

lim inf
n→+∞Ex

(
(1 − ε)ξn(B)1�

) = 0, (47)

then we would immediately obtain that g(x) ≤ η(x). Together with the obvious reverse inequality, this would yield
η(x) = g(x) and hence, by Proposition 7.2, that η ≡ g. Since we have that η �= 1 by the strong supercriticality of ξ (x),
(v) =⇒ (i) would follow at once. Thus, let us show (47). Observe that (47) immediately follows if we can show that for
any K > 0

lim inf
n→+∞Px

(
ξn(B) ≤ K|�) = 0. (48)

Since ξ (x) is strongly supercritical, by (ii′) of Proposition 7.6 we have that (48) is then equivalent to

lim inf
n→+∞Px

(
ξn(B) ≤ K

∣∣ lim sup
j→+∞

ξj (J̃k) > 0
)

= 0 (49)

if k ∈ N is taken sufficiently large. But (49) is now a straightforward consequence of Lemma 7.8, so that (47) follows.
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8. Proofs of Proposition 2.15 and Theorem 2.16

We now prove our results for λ-positive systems, namely Proposition 2.15 and Theorem 2.16.

8.1. Proof of Proposition 2.15

Proposition 2.15 is essentially a consequence of the following.

Proposition 8.1. If X is λ-positive and admits a Lyapunov functional V as in Definition 2.14, then μ(g) < +∞ for any
BJ -measurable g : J → R such that ‖ g

1+V
‖∞ < +∞ and, furthermore, there exist constants C,γ > 0 such that for all

x ∈ J , t ≥ 0 and any g as above one has

∣∣Ẽx

(
g(Xt )

) − μ(g)
∣∣ ≤ C

(
1 + V (x)

)
e−γ t

∥∥∥∥g − μ(g)

1 + V

∥∥∥∥∞
.

Proof. This result is a careful combination of [28, Theorem 3.6] and [46, Theorem 4.3, Theorem 6.1], using the fact that
since

μ(g) ≤
∥∥∥∥ g

1 + V

∥∥∥∥∞
μ(1 + V ) =

∥∥∥∥ g

1 + V

∥∥∥∥∞

(
1 + μ(V )

)

it suffices to check that μ(V ) < +∞ to see that μ(g) < +∞ for any function g as in the statement. We omit the details. �

Observe that if X admits a Lyapunov functional V satisfying (V4) then, by Proposition 8.1, if we set

CX :=
{
B ∈ BJ :

∥∥∥∥1B

h

∥∥∥∥∞
< +∞

}

then for any B ∈ CX and x ∈ J we have that

∣∣sB(x, t)
∣∣ =

∣∣∣∣Ẽx

(
1B

h
(Xt )

)
− μ

(
1B

h

)∣∣∣∣ ≤ 2C
(
1 + V (x)

)
e−γ t

∥∥∥∥1B

h

∥∥∥∥∞

so that if (V3) holds then (A2-iii) is automatically satisfied. Furthermore, we always have that

sB(x, t) ≤ Ẽx

(
1B

h
(Xt )

)
≤

∥∥∥∥1B

h

∥∥∥∥∞
< +∞

for any such B , so that (A2-iv) is also satisfied. Since we have already seen that (3) and (A2-i–ii) hold whenever X is
λ-positive, this shows that (A2) is satisfied. On the other hand, if (V4) holds then again by Proposition 8.1 we have that
for any x ∈ J and t ≥ 0

Ex

(
M2

t

) = eλt

h(x)
Ẽx

(
h(Xt )

) ≤ eλt

h(x)

(
μ(h) + 2C

(
1 + V (x)

)(∥∥∥∥ h

1 + V

∥∥∥∥∞
+ μ(h)

))
< +∞ (50)

so that (A1) is also satisfied. Finally, since from (50) we can obtain in fact the bound

Ex

(
M2

t

) ≤ Ch,μ

eλt

h(x)

(
1 + V (x)

)

for some constant Ch,μ > 0, a straightforward computation shows that

�x ≤ m2 − m1

r(m1 − 1) − λ
Ch,μ · 1 + V (x)

h(x)
.

In particular, this yields that (B1) immediately holds. Furthermore, since for any given B ∈ BJ we have that B ∩ Jn ∈ CX

for all n, we obtain also (B2) by taking B∗ = B ∩ Jn for n large enough so as to guarantee that ν(B ∩ Jn) ≥ ν(B)
2 . This

concludes the proof of Proposition 2.15.
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8.2. Proof of Theorem 2.16

For the proof we shall essentially follow the approach in [2,16,21], introducing a few modifications to their methods to
adapt to our different hypotheses.

First, given any bounded and BJ -measurable function f : J → R and any starting point x ∈ J , let us define the process
Uf = (U

f
t )t≥0 by the formula

U
f
t := 1

h(x)

∑
u∈ξ t

h(ut )f (ut )e
−(r(m1−1)−λ)t . (51)

Notice that if we take f ≡ 1 then we recover our Malthusian martingale, i.e U
f
t = Dt for all t . Our goal is to show

that, for any starting point x ∈ J , there exists a full P -measure set � = �(x) such that for any ω ∈ �

lim
t→+∞U

f
t (ω) = ν(hf ) · D∞(ω), (52)

for all functions of the form f = 1B

h
with B ∈ CX such that ν(∂B) = 0. By Lemma 4.1, this will automatically imply (18)

since p(t) ≡ 1 in the λ-positive case. The first step in the proof of (52) is to obtain the desired convergence along lattice
times, i.e. along time sequences (tn)n∈N ⊆R>0 of the form tn = nδ for δ > 0 arbitrarily small. This will be a consequence
of the next lemma. For simplicity, in the sequel we suppress the dependence of Uf on f from the notation unless it
becomes strictly necessary.

Lemma 8.2. For any δ > 0 and starting position x ∈ J , we have almost surely

lim
n→+∞U2nδ −Ex(U2nδ|Fnδ) = 0,

where (Ft )t≥0 is the filtration generated by ξ .

Proof. It will suffice to show that∑
n∈N

Ex

((
U2nδ −Ex(U2nδ|Fnδ)

)2)
< +∞. (53)

To this end, we observe that, by proceeding as in the proof of [21, Lemma 18] for the case p = 2, one has for any t ≥ 0

Ex

((
U2t −Ex(U2t |Ft )

)2|Ft

) =
[
e−(r(m1−1)−λ)t

h(x)

]2 ∑
u∈ξ t

h2(ut )Eut

((
Ut −Eu(Ut )

)2)

≤
[

e−(r(m1−1)−λ)t

h(x)

]2 ∑
u∈ξ t

h2(ut )Eut

(
U2

t

)

≤
[‖f ‖∞e−(r(m1−1)−λ)t

h(x)

]2 ∑
u∈ξ t

h2(ut )Eut

(
D2

t

)

so that by Lemma 4.1 we obtain

Ex

((
U2t −Ex(U2t |Ft )

)2) ≤
[‖f ‖∞e−(r(m1−1)−λ)t

h(x)

]2

er(m1−1)t
Ex

(
h2(Xt )EXt

(
D2

t

))
.

Now, by the proof of Theorem 2.5 we now that

EXt

(
D2

t

) = EXt

(
M2

t

)
e−r(m1−1)t + (m2 − m1)r

∫ t

0
EXt

(
M2

s

)
e−r(m1−1)s ds, (54)

so that, using the Markov property for X, we conclude that

Ex

(
h2(Xt )EXt

(
D2

t

)) = Ex

(
h2(X2t )

)
e−(r(m1−1)−2λ)t + (m2 − m1)r

∫ t

0
Ex

(
h2(Xt+s)

)
e−(r(m1−1)−2λ)s ds. (55)
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Upon observing that the second term in the right-hand side of (55) can be rewritten as

e(r(m1−1)−2λ)t

[
(m2 − m1)r

∫ 2t

t

Ex

(
h2(Xs)

)
e−(r(m1−1)−2λ)s ds

]
,

a straightforward calculation now yields that Ex((U2t −Ex(U2t |Ft ))
2) can be bounded from above by

‖f ‖2∞
h(x)

(
Ẽx

(
h(X2t )

)
e−(r(m1−1)−λ)2t + (m2 − m1)r

∫ 2t

t

Ẽx

(
h(Xs)

)
e−(r(m1−1)−λ)s ds

)
. (56)

Now, since Ẽx(h(Xs)) ≤ ‖ h
1+V

‖∞Ẽx(1 + V (Xs)) ≤ ‖ h
1+V

‖∞(1 + V (x) + K) for any s by (V2)–(V4), we see that

Ex

((
U2t −Ex(U2t |Ft )

)2) ≤ ‖f ‖2∞
h(x)

·
∥∥∥∥ h

1 + V

∥∥∥∥∞

(
1 + V (x) + K

) ·
(

1 + (m2 − m1)r

r(m1 − 1) − λ

)
· e−(r(m1−1)−λ)t

which is enough to imply (53). �

Now, the convergence along lattice times will follow if we can show that, as n tends to infinity, for any δ > 0 and
starting position x ∈ J one has almost surely

lim
n→+∞

(
Ex(U2nδ|Fnδ) − ν(hf ) · D∞

) = 0

or, equivalently, that

lim
n→+∞

(
Ex(U2nδ|Fnδ) − ν(hf ) · Dnδ

) = 0.

By Lemma 4.1, the former reduces to showing that P -almost surely

�nδ := 1

h(x)

∑
u∈ξnδ

e−(r(m1−1)−λ)nδh(unδ)
[
Ẽunδ

(
f (Xnδ)

) − ν(hf )
] −→ 0, (57)

which in turn will follow if we show that
∑
n∈N

Ex

(
�2

nδ

)
< +∞. (58)

But notice that, by proceeding as in the computation leading to (54), we have

Ex

(
�2

nδ

) = 〈1〉nδ + 〈2〉nδ

where

〈1〉nδ := Ex

(
M2

nδ · s2
hf (Xnδ, nδ)

)
e−r(m1−1)nδ

and

〈2〉nδ := (m2 − m1)

∫ nδ

0
Ex

(
M2

s ·E2
Xs

(
Mnδ−s · shf (Xnδ−s , nδ)

))
re−r(m1−1)s ds

where, for y ∈ J and s ≥ 0, we write

shf (y, s) := Ẽy

(
f (Xs)

) − ν(hf ).

Now, since ‖ f
1+V

‖∞ ≤ ‖f ‖∞ < +∞ by assumption on f , Proposition 8.1 yields the existence of some constants C,α >

0 such that for all y ∈ J and s ≥ 0

∣∣shf (y, s)
∣∣ ≤ C

(
1 + V (y)

)
e−αs‖f ‖∞.
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On the other hand, since f is bounded we always have that ‖shf ‖∞ ≤ 2‖f ‖∞. Hence, we obtain

〈1〉nδ ≤ 4‖f ‖2∞
h(x)

Ẽx

(
h(Xnδ)

)
e−(r(m1−1)−λ)nδ

≤ 4‖f ‖2∞
h(x)

∥∥∥∥ h

1 + V

∥∥∥∥∞
Ẽx

(
1 + V (Xnδ)

)
e−(r(m1−1)−λ)nδ

≤ 4‖f ‖2∞
h(x)

∥∥∥∥ h

1 + V

∥∥∥∥∞

(
1 + V (x) + K

)
e−(r(m1−1)−λ)nδ

so that
∑

n∈N〈1〉nδ < +∞ and, similarly, using (V2) we obtain

Ex

(
M2

s ·E2
Xs

(
Mnδ−s · shf (Xnδ−s , nδ)

)) ≤ 2‖f ‖∞
h(x)

Ẽx(h(Xs)ẼXs

(
shf (Xnδ−s , nδ)

)
eλs

≤ 2C‖f ‖2∞
h(x)

Ẽx

(
h(Xs)ẼXs

(
1 + V (Xnδ−s)

))
e−αnδeλs

≤ 2C‖f ‖2∞
h(x)

Ẽx

(
h(Xs)

(
1 + K + e−γ (nδ−s)V (Xs)

))
e−αnδeλs

≤ 2C(1 + K)‖f ‖2∞
h(x)

Ẽx

(
h(Xs)

(
1 + V (Xs)

))
e−αnδeλs,

so that

〈2〉nδ ≤ 2C(1 + K)‖f ‖2∞�xe
−αnδ

and thus
∑

n∈N〈2〉nδ < +∞ since �x < +∞. Hence, we conclude that (58) holds and therefore that (57) as well, from
which the convergence along lattice times now immediately follows.

To establish the full limit as t → +∞, suppose first that f in (51) above is the indicator function of some open set
B ∈ BJ . It follows from (51) that for any δ > 0 one has the bound

Ut ≥ e−(r(m1−1)−λ)δ

h(x)(1 + ε)

∑
u∈ξnδ

e−(r(m1−1)−λ)nδh(unδ)�
(u)
B,δ,ε (59)

for t ∈ [nδ, (n + 1)δ), where �
(u)
B,δ,ε denotes the indicator function of the event A

(u),1
B,δ,ε ∩ A

(u),2
B,δ,ε , where

A
(u),1
B,δ,ε :=

{
vt ∈ B and h(vt ) >

1

1 + ε
h(unδ) for all v ∈ ξ

(u)

t and t ∈ [nδ, (n + 1)δ)

}

and

A
(u),2
B,δ,ε := {

The particle u ∈ ξnδ does not branch in [nδ, (n + 1)δ)
}
.

(Recall that ξ (u) is the sub-dynamics of ξ associated to the particle u.) Now, �
(u)
B,δ,ε is not a function of unδ alone as it

also depends on the evolution of ξ (u) on the time interval [nδ, (n + 1)δ), so that our previous analysis for lattice times
does not directly apply. However, since �

(u)
B,δ,ε is still bounded, one can adapt the previous analysis to our current setting

to show that the expression

∑
u∈ξnδ

e−(r(m1−1)−λ)nδh(unδ)�
(u)
B,δ,ε −Ex

( ∑
u∈ξnδ

e−(r(m1−1)−λ)nδh(unδ)�
(u)
B,δ,ε

∣∣∣Fnδ

)

tends to zero almost surely as n → +∞. Now, it is easy to see that

Ex

( ∑
u∈ξnδ

e−(r(m1−1)−λ)nδh(unδ)�
(u)
B,δ,ε

∣∣∣Fnδ

)
=

∑
u∈ξnδ

e−(r(m1−1)−λ)nδh(unδ)ζB,δ,ε(unδ)
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where for y ∈ J we define

ζB,δ,ε(y) := e−r(m1−1)δPy

(
Xt ∈ B and h(Xt) >

1

1 + ε
h(y) for all t ∈ [0, δ)

)
.

But by our previous analysis conducted for lattice times we know that almost surely

1

h(x)

∑
u∈ξnδ

e−(r(m1−1)−λ)nδh(unδ)ζB,δ,ε(unδ) −→ ν(hζB,δ,ε) · D∞

so that by (59) we conclude that almost surely

lim inf
t→+∞ Ut ≥ e−(r(m1−1)−λ)δ

1 + ε
ν(hζB,δ,ε) · D∞. (60)

Since B is an open set, h is continuous and X has cadlag trajectories, we have that for any y ∈ B

lim
δ→0

Py

(
Xt ∈ B and h(Xt ) >

1

1 + ε
h(y) for all t ∈ [0, δ)

)
= 1

so that, by first letting δ → 0 and afterwards taking ε → 0 in (60), we have that almost surely

lim inf
t→+∞ Ut ≥ ν(h1B) · D∞. (61)

Now, since J is locally compact and separable, there exists a countable basis G := (Gk)k∈N for its topology which is
closed under finite unions. In particular, there exists a full P -measure set �̃ such that for any ω ∈ �̃ the inequality in (61)
holds simultaneously for every Gk ∈ G. Hence, since any open set G ⊆ J can be written as the union of an increasing
sequence of open sets (Gnk

)k∈N ⊆ G, we conclude that for any ω ∈ �̃ and k ∈ N

lim inf
t→+∞ U

1G
t (ω) ≥ lim inf

t→+∞ U
1Gnk
t (ω) ≥ ν(h1Gnk

) · D∞(ω).

By taking k → +∞, we obtain that for any ω ∈ �̃

lim inf
t→+∞ U

1G
t (ω) ≥ ν(h1G) · D∞(ω) (62)

holds simultaneously for all open sets G ⊆ J . Hence, if for ω ∈ �̃ ∩ {D∞ > 0} ∩ {Dt → D∞} and each t ≥ 0 we define
the probability measures μt(ω) and μ on (J,BJ ) by the formulas

μt(ω)(B) := U
1B
t (ω)

Dt(ω)
and μ(B) := ν(h1B)

for each B ∈ BJ (observe that μt is well-defined because Dt > 0 on the event {D∞ > 0}) then, by Portmanteau’s theorem
[37, Theorem 4.25] and (62), μt(ω) converges weakly to μ. In particular, since h is strictly positive and continuous on J ,
if B ∈ CX is such that ν(∂B) = 0 then 1B

h
: J → R is a bounded and BJ -measurable function whose set of discontinuities

has μ-null measure, so that by the weak convergence we obtain

lim
t→+∞μt(ω)

(
1B

h

)
= μ

(
1B

h

)
= ν(B).

Since Dt(ω) → D∞(ω) for ω ∈ �̃ ∩ {D∞ > 0} ∩ {Dt → D∞}, the former implies that

lim
t→+∞U

1B
h (ω) = ν(B) · D∞(ω).

On the other hand, if ω ∈ �̃ ∩ {D∞ = 0} ∩ {Dt → D∞} then clearly as t → +∞ we have

∣∣U 1B
h

t (ω)
∣∣ ≤

∥∥∥∥1B

h

∥∥∥∥∞
Dt(ω) −→ 0 = ν(B) · D∞(ω).

Thus, since � := �̃ ∩ {Dt → D∞} is a full P -measure set by Theorem 2.5, we obtain (18). Finally, (19) follows from
(18) as in the proof of (10). This concludes the proof of Theorem 2.16.
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