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Abstract. We consider the bulk eigenvalue statistics of Laplacian matrices of large Erdős–Rényi random graphs in the regime p ≥
Nδ/N for any fixed δ > 0. We prove a local law down to the optimal scale η � N−1 which implies that the eigenvectors are delocalized.
We consider the local eigenvalue statistics and prove that both the gap statistics and averaged correlation functions coincide with the
GOE in the bulk.

Résumé. Nous nous intéressons aux statistiques, dans l’intérieur du spectre, des valeurs propres de matrices laplaciennes de grands
graphes d’Erdős–Rényi aléatoires dans le régime où p ≥ Nδ/N pour un δ > 0 fixé arbitraire. Nous montrons une loi locale jusqu’à
l’échelle optimale η � N−1 qui implique que les vecteurs propres sont délocalisés. Nous considérons les statistiques locales des
valeurs propres et montrons que les statistiques des intervalles et les fonctions de corrélation moyennées coïncident avec le GOE dans
l’intérieur du spectre.
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1. Introduction

In the late 1950s Erdős and Rényi introduced what is perhaps the simplest random graph model, the now well-known
Erdős–Rényi random graph G(N,p). This model is a graph on N vertices formed by choosing each (undirected) edge
(i, j) independently with probability p. We will say that the model is sparse when p → 0 as N → ∞ as each vertex has
on average pN � N edges.

Random graphs have numerous applications in the modeling of complex physical, biological and social systems.
A common method to understand the structure of the underlying graph is to associate to the graph a matrix, the most
intensively studied being the adjacency and Laplacian matrices. The spectral properties of these matrices carry a wealth
of information about the underlying graph. For example, the eigenvalues of the adjacency matrix reflect the topological
features of the corresponding graphs, such as connectivity, while the eigenvalues and eigenvectors of the Laplacian matrix
can be used to study random walks on the graph. For a comprehensive introduction to the spectral properties of random
graphs we refer the interested reader to [16].

Our main interest in this paper is the spectral properties of the Laplacian of the Erdős–Rényi random graph. There is an
enormous literature on the study of the Laplacian of general random graphs and we do not attempt to give an exhaustive
list of existing work, only mentioning some results on spectral properties related to ours. The limiting spectral measure
of the non-sparse Erdős–Rényi Laplacian was first derived in [12], and the sparse case was obtained in [33]. Laws of
large numbers of extreme eigenvalues of the Erdős–Rényi Laplacian were proved in [18,34] in the non-sparse case. For
the spectral properties of the Laplacian matrices of more general random graphs, we refer the reader to, e.g., [13–15,17,
38].

Random matrix theory provides a natural framework for studying the spectral properties of random graphs. One of the
most well-studied models is the Wigner ensemble consisting of matrices with iid entries (up to the symmetry constraint
H = H ∗), introduced by Wigner [41] to model the spectra of heavy ions. The Wigner–Dyson–Gaudin–Mehta conjecture
asserts that the local spectral statistics of Wigner matrices exhibit universality and are independent of the underlying

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/19-AIHP957
mailto:jiaoyang@math.harvard.edu
mailto:blandon@mit.edu


Spectral statistics of sparse Erdős–Rényi graph Laplacians 121

distribution of the matrix entries, and instead depend only on the symmetry class (real symmetric or complex Hermitian)
of the ensemble. In particular, the local statistics coincide with the case in which the entries are Gaussians for which there
are explicit formulas. This conjecture has recently been solved for all symmetry classes in [10,23,24,27,29,30] (parallel
results in certain cases were obtained in [39,40]).

The adjacency matrix of a non-sparse Erdős–Rényi graph (i.e., p fixed independent of N ) essentially falls into the
Wigner class and so the results [10,23,24,27,29,30] provide detailed information of the local spectral statistics of this
ensemble. The sparse case can be viewed as a singular Wigner ensemble, as the law of the entries is highly concentrated
around 0, and its analysis is much harder than the non-sparse case. Universality of the local statistics of the sparse
Erdős–Rényi adjacency matrix was achieved in the regime p ≥ N2/3+δ/N in the works [20,22]; universality (of the bulk
statistics) in the regime p ≥ Nδ/N was only achieved quite recently in [32].

A key property of the Wigner ensemble is that all of the entries are independent (up to the symmetry constraint
H = H ∗). In this regard, the new major challenge in the analysis of the Erdős–Rényi Laplacian is the correlation between
the entries, an obstacle which is present even in the non-sparse case. To our knowledge, detailed information about local
spectral statistics of (non-invariant) matrix ensembles with correlated entries has been limited to only a few cases. A local
law was proved for sparse d-regular graphs in [19] down to the scale η � log(N)−1. A local law down to the optimal
scale was achieved for the d-regular random graph in the regime d � (logN)4 in the work [5] and universality of the
local spectral statistics was subsequently obtained in the regime d � Nε in [4]. A local law was obtained for matrices
having with correlated entries having a certain four-fold symmetry in [2] and universality for Gaussian matrices with a
translation invariant correlation structure was obtained in [1].

Our first contribution is to prove a local law for the Erdős–Rényi Laplacian down to the optimal scale. More precisely
we prove that the Stieltjes transform of the empirical eigenvalue distribution is well-approximated by the free convolution
of the semicircle law and a standard Gaussian down to the scale η � N−1. This implies a rigidity estimate for any fixed
fraction of the non-extremal eigenvalues and delocalization of the corresponding eigenvectors. Our proof of the local law
is inspired by methods developed for symmetric matrices with uncorrelated entries [21,22,25,26,31,36]. However, these
proofs rely on the fact that the ith row and column of the matrix is independent of ith minor. This difficulty was overcome
in the work [5] on the d-regular graph using methods exploiting the specific structure of the underlying random graph,
and it is not clear that these methods would be applicable to the general class of models we will consider in this paper.
We instead use the fact that the correlation between the matrix entries is quite weak and implement a high-order resolvent
expansion in order to estimate high moments of certain error terms arising in the proof. We introduce a graphical notation
to keep track of terms appearing in our estimates inspired by the methods of [9]. Our expansion shows that the correlation
between the ith minor and the ith row can be ignored.

The solution of the Wigner–Dyson–Gaudin–Mehta conjecture saw the development of a general three-step strategy for
proving bulk universality for random matrix ensembles. The first step is to prove a local law controlling the eigenvalue
density down to the optimal scale. The second step concerns the proof of the optimal time to local equilibrium of Dyson
Brownian motion (DBM), and the third step is either a comparison or perturbative argument comparing the random matrix
ensemble to DBM. Our result discussed above completes the first step.

In the second step we introduce a modification of the DBM, defining a matrix process that preserves the structure of the
Laplacian matrix. Note that the Laplacian matrix has a trivial eigenvalue corresponding to the constant eigenvector. Once
we restrict the matrix process to the space orthogonal to this eigenvector, we get an ensemble that is well approximated
by the sum of a diagonal matrix and a GOE matrix. Universality for this process then follows from the recent work
[35], where the optimal time to local equilibrium was established for a wide class of initial data; we remark that the
result [35] is required to deal with the sparse ensembles considered here, and previous approaches along the lines of
[27,37] are insufficient (see [28] for related results on DBM with general initial data). The work [35] introduces a local
approach to DBM, made possible by a coupling idea of [10]. Previous approaches [27,37] were based on hydrodynamics
and moreover require estimates on the local eigenvalue density which are stronger than those found in the case of sparse
random matrices.

In order to complete the third step we rely on the observation in [11] that the change of the eigenvalues is negligible for
a short time if one views DBM as a matrix process. As a result we obtain bulk universality for the Erdős–Rényi Laplacian
in the sense of gap universality and averaged correlation functions in the regime p ≥ Nδ/N .

Our analysis applies to a wider class of random matrices that includes the Erdős–Rényi Laplacian as a specific example.
In Section 2 we introduce this model which we call the random Laplacian-type matrix and state our main results. In
Section 3 we prove the local law for random Laplacian-type matrices. In Section 4 we prove universality of the local
statistics.
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2. Definition of model and main results

2.1. Definition of model

In this section we introduce the class of random matrices under consideration which we call random Laplacian-type
matrices. The motivating example is the graph Laplacian of the Erdős–Rényi random graph. The Erdős–Rényi graph on
N +1 vertices is constructed by choosing each undirected edge (i, j), i �= j independently with probability p (for reasons
that will become clear later it is more natural to consider a graph on N + 1 vertices instead of N vertices. As a result our
matrices will be of size (N + 1) × (N + 1)). It will be convenient to introduce the sparsity parameter q by

p := q2

N
(2.1)

We denote the Laplacian of the Erdős–Rényi random graph by M = (Mij )ij . The off-diagonal entries are given by

Mij = mij , 1 ≤ i �= j ≤ N + 1 (2.2)

where the mij are independent Bernoulli random variables (up to the symmetry constraint mij = mji ) satisfying

P(mij = 1) = q2

N
, P(mij = 0) = 1 − q2

N
. (2.3)

The diagonal entries of M are given by

Mii = −
∑

1≤k≤N+1,k �=i

mki . (2.4)

Note that on average each row has pN = q2 nonzero elements and so the matrix is sparse in the regime q = o(N1/2). In
order to study the spectral statistics of M we will extract the mean and introduce a rescaling so that the typical eigenvalue
spacing in the bulk is of the order N−1. We write

M = q
(
1 − q2/N

)1/2
H + q2ee∗ − q2(N + 1)IN+1. (2.5)

Here, we have introduced the (N + 1) × 1 column vector

e = ((N + 1)−1/2, (N + 1)−1/2, . . . , (N + 1)−1/2)∗. (2.6)

The matrix H = (Hij ) is of the same form as M ,

Hij = hij , 1 ≤ i �= j ≤ N + 1, Hii = −
∑

1≤k≤N+1,k �=i

hki , (2.7)

where the hij are independent random variables (up to the symmetry constraint hij = hji ) defined by

hij := mij

q(1 − q2/N)1/2
− q

N(1 − q2/N)1/2
, 1 ≤ i �= j ≤ N + 1. (2.8)

Note that the entries of H are centered and for any indices 1 ≤ i �= j ≤ N + 1, the off-diagonal element hij satisfies

E
[|hij |2

]= 1

N
, E

[|hij |k
]≤ 1

Nqk−2
, k ≥ 3. (2.9)

Remark 2.1. Note that since e is an eigenvector of H , all spectral properties of M can be deduced from H as defined in
(2.5). We will therefore state and prove results only for H . Analogous statements for M follow trivially.

The above discussion leads us to the following definition of random Laplacian-type matrices.
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Definition 2.2. A real symmetric matrix H = (Hij )ij is called a random Laplacian-type matrix if it is of the form

H =

⎛
⎜⎜⎜⎝

−∑j �=1 h1j h12 . . . h1N+1

h21 −∑j �=2 h2j . . . h2N+1
...

...
...

...

hN+11 hN+12 . . . −∑j �=N+1 hN+1j

⎞
⎟⎟⎟⎠ (2.10)

where hij are independent random variables (up to the symmetry constraint hij = hji ) with mean zero and variance 1/N .
We assume that they satisfy the moment conditions: for any p ≥ 3, there exists some constant cp such that

E
[|hij |p

]≤ cp

qp−2N
, (2.11)

where the sparsity parameter q satisfies

Nβ ≤ q ≤ N1/2 (2.12)

for some β > 0.

Remark 2.3. We state and prove our results only in the real symmetric case, however our results and proofs carry over
to the complex Hermitian case with only minor notational changes.

2.2. Free convolution

The results of [12,33] state that the empirical eigenvalue distribution of the random Laplacian-type matrix converges
weakly to the free convolution of the semicircle law and standard Gaussian, which we define in this section. We denote
this free convolution by ρfc,

ρfc = ρsc � ρG. (2.13)

Above, ρsc and ρG are the semicircle and standard Gaussian distributions, respectively, and are given by

ρsc(E) = 1

2π

√(
4 − E2

)
+, ρG(E) = 1√

2π
e−E2/2. (2.14)

In Figure 1, we plot the numerically calculated free convolution ρsc � ρG of the semicircle and standard Gaussian distri-
butions. The precise definition of (2.13) is through its Stieltjes transform which we denote by mfc. The Stieltjes transform
mfc is defined as the solution to the following functional equation on the upper half complex plane Im[z] > 0,

mfc(z) =
∫

ρG(x)

x − z − mfc(z)
dx. (2.15)

Fig. 1. Free convolution of the semicircle and standard Gaussian distributions.
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It is well known [8] that there is a unique solution satisfying Im[mfc(z)] ≥ 0 and mfc(z) ∼ z−1 as z → ∞, and its
properties are well-studied. In particular, mfc is the Stieltjes transform of a measure with density ρfc that is analytic and
can be recovered by the Stieltjes inversion formula

ρfc(E) = lim
η↓0

1

π
Im
[
mfc(E + iη)

]
. (2.16)

We denote the classical eigenvalues of ρfc and ρsc by γi and γi,sc respectively. They are defined by the equations

∫ γi

−∞
ρfc(x) dx = i − 1

2

N
,

∫ γi,sc

−∞
ρsc(x) dx = i − 1

2

N
. (2.17)

2.3. Main results

A random Laplacian-type matrix H has N + 1 eigenvalues, one of which is always 0 with eigenvector e. We call this
the trivial eigenvalue. We denote the remaining N nontrivial eigenvalues of H as λ1(H) ≤ λ2(H) ≤ · · · ≤ λN(H) and
corresponding eigenvectors as u1(H),u2(H), . . . , uN(H). We will sometimes write them as λi and ui for simplicity of
notation.

In this paper we are interested in the properties of the “bulk” eigenvalues of H . We fix a large constant L > 0 and
consider eigenvalues in the interval [−L,L]. We fix the parameter

ξ := Nν (2.18)

where ν > 0 is a small parameter. The parameter ν > 0 can be arbitrarily small, but in proofs its value may change from
line to line; this will only occur at finitely many steps and we will not track its value explicitly.

We define the spectral domain DL =D(0)
L ∪D(1)

L ∪D(2)
L , where

D(0)
L = {z = E + iη : |E| ≤ 2ξ + L,2 ≤ η ≤ L

}
,

D(1)
L = {z = E + iη : |E| ≤ L,ξ3N−1 ≤ η ≤ 2

}
, (2.19)

D(2)
L = {z = E + iη : 2ξ ≤ |E| ≤ 2ξ + L,ξ3N−1 ≤ η ≤ 2

}
.

On the domain D(1)
L we will prove a local law down to the optimal scale. In order to obtain information on the eigenvalue

locations in the interval [−L,L] we will also require estimates on the domains D(0)
L and D(2)

L .
The spectral parameter z will play a fundamental role in this paper. We will write it as the sum of its real and imaginary

parts as

z = E + iη, E = Re[z], η = Im[z] (2.20)

We define the control parameter

�(z) = 1

q
+ 1

(Nη)1/2
. (2.21)

On the domain DL we always have

ξ� ≤ log(N)−1 (2.22)

for N large enough.
Throughout the paper we use the following notion of overwhelming probability.

Definition 2.4. We say that a family of events F(u) indexed by some parameter(s) u holds with overwhelming probability
if for any large D > 0 we have for all N large enough,

P
[
F(u)
]≥ 1 − N−D, (2.23)

uniformly in u.
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Given two families of events F1(u) and F2(u) we say that F2 holds with overwhelming probability on F1 if for any
large D > 0, we have for all N large enough, P[F2(u)c ∩F1(u)] ≤ N−D , uniformly in u.

Often we will take u to lie in the spectral domain DL or the indices �1,N + 1� or some combination thereof. Un-
less it is mentioned otherwise, the notion of overwhelming probability will always be uniform in the parameters under
consideration.

We denote the resolvent of the matrix H by

G(z) := (H − z)−1, (2.24)

and the Stieltjes transform of the empirical eigenvalue distribution of H by

mN(z) := 1

N
TrG(z). (2.25)

Sometimes we will omit the parameter z and simply denote them by G and mN , if the context is clear.
Now we can state the main results of this paper.

Theorem 2.5 (Local Law). Let H be a random Laplacian-type matrix as in Definition 2.2 and let G(z) be its resolvent.
There is a constant C > 0 such that with overwhelming probability,∣∣mN(z) − mfc(z)

∣∣≤ Cξ� (2.26)

and ∣∣∣∣Gij (z) − δij

1∑
k �=i hik − z − mfc(z)

∣∣∣∣≤ Cξ� (2.27)

uniformly for z ∈DL.

Theorem 2.5 implies the following rigidity estimates on the eigenvalues and complete delocalization of eigenvectors.

Corollary 2.6 (Rigidity of Eigenvalues). Let H be a random Laplacian-type matrix as in Definition 2.2. Fix a small
κ > 0. With overwhelming probability,∣∣λi(H) − γi

∣∣≤ Cξ2q−1, (2.28)

uniformly for indices i ∈ �κN, (1 − κ)N �.

Corollary 2.7 (Delocalization of Eigenvectors). Let H be a random Laplacian-type matrix as in Definition 2.2. There
is a constant C > 0 so that the following holds. Fix a small κ > 0. With overwhelming probability we have∥∥ui(H)

∥∥2∞ ≤ Cξ3N−1, (2.29)

uniformly for indices i ∈ �κN, (1 − κ)N �.

Remark 2.8. In this note, we focus on the bulk eigenvalues of the random Laplacian-type matrix. As for the behavior
of extreme eigenvalues, we refer the interested reader to the papers [18,34], where it is proved that for the non-sparse
random Laplacian-type matrix (i.e. q = N1/2) that for any fixed index i,

λi(H)√
2N logN

−→ 1, (2.30)

almost surely. The eigenvectors corresponding to those extreme eigenvalues can be studied in the Gaussian case (2.35) by
finite rank perturbation theory [7, Theorem 2.2]. We cannot expect delocalization results such as Corollary 2.7.

Finally, we have the following result on the bulk universality of the eigenvalue statistics. To state it we define the
n-point correlation functions. Denote by

pH (λ1, . . . , λN) (2.31)
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the unordered eigenvalue density of the matrix H . The n-point correlation function is defined by

p
(n)
H (λ1, . . . , λn) =

∫
pH (λ1, . . . , λN)dλn+1 . . .dλN. (2.32)

We denote the corresponding quantities for the GOE by p
(n)
GOE and pGOE .

Theorem 2.9. Let H be a random Laplacian-type matrix as in Definition 2.2. Then the nontrivial eigenvalues of H

exhibit universality in the following two forms. Firstly, the nontrivial eigenvalues of H have gap universality. For any
κ > 0 and index i ∈ �κN, (1 − κ)N �

lim
N→∞E

(H)
[
O
(
Nρfc(γi)(λi − λi+1), . . . ,Nρfc(γi)(λi − λi+n)

)]
−E

(GOE)
[
O
(
Nρsc(γi,sc)(λi − λi+1), . . . ,Nρsc(γi,sc)(λi − λi+n)

)]= 0, (2.33)

for test functions O ∈ C∞
0 (Rn), where γi,sc’s are the classical eigenvalue locations with respect to semi-circle law ρsc.

Secondly, the averaged n-point correlation functions of the nontrivial eigenvalues of H are universal. For any δ > 0,
E ∈ [−L,L], and b ≥ N−1+δ we have

lim
N→∞

∫ E+b

E−b

∫
Rn

O(α1, . . . , αn)

{
1

ρfc(E)n
ρ

(n)
H

(
E′ + α1

Nρfc(E)
, . . . ,E′ + αn

Nρfc(E)

)

− 1

ρsc(E)n
ρ

(n)
GOE

(
E′ + α1

Nρsc(E)
, . . . ,E′ + αn

Nρsc(E)

)}
dα1 . . .dαn

dE′

2b
= 0, (2.34)

where the test function O ∈ C∞
c (Rn).

2.4. Gaussian toy model

In this section we introduce a Gaussian toy model of the random Laplacian-type matrix. We let W be the following
(N + 1) × (N + 1) real symmetric matrix

W =

⎛
⎜⎜⎜⎝

−∑j �=1 w1j w12 . . . w1N+1

w21 −∑j �=2 w2j . . . w2N+1
...

...
...

...

wN+11 wN+12 . . . −∑j �=N+1 wN+1j

⎞
⎟⎟⎟⎠ (2.35)

where {wij ,1 ≤ i < j ≤ N + 1} are independent standard Gaussian random variables with mean 0 and variance 1/N .
We sketch a proof of Theorem 2.5 and 2.9 for the above toy model. This argument heavily depends on the Gaussian

structure and cannot be generalized to the random Laplacian-type matrix of Definition 2.2. However, the argument pro-
vides some intuition as to why one expects that Theorem 2.9 holds. More importantly, the structure of W exhibited in the
decomposition (2.38) will play a role in the proof for the general case.

The matrix W always has a trivial eigenvalue 0 with eigenvector e and so we need to remove this eigenvalue in order
to obtain universality. We project W down to an N × N matrix by conjugation with an orthogonal matrix R. Let R̃ be
any fixed (N + 1) × (N + 1) deterministic orthogonal matrix with last column e. That is, R̃ = (R|e), where R is the
(N + 1) × N matrix consisting of the first N columns of R̃. We then have

R̃∗WR̃ = Ŵ ⊕ 0, (2.36)

where Ŵ is the N × N matrix

Ŵ := R∗WR. (2.37)

The entries of the matrix Ŵ are joint Gaussian random variables. We compute the covariance structure of the matrix Ŵ ,
which will prove the following.

Proposition 2.10. We have the following equality in law,

Ŵ
d= GOE + R∗DR + gIN, (2.38)
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where GOE is an N × N GOE matrix, D is an (N + 1) × (N + 1) diagonal matrix with diagonal entries independent
Gaussian random variables with variance (N +1)/N , and g is a Gaussian random variable with variance 1/N . All three
are independent of each other.

Proof. The matrix elements of both sides of (2.38) are jointly distributed centered Gaussians. Hence we need only to
check that the covariances of the matrix elements are the same. For the left hand side of (2.38) we first compute the
covariance structure of W . We introduce auxiliary independent Gaussian variables wii ’s, for 1 ≤ i ≤ N +1, with variance
2/N . We have,

E[WijWkl] = E

[(
wij − δij

N+1∑
m=1

wmi

)(
wkl − δkl

N+1∑
m=1

wmk

)]

= 1

N

(
δikδjl + δilδjk − δijk − δij l − δikl − δjkl + δij δkl + (N + 1)δijkl

)
(2.39)

where δabc = 1 (resp δabcd = 1) if and only if a = b = c (resp a = b = c = d), otherwise it is zero. For indices a, b, c, d ∈
�1,N � we have

E[ŴabŴcd ] = E

[∑
i,j,k,l

RiaWijRjbRkcWklRld

]

= 1

N

∑
i,j,k,l

RiaRjbRkcRld

(
δikδjl + δilδjk − δijk − δij l − δikl − δjkl + δij δkl + (N + 1)δijkl

)

= 1

N

(
δacδbd + δadδbc + δabδcd + (N + 1)

N+1∑
i=1

RiaRibRicRid

)
, (2.40)

where we used the fact that all columns of R are orthogonal to e. For the righthand side of (2.38) we compute

E
[(

GOE + R∗DR + gIN

)
ab

× (GOE + R∗DR + gIN

)
cd

]
= E[GOEabGOEcd ] +E

[(
R∗DR

)
ab

(
R∗DR

)
cd

]+E
[
(gIN)ab(gIN)cd

]

= 1

N
(δacδbd + δadδbc) + N + 1

N

N+1∑
i=1

RiaRibRicRid + 1

N
δabδcd (2.41)

This finishes the proof. �

The advantage of the decomposition (2.38) is that the two summands R∗DR + gIN and GOE are independent. In
this case, both the global empirical eigenvalue distribution and the local eigenvalue statistics are well-understood. For
the global eigenvalue distribution, one notices that the empirical distribution of R∗DR + gIN converges to the law of
a standard Gaussian. From the theory of free probability, the global law of eigenvalue distribution of Ŵ converges to
free convolution of semi-circle and standard gaussian distributions. We refer to [3, Chapter 5] for an introduction on
free probability. For the local eigenvalue statistics, one can show that the Stieltjes transform of the empirical eigenvalue
distribution of R∗DR +gIN is close to that of a Gaussian down to the optimal scale, i.e. for η �N−1, with overwhelming
probability. The RHS of (2.38) is a deformed Wigner ensemble, and universality of the bulk eigenvalue statistics can be
concluded from the main results of [37] or [35].

3. Local laws

The goal of this section is to prove Theorem 2.5, the local law for random Laplacian-type matrices. The proof is based
on the analysis of the self-consistent equation for the empirical Stieltjes transform of H . The main difficulty here is the
correlation between diagonal entries and off-diagonal entries of H . As a result, the analysis is more involved than in the
case of Wigner or deformed Wigner ensembles.
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3.1. Notation and preliminaries

We introduce some notation. We denote the k-th minor of H by H(k), which is the submatrix of H with the k-th row and
column removed. We denote the random Laplacian-type matrix of the subgraph obtained by removing the k-th vertex by
H̃ (k). More precisely, we define H̃ (k) by

H
(k)
ij =: H̃ (k)

ij − δijhik, i, j �= k. (3.1)

We denote the Green’s functions of H , H(k) and H̃ (k) by G, G(k) and G̃(k) respectively. We furthermore define the
normalized Stieltjes transforms by

mN(z) = 1

N
trG(z), m

(k)
N (z) = 1

N
trG(k)(z), m̃

(k)
N (z) = 1

N
tr G̃(k)(z). (3.2)

Note that we normalize the Stieltjes transform of H by 1/N even though it is an (N + 1) × (N + 1) matrix. Finally, we
denote by

(k)∑
i

=
∑

1≤i≤N+1
i �=k

,

(k)∑
ij

=
∑

1≤i,j≤N+1
i,j �=k

(3.3)

summation in the index i or i, j omitting the index k.
In the following we collect some resolvent identities which will be used repeatedly in the paper. A proof can be found

in [30].

Proposition 3.1. The Schur complement formula

Gkk(z) = 1

−∑(k)
i hik − z −∑(k)

ij hkiG
(k)
ij hkj

. (3.4)

The identities for i, j �= k

Gij = G
(k)
ij + GikGkj

Gkk

. (3.5)

The identities for i �= k

Gik = −Gkk

(k)∑
j

hkjG
(k)
ji . (3.6)

We have also the Ward identity

∑
j

|Gij |2 = 1

η
Im[Gii]. (3.7)

All of the above identities hold with G replaced by G(k) or G̃(k). Lastly we have the resolvent identities, which connect
G(k) and G̃(k), for i, j �= k,

G
(k)
ij = G̃

(k)
ij +

(k)∑
l

G
(k)
il hklG̃

(k)
lj = G̃

(k)
ij +

(k)∑
l

G̃
(k)
il hklG

(k)
lj . (3.8)

By the Schur complement formula (3.4), we have

Gkk(z) = 1

−∑(k)
i hik − z − mN(z) − Ek

, (3.9)
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where the error term is given by

Ek(z) :=
(k)∑
i �=j

hkiG
(k)
ij (z)hjk −

(k)∑
i

(
h2

ki − 1

N

)
G

(k)
ii (z) − (mN(z) − m

(k)
N (z)
)
. (3.10)

Definition 3.2. Let c∗ be the constant introduced in (3.13) below. Note that c∗ depends only on the choice of L in DL.
For any z ∈ DL we define the events,

�(k)(z) =
{

max
i,j �=k

∣∣G̃(k)
ij (z)
∣∣≤ 2/c∗

}
, k = 1,2, . . . ,N + 1, (3.11)

and the event

�(z) :=
⋂
k

�(k)(z) ∩ {∣∣mN(z) − mfc(z)
∣∣≤ (log(N)

)−1}
. (3.12)

Remark 3.3. We will often omit the parameter z and write �(k) and � if the context is clear.

We will need the following regularity estimates for mfc. Parts of the proof use ideas of [8].

Lemma 3.4. For any fixed L > 0 we have that the imaginary part of mfc is bounded above and away from zero,

c∗ ≤ Im
[
mfc(z)

]≤ ∣∣mfc(z)
∣∣≤ 1, (3.13)

uniformly for z ∈D(1)
L . The constant c∗ depends only on L.

Moreover, mfc is Lipschitz∣∣m′
fc(z)
∣∣≤ C (3.14)

uniformly for all Im[z] ≥ 0.

Proof. We have by the Cauchy–Schwarz inequality,

∣∣mfc(z)
∣∣2 ≤
∫

ρG(x)dx

|x − z − mfc(z)|2 = Im[mfc(z)]
Im[z + mfc(z)] ≤ 1, (3.15)

which gives us the upper bound in (3.13). The lower bound follows from the fact that ρfc is supported on the whole real
axis.

To prove that mfc is Lipschitz, we differentiate both sides of the defining equation (2.15) to obtain(
1 −
∫

ρG(x)d(x)

(x − z − mfc(z))2

)
m′

fc(z) =
∫

ρG(x)dx

(x − z − mfc(z))2
. (3.16)

From (3.15), the right-hand side is bounded by 1, and so we need only prove that the factor in front of m′
fc(z) is bounded

away from 0. In the following we prove that

Re

[∫
dμG(x)

(x − z − mfc(z))2

]
≤ 1 − c (3.17)

for a c > 0 and (3.14) follows.
If the imaginary part of z, Im[z] ≥ 2, then |x − z − mfc(z)| ≥ 2, and (3.17) is trivial. Therefore in the following we

assume that the imaginary part of z is bounded by 2.
We first consider the regime |Re[z]| ≥ L′ for a fixed large L′ > 0 chosen later. Denote z + mfc(z) = a + bi. Without

loss of generality take Re[z] ≥ 0 and so a ≥ L′ − 1 because |mfc| ≤ 1. Integration by parts yields,

∫
dμG(x)

(x − z − mfc(z))2
=
∫ −xρG(x)dx

x − z − mfc(z)
=
∫ a+4

a−4

−xρG(x)dx

x − z − mfc(z)
+
∫

[a−4,a+4]c
−xρG(x)dx

x − z − mfc(z)
. (3.18)
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Choosing L′ > 0 large enough we see that the second term is bounded by∣∣∣∣
∫

[a−4,a+4]c
−xρG(x)dx

x − z − mfc(z)

∣∣∣∣≤ 1

4

∫
|x|ρG(x)dx ≤ 1

4
. (3.19)

We rearrange the first term as∫ a+4

a−4

−xρG(x)dx

x − z − mfc(z)
= −
∫ a+4

a−4
ρG(x)dx − (z + mfc(z)

) ∫ a+4

a−4

ρG(x)dx

x − z − mfc(z)
. (3.20)

For the first integral in (3.20) we have the bound,∣∣∣∣−
∫ a+4

a−4
ρG(x)dx

∣∣∣∣≤ 1√
2π(a − 4)

e−(a−4)2/2. (3.21)

The second term in (3.20) is somewhat harder due to the “singularity” at x = a. We write,

(
z + mfc(z)

) ∫ a+4

a−4

ρG(x)dx

x − z − mfc(z)

= (a + ib)

(∫ 4

0
dy

ρG(a + y)

y − ib
− ρG(a − y)

y + ib

)

= (a + ib)

(∫ 4

0
dy

ρG(a + y) − ρG(a − y)

y − ib

)
+ (a + ib)

∫ 4

0
dy

2ib

y2 + b2
ρG(a − y). (3.22)

The real part of above expression is bounded above by

(a + 3)

∫ 4

0
dy

ρG(a + y) − ρG(a − y)

y
+
∫ 4

0
dy

2b2

y2 + b2
ρG(a − y) ≤ 2(a2 + 3a + 1)√

2π(a − 4)
e−(a−4)2/2. (3.23)

Therefore (3.17) follows after taking L′ > 0 sufficiently large.
We now consider the case |Re[z]| ≤ L′. We have that the imaginary part of mfc is bounded below by c′. In this case

we have

Re

[∫
ρG(x)dx

(x − z − mfc(z))2

]
=
∫

ρG(x)dx
(Re[x − z − mfc])2 − (Im[z + mfc])2

|x − z − mfc|4

≤
∫

ρG(x)dx

|x − z − mfc|2 − (Im[z + mfc]
)2 ∫ ρG(x)dx

|x − z − mfc|4
≤ 1 − (Im[mfc(z)

])2 ≤ 1 − (c′)2, (3.24)

where in the second inequality we have used the Cauchy–Schwarz inequality

(
Im[z + mfc]

)2 ∫ ρG(x)dx

|x − z − mfc|4 ≥ (Im[z + mfc]
)2(∫ ρG(x)dx

|x − z − mfc|2
)2

= (Im[mfc]
)2

. (3.25)

This finishes the proof of (3.17). �

The following proposition provides a discrete version of the estimate (3.17).

Proposition 3.5. There is a constant c1 depending only on the constant c∗ from (3.13) so that the following holds uni-
formly for z ∈ D(1)

L . Suppose that w1,w2, . . . ,wN+1 is a sequence of real numbers satisfying

1

N

∑
k

1

wk − z − mfc(z)
= mfc(z) + ε(z) (3.26)

where the error term satisfies∣∣ε(z)∣∣≤ c1 (3.27)
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Then we have

c2∗
16

≤
∣∣∣∣1 − 1

N

∑
k

1

(wk − z − mfc(z))2

∣∣∣∣≤ 1 + 1

c2∗
(3.28)

In fact we can take c1 = min{c3∗/16, c∗/2}.

Proof. The upper bound of (3.28) is an immediate consequence of the lower bound of (3.13). For the lower bound of
(3.28) we compute

Re

[
1

N

∑
k

1

(wk − z − mfc(z))2

]
= 1

N

∑
k

(Re[wk − z − mfc])2 − (Im[z + mfc])2

|wk − z − mfc|4

≤ 1

N

∑
k

1

|wk − z − mfc|2 − 1

N

∑
k

(Im[z + mfc])2

|wk − z − mfc|4

≤ Im[mfc + ε]
Im[mfc + η] − 1

2

(
Im[mfc + ε])2

≤ 1 + |ε|
Im[mfc] − (Im[mfc])2

8
≤ 1 − c2∗

16
. (3.29)

The last line follows from our choice of c1. In the third inequality we used the Cauchy–Schwarz inequality

1

N + 1

∑
k

(Im[z + mfc])2

|wk − z − mfc|4 ≥
(

1

N + 1

∑
k

Im[z + mfc]
|wk − z − mfc|2

)2

= (Im[mfc + ε])2. (3.30)

�

We also need the following concentration of measure result.

Proposition 3.6. For any z ∈DL, with overwhelming probability, we have∣∣∣∣ 1

N

∑
k

1

−∑(k)
i hik − z − mfc(z)

− mfc(z)

∣∣∣∣= O

(
ξ

q

)
(3.31)

Proof. From the assumption (2.11), we know that with overwhelming probability, we have

max
i<j

|hij | ≤ ξ

q logN
, max

k

∣∣∣∣∣
(k)∑
i

hki

∣∣∣∣∣≤ ξ. (3.32)

Thus we can do a truncation. For this, we define two cutoff functions. First, take ρ(x) = x on [−ξ/(q logN), ξ/(q logN)],
and ρ(x) = sign(x)ξ/(q logN) outside the interval. Secondly, let χ(x) = x on [−ξ, ξ ], and χ(x) = sign(x)(ξ + 1) for
|x| > ξ + 1, and with χ having its first three derivatives bounded. We also define the functions

F
({hij }i<j

)= 1

N

∑
k

1

gk

, gk := gk

({hik}i �=k

)= −χ

(
(k)∑
i

ρ(hik)

)
− z − mfc(z). (3.33)

We claim that gk is bounded away from 0 on DL. We have |gk| ≥ | Im[z]| ≥ 2 on D(0)
L . On D(1)

L we have |gk| ≥ Im[mfc] ≥
c∗ and on D(2)

L we have |gk| ≥ ξ − 2. Therefore, for any pair i < j , we have

∣∣F (h12, . . . , h
′
ij , . . . , hNN+1

)− F(h12, . . . , hij , . . . , hNN+1)
∣∣

= 1

N

∣∣∣∣gi(hij ) − gi(h
′
ij )

gi(hij )gi(h
′
ij )

+ gj (hij ) − gj (h
′
ij )

gj (hij )gj (h
′
ij )

∣∣∣∣≤ C

N

∣∣ρ(hij ) − ρ
(
h′

ij

)∣∣≤ 2Cξ

Nq logN
(3.34)
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Therefore by McDiarmid’s inequality, we get

P

(∣∣F ({hij }i<j

)−E
[
F
({hij }i<j

)]∣∣≥ tξ

q logN

)
≤ e−Ct2

. (3.35)

Hence, by taking t = logN , we have that the following holds with overwhelming probability∣∣F ({hij }i<j

)−E
[
F
({hij }i<j

)]∣∣≤ ξ/q. (3.36)

Moreover, since maxi<j |hij | ≤ ξ/(q logN) with overwhelming probability we have

F
({hij }i<j

)= 1

N

∑
k

1

−χ(
∑(k)

i hik) − z − mfc(z)
. (3.37)

By a similar argument as above we see that | − χ(
∑(k)

i hik) − z − mfc(z)| is bounded away from zero uniformly for
z ∈ DL. Therefore both sides of (3.37) are uniformly bounded. By taking expectation on both sides of (3.37), for any
fixed D > 0, we have

E
[
F
({hij }i<j

)]= E

[
1

N

∑
k

1

−χ(
∑(k)

i hik) − z − mfc(z)

]
+ O
(
N−D
)
, (3.38)

given that N is large enough. Moreover, from our choice of χ , we see that the first three derivatives of (−χ(
∑(k)

i hik) −
z − mfc(z))

−1 with respect to hik’s are bounded. By the standard Lindeberg replacement trick one can show that

E

[
1

−χ(
∑(k)

i hik) − z − mfc(z)

]
= E

[
1

−χ(
∑N

i=1 xi) − z − mfc(z)

]
+ O

(
1

q

)

= E

[
1

−∑N
i=1 xi − z − mfc(z)

]
+ O

(
1

q

)
(3.39)

where xj ’s are Gaussian random variables with mean zero and variance 1/N . The implicit constant in the error term

depends only on the bound for third moment of the hij . Since
∑N

i=1 xi
d=N (0,1) we have by definition,

E

[
1

−∑N
i=1 xi − z − mfc(z)

]
= mfc(z). (3.40)

By combining (3.38), (3.39) and (3.40), we get∣∣E[F ({hij }i<j

)]− mfc
∣∣= O(ξ/q). (3.41)

The claim follows from this and (3.36). �

3.2. Proof of local law

In this subsection we prove Theorem 2.5. Recall the definition of the events �(k) and � in Definition 3.2, the Green’s
functions G, G(k), G̃(k) and error term Ek in (3.10).

We first prove that with overwhelming probability �(z) holds uniformly for η ≥ 2. Then we will bootstrap the estimate
by taking advantage of the self-consistent equation of the Stieltjes transform and the following error control, the proof of
which is postponed to Section 3.3.

Proposition 3.7. For any z ∈DL all of the following holds with overwhelming probability. We have,

1�(k)(z)

∣∣G(k)
ij (z) − G̃

(k)
ij (z)
∣∣≤ ξ�, (3.42)

and

1�(k)(z)

∣∣∣∣∣
(k)∑
j

hkjG
(k)
ji

∣∣∣∣∣≤ ξ� (3.43)
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and

1�(k)(z)Ek(z) ≤ ξ�, (3.44)

where the control parameter � is introduced in (2.21).

The proof of the local law is decomposed into two propositions.

Proposition 3.8. With overwhelming probability, �(z) holds uniformly for η ≥ 2.

Proof. Since |Gij |, |G(k)
ij | and |G̃(k)

ij | are all bounded by 1/ Im[z], �(k)(z) holds deterministically for any z with η ≥ 2.
As for the error estimate of mN(z), we prove the following stronger result: for η ≥ 2 we have,∣∣mN(z) − mfc(z)

∣∣≤ ξ� (3.45)

with overwhelming probability.
For any z with Im[z] ≥ 2, we denote the event A(z) such that (3.31) and

⋂N+1
k=1 {|Ek| ≤ ξ�} hold. Then from Propo-

sitions 3.6 and 3.7, A(z) holds with overwhelming probability and so we can assume for the remainder of the proof that
A(z) holds. Starting from the Schur complement formula (3.4) we have,

Gkk(z) = 1

−∑(k)
i hik − z − mN(z) − Ek

= 1

−∑(k)
i hik − z − mN(z)

+ O(ξ�), (3.46)

where we used the fact that Im[z] ≥ 2 to expand the denominator which is bounded away from 0. After averaging over k

we get,

mN(z) = 1

N

∑
k

1

−∑(k)
i hik − z − mN

+ O(ξ�) (3.47)

We obtain the following by taking the difference of (3.47) and (3.31)

mN − mfc = mN − mfc

N

∑
k

1

(−∑(k)
i hik − z − mN)(−∑(k)

i hik − z − mfc)
+ O(ξ�). (3.48)

The imaginary part of the denominators on the RHS of (3.48) is bounded below by

Im

[∑
j �=k

hkj + z + mN

]
≥ 2, Im

[∑
j �=k

hkj + z + mfc

]
≥ 2. (3.49)

Therefore,∣∣∣∣ 1

N

∑
k

1

(
∑(k)

i hik + z + mN)(
∑(k)

i hik + z + mfc)

∣∣∣∣≤ 1

2
. (3.50)

Combining (3.48) and (3.50) we obtain∣∣mN(z) − mfc(z)
∣∣= O(ξ�). (3.51)

This finishes the proof. �

The following proposition is the key bootstrap principle. The weak estimates of the event �(z) are used to prove
stronger estimates on the Green’s function and Stieltjes transform.

Proposition 3.9. For z ∈ DL the following holds with overwhelming probability on the event �(z). For the Stieltjes
transform we have∣∣mN(z) − mfc(z)

∣∣≤ ξ�. (3.52)
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Let Xij denote any of the resolvent entries Gij (z), G
(k)
ij (z) or G̃

(k)
ij (z). We have,∣∣∣∣Xij (z) − δij

−∑(j)
l hlj − z − mfc(z)

∣∣∣∣≤ ξ�. (3.53)

Recall � is the control parameter introduced in (2.21).

Proof. For any z ∈ DL, we define the event A(z) such that (3.31), (3.32) and �(z) hold, and the following holds:

N+1⋂
k=1

({
Ek(z) ≤ ξ�

}∩ {max
i,j �=k

∣∣G(k)
ij (z) − G̃

(k)
ij (z)
∣∣≤ ξ�

}
∩
{

max
j �=k

∣∣∣∣∣
(k)∑
j

hkjG
(k)
ji

∣∣∣∣∣≤ ξ�

})
. (3.54)

By Propositions 3.6 and 3.7, and our assumption, A(z) holds with overwhelming probability on �(z), and so we need
only to prove that on A(z), (3.52) and (3.53) hold.

We claim that on the event A(z), we have the uniform bound for sufficiently large N ,∣∣∣∣∣−
(k)∑
i

hik − z − mN(z)

∣∣∣∣∣≥ min

{
2,

c∗
2

}
> 0, (3.55)

where c∗ is the constant from (3.13). If z ∈ D(0)
L then Im[z] ≥ 2. If z ∈ D(1)

L then Im[mfc(z)] ≥ c∗ and so for sufficiently

large N , Im[mN(z)] ≥ c∗/2 by the definition of A(z). Lastly, if z ∈ D(2)
L then by the definition of A(z)

∣∣∣∣∣−
(k)∑
i

hik − z − mN

∣∣∣∣∣≥ |z| −
∣∣∣∣∣

(k)∑
i

hik

∣∣∣∣∣− |mN | ≥ ξ − 2 ≥ 2. (3.56)

Therefore we may expand the Schur complement formula (3.4) and obtain,

mN(z) = 1

N

∑
k

1

−∑(k)
i hik − z − mN

+ O(ξ�). (3.57)

Again, by the definition of A(z) we have

mfc(z) = 1

N

∑
k

1

−∑(k)
i hik − z − mfc

+ O(ξ�). (3.58)

Taking the difference of (3.57) and (3.58) we get(
1 − 1

N

∑
k

1

(−∑(k)
i hik − z − mfc)2

− E
)

(mN − mfc) = O(ξ�) (3.59)

where the error term is given by

|E | =
∣∣∣∣ 1

N

∑
k

mN − mfc

(−∑(k)
i hik − z − mN)(−∑(k)

i hik − z − mfc)2

∣∣∣∣≤ C

logN
. (3.60)

We used again that the denominator is bounded away from zero on DL. By Proposition 3.5 and the assumption that (3.31)
holds on A, we see that the prefactor in front of (mN − mfc) in (3.59) is bounded away from zero by a constant on D(1)

L .

This is also true on D(0)
L due to the fact that Im[z] ≥ 2, and is true on D(2)

L by the fact that | −∑(k)
i hik − z − mfc| ≥ ξ − 2

on A(z). We conclude (3.52).
On the event A we have for the diagonal resolvent terms,

Gkk = 1

−∑(k)
i hik − z − mfc(z) + (mN(z) − mfc(z)) + Ek

= 1

−∑(k)
i hik − z − mfc(z)

+ O(ξ�), (3.61)
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where we used (3.52). For the off-diagonal resolvent entries we apply the identity (3.6) and obtain

|Gik| = |Gkk|
∣∣∣∣∣

(k)∑
j

hkjG
(k)
ji

∣∣∣∣∣= O(ξ�), (3.62)

using the fact that |Gkk| ≤ 2/c∗ and |∑(k)
j hkjG

(k)
ji | ≤ ξ� on A (recall (3.54)). For the entries of the kth minor we have

by (3.5) and (3.6)

∣∣Gij − G
(k)
ij

∣∣= ∣∣∣∣GikGkj

Gkk

∣∣∣∣=
∣∣∣∣∣

(k)∑
j

hkjG
(k)
ji

∣∣∣∣∣|Gkj | = O(ξ�). (3.63)

The estimates for G̃
(k)
ij then follow from the definition (3.54) of A on which we have |G(k)

ij (z) − G̃
(k)
ij (z)| ≤ ξ� . �

Proof of Theorem 2.5. Once Propositions 3.8 and 3.9 have been established, the local law follows from a standard
induction scheme as given in [21]. We provide here a sketch for the sake of completeness. Note that on DL all the
resolvent entries are Lipschitz in the parameter z with constant less than CN2. It therefore suffices to work on the lattice

� =DL ∩ N−4(Z+ iZ) (3.64)

which has cardinality |�| ≤ 8LN8ξ . Fix now a sequence of sets of points Lk = {E + (2 − jN−4)i ∈ � : j ≤ k}, and let
Ak be the event that the conclusion of Theorem 2.5 holds uniformly for points in Lk . We know by Proposition 3.8 that
A0 holds with overwhelming probability. By the Lipschitz continuity of the resolvent entries, for any z ∈ Lk+1, the event
�(z) holds on Ak . Hence, by Proposition 3.9, the event Ak+1 holds with overwhelming probability on Ak . Hence fixing
a large number D > 0 we see by induction that

P
[
Ac

k

]≤ P
[
Ac

k−1

]+ P
[
Ak−1 ∩Ac

k

]≤ kN−D + N−D = (k + 1)N−D. (3.65)

Hence,

P

[
M⋂

k=0

Ak

]
≥ 1 −

N4−1∑
k=0

(k + 1)N−D ≥ 1 − N−D+8. (3.66)

This yields the claim. �

Proof of Corollary 2.6. We want to apply the arguments of Section 7 of [35] to conclude rigidity. However, since the
norm of H is not bounded we need a slight modification of the argument. Using the local law (2.26), we apply [35,
Lemma 7.17] with E1 = −2ξ and E2 ∈ (−L/2,L/2) and obtain∣∣∣∣

∫ E2

E1

ρfc(E)dE −
∫ E2

E1

ρN(E)dE

∣∣∣∣≤ Cξ2q−1, (3.67)

with overwhelming probability, where ρN the empirical eigenvalue distribution of H . We also have that ρN is supported
in [−2ξ,2ξ ] with overwhelming probability. By letting Im[z] go to zero on both sides of (2.15), we get

√
2π =
∫
R

e−x2/2 dx

(x − E − Re[mfc(E)])2 + π2ρfc(E)2

≤
∫

|x−E|≤|E|/2

e−x2/2 dx

π2ρfc(E)2
+
∫

|x−E|>|E|/2

e−x2/2 dx

(x − E − Re[mfc(E)])2

≤ 2e−E2/8

π2|E|ρfc(E)2
+ 4

(|E| − 2)2
(3.68)

where we used that |mfc| ≤ 1 from (3.13). We therefore have that ρfc(E) ≤ e−E2/8 for sufficiently large |E|, and therefore
for any E ≤ E1. Therefore,∫ E1

−∞
ρfc(E)dE ≤ N−D (3.69)
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for any D > 0. Combining (3.67) and (3.69) we get∣∣∣∣
∫ E2

−∞
ρfc(E)dE −

∫ E2

−∞
ρN(E)dE

∣∣∣∣≤ Cξ2q−1 (3.70)

By a standard argument (see, e.g., [31, Theorem 2.2]), we obtain the following rigidity estimate for the bulk eigenvalues.
For any index i such that γi ∈ [−L/2,L/2], we have∣∣λi(H) − γi

∣∣≤ Cξ2q−1. (3.71)
�

The proofs of Corollary 2.7 from Theorem 2.5 is standard and we omit the details. This argument can be found, for
example, in [20, Theorem 2.16].

3.3. Proof of Proposition 3.7

We show that Proposition 3.7 follows from the following large deviation estimates.

Proposition 3.10. For any z ∈ DL, the following holds with overwhelming probability: for l ≥ 1 and j �= k we have,

1�(k)(z)

(k)∑
i1,...,il

hki1G̃
(k)
i1,i2

hki2 . . . hkil G̃
(k)
ilj

≤ ξ

(
1

q
+ 1

(Nη)1/4

)l

, (3.72)

and for l ≥ 1 and i, j �= k

1�(k)(z)

(k)∑
i1,...,il

G̃
(k)
ii1

hki1G̃
(k)
i1i2

hki2 . . . hkil G̃
(k)
ilj

≤ ξ

(
1

q
+ 1

(Nη)1/4

)l

. (3.73)

For l ≥ 3 we have

1�(k)(z)

(k)∑
i1,...,il

hki1G̃
(k)
i1i2

hki2 . . . G̃
(k)
il−1il

hkil ≤ ξ

(
1

q
+ 1

(Nη)1/4

)l−2

. (3.74)

We have better estimates for smaller l.

Proposition 3.11. For any z ∈ DL, the following holds with overwhelming probability: for j �= k we have,

1�(k)(z)

(k)∑
i

hkiG̃
(k)
i,j ≤ ξ

(
1

q
+ 1

(Nη)1/2

)
, (3.75)

and for i, j �= k

1�(k)(z)

(k)∑
i1

G̃
(k)
ii1

hki1G̃
(k)
i1j

≤ ξ

(
1

q
+ 1

(Nη)1/2

)
. (3.76)

We have also

1�(k)(z)

(k)∑
i,j

G̃
(k)
ij

(
hkihkj − δijN

−1)≤ ξ

(
1

q
+ 1

(Nη)1/2

)
, (3.77)

and

1�(k)(z)

(k)∑
i1,i2,i3

hki1G̃
(k)
i1i2

hki2G̃
(k)
i2i3

hki3 ≤ ξ

(
1

q
+ 1

(Nη)1/2

)
. (3.78)
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Proof of Proposition 3.7. In this proof we assume the event �(k)(z) holds and omit it from the notation. We define the
following three quantities corresponding to (3.72), (3.73) and (3.74),

Al(i, j) :=
(k)∑

i1,...,il

G̃
(k)
ii1

hki1G̃
(k)
i1i2

. . . hkil G̃
(k)
ilj

,

Al(j) :=
(k)∑

i1,...,il

hki1G̃
(k)
i1i2

hki2 . . . hkil G̃
(k)
ilj

,

Al :=
(k)∑

i1,...,il

hki1G̃
(k)
i1i2

hki2 . . . G̃
(k)
il−1il

hkil ,

(3.79)

for any l ≥ 1. In order to prove (3.42) we iterate (3.8) and obtain

G
(k)
ij − G̃

(k)
ij =

m∑
l=1

Al(i, j) +
(k)∑
n

Am(i, n)hknG
(k)
nj . (3.80)

By (3.76) and (3.73) we have with overwhelming probability,

A1(i, j) ≤ ξ

(
1

q
+ 1

(Nη)1/2

)
, (3.81)

and for l ≥ 2,

Al(i, j) ≤ ξ

(
1

q
+ 1

(Nη)1/4

)l

. (3.82)

In order to control the last term on the right-hand side of (3.80) we use the trivial bound |G(k)
nj | ≤ 1/ Im[z] ≤ N on DL

and take m large (but independent of N , say m ≥ 4(1/ν + 1), where ν is as in (2.18)) and obtain

∣∣G(k)
ij − G̃

(k)
ij

∣∣≤ m∑
l=1

∣∣Al(i, j)
∣∣+ 1

N
≤ Cξ

(
1

q
+ 1

(Nη)1/2

)
(3.83)

with overwhelming probability.
In order to prove (3.43) we iterate (3.8) and obtain

(k)∑
i

hkiG
(k)
ij = A1(j) +

m∑
l=2

Al(j) +
(k)∑
n

Am(n)hknG
(k)
nj . (3.84)

The first term A1(j) is controlled by (3.75) and the terms in the summation are controlled by (3.73). For the last term we
again use the trivial bound |G(k)

ij | ≤ N and take m large. This yields (3.43).
For (3.44) we write

Ek =
(k)∑
ij

G
(k)
ij

(
hkihkj − δijN

−1)− (mN − m
(k)
N

)

=
(k)∑
ij

G̃
(k)
ij

(
hkihkj − δijN

−1)

+
m∑

l=3

Al +
(k)∑
im,j

Am−1(im)hkimG
(k)
imjhkj − (m(k)

N − m̃
(k)
N

)− (mN − m
(k)
N

)
. (3.85)

The claim follows from (3.74), (3.77), (3.78), (3.42), and the deterministic bound [6, Lemma 6.5]∣∣mN(z) − m
(k)
N (z)
∣∣≤ (Nη)−1. (3.86)
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Fig. 2. The graph on the left corresponds to the sum N−5∑(k)
i1,...,i5

G̃
(k)
i1i2

G̃
(k)
i2i3

G̃
(k)
i2i5

G̃
(k)
i4i5

. If the white vertex appearing in the graph on the right is

associated with the index j , then the graph corresponds to the sum N−4∑(k)
i1,...,i4

G̃
(k)
i1i2

G̃
(k)
i2i3

G̃
(k)
i2j

G̃
(k)
i4j

.

�

For the proofs of Propositions 3.10 and 3.11 we introduce a graphical notation to encode terms appearing in our high
moment estimates. This is inspired by the methodology of [9]. We require the following combinatorial definition and
lemma.

Definition 3.12. We define a labeled colored undirected graph G to be a graph on m black vertices {1,2, . . . ,m} and on
either 0, 1 or 2 white vertices, labeled as m + 1 and m + 2 if they exist. Furthermore we demand that each white vertex is
associated to a specific index which we will denote by i, j ∈ {1,2, . . . ,N + 1}. G may have multiple edges and self loops.
In this section we will refer to such labeled colored undirected graphs simply as graphs.

We will use the graphs defined above to encode various summations of monomials of Green’s function elements. Black
vertices will encode an index to be summed over, while white vertices will encode fixed indices that are not summed over.

Let G be a graph as defined in Definition 3.12. We associate to G and an index k ∈ �1,N + 1� the following sum,

V(G, k) := 1

Nm

(k)∑
i1,...,im

∏
(a,b)∈G

∣∣G̃(k)
iaib

(z)
∣∣. (3.87)

When a or b equal the white vertex then ia and ib denote the associated index, as defined in Definition 3.12. Note that
since |G̃(k)

ij | = |G̃(k)
ji | the above sum is well-defined even though G is undirected. An example of a graph and its associated

sum is given in Figure 2.

Lemma 3.13. Let G be a connected graph with m black vertices and E edges. If G has no white vertices then

1�(k)V(G, k) ≤ CE(Nη)−(m−1)/2. (3.88)

If G has at least one white vertex, then

1�(k)V(G, k) ≤ CE(Nη)−m/2. (3.89)

Above C = max{2/c∗,1}, where c∗ is the constant in (3.11).

Remark 3.14. We pause to point out the usage of the Ward identity (3.7) in the following proof, as it is the only non-
graphical tool used. Roughly speaking, the point of the graphical notation is to organize the sum into terms to which we
can apply first the Cauchy–Schwarz inequality and then the Ward identity. The Ward identity is what results in the factors
(Nη)−1 which is important for closing the bootstrap argument used to prove the local law.

Proof. In the following calculations we assume that �(k) holds and we omit it from the notation. The reader should
therefore keep in mind that |G̃(k)

ij (z)| ≤ C.
First suppose that G has no white vertices. We can assume that m is at least 2 or the statement is trivial. Let T be a

spanning tree of G. By a relabeling of the vertices, we can assume that the vertex m is a leaf of T and that the vertex
m − 1 is adjacent to vertex m. We will use the Cauchy–Schwarz inequality and the Ward identity (3.7) to sum over the
summation index associated with the black vertex m. Let T1 be the tree obtained by removing the vertex m and the edge
(m − 1,m) from T . We have,

V(G, k) ≤ CE−m+1V(T , k) = CE−m+1 1

Nm

(k)∑
i1,...,im

∏
(a,b)∈T

∣∣G̃(k)
iaib

∣∣
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= CE−m+1 1

Nm−1

(k)∑
i1,...,im−1

∏
(a,b)∈T1

∣∣G̃(k)
iaib

∣∣ 1

N

(k)∑
im

∣∣G̃(k)
im−1im

∣∣

≤ CE−m+1 1

Nm−1

(k)∑
i1,...,im−1

∏
(a,b)∈T1

∣∣G̃(k)
iaib

∣∣( 1

N

(k)∑
im

∣∣G̃(k)
im−1im

∣∣2)1/2

≤ CE−m+2 1

(Nη)1/2
V(T1, k). (3.90)

The second to last line follows from Cauchy–Schwarz and in the last line we have used the Ward identity,

1

N

(k)∑
im

∣∣G̃(k)
im−1im

∣∣2 = Im[G̃(k)
im−1im−1

]
Nη

≤ C

Nη
. (3.91)

We can now continue this procedure with tree T1 which consists of m − 1 black vertices {1,2, . . . ,m − 1}. That is,
we choose a leaf of the tree T1 and repeat the above procedure of summing over the summation index associated with
the leaf, applying Cauchy–Schwarz and the Ward identity. To be more precise, we can assume that the vertex m − 1 is
a leaf attached to the vertex m − 2. If we denote by T2 the subtree obtained by removing the vertex m − 1 and edge
(m − 2,m − 1) we obtain,

V(T1, k) = 1

Nm−1

(k)∑
i1,...,im−1

∏
(a,b)∈T1

∣∣G̃(k)
iaib

∣∣

= 1

Nm−2

(k)∑
i1,...,im−2

∏
(a,b)∈T2

∣∣G̃(k)
iaib

∣∣ 1

N

(k)∑
im−1

∣∣G̃(k)
im−2im−1

∣∣

≤ 1

Nm−2

(k)∑
i1,...,im−2

∏
(a,b)∈T2

∣∣G̃(k)
iaib

∣∣( 1

N

(k)∑
im−1

∣∣G̃(k)
im−2im−1

∣∣2)1/2

≤ C
1

(Nη)1/2
V(T2, k). (3.92)

This yields another factor of C(Nη)−1/2. We then inductively repeat this procedure on the subtree T2 consisting of m− 2
back vertices, and so on. Each summation removes a leaf vertex and the edge adjacent to it, and results in a factor
C(Nη)−1/2.

We get a sequence of subtrees T1,T2, . . . ,Tm−1, where the nth tree Tn is obtained after the nth summation. The last
tree Tm−1 consists only of the root vertex and clearly V(Tm−1, k) = 1 by definition. We see that

V(G, k) ≤ CE−m+2 1

(Nη)1/2
V(T1, k) ≤ CE−m+3 1

(Nη)
V(T2, k) ≤ · · ·

≤ (C(Nη)−1/2)m−1V(Tm−1, k) ≤ CE(Nη)−(m−1)/2. (3.93)

This finishes the proof of (3.88). Suppose that G has a single white vertex. We repeat the same procedure as above but
choose the spanning tree to be rooted at the white vertex. After summing over m black vertices we will have

V(G, k) ≤ CE(Nη)−m/2V(Tm,k) (3.94)

where Tm consists of only the white vertex. Clearly V(Tm,k) = 1 by definition and we get the second inequality (3.89) in
this case.

Now we can assume that G has two white vertices. Instead of taking out a spanning tree we choose a spanning forest
consisting of two disjoint trees T ∪ T ′ each of which is rooted at a white vertex. We then have,

V(G, k) ≤ CE−mV(T , k)V
(
T ′, k
)≤ CE(Nη)−m/2, (3.95)
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Fig. 3. The graph on the left is the original graph G with 9 black vertices and 1 white vertices. The graph on the right is the new graph G(P) after
grouping together black vertices with respect to the partition P = {{1,4}, {2,3,5}, {6,8},7,9}}.

where the second inequality follows from the argument in the case that G has a single white vertex. This finishes the
proof. �

We will lastly need the following construction for forming new graphs by grouping together black vertices.

Definition 3.15. Let G be a colored graph with m black vertices labeled {1,2, . . . ,m} and 0, 1 or 2 white vertices. Let P
be a partition on {1,2, . . . ,m}. Note that P induces a partition on the black vertices of G. The graph G(P) is formed as
follows.

Firstly, G(P) has the same number of white vertices as G and the same associated index. To each block of P we create
one black vertex for G(P). We now define the edges of G(P). We first construct a map φ : V (G) → V (G(P)) from the
vertices of G to the vertices of G(P). The white vertices of G are just sent to the corresponding white vertices of G(P).
A black vertex of G is associated with a unique block of P – the block that its label lies in – and we map this vertex to
the black vertex of G(P) corresponding to this block. Then, for each edge (a, b) of G we construct an edge (φ(a),φ(b))

of G(P).

While lengthy, the above definition is very simple. Figure 3 illustrates the process.

Proof of Proposition 3.10. In the following proof we work on the event �(k)(z) and we omit it from the notation. The
reader should therefore keep in mind that |G̃(k)

ij (z)| ≤ C. We will compute high order moments of the terms in all three
expressions (3.72), (3.73) and (3.74). The claim then follows by a high-moment Chebyshev inequality.

We begin with (3.72). Its 2p-th moment is

E

∣∣∣∣∣
(k)∑

i1...il

hki1G̃
(k)
i1,i2

hki2 . . . hkil G̃
(k)
ilj

∣∣∣∣∣
2p

=
(k)∑

i1...i2pl

E[hki1Xi1i2 . . .Xilj hkil+1Xil+1il+2 . . .Xi2lpj ], (3.96)

where Xij denotes either G̃
(k)
ij or its complex conjugate (G̃

(k)
ij )∗. For us the distinction will not be important as we will

be bounding the terms in the above expression by their absolute value. Since G̃(k) is independent of the k-th row of H

we can first take the expectation over this row. We then re-arrange the above expectation into all possible partitions of
the summation indices {1,2, . . . ,2pl}. Let P be such a partition. Note that due to the fact that the hij are independent
centered random variables, the size of each block of P is at least 2, otherwise the expectation will vanish. Therefore,
(3.96) can be bounded by

E

∣∣∣∣∣
(k)∑

i1...il

hki1G̃
(k)
i1,i2

hki2 . . . hkil G̃
(k)
ilj

∣∣∣∣∣
2p

≤
∑
P

CP
q2lp−2|P |

(
1

N |P |
(k)∑

{i1,i2...i2pl}∼P
E
[|Xi1i2 . . .XiljXil+1il+2 . . .Xi2lpj |

])
. (3.97)

Above, the first sum is over all possible partitions of the set {1,2, . . . ,2pl} such that the size of each block of P is at least
2, and |P| denotes the number of blocks in P . The constant CP depends only on the partition P . The second sum is over
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all the possible assignments of the indices {i1, i2 . . . i2pl} which induces the same partition as P of the set {1,2, . . . ,2pl}
(we recall that {i1, i2 . . . i2pl} induces a partition of the set {1,2, . . . ,2pl}, such that a and b are in the same block if and
only if ia = ib).

We first construct the graph G with black vertices labelled by 1,2, . . . ,2lp and one white vertex associated with the
index j . We create an edges between the vertices (i, i +1) for i = nl+1, nl+2, . . . , (n+1)l−1 and n = 0,1,2, . . . ,2p−
1, and an edge between the black vertices nl and the white vertex j , for n = 1, . . . ,2p. The graph G represents the
unpartitioned sum (3.96).

To each partition P we then get a graph G = G(P) as defined above. By Lemma 3.13, we see

1

N |P |
(k)∑

{i1,i2...i2pl}∼P
E
[|Xi1i2 . . .XiljXil+1il+2 . . .Xi2lpj |

]= E
[
V
(
G(P), k

)]≤ C2lp(Nη)−|P |/2, (3.98)

where we used the fact that since G is a connected graph, G(P) is also a connected graph. The total number of partitions
of the set {1,2, . . . ,2pl} is bounded by (2pl)! and we get

E

∣∣∣∣∣
(k)∑

i1...il

hki1G̃
(k)
i1,i2

hki2 . . . hkil G̃
(k)
ilj

∣∣∣∣∣
2p

≤ Cl,p max
P

1

q2lp−2|P |
1

(Nη)|P |/2
≤ Cl,p

(
1

q
+ 1

(Nη)1/4

)2lp

. (3.99)

This yields (3.72).
Next we prove (3.73). We have,

E

∣∣∣∣∣
(k)∑

i1...il

G̃
(k)
ii1

hki1G̃
(k)
i1i2

. . . hkil G̃
(k)
ilj

∣∣∣∣∣
2p

=
(k)∑

i1...i2lp

E[Xii1hki1 . . .XiljXiil+1hkil+1 . . .Xi2lpj ], (3.100)

where again we denote by Xij either G̃
(k)
ij or its complex conjugate (G̃

(k)
ij )∗. We divide the sum up into partitions P

of {1,2, . . . ,2lp}. We define the graph G representing the unpartitioned sum above as follows. It has 2lp black vertices
and two white vertices if i �= j and one white vertex if i = j . We create an edge between black vertices (i, i + 1) for
i = ln + 1, ln + 2, . . . , (n + 1)l − 1 and n = 0, . . . ,2p − 1, an edge between the white vertex i and black vertices nl + 1,
for n = 0,1, . . . ,2p − 1, and an edge between the white vertex j and black vertices nl for n = 1,2, . . . ,2p. We have that
(3.100) is bounded by

E

∣∣∣∣∣
(k)∑

i1,...,il

G̃
(k)
ii1

hki1G̃
(k)
i1i2

hki2 . . . hkil G̃
(k)
ilj

∣∣∣∣∣
2p

≤
∑
P

CP
q2lp−2|P |V

(
G(P), k

)
(3.101)

where again the summation is over all partitions on �1,2lp� with each block of size at least 2. Applying (3.89) we obtain

E

∣∣∣∣∣
(k)∑

i1...il

G̃
(k)
ii1

hki1G̃
(k)
i1i2

hki2 . . . hkil G̃
(k)
ilj

∣∣∣∣∣
2p

≤ Cl,p max
P

1

q2lp−2|P |
1

(Nη)|P |/2
≤ Cl,p

(
1

q
+ 1

(Nη)1/4

)2lp

(3.102)

and we obtain (3.73).
Lastly, we prove (3.74). The 2p-th moment is

E

∣∣∣∣∣
(k)∑

i1...il

hki1G̃
(k)
i1i2

hki2 . . . G̃
(k)
il−1il

hkil

∣∣∣∣∣
2p

=
(k)∑

i1...i2lp

E[hki1Xi1i2 . . . hkil hkil+1Xil+1il+2 . . .Xi2lp−1i2lp
hki2lp

]. (3.103)

Again we divide the sum up into partitions on {1,2, . . . ,2lp}. We associate the following graph G to the unpartitioned
sum. G has 2lp black vertices and no white vertices. There is an edge between (i, i + 1) for i = nl + 1, . . . , (n + 1)l − 1
and n = 0, . . . ,2lp − 1. Construct the graph G(P) as above. We have

E

∣∣∣∣∣
(k)∑

i1...il

hki1G̃
(k)
i1i2

hki2 . . . G̃
(k)
il−1il

hkil

∣∣∣∣∣
2p

≤
∑
P

CP
q2lp−2|P |V

(
G(P), k

)
. (3.104)
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Let G1, . . . ,Gr be the connected components of G(P). Since G has 2p connected components we have r ≤ min{|P|,2p}.
Therefore by (3.88), we have

V
(
G(P), k

)=∏
i

V(Gi , k) ≤ C2p(l−1)
∏
i

1

(Nη)(|Gi |−1)/2
≤ C2p(l−1)

(Nη)(|P |−r)/2
, (3.105)

where |Gi | is the number of vertices of graph Gi . We then see that (3.104) is bounded by

E

∣∣∣∣∣
(k)∑

i1,...,il

hki1G̃
(k)
i1i2

hki2 . . . G̃
(k)
il−1il

hkil

∣∣∣∣∣
2p

≤
∑
P

CP
q2pl−2|P |

C2p(l−1)

(Nη)(|P |−r)/2

≤ Cl,p

(
1

q
+ 1

(Nη)1/4

)2p(l−2)

. (3.106)

This completes the proof. �

Proof of Proposition 3.11. The bounds (3.75), (3.76) and (3.77) follow from more general statements [22, Lemma A.1].
We only prove (3.78) here. The proof is similar to that of (3.74), but with a more careful analysis of graphs.

The 2p-th moment of the lefthand side of (3.78) is bounded by

E

∣∣∣∣∣
(k)∑

i1,i2,i3

hki1G̃
(k)
i1i2

hki2G̃
(k)
i2i3

hki3

∣∣∣∣∣
2p

≤
∑
P

CP
q6p−2|P |

(
1

N |P |
(k)∑

{i1,i2...i6p}∼P
E[Xi1i2Xi2i3Xi4i5 . . .Xi6p−2i6p−1Xi6p−1i6p

]
)

, (3.107)

where the notations are the same as in (3.97), and the sum over P runs through all the partitions of {1,2, . . . ,6p} where
the size of each block is at least two.

We construct the graph G corresponding to the unpartitioned sum in (3.107). The graph G has no white vertices and
black vertices labelled by 1,2, . . . ,6p. We add edges (3n + 1,3n + 2) and (3n + 2,3n + 3) for n = 0,1,2, . . . ,2p − 1.
The graph G consists of 2p connected components and each component is a chain of three vertices and two edges.

For each partition P we construct the graph G(P) as before. Let G1,G2, . . . ,Gr be the connected components of G(P).
Consider the inverse images of the components in the original graph G. By a relabelling, let the inverse image of each
of the components G1, . . . ,Gr1 consist only of a single chain of G. The inverse image of the components Gr1+1, . . . ,Gr

consists of at least two chains. We have the relation

r1 + 2(r − r1) ≤ 2p, (3.108)

since there are in total 2p chains in G.
Each chain consists of three vertices and we know that each block of P is of size at least two. Therefore, for any

1 ≤ i ≤ r1, the component Gi consists of a single vertex which corresponds to one block of the partition P consisting of
exactly three numbers. Since the other blocks of P are of at least size two, we have the relation

3r1 + 2
(|P| − r1

)≤ 6p. (3.109)

Adding the inequalities (3.108) and (3.109) yields,

|P| + r ≤ 4p. (3.110)

The same argument as in the proof of (3.73) yields

E

∣∣∣∣∣
(k)∑

i1,i2,i3

hki1G̃
(k)
i1i2

hki2G̃
(k)
i2i3

hki3

∣∣∣∣∣
2p

≤ Cl,p max
P

1

q6p−2|P |
1

(Nη)(|P |−r)/2
. (3.111)
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If |P| ≤ 2p then the righthand side of above expression is bounded by Cl,pq−2p (recall r ≤ |P|). If |P| ≥ 2p then we
apply (3.110) and obtain

1

q6p−2|P |
1

(Nη)(|P |−r)/2
≤ 1

q2p+(4p−2|P |)
1

(Nη)(2|P |−4p)/2
≤
(

1

q
+ 1√

Nη

)2p

. (3.112)

This finishes the proof. �

4. Universality of eigenvalue statistics

In this section we prove Theorem 2.9. We define the following matrix valued process Ht for any random Laplacian-type
matrix H . The off-diagonal entries are given by Hij (t) = hij (t), i �= j where hij (t) are independent Ornstein–Uhlenbeck
process with initial data hij satisfying

dhij (t) = dBij (t)√
N

− 1

2
hij (t) dt, 1 ≤ i < j ≤ N + 1, (4.1)

where {Bij }1≤i<j≤N+1 are independent standard Brownian motions. The diagonal elements satisfy Hkk(t) =
−∑(k)

i hik(t). We have H0 = H and the equality in law

Ht
d= e−t/2H + (1 − e−t

)1/2
W, (4.2)

where W is a Gaussian Laplacian matrix as defined in (2.35). Furthermore, W is independent from H .
The matrices Ht all have the trivial eigenvalue 0 and corresponding eigenvector e. This will destroy the eigenvalue

universality at 0 and so we must remove the trivial eigenvalue. We denote the nontrivial eigenvalues of Ht as λ1(t) ≤
λ2(t) · · · ≤ λN(t) and corresponding eigenvectors u1(t), u2(t), . . . , uN(t). We will sometimes omit the time parameter
for simplicity of notation. We introduce the following Green’s function of the N nontrivial eigenvalues and eigenvectors.
It is defined by

Ĝ(z,Ht ) :=
N∑

i=1

ui(t)ui(t)
∗

λi(t) − z
= R
(
R∗HtR − z

)−1
R∗, (4.3)

where R is the following matrix (N + 1) × N dimensional matrix (see Section 2.4). First fix any (N + 1) × (N + 1)

orthogonal matrix R̃ with last column e = (N + 1)−1/2(1, . . . ,1)∗ (the specific choice does not matter). We then define
R as the first N columns of R̃.

Remark 4.1. Clearly Ĝ(z,Ht ) differs from the usual Green’s function by only a rank one matrix,

Ĝ(z,Ht ) − (Ht − z)−1 = 1

z
ee∗. (4.4)

We will need the following lemma.

Lemma 4.2. The nontrivial eigenvalues of Ht are distributed as the eigenvalues of the N × N matrix

Ĥt := (e−t/2R∗HR + (1 − e−t
)1/2(

R∗DR + gIN

))+ (1 − e−t
)1/2

GOE (4.5)

where GOE represents an independent N × N matrix drawn from the Gaussian orthogonal ensemble, D = diag{d1, d2,

. . . , dN+1} is a diagonal matrix, with di ’s independent Gaussian random variables with variance (N + 1)/N , and g is a
Gaussian random variable with variance 1/N . Denote the matrix

Ât := R∗(e−t/2H + (1 − e−t
)1/2

D
)
R + (1 − e−t

)1/2
gIN . (4.6)

We then have with overwhelming probability uniformly for z ∈DL,∣∣m
Ât

(z) − mfc(z)
∣∣≤ ξ�, (4.7)

given that t ≤ ξ/q , where the control parameter � is introduced in (2.21).
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Proof. The first statement holds by Proposition 2.10. For the second statement, consider the auxillary matrices

A(1) := e−t/2H + (1 − e−t
)1/2

D, A(2) := e−t/2H + (1 − e−t
)1/2

(D + gIN+1). (4.8)

Since Ât = R∗A(2)R, which is the upper left N ×N minor of R̂∗A(2)R, from the deterministic bound [6, Lemma 6.5], the
Stieltjes transforms of empirical eigenvalue distributions of A(2) and Ât differ by at most (Nη)−1. Moreover, the Stieltjes
transform of the empirical eigenvalue distribution of A(2) is a shift of that of A(1):

mA(2) (z) = mA(1)

(
z − (1 − e−t

)1/2
g
)
. (4.9)

Therefore, to prove (4.7), we need to prove that uniformly for z ∈ DL and t ≤ ξ/q we have with overwhelming probability,

∣∣mA(1)

(
z − (1 − e−t

)1/2
g
)− mfc(z)

∣∣≤ ξ�. (4.10)

For this, we claim that the proof of Theorem 2.5 holds for A(1). We summarize here the changes. We need to modify
Proposition 3.6. Instead of (3.31) we see that we obtain, by the same proof using the McDiarmid inequality, (the extra
term (t/N)1/2 on the righthand side results from the dk’s) the bound∣∣∣∣ 1

N

∑
k

1∑(k)
i e−t/2hik + (1 − e−t )1/2dk − z − m

(1)
fc (z)

− m
(1)
fc (z)

∣∣∣∣≤ Cξ

(
1

q
+

√
t√
N

)
, (4.11)

where m
(1)
fc (z) is the free convolution of the semicircle with a Gaussian of variance

E

[(
(k)∑
i

e−t/2hik + (1 − e−t
)1/2

dk

)2]
= 1 + 1 − e−t

N
. (4.12)

More explicitly, m
(1)
fc is the unique solution to

m
(1)
fc (z) =

∫
ρG(x)dx

(1 + (1 − e−t )/N)1/2x − z − m
(1)
fc (z)

. (4.13)

It’s easy to check that the bounds of Lemma 3.4 also hold for m
(1)
fc after changing the constants a little.

We can then run through the remainder of the proof of Theorem 2.5, simply by replacing hij by e−t/2hij , and G, G(k)

and G̃(k) by the corresponding quantities associated to A(1). The remainder of the proof is unchanged with the exception
of the estimate (3.77). For the matrix A(1) we instead have the following estimate

1�(k)(z)

(k)∑
i,j

G̃
(k)
ij

(
e−t hkihkj − δijN

−1)≤ ξ

(
1

q
+ 1

(Nη)1/2

)
+ Ct, (4.14)

where the constant C depends only on c∗ as in (3.11). The result of the above argument following the proof of Theorem 2.5
is the following local law for A(1). We have the estimate,∣∣mA(1) (z) − m

(1)
fc (z)
∣∣≤ ξ
(
� + (t/N)1/2)+ Ct (4.15)

with overwhelming probability uniformly for z ∈ DL. In order to conclude (4.10), we need an estimate on |m(1)
fc (z − (1 −

e−t )1/2g) − mfc(z)|. For m
(1)
fc , by (4.13), with overwhelming probability uniformly for z ∈DL, we have

m
(1)
fc

(
z − (1 − e−t

)1/2
g
)

=
∫ ξ

−ξ

ρG(x)dx

(1 + (1 − e−t )/N)1/2x + (1 − e−t )1/2g − z − m
(1)
fc (z − (1 − e−t )1/2g)

+ O
(
N−D
)

=
∫

ρG(x)dx

x − z − m
(1)
fc (z − (1 − e−t )1/2g)

+ O

(
ξ
√

t√
N

)
. (4.16)
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In the second quality we used the fact that with overwhelming probability |g| ≤ ξ/
√

N and that for z ∈DL and −ξ ≤ x ≤
ξ the denominator is uniformly bounded away from 0. Using (4.16) and the defining relation (2.15) of mfc(z) will yield
the following estimate,

∣∣m(1)
fc

(
z − (1 − e−t

)1/2
g
)− mfc(z)

∣∣≤ C
ξ
√

t√
N

. (4.17)

The proof is similar to the proof of Proposition 3.9; the argument is essentially the same as that of the proof of Lemma 3.6
of [37] and we do not provide all the details. By a continuity argument, one can first show (4.17) for z ∈ DL with
Im[z] ≥ 2. Since m

(1)
fc and mfc(z) are both Lipschitz and satisfy a similar self-consistent equation, one can prove (4.17)

for z with slightly smaller imaginary part. By repeating this process, one can finally conclude (4.17) for all z ∈ DL.
Combining (4.15) and (4.17) yields∣∣m

Â
(z) − mfc(z)

∣∣≤ ξ
(
� + (t/N)1/2)+ Ct, (4.18)

and (4.7) follows since t ≤ ξ/q . �

We need the following notion of a derivative of a smooth function F on the space of (N +1)× (N +1) real symmetric
matrices that respects the structure of Laplacian-type matrices. For 1 ≤ i < j ≤ N + 1 we define the matrices Xij =
Eij + Eji − Eii − Ejj , where Eij is the base matrix given by (Eij )kl = δikδjl . For indices 1 ≤ i < j ≤ N + 1 we define

∂̂ijF (H) := lim
h→0

F(H + hXij ) − F(H)

h
. (4.19)

Let H be a Laplacian-type matrix as in (2.10). We define the following deformation of H . Given indices 1 ≤ i < j ≤
N + 1 and number 0 ≤ θ ij ≤ 1, the deformed matrix θ ijH is defined by replacing hkl by θ

ij
kl hkl , for 1 ≤ k < l ≤ N + 1

where θ
ij
kl = 1 unless {k, l} = {i, j} in which case θ

ij
ij = θ

ij
ji = θ ij .

The proof of Theorem 2.9 consists of two steps. First we prove that for small t , the eigenvalue statistics of the nontrivial
eigenvalues of H and Ht are the same by a continuity argument. In the second step, we prove the universality of eigenvalue
statistics for random Laplacian-type matrices with small Gaussian components; i.e. we prove eigenvalue universality for
Ht with small t . Thus, Theorem 2.9 follows.

4.1. Short time comparison

In this section we prove that the eigenvalue statistics of H and Ht are the same for small times t .

Proposition 4.3. Let H be a random Laplacian-type matrix as in Definition 2.2. Let Ht by defined as in (4.2). Choose
t = N−1+ε , for sufficiently small ε ≤ β/2, where β is from (2.12). Then the gap statistics and local correlation functions
of the nontrivial eigenvalues of H0 and Ht are the same. More precisely, we first have

lim
N→∞

∫
Rn

O(α1, . . . , αn)

{
ρ

(n)
H0

(
E + α1

N
, . . . ,E + αn

N

)
− ρ

(n)
Ht

(
E + α1

N
, . . . ,E + αn

N

)}
dα1 . . .dαn = 0, (4.20)

for any test function O ∈ C∞
c (Rn). Fix κ > 0 and k ∈ �kN, (1 − κ)N �. Then,

lim
N→∞E

(Ht )
[
O
(
N(λk+1 − λk), . . . ,N(λn+k − λk)

)]−E
(H0)
[
O
(
N(λk+1 − λk), . . . ,N(λn+k − λk)

)]= 0, (4.21)

for O ∈ C∞
c (Rn).

We require the following estimate on the resolvent entries.

Proposition 4.4. For any s ≥ 0, we have with overwhelming probability the bound

max
ij

sup
θkl

∣∣Ĝij

(
z, θklHs

)∣∣= O(1) (4.22)
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for z ∈ {z = E + iη : |E| ≤ L,ξ3N−1 ≤ η ≤ L}. Fix γ > 0. We have with overwhelming probability uniformly in s

max
ij

sup
θkl

∣∣Ĝij

(
z, θklHs

)∣∣= O
(
ξ3Nγ
)

(4.23)

for z ∈ {z = E + iη : |E| ≤ L,N−1−γ ≤ η ≤ L}.

Proof. We first prove (4.22) for the matrix Hs without any deformation. Since Hs is a random Laplacian-type matrix in
the sense of Definition 2.2, we see from Theorem 2.5 and (4.4) that with overwhelming probability,

max
ij

∣∣Ĝij (z,Hs)
∣∣≤ max

ij

∣∣(Hs − z)−1
ij

∣∣+ 1

(N + 1)|z| = O(1) (4.24)

uniformly for any z ∈ {z = E + iη : |E| ≤ L,ξ3N−1 ≤ η ≤ L}. For the deformed matrix θklHs , we have the resolvent
identity,

Ĝij

(
z, θklHs

)= Ĝij (z,Hs) + (1 − θkl
kl

)
hkl(s)
(
Ĝ
(
z, θklHs

)
XklĜ(z,Hs)

)
ij
. (4.25)

The matrix Xkl has exactly four nonzero entries and with overwhelming probability we have |hkl(s)| ≤ ξ/ log(N)q . For
N large enough we therefore have with overwhelming probability,

max
ij

sup
θkl

∣∣Ĝij

(
z, θklHs

)∣∣≤ max
ij

∣∣Ĝij (z,Hs)
∣∣+ 1

2
max

ij
sup
θkl

∣∣Ĝ(z, θklHs

)∣∣, (4.26)

and (4.22) follows from rearranging the above expression. The following deterministic relation is a consequence of [5,
Lemma 2.1],

max
ij

∣∣Ĝij

(
E + iη/M, θklHs

)∣∣≤ M max
ij

∣∣Ĝij

(
E + iη, θklHs

)∣∣. (4.27)

We obtain (4.23) by taking M = ξ3Nγ . �

We will need the following lemma which is a slight modification of [11, Lemma A.2].

Lemma 4.5. Let H be a random Laplacian-type matrix. Define Ht as in (4.2). Let F be a smooth function on the space
of (N + 1) × (N + 1) real symmetric matrices satisfying

sup
0≤s≤t,

1≤i<j≤N+1

E

[(
N2
∣∣hij (s)

∣∣3 + N
∣∣hij (s)

∣∣) sup
θ ij

∣∣∂̂3
ijF
(
θ ijHs

)∣∣]≤ B, (4.28)

where the deformed matrix θ ijHs is defined as above. Then,∣∣E[F(Ht )
]−E
[
F(H0)

]∣∣≤ CtB. (4.29)

Proof. From Itô’s formula we have

E
[
F(Ht )

]−E
[
F(H0)

]= ∫ t

0
E

[∑
i<j

∂̂hij
F (Hs)dhij (s) + 1

2N
∂̂2
hij

F (Hs)ds

]

=
∫ t

0
E

[∑
i<j

−1

2
hij (s)∂̂ijF (Hs) + 1

2N
∂̂2
ijF (Hs)

]
ds (4.30)

We expand the terms above. For some 0 ≤ θ
ij

1 , θ
ij

2 ≤ 1 we have the equalities

E
[
hij (s)∂̂ijF (Hs)

]= E

[
hij ∂̂ijFhij =0 + h2

ij ∂̂
2
ijFhij =0 + 1

2
h3

ij ∂̂
3
ijF
(
θ

ij

1 Hs

)]
, (4.31)

and

E
[
∂̂2
ijF (Hs)

]= E
[
∂̂2
ijFhij =0 + hij ∂̂

3
ijF
(
θ

ij

2 Hs

)]
. (4.32)
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This leads to∣∣∣∣E
[∑

i<j

−1

2
hij (s)∂̂ijF (Hs) + 1

2N
∂̂2
ijF (Hs)

]∣∣∣∣≤ N2 sup
i<j

E

[(∣∣hij (s)
∣∣3 + 1

N

∣∣hij (s)
∣∣) sup

θ ij

∣∣∂̂3
ijF
(
θ ijHs

)∣∣], (4.33)

and (4.29) follows. �

4.1.1. Comparison of correlation functions
We now prove that the locally averaged correlation functions of the nontrivial eigenvalues of the matrix H0 coincide with
those of Ht , i.e. (4.20) of Proposition 4.3. The main ingredient of the proof is the following Green’s function comparison
lemma. Its proof follows essentially from [32, Lemma 5.2].

Lemma 4.6. Fix n ∈ N, and let γ, δ > 0 be sufficiently small. Then the following holds for any η ∈ [N−1−γ ,N−1],
any sequence of positive integers k1, k2, . . . , kn, any set of complex parameters zm

j = Em
j ± iη, where j ∈ �1, km�, m ∈

�1, n�, |Em
j | ≤ L, and the ± signs are arbitrary. Let F ∈ C∞(Rn) be a test function such that for any multi-index m =

(m1, . . . ,mn) with 1 ≤ |m| ≤ 3 and for any ω > 0,

max
{∣∣∂mF(x)

∣∣ : ‖x‖∞ ≤ Nω
}≤ Nc0ω,

max
{∣∣∂mF(x)

∣∣ : ‖x‖∞ ≤ N2}≤ Nc0 .
(4.34)

Then, defining Ĝ1 := Ĝ(z,Ht ) and Ĝ0 := Ĝ(z,H0) we have for any t > 0,

∣∣∣∣∣EF

(
N−k1 Tr

k1∏
j=1

Ĝ1
(
z1
j

)
, . . . ,N−kn Tr

kn∏
j=1

Ĝ1
(
zn
j

))−EF(Ĝ1 → Ĝ0)

∣∣∣∣∣≤ C1
(
ξNγ
)C2 tN/q. (4.35)

Here, EF(Ĝ1 → Ĝ0) is the expression obtained from the leftmost expression above by replacing Ĝ1 with Ĝ0. The con-
stants C1 and C2 depend on n, k1, . . . , kn, m1, . . . ,mn, and the constants in (4.34).

Proof. For simplicity of notation, we only prove (4.35) for n = 1 and k1 = 1 and write z instead of z1
1; i.e., we prove that

∣∣E[F (N−1 Tr Ĝ(z,Ht )
)]−E

[
F
(
N−1 Tr Ĝ(z,H0)

)]∣∣≤ C1
(
ξNγ
)C2 tN/q. (4.36)

By Lemma 4.5, it is sufficient to prove that

sup
0≤s≤t,

1≤i<j≤N+1

E

[(
N2
∣∣hij (s)

∣∣3 + N
∣∣hij (s)

∣∣) sup
θ ij

∣∣∂̂3
ijF (N−1 Tr Ĝ

(
z, θ ijHs

)∣∣]≤ C1
(
ξNγ
)C2N/q. (4.37)

An explicit computation yields

∂̂3
ijF
(
N−1 Tr Ĝ

)= (N−1∂̂ij Tr Ĝ
)3

F ′′′ + 3
(
N−1∂̂ij Tr Ĝ

)(
N−1∂̂2

ij Tr Ĝ
)
F ′′ + (N−1∂̂3

ij Tr Ĝ
)
F ′. (4.38)

The derivative of the trace is

∂̂ r
ij Tr Ĝ = (−1)r r!Tr

[
Ĝ(Xij Ĝ)r

]
. (4.39)

The matrix Xij consists of four nonzero entries and so (∂̂ij )
l TrG is a sum of r!4r of terms which are products of resolvent

entries. By Proposition 4.4 we have with overwhelming probability for any z with Im[z] ≥ N−1−γ that

sup
θkl

∣∣N−1(∂̂ij )
r Tr Ĝ
(
z, θ ijHs

)∣∣≤ 4r r!(ξ3Nγ
)r+1

, r = 1,2,3. (4.40)

We denote A the event that (4.40) holds. On A we have

sup
θ ij

∣∣∂̂3
ijF (N−1 Tr Ĝ

(
z, θ ijHs

)∣∣≤ C
(
ξ3Nγ
)6+c0 . (4.41)
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On the complement Ac we have the deterministic bound

sup
θkl

∣∣N−1(∂ij )
r Tr Ĝ
(
z, θ ijHs

)∣∣≤ r!(4/ Im[z])r ≤ 4r r!(N1+γ
)r+1

, r = 1,2,3. (4.42)

We deduce (4.37), yielding the lemma. �

The following lemma is essentially [30, Theorem 6.4]. It transforms the statement about the Green’s function of
Lemma 4.6 to a statement about the local correlation functions.

Lemma 4.7. Consider two random Laplacian-type matrices H0 and H1 with Green’s functions Ĝ0(z) and Ĝ1(z). Sup-
pose that for all choices of the parameters (i.e., n, γ , δ, ki ’s, zi ’s, etc.) and functions F the estimate (4.35) holds. Then
for all smooth observables O

lim
N→∞

∫
Rn

O(α1, . . . , αn)

{
ρ

(n)
H0

(
E + α1

N
, . . . ,E + αn

N

)
− ρ

(n)
H1

(
E + α1

N
, . . . ,E + αn

N

)}
dα1 . . .dαn = 0. (4.43)

We have therefore proven (4.20) of Proposition 4.3.

4.1.2. Comparison of gap statistics
In this subsection, we prove (4.21) of Proposition 4.3, the comparison of the gap statistics for random Laplacian-type
matrices, which is extremely similar to the argument given in detail in [32, Sections 4, 5]. The key difference is that we
do not have a delocalization estimate for all N eigenvectors but only for the eigenvectors corresponding to eigenvalues
belonging to the interval [−L,L].

The first step is to obtain the following level repulsion estimate for random Laplacian-type matrices.

Proposition 4.8. Let H be a random Laplacian-type matrix. Fix a small κ > 0 and fix an index i ∈ �κN, (1 − κ)N �.
There is a τ0 > 0 so that for all fixed 0 < τ < τ0 we have for large enough N ,

P
(∣∣λi(H) − λi+1(H)

∣∣≤ N−1−τ
)≤ N−τ/2. (4.44)

Proof. The proof is similar to the proof of [32, Theorem 4.1]. We detail only what changes. Denote the matrix

Ri(H) :=
∑

j :j �=i,j≤N

1

λi(H) − λj (H)
uj (H)uj (H)∗ =

∮
|z−λi (H)|=ω

Ĝ(z,H)

λi(H) − z
dz, (4.45)

where ω is chosen such that the contour |z − λi(H)| = ω encloses only λi(H). We define the quantity

Qi(H) := 1

N2
Tr
(
Ri(H)2)= 1

N2

∑
j :j �=i,j≤N

1

(λj (H) − λi(H))2
. (4.46)

This quantity plays an important role in [39,40], where it was observed that it captures quantitatively the derivatives of
λi(H). The function Qi(H) is not well-defined on the space of real symmetric matrices (it diverges when λi(H) is not
a single eigenvalue) and so we compose it with a cutoff function χ = χN . The function χ is chosen so that: (1) it is
smooth with its first three derivatives bounded; (2) on the interval [0,N2τ ] we have that |χ(x)− x| ≤ 1, and for x ≥ N2τ ,
χ(x) = N2τ . The function χ(Qi(H)) is then a well-defined smooth function on the space of real symmetric matrices.

The proof of Proposition 4.8 consists of three steps. The first step is to obtain the estimate

E
[
χ
(
Qi(Ht )

)]≤ CN3τ/2, (4.47)

for some t = N−1+ε with ε sufficiently small. This estimate follows from [35, Theorem 3.6] and Lemma 4.2.
In the second step, we compare E[χ(Qi(Ht ))] for t = N−1+ε and E[χ(Qi(H0))] using the continuity Lemma 4.5. By

choosing ε sufficiently small we claim that∣∣E[χ(Qi(Ht )
)]−E

[
χ
(
Qi(H0)

)]∣∣≤ 1. (4.48)
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Taking F(H) := χ(Qi(H)) in Lemma 4.5 we see that it suffices to prove that

sup
0≤s≤t,

1≤a<b≤N+1

E

[(
N2
∣∣hab(s)

∣∣3 + N
∣∣hab(s)

∣∣) sup
θab

∣∣∂̂3
abχ
(
Qi

(
θabHs

))∣∣]≤ C1
(
ξNτ
)C2N/q. (4.49)

The proof of this bound is similar to the computation completed in [32, Proposition 4.6]. We outline the differences. The
formulas [32, (4.16)–(4.18)] remain valid after replacing V by the Xab . The end result is that ∂̂3

abQi(H) is a finite sum of
terms of the form

1

N2

∑
j :j �=i

�

(λi − λj )5
, � = V 3

ii , V
2
iiVjj ,ViiV

2
jj ,V

3
jj .

1

N2

∑
j1,j2:

j1,j2 �=i

�

(λi − λj1)
4(λi − λj2)

, � = ViiV
2
j1j2

,Vj1j1V
2
ij2

,Vj1j1V
2
j1j2

,ViiV
2
ij2

.

(4.50)
1

N2

∑
j1,j2:

j1,j2 �=i

�

(λi − λj1)
3(λi − λj2)

2
, � = Vj2j2V

2
j1j2

,ViiV
2
ij1

,ViiV
2
j1j2

,Vj1j1V
2
j1j2

.

1

N2

∑
j1,j2,j3:

j1,j2,j3 �=i

Vj1j2Vj2j3Vj3j1

(λi − λj1)
3(λi − λj2)(λi − λj3)

,
∑

j1,j2,j3:
j1,j2,j3 �=i

Vj1j2Vj2j3Vj3j1

(λi − λj1)
2(λi − λj2)

2(λi − λj3)
,

where Vjk := u∗
jXabuk . The only change in controlling the above quantities arises from the fact that we do not have the

delocalization of eigenvectors corresponding to eigenvalues outside the interval [−L,L]. However, the contribution for
eigenvalues far away from λi(θ

abHs) is negligible due to the fact that the denominator is bounded below. For the sake of
exposition, we show how the existing proof of [32, Section 4] is modified to bound the term

1

N2

∑
j :j �=i

V 3
jj

(λi − λj )5
. (4.51)

On the event {Qi(θ
abHs) ≤ N2τ } we have

∑
j :j �=i

1

|λi − λj |k ≤
(∑

j :j �=i

1

|λi − λj |2
)k/2

≤ Nk(1+τ), k ≥ 2. (4.52)

Let A be the event that the bound (4.22) holds. On the event A we have that

‖uj‖2∞ ≤ ξ3/N, j : |λj − λi | ≤ L/2. (4.53)

Therefore on the event A∩ {Qi(θ
abHs) ≤ N2τ } we have

1

N2

∑
j :j �=i

V 3
jj

|λi − λj |5 ≤ 1

N2

∑
j :j �=i

|λj −λi |≤L/2

V 3
jj

|λi − λj |5 + 1

N2

∑
j :j �=i

|λj −λi |≥L/2

V 3
jj

|λi − λj |5

≤ ξ9

N5

∑
j :j �=i

1

|λi − λj |5 + 1

N2

2

L

∑
j :j �=i

∣∣u∗
jXabuj

∣∣3

≤ ξ9N5τ + C

N2
≤ C1
(
ξNτ
)C2 (4.54)

The other terms of (4.50) are handled similarly. The bound (4.49) is subsequently obtained by a similar argument as
in Lemma 4.6. We then choose τ and ξ sufficiently small such that C1(ξNτ )C2 ≤ Nβ/4, where β is from (2.12), and
t = N−1+ε with ε ≤ β/2, then we have tC1(ξNτ )C2N/q ≤ N−β/4 and (4.48) follows.
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Combining (4.47) and (4.48) yields

E
[
χ
(
Qi(H0)

)]≤ CN3τ/2. (4.55)

The estimate (4.44) follows from Markov’s inequality and the definition of χ . �

Proof of (4.21) of Proposition 4.3. For any test function O ∈ C∞(Rn) with bounded first three derivatives, it suffices to
prove the stronger claim:

lim
N→∞
∣∣E[O(Nλi(0), . . . ,Nλi+n(0)

)]−E
[
O
(
Nλi(t), . . . ,Nλi+n(t)

)]∣∣= 0 (4.56)

for t ≤ N−1+ε . For simplicity of notation we only prove (4.56) in the case n = 1:

lim
N→∞
∣∣E[O(Nλi(t)

)]−E
[
O
(
Nλi(0)

)]∣∣= 0. (4.57)

The general case is analogous.
Take a cutoff function ρ such that ρ(x) = 1 for x ≤ N2τ and ρ(x) = 0 for x ≥ 2N2τ , where τ > 0 is a small constant.

We can choose ρ so that its first three derivatives are bounded. We have by Proposition 4.8 that

P
(
Qi(Hs) ≥ N2τ

)≤ N−τ/2, s = 0, t. (4.58)

Since O ∈ C∞(R) is bounded, we have∣∣E[O(Nλi(0)
)]−E

[
O
(
Nλi(t)

)]∣∣
≤ ∣∣E[O(Nλi(0)

)
ρM

(
Qi(H0)

)]−E
[
O
(
Nλi(t)

)
ρM

(
Qi(Ht )

)]∣∣
+ ‖O‖∞P

(
Qi(H0) ≥ N2τ

)
) + ‖O‖∞

(
P
(
Qi(Ht ) ≥ N2τ

))
≤ ∣∣E[O(Nλi(0)

)
ρM

(
Qi(H0)

)]−E
[
O
(
Nλi(t)

)
ρM

(
Qi(Ht )

)]∣∣+ 2‖O‖∞
Nτ/2

. (4.59)

Notice that O(Nλi(H))ρM(Qi(H)) is a well-defined smooth function on the space of symmetric matrices. We apply
Lemma 4.5 with the function F(H) = O(Nλi(H))ρM(Qi(H)). An argument similar to the derivation of (4.49) yields

sup
θab

∣∣∂̂3
abO
(
Nλi(H)

)
ρM

(
Qi(H)

)∣∣≤ C1
(
ξNτ
)C2, (4.60)

with overwhelming probability. Thus by Lemma 4.5,

∣∣E[O(Nλi(0)
)
ρM

(
Qi(H0)

)]−E
[
O
(
Nλi(t)

)
ρM

(
Qi(Ht)

)]∣∣≤ C1
(
ξNτ
)C2 tN/q. (4.61)

The equation (4.57) follows if we hoose τ and ξ sufficiently small such that C1(ξNτ )C2 ≤ Nβ/4, where β is from (2.12),
and t = N−1+ε with ε ≤ β/2, then we have tC1(ξNτ )C2N/q ≤ e−β/4. And (4.57) follows. �

We have therefore proven (4.21) of Proposition 4.3. This finishes the proof of Proposition 4.3.

4.2. Universality of Ht

The goal of this section is the following proposition.

Proposition 4.9. Let H be a random Laplacian-type matrix. We define Ht as in (4.2). Let t = N−1+ε , for sufficiently small
ε ≤ β/2, where β is from (2.12). There exists a constant c so that the following holds. Firstly, we have gap universality
for Ht . For any κ > 0 and index i ∈ �κN, (1 − κ)N � we have∣∣E(Ht )

[
O
(
Nρfc(γi)(λi − λi+1), . . . ,Nρfc(γi)(λi − λi+n)

)]
−E

(GOE)
[
O
(
Nρsc(γi,sc)(λi − λi+1), . . . ,Nρsc(γi,sc)(λi − λi+n)

)]∣∣≤ CN−c, (4.62)

for any test function O ∈ C∞
c (Rn).
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Secondly, the averaged n-point correlation functions of the nontrivial eigenvalues of Ht are universal. For any δ > 0
and E ∈ [−L,L], and b ≥ N−1+δ we have∣∣∣∣

∫ E+b

E−b

∫
Rn

O(α1, . . . , αn)

{
1

ρfc(E)n
ρ

(n)
Ht

(
E′ + α1

Nρfc(E)
, . . . ,E′ + αn

Nρfc(E)

)

− 1

ρsc(E)n
ρ

(n)
GOE

(
E′ + α1

Nρsc(E)
, . . . ,E′ + αn

Nρsc(E)

)}
dα1 . . .dαn

dE′

2b

∣∣∣∣≤ N−c, (4.63)

where the test function O ∈ C∞
c (Rn).

The proof of Proposition 4.9 is a modification of [32, Section 3]. We do not provide all of the details.
We first require a minor modification of the main result of [35, Theorem 2.5], which states that for any deterministic

matrix A the local eigenvalue statistics of A + √
tGOE are universal for t � N−1, under some mild regularity conditions

of its eigenvalues. To state it more precisely, we introduce some notation. For the deterministic N ×N matrix A we define

At := A + ϑtG, ϑt :=
√

1 − e−t

2
= O
(
t1/2), (4.64)

where G is a standard GOE matrix. We denote by ρt the free convolution of the empirical eigenvalue distribution of A

and the semicircle law with variance ϑ2
t , and mt the Stieltjes transform of ρt . Then m0(z) is just the Stieltjes transform

of empirical eigenvalue distribution of A. The density ρt is analytic on its support for any t > 0. The function mt solves
the equation

mt(z) = m0
(
z + ϑ2

t mt (z)
)= 1

N

N∑
i=1

1

λi(A) − z − ϑ2
t mt (z)

, (4.65)

where λ1(A) ≤ λ2(A) ≤ · · · ≤ λN(A) are the eigenvalues of A. We denote the classical eigenvalues of ρfc, ρsc and ρt by
γi , γi,sc and γi,t respectively. They are defined by

∫ γi

−∞
ρfc(x) dx = i − 1

2

N
,

∫ γi,sc

−∞
ρsc(x) dx = i − 1

2

N
,

∫ γi,t

−∞
ρt (x) dx = i − 1

2

N
. (4.66)

The following is a minor modification of [35, Theorem 2.5].

Theorem 4.10. Fix small parameter ε > 0 and large parameter L > 0. Suppose that there are constants C1,C2 > 0 such
that

C1 ≤ Im
[
m0(E + iη)

]≤ C2 (4.67)

for all E ∈ (−L,L) and N−1+ε/3 ≤ η ≤ L. There is a constant cε so that the following holds. Suppose that ‖A‖ ≤ Ncε .
Let i be such that λi(A) ∈ (−L/2,L/2) and index j ∈ �κN, (1 − κ)N � for some κ > 0. Then for t = N−1+ε , there exists
a small constant c > 0, which depends on ε and κ , such that for indices i1, . . . , in ∈N and ik ≤ Nc ,∣∣E(At )

[
O
(
ρt (γi,t )N(λi − λi+i1), . . . , ρt (γi,t )N(λi − λi+in )

)]
−E

(GOE)
[
O
(
ρsc(γj )N(λj − λj+i1), . . . , ρsc(γj )N(λj − λj+in )

)]∣∣≤ CN−c. (4.68)

The only difference between the above theorem and that stated in [35, Theorem 2.5] is that the spectrum of the matrix
A is required to have a lower bound in [35, Theorem 2.5]. However, the only place the lower bound is used is to apply [35,
Lemma 7.17] in order to conclude [35, Theorem 3.5]; that is, so that the error in the rigidity estimates on the eigenvalues
of At is smaller than Nδ/N for any δ > 0. It is clear that if instead the lower bound on A is replaced by the bound
‖A‖ ≤ Nδ1 then there is a universal C > 0 so that the rigidity estimates of [35, Theorem 3.5] hold with an error of
NCδ/N . The proof of the main result of [35] on universality only requires that the rigidity estimates hold with an error of
Nδ2/N where δ2 > 0 is some small constant. Hence Theorem 4.10 holds.

Let A be the set of N × N real symmetric matrices such that

A := {A : ∣∣m0(z) − mfc(z)
∣∣≤ ξ�), z ∈DL

}∩ {‖A‖ ≤ ξ
}
, (4.69)

where the ν > 0 in the definition of ξ is taken small enough.
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Lemma 4.11. Let A ∈ A. We have for t ≤ q/N , (in fact we only need that t = o(1))∣∣mt(z) − mfc(z)
∣∣≤ C
(
ξ� + t1/2) (4.70)

uniformly for

z ∈ {z = E + iη : |E| ≤ 2ξ + L − 1,2 ≤ η ≤ L − 1
}

∪ {z = E + iη : |E| ≤ L − 1, ξ 3N−1 ≤ η ≤ 2
}

∪ {z = E + iη : 2ξ + 1 ≤ |E| ≤ 2ξ + L − 1, ξ 3N−1 ≤ η ≤ 2
}
. (4.71)

The proof is identical to [32, Lemma 3.3]. We first derive that |ϑ2
t mt | ≤ ϑt = O(t1/2), and then use the definition of

the set A to get

mt(z) = m0
(
z + ϑ2

t mt (z)
)= mfc

(
z + ϑ2

t mt (z)
)+ O(ξ�) = mfc(z) + O

(
ξ� + t1/2), (4.72)

where we have used that mfc is Lipschitz from Lemma 3.4.
We now need the following analogue of [32, Lemma 3.4].

Lemma 4.12. For any t ≤ min{q/N,N−2/3}, any real symmetric matrix A ∈A and E ∈ (−L/2,L/2) we have∣∣ρt (E) − ρfc(E)
∣∣≤ Cξ3/(Nt). (4.73)

Moreover for any index i such that λi(A) ∈ (−L/2,L/2), we have∣∣ρt (γi,t ) − ρfc(γi)
∣∣≤ Cξ3/(Nt). (4.74)

Proof. The proof is similar to that of [32, Lemma 3.4]. We have the bounds

ρt (E) ≤ C,
∣∣ρ′

t (E)
∣∣≤ C/t, (4.75)

uniformly for E ∈ [−L,L]. For (4.73), we can write the difference as∣∣ρt (E) − ρfc(E)
∣∣≤ ∣∣ρt (E) − Im

[
mt(E + iη)

]
/π
∣∣

+ ∣∣Im[mt(E + iη)
]
/π − Im

[
mfc(E + iη)/π

]∣∣+ ∣∣Im[mfc(E + iη)
]
/π − ρfc(E)

∣∣. (4.76)

The statement follows by a similar argument as in [32, Lemma 3.4] and taking η = ξ3/N .
The proof of (4.74) is analogous to the proof of [32, Lemma 3.4], and the main ingredient is the rigidity estimate

|γi,t − γi | ≤ C
(
ξ2q−1 + ξ t1/2), (4.77)

which follows the same argument as the proof of Corollary 2.6 and the definition of A. To prove (4.74) we have∣∣ρt (γi,t ) − ρfc(γi)
∣∣≤ ∣∣ρt (γi,t ) − ρfc(γi,t )

∣∣+ ∣∣ρfc(γi,t ) − ρfc(γi)
∣∣≤ Cξ3/(Nt), (4.78)

given that t ≤ min{q/N,N−2/3}, where we have used that ρfc is Lipschitz. �

Proof of Proposition 4.9. By Lemma 4.2 we need to prove universality for the matrix Ĥt defined there. We have that

Ĥt = Ât + (1 − e−t
)1/2

GOE. (4.79)

By Lemma 4.2 we have that Ât ∈ A with overwhelming probability given that t ≤ ξ/q . With this and Lemma 4.12
established, the remainder of the proof is identical to the proof of [32, Theorem 3.1]. �

Proof of Theorem 2.9. Theorem 2.9 follows from combining Proposition 4.3, which states that the local statistics of
eigenvalues of H and Ht are the same for t = N−1+ε with ε ≤ β/2, and Proposition 4.9, which states that the local
statistics of eigenvalues of Ht for t = N−1+ε are the same as those of Gaussian orthogonal ensembles. Therefore the
eigenvalue statistics of H agree with those of Gaussian orthogonal ensembles. �
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