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Abstract. Swendsen–Wang dynamics for the Potts model was proposed in the late 1980’s as an alternative to single-site heat-bath
dynamics, in which global updates allow this MCMC sampler to switch between metastable states and ideally mix faster. Gore and
Jerrum (J. Stat. Phys. 97 (1999) 67–86) found that this dynamics may in fact exhibit slow mixing: they showed that, for the Potts model
with q ≥ 3 colors on the complete graph on n vertices at the critical point βc(q), Swendsen–Wang dynamics has tMIX ≥ exp(c

√
n).

Galanis et al. (In Proc. of the 19th International Workshop on Randomization and Computation (RANDOM 2015) (2015) 815–828)
showed that tMIX ≥ exp(cn1/3) throughout the critical window (βs,βS) around βc, and Blanca and Sinclair (In Proc. of the 19th
International Workshop on Randomization and Computation (RANDOM 2015) (2015) 528–543) established that tMIX ≥ exp(c

√
n)

in the critical window for the corresponding mean-field FK model, which implied the same bound for Swendsen–Wang via known
comparison estimates. In both cases, an upper bound of tMIX ≤ exp(c′n) was known. Here we show that the mixing time is truly
exponential in n: namely, tMIX ≥ exp(cn) for Swendsen–Wang dynamics when q ≥ 3 and β ∈ (βs,βS), and the same bound holds for
the related MCMC samplers for the mean-field FK model when q > 2.

Résumé. La dynamique de Swendsen–Wang a été proposée à la fin des années 1980 comme une alternative à la dynamique du bain-de-
chaleur à un site, dans laquelle des mises à jour globales permettent à cet algorithme MCMC de passer plus vite d’un état métastable à un
état de mélange idéal. Gore et Jerrum (J. Stat. Phys. 97 (1999) 67–86) ont trouvé que cette dynamique peut en fait montrer un mélange
lent: ils ont montré, pour le modèle de Potts à q ≥ 3 couleurs sur le graphe complet sur n sommets au point critique βc(q), que la
dynamique de Swendsen–Wang vérifie tMIX ≥ exp(c

√
n). Galanis et al. (In Proc. of the 19th International Workshop on Randomization

and Computation (RANDOM 2015) (2015) 815–828) a montré que tMIX ≥ exp(cn1/3) dans toute la fenêtre critique (βs,βS) autour de
βc, et Blanca et Sinclair (In Proc. of the 19th International Workshop on Randomization and Computation (RANDOM 2015) (2015)
528–543) ont établit que tMIX ≥ exp(c

√
n) dans la fenêtre critique pour le modèle de champs moyen FK, ce qui implique la même

borne pour Swendsen–Wang grâce des estimées de comparaison connues. Dans les deux cas, une borne supérieure de tMIX ≤ exp(c′n)

était connue. Dans cet article, nous montrons que le temps de mélange est vraiment exponentiel en n: plus précisément, tMIX ≥ exp(cn)

pour la dynamique de Swendsen–Wang quand q ≥ 3 et β ∈ (βs,βS), et la même borne est vraie pour l’algorithme MCMC associé pour
le modèle de champs moyen FK quand q > 2.
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1. Introduction

The mean-field q-state Potts model is a canonical statistical physics model extending the Curie–Weiss Ising model (q = 2)
to q ∈N possible states; for q ≥ 3, it is one of the simplest models to exhibit a discontinuous (first-order) phase transition.
Formally, the mean-field q-state Potts model with parameter β is a probability distribution μn,β,q over {1, . . . , q}n, given
by μn,β,q(σ ) ∝ exp(

β
n
H(σ)), where H(σ) = ∑

i<j 1{σi = σj }. The model exhibits a phase transition at β = βc(q) from
a disordered phase (β < βc), where the sizes of all q color classes concentrate around n/q , to an ordered phase (β > βc),
where there is typically one color class of size aβn for aβ > 1/q (see §2).

As a means of overcoming low-temperature bottlenecks in the energy landscape (dominant color classes), Swend-
sen and Wang [20] introduced a non-local reversible Markov chain, relying on the random cluster (FK) representa-
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tion of the Potts model. The mean-field FK model is the generalization of G(n,p) – the Erdős–Rényi random graph –
parametrized by (p = λ

n
, q), in which the probability of a graph G = (V ,E), identified with ω ∈ �RC := {0,1}(n

2), is given

by πn,p,q(ω) ∝ p|E|(1 − p)(
n
2)−|E|qk(G), where k(G) is the number of connected components of G (clusters of ω).

Via the Edwards–Sokal coupling [9] of the q-state Potts model at inverse temperature β/n and the FK model with
parameters (p, q) with p = 1 − e−β/n, the mean-field Swendsen–Wang dynamics can be formulated as follows: consider
a mean-field Potts configuration σ with V1, . . . , Vq being the sets of vertices Vi = {x : σx = i}. An update of the dynamics,
started from σ , first samples, independently for every i = 1, . . . , q , a configuration Gi ∼ G(|Vi |,p) on the subgraph of
Vi , forming an FK configuration ω as the union of the Gi ’s; then, it assigns an i.i.d. color XC ∼ Uni({1, . . . , q}) to each
cluster C in ω, and for every x ∈ C, sets σ ′

x = XC in the new state σ ′ of the Markov chain.
As apparent from the second (coloring) stage of the Swendsen–Wang algorithm, it can seamlessly jump between the

q ordered low-temperature metastable states where one color is dominant. It was thus expected that this MCMC sampler
would converge quickly to equilibrium at all temperatures; e.g., its total variation mixing time tMIX, formally defined in
§2, would be at most polynomial in the system size for all β > 0.

Indeed, at q = 2 (the Ising model) Cooper, Dyer, Frieze and Rue [7] proved that, on the complete graph, Swendsen–
Wang has tMIX = O(

√
n) at all β (it was later shown in [18] that tMIX 	 n1/4 at βc while tMIX = O(logn) at β 
= βc), and

Guo and Jerrum [15] recently showed that for any n-vertex graph and all β , Swendsen–Wang has tMIX = nO(1) (this is in
contrast to single-site dynamics, where tMIX ≥ exp(cn) at low temperature [8]).

Countering this intuition, however, Gore and Jerrum [14] found in 1999 that, for any q ≥ 3, the Swendsen–Wang
dynamics for the mean-field q-state Potts model has tMIX ≥ exp(c

√
n) for some c(q) > 0 at its critical point βc(q). This

is a consequence of the discontinuity of the phase transition of the mean-field Potts model for q ≥ 3, where at βc(q), both
the q ordered phases (with one dominant color class) and the disordered phase (with all color classes having roughly n/q

sites) are metastable.
On the lattice (Z/nZ)d , the Potts model exhibits a discontinuous phase transition for some choices of q (depending

on d); there it was shown in [5], following [4], that Swendsen–Wang dynamics in fact has tMIX ≥ exp(cnd−1) for all q

sufficiently large, suggesting that an exponential lower bound in n should also hold in mean-field, believed to approximate
high-dimensional tori. (The matching upper bound of [5] applies to general graphs and translates to tMIX ≤ exp(c′n) on
the complete graph.) On Z

2, this lower bound was extended [12] to q where the phase transition is first-order (all q > 4).
For the Glauber dynamics of the mean-field Potts model, when q ≥ 3, the mixing time for all β was characterized in [8],

where it was shown that, in discrete-time, tMIX has order n logn at β < βs , order n4/3 at β = βs , and finally tMIX ≥ exp(cn)

at β > βs , where βs is the spinodal point corresponding to the onset of q ordered metastable phases. Recently, Galanis,
Štefankovic and Vigoda [10] analyzed the mixing time of the analogous mean-field Swendsen–Wang dynamics, finding
it to mix in polynomial time1 both at high temperature and – unlike Glauber dynamics – at low temperatures, for all β

outside a critical window (βs, βS) around βc , where the critical point βS (mirroring the spinodal point βs ) marks the
disappearance of metastability of the disordered phase.

For β ∈ (βs, βS), Swendsen–Wang was shown in [10] to slow down to tMIX ≥ exp(cn1/3). The related Glauber dynam-
ics for the mean-field FK model (see precise definitions in §2) with q > 2 was shown by Blanca and Sinclair [1] to have
tMIX ≥ exp(c

√
n) whenever λ = np is in the critical window (λs, λS); this implied, via comparison results of Ullrich [21],

that Swendsen–Wang has tMIX ≥ exp(c
√

n) throughout β ∈ (βs, βS) (extending the lower bound at β = βc due to Gore
and Jerrum).

The fact that three significant papers, over a period of almost twenty years, all presented a lower bound no better than
exp(c

√
n), left open the possibility that this is the true order of the mixing time inside the critical window.

We show that the mixing time of the mean-field Swendsen–Wang dynamics is truly exponential in n at criticality,
similar to the single-site Glauber dynamics (see Figure 1).

Theorem 1. Let q ≥ 3 be a fixed integer, and consider the Swendsen–Wang dynamics for the q-state mean-field Potts
model on n vertices at inverse temperature β ∈ (βs, βS). There exists some c(β, q) > 0 such that, for all n large enough,
tMIX ≥ exp(cn).

The case of non-integer q (the mean-field FK model) is more delicate: the analogue of Swendsen–Wang in this setting
is Chayes–Machta dynamics [6]; we nonetheless are able to obtain an analogous, exponential in n, lower bound on the
mixing time. As in [1], comparison results of [21] extend the result to heat-bath Glauber dynamics.

Theorem 2. Fix q > 2, and consider Glauber dynamics for the mean-field FK model on n vertices with parameters
(p = λ

n
, q) where λ ∈ (λs, λS). There exists c(λ, q) > 0 such that tMIX ≥ exp(cn) for large enough n. The same holds for

Chayes–Machta dynamics.

1It was shown in that work that tMIX = O(logn) for β /∈ [βs,βS), whereas tMIX 	 n1/3 at β = βs .
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Fig. 1. Mixing times of continuous–time mean-field Potts Glauber (green) and Swendsen–Wang (blue) dynamics when q > 2; the dashed line represents
the previous lower bound [1,10,14] for β ∈ (βs ,βS).

To outline our approach for proving Theorems 1–2, we first sketch the argument of [14], thereafter adapted to β ∈
[βs,βS) in [10] and to the FK model in [1]. Starting from a Potts configuration where each color class has n

q
± εn

vertices, since β < βS , for small enough ε, this corresponds to subcritical Erdős-Rényi random graphs in the first stage
of the Swendsen–Wang dynamics. The exponential tail of component sizes in this regime shows that, for a sequence
k = k(n), with probability at least 1 − n exp(−ck), no cluster in the edge configuration we obtain is larger than k; on
this event, the component sizes Li satisfy

∑
i L

2
i ≤ k

∑
Li = nk, thus by Hoeffding’s inequality, with probability

1 − O(exp[−ε2n/(2k)]), every new color class will have n/q ± εn vertices, and in particular no dominant color class
would emerge. In this argument, choosing k 	 √

n balances the two probability estimates to 1 − exp(−c
√

n). However,
at β ≥ βc, the Potts model does admit a dominant color class with positive (uniformly bounded away from 0) probability;
thus the mixing time is at least exp(c

√
n).

This argument extends to β ∈ (βs, βc): there, one bounds the probability that the largest color class is smaller by εn

than its mean, or one of the other color classes is larger by εn than its mean; these probabilities are then bounded using
concentration of the giant component in a supercritical random graph and the discrete duality principle.

In order to improve this lower bound into exp(cn) per Theorem 1, instead of looking at the size of the largest component
after the G(n,p) stage of the dynamics, we consider SM , the set of vertices in connected components of size larger than
M . We show that, whenever the G(n,p) stage is subcritical and M is sufficiently large, the probability that |SM | > ρn

is at most exp(−cρn). Moreover, given |SM | ≤ ρn, Hoeffding’s inequality implies, following the second stage of the
dynamics, all the new color classes will have n

q
± εn vertices except with probability exp[−(ε − ρ)2n/(2M)], yielding

tMIX ≥ exp(cn).
The proof of Theorem 2 also relies on this random graph estimate, but is more involved. Since a step of Chayes–Machta

dynamics only resamples a random proper subset of the configuration in each step, we cannot define an analogous set of
configurations which is hard to escape uniformly over all initial states in the set. Instead, we use a spectral approach and
bound the conductance of an analogous set of FK configurations, showing that it has an exponentially decaying bottleneck
ratio under πn,p,q . In order to obtain such equilibrium estimates under πn,p,q , we recursively apply a fundamental lemma
of Bollobás, Grimmett and Janson [3] to reduce equilibrium estimates under πn,p,q to random graph estimates for G(m,p)

for appropriately chosen m.

2. Preliminaries

Notation

Throughout this paper, we use the notation f � g for two sequences f (n), g(n) to denote f = O(g), and let f 	 g denote
f � g � f . We will consider these models on the complete graph on n vertices, G = (V ,E) = ({1, . . . , n}, {ij}1≤i<j≤n).

Denote by πn,p,q the FK measure on the complete graph on n vertices with parameters p, q , and by μn,p,q , the Potts
measure with β such that p = 1 − e−β/n. The FK model with q = 1 corresponds precisely to the Erdős–Rényi random
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Fig. 2. The free energy landscape of the 3-state Potts model in the metastability window βs ≤ β ≤ βS . The three outer peaks correspond to the ordered
phases; middle peak corresponds to the disordered phase.

graph G(n,p) and we use the shortened notation πn,p = πn,p,1. We occasionally use G(n,p, q) to denote the mean-field
FK model given by πn,p,q . Finally, we use the notation �F to denote the restriction to some subset F ⊂ E, e.g., πn,p(·�{e})
is the marginal of πn,p on {e}.

For any FK configuration ω ∈ {0,1}E , enumerate the clusters of ω in decreasing size C1, C2, ... and let Li = |Ci |. For
a vertex x let, Cx denote the cluster to which x belongs.

We re-parametrize the FK and Potts models by λ instead of p and β via the relations p = λ/n and λ/n = 1 − e−β/n,
as this is the scaling at which G(n,p, q) undergoes a phase transition. For q ≤ 2, let λs = λc = λS = q , and for q > 2, let

λs = min
z≥0

{
z + qz

ez − 1

}
, λc = 2(q − 1) log(q − 1)

q − 2
, λS = q,

so that for q > 2, we have λs < λc < λS (see e.g., [1,10]). The critical points λs , λS correspond to the emergence and
disappearance of metastability of the ordered phase and disordered phase, respectively; namely, above λs , the free energy
has a local maximum corresponding to the ordered phase (where there is a giant component in the FK configuration),
and below λS , it has a local maximum corresponding to the disordered phase (where there is no giant component). At the
critical λ = λc, the ordered and disordered phases have the same free energy (see Figure 2). These two critical points can
also have the following alternative interpreation [10]: λs corresponds to the first uniqueness/non-uniqueness threshold of
the 
-regular infinite tree, and λS should correspond to a second uniqueness/non-uniqueness threshold of the 
-regular
tree with periodic boundary conditions.

The FK and Potts phase transitions

The following give a description of the static phase transition undergone by the mean-field FK and Potts models respec-
tively. Let �r = �r(λ, q) be the largest solution of e−λx = 1 − qx

1+(q−1)x
so �r = q−2

q−1 when λ = λc .

Proposition 2.1 ([3, Thms. 2.1–2.2], [19, Thm. 19]). Consider the n-vertex mean-field FK model with parameters (p, q)

with p = λ/n; if λ < λc(q), for every ε > 0, we have limn→∞ πn,p,q(L1 ≤ εn) = 1 whereas if λ > λc(q), for every
ε > 0, we have limn→∞ πn,p,q(L1 ≥ (�r − ε)n) = 1. If λ = λc(q), there exists γ (q) ∈ (0,1) so that for all ε > 0,
limn→∞ πn,p,q(L1 ≤ εn) ≥ γ and limn→∞ πn,p,q(L1 ≥ (�r − ε)n) ≥ 1 − γ .

Corollary 2.2. Consider the mean-field Potts model parametrized by q and p = λ/n = 1 − e−β/n. If λ < λc(q), for any
ε > 0,

lim
n→∞μn,p,q

(
σ : max

r=1,..,q

∣∣∣∣1

n

∑
i≤n

1{σi = r} − 1

q

∣∣∣∣ < ε

)
= 1,

and if λ > λc(q), then there exists mλ(q) > q−1 such that for sufficiently small ε > 0,

lim
n→∞μn,p,q

(
σ : max

r=2,...,q

{∣∣∣∣1

n

∑
i≤n

1{σi = 1} − mλ

∣∣∣∣,
∣∣∣∣1

n

∑
i≤n

1{σi = r} − 1 − mλ

q − 1

∣∣∣∣
}

< ε

)
= 1

q
.
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If q > 2 and λ = λc(q), there exists mc(q) > q−1 and γ (q) ∈ (0,1) so that for all sufficiently small ε > 0,

lim
n→∞μn,p,q

(
max

r=1,..,q

∣∣∣∣1

n

∑
i≤n

1{σi = r} − 1

q

∣∣∣∣ < ε

)
≥ γ, and

lim
n→∞μn,p,q

(
max

r=2,...,q

{∣∣∣∣1

n

∑
i≤n

1{σi = 1} − mc

∣∣∣∣,
∣∣∣∣1

n

∑
i≤n

1{σi = r} − 1 − mc

q − 1

∣∣∣∣
}

< ε

)
≥ 1 − γ

q
.

Cluster dynamics

Swendsen–Wang dynamics for the q-state Potts model on G = (V ,E) with parameter β , such that p = 1 − e−β/n, is the
following discrete-time reversible Markov chain. From a Potts configuration σ on G, generate a new state σ ′ as follows.

(1) Introduce auxiliary edge variables ω ∈ {0,1}E as follows: for every e = xy ∈ E, set ω(e) = 0 if σx 
= σy and inde-
pendently sample ω(e) ∼ Ber(p) if σx = σy .

(2) For every connected component of the resulting ω, reassign the cluster, collectively, an i.i.d. color in 1, . . . , q , to
obtain the new configuration σ ′.

Chayes–Machta dynamics for the FK model on G = (V ,E) with parameters (p, q), for q ≥ 1 and p = λ/n, is the
following discrete-time reversible Markov chain: From an FK configuration ω ∈ �RC on G, generate a new state ω′ ∈ �RC

as follows.

(1) Assign each cluster C of ω an auxiliary i.i.d. variable XC ∼ Bernoulli(1/q).
(2) For every e = xy, if x and y belong to active clusters (XC = 1), independently sample ω′(e) ∼ Ber(λ/n), and

otherwise, set ω′(e) = ω(e).

Variants of Chayes–Machta dynamics with 1 ≤ k ≤ �q� “active colors” have also been studied, with numerical evi-
dence for k = �q� being the most efficient choice; see [11].

Glauber dynamics for the FK model

Swendsen–Wang dynamics is closely related to the FK model; much of the analysis of Swendsen–Wang dynamics on
general graphs has been via the Glauber dynamics for the corresponding FK model. Discrete-time Glauber dynamics [13]
for the FK model on G = (V ,E) with p = λ/n is as follows: select an edge e = xy in E uniformly at random and update
ω(e) according to πn,p,q(·�{e} | ω�G−{e}).

Size of largest component and drift functions

For λ > 1, let θλ be the unique positive root of e−λx = 1 − x. Recall the following tail estimates for L1 in G(n,p).

Fact 2.3 (e.g., cf. [16, p. 109]). Consider G(n,p) with pn = λ < 1. Then for any x,

πn,p

(|Cx | ≥ k
) ≤ e− (1−λ)2k

2 .

In particular, πn,p,1(L1 ≥ k) ≤ n exp(−(1 − λ)2k/2).

Proposition 2.4 ([18, Lemma 5.4]). Consider G(n,p) with np = λ > 1. There exists c(λ) > 0 such that for every ε > 0,

πn,p,1
(|L1 − θλn| ≥ εn

)
� e−cε2n.

For the proof of Theorem 1, following [10,14] define the drift function for the average size of the largest color class of
the Swendsen–Wang dynamics

Fλ(z) =
{

zθλz + 1
q
(1 − zθλz) for z > 1/λ

1
q

for z ≤ 1/λ

}
.

(The expression for Fλ(z) when z > 1/λ is as such since in the G(n,p) step of the largest color class–of size zn–there
will be a macroscopic component of size zθλz contributing to the largest color class at the next time step, in addition to 1

q
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of the remaining vertices). The function Fλ(z) has, for some values of λ a second fixed point besides 1
q

, which we denote
by aλ > 1/q , which solves (for a short explanation see [10, Eq. (4)–(5)])

log
(q − 1)aλ

1 − aλ

= λ

(
aλ − 1 − aλ

q − 1

)
.

Proposition 2.5 ([10, Lemma 5]). If λ > λs , the fixed point aλ is such that λaλ > 1 and if bλ = 1−aλ

q−1 , we have λbλ < 1.
Moreover, if q > 2 and λ > λs , aλ is a Jacobian attractive fixed point of Fλ(z) so that |F ′(aλ)| < 1.

Similarly to the above, we can define the function f given by

f (θ) = θλ(1+(q−1)θ)/q ,

which governs the mean drift of the size of the giant component in Chayes–Machta dynamics. We can also define �r to
be the largest solution to e−λx = 1 − qx

1+(q−1)x
. Following [1], let �min(λ, q) = max{0, (q − λ)/(λ(q − 1))}, observe that

if λ < λS , λ(�min + q−1(1 − �min)) = 1, and define the drift function g(θ) = f (θ) − θ .

Proposition 2.6 ([1, Lemma 2.14]). When q > 2 and λ > λs , the drift function g has two roots, �∗ < �r in (�min,1];
moreover, g is strictly positive on (�∗,�r).

Mixing time and spectral gap

In this section, we introduce the quantities of interest regarding the time for the Swendsen–Wang and Glauber dynamics
to reach equilibrium. Consider a Markov chain with finite state space � and transition matrix P reversible with respect
to π . For two measures ν, π , define their total variation distance by

‖ν − π‖TV = sup
A⊂�

∣∣ν(A) − π(A)
∣∣ = 1

2
‖ν − π‖�1 .

Then the mixing time of P is defined as

tMIX = inf
{
t : max

X0∈�

∥∥P t (X0, ·) − π
∥∥

TV
< 1/(2e)

}
.

A related quantity that is sometimes easier to work with is the spectral gap of P ; Since P is reversible with respect
to π , we can enumerate its spectrum from largest to smallest as 1 = λ1 > λ2 > · · · > λ|�|; then the spectral gap of P is
defined as gap= 1 − max{λ2,−λ|�|}. The following is a standard comparison between the spectral gap and the mixing
time of a Markov chain with transition matrix P (see e.g., [17]):

gap−1 − 1 ≤ tMIX ≤ log(2e/πmin)gap
−1. (2.1)

Spectral gap comparisons

The following comparison inequalities between the aforementioned Markov chains are due to Ullrich.

Proposition 2.7 ([21]). Let q ≥ 2 be integer. Let gapRC be the spectral gap of Glauber dynamics FK model on a graph
G = (V ,E) and let gapSW be the spectral gap of Swendsen–Wang. Then

(1 − p + p/q)gapRC ≤ gapSW ≤ 8gapRC|E| log |E|. (2.2)

The proof of (2.2) further extends to all real q > 1, whence

gapRC � gapCM � gapRC|E| log |E|, (2.3)

as was observed (and further generalized) by Blanca and Sinclair [1, §5], where gapCM is the spectral gap of Chayes–
Machta dynamics.
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3. Slow mixing of Swendsen–Wang dynamics

Towards the proof of Theorem 1, we first establish some preliminary estimates. For ω ∈ �RC, we will frequently be
interested in bounding the following quantity:

SM := SM(ω) = {
x ∈ V : |Cx | > M

}
.

The bottlenecks in the proofs of Theorems 1–2 both rely on the following estimate.

Lemma 3.1. Consider ω ∼ G(n,p) with np = λ < 1. There exists c(λ) > 0 such that for every ρ > 0, there exists
M0(λ,ρ) such that for every M ≥ M0,

πn,p

(|SM | ≥ ρn
)
� e−cρn.

Proof. Recall that by Fact 2.3, there exists c1(λ) > 0 such that πn,p(|Cx | ≥ k) ≤ e−c1k for all k. Moreover, conditioned
on other clusters, the remaining graph is distributed as G(m,λ/n) for m ≤ n, so that for any � vertices y1, . . . , y�,

πn,p

(
|Cx | ≥ k

∣∣∣ Cy1 , . . . ,Cy�
,Cx ∩

(
�⋃

i=1

Cyi

)
=∅

)
≤ e−c1k. (3.1)

Let YM be the number of clusters with at least M vertices. Then by revealing clusters sequentially, e.g., beginning with
revealing Cx , then Cy for some y /∈ Cx and so on, we see from (3.1), that YM � Bin(n, e−c1M). Thus, by Azuma–Hoeffding
inequality,

πn,p

(
YM ≥ ne−c1M + t

) ≤ e−t2/(2n).

Now let

K = (
e−c1M + M−1)n;

plugging into the Azuma–Hoeffding bound, we obtain

πn,p

(|SM | ≥ ρn
) ≤ πn,p

(
K∑

i=1

Li ≥ ρn

)
+ e−n/(2M2). (3.2)

In order to bound the right-hand side above, fix vertices x1, . . . , xK ; by (3.1), the law of |⋃K
i=1 Cxi

| is dominated by the
sum of K i.i.d. random variables Z1, . . . ,ZK , where, for some a(λ), b(λ), ν(λ) > 0 (independent of M and n), Z1 is
sub-exponential with parameters (ν, b) and mean a. This domination is evident if one exposes the clusters Cxi

and sums
|Cxi

| sequentially, noting that if xj ∈ Cxi
for some i < j , the additional contribution to the sum is zero, and otherwise the

exponential tail of (3.1) applies.
By the definition of K , for any sufficiently large M (depending on ρ), KE[Zi] = Ka ≤ ρn/2. By a union bound and

symmetry, we have

πn,p

(
K∑

i=1

Li ≥ ρn

)
≤

(
n

K

)
πn,p

(∣∣∣∣∣
K⋃

i=1

Cxi

∣∣∣∣∣ ≥ ρn

)

≤
(

en

K

)K

πn,p

(
K∑

i=1

Zi ≥ KE[Zi] + ρn/2

)
.

Moreover,
∑K

i=1 Zi is also sub-exponential with parameters (Kν,b). Therefore, there exists c2(λ) > 0 so that for all
ρ > 0, there exists M0(λ,ρ) such that for all M ≥ M0,

πn,p

(
K∑

i=1

Li ≥ ρn

)
≤

(
e

e−c1M + M−1

)(e−c1M+M−1)n

e− ρn
4b � e−c2ρn.

Plugging this bound in to (3.2) concludes the proof. �
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In the coloring stage of the Swendsen–Wang dynamics, the following simple application of a Chernoff–Hoeffding
inequality proves useful.

Lemma 3.2. Consider an FK realization ω on n vertices and suppose |SM(ω)| ≤ εn for some M > 0. Independently
color each cluster of ω collectively red with probability r ∈ [0,1], and let R be the set of all red vertices. For all δ > 0,

P
(∣∣|R| − rn

∣∣ ≥ (ε + δ)n
) ≤ 2 exp

(
− δ2n

2M

)
.

Proof. We consider P(|R| ≥ (r + ε + δ)n) and P(|R| ≤ (r − ε − δ)n) separately. To bound the former, it suffices to prove
an upper bound on

P
(|R ∪ SM | ≥ (r + ε + δ)n

) = P
(|R − SM | ≥ (r + ε + δ)n − |SM |)

≤ P
(|R − SM | ≥ (r + δ)n

)
,

which by Hoeffding’s inequality satisfies

P
(|R − SM | − r

(
n − |SM |) ≥ δn + r|SM |) ≤ e

− (δn+r|SM |)2
2M(n−|SM |) ≤ e−δ2n/(2M).

Similarly bounding P(|R| ≤ (r − ε − δ)n) ≤ P(|R − SM | ≤ (r − δ)n) by Hoeffding’s inequality and combining the two
via a union bound concludes the proof. �

We prove Theorem 1 for q > 2 separately for λ that is below, above and at λc .

3.1. The supercritical regime: Proof of Theorem 1 for np = λ ∈ (λc, λS)

To prove Theorem 1 for λ ∈ (λc, λS), let ρ > 0, and define the set of configurations,

Aρ =
{

σ ∈ {1, . . . , q}n : max
r=1,..,q

∣∣∣∣∣
n∑

i=1

1{σi = r} − n

q

∣∣∣∣∣ < ρn

}
.

Now consider the Markov chain (Xt )t≥0 given by the Swendsen–Wang dynamics and let vt = (v1
t , . . . , v

q
t ) be the corre-

sponding vector counting the number of sites in each state in Xt . We need the following claim.

Claim 3.3. Consider Swendsen–Wang dynamics with p = λ/n = 1 − e−β/n for λ < λS ; there exists ρ0(λ, q),

c(ρ,λ, q),C(λ, q) > 0 such that that for every ρ < ρ0

max
X0∈Aρ

PX0(X1 /∈ Aρ) ≤ Ce−cn. (3.3)

Proof. Consider a fixed X0 ∈ Aρ . In the G(n,p) step of the Swendsen–Wang dynamics, we consider the color compo-
nents separately. For each of the q colored components a new edge configuration is sampled according to G(vi

0, λ/n)

where i = 1, . . . , q; call the edge configuration we obtain ωi
1 and note that by definition of Swendsen–Wang dy-

namics, the clusters of {ωi
1}qi=1 will all be disconnected. Then since ‖v0 − ( n

q
, . . . , n

q
)‖∞ < ρn and λ < λS = q , if

ρ < λ−1 − q−1 =: ρ0, every colored component is sub-critical in the G(n,p) step. Thus, for all i = 1, . . . , q , by
Lemma 3.1, for some c(λ) > 0, if ρ < λ−1 − q−1, for every M ≥ M0(λ,ρ) and every δ > 0,

PX0

(∣∣SM

(
ωi

1

)∣∣ ≥ δn
) = πvi

0,p

(|SM | ≥ δn
)
� e−cδn.

Union bounding over the q different such components, we obtain

PX0

(
q⋃

i=1

{∣∣SM

(
ωi

1

)∣∣ ≥ δn
})

� e−cδn.
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In that case, if δ = ρ
2q

and ω1 is the edge configuration induced on the whole graph after the G(n,p) step of the dynamics,
there exists c(λ, q) > 0 so that for M ≥ M0(λ,ρ),

PX0

(∣∣SM(ω1)
∣∣ ≥ ρn

2

)
� e−cρn.

We can then split up

PX0(X1 /∈ Aρ) ≤ PX0

(∣∣SM(ω1)
∣∣ ≥ ρn

2

)
+ PX0

(
X1 /∈ Aρ

∣∣∣ ∣∣SM(ω1)
∣∣ <

ρn

2

)
,

and consider the coloring step of the Swendsen–Wang dynamics. Then we obtain

PX0

(
X1 /∈ Aρ

∣∣∣ ∣∣SM(ω1)
∣∣ <

ρn

2

)
≤ PX0

(
q⋃

i=1

{∣∣∣∣vi
1 − n

q

∣∣∣∣ ≥ ρn

} ∣∣∣ ∣∣SM(ω1)
∣∣ <

ρn

2

)
.

By an application of Lemma 3.2 with ε = δ = ρ
2 and a union bound, the above is, for every ρ < λ−1 − q−1 and M ≥

M0(λ,ρ), bounded above by

2q exp
(−ρ2n/(8M)

)
.

Since all the above estimates were uniform in X0 ∈ Aρ , we obtain the desired. �

By Corollary 2.2, since β is such that np = λ > λc, for every small ρ > 0, we have μn,p,q(Ac
ρ) > 1

2 . If X0 is such that
v0 = ( n

q
, . . . , n

q
), clearly X0 ∈ Aρ , and by Claim 3.3 and a union bound, since λ < λS , there exists c(ρ,λ, q) > 0 such

that for every ρ < ρ0,

PX0

( ⋃
t≤ecn/2

{
Xt ∈ Ac

ρ

})
� e−cn/2.

The definition of total variation mixing time then implies tMIX ≥ ecn/2 as desired.

3.2. The subcritical regime: Proof of Theorem 1 for np = λ ∈ (λs, λc)

We first prove the following consequence of Lemma 3.1.

Lemma 3.4. Consider G(n,p) with np = λ > 1. There exist c(λ), c′(λ) > 0 such that for every ρ > 0 and ε > 0 suffi-
ciently small and for every M ≥ M0(λ,ρ), we have

πn,p

({|L1 − nθλ| ≥ εn
)} ∪ {|SM − C1| ≥ ρn

}
) � e−cρn + e−c′ε2n.

Proof. By a union bound, rewrite the left-hand side above as

πn,p

({|L1 − nθλ| ≥ εn
} ∪ {|SM − C1| ≥ ρn

})
≤ πn,p

(|SM − C1| ≥ ρn | |L1 − nθλ| < εn
) + πn,p

(|L1 − nθλ| ≥ εn
)
.

Since λ > 1, by Proposition 2.4, we have that πn,p(|L1 − θλ| ≥ εn) ≤ e−cε2n for some c(λ) > 0. We now suppose that
L1 ≥ (θλ − ε)n and appeal to a precise form of the discrete duality principle (see, e.g.,[2, §6.3] and [16, §5.6]). Observe
that conditioning on C1 (if there are multiple largest clusters of the same size, pick the one with the smallest vertex label),
the remaining graph is distributed as G(n − L1,p) conditional on the event that its largest component has size at most
L1 and has no component of size exactly L1 with smaller vertex label than C1.

Since n − L1 ≤ (1 − θλ + ε)n, the random graph G(n − L1,p) is subcritical for all small ε (this is the essence of
the duality principle for branching processes; we again refer the reader to [2, §6.3] and [16, §5.6] for further details on
this). Thus the probability of it having a cluster of size at least (θλ − ε)n ≤ L1 is at most ne−c(θλ−ε)n (see Fact 2.3).
The conditioning on the largest cluster size of G(n − L1,p) is negligible, and it suffices to compute probabilities under
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G(n − L1,p). In that case, given n − L1 ≤ (1 − θλ + ε)n and therefore subcriticality of G(n − L1,p), by Lemma 3.1,
there exists c(λ) > 0 such that for every ρ > 0, there exists M0(λ,ρ) > 0 so that for M ≥ M0, we have

πn−L1,p

(|SM | ≥ ρn
) ≤ e−cρn;

combined with the union bound, this implies the desired. �

The proof of Theorem 1 for λ ∈ (λs, λc) is a slight modification of the proof for λ ∈ (λc, λS). Recall the definitions of
θλ, aλ and bλ from §2. Fix λ > λs . In decreasing order, let the number of vertices in each color class of σ be v1, . . . , vq

and let

A′
ρ =

{
σ ∈ {1, . . . , q}n : ∣∣v1 − aλn

∣∣ ≤ ρn,v2 ≤ n − v1

q − 1
+ ρn

}
.

By Corollary 2.2, since λ < λc, for sufficiently small ρ, we have μn,p,q(A′
ρ) ≤ 1

2 . Therefore, it suffices by definition of
total variation mixing to prove the following.

Claim 3.5. Consider Swendsen–Wang dynamics with p = λ/n = (1 − e−β/n) for λ > λs ; there exist ρ0(λ, q),

c(ρ,λ, q),C(λ, q) > 0 such that for every ρ < ρ0,

max
X0∈Aρ

PX0

(
X1 /∈ A′

ρ

)
� Ce−cn; (3.4)

Proof. Fix any X0 ∈ A′
ρ and let (v1

0, . . . , v
q

0 ) be its corresponding color class vector. By definition of aλ, for some

ρ′(λ, q) > 0 there exists γ ∈ (F ′(aλ),1) such that if |v1
0 − aλn| ≤ ρ′n, we have |F(v1

0/n) − aλ| < γ |v1
0/n − aλ|. From

now on we take ρ < ρ′.
Consider the G(n,p) step of the Swendsen–Wang dynamics. Since λ > λs , λaλ > 1 and λbλ < 1, so that for ρ > 0

sufficiently small, the first colored class of X0 will be supercritical in the G(n,p) step and the other q − 1 will all be
subcritical; call the q random graph configurations we obtain in this step ωi

1 for i = 1, . . . , q . Now fix such a ρ > 0 and

let ε = (1−γ )ρ
2(q+1)

. By Proposition 2.4, we obtain that for some c(λ) > 0,

PX0

(∣∣L1
(
ω1

1

) − v1
0θλv1

0/n

∣∣ ≥ εn
)
� e−cε2n.

Moreover, by Lemma 3.4, we also have for some c(λ) > 0, for every M ≥ M0(λ, ε),

PX0

({∣∣L1
(
ω1

1

) − v1
0θλv1

0/n

∣∣ ≥ εn
} ∪

q⋃
i=1

{∣∣SM

(
ωi

1

) − C1
(
ω1

1

)∣∣ ≥ εn
})

� e−cεn.

On the complement of the above event, ω1 has a single giant component of size θn for θn ∈ (v1
0θλv1

0/n−εn, v1
0θλv1

0/n+εn),

and |SM − C1| ≤ qεn. By Lemma 3.2, with probability 1 − e−cθn, the largest color class of X1 will be the one containing
C1(ω

1
1) so without loss of generality, we also assume that is the case.

At that stage, observe that E[v1
1 | θ ] = θn + 1

q
(1 − θ)n and E[vi

1 | θ ] = 1
q
(1 − θ)n for i 
= 1. Then, we can see that for

some c(M,λ) > 0, for every M ≥ M0(λ, ε),

PX0

(∣∣v1
1 − nF

(
v1

0/n
)∣∣ ≥ qεn + εn + δn

)
� e−cδ2n + e−cεn.

In particular, this follows from a union bound over the aforementioned events that

(1) the size of the giant component |C1| is within εn of v1
0θλv1

0/n and |SM − C1| ≤ qεn,

(2) the largest color class of X1 contains C1(ω
1
1),

(3) the fluctuations of the number of vertices outside C1, sharing the color of C1, are at most δn (this probability is
bounded by Lemma 3.2).

By a similar bound on the other q − 1 coloring steps, the choice δ = (1 − γ )ρ/2, and the relationship between ε and
ρ, there exists c(q,M,λ,γ ) > 0 such that for small ρ,

PX0

(∥∥∥∥(
v1

1, . . . v
q

1

) − n

(
F

(
v1

0/n
)
,

1 − F(v1
0/n)

q − 1
, . . . ,

1 − F(v1
0/n)

q − 1

)∥∥∥∥∞
≥ (1 − γ )ρn

)
� e−cε2n.
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By the choice of γ and the triangle inequality, this implies

PX0

(
X1 /∈ A′

ρ

) ≤ PX0

(∥∥(
v1

1, . . . , v
q

1

) − (aλn, bλn, . . . , bλn)
∥∥∞ ≥ ρn

)
� e−cε2n,

which by uniformity of the estimates over X0 ∈ A′
ρ , concludes the proof. �

3.3. The critical point: Proof of Theorem 1 for np = λ = λc

In Corollary 2.2, for every q > 2, either γ (q) ≥ 1
2 in which case Claim 3.5 concludes the proof, or 1 − γ (q) ≥ 1

2 in which
case Claim 3.3 concludes the proof.

4. Slow mixing of Glauber dynamics for the FK model

Since for q noninteger, Chayes–Machta dynamics activates a strict subset of the vertices at a time, we will need to use a
modified argument to prove Theorem 2. We instead construct a bottleneck set S and bound its bottleneck ratio.

We first recall the important relationship between bottlenecks and the spectral gap. For a Markov chain with stationary
distribution π and kernel P on state space �, for any A,B ⊂ �, define the edge measure

Q(A,B) =
∑
ω∈A

π(ω)P (ω,B) =
∑
ω∈A

π(ω)
∑
ω′∈B

P
(
ω,ω′),

Then, the Cheeger constant of � is given by

� = min
S⊂�

Q(S,Sc)

π(S)π(Sc)
, and satisfies 2� ≥ gap≥ �2/2. (4.1)

In order to prove the lower bound of Theorem 2, we prove such a lower bound on the inverse spectral gap of the Chayes–
Machta dynamics, then using Proposition 2.7 and a standard comparison between the spectral gap and mixing time (2.1),
we obtain the desired for the Glauber dynamics. Before the proof of Theorem 2, we prove some preliminary equilibrium
bottleneck estimates for the mean-field FK model.

The following lemma that was fundamental to the understanding of the distribution πn,p,q in [3] is very useful for the
proof of Theorem 2.

Lemma 4.1 ([3, Lemma 3.1]). Fix r ∈ [0,1]; consider a mean-field FK realization ω ∼ πn,p,q . Independently color each
cluster of ω red with probability r and let R be the collection of all red vertices. Conditional on R, the subgraph ω�R is
distributed as G(|R|,p, rq) and the subgraph ω�V −R is distributed as G(|V − R|,p, (1 − r)q).

The following corollary follows from iterating the process of Lemma 4.1 �q� times.

Corollary 4.2. Consider a mean-field FK realization ω ∼ πn,p,q . Independently color each cluster of ω color r1, . . . , r�q�
with probability q−1 each and r0 otherwise. Then letting R0, R1, . . . ,R�q� be the sets of vertices colored each of
r0, . . . , r�q�, the subgraph restricted to Ri for i = 1, . . . , �q� is distributed as G(|Ri |,p). The subgraph restricted to

R0 := V − ⋃�q�
i=1 Ri is distributed according to G(|R0|,p, q − �q�). Moreover, the distributions of the �q� color classes

are (conditionally on R0, . . . ,R�q�) independent.

Proof. Begin by independently coloring clusters of ω color r1 with probability q−1. By Lemma 4.1, conditional on R1,
the subgraph ω�R1

is distributed as G(|R1|,p) and the subgraph ω�V −R1
is conditionally independent and distributed as

G(|V − R1|,p, q − 1). Now on V − R1, the distributions of the colors is r2, . . . , r�q� with probability (q − 1)−1 and
r0 otherwise. Coloring vertices in V − R1 color r2 with probability (q − 1)−1, we see that conditional on R2 the sub-
graph ω�R2

is conditionally independent of ω�R1
and distributed as G(|R2|,p); moreover, the remainder is conditionally

independent and distributed as G(|V − R1 − R2|,p, q − 2) since (1 − (q − 1)−1)(q − 1) = q − 2.
Repeating �q� times we obtain �q� conditionally independent subgraphs ω�Ri

distributed as G(|Ri |,p) and a remain-
ing subgraph ω�R0

also distributed as desired. �

(Note that when q is an integer, the set R0 is deterministically empty.) Via Lemma 4.1, we prove the following
analogues of Lemmas 3.1 and 3.4 when q < 1.
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Lemma 4.3. Consider the mean-field FK model on n vertices with parameters (p, q) with q < 1 and np = λ < λc = q .
There exists c(λ, q) > 0 such that for all ρ > 0 sufficiently small, there exists M0(λ,ρ) > 0 such that for all M ≥ M0,

πn,p,q

(|SM | ≥ ρn
)
� e−cρn.

Proof. We prove the desired using Lemma 4.1. Consider the random graph G(m,p) with the choice of m = �q−1n�;
applying Lemma 4.1 to G(m,p) with r = q , by [3, Lemma 9.1], for all λ 
= q , we have P(|R| = n) ≥ C√

m
, for some

C(λ) > 0. Then, we can write for any event A ⊂ �RC,

m∑
l=1

Pcol,m,λ

(|R| = l
)
πm,p

(
ω�R ∈ A | R, |R| = l

) = Ecol,m,λ

[
πm,p(ω�R ∈ A | R)

]
, (4.2)

where Pcol,m,λ is the distribution over colorings of ω, averaged over realizations of ω ∼ πm,p . Letting A = Aρ,M =
{|SM | ≥ ρn}, for every R the probability on the right-hand side is bounded above by πm,p(Aρ,M) which, by Lemma 3.1,
satisfies

πm,p(Aρ,M) � e−cρn,

for some c(λ) > 0 and for every ρ > 0 and every M ≥ M0(λ,ρ). But by Lemma 4.1,

πm,p

(
ω�R ∈ · | R, |R| = l

) d= πl,p,q(ω ∈ ·),
which combined with Pcol,m,λ(|R| = n) ≥ C/

√
m implies

πn,p,q

(|SM | ≥ ρn
)
�

√
q−1ne−cρn. �

Lemma 4.4. Consider the mean-field FK model on n vertices with parameters (p, q) with q < 1 and np = λ > λc = q .
There exists c(λ, q) > 0 such that for all ρ > 0 sufficiently small, there exists M0(λ,ρ) > 0 such that for all M ≥ M0,

πn,p,q

(|SM − C1| ≥ ρn
)
� e−cρn.

Proof. As before, consider G(m,p) with m = �q−1n�; by Lemma 4.1 with r = q and [3, Lemma 9.1], P(|R| = n) ≥
C/

√
m. Let A = Aρ,M = {|SM − C1| ≥ ρn} in (4.2). Then observe that πm,p(ω�R ∈ Aρ,M) ≤ πm,p(Aρ,M) and by

Lemma 3.4, πm,p(Aρ,M) � e−cρn. Altogether, plugging the above bounds in to (4.2) implies that there exists c(λ) > 0
such that for all ρ > 0 and all M ≥ M0(λ,ρ),

πn,p,q

(|SM − C1| ≥ ρn
)
�

√
q−1ne−cρn. �

4.1. The supercritical/critical regime, np = λ ∈ [λc,λS)

We first prove the desired mixing time lower bound for λ ∈ [λc,λS), using the following bottleneck estimate.

Lemma 4.5. Consider the mean-field FK model on n vertices with parameters (p, q) where q > 2 and np = λ < λS ;
there exists c(ρ,M,λ,q) > 0 such that for all sufficiently small ρ > 0, there exists M0(λ,ρ) such that for every M ≥ M0,

πn,p,q

(
ρn

2
< |SM | < ρn | |SM | < ρn

)
� e−cn.

Proof. For ρ,M > 0, define the events

Aρ,M = {
ω ∈ �RC : ∣∣SM(ω)

∣∣ < ρn
}
,

Bρ,M =
{
ω ∈ �RC : ρn

2
<

∣∣SM(ω)
∣∣ < ρn

}
.

(4.3)

In order to bound πn,p,q(Bρ,M | Aρ,M), use the coloring scheme described in Corollary 4.2. Let P be the set of all
possible partitions of {1, . . . , n} into �q� sets, i.e., the set of all possible colorings of FK configurations. Denote by Pcol
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the probability measure over colorings (R0, . . . ,R�q�) averaged over πn,p,q , and Pcol(· | F) the probability measure over
such colorings, averaged over πn,p,q(· |F). For every R ∈P ,

πR =
{

π|Ri |,p,1 on Ri for i = 1, . . . , �q�
π|R0|,p,q−�q� on V − ⋃�q�

i=1 Ri =: R0.

Then we can write, by Corollary 4.2,

πn,p,q(Bρ,M | Aρ,M) =
∑
R∈P

Pcol(R | Aρ,M)πR(Bρ,M | Aρ,M).

By Lemma 3.2, since Aρ,M implies |SM | ≤ ρn, for every i = 1, . . . , �q�,

Pcol

(∣∣∣∣|Ri | − n

q

∣∣∣∣ ≥ 2ρn

∣∣∣ Aρ,M

)
≤ 2e−ρ2n/(2M).

If ||Ri | − n
q
| < 2ρn for all i = 1, . . . , �q�, we are left with a remainder set satisfying

|R0| ∈
((

1 − �q�
q

− 2ρ�q�
)

n,

(
1 − �q�

q
+ 2ρ�q�

)
n

)
.

Define the event �ρ over colorings of the mean-field FK model as

�ρ =
{

R ∈ P :
∣∣∣∣|Ri | − n

q

∣∣∣∣ < 2ρn for all i = 1, . . . , �q�
}
,

so that the above conclusion can be written as

Pcol
(
�c

ρ | Aρ,M

)
� �q�e−ρ2n/(2M).

Combined with the expression for πn,p,q(Bρ,M | Aρ,M), this implies that

πn,p,q(Bρ,M | Aρ,M) ≤ max
R∈�ρ

πR(Bρ,M)

πR(Aρ,M)
+ Pcol

(
�c

ρ | Aρ,M

)

� max
R∈�ρ

πR(|SM | ≥ ρn/2)

1 − πR(|SM | ≥ ρn)
+ e−ρ2n/(2M).

By a union bound, the first term on the right-hand side is bounded above by

max
R∈�ρ

π|R0|,p,q−�q�(|SM | ≥ ρn
2�q� ) + ∑

i=1,...,�q� π|Ri |,p,1(|SM | ≥ ρn
2�q� )

1 − π|R0|,p,q−�q�(|SM | ≥ ρn
�q� ) − ∑

i=1,...,�q� π|Ri |,p,1(|SM | ≥ ρn
�q� )

. (4.4)

We lower bound the numerator and upper bound the denominator simultaneously as they entail similar estimates.
Since λ < λS = q , there exists ρ0(λ, q) such that for all ρ < ρ0, the random graph G( n

q
+ 2�q�ρn,p) is subcritical

and the FK model G((1 − �q�
q

+ 2ρ�q�)n,p, q − �q�) is also subcritical. In other words, if ρ < ρ0(λ, q), for every
R ∈ �ρ , the distributions π|Ri |,p for i = 1, . . . , �q� and π|R0|,p,q−�q� are all subcritical. As such, by Lemma 3.1, there
exists c(λ, q) > 0 such that for every M ≥ M0(λ,ρ),

max
R∈�ρ

∑
i=1,...,�q�

π|Ri |,p,1

(
|SM | ≥ ρn

2�q�
)
� e−cρn/2, and

max
R∈�ρ

∑
i=1,...,�q�

π|Ri |,p,1

(
|SM | ≥ ρn

�q�
)
� e−cρn.

Similar bounds under π|R0|,p,q−�q� follow immediately for a different c(λ, q) > 0 from Lemma 4.3. Altogether, this
implies that for every ρ < ρ0 and every M ≥ M0(λ,ρ), there exists c(ρ,M,λ,q) > 0 such that

πn,p,q(Bρ,M | Aρ,M) � e−cn. �
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Proof of Theorem 2: the case np = λ ∈ [λc,λS). For ρ,M > 0, let Aρ,M and Bρ,M be as in (4.3). By Proposition 2.1,
for λ ∈ [λc,λS), for sufficiently small ρ > 0 and large M , there exists c(λ, q) > 0 such that πn,p,q(Ac

ρ,M) ≥ c. Then by
(4.1) it suffices to prove an exponentially decaying upper bound on

Q(Aρ,M,Ac
ρ,M)

πn,p,q(Aρ,M)
� max

X0∈Aρ,M−Bρ,M

P
(
X0,A

c
ρ,M

) + πn,p,q(Bρ,M | Aρ,M), (4.5)

where P , Q are the transition matrix and edge measure, respectively, of the Chayes–Machta dynamics. We first bound
the first term in the right-hand side of (4.5).

Consider some X0 ∈ Aρ,M − Bρ,M . In the activation stage of the Chayes–Machta dynamics, clusters are activated
with probability 1

q
; denote by A1 the set of activated vertices in this stage of the dynamics. Since X0 ∈ Aρ,M − Bρ,M , by

Lemma 3.2 with the choice of ε = δ = ρ/2,

PX0

(∣∣∣∣|A1| − n

q

∣∣∣∣ ≥ ρn

)
≤ 2e−ρ2n/(8M).

Since λ < λS = q , for ρ < λ−1 − q−1, the random graph G(( 1
q

+ ρ)n,p) is subcritical. In that case, by Lemma 3.1, there
exists c(λ,ρ) > 0 such that for every M ≥ M0(λ,ρ),

PX0

(
X1 /∈ Aρ,M

∣∣∣ ∣∣∣∣|A1| − n

q

∣∣∣∣ < ρn

)
≤ PX0

(∣∣SM(X1�A1
)
∣∣ ≥ ρn

2

∣∣∣ ∣∣∣∣|A1| − n

q

∣∣∣∣ < ρn

)

� e−cρn/2,

Union bounding over the event ||A1| − n/q| ≥ ρn and its complement, there exists c(ρ,M,λ,q) > 0 such that for every
ρ < λ−1 − q−1, for every M ≥ M0(λ,ρ),

max
X0∈Aρ,M−Bρ,M

P
(
X0,A

c
ρ,M

)
� e−cn.

Lemma 4.5 yields a similar exponentially decaying upper bound on the second term on the right-hand side of (4.5),
concluding the proof. �

4.2. The subcritical/critical regime, np = λ ∈ (λs, λc]

Recall the definitions of �∗(λ, q) and �r(λ, q) corresponding to the drift function g from Proposition 2.6. When λ ∈
(λs, λc], we will need the following intermediate lemma, before proceeding to the analogue of Lemma 4.5. This is a
straightforward adaptation of an argument of [1].

Lemma 4.6. Consider the mean-field FK model on n vertices with parameters (p, q) with np = λ ∈ (λs, λS); let ω0 ∈
Aρ,ε,M where

Aρ,ε,M = {
ω : L1 ≥ (

�∗ + ε
)
n, |SM − C1| < ρn

}
.

Color C1 red and independently color each cluster in ω0 − C1 red with probability 1
q

; let R be the set of all red vertices.
Resample ω0�R ∼ π|R|,p,1 and let ω1 be the resulting configuration on n vertices. Then there exists c(ρ, ε,M,λ) > 0 so
that for sufficiently small ρ, ε > 0, for every M ≥ M0(λ,ρ), uniformly in ω0 ∈ Aρ,ε,M ,

P
(
L1(ω1) ≤ (

�∗ + ε
)
n
)
� e−cn.

Proof. Fix any ω0 ∈ Aρ,ε,M and let nθ0 = L1(ω0) for θ0 ≥ �∗ + ε. Then

E
[|R|] = θ0n + 1

q
(1 − θ0)n =: μ0,

so that by Lemma 3.2, for all ρ > 0,

P
(∣∣|R| − μ0

∣∣ ≥ ρn
) ≤ 2e−ρ2n/(8M).



82 R. Gheissari, E. Lubetzky and Y. Peres

Therefore, we can write for every δ > 0,

P
(∣∣L1(ω1) − nf (θ0)

∣∣ ≥ δn
)

≤ max
a:|a−μ0|≤ρn

πa,p

(∣∣L1 − nf (θ0)
∣∣ ≥ δn

) + 2e−ρ2n/(8M).

For all θ0 ≥ �∗ + ε, for sufficiently small ρ > 0, using θ0 > �∗ > �min, since λ < λS ,the random graph G(μ0 − ρn,p)

is supercritical. By continuity of f , for any δ > 0, there exists ρ > 0 sufficiently small such that maxa:|a−μ0|≤ρn |f (θ0) −
θλa/n| < δ; moreover, by Proposition 2.4, for every δ > 0

max
a:|a−μ0|≤ρn

πa,p

(|L1 − θλa/nn| ≥ δn
)
� e−cδ2n,

for some c(λ,ρ) > 0. Thus, for sufficiently small ρ > 0, we have, for some c(ρ,M,λ) > 0,

P
(∣∣L1(ω1) − nf (θ0)

∣∣ ≥ 2δn
)
� e−cδ2n + e−ρ2n/(8M).

It remains to argue that for ε > 0 sufficiently small, there exists δ > 0 such that for all θ0 ≥ �∗ + ε, we have nf (θ0) −
2δn ≥ (�∗ + ε)n. If θ0 > �r − ε, then by [1, Lemma 2.14], f (θ0) ≥ �r − ε > �∗ + ε and for small enough ε letting
δ = 1

2 (�r − �∗ − 2ε) > 0 yields the desired. If θ0 ≤ �r − ε, since g is positive on (�∗,�r), for ε small, f (θ0) > θ0 ≥
�∗ + ε. By continuity of f , for ε < 1

2 (�r − �∗), letting δ = 1
2 min[�∗+ε,�r−ε] g, we obtain

f (θ0) − 2δ ≥ θ0 + g(θ0) − min[�∗+ε,�r−ε]g ≥ θ0 ≥ �∗ + ε.

Together, for ε > 0 sufficiently small, there exists c(ρ, ε,M,λ) > 0 such that

P
(
L1(ω1) ≤ (

�∗ + ε
)
n
)
� e−cn. �

The following is the analogue of Lemma 4.5 in the presence of a giant component.

Lemma 4.7. Consider the mean-field FK model on n vertices with parameters (p, q) with q > 2 and np = λ ∈ (λs, λS);
for every ρ, ε,M > 0 let

Eρ,ε,M =
{
L1 ≥ (

�∗ + ε
)
n,

ρn

2
< |SM − C1| < ρn

}
.

There exists c(ρ,M,λ,q) > 0 such that for sufficiently small ρ, ε > 0, for M ≥ M0(λ,ρ),

πn,p,q

(
Eρ,ε,M | L1 ≥ (

�∗ + ε
)
n, |SM − C1| < ρn

)
� e−cn.

Proof. Fix np = λ > λs and for ρ, ε,M > 0, define the sets

Aρ,ε,M = {
L1 ≥ (

�∗ + ε
)
n, |SM − C1| < ρn

}
,

Bρ,M =
{

ρn

2
< |SM − C1| < ρn

}
.

We prove the lemma similarly to Lemma 4.5, after treating the giant component separately. Using the coloring scheme
of Corollary 4.2, with Pcol and πR defined as before, by considering the color class to which C1 belongs, and using
symmetry, we obtain

πn,p,q(Eρ,ε,M | Aρ,ε,M) = q

�q�
∑
R∈P

Pcol(R | C1 ⊂ R1,Aρ,ε,M)πR(Eρ,ε,M | C1 ⊂ R1,Aρ,ε,M)

+ q

q − �q�
∑
R∈P

Pcol(R | C1 ⊂ R0,Aρ,ε,M)πR(Eρ,ε,M | C1 ⊂ R0,Aρ,ε,M).

Call the two sums on the right hand side I and II respectively and consider them separately. Conditional on Aρ,ε,M and
C1 ⊂ R1, if μI = (�∗ + ε)n + 1

q
(1 − �∗ − ε)n,

Pcol
(|R1| ≥ μI − 2ρn | C1 ⊂ R1,Aρ,ε,M

) ≤ e−ρ2n/(2M),
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where we used Lemma 3.2 with ε = δ = ρ. Following the proof of Lemma 4.5, let

�I
ρ =

{
R : |R1| ≥ μI − 2ρn,

∣∣∣∣|Ri | − n − |R1|
q − 1

∣∣∣∣ < 2ρn for all i = 2, . . . , �q�
}
.

By Lemma 3.2 and a union bound, Pcol((�
I
ρ)c | C1 ⊂ R1,Aρ,ε,M) ≤ 2�q�e−ρ2n/(2M).

Using the fact that for every ε > 0, Eρ,ε,M ⊂ Bρ,M , we can write

I ≤ Pcol
((

�I
ρ

)c | C1 ⊂ R1,Aρ,ε,M

) + max
R∈�I

ρ

πR(Eρ,ε,M | Aρ,ε,M,C1 ⊂ R1)

� q�q�
�q� e−ρ2n/(2M) + q

�q� max
R∈�I

ρ

πR(Bρ,M | L1 ≥ (�∗ + ε)n,C1 ⊂ R1)

πR(Aρ,ε,M | L1 ≥ (�∗ + ε)n,C1 ⊂ R1)
.

If R ∈ �I
ρ , for sufficiently small ρ > 0, the definition of �∗ and λ > λs implies G(|R1|,p) is supercritical, and both

G(
n−|R1|
q−1 + 2ρn,p) and G(|R0|,p, q − �q�) are subcritical. By a union bound we can expand the numerator above as at

most

max
R∈�I

ρ

(
π|R1|,p

(
|SM − C1| ≥ ρn

2�q� | L1 ≥ (
�∗ + ε

)
n

)
+

∑
i=2,...,�q�

π|Ri |,p
(

|SM | ≥ ρn

2�q�
)

+ π|R0|,p,q−�q�
(

|SM | ≥ ρn

2�q�
))

+ e−c�∗n,

and analogously, the denominator as at least

min
R∈�I

ρ

(
1 − π|R1|,p

(
|SM − C1| ≥ ρn

�q� | L1 ≥ (
�∗ + ε

)
n

)
− π|R0|,p,q−�q�

(
|SM | ≥ ρn

�q�
)

−
∑

i=2,...,�q�
π|Ri |,p

(
|SM | ≥ ρn

�q�
))

− e−c�∗n.

(In both of the above, we paid a cost of e−c�∗n for the assumption L1(ω) = L1(ω�R1
).) By Lemma 3.4, (for every

L1 ≥ (�∗ + ε)n and R ∈ �I
ρ , G(|R1| − L1,p) is subcritical) there exists c(λ, q) > 0 such that for sufficiently small

ρ, ε > 0 and every M ≥ M0(λ,ρ),

max
R∈�I

ρ

π|R1|,p,1

(
|SM − C1| ≥ ρn

2�q� | L1 ≥ (
�∗ + ε

)
n

)
� e−cρn/2, and

max
R∈�I

ρ

π|R1|,p,1

(
|SM − C1| ≥ ρn

�q� | L1 ≥ (
�∗ + ε

)
n

)
� e−cρn.

Moreover, as in the proof of Lemma 4.5, by Lemmas 3.1 and 4.3, we also have that for i = 2, . . . , �q� that there exists
c(λ, q) > 0 such that for every M ≥ M0(λ,ρ),

max
R∈�I

ρ

π|Ri |,p,1

(
|SM | ≥ ρn

�q�
)
� e−cρn, and

max
R∈�I

ρ

π|R0|,p,q−�q�
(

|SM | ≥ ρn

�q�
)
�

√
ne−cρn.

Clearly, analogous bounds hold for the above when replacing ρn
�q� with ρn

2�q� . Combining all of the above bounds and
plugging them in to the right-hand side of

I � max
R∈�I

ρ

πR(Bρ,M | L1 ≥ (�∗ + ε)n,C1 ⊂ R1)

πR(Aρ,ε,M | L1 ≥ (�∗ + ε)n,C1 ⊂ R1)
+ e−ρ2n/(2M),
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yields an exponentially decaying upper bound on the sum I. The bound on the sum II is very similar. Letting μII =
(�∗ + ε)n + q−�q�

q
(1 − �∗ − ε)n, we define

�II
ρ =

{
|R0| ≥ μII − 2ρn,

∣∣∣∣|Ri | − n − |R0|
�q�

∣∣∣∣ < 2ρn for all i = 1, . . . , �q�
}
.

As before, by Lemma 3.2, we can write

II � e−ρ2n/(2M) + max
R∈�II

ρ

πR(Bρ,M | L1 ≥ (�∗ + ε)n,C1 ⊂ R0)

πR(Aρ,ε,M | L1 ≥ (�∗ + ε)n,C1 ⊂ R0)
,

and observe that for every R ∈ �II
ρ , since λ ∈ (λs, λS), for sufficiently small ρ > 0, the FK model π|R0|,p,q−�q� is su-

percritical and the random graphs G(|Ri |, λ) are subcritical for all i = 1, . . . , �q�. By Lemmas 3.1 and 4.4, there exists
c(λ, q) > 0 such that for every ρ > 0 sufficiently small and every M ≥ M0(λ,ρ),

max
R∈�II

ρ

π|R0|,p,q−�q�
(

|SM − C1| ≥ ρn

�q� | L1 ≥ (
�∗ + ε

)
n

)

≤ max
R∈�II

ρ

π|R0|,p,q−�q�
(

|SM − C1| ≥ ρn

�q�
)
� e−cρn, and

max
R∈�II

ρ

π|Ri |,p,1

(
|SM | ≥ ρn

�q�
)
� e−cρn for all i = 1, . . . , �q�,

and by the same reasoning, analogous bounds hold when replacing ρn
�q� with ρn

2�q� . Then expanding the fraction in the
upper bound on II as done in the bound on I implies there exists c(λ, q) > 0 such that for sufficiently small ρ, ε > 0 and
every M ≥ M0(λ,ρ),

πn,p,q(Eρ,ε,M | Aρ,ε,M)� I + II � e−cρn + e−c�∗n + e−ρ2n/(2M). �

We are now in position to complete the proof of Theorem 2.

Proof of Theorem 2: the case np = λ ∈ (λs, λc]. The proof when λ ∈ (λs, λc] is similar to the extension of slow mixing
for the Swendsen–Wang dynamics when λ ∈ [λc,λS) to λ ∈ (λs, λc]. Recall that for fixed λ > λs , the two zeros of
g(θ) = f (θ) − θ were denoted �∗ < �r so that g is positive on (�∗,�r). We again use a conductance estimate to lower
bound the inverse gap of the Chayes–Machta dynamics. Define for every ρ, ε,M > 0,

Aρ,ε,M = {
L1 ≥ (

�∗ + ε
)
n, |SM − C1| < ρn

}
,

Eρ,ε,M =
{
L1 ≥ (

�∗ + ε
)
n,

ρn

2
< |SM − C1| < ρn

}
.

As in (4.5), by (4.1) it suffices to show an exponentially decaying upper bound on

Q(Aρ,ε,M,Ac
ρ,ε,M)

πn,p,q(Aρ,ε,M)
� max

X0∈Aρ,ε,M−Eρ,ε,M

P
(
X0,A

c
ρ,ε,M

) + πn,p,q(Eρ,ε,M | Aρ,ε,M),

for sufficiently small ρ, ε > 0 and large M ; this is because by Proposition 2.1, for all small enough ε, ρ, we have
πn,p,q(Ac

ρ,ε,M) ≥ c > 0. We bound the two terms above separately as in the proof for λ ∈ [λc,λS). First of all, note by
Lemma 4.7 that the second term on the right-hand side is bounded above by e−cn for some c(ρ,M,λ,q) > 0 for every
sufficiently small ε,ρ > 0 and every M ≥ M0(λ,ρ).

Now consider any X0 ∈ Aρ,ε,M −Eρ,ε,M and bound P(X0,A
c
ρ,ε,M) under the Chayes–Machta dynamics. We split the

transition probability of the Chayes–Machta dynamics into the case when C1(X0) is activated and C1(X0) is not activated;
let A1 denote the set of activated vertices. If C1(X0) 
⊂ A1, we have E[|A1| | C1 
⊂ A1] ≤ 1

q
(1 − �∗ − ε)n and since

X0 ∈ Aρ,ε,M , by Lemma 3.2, if ε > ρ, then

PX0

(
|A1| ≥ 1

q

(
1 − �∗ − ε

)
n + εn | C1(X0) 
⊂A1

)
≤ 2e−ε2n/(2M).
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If |A1| ≤ 1
q
(1−�∗ −ε)n+εn, for sufficiently small ε > 0, since λ < λS = q , the random graph G(|A1|,p) is subcritical,

in which case with probability at least 1 − e−c�∗n, C1(X1) = C1(X0). By Lemma 3.1, there exists c(ρ,M,λ,q) > 0 such
that for 0 < ρ < ε sufficiently small and every M ≥ M0(λ,ρ),

PX0

(∣∣SM(X1) − C1(X1)
∣∣ ≥ ρn | C1(X0) 
⊂A1

)
� π 1

q
(1−�∗+(q−1)ε)n,p,1

(
|SM | ≥ ρn

2

)
+ e−ε2n/(2M) + e−c�∗n

� e−cρn + e−ε2n/(2M) + e−c�∗n.

Thus, for some c(ρ, ε,M,λ,q) > 0, for small enough 0 < ρ < ε, and every M ≥ M0(λ,ρ),

max
X0∈Aρ,ε,M−Eρ,ε,M

PX0

(
X1 /∈ Aρ,ε,M | C1(X0) 
⊂A1

)
� e−cn.

Now suppose that C1(X0) ⊂ A1; then one step of Chayes–Machta dynamics is described precisely by the set up of
Lemma 4.6, with ρ replaced by ρ/2, yielding

max
X0∈Aρ,ε,M−Eρ,ε,M

PX0

(
L1 ≤ (

�∗ + ε
)
n | C1(X0) ⊂A1

)
� e−c′n

for some c′(ε, ρ,M,λ, q) > 0 for all sufficiently small ε,ρ > 0 and M ≥ M0(λ,ρ). On the complement of that event,
deterministically C1(X1) = C1(X1�A1

). By Lemma 3.4, for some c(λ, q) > 0, for small ε,ρ > 0 and large M ≥ M0(λ,ρ),

P
(∣∣SM(X1�A1

) − C1(X1�A1
)
∣∣ ≥ ρn/2 | C1(X0) ⊂A1

)
� e−cρn/2.

Combining the above, we deduce that there exists c(ρ, ε,M,λ,q) > 0 such that for all sufficiently small 0 < ρ < ε, for
every M ≥ M0(λ,ρ), we have P(X0,A

c
ρ,ε,M) � e−cn, concluding the proof of Theorem 2 when λ ∈ (λs, λc]. �
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