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Abstract. We develop a discrete version of paracontrolled distributions as a tool for deriving scaling limits of lattice systems, and
we provide a formulation of paracontrolled distributions in weighted Besov spaces. Moreover, we develop a systematic martingale
approach to control the moments of polynomials of i.i.d. random variables and to derive their scaling limits. As an application,
we prove a weak universality result for the parabolic Anderson model: We study a nonlinear population model in a small random
potential and show that under weak assumptions it scales to the linear parabolic Anderson model.

Résumé. Nous développons une version discréte de la théorie des distributions paracontrdlées comme outil pour déduire les
limites d’échelles des modeles discrets, et nous proposons une formulation des distributions paracontr6lées dans les espaces de
Besov avec poids. De plus, nous obtenons une approche martingale pour contrdler systématiquement les moments des polyndmes
des variables aléatoires i.i.d., et pour déduire leurs limites d’échelles. Comme application, un résultat d’universalité faible pour le
modele parabolique d’ Anderson est obtenu : nous étudions un modele non linéaire d’une population dans un potentiel aléatoire, et
démontrons, sous des hypotheses faibles, que le modele converge vers le modele parabolique d’ Anderson linéaire.
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1. Introduction

Paracontrolled distributions were developed in [17] to solve singular SPDEs, stochastic partial differential equations
that are ill-posed because of the interplay of very irregular noise and nonlinearities. A typical example is the two-
dimensional continuous parabolic Anderson model,

o = Au + ué — uoo,

where u: Ry x R> — R and & is a space white noise, the centered Gaussian distribution whose covariance is formally
given by E[£§(x)&(y)] = 8(x — y). The irregularity of the white noise prevents the solution from being a smooth
function, and therefore the product between u and the distribution § is not well defined. To make sense of it we need
to eliminate some resonances between u and £ by performing an infinite renormalization that replaces u& by u& — uoo.
The motivation for studying singular SPDEs comes from mathematical physics, because they arise in the large scale
description of natural microscopic dynamics. For example, if for the parabolic Anderson model we replace the white
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noise & by its periodization over a given box [—L, L1?, then it was recently shown in [10] that the solution u is the
limit of u®(z, x) = e <"v(r/e2, x /&), where v¥: Ry x {—L/e, ..., L/e}* — R solves the lattice equation

0, v° = A%v® + ev’n,

where A® is the periodic discrete Laplacian and (7(x)) . (—LJe
with unit variance and sufficiently many moments.

Results of this type can be shown by relying more or less directly on paracontrolled distributions as they were de-
veloped in [17] for functions of a continuous space parameter. But that approach comes at a cost because it requires us
to control a certain random operator, which is highly technical and a difficulty that is not inherent to the studied prob-
lem. Moreover, it just applies to lattice models with polynomial nonlinearities. See the discussion below for details.
Here we formulate a version of paracontrolled distributions that applies directly to functions on Bravais lattices and
therefore provides a much simpler way to derive scaling limits and never requires us to bound random operators. Apart
from simplifying the arguments, our new approach also allows us to study systems on infinite lattices that converge
to equations on R?, while the formulation of the Fourier extension procedure we sketch below seems much more
subtle in the case of an unbounded lattice. Moreover, we can now deal with non-polynomial nonlinearities which is
crucial for our main application, a weak universality result for the parabolic Anderson model. Besides extending para-
controlled distributions to Bravais lattices we also develop paracontrolled distributions in weighted function spaces,
which allows us to deal with paracontrolled equations on unbounded spaces that involve a spatially homogeneous
noise. And finally we develop a general machinery for the use of discrete Wick contractions in the renormalization
of discrete, singular SPDEs with i.i.d. noise which is completely analogous to the continuous Gaussian setting, and
we build on the techniques of [6] to provide a criterion that identifies the scaling limits of discrete Wick products as
multiple Wiener—It6 integrals.

Our main application is a weak universality result for the two-dimensional parabolic Anderson model. We consider
a nonlinear population model v*: R, x Z? — R,

L/ey? 1s anii.d. family of centered random variables

,,,,,

9, v8 (¢, x) =A(d)vs(t,x)+F(v5(t,x))n£(x), (1)

where AW s the discrete Laplacian, F € C 2 has a bounded second derivative and satisfies F(0) = 0, and (° (x)) 7?2
is an i.i.d. family of random variables with Var(n®(0)) = 2 and E[5(0)] = —F’(0)e2¢? for a suitable sequence
of diverging constants ¢® ~ |loge|. The variable v®(z, x) describes the population density at time ¢ in the site x.
The classical example would be F(u) = u, which corresponds to the discrete parabolic Anderson model in a small
potential n°. In that case v® describes the evolution of a population where every individual performs an independent
random walk and finds at every site x either favorable conditions if 7°(x) > O that allow the individual to reproduce
at rate n°(x), or non-favorable conditions if n°(x) < 0 that kill the individual at rate —»®(x). We can include some
interaction between the individuals by choosing a nonlinear function F. For example, F(#) = u(C — u) models a
saturation effect which limits the overall population size in one site to C because of limited resources. In Section 5
we will prove the following result:

Theorem (see Theorem 5.13). Assume that F and (n®(x)) satisfy the conditions described above and also that
the pth moment of n®(0) is uniformly bounded in ¢ for some p > 14. Then there exists a unique solution v to
(1) with initial condition v¢(0,x) = 1._g, up to a possibly finite explosion time T¢ with T® — oo for ¢ — 0, and
ut(t, x) = e 2v°(e7%t, e 'x) converges in law to the unique solution u: Ry x R?> — R of the linear continuous
parabolic Anderson model

du=Au+ F'(0)ué —F’(O)zuoo, u(0) =4,
where § denotes the Dirac delta.

Remark 1.1. It may appear more natural to assume that n°(0) is centered. However, we need the small shift of the
expectation away from zero in order to create the renormalization —F’(0)?uoc in the continuous equation. Making
the mean of the variables 7°(x) slightly negative (assume F|jo,oc) > 0 so that F'(0) > 0) gives us a slightly higher
chance for a site to be non-favorable than favorable. Without this, the population size would explode in the scale



2060 J. Martin and N. Perkowski

in which we look at it. A similar effect can also be observed in the Kac—Ising/Kac-Blume—Capel model, where the
renormalization appears as a shift of the critical temperature away from its mean field value [37,42]. Note that in the
linear case F(u) = u we can always replace n° by n° + ¢ if we consider e v®(¢) instead. So in that case it is not
necessary to assume anything about the expectation of n®, we only have to adapt our reference frame to its mean.

Remark 1.2. The condition p > 14 might seem rather arbitrary. Roughly speaking this requirement is needed to
apply a form of Kolmogorov’s continuity criterion, see Remark 5.6 for details.

Structure of the paper

Below we provide further references and explain in more details where to place our results in the current research
in singular SPDEs and we fix some conventions and notations. In Sections 2—4 we develop the theory of paracon-
trolled distributions on unbounded Bravais lattices, and in particular we derive Schauder estimates for quite general
random walk semigroups. Section 5 contains the weak universality result for the parabolic Anderson model, and here
we present our general methodology for dealing with multilinear functionals of independent random variables. The
Appendix contains several proofs that we outsourced. Finally, there is a list of important symbols at the end of the

paper.
Related works

As mentioned above, we can also use paracontrolled distributions for functions of a continuous space parameter to
deal with lattice systems. The trick, which goes back at least to [37] and was inspired by [26], is to consider for
a lattice function u® on say {ke : —L/e <k <L /e}? the unique periodic function Ext(u®) on (R/ (2LZ))* whose
Fourier transform is supported in [—1/¢, 1/£]* and that agrees with u® in all the lattice points. If the equation for
u® involves only polynomial nonlinearities, we can write down a closed equation for Ext(x®) which looks similar
to the equation for u® but involves a certain “Fourier shuffle” operator that is not continuous on the function spaces
in which we would like to control Ext(u®). But by introducing a suitable random operator that has to be controlled
with stochastic arguments one can proceed to study the limiting behavior of Ext(uf) and thus of u®. This argument
has been applied to show the convergence of lattice systems to the KPZ equation [21], the d>‘3‘ equation [47], and to
the parabolic Anderson model [10], and the most technical part of the proof was always the analysis of the random
operator. The same argument was also applied to prove the convergence of the Kac-Ising/Kac-Blume—Capel model
[37,42] to the @3/ CDS equation. This case can be handled without paracontrolled distributions, but also here some
work is necessary to control the Fourier shuffle operator. This difficulty is of a technical nature and not inherent to the
studied problems, and the line of argumentation we present here avoids that problem by analysing directly the lattice
equation rather than trying to interpret it as a continuous equation.

Other intrinsic approaches to singular SPDEs on lattices have been developed in the context of regularity structures
by Hairer, Matetski and Erhard [13,27] and in the context of the semigroup approach to paracontrolled distributions by
Bailleul and Bernicot [2], and we expect that both of these works could be combined with our martingale arguments
of Section 5 to give an alternative proof of our weak universality result.

We call the convergence of the nonlinear population model to the linear parabolic Anderson model a “weak uni-
versality” result in analogy to the weak universality conjecture for the KPZ equation. The (strong) KPZ universality
conjecture states that a wide class of (1 4 1)-dimensional interface growth models scale to the same universal limit, the
so called KPZ fixed point [36], while the weak KPZ universality conjecture says that if we change some “asymmetry
parameter” in the growth model to vanish at the right rate as we scale out, then the limit of this family of models is the
KPZ equation. Similarly, here the influence of the random potential on the population model must vanish at the right
rate as we pass to the limit, so the parabolic Anderson model arises as scaling limit of a family of models. Similar
weak universality results have recently been shown for other singular SPDEs such as the KPZ equation [16,20,22,28]
(this list is far from complete), the @5” equations [30,37,42], or the (stochastic) nonlinear wave equation [18,39].

A key task in singular stochastic PDEs is to renormalize and to construct certain a priori ill-defined products
between explicit stochastic processes. This problem already arises in rough paths [35] but there it is typically not
necessary to perform any renormalizations and general construction and approximation results for Gaussian rough
paths were developed in [15]. For singular SPDEs the constructions become much more involved and a general
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construction of regularity structures for equations driven by Gaussian noise was found only recently and is highly
nontrivial [5,8]. For Gaussian noise it is natural to regroup polynomials of the noise in terms of Wick products,
which goes back at least to [11] and is essentially always used in singular SPDEs, see [7,21,23,24] and many more.
Moreover, in the Gaussian case all moments of polynomials of the noise are equivalent, and therefore it suffices to
control variances. In the non-Gaussian case we can still regroup in terms of Wick polynomials [9,29,37,43], but a
priori the moments are no longer comparable and new methods are necessary. In [37] the authors used martingale
inequalities to bound higher order moments in terms of variances.

In our case it may look as if there are no martingales around because the noise is constant in time. But if we
enumerate the lattice points and sum up our i.i.d. variables along this enumeration, then we generate a martingale.
This observation was used in [10] to show that for certain polynomial functionals of the noise (“discrete multiple
stochastic integrals”) the moments are still comparable, but the approach was somewhat ad-hoc and only applied
directly to the product of two variables in “the first chaos”.

Here we develop a general machinery for the use of discrete Wick contractions in the renormalization of discrete,
singular SPDEs with i.i.d. noise which is completely analogous to the continuous Gaussian setting. Moreover, we build
on the techniques of [6] to provide a criterion that identifies the scaling limits of discrete Wick products as multiple
Wiener-Itd integrals. Although these techniques are only applied to the discrete 2d parabolic Anderson model, the
approach extends in principle to any discrete formulation of popular singular SPDEs such as the KPZ equation or the
@3 models.

1.1. Conventions and notation

We use the common notation <, 2 in estimates to denote <, > up to a positive constant. The symbol ~ means that
both < and 2 hold true. For discrete indices we mean by i j Jj that there is a N > 0 (independent of 7, j) such that
i <j+N,ie. that 2’ <2/ and similarly for j >~ i; the notation i ~ j is shorthand for i < j and j <.

We denote partial derivatives by 3 for @ € N := {0, 1,2, .. .} and for o = (1;=;); we write 9! = 8%. Our Fourier
transform follows the convention that for f € L' (Rd)

Fra f(y) = / Fx)e 2T dx, ]-'Hgdlf(x) ;:/ F(y)e2™Y dy,
R4 R4

where x « y denotes the usual inner product on R¢. The most relevant notations are listed in a glossary at the end of
this article.

2. Weighted Besov spaces on Bravais lattices

2.1. Fourier transform on Bravais lattices

A Bravais-lattice in d dimensions consists of the integer combinations of d linearly independent vectors ay, ..., aq €
R9, that is

G:=Za+ -+ Zag. 2)
Given a Bravais lattice we define the basis ay, . .., @y of the reciprocal lattice by the requirement

aj~aj =3djj, 3

and we set Z := Za1 + -+ + Zay. However, we will mostly work with the (centered) parallelotope which is spanned
by the basis vectors a, ..., dy:

o~ . N | B . N N
G:=[0,Da; +---+[0, Day — 5(611 +-tag)=[-1/2,1/a; +---+[—1/2,1/2)ay.
We call G the bandwidth or Fourier-cell of G to indicate that the Fourier transform of a map on g lives on G, as we

will see below. We also identify G ~Rd /2 and turn G into an additive group which is invariant under translations by
elements in Z.
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Fig. 1. Depiction of some Bravais lattices G with their bandwidths G a square lattice, an oblique lattice and the so called hexagonal lattice. The
length of the reciprocal vectors @; is rather arbitrary since it actually depends on the units in which we measure a; .

Example 2.1. If we choose the canonical basis vectors a; = ey, ..., aq = eq, we have simply
G=7% #=17¢  G=T¢=[-1/2,1/2)"%
Compare also the left lattice in Figure 1.

In Figure 1 we sketched some Bravais lattices G together with their Fourier cells a . Note that the dashed lines
between the points of the lattice are at this point a purely artistic supplement. However, they will become meaningful
later on: If we imagine a particle performing a random walk on the lattice G, then the dashed lines could be interpreted
as the jumps it is allowed to undertake. From this point of view the lines will be drawn by the diffusion operators we
introduce in Section 3.

Definition 2.2. Given a Bravais lattice G as defined in (2) we write
G°:=¢G

for the sequence of Bravais lattice we obtain by dyadic rescaling with ¢ =27, N > 0. Whenever we say a statement
(or an estimate) holds for G° we mean that it holds (uniformly) for all e =2~V , N > 0.

Remark 2.3. The restriction to dyadic lattices fits well with the use of Littlewood—Paley theory which is traditionally
built from dyadic decompositions. However, it turns out that we do not lose much generality by this. Indeed, all the
estimates below will hold uniformly as soon as we know that the scale of our lattice is contained in some interval
(c1,c2) CC (0, 00). Therefore it is sufficient to group the members of any positive null-sequence (¢,),>0 in dyadic
intervals [2~V+D 27Ny to deduce the general statement.

Given ¢ € £1(G) we define its Fourier transform as

Fgo(x) =191y gke 7, xeg, )
keG
where we introduced a “normalization constant” |G| := |det(aq, ..., aq)| that ensures that we obtain the usual Fourier

transform on R? as |G| tends to 0. We will also write |§ | for the Lebesgue measure of the Fourier cell G.
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If we consider Fg¢ as a map on Rd then it is periodic under translatlons in Z. By the dominated convergence
theorem Fgg is continuous, so since Q is compact itisin L! (g) =L! (g dx), where dx denotes integration with
respect to the Lebesgue measure. For any ¢ € L! (g) we define its inverse Fourier transform as

Fg k) = wa(x)eh”” dx, keg. (5)
g

Note that |G| =1/ |§ | and therefore we get at least for ¢ with finite support ]-"g_ 1.7-"g(p = ¢. The Schwartz functions on
G are

5@ =1{0: G- C:sup(1+ k)" o (k)| < oo forall m € N},
keG

and we have Fgp € C % (G) (with periodic boundary conditions) for all ¢ € S(G), because for any multi-index o € N¢
the dominated convergence theorem gives

0" Fgp(x) = 1G]y p(k)(—2mik)®e 21k,
keG

By the same argument we have .Fg_ ! Y eS@G) forall y € C o‘7(5), and as in the classical case G = Z? one can show

that Fg is an isomorphism from S(G) to C °°(§) with inverse ]:g_ I Many relations known from the 7% -case carry
over readily to Bravais lattices, e.g. Parseval’s identity

3061 Jo —/|<p<x>| dx ©)

keG

(to see this check for example with the Stone—Weierstrass theorem that (|G|!/2¢*>" ¢ )keg forms an orthonormal basis
of L2(Q dx)) and the relation between convolution and multiplication

Fg(p1 %G 92)(x) := Fg (Z 1Glg1 () pa (- — k))(x) = Fgp1(x) - Fgpa(x), (7)
keG
F5' W xg v k) = Fg' ( /gwl @)¥a(l- — xlg) dx) (k) =Fg 'y (k) - Fg 'y k), ®)

where [z]gA is for z € RY the unique element in @\ such that z — [Z]g cX.
Since S(G) consists of functions decaying faster than any polynomial, the Schwartz distributions on G are the
functions that grow at most polynomially,

S'(G) = {f: G — C:sup(1+ |k])™"| f (k)| < oo for some m € N},
keG
and (@) := 1G] Y reg f (k)@ (k) is well defined for ¢ € S(G). We extend the Fourier transform to S'(G) by setting

FoHW) = F(Fg ) = 161> F0OF; T k), ¥ eC¥@),
keG

where (...) denotes the complex conJugate This should be read as (Fg f)(¥) = f(Fgy), which however does not
make any sense because for ¥ € C°°(g) we did not define the Fourier transform Fgy but only 7 11//. The Fourier

transform (Fg f) () agrees with fg]-'gf(x) - (x)dx in case f € S(G). It is possible to show that fe S'(G), where

o~

S'(G) = {u: C*®(G) — C:u is linear and 3C > 0, m € N s.t. lu(y)| < cnwnqn@}
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for ||’>”||c;7"(gA) = Zlalsm 0¥ |l oo (G- and that Fg is an isomorphism from S'(G) to S'(G) with inverse

(Fg'u) (@) =11 u(e™* ) (k). ©)

keG

As in the classical case G = Z it is easy to see that we can identify every f € S§'(G) with a “Dirac comb” distribution
fair € S’ (R?) by setting

Jair = 19| Z.f(k)fS(- —k), (10)
keG

where 8(- — k) € S’(R?) denotes a shifted Dirac delta distribution. We can identify any element g € S’ @) of the
frequency space with an %Z-periodic distribution gey € S’(R?) by setting

Zext(9) :=g<2 o(- —k)), ¢ € S(RY). (11
ke

IfgeS (6) coincides with a function on ? one sees that
gext(x) = g([x1g), (12)

where [x]5 G is, as above, the (unique) element [x]5 g€ g such that [x]5 g—X€ Zay + - - -+ Zay = % . Conversely, every
Z-periodic distribution g € S'(R?) can be seen as a restricted element ges € S’ (g) e.g. by considering

gres(@) = (¥ - ©)(@ex) = (¥ - 0ex), 9 € CX(0), (13)

where ¢ € C° (Rd) is chosen such that Zke% Y (- — k) = 1 and where we used in the second equality the definition
of the product between a smooth function and a distribution. To construct such a ¥ it suffices to convolve 15 with a
smooth, compactly supported mollifier, and it is easy to check that (gext)res = g for all g € §'(G) and that g does
not depend on the choice of 1. This motivates our definition of the extension operator £ below in Lemma 2.6.

With these identifications in mind we can interpret the concepts introduced above as a sub-theory of the classical
Fourier analysis of tempered distributions. We will sometimes use the following identity for f € S'(G)

(FG fext = Fra (fdir), (14)

which is easily checked using the definitions above.
Next, we want to introduce Besov spaces on G. Recall that one way of constructing Besov spaces on R¢ is by
making use of a dyadic partition of unity.

Definition 2.4. A dyadic partition of unity is a family (¢;);>—1 S CZ (R?) of nonnegative radial functions such that

supp ¢_1 is contained in a ball around 0, supp ¢; is contained in an annulus around O for j > 0,
=g@o(27/-) for j >0,

> s 19j(x)=1forany x € RY,

if |j — j'I > 1 we have supp; Nsuppg; = &

Using such a dyadic partition as a family of Fourier multipliers leads to the Littlewood—Paley blocks of a distribu-
tion f € S'(RY),

Ajf=Fpi (@) Fraf).

Each of these blocks is a smooth function and it represents a “spectral chunk” of the distribution. By choice of the
(pj)j=—1 wehave f=3% . ;A;finS (R?), and measuring the explosion/decay of the Littlewood-Paley blocks
gives rise to the Besov spaces

By RN ={feSRY):| (2ja||Ajf||Lp)jz—1||zq < oo}. (15)
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In our case all the information about the Fourier transform of f € S’ (Q) thatis Fgf € S’ (g) is stored in a finite
bandwidth G. Therefore, it is more natural to decompose the compact set G, so that we consider only finitely many
blocks. However, there is a small but delicate problem: We should decompose G in a smooth periodic way, but if j is
such that the support of ¢; touches the boundary of G, the function ¢; will not necessarily be smooth in a periodic
sense. We therefore redefine the dyadic partition of unity for x € G as

@;j(x), J<lJg:
oj=1"" =9 (16)
_Zj</g (p](‘x)7 J=JG,
where j < jg :=inf{j : suppep; N 8575 &}. Now we set for f € S, (G)
Gr._ =1(,9
Ajf-—]:g (‘pj '-Fgf),
which is now a function defined on G. As in the continuous case we will also use the notation S]g =X j Ag f-

Of course, for a fixed G it may happen that Agl = 1d, but if we rescale the lattice G to £G, the Fourier cell G
changes to ¢ ~'G and so for ¢ — 0 the following definition becomes meaningful.

Definition 2.5. Given @ € R and p, g € [1, co] we define

,,,,,

where we define the L”(G) norm by

1/p
1fllLrg) == <|g| Z!f(k)}”) =1G1"7 1 ,»- (17)
keG
We write furthermore C;’,‘ @) = B‘;‘,’ ().
The reader may have noticed that since we only consider finitely many j = —1, ..., jg (and since A;: L?(G) —

L?(G) is a bounded operator, uniformly in j, as we will see below), the two spaces B‘;, q (G) and LP(G) are in fact
identical with equivalent norms! However, since we are interested in uniform bounds on G® for ¢ — 0, we are of
course not allowed to switch between these spaces. Whenever we consider sequences G of lattices we construct all
dyadic partitions of unity ((pjgg) j=—1.....jge from the same partition of unity (¢;);>—1 on R4,

With the above constructions at hand it is easy to develop a theory of paracontrolled distributions on a Bravais
lattice G which is completely analogous to the one on R?. For the transition from the rescaled lattice models on G¢
to models on the Euclidean space R¢ we need to compare discrete and continuous distributions, so we should extend
the lattice model to a distribution in S’(R?). One way of doing so is to simply consider the identification with a Dirac
comb, already mentioned in (10), but this has the disadvantage that the extension can only be controlled in spaces of
quite low regularity because the Dirac delta is quite irregular. We find the following extension convenient:

Lemma 2.6. Let € CX*° (R?) be a positive function with Y ker V(- —k)=1and set
Ef =Fpd (V- (Fgext), [€SQ),

where the periodic extension (+)ext : S'(G) — S'(RY) is defined as in (11). Then € f € CP*(RHNS'(RY) and £ f (k) =
F(k) forallk €G.

Proof. We have £ f € S'(R?) because (Fg f)ex: is in S'(R?), and therefore also & f = fﬂgdl(w (Fgext) € S'(RY).
Knowing that € f is in S'(R¥), it must be in C*(R?) as well because it has compact spectral support by definition.
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Moreover, we can write for k € G

Ef k) = (Fgext(y - *0) = fgf<Z Y(— r)ezm"‘“)) =Fgf(e70) = f ),

reR

where we used the definition of (-)ex¢ from (11) and that k- r € Z forall k € G and r € Z. O

It is possible to show that if £ denotes the extension operator on G¥, then the family (£¢),~¢ is uniformly bounded
in L(B;’;’ q(g8 ), Bg’ q(Rd)), and this can be used to obtain uniform regularity bounds for the extensions of a given
family of lattice models.

However, since we are interested in equations with spatially homogeneous noise, we cannot expect the solution to
be in Bg’ q (@) for any «, p, g and instead we have to consider weighted spaces. In the case of the parabolic Anderson

model it turns out to be convenient to even allow for subexponential growth of the form el foro € (0, 1), which
means that we have to work on a larger space than S’(G), where only polynomial growth is allowed. So before we
proceed let us first recall the basics of the so called ultra-distributions on RY.

2.2. Ultra-distributions on Euclidean space

A drawback of Schwartz’s theory of tempered distributions is the restriction to polynomial growth. As we will see
later, it is convenient to allow our solution to have subexponential growth of the form M foro e O,1)and A > 0. It
is therefore necessary to work in a larger space S,, (Rd) o8 (Rd), the space of so called (tempered) ultra-distributions,
which has less restrictive growth conditions but on which one still has a Fourier transform. Similar techniques already
appear in the context of singular SPDEs in [38], where the authors use Gevrey functions that are characterized by
a condition similar to the one in Definition 2.11 below. Here, we will follow a slightly different approach that goes
back to Beurling and Bjorck [3], and which mimics essentially the definition of tempered distribution via Schwartz
functions. For a broader introduction to ultra-distributions see for example [44, Chapter 6] or [3].
Let us fix, once and for all, the following weight functions which we will use throughout this article.

Definition 2.7. We denote by

wPl(x) :=log(1 + |x1), wgP(x):=x|", o€(0,1),
where x e R4, o € (0, 1). For w € w := {0} U {wg " | o € (0, 1)} we denote by p(w) the set of measurable, strictly
positive p : R — (0, o) such that

p(x) < p(y)ere=y (18)

for some A = A(p) > 0. We also introduce the notation p(®) := Uwew p(w). The objects p € p(w) will be called
weights.

Note that the sets p(w) are stable under addition and multiplication for a fixed w € . The indices “pol” and
“exp” of the elements in @ indicate the fact that elements in p € p(wP°') are polynomially growing or decaying while
elements in p(wS—XP ) are allowed to have subexponential behavior. Note that

0 (wpol) Cp (a)f,xP)

and that

(1 +x])* € p(wP) 19)
and M7 € p(a)(e,Xp) for L e R, o € (0, 1). The reason why we only allow for o < 1 will be explained in Remark 2.10
below.

We are now ready to define the space of ultra-distributions.
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Definition 2.8. We define for € @ the locally convex space
dy . d d
So(R?) :={feS[R) |VA> 0,0 e N, p%, (f) + 75, (f) < o0}, (20)

which is equipped with the seminorms

Po L (f) = sup "M 3% f(x)], @1
xeRd

72, (f) = sup "W |3 Fya f (x)]. (22)
xeRd

Its topological dual S&(Rd) is called the space of tempered ultra-distributions.

Remark 2.9. We here follow [44, Def. 6.1.2.3] and equip the dual S, (R?) with the strong topology. The choice of
the weak-* topology is however also common in the literature [1].

Remark 2.10. The reason why we excluded the case o > 1 for a)f;Xp in Definition 2.7 is that we want S,, to contain
functions with compact support, which then allows for localization and thus for a Littlewood—Paley theory. But if
w=ws? witho >1and f € S,(R?) the requirement rr(‘f , (f) < oo implies that Fa f can be bounded by el
¢ > 0, which means that f is analytic and the only compactly supported f € S,,(R?) is the zero-function f = 0.

In the case @ = wg ", o € (0, 1) the space S/, is strictly larger than S’. Indeed: " € S/ (R?) \ S'(RY) for
o’ € (0, 0]. In the case w = wP°! we simply have

Su(RY) = S(RY)

with a topology that can also be generated by only using the seminorms py, ; so that the dual of S, RY) = SRY) is
given by

S, (RY) =8'(RY).

The theory of “classical” tempered distributions is therefore contained in the framework above.
The role of the triple

D(R?) = C(R?) € S(RY) < C*(R)
in this theory will be substituted by spaces D, (R, Ccy (R9) such that
D, (k) € 8, (k) < € (1)

Definition 2.11. Let U C R be an open set and @ € @ = {0P°'} U {wg " | o € (0, 1)}. We define for w = wg " the set
C>°(U) to be the space of f € C*°(U) such that for every & > 0 and compact K C U there exists C¢ g > 0 such that
for all & € N9

sup|d f| < Ce kel (@) !/7. (23)
K

For @ = P! we set CX(U) =C*>(U). We also define
D,(U)=CXU)NCI ). 24

The elements of C°(U) are called ultra-differentiable functions and the elements of the dual space D), (R?) are called
ultra-distributions.
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Remark 2.12. The space D;(Rd ) is equipped with a suitable topology [3, Section 1.6] which we did not specify
since this space will not be used in this article and is just mentioned for the sake of completeness.

Remark 2.13. The factor ! in (23) can be replaced by |«|! or |«| lel 141, Proposition 1.4.2] as can be easily seen from
a! < |a|! < d“a! and Stirlings formula.

The relation between D,,, S,,, Co’ and their properties are specified by the following lemma.

Lemma 2.14. Let w € .
(i) We have S,,(R?) € C2(R?) and
Dy (RY) = S, (RY) N C2(RY). (25)
In particular D,,(RY) C S,,(RY) € CX(RY).

(ii) The space S (RY) is stable under addition, multiplication and convolution.
(iil) The space C’ (RY) is stable under addition, multiplication and division in the sense that f/g - lpp r € CoY (R%)

for f.g € C(R?), supp f < suppyg.

Sketch of the proof. We only have to prove the statements for w € {wg® | o €(0,1)}. Take f € S,(R?) and & > 0.
We then have for o € N¢

3% f(x) = mo)lel /dezm'fs“fwf(é)dé.
R

Using further that for A > 0 (we here follow [31, Lemma 12.7.4])
o] Stirling
/ £l = g < / a1 4y <O (o +-d) o) S A1 gl
0

we obtain for x € R4
|8af(x)| < C)L)(lvtl/ﬁclot\|O[||Ot|/cr ﬂé”k(f)

Choosing A > 0 big enough shows that f satisfies the estimate in (23) (with global bounds) and thus f € C3° (RY)
and S,(RY) € C o0 (R9). In particular we get S,,(R?) N cx (R%) € D, (R?). To show the inverse inclusion consider
f € Dy(RY). We only have to show that 72, (f) < oo for any A > 0 and & € N?. And indeed for x € R? with [x| > 1

(without loss of generality)?

MX\OJ—_' < = )\'k O'k ]_' < - )\'kck [Uk] f
| Fra f0] = 3 217 Fra f(0)] = 3 == 117 [ P £ (0]
k=0 k=0

_ZZ |x|“’”|fwf<x)|—ZZ ‘f ePTE Ikl £ (5) d

i=1 k=0 i=1 k=0

[o)0]
C, Zxkckek <00,
k=0

(23) & Stirling
=

where C, C, > 0 denote as usual constants that may change from line to line and where in the last step we chose
& > 0 small enough to make the series converge; note that the bound (23) holds on all of R? because f is compactly
supported by assumption.

3We here follow ideas from [38, Proposition A.2].
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The stability of S, (R?) under addition, multiplication and convolution are quite easy to check, see [3, Proposi-
tion 1.8.3].

It is straightforward to check that f - g € C5°(U) for f, g € C3°(U) using Leibniz’s rule. For the stability under
composition see e.g. [40, Proposition 3.1], from which the stability under division can be easily derived. (Il

Many linear operations such as addition or derivation that can be defined on distributions can be translated im-
mediately to the space of ultra-distributions (D, (R%))'. We see with (24) that C o0 (R%) should be interpreted as
the set of smooth multipliers for ultra-distributions in D;U(Rd) and in particular for tempered ultra-distributions
S, (RY D;(Rd ). The space S/, (R?) is small enough to allow for a Fourier transform.

Definition 2.15. For f € S/ (RY) and ¢ € S,,(R) we set
Fra f(@) = f(Frae@),
Fod F(@) = f(Frd 9)-

By definition of S,,(RY) we have that Fgas and flédl are isomorphisms on S,,(R?) which implies that Fgs and fﬂgdl
are isomorphisms on S, (RY).

The following lemma proves that the set of compactly supported ultra-differentiable functions D, (R¢) is rich
enough to localize ultra-distributions, which gets the Littlewood—-Paley theory started and allows us to introduce
Besov spaces based on ultra-distributions in the next section.

Lemma 2.16 ([3, Theorem 1.3.7]). Let w € w. For every pair of compact sets K C K' C RY there is a o €D, (R9)
such that

plg =1, suppy C K'.
2.3. Ultra-distributions on Bravais lattices

For the discrete setup we essentially proceed as in Section 2.1 and define spaces

Su(G) = {f:g—> C | supek‘”(k)|f(k)| < oo for all A >O},
keG

and their duals (when equipped with the natural topology)

S, (G) = {f :G—>C | supe_)“"(k)|f(k)| < oo for some A > O},
keG

with the pairing f(¢) = |G| Zkeg fk)p(k), ¢ € S,(G). As in Section 2.1 we can then define a Fourier transform Fg
on S, (G) which maps the discrete space S,,(G) into the space of ultra-differentiable functions Sw(a) =CP (5) with
periodic boundary conditions. The dual space S, (a) can be equipped with a Fourier transform ]:g_ ! as in (9) such
that 7g, Fg ! become isomorphisms between S,,(G) and S;)(G\) that are inverse to each other. For a proof of these
statements we refer to Lemma A.1.

Performing identifications as in the case of S’(R?) we can interpret these concepts as a sub-theory of the Fourier
analysis on S, (R?) with the only difference that we have to choose the function 1/, satisfying Dkex V(e —k) =1,
on page 2064 as an element of D,,(R?), see page 2072 below for details.

2.4. Discrete weighted Besov spaces

We can now give our definition of a discrete, weighted Besov space, where we essentially proceed as in Section 2.1
with the only difference that p € p(w) is included in the definition and that the partition of unity (¢;);>—1, from

which ((pjg) j=—1 is constructed as on page 2065, must now be chosen in D,, (R9).
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Definition 2.17. Given a Bravais lattice G, parameters « € R, p,q € [1, oo] and a weight p € p(w) for w € @ we
define

.....

where the Littlewood—Paley blocks (A )j=—1,...,jg are built from a dyadic partition of unity (<p )ji=—1....jg €C OO(é\)
on G constructed from some dyadic part1t10n of unity (¢;)j>—1 € D, (R?) on R? as on page 2065 If we con-
51der a sequence G° as in Definition 2.2 we take the same (¢;);j>—1 C Dy (R?) to construct for all ¢ the partitions

((p/ )]——1 ,,,,, ]ga on §€~
We write furthermore C;’,‘ G,p)= Bgm(g , o) and define

,,,,,

LG, p):=={f €Su(@ | I flLrG.p) = llofllLrG) < o0},

ie. 1 flBy,G.m = ||(2j°‘||A?f||Lﬂ(g,p))j||£4-

Remark 2.18. When we introduce the weight we have a choice where to putit. Here we set || fllzrg,p) = 0 lILr()>
which is analogous to [44] or [25], but different from [38] who instead take the L? norm under the measure p(x) dx.
For p = 1 both definitions coincide, but for p = oo the weighted L space of Mourrat and Weber does not feel the
weight at all and it coincides with its unweighted counterpart.

Remark 2.19. The formulation of this definition for continuous spaces Bg, q(Rd, 0), Cg (R4, p) and LP (R4, p) is
analogous.

We can write the Littlewood—Paley blocks as convolutions (on G):

AdF) =9 xg () =101y W9 x -k fk), xed, (26)
keg

where
Gj._ 16
Y .—]-'g @5
We also introduce the notation

WO =3 wo

i<j
Due to our convention to only consider dyadic scalings we always have the useful property
w9 =27 (27)) 27)

for a lattice sequence G° as in Definition 2.2, where

-1, j=-1,
(Ne=10, —1<j<jge, (28)
oo, j=jgs,

and where ¢_1, ¢g, oo €S (R9) are Schwartz functions on R¢ with FraP(jy, € Dy (R9). The functions d—1, 0, Poo
depend on the lattice G used to construct gt = sg but are independent of ¢. In a way, this is a discrete substitute for
the scaling one finds on R for W/ := ]-"Hgdl p;j =2/ d (fﬂgdl ©o)(2/-) (for j > 0) due to the choige of the dyadic partition
of unity in Definition 2.4. We prove the identity (27), together with a similar result for W9 </, in Lemma 2.25 below.
It turns out that (27) is helpful in translating arguments from the continuous theory into our discrete framework. Let us
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once more stress the fact that ¢ ), is defined on all of RY, and therefore (26) actually makes sense for all x € R?. With

the ¢(;), from Lemma 2.25 this “extension” coincides with £° (A? f), where the extension operator £° is defined as
in Lemma 2.24 below.
The following Lemma, a discrete weighted Young inequality, allows us to handle convolutions such as (26).

Lemma 2.20. Given G as in Definition 2.2 and ® € S,,(R?) for o € @ we have for any § € (0, 1] with 8§ > ¢ and
pell,o0l, A >0 for @ :=5"4d(51.) the bound

Sup ” (D(S( + )C) ||L1’(g5,e;\‘”('+">) g S_d(l_l/p)’ (29)
xeRd

where the implicit constant is independent of ¢ > 0. In particular, || ° e (ge ero) < §~40=1/P) and for p € p(w)
$ $
HCD *ge fHLP(gs,p) S IfllLrge,p)s ||cI) *ge fHLP(]Rd,p) S I fllLrge,p)s (30)
where we used in the second estimate that

x> (@ xge ) (@) =G5 D @°(x — k) f (k)

keGe

can be canonically extended to RY.

Remark 2.21. Using § = 2=/ for jef{—1,..., jge} this covers in particular the functions w9 = ]-"g_g1 gojgg via (27).

Proof. The case p = oo follows from the definition of S, (Rd) and e*0®) < e’\“’(‘s_]k), so that we only have to show
the statement for p < co. And indeed we obtain

[0°12 ) ge ey = D |G°[ @7 G| e ® = 5707 3 ][0 (5" ) "er et
keGe keG
—dp _d -1 (8~ Lek) —d(p-1) —d _d 1
<67 Wel Y 1G1[@(87 ek)|"er 0 S 57UV Y 116 e
keG keG
Lemma A.2 1

< Sfd(pfl)/ dz(s e d7<87d(p71)’
~ o SO g

1418~ 'ex|
1+(8~Tey|
uniformly bounded. Inequality (29) can be proved in the same way since it suffices to take the supremum over |x| < ¢.

The estimates for ®° xge f then follow by Young’s inequality on G° and a mixed Young inequality, Lemma A.3

below, applied to the right-hand side of

is

where we used that ® € S,,(R?) and in the application of Lemma A.2 that for |x — y| < 1 the quotient

p(X)|®° e f(x)] < D |G |p(x)|@°(x — k)| - [ £ (K]

keGe
(*)
S Y160 (x = )| - p (] £ R)| = [ @ | xge pf1(x).
keGe¢
In the step (x) we used that p(x) < =k p (k) for some A > 0 due to (18). O
From Lemma 2.20 (and Remark 2.21) we see in particular that the blocks Ajgg map the space L (G¢, p) into itself
for any p € [1, oo]:

Gt Ge.j Lemma 2.20
199 Flungep =199 560 Flingey S 1f e G
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where the involved constant is independent of € and j = —1, ..., jge. This is the discrete analogue of the continuous
version

1A Fll @t py S o py (32)

for j > —1 (which can be proved in essentially the same manner).

As in the continuous case we can state an embedding theorem for discrete Besov spaces. Since it can be shown
exactly as its continuous (and unweighted) cousin ([1, Proposition 2.71] or [12, Theorem 4.2.3]) we will not give its
proof here.

Lemma 2.22. Given G* as in Definition 2.2 for any a1 € R, 1 < p; < pr <00, 1 < q1 < g2 < o0 and weights py, p2
with py < p1 we have the continuous embedding (with norm of the embedding operator independent of € € (0, 1])

B g (G°,p1) < B 4 (G°, )

d

foraz — ”

<ay— %. Ifay <oy —d(1/p1 —1/p2) and lim|y | 00 p2(x)/p1(x) = 0 the embedding is compact.
For later purposes we also recall the continuous version of this embedding.

Lemma 2.23 ([12, Theorem 4.2.3]). Forany o1 € R, 1 < p; < p» <00, 1 <q1 < g2 < 00 and weights p1, p2 with
02 < p1 we have the continuous embedding (with norm independent of ¢ € (0, 1])

Bl g (Rd* p1) S B, 4 (Rd’ p2)

forop <oy —d(1/p1 —1/p2). If oo <oy —d(1/p1 — 1/ p2) and limjx |00 p2(x)/p1(x) = 0 the embedding is com-
pact.

The extension operator
Given a Bravais lattice G and a dyadic partition of unity (¢;);>—_1 on R such that Jg. as defined on page 2065, is

------

We choose a symmetric function ¢ € D,, (R4) which we refer to as the smear function and which satisfies the
following properties:

L. Zke% Y-k =1,

2. Yy =1onsuppy; for j < jg,

3. (suppy Nsupp(pf)ex) \ G # 2 = j = jg.

The last property looks slightly technical, but actually only states that the support of i is small enough such that it only
touches the support of the periodically extended (pjg with j < jg inside G. Using dist(Z)C?, U i<ig supp(gojg)ext) >0

it is not hard to construct a function ¥y as above: Indeed choose via Lemma 2.16 some 1/~/ €D, (Rd) that satisfies
property 3 and &I(j: 1 and set ¥ := ¢/ Y ke V(- —k).

The rescaled ¢ := y(e-) satisfies the same properties on G° (remember that by convention we construct the
sequence ((pjgg) J=—1,ojge from the same (¢;) j>—_1). This allows us to define an extension operator £° in the spirit of
Lemma 2.6 as

EFf = .Flédl (1/f8 . (]:gﬂf)ext)’ fe Sc/u(gs)’

and as in Lemma 2.6 we can show that £° f € C2°(RY) N S, (RY) and £° f|ge = f.
Using (14) we can give a useful, alternative formulation of £¢ f

EF f = Fd ¥ wpa Fd (Fge fext = Figd ¥° *pa faie

=Fol ¥ xge £ =G| Y Folv' (=2 f (@, (33)
z€G*
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where as in (26) we read the convolution in the second line as a function on R¢ using that fﬂgdl Ve €S, (RY) is defined
on R¢. By property 3 of ¥ we also have for j < Jge

AiEcf=£49f. (34
Finally, let us study the interplay of £ with Besov spaces.
Lemma 2.24. Forany o« € R, p,q € [1, 00] and p € p(w) the family of operators
. d
E%: Bg’q(gi ,o) — Bg’q(R ,,0),
defined above, is uniformly bounded in €.

Proof. We have to estimate A;E® f for j > —1. For j < jg we can apply (34) and (33) together with Lemma 2.20
to bound

||Aj€8f||LP(Rd,p) = ”‘e_d(]:RdW)(S_l') *ge A?Sf”LP(]Rd,p) <| A]g'gf”Lp(gs,p) < 2_ja||f||l3§_q(gg,p)-

For j > jge only j ~ jge contributes due to the compact support of 1°. By spectral support properties we have

A,~58f=Aj<58 > Aiggf).

i~jge

From (32) we know that A; maps L? (R4, p) into itself and we thus obtain

Y Ay s

14, o e py S ‘ SN s @00

i~jge LP(G®,p)
where we applied once more (33) and Lemma 2.20 in the second step. (]
Below, we will often be given some functional F(f1, ..., f;) ondiscrete Besov functions taking values in a discrete

Besov space X (or some space constructed from it) that satisfies a bound of the type
HF(f17'~-7fn)”XSc(flv“-vfn)‘ (35)

We then say that the estimate (35) has the property (£) (on X) if there is a “continuous version” F of F and a
continuous version X of X and a sequence of constants o, — 0 such that

HgsF(flt '--’fn) _f(ggfli "'1g€fn)“Y§08 'c(fh "'1fn)~ (5)

In other words we can pull the operator £° inside F without paying anything in the limit. With the smear function
introduced above when can now also give the proof of the announced scaling property (27) of the functions W,

Lemma 2.25. Let G* be as in Definition 2.2 and let o € w. Let (gajgg)j:_l’__ﬂjgg C D, (ag) be a partition of unity of
Gt as defined on page 2065 and take Wi = ]-"g_sl (pjgg and W9°<J .= ij W9 The extensions

‘Lg’j — 58qjg8’j — ]_—Hgdl (ws . ((p] s)ex[)’

Vel =gt = <‘V ' <Z ¢i ) )
ext

i<j
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are elements of S,(R?). Moreover there are <]3_1,<]30, Poos qsz € D, (RY), independent of e, such that for for j =
—1,...,jgeand j' =0, ..., jge with (j)¢ as in (28)

V(0] e =i (277, (36)
e (Z w?”) =¢z(277"). 37)
i<j/ ext

The functions (]30 and (500 have support in an annulus A C RY.
In particular we have for j = —1, ..., jge and j'=0, ..., jge.

ed =20 g (271, ge<i' = 0J'd s (2]'/.)’

where ¢; = fﬂgdlci,- forie{—1,0,00, X}.

Proof. Denote by (¢;)>-1 C D, (R?) the partition of unity on R? from which the partitions ((plgs) j=—1....jge are
constructed. Let us recall the following facts about (¢;) j>_1
9j=w@o(277/") forj=0, (38)
Y ei=¢1(277") forj =0. (39)

i<j

The second property can be seen by rewriting
Sw=1- Y =1- TV = (1- e ) ) =)
i<j 1>j 1'>0 I'>0

Recall further that ¢ has support in an annulus around 0.

To prove the claim we only have to show (36) and (37). For j < jgs and 0 < j’ < jge we use that by construction

g

/.8 out of (¢;);>_1 we have inside G

0 =i Y ef =)

i<j’ i<j

of ¢

so that due to properties 2 and 3 of the smear function ¢ and (39) it is enough to take
$x =91

and for j < jgs by the scaling property of ¢; from (38)

v

$ij). =9 (272) € {p-1(/2), 9o }.

For the construction of ¢, a bit more work is required. Recall that by definition of our lattice sequence G° we took a
dyadic scaling & =2~ which implies in particular

2—jgs —g- 2k (40)
for some fixed k € Z. Using once more (39) and relation (40) we can write for x € 58

07 =1= 3" ¢ =1-¢_1(2779x) = x(ex)
i<ige
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for some symmetric function x € C2°(RY). As in (12) let us denote for x € R by [xlge € G* the unique element of
Qs for which x — [x]gg € Z°. One then easily checks

elxlge. = lexlg. (41)

Applying (12) and (41) we obtain for x € R? that the periodic extension

(fﬂjg;)ext(x) = coj-g; (Ixlg) = x (elxlg:) = x (lex]g)

is the ¢ scaled version of the smooth, Z-periodic function x ([- ]g) € C°°(g) (to see that the composition with [- ]g
does not change the smoothness, note that x equals 1 on a neighborhood of 89) Consequently

VET )0 = W2 (11)) 0,

so that setting qvﬁoo =Wy ([-]g))(2_k~) with k as in (40) finishes the proof. O

3. Discrete diffusion operators

Our aim is to analyze differential equations on Bravais lattice that are in a certain sense semilinear and “parabolic”,
i.e. there is a leading order linear difference operator, which here we will always take as the infinitesimal generator of
a random walk on our Bravais lattice. In the following we analyze the regularization properties of the corresponding
“heat kernel”.

3.1. Definitions

Let us construct a symmetric random walk on a Bravais lattice G° with mesh size ¢ which can reach every point (our
construction follows [33]). First we choose a subset of “jump directions” {g1, ..., g/} € G\ {0} such that Zg| +--- +
7Zg =G and amap «: {g1,...,g} — (0,00). We then take as a rate for the jump from z € G° to z £ eg; € G° the
value « (g;)/2¢2. In other words the generator of the random walk is

Lup=¢2 Y =2 D (u(y +ce) — u (), (42)

ee{*g;}

which converges (for u € CZ(R?)) pointwise to Lu = %Zi:l k(gi)gi - VZugi as ¢ tends to 0. In the case G = 74
and «(e;) = 1/d we obtain the simple random walk with limiting generator L = %A. We can reformulate (42) by
introducing a signed measure

1 1 1 1 !
p=r(D| 38 + 50-¢ |+ FK@)| 580 + 50 —;K(gi)&),
1=

which allows us to write Léu = &2 fRd u(x +¢ey)du(y) and Lu = %fRd ye Vzuy du(y). In fact we will also allow
the random walk to have infinite range.

Definition 3.1. We write u € u(w) = p(w, G) for w € w if u is a finite, signed measure on a Bravais lattice G such
that

(suppu) =G,

mloy =0,

for any A > 0 we have fg e d|u|(x) < oo, where || is the total variation of ,
u(A) = pu(=A) for A C G and u(9) =0,
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where (-) denotes the subgroup generated by - in (G, 4). We associate a norm on R? to u € p(w) which is given by
1
2 _ 2
lxlly, = 3 /g lx yI7du(y).
We also write (@) := J,c,, H(®).
Lemma 3.2. The function ||-||, of Definition 3.1 is indeed a norm.
Proof. The homogeneity is obvious and the triangle inequality follows from Minkowski’s inequality. If ||x||,, =0 we
have x - g =0 for all g € supp u. Since (supp ) = G we also have x - a; = 0 for the linearly independent vectors
ai,...,aq from (2), which implies x = 0. U
Given pu € u(®) as in Definition 3.1 we can then generalize the formulas we found above.

Definition 3.3. For w € w, i € u(w) as in Definition 3.1 and G¢ as in Definition 2.2 we set
-2
Liu(x)=¢ /gu(x +ey)du(y)
foru € §,(G°) and

1 1
(L)) =5 / ¥ V2uy du(y)(g) i= / v+ V2ulp)y du(y)
g 2 Jg

forues), (R?) and ¢ € S, (R%). We write further Zj, Z,, for the parabolic operators fﬁ =0; — LZ and ., =
8 — L.

L}, is nothing but the infinitesimal generator of a random walk with sub-exponential moments (Lemma A.5). By

direct computation it can be checked that for G = Z¢ and with the extra condition [ i yjdu(y) = 25;; we have the
identities ||-||, = || and L, = Aga. In general L, is an elliptic operator with constant coefficients,

1 1 S 3
LM":ELY'VzuydM(Y)ZEZ/QYindM(Y)'a”u =:52af‘j-a”u,
i,j i,j

where (af‘j) is a symmetric matrix. The ellipticity condition follows from the relation x - (af;)x = 2||x||i and the

equivalence of norms on R?. In terms of regularity we expect therefore that L}, behaves like the Laplacian when we
work on discrete spaces.

Lemma 3.4. We have fora € R, p € [1,00],w € ® and u € p(w), p € p(w)
”LZ"Hcg—z(gap) N lullcage.p)s

where C;’,‘ (Ge, p) = Bgm(gs, p) is as in Definition 2.17, and where the implicit constant is independent of €. For
6 € [0, 1] we further have

3 1)
I(L7 = L)ull gaa-s ga ) S € Mulleg@a )
where the action of LZ onue S;(]Rd) should be read as

(L;u)<¢>=u(g—2 /g o +ey) du(y)> =u(e—2 /g ¢(—ey) du(y)) =u(Ly9) )

for ¢ € S,,(RY), where we used the symmetry of i in the second step.
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Proof. We start with the first inequality. With \Ilg = = i<i<j <jgeili—jl<1 w9 € S, (GF) we have by spectral sup-

A *Ge Ajg u. Via (27) we can read W9/ and thus b g as a smooth function in S, (R?)
defined on all of R¥. In this sense we read

port properties A]g u=wv

& —G¢,j €
AV u=|g°| Y 0 (= 2aYu(), (44)
z€1G°|

as a smooth function on R in the following. Since y integrates affine functions to zero we can rewrite
A]g Lou(x) =¢2 fg du(y)[A]g u(x +ey) — A]g. u(x) — V(A]g. u)(x) - ey]

1 1
=/gdu(y)/o da/O dizy-Vz(Ajg'u)(x+8§1§zy)y.

Using (18) and the Minkowski inequality on the support of & we then obtain

1 1
I0a9 Ll yngo < [ ann [ aer [ acae @y oce+ ecican] P2 w4 61629 gy

where X is as in (18). By definition of p(w) and monotonicity of w € @ we have

/ dz) / ac / du(y) [y < / ac, / do / duy Pt <

so that we are left with the task of estimating

lo¢+ea10 |V (a5 )¢ + 0129 ey S IV 4 o012 1 ge oo [T ull 1o ge -

where we applied (44) and Young’s convolution inequality on G®. Due to (27) and Lemma 2.20 we can estimate the
first factor by 2/2 so that we obtain the total estimate
g° 2
|47 Lol 1 ge py S277 Pllulicage o)

and the first estimate follows. .

To show the second inequality we proceed essentially the same but use instead v/ = > 4 where v/ =
]-Edl @; now really denotes the inverse transform of the partition (¢;) j>—1 on all of R?. We then have A j= s A js
so that

itli—jl<

1 1 4 .
Aj(Ly = Ly )u =/O dei /0 dQ/ng(y) /Rd dzy« (VAW (- + 162y —2) = VAW (- = ) yAju(2).

As above we can then either get 27/ @2 ||y ||Ca(gs p)» by bounding each of the two second derivatives separately, or
277 @ gy ||Ca(g€ 0)» by exploiting the dlfference to introduce the third derivative. We obtain the second estimate by
interpolation. (]
3.2. Semigroup estimates

In Fourier space Lj, can be represented by a Fourier multiplier /}; : Gt > R:

Fge (L/iu) = —l/‘i - Fgeu,
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for u € S;,(G®). The multiplier [}, is given by

le2mxey 1 —cos(e2mx+y) sin?(emx +y)
o == [ S du = [ A g =2 [ ST gy, (45)
G ¢ g € g €

where we used that y is symmetric with 4£(g) = 0 and the trigonometric identity 1 — cos = 2sin”. The following
lemma shows that ll‘i is well defined as a multiplier (i.e. ll"i € C°(G#)). It is moreover the backbone of the semigroup
estimates shown below.

Lemma 3.5. Let w € w and p € p(w). The function lli defined in (45) is an element of S,, (G}) = C;;O(@) and

o ifo=wy" witho € (0,1) it satisfies [9*15,(x)| S5 eFI72VO(L + x 28I (kD7 for any § > 0,k € N,
e for every compact set K C R¢ with K N % = {0}, where Z is the reciprocal lattice of the unscaled lattice G, we
have lfL(x) >k |x|? forall x e e7'K.

The implicit constants are independent of .

Proof. We start by showing [9*1¢ (x)| Ss IF72V0(1 4 |x|2)8I(k!)!/7 if w = wy ", which implies in particular
l/i €S, (é\e ) in that case. The proof that / z €S, (_C';?) for i € u(wP) is again similar but easier and therefore omitted.
We study derivatives with |k| =0, 1 first. We have

|18<x>|—2‘/ sin (m ST ()‘ ‘f ST ), P du(y)

lemrx « y|?
§/g|y|2d|u|(y>-|x|25|x|2,

andfori=1,...,d

|sm(srrx W

9'Ie
| M(x)| )’|

elly P dlpl (v) < 1x]-

For higher derivatives we use that 8§e’2” £y = (127 e) Kl yke!2mexy which gives (where C > 0 denotes as usual a
changing constant)

041, ()| < 2 / 1M dial () < ¥ max (e ) / 7 du(y)
z g
for any A > 0. Using max;>o 1%~ = \=% (q /)% ¢4/ for a > 0 we end up with

1
|3klli(x)| S,Elkl -2 C|k||k||k|/U <8|k| -2 kl/n Clkl(k!)l/tf’

)Llld

and our first claim follows by choosing A!/? := C/s.
It remains to show that lli/|-|2 >1on e~ 'K, which is equivalent to llll/|-|2 2 1 on K. We start by finding the zeros

of [ }L which, by periodicity can be reduced to finding all x € G with / }L (x) =0. Butif/ }L (x) =0, then y - x € Z for any

y € supp i, which yields with (supp u) = G that we must have a; « x € Z for a; as in (2). But since x € G we have
X =x1a1 + -+ xqa4 with x; € [—1/2,1/2) and a; as in (3). Consequently

xi=x+a; € ZN[—1/2,1/2) = {0},

and hence x = 0. Since / }L is periodic under translations in the reciprocal lattice %, its zero set is thus precisely Z. By
assumption K N % = {0} and it remains therefore to verify /), (x) 2 |x|? in an environment of 0 to finish the proof.
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Note that there is a finite subset V C supp u such that 0 € V and (V) = G, since only finitely many y € supp p are
needed to generate ay, ..., aq. We restrict ourselves to V:

=2 [ sintGrxey) dun 22 [ sindGee ) ducy)
g v

For x € G \ {0} small enough we can now bound Jy sin*(rx+y)dpu(y) 2 [y, Ix+ y[>du(y). The term on the right-hand
side defines (the square of) a norm by the same arguments as in Lemma 3.2, and since it must be equivalent to |-|*> the
proof is complete. ]

Using that Sw(é\s )=Cx (@" ) is stable under composition with functions in C° (R we see that e e Ccx (@" )
for # > 0 and can thus define the Fourier multiplier

e f = FgH (e Fe f)

forz > 0and f € S, (G*), which gives the (weak) solution to the problem .f/f g =0, g(0) = f. The regularizing effect
of the semigroup is described in the following proposition.

Proposition 3.6. We have fora e R, >0, p €[1,00], w € ®, u € pu(w) and p € p(w)

”elLf‘f”cf,wgf,p) SR f ey pr "
"eth‘f||cﬁ(ga,p> SEPRIF e e ) (47)

and for a € (0, 2)
€ = 1)1 g,y S P 6 “

uniformly on compact intervals t € [0, T']. The involved constants are independent of ¢.

Proof. We show the claim for v = wgr = |x]%, 0 € (0, 1), the arguments for w = PO are similar but easier. Using
spectral support properties we can rewrite for j = —1,..., jge
N =fgg‘< S ol e Fgea? f) = K1, ) xge A9, (49)
idli—jl<1

where we set for z € G¢

Hj(t,2) 12/5 dye? 37 gf (e,

ili—jl=1

Using the smear function ¢ = ¥ (¢-) from Section 2.4 we can rewrite this as an expression that is well-defined for
all x e R4

- o 2TIXY 1. E Gge —tl%(y)
A= [yt T ()0,

i:li—jl=1

where (-)ex¢ 1S given as in (12) and where we extended l,i (periodically) to all of R4 by relation (45). Consequently,
we can apply Lemma 2.25 to give an expression for the scaled kernel

Hijy(t,x) =271 (1,27 x) = /Rd dye?™ g (y) - @),
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where we wrote ¢(jy = Y. <1 $). 27 77)-) with @;), as in Lemma 2.25. Suppose we already know that for any
A > 0 and x € G¢ the estimate

|yt x)| S e X727 0P P12 = 07T B2 (x) (50)

holds. We then obtain from (49) with ®2/ (x) := 2/9®(2/ x) = 2/9e=*2'*I the bound

G*® 1L, 2 2~ G® tL¢
[AT €5 fl oge oy S2TTPTPR| @ sge [AT e f ] g )
and an application of Lemma 2.20 shows (46) and (47) (for (47) we also need (31)). Note that we cheated a little bit
as Lemma 2.20 actually requires ® € S,,(R?) which is not true, inspecting however the proof of Lemma 2.20 we see
that all we used was a suitable decay behavior which is still given.

We will now show (50). Using Lemma 3.7 below we can reduce this task to the simpler problem of proving the

polynomial bound fori =1,...,d andn € N
P21 || Ay (8, x0)| So 8" C" () 027§ >0, (51)

with a constant C > 0 that does not depend on 3. To show (51) we assume that 2/¢ < 1. Otherwise we are dealing
with the scale 2/ ~ ¢! and the arguments below can be easily modified. Integration by parts gives

xi " [ (2, )| = €™

d 2mwixey gvei ot 7
fRd ye (wiire )
_22ip2le
= / dy|a™<i (pcpe™ ")),
R4
where we used that lfL (27 y) =22 lﬁj"" (y) by (45). Now we have the following estimates for k € N

e P N e e O] P S N [ ) R A i [ (R ) [ A

where we used that ¢(;) € D,, (R?) (with bounds that can be chosen independently of j by definition) and we applied

Lemma 3.5 with the assumption 2/¢ < 1 (which we need because we only defined lf; for ¢’ < 1). Together with
Leibniz’s and Faa-di Bruno’s formula and a lengthy but elementary calculation (51) follows, which finishes the proof
of (46) and (47).

The last estimate (48) can be obtained as in the proof of Lemma [21, Lemma 6.6] by using Lemma A.4 below. [J

Lemma 3.7. Let g: R - R, 6 > 0 and B > 0. Suppose for any 8 > 0 there is a Cs > 0 such that for all z € R?,
[>0andi=1,...,d

|2l (2)| s 8'chant/o .
It then holds for any A > 0 and z € R?
lg(@)] <o Be ",

Proof. This follows ideas from [38, Proposition A.2]. Without loss of generality we can assume |z| > 1 (otherwise we
get the required estimate by taking / = 0). Recall that we have |z|' < C' >"%_ |z;|!, where C > 0 denotes a constant
that changes from line to line and is independent of /. Consequently, Stirling’s formula gives

- >, Ak
[* s @] = 3 711 e () <Z -z |z|”“”|g(>| Z r Z|sz‘”g<z>l
k=0 k=0 i=1

kck k k sko
ZAC& [ko 1““”/”<BZ’\C5 BZA"C"S’“’ <\ B
=0 k=0
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where we used [ko] < k[o] so that [ko]™*1/o < ([o7k) Lo < C*kk and where we chose § < (C)\)_% in the last

step. (I

3.3. Schauder estimates

We will follow here closely [21] and introduce time-weighted parabolic spaces .,2”;/! ;‘ that interplay nicely with the

: tLE
semigroup e 4.

Definition 3.8. Given y > 0, T > 0 and an increasing family of normed spaces X = (X (s))sefo0,7] We define the space
MYX = {f; 0. 71— X(D) | 1 £l pgx = sup |7 0] ¢ < oo},
tel0,T]
and for o > 0

CiX :={feC(10,T1, X(T)) | | fllcax < o0},

where

1f(s)— fF®Olxw
| fllcex :== sup || f(®) + sup .
T 1€[0,T] ” HX(’) 0<s<i<T |s —z]*

For a lattice G, parameters y > 0,T > 0,a >0, p € [1, 0o] and a pointwise decreasing map p: [0, T] >t +— p(t) €
p(w) we set

237G, ) ={f:10.T1> S, [ fll 272, <o}
where
1Flgrag.p =t FOlcarpog ) T 1 atgcag. -
Remark 3.9. Asin Remark 2.19 the definition of the continuous version .Z;/ }x (R4, p) is analogous.
Standard arguments show that if X is a sequence of increasing Banach spaces with decreasing norms, all the spaces

in the previous definition are in fact complete in their (semi-)norms.
The Schauder estimates for the operator

t
IF 0= f 17 f(5) ds (52)
0

and the semigroup (e’ LZ) in the time-weighted setup are summarized in the following lemma, for which we introduce
the weights

P = (1+1x])7, (53)
ef, (x) = e~ 0D (54)

with k > 0 and /, t € R. The parameter ¢ should be thought of as time. The notation .,2”11/ ;f (G, e7 ) means therefore that
we take the time-dependent weight (e],,)re[0,11, While e] p* stands for the time-dependent weight (e}, p“):ef0,71-

Lemma 3.10. Let G be as in Definition 2.2, « € (0,2),y €[0,1), pe[1,00],0 € (0,1) and T > 0. If B € R is such
that (a + B)/2 €10, 1), then we have uniformly in &

sL¢
s+ e ll'f()“g’fl.l;ﬁ)/zva(gg’e;r) S ||f0”c;ﬂ(g£,e;’)’ (55)
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and if k > 0is such that y + /o €[0, 1), @ + 2k /o € (0, 2) also

€ o < o K/O— .
Hluf”j:T (Geef) ~ ”f”./\/();C,,Jrz / z(gg,e;’p") (56)

Proof. The proof is along the lines of Lemma 6.6 in [21] with the use of the simple estimate

eO’
K 0 [+t
p el+sr§4|t S|K/U, =S,

which is similar to an inequality from the proof of Proposition 4.2 in [25] and the reason for the appearance of the
term 2« /o in (56) (the factor 2 comes from parabolic scaling). We need y + k/o € [0, 1) so that the singularity
|t —s|7Y 7%/ is integrable on [0, 7]. O

For the comparison of the parabolic spaces .,Sf;/’ ? the following lemma will be convenient.

Lemma 3.11. Let G° be as in Definition 2.2. For o € (0,2), y € (0,1), e € [0, A2y), pe[l,00], T >0 and a
pointwise decreasing Ry > s — p(s) € p(w) we have

< o

11 gprerae e py S 1|20 oy

and for y €0, 1) and ¢ € (0, @)
2

”f”%z»]"f’g(ge,p) S1y=o| f(0) Hcg*e(g‘s’p) + 71 1y gep)-
All involved constants are independent of €.
Proof. The first estimate is proved as in [21, Lemma 6.8]. For y = 0 the proof of the second inequality works as in
Lemma 2.11 of [21]. The general case follows from the fact that f € E; ;f ifand only if t > t¥ f € "?z?:%' |
4. Paracontrolled analysis on Bravais lattices
4.1. Discrete paracontrolled calculus

Given two distributions fi, f> € S’ (Rd), Bony [4] defines their paraproduct as
f1©f21=2 Z Aj.f1~Ajzfz=ZSj2—1f1~Ajzf2,
I<jp—1=<ji<j2—1 1<j2

which turns out to always be a well-defined expression. However, to make sense of the product f; f> it is not sufficient
to consider f1 © f> and f1 © f2 := f2 € f1, we also have to take into account the resonant term [17]

Hofa= > Aj f1-Aj, fa,
—l=jn2:lji—l=1

which can in general only be defined under compatible regularity conditions such as fi € Cg, RY), fr € Cgo (RY) with
o+ B >0 (seee.g. [1] or [17, Lemma 2.1]). If these conditions are satisfied we decompose fif> = f1 o+ f1 O
f>+ f1 © f2. Bony’s construction can easily be adapted to a discrete and weighted setup, where of course we have no
problem in making sense of pointwise products but we are interested in uniform estimates.

Definition 4.1. Let G° be a Bravais lattice, w € w and f1, f» € S;)(Rd). We define the discrete paraproduct

fefp= 3 > aAVh-alp= ) ST f-Aip, (57)

1<h=jg —1=<ji<jr2—1 1<j<jg
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where the discrete Littlewood—Paley blocks A? are constructed as in Section 2. We also write f; Y f> := f, @Y fi.
The discrete resonant term is given by

109 fri= > AY fi- 49 . (58)
I<ji.2=jg.lj1=jl=1

If there is no risk for confusion we may drop the index G on ©, ©, and ©.

In contrast to the continuous theory ©Y is well defined without any further restrictions since it only involves a finite
sum. All the estimates that are known from the continuous theory carry over.

Lemma 4.2. Given G° as in Definition 2.2, p1, p2 € p(®) and p € [1, oo] we have the bounds:
(i) Forany az € R
111© Fallgsz gepropmy S WfillLoeige o L 2l g gy A NF1 Lo ol f2ll 2 gy
(ii) forany o1 <0, a2 € R
1A © Fall sz ge py.pmy S Il ge o) 12022 (ge oy A 1121 G oy 12022 G )
(i) for any a1, 00 € Rwithay + a2 >0

”f] © f2||c;jl+a2(gs p1op2) ~ ”fl ”C‘xl (Ge, pl)”fZ”Caz(ge 02) A ”fl ”CO"(gs pl)”fZ”Caz(ga )’

where all involved constants only depend on G but not on €. All estimates have the property (£) if the regularity on the
left-hand side is lowered by an arbitrary k > 0.

Proof. Similarly as in the continuous case Sg Wik Ag f> is spectrally supported on a set of the form 2/.4 N QS
where A is an annulus around 0. Similarly, we have for i, j with i ~ j that the function Ag fi- Ag f> is spectrally
supported in a set of the form 2/B N G*, where B is a ball around 0. We give a proof of these two facts in the
Appendix (Lemma A.6). Using these two observations the proof of the estimates in (i)—(iii) follows along the lines of
[17, Lemma 2.1]) (which in turn is taken from [1, Theorem 2.82, Theorem 2.85]).

We are left with the task of proving the property (£). We show in Lemma 4.3 below that there is an N € N
(independent of ¢ and j) such that for —1 <i < j < jg- — N

E(AF fi- AT ) = AEE fi - AJE° o (59)

Consequently we can write

e(he h)= Y. &L f-a7 p)

1<j<jge
= Y SaEA-AE R+ Y (ST AT p),
1<j<jge—N Jge—N<j<jge

where we used (59) and S] =2 l<i<j— 1A S] 1= _ I<i<j—1 Ai- On the other hand we can write
EfOEH=Y S Ef-AEf= Y SiaEfi-AE fH+ Y S & fi- AE° b,
1=j I<j<jge—=N i~Jge

where we used in the second step that E? fr = Fra (Y (e-)(Fge f2)ext) is spectrally supported in a ball of size e lx
2/6° to drop all j with j 77 jge. In total we obtain

(e h) - heth=Y ST n-a9 )= D S hAEf.

J~ge J~Jjge
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Note that the two sums on the right-hand side are spectrally supported in an annulus of size 2/9°. Using
Lemma 2.24, the fact A;: LP(R?, p) — LP(R?, p) (by (32)) and that £%: LP(G?, p) — LP(R%, p) (due to (33)
and Lemma 2.20), with uniform bounds, we can thus estimate

||Al(gs(fl @gs f2) _gsfl @gsz) HLP(]R‘I,,D) 5 1i~jgs< Z ||Sjgi]f1 ’ Ajg'ngHLp(gs’p)
J~ige

+ Z ||Sj—lg€f1.AjgsféHLp(Rd’p))'
i~Jige

Assume without loss of generality that the right-hand side of estimate (i) is bounded by 1. We then have using
Sjg_‘ 1+ LYU(GE, p) > L9(G*, p) (by Lemma 2.25 and Lemma 2.20) and S;_;: L(R?, p) — LY (R?, p) (by (39) and
Young’s inequality) for g € [1, oc], both with uniform bounds,

[ai(E (1107 f2) = E O o)l o py S Vimige D 277 S imjqe 277072 S 271706,
J~ige

In the last step we used that 27/¢° & ¢ by definition of Jjge. This shows the property (€) for estimate (i). If the
right-hand side of estimate (ii) is uniformly bounded by 1 we obtain the bound

|ai(E(ne h)—EfOE ) g,y Slinige D D, 277427®
j~jgg —1<j'<j—1

<1 Z—jge (a1ta) < Z—i(c(]-i-c{z—l()gk

i~jge

and the property (&) for (ii) follows. Considering case (iii) assume once more that the right-hand side is bounded by 1.
We get, by once more applying (59),

E(fied h)—EHOEfH= > £(a9 fi ~A§;x§f2)— > AjEEfiL- ApE fr
Ji'~igelj—Jj'I=1 JoJ'Zigeli—J'1=1
= Y (€AY A AT R) - AE S APEf).
g’ ~jge:lj—Jj'I=1
where we used in the second line that the spectral support of £¢ f1 and of £° f» is contained in a ball of size ¢! ~ 275

to reduce the sum in the second term to j, j* ~ jge. Using then that the terms on the right-hand side are spectrally
supported in a ball of size 2/ we get fori > —1

AE (RO h)—EhOER) = Y. L(E(AY fi- AT fo) — AETfi- ApE ),
Joi'~jge:lj—Jj'1=1
so that we obtain, using once more £%: LP(G?, p) — LP(RY, p) and A;: LP(RY, p) — LP(RY, p),
[ (o p) -0 p)lpp,S Do L2 Ut
Ji'~ige:li—j'I=1

<1 . p—Jge (@itar—K) g1 < p—i(@tar—K) K

i3jge

where we chose « > 0 in the second line small enough so that o] + o2 — k > 0. (Il

Lemma 4.3. Let G° be as in Definition 2.2, w € ® and construct Littlewood—Paley blocks as in Section 2.4. Let
Y, & and EF be as in Section 2.4. There is a N = N (G, V) € N such that for all ¢ and —1 <i < j < jge — N and

fi, fr€8.(G%)
gg(Aiggf] ) Ajg‘ng) =AE f1- Ajc‘:sfz.
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Proof. Let us fix r, := d1$t(8§8 0) so that B(0,r,) C 68 From Lemma A.6 and the construction of our discrete
partltlon of unity on page 2065 we know that the spectral support of A f1 A f2 and the support of gog - Fge i

and gp 7 - Fge f2 are contained in a set of the form 2/B N G¥, where B isa ball around 0. Choose N € N such that

for j with —1 < j < jge — N (if any) we have 2/iBc2i¢*~NB C B(0,r:/4) (note that N is independent of ¢ since
re = c - 2J9° by the dyadic scaling of our lattice). In particular we have 2/ 3 C G®,2/BNG¥ =2/ B. Choose N further
so big that we have for the smear function ¢

Vilyp=v(E)ig=1,  suppy‘N(2/B+%\{0}) =2

for —1 < j < jge — N (independently of ¢). Choose a x € D,,(R?) such that Xx1Bw©,r./4 =1 and x = 0 outside
B(0, r:/2). We can then reshape

Faa® (A7 f1- AT f2) =¥° (07 Foe fi %G 67 Foe o) oy = % (07" Foe fi %G: 65 Fge f2) e

where we used the support properties above to replace ¢ by x. Now, note that (using formal notation to clarify the
argument)

X Q) - (97 Fge fi#4ge 08 Fage f2) o () = X () - /é (07 Fge 1)@ - (05 Fge f2) (Ix — 21) dz. (60)

Since only x € B(0, r8/2) and z € B(O r5/4) contribute we have x — z € B(0,3/4r) C G® so that [x —z]=x—zin

(60). Using that supp (p U supp cp c gs we can replace gog and (p in (60) by ¢;, ¢; (the dyadic partition of unity

g*

on R¥ from which ¢ 7 is constructed as on page 2065), replace Fge f1, Fge f2 by their periodic extension and extend

the integral to R? so that in total
Fral¥ (A7 f1- A9 £) () = x(x) - /R (i (Fge fext) (@) - (97 (Fge f)ext) (x — 2) dz

- /I;d (‘Pil/fa(]:gs fi )ext)(Z) : (fﬂjl/fs(]:gs f2)ext)(x —2)dz
= Fra(Ai&° [1AE° f2) (),

where we used in the second line that the support of the convolution is once more contained in B(0, r,/4) to drop x
and that ¥ °|,; 5 = 1 to introduce smear functions in the integral. The claim follows. g

The main observation of [17] is that if the regularity condition o + 2 > 0 is not satisfied, then it may still be
possible to make sense of f; ® f> as long as fi can be written as a paraproduct plus a smoother remainder. The main

lemma which makes this possible is an estimate for a certain “commutator”. The discrete version of the commutator
is defined as

CYf1. fo. 13) = (189 £2) @Y f3— fi( 209 f3).

If there is no risk for confusion we may drop the index G on C.

Lemma 4.4 ([19, Lemma 14]). Given p1, p2, p3 € p(w), p € [1,00] and a1, a2, a3 € R with a1 + a2 + a3 > 0 and
oy + a3 # 0 we have

g
[C7Chrs fos 1] coates e oy S I G oy 1 P2 22 G oy 1 F3 3 g
Further, property (€) holds for C if the regularity on the left-hand side is reduced by an arbitrary k > 0.

Proof. The proof of the estimates works line-by-line as in [19, Lemma 14] and the (€)-property follows as in
Lemma 4.2 via a modification of Lemma 4.3 to three factors. (]
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4.2. The modified paraproduct

It will be useful to define a lattice version of the modified paraproduct < that was introduced in [17] and also used in
[10,21].

Definition 4.5. Fix a function ¢ € C2°((0, 0o); R ) such that fR @(s)ds =1 and define

t
Q,f(t)::/ 22p(2% (t —5)) f(s vO)ds, i>-1.

—0o0

We then set

fi<9f = Z QjZA;C-’lfl 'A]ngz

—1<j1,25jg j1<j2—1

for f1, f2: Ry — S/ (G) where this is well defined. We may drop the index G if there is no risk for confusion.
Convention 4.6. As in [21] we silently identify f] in fi< f, witht — f(t)1;59 if f1 € M;C;’j (G, p) withy > 0.

Once more the translation to the continuous case f1, f2: Ry — S, (R9) is analogous. The modified paraproduct
allows for similar estimates as in Lemma 4.2.

Lemma4.7. Let BeR, pe[l,o0],y €[0,1),t >0, « <0 and let p1, p2: Ry — p(w) with p pointwise decreas-
ing. Then

| f =<0 ”Ciﬂ’(gs,ma)pz(n) S ”f”MfC%@f,m)Hg(f)”cé’o(gs,pz(t» A ”f”M;/Cgo(gstl)Hg(t)”Cﬁ(gS,pz(t))

and

14
t H f<g(t) Hcg(gs’pl ) p2(1)) 5 ” f ”Mg/LP(gE,pl) ”g(t) Hcgo(ggp) A ” f ”_/\/lg/LOO(gF,pl) H g(t) ’ C{f(gs’pz(t)) .
Both estimates have the property (£) if the regularity on the left-hand side is decreased by an arbitrary k > 0.
Proof. The proof is the same as for [21, Lemma 6.4]. Property (£) is shown as in Lemma 4.2. ]

We further have an estimate in terms of the parabolic spaces .,2”;’ ;‘ (G, p) that were introduced in Definition 3.8.

Lemma 4.8. We have for « € (0,2), p € [1,00], y €[0, 1) and py, p2: Ry — p(w), pointwise decreasing in s, the
estimate

&
17 <8122 pm S 11 g1 e oy (N8 lcres@e.om + 128l a2 )

for any § > 0 and any diffusion operator £; as in Definition 3.3. This estimate has the property (€) if the regularity
o on the left-hand side is lowered by an arbitrary k > 0.

Proof. The proof is as in [21, Lemma 6.7] and uses Lemma 4.9 below. The proof of the property (£) is as in
Lemma 4.2. (]

The main advantage of the modified paraproduct < on R? is its commutation property with the heat kernel 3; —
A (or £, = 9, — L) which is essential for the Schauder estimates for paracontrolled distributions, compare also
Section 5.2 below. In the following we state the corresponding results for Bravais lattices.
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Lemma4.9. Fora € (0,2),BeR, pe[l,o00],y €[0,1) and p1, p2: Ry — p(w), with p1 pointwise decreasing, we
have fort > 0

MR @g)(t)Hcﬁf*ﬂgs,p.(z)pz(r)) S ||f||f£.}“<9£,m)Hg(f)||cfo<gﬁ,pz(z)>
and

14 & _ & .
v (La(F=9) = f<Zi8)®) Hcg”*(gs,pl(z)pzu)) N 11z (GS,m)||g(t)||c£o(gs,p2(z))’
where £ = d; — Lj, is a discrete diffusion operator as in Definition 3.3. These estimates have the property (£) if the
regularity on the left-hand side is lowered by an arbitrary k > 0.

Proof. Again we can almost follow along the lines of the proof in [21, Lemma 6.5] with the only difference that in
the derivation of the second estimate the application of the “product rule” of .Z; does not yield a term —2V f<Vg
but a more complex object, namely

/ d“gy) Dif<Dig, 61)
Rd €&

where D;f(t, x)= f(t,x +¢ey) — f(t,x) and similarly for g. The bound for (61) follows from Lemma 4.7 once we
show

1050 eyt gepy S 191y ge oy -€ (62)
for any y € R. Note that due to Lemma 2.25 we can write
AjDYp = (V%I (- +ey) — W) xge @,

where W&/ = £2WY9%T =2/ ;) (2/) with ¢}y, € S,,(RY). With

U5 (x +ey) — U5 (x) =2/ f 2799 (2 (x + gey)) i - ye
0

we get (62) by applying Lemma 2.20. The proof of the property (€) is as in Lemma 4.2 and it uses Lemma 3.4. [

5. Weak universality of PAM on R?

With the theory from the previous sections at hand we can analyze stochastic models on unbounded lattices using
paracontrolled techniques. As an example, we prove the weak universality result for the linear parabolic Anderson
model that we discussed in the introduction. For F € C?(R; R) with F(0) = 0 and bounded second derivative we
consider the equation

Lt =F() ", v (0) =[Gl (63)

on Ry x G, where G C R? is a two-dimensional Bravais lattice, .le =0 — LL is a discrete diffusion operator on
the lattice G as described in Definition 3.3, induced by u € p(w) with w = wg’ for o € (0, 1). The upper index
“1” indicates that we did not scale the lattice G yet. The family (n°(z)).cg € S,,(G) consists of independent (not
necessarily identically distributed) random variables satisfying for z € G

1 1
Bl @] =—FOe  Varln' @) = 157 = 16
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where CZ > 0 is a constant of order O (]loge|) which we will fix in equation (67) below. We further assume that for

every ¢ and z € G the variable 1°(z) has moments of order pg > 14 such that
sugp E[|n€(z) — E[ns(z)”pé] <Sehs,
zeG?®

The lower bound 14 for ps might seem quite arbitrary at the moment, we will explain this choice in Remark 5.6 below.
Note that 1° is of order O(¢) while its expectation is of order 0(52| loge|), so we are considering a small shift away
from the “critical” expectation 0.

We are interested in the behavior of (63) for large scales in time and space. Setting u® (¢, x) := e 208 (e 7%t x)
and £¢(x) ;== 2(n° (e 'x) + F’(O)clisz) modifies the problem to

—1
Leou® =F°(u®)(E° = F'(0)c,),  u®(0)=]|G°|" 1.0, (64)
where u®: Ry x G® — R is defined on refining lattices G° in d = 2 as in Definition 2.2 and where F* := E_ZF(82~).
The potential (£°(x))yege is scaled so that it satisfies for z € G°

e E[£%(2)] =0,
e E[|E5()12 1= 1G5 =G| e 2,
o sup_.ge E[|E°(2)|7] S e P% for some pe > 14.

We consider £¢ as a discrete approximation to white noise in dimension 2. In particular, we expect £¢£¢ to converge
in distribution to white noise on R2, and we will see in Lemma 5.5 below that this is indeed the case. In Theorem 5.13
we show that £°u® converges in distribution to the solution u of the linear parabolic Anderson model on R?,

Ly =F Ou(g - F'(0)00),  u(0)=3, (65)

where & is white noise on R2, § is the Dirac delta distribution, “—o00” denotes a renormalization and £, is the limiting
operator from Definition 3.3. The existence and uniqueness of a solution to (65) were first established in [25] (for more
regular initial conditions) by using a “partial Cole—Hopf transformation” which turns the equation into a well-posed
PDE. Using the continuous versions of the objects defined in the Sections above we can modify the arguments of [17]
to give an alternative proof of their result, see Corollary 5.12 below. The limit of (64) only sees F’(0) and forgets
the structure of the non-linearity F, so in that sense the linear parabolic Anderson model arises as a universal scaling
limit.

Let us illustrate this result with a (far too simple) model: Suppose F is of the form F(v) = v(1 — v) and let us first
consider the following ordinary differential equation on [0, T']:

dv=mn-F(v), v(0) € (0, 1),

for some 1 € R. If n > 0, then v describes the evolution of the concentration of a growing population in a pleasant
environment, which however shows some saturation effects represented by the factor (1 — v) in the definition of F.
For n < 0 the individuals live in unfavorable conditions, say in competition with a rival species. From this perspective
equation (63) describes the dynamics of a population that migrates between diverse habitats. The meaning of our
universality result is that if we tune down the random potential n° and counterbalance the growth of the population
with some renormalization (think of a death rate), then from far away we can still observe its growth (or extinction)
without feeling any saturation effects.

The analysis of (64) and the study of its convergence are based on the lattice version of paracontrolled distributions
that we developed in the previous sections and it will be given in Section 5.2 below. In that analysis it will be important
to understand the limit of £££¢ and a certain bilinear functional built from it, and we will also need uniform bounds
in suitable Besov spaces for these objects. In the following subsection we discuss this convergence.

5.1. Discrete Wick calculus and convergence of the enhanced noise

We develop here a general machinery for the use of discrete Wick contractions in the renormalization of discrete,
singular SPDEs with i.i.d. noise which is completely analogous to the continuous Gaussian setting. Moreover, we
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build on the techniques of [6] to provide a criterion that identifies the scaling limits of discrete Wick products as
multiple Wiener—It6 integrals. Our results are summarized in Lemma 5.1 and Lemma 5.4 below and although the use
of these results is illustrated only on the discrete parabolic Anderson model, the approach extends in principle to any
discrete formulation of popular singular SPDEs such as the KPZ equation or the Cbg models. In order to underline the
general applicability of these methods we work in this subsection in a general dimension d.

Take a sequence of scaled Bravais lattices G° in dimension d as in Definition 2.2. As a discrete approximation to
white noise we take independent (but not necessarily identically distributed) random variables (£°(z)),cge that satisfy

e E[£5(x)]=0,
o E[lE5()[P1=1G°1"" = 1G],
o sup,.g- E[|£°(2)|7¢] < e~ 9/?P¢ for some pg > 2.

Note that the family (£°(z)).eg- we defined in the introduction of this Section fits into this framework (with d = 2
and pg > 14).
Let us fix a symmetric x € D, (Rd), independent of ¢, which is O on % -G and 1 outside of % - G and define

X

_ X R
X; = F(Dgs)é‘e = Fge (le
® I

. fgs%“S).

Let us point out that the x used in the construction of X7, does not depend on ¢ and only serves to erase the “zero-
modes” of £° to avoid integrability issues. Note that Z7 X} = —Lj X} = x(Dg:)§° = ]-"gjl (x 7g:&") so that X,,
is a time independent solution to the heat equation on G driven by x (Dge)&°. Our first task will be to measure the
regularity of the sequences (§°), (X},) in terms of the discrete Besov spaces introduced in Section 2.4. For that purpose
we need to estimate moments of sufficiently high order. For discrete multiple stochastic integrals with respect to the
variables (£°(2));eg, that is for sums 3° oo f(z1,...,22)E%(21) ... £%(z0) With f(z1,...,24) = O whenever
z; = z; for some i # j it was shown in [10, Proposition 4.3] that all moments can be bounded in terms of the £? norm
of f and the corresponding moments of the (§°(z)),cge. However, typically we will have to bound such expressions
for more general f (which do not vanish on the diagonals) and in that case we first have to arrange our random variable
into a finite sum of discrete multiple stochastic integrals, so that then we can apply [10, Proposition 4.3] for each of
them. This arrangement can be done in several ways, here we follow [29] and regroup in terms of Wick polynomials.
Given random variables (Y (j)) jes over some index set J and I = (ji, ..., ju) € J" we set

Yi=y@o--YGo =[]0
k=1

as well as Y2 = 1. According to Definition 3.1 and Proposition 3.4 of [34], the Wick product Y°! can be defined
recursively by Y°2 :=1 and

yol=y!— 3 E[yF].yonE (66)
@+ECI
For I = (ji1,..., ju) € J" we also write

Y(jo- oY () =Y
By induction one easily sees that this product is commutative. In the case j; = --- = j, we may write instead
Y(jn.

Lemma 5.1 (see also Proposition 4.3 in [10]). Let G° be as in Definition 2.2 and let (§°(2));cgs be a discrete
approximation to white noise as above, n > 1 and assume pg > 2n. For f € L2((G®)") define the discrete multiple
stochastic integral w.r.t. (£§°(z)) by

Iuf =Y |G fr . z)E @) o 0 E ().

AT Zn Ege
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It then holds for 2 < p < ps/n
||fnf||LP(IP’) ~ ||f||L2((g8)n

Proof. In the following we identify G° with an enumeration by N so that we can write

I f = Z r! Z |ga|nfa(Z1,...,Zr).gs(zl)oal X - X E€(20)%%

1<r=<n,aeA? 21<-<zr

where A? :={a e N" |}, a; =n}, f. denotes the symmetrized version of

ap X ar X
—— ——
fa(ZI, -"azr) = f(zlv vy Ly e ey 2y ---,Zr) . lzl;éZ/Vl#jv
and where we used the independence of £°(zy), ..., £%(z,) to decompose the Wick product (we did not show this

property, but it is not hard to derive it from the definition of ¢ we gave above). The independence and the zero mean
of the Wick products allow us to see this as a sum of nested martingale transforms so that an iterated application
of the Burkholder—Davis—Gundy inequality and Minkowski’s inequality as in [10, Proposition 4.3] gives the desired
estimate

2
”eﬂnf”%p(]p)s Z Z ’gsln'fa(Zl,--',Zr)~§s(Z1)oal X"‘XSE(Zr)Oar
1<r<n,aecAl"z1<-<zr LP(P)
2 , )
no|z o
< Y Y e G P TTIE ™
1<r<n,aeAl 21 <--<zr =1
n| g 2 2
S Z Z |g€| ifa(zly--~,Zr)| S”f”LZ((ge)n)a
1<r<n,a€Alz1,....2r
where we used the bound ||£°(z, )% ||Lp ® S < |GF|~% which follows from (66) and our assumption on £°. .

As a direct application we can bound the moments of £° and X }i in Besov spaces. We also need to control the
resonant term X Z ® &%, for which we introduce the renormalization constant

e [ x&x)
& = /QA o (67)

which is finite for all ¢ > 0 because G¢ is compact and x is supported away from 0. We define a renormalized resonant
product by

X5 0 £ = X5 08 — ¢,

Remark 5.2. Since lli ~ |-|* (Lemma 3.5 together with the easy estimate ll‘i < |?) we have ch

sion 2.

~ —loge in dimen-

Using Lemma 5.1 we can derive the following bounds.

Lemma 5.3. Let §°, X® and X, e §° be defined on G* as above with pg > 4 (where pt is as on page 2089) and let
d<4 Forpepn(w),t <2—d/2—d/ps and k > d/ps we have

e 2
E{6 0652 ge oy +ELXENE e pe ] + LK 0800 2 g o S 1. (68)

The implicit constant is independent of ¢.
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Proof. Let us bound the regularity of Xj . Recall that by Lemma 2.22 we have the continuous embedding (with

norm uniformly bounded in ¢) B;;%pg (G%, p*) C C4(GE, p¥). To show (68) it is therefore sufficient to bound for

B<2-dj2

pa] 1
(1 +|z])ers”

E(IX0p  gool= 2 27 S I6°E[lA] Xi @
pe.pe (G°:P%) —1<j<jge z€G*

By assumption we have kxps > d and can bound }___c. |G®|(1 + [z])7*P% < 1 uniformly in & (for example by
Lemma A.2). It thus suffices to derive a bound for E[|AJQ.EXZ(x)|p8], uniformly in ¢ and x. Note that by (7)
AY X5 (x) = Y seqe 1G°1F (x = ) (2) with 4 = Fgl @ x/15) so that Lemma 5.1, Parseval’s identity (6)
and IZ > |-|? on G* (from Lemma 3.5) imply

E[|af X5@| ] £ 175 & = i gy S 2P,

which proves the bound for X li The bound for &£¢ follows from the same arguments or with Lemma 3.4.
Now let us turn to X7, @ £°. A short computation shows that

B[(X;, 08) W] =E[(X;-£) 0] =), xed,

and, by a similar argument as above, it suffices to bound X i e &% in Bi /2. s /Z(Rd, pz") for B <2 —d. We are
therefore left with the task of bounding the (pg /2)th moment of

gS gé? g8 g8 g&'
A7 ( Y A7 X5 AT & —E[A7 XA §€]>(x)
li—jl=1

=Ygt Y wI R - g — 2T (3 — 22) (65 (218 (22) — E[§° (21)8° (22)])

21,22,¥ li—jl=1
=2 |98|2< 3 3G W (x — ) A (= 2w (x — Z2)>§€(Zl) 0 & (22),
21,22 li—jl<1 ¥y

which with Lemma 5.1 and Parseval’s identity (6) can be estimated by

o

ps/2]2/ps

> !W( DG W K (= )t (x — )WY (x — zz>)sa<zo 0 £5(22)

21,22 li—jl<1

SIS DoIG T e = (=28 (x - 2)

li—jl<1 ¥ L2 (G

= 3 DGt wIHx = y) Figep (5 (x — ) @ W9 (x — ) (€1, )

li—jl<l

L} (G

— e @+ SN w9 R (< (8 + 2)) Fge 4 (—0) Fge w9 (—t2)
li—jl=<1

gE
B G ol X r) g
=1 > o (EIHZ)W% (L)

L} 1, (G

li—jl<1 L3, (G
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where in the last step we used that all considered functions are even. Since <pkg£ (1 + €2) =0 unless [£,,]| = 2% for

2md/2

m =1 or m =2 and since ||<,o,%E lL2gey S , we get

o (DX () 9
' > ol “‘””W (£2)

li—jl=1

L3, 1, (@)

< X @ @l e

li—jl=1.jZk
< Z p~2igkd/2jd/2 < Pk(d=2)
li—jl=1,jZk
using d/2 — 2 < 0 in the last step. ]

By the compact embedding result in Lemma 2.23 together with Prohorov’s theorem we see that the sequences
(E28E%), (E°X 8) and (&¢ (X, ¢ e £%)) have convergent subsequences in distribution — note that while the Holder space
C¢(RY, p) is not separable, all the processes above are supported on the closure of Ct(RY, p') for ¢’ > ¢ and k' <k,
which is a separable subspace and therefore we can indeed apply Prohorov’s theorem. We will see in Lemma 5.5
below that £°£¢ converges to the white noise £ on R?. Consequently, the solution X Z to—Ly X fL = x(Dge)&?® should

approach the solution of —L, X, = x (Dga)§ := ]:Iédl (x Frat),ie.

X(DR‘I) 1( ) _ 0 0._ 1 X
K= (27T)2||D]R<d||25 g (27 )2|| 12 ) A= g Q@m)2|-11%, ©

where || - ||, is defined as in Definition 3.1. The limit of £*(X7, e §°) will turn out to be the distribution

Xy e&(p) = /Rd A@z H (@1 — 22)9(1)EWz1) 0 E(dz2) — (X, © & + £ © X,) () (70)

for ¢ € S,,(RY), where the right-hand side denotes the second order Wiener—Ito integral with respect to the Gaussian
stochastic measure & (dz) induced by the white noise &, compare [32, Section 7.2]. Note that X, ¢ is not a continuous
functional of &, so the last convergence is not a trivial consequence of the convergence for £°£°¢. To identify the limit of
&9 (X}, #&°) we could use a diagonal sequence argument that first approximates the bilinear functional by a continuous
bilinear functional as in [10,29,37]. Here prefer to go another route and instead we follow [6] who provide a general
criterion for the convergence of discrete multiple stochastic integrals to multiple Wiener—It6 integrals, and we adapt
their results to the Wick product setting of Lemma 5.1.

Lemma 5.4 (see also [6], Theorem 2.3). Let G°,n € N and (§°(2));ege be as in Lemma 5.1. For k =0,...,n
let fk € L2((G5"). We identify (G*)* with a Bravais lattice in k - d dimensions via the orthogonal sum (G¢)F =

@ _16° ¢ @l le R4K to define the Fourier transform Fgey fi € L? (Qe) ) of fi. Assume that there ex-
ist g € LA(RYY) with |1 gew Fgey fE| < gk for all & and fi € L*(RY)*) such that lime—o |1 gz Fgey f§ —
Fwayk fil L2rayy =0 for all k < n. Then the following convergence holds in distribution

Sli_%gﬂkff :];)/(Rd)k fi(zi, ... z€(dzr) 0 - - 0 E(dzk),s

where £(dzy) ¢ - -- ¢ £(dzx) denotes the Wiener—It6 integral against the Gaussian stochastic measure induced by the
white noise &€ on R?.

Proof. The proof is contained in the Appendix. ]

The identification of the limits of the extensions of §°, X7 and X}, e is then an application of Lemma 5.4.
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Lemma 5.5. In the setup of Lemma 5.3 with &, X, and X, e & defined as above and with ¢, k as in Lemma 5.3 we
have for d < 4

e—0

(E°6°,E°X5,E°(X;, 06%)) —> (6, Xy, Xy 0 6)
in distribution in C*~2(R4, p¥) x CE(RY, p¥) x C¥~2(R4, p*).
Proof. Recall that the extension operator £° is constructed from /¢ = yr(e-) where the smear function ¥ € D,,(R?)
is symmetric and satisfies ¢ = 1 on some ball around 0. Since from Lemma 5.3 we already know that the sequence

(E°6°, 85X}, E5(X,  £°)) is tight in CE72(RY, p¥) x CE(RY, p¥) x C2—2(R4, p?), it suffices to prove the conver-
gence after testing against ¢ € S,,(R?):

(E°E° (1), - E°E (@), EFX (Y1), -, E° X (W), E5(X;, @ 6°) (f1), ..., E° (X}, @ €°) ()

5%0 (

§(€01) E(@n)s X/L(l/fl), B Xu(lﬂn)s X/L .éj(fl)a cee X/L 'S(fn)),

and by taking linear combinations and applying Lemma 5.4 we see that it suffices to establish each of the following
convergences:

EE () e, EXL@ T X)X 0E) (@) 3 X, 0 () (1)

for all ¢ € S,(RY). We can even restrict ourselves to those ¢ € S, (R?) with Fraop € Dy (R?), which implies
supp Frae S G° and fﬂy (Y® Frap) = ¢ for ¢ small enough, which we will assume from now on. Note that
supp Frap € Ge implies

since by definition of ]-ESI

Fo (Fra@)lge) = (Fd Fra®)lge = ¢lge.

To show the convergence of £¢£¢(p) to &(¢) note that we have from (33)

EE ()= Y |G |(Frd ¥* +0) @& @) = Y |G°|Fpd (¥ Frag) @E°(2) = Y _ |G°|0()E° (2),
z€G# z€G* z€G*¢

where we used in the first step that ¢¢ is symmetric and in the last step that }Edl (Y® Fra@) = @ by our choice of ¢
and ¢. Using Lemma 5.4 and relation (72) the convergence of £2£°(¢) to £(¢) follows.
For the limit of £° X}, we use the following formula, which is derived by the same argument as above:

EX @)= Y. |G oG AE (@ — 28 (22)
21,22€G¢

with 77 = fg_gl (x/1;). In view of Lemma 5.4 it then suffices to note that

(7) X
M M

is dominated by a multiple of x /|-|*> on ég due to Lemma 3.5, and it converges to

X
Frd@ - ——o——
K em2)112

by the explicit formula for /j, in (45).
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We are left with the convergence of the third component. Since £°6* — & and £°Xj, — X, we obtain via the
(€)-Property of the paraproduct

. e(ve ~G° e\ _ 1: &£ ve £sE
812%5 (x5, g)_glg%exﬂ@es =X, 0¢
and similarly one gets £¢(6° @9 X 1) — & © X, We can therefore show instead

EN(XEET —E[XIE )@ > (XueE+EQ X, + X, 08) (). (73)

Note that we have the representations

(X —E[XE )@= Y |G oA a1 — 2)E @) 0 (22,

21,22€G¢

(XuoE+E0 X, +X,08)(9) = fR /R 021 #0221 — 22)E(dz1) © £(dz)

with Ji//f as above and %/MO as in (69). The (G¢)?-Fourier transform of ¢(z )Ji/lf (z1 —22) 18 Pext (X1 —Xx2) X (xz)/lli (x2)
for x1,xp € G¢, where @ex; denotes the periodic extension from (12) for ]—"Rd<p|gg € D,(G?®) (recall again that
supp Frap < @\5). We can therefore apply Lemma 5.4 since for d < 4 the function (x (x2)/[¢ (x2))? < 1|x‘>1/|)c|4

is integrable on @‘ and thus we obtain (73).

We have shown the convergence in distribution of all the components in (71). By Lemma 5.4 we can take any linear
combination of these components and still get the convergence from the same estimates, so that (71) follows from the
Cramér—Wold Theorem. ]

5.2. Convergence of the lattice model

We are now ready to prove the convergence of £fu® announced at the beginning of this section. The key statement
will be the a priori estimate in Lemma 5.9. The convergence of £°u° to the continuous solution on R?, constructed in
Corollary 5.12, will be proven in Theorem 5.13. We first fix the relevant parameters.

Preliminaries

Throughout this subsection we use the same p € [1,00], 0 € (0, 1), u € ,L(a)f;XP ), a polynomial weight p* for some
k >2/pg > 1/7 and a time dependent sub-exponential weight (], ,):ejo,7]. We further fix an arbitrarily large time
horizon T > 0 and require / < —T for the parameter in the weight ¢/ . Then we have 1 <e¢j,, < (e;’Jr[)2 foranyt < T,
which will be used to control a quadratic term that comes from the Taylor expansion of the non-linearity F¢. We take
&° as in the beginning of this section with pg > 14 (see Remark 5.6 below) and construct X7, as in Section 5.1. We
further fix a parameter

ae(2/3-2/3-«x/0,1—=2/ps —2«/0) (74)

with k /o € (2/pg, 1) small enough such that the interval is non-empty, which (as we will discuss in the following
remark) is possible since 2/ps < 1/7.

Remark 5.6 (Why 144 moments). Let us sketch where the boundaries of the interval (74) come from. The parameter
o will measure the regularity of u® below. The upper boundary, that is 1 — 2/pg — 2« /o, arises due to the fact that
we cannot expect u® to be better than X®, which has regularity below 1 — 2/pe due to Lemma 5.3. The correction
—2k /o is just the price one pays in the Schauder estimate in Lemma 3.10 for the “weight change”. The lower bound
2/3 —2/3-k/o is a criterion for our paracontrolled approach below to work. We increase below the regularity « of
our solutions, by subtraction of a paraproduct, to 2«c. By Lemma 4.2 this allows us to uniformly control products with
&°¢ provided

20 + (o + 2k /0 — 2) > 0,
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because £° € C% /72 This condition can be reshaped to & > 2/3 — 2/3 - k /&, explaining the lower bound. The

interval (74) can only be non-empty if
2/3-2/3-k/o <1—=2/ps —2«/oc & 2/3<1-2/p:—4/3-k/0.

Lemma 5.3 forces us to take « /o > 2/ pe so that the the right-hand side can only be true provided 2/3 < 1 —2/pg —
4/3 -2/ pg, which is equivalent to

pe > 14.

Let us mention the simple facts 2« 4+ 2« /o, 20 + 4k /o € (0,2), ¢ +« /o, ¢ +2k /o € (0, 1) and 3o + 2« /o —2 >0
which we will use frequently below.

We will assume that the initial conditions u{ are uniformly bounded in CO (G, ef') and are chosen such that £¢ug
converges in S, (R?) to some ug. For ug=1G°1~ 1. it is easily verified that this is indeed the case and the limit is
the Dirac delta, ug = 6.

Recall that we aim at showing that (the extension of) the solution u® to

-1

L =F(u®)(E° = F'(0)c,), w0 =uj=|G°|" 1o (75)
converges to the solution of
Luu=F (Ou &, u(0) =up =324, (76)

where u ¢ £ is a suitably renormalized product defined in Corollary 5.12 below.

Our solutions will be objects in the parabolic space .;2”; ;‘ which does not require continuity at + = 0. A priori
there is thus no obvious meaning for the Cauchy problems (75), (76) (although of course for (75) we could use
the pointwise interpretation). We use the common interpretation of (75), (76) as equations for distributions u®, u €
D! (R'+2) (compare for example [45, Definition 3.3.4]) by requiring suppu®, suppu € R x R? and

,f;u‘g = F(u‘g)(é‘8 — F'(O)CZ) + 8 ®ug,
Luu=FO)u ¢&+38Quo,

in the distributional sense on (—oo, T) x R2, where ® denotes the tensor product between distributions. Since we
mostly work with the mild formulation of these equations the distributional interpretation will not play a crucial role.
Some care is needed to check that the only distributional solutions are mild solutions, since the distributional Cauchy
problem for the heat equation is not uniquely solvable [46]. However, under generous growth conditions for u, u® for
x — oo (compare [14]) there is a unique solution. In our case this fact can be checked by considering the Fourier
transform of u, u® in space.

A priori estimates
We will work with the following space of paracontrolled distributions.

Definition 5.7 (Paracontrolled distribution for 2d PAM). We identify a pair
(X, u"%): [0, T] - S‘/U(Qs)2
with u® := u®X <X¥ +u*¥ and introduce a norm
””8”@;:;@6,4}) = ” (”‘e )” jV‘S(gs &)= ||u X”g””@s ef) + H” H 7 DG ed) (7

for o as above, 6 € (0, 1) and y > 0, § € (0, 2 — o). We denote the corresponding space by @;’? (G°, ef). If the norm
(77) is bounded for a sequence (u® = u®X <X /i + u®%), we say that u® is paracontrolled by X Z
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Remark 5.8. In view of Remark 3.9 we can also define a continuous version @;‘; (RY, ef) of the space above.
As in [21] it will be useful to have a common bound on the stochastic data: Let
M, = ”ES ||C(oxo+2x/072(g€’pk) \Y ” XZ ||cgo+2)(/(7(gs’p,() \Y ||XZ o &° ||C§g+4)(/(r—2(g£’p2,() (78)

(compared to Lemma 5.3 we have { = « + 2k /o). The following a priori estimates will allow us to set up a Picard
iteration below.

Lemma 5.9 (A priori estlmates) In the setup above considery € {0, a} and ug € CO (G®). If y = 0 we require further
that ug € C"‘ (G%, p) and ”0 =ug— F'Qup© Xs € Cz"‘ (G®, 7). Define a map

%8

it TS ) 3 () s (Y, 05) € 970 ef)

for uf = us'X<XZ + u®% with u®(0) = ug via v°* := F'(0)u® and v&? ;= v® — vg’X<XfL, where v¢ is the solution
to the problem

Lt = F° (u®)&® — F° (uE’X/F’(O))F’(O)cZ, vé(0) = uy. (79)

The map M3, is well defined for y € {0, a} and we have the bound
” (va,X’ vs’t) ”fﬁpyj;(gs,e?) < Cuy+Cuy, - T(a_am(H”S ”@;_‘?(ge,e;’) +e" ||”8 ||2@;;;(g€,e;f))
for 8 € (2 — 20 — 2ic/a, @) and some v > 0, where Cy, = co(1 + M?) and
Cug = Ly=acolluolicyge e
+ 1y=OCO(H’43Hc;a<gs,ef) + [ut*(0) ”c;@s,e;f) + [u®#(0) HC},“(QE,e,“))’ (80)
for some co > 0 that does not depend on &°, cj, or u.

Remark 5.10. The complicated formulation of (79) is necessary because when we expand the singular product on
the right-hand side we get

Fs(ue)ég = F/(O)(C(M&X’ XZ! sg) + MS’X(X; @ 58)) + Tty
so to obtain the right renormalization we need to subtract F’(0)u®X 8
expand the second addend on the right-hand side of (79).
If u* =v® = .4y ,u® is a fixed point, then utX = X = F'(0)u® and the “renormalization term” is just
Fe(u®)F’ (0)cy,. Moreover we have in this case

, which is exactly what we get if we Taylor

Liu =F (u®)(° — F'(0)c}),  u®(0) =uo.

Proof. We assume for the sake of shorter formulas (1 + Mf) < 1, the general case can be easily included in the
reasoning below. The solution to (79) can be constructed using the Green’s function F, ~le~!i and Duhamel’s princi-
ple. To uncluster the notation a bit, we will drop the upper index € on u, v, X, %), ... in this proof. We show both
estimates at once by denoting by y either O or «.

Throughout the proof we will use the fact that

||u||$y/2u (Ge, n) ||u <X +u ||$J’/20‘ (Ge, U)N”u”QVﬂ(g& cr) (81)
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for all B € (0, @] which follows from Lemma 4.8. In particular (with 8 = §) we have

1
HUX ”,ng/,/TZJX(gg’e;y) = “ F/(O)MH,ZPV,/Tz’a(gSve;T) 5 ”u”_@;’:?(gs,e;‘/)
Lem. 3.11

a3
< L=o(Ju*© ”C;g(gf,e;f) + ||”ﬁ(0)||clz,a(g£,e;f)) +72 ””'l-@,}:]?(gg»ef)'

This leaves us with the task of estimating ||v® | e We split
p.T

(G e’
L =% (v — F' (Ou<X,)
= F*(u)& — F*(u" /F'(0))F'(0)c, — F'(0).Z,, (u<Y)

wX)?
F'(0) "

= F'(O)ut — F'O)u*c, — F'(0).Z,(u<X,) + Rwu*s — R(u™/F'(0))

=FOueE-8+ucé—u<t+u<t— L u<X,)+uck
+C(u*, Xy, ) +uX (X, 08)

+u' Of]
+ R(u) - u’¢
¥ , (uX)Z
— R(u™/F'(0)) o)

2097

(82)

(83)

(©)
(©)
®
(Ru)

(R,x)

where & = x (D) so that £, X, =& with& — & € ﬂﬁeRcfo(gf, p¥) and where R(x) = &2 fol(l — M) F”(re2x)dA.

We have by Lemmas 4.2, 4.9

(81)
o K/O— < o <
H(@)HM;(ﬁ +2x/ z(gs,e;’p‘() ~ ”u”‘zg/z_z (Ge.ef) ~ ”uH@]l)':lsT(gg’e;r)

and further with Lemma 4.4 and Lemma 4.2
H(G)HM;CZGJAK/U*Z(Q’H’EET p26) S ”“”@;’:;(ge’e;f)’
while the term () can be bounded with Lemma 4.2 by
HMIi @E” ¥ 20t 2c/o—2 < ||uu|| y.a+s < |lull s .
MiCy (G e p) ~ 21 geeyy = W2 0.Ge )

To estimate (R,,) we use the simple bounds || f”65+ﬁ/(g5,p) < ”f”C’;(gf,p)

and
-B < =B —JiB <
16 Faigemy Se77 22 2701 gt ge py S WF et e )
iSige
for B <0, g €[1, 00], p € p(w), together with the assumption F” € L°°, and obtain for v’ > 0

”(R”)”M?cﬁ“””"*z(gx’efpk) S, ” F// ”oo ”8a+2’(/0u2 ”MVLI’(gs,e;f) ”82—(04—&-2:(/0)%. ||Loo(g€’pl()

oa+2k /o2
S E 0 g Lo ge e 18 lezsero-2ge

< ”801/2+K/o ” £0/2+x/0

qu v < u”2 /2 pdj2p v
MEPZL2(GE ey ~ MEYEC PTG el )

forBeR, B >0,g<€[l,o0], p € p(w)
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a/2+k /o a/2+k /o —(1+v —a)

< e

2 2
””MWCHV (Geref) ™ < e u”/\/l?zC%(gsyef)

< 30!+2K/U 2(1"1‘11)” || <g ||1/l||

jJ’S gg rr) jl/a gg (r)

forall v € (0, 3a + 2k /o — 2(1 4+ V)] (which is nonempty if v’ is sufficiently small). Similarly we get for v’ € (0, §)
7" X2 X2
IRt e e oy S 1 Lyl e agy Sl Prgsr e

S¢€ Ilull

582(‘3*"/)}101‘5(8”””XHi\AV/ZC‘S (G*.ef) ™~ r@een)
T

for all v € (0, § — v']. In total we have

[00% | gy a2 ge g ey S 1l 1 ey + 8" I v93(0) = Tmou + 1y=atto,

Dy (G ey’

where we used for the initial condition that by Definition 4.5 and Convention 4.6 we have (F'(0)u<X,)(0) =
F'(0)up © X for y =0 and (F'(0)u=<X,)(0) =0 for y =« > 0. The Schauder estimates of Lemma 3.10 yield
on these grounds

f
||U H,gp(ﬁ"(gs,ef) N 17’:“””0”62@‘ oy +1y= 0””0 ”czw(gs %) + ”””9? 5 (ge.e?) te ||”||jys G .e)
# #
S Ly=alluolleoge o) + 11/=0(H”0”c;a<gs,e7) + w0 ”cga(gs,e,a) +[u*(0) “c;@s,e;’))
(@=8)/2 . V2
Tl grage epy + e 1l ge o)
where in the last step we used Lemma 3.11. Together with (82) the claim follows. ]

As we mentioned in Remark 5.10 we aim at finding fixed points of .Z , which is achieved by the following
corollary.

Corollary 5.11. With the notation of Lemma 5.9 choose Teloc = %(CMS + CMgs”r(uo))’z/("‘"s)for a sufficiently large
r(uo) > 0, depending on ug. Then the map Ay, from Lemma 5.9 has a unique fixed point u® = ue*X<XZ +u®% on

78 ’(Ix"loc (G®, €f). This fixed point solves

Ziu =F° (u®)(&° — F’(O)ci), u®(0) = ug, (84)
and u®* = F’(0)u®. Moreover, we have

”us ||'@::(;~loc (Geef) = < r(uop)-

Proof. We construct the fixed point u¢ by a Picard type iteration. To avoid notational clashes with the initial condition
ug, we start the iteration with n = —1 for which we define u® | := F’(O)uo<<XfL + ug =uyQ Xﬁ + ug =ugfory =0
and u® | = O<XZ +eé Muo for y =« (which is in .@y ;(Q“/‘ e7) due to Lemma 3.10). Define recursively for n > 0

the sequence u, ,///8 uon—1 (with us, = uyy <Xﬁ + u,, to be read as a pair as in Definition 5.7). Choose now
r(up) so big that ||u 1“/1/05(95 ) = <r(up) and such that

1
CM() =< E”(”O)

with Cy, as in Lemma 5.9. Note that for u;, , , the constant C,, in principle depends on u},(0), but in fact we Can choose
it independently of n since uf,’X(O) = F’'(0)ug for all n > —1 (by definition of .#Z% ) and u,, Ii(O) =1,- 0140 +1,—quo

(by Definition 4.5 and Convention 4.6) in the second term of (80).

V“O
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Since Tg10C < 1 we already know for n = —1 that
£
||un “ @;j;gloc (Ge.ef) <r(up). (85)

We show recursively that (85) is in fact true for any n > —1. Suppose we have already shown the statement for n — 1,
we then obtain by Lemma 5.9

[ ”J” () =Cuo t (1) T Cop, (r(wo) + £ (r (o))

r(ug) . r(uo)
2 2

< —r(ZO) +(72%) T (Cor, + Con,er (o)) - (o) =

=r(uo).

By Lemma A.7 in the Appendlx 1nequa11ty (85) implies that for &’ € (0, «) and o’ € (0, o) there is a subsequence

(uf, k=0, convergent in 277 Tloc(gs e') to some u® € 7%, (G, e7), and

Tloc

< 11m1nf||unk W(GEer) = < r(uo).

Z p.T}OC (gg )

In particular #° is a fixed point of ,///; uo that satisfies (84). It remains to check uniqueness. Choose two fixed points
u®, v®, which then satisfy

L — ) =(F () — F* (v°)) (&° — &, F'(0)) = fo (00" — ) d-(v" — ) (€ — e F'(0).

=7
We will use that for p € p(w) and ¢, ¢’ € R with ¢’ > ¢

, < o—('=0)
”f”Cf; (gg’p) N8 ”f”cf;(gs,p)? (86)
which is an easy consequence of Definition 2.17 and which we essentially already used in the proof of Lemma 5.9.
In other words, we can consider our objects as arbitrarily “smooth” if we are ready to accept negative powers of ¢. In

particular, we can consider the initial condition uq as paracontrolled, that is ug € C"‘ (G%,¢f), ug € Cz"‘ (G®,¢f) (and
thus 4% (0) = v&X(0) = F/(O)up € C,(G%, €])), so that with Lemma 5.9 we obtain u®, v* € 7% TIOL (gg ef). Conse-
quently, since also e] > 1, we get u®,v® € C TglocLoo(gg ) which implies that the integral term .% is in C TglocL"o(gg )
and, by using once more (86), we can consider it as an element of CTloccgo(QS) for any B € R. The product
(v® —u®) (& c F’(0)) can then be estimated as in the proof of Lemma 5 9. Since multiplication by .% only con-
tributes an (&- dependent) factor we obtain for 7' < TE10C a bound of the form

=3
o wf

Hue — ¢ ||92:‘;/(g8"’?) <e (T’) u® —v° “921’;/(9'5,53;’ s

which shows |uf — v|| _@2:(;/ Gty = 0 for T’ small enough. Iterating this argument gives u® = v on all of [0, T,°°].
O

Convergence to the continuum

It is straightforward to redo our computations in the continuous linear case (i.e. F'(x) = cx), which leads to the exis-
tence of a solution to the continuous linear parabolic Anderson model on R?, a result which was already established
in [25]. Since the continuous analogue of our approach is a one-to-one translation of the discrete statements and
definitions above from G¢ to R¢ we do not provide the details.
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Corollary 5.12. Let ug € Cg R4, e} ). Let & be a white noise on R2, and let £, be defined as in Section 3. Then there
is a unique solution u = F'(0)yu<X, +u* € @;‘:%(Rd, ef) to

Lu=FOueg,  u0)=up, (87)
n [0, T1, where
ueE:=EQu+uE+F (0)Cu, X, 6)+ F (Ou(X, &) +u 0F
with X,,, X, « € as in (69), (70).

Sketch of the proof. Asin Lemma 5.9 we can build a map .# ,, : @;‘:%(Rd e?) > @D‘ %(Rd ) u=u"r<X,+
u¥ > v=F'(0)u<X, +v° via

Luv:=F (0)u ¢&, v(0) = up. (88)

As in Corollary 5.11 there is a time T'°¢ such that Mo.u, has a (unique) fixed point u® = F0)u®<x uw+ u@-% in

-@Z ?"loc RY, ej) that solves

Zu® =F 0)u® o, u©@(0) = u.

on [0, 7'°°]. Since the right-hand side of (88) is linear, this time can be chosen of the form Tloc — %K —2/(@=8) where
K > 0is a (random) constant that only depends on &, X, X, oé;‘ but not on the initial condition. Proceeding as above

Tloc (Rd ) - @O Tloc (Rd, e?) by (the Continuous

version of) Lemma 5.9 and Lemma 4.9. The map //lo’mm(m) has again a ﬁxed pomt on [0, T'°°] which we call u(D.

but starting in © (71°) we can construct a map My O (i0cy: D

Starting now in u(])(Tl"C) we can construct u® as the fixed point of %O’u(l)('r](m) on [0, T'°¢] and so on. As in [21,
Theorem 6.12]) the sequence of local solutions u®, uD, u® ... can be concatenated to a paracontrolled solution
u=F'Ou<X,+u’ €7, 7R ef)on[0,T].

To see uniqueness take two solutions u, v in @;“; (R, e7) and consider 7 = u — v. Using that £(0) =0 and
Z,h =h ¢ & one derives as in Lemma 5.9

(@—8)/2
||h||@;‘:¢;_(Rd’e;‘i) <C.-T ||h||@‘;:?(Rd’e;7)
so that choosing T first small enough and then proceeding iteratively yields 7 = 0. ]
We can now deduce the main theorem of this section. The parameters are as on page 2094.

Theorem 5.13. Let uy be a uniformly bounded sequence in Cg (G®.e7) such that Eug converges to some ug in
S! (R?). Then there are unique solutions u® € _@;{:%g (G®,¢ef) to

Lot = F () (€~ F'O), w0 =uj, (89)

. . . 0
on [0, T?] with random times T® € (0, T] that satisfy P(T* =T) 1. The sequence u® = F'(Oyu® <X, + usf e
@Z:%S (G®, e7) is uniformly bounded and the extensions Efu® converge in distribution in @Z:% (R4, ef’/), o <a,0’ <
0, to the solution u of the linear equation in Corollary 5.12.

Remark 5.14. Since T°¢ is a random time for which it might be true that P(T% < T) > 0 the convergence in distribu-

tion has to be defined with some care: We mean by £u® — u in distribution that for any f € Cb(@“ o (G%,¢]): R),
we have E[ f(E%u®)1r:—7] — E[ f ()] and further P(T¢ < T) — 0.
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Proof. The local existence of a solution to (89) is provided by Corollary 5.11. Proceeding as in the proof of
Corollary 5.12 we can in fact construct a sequence of local solutions (ug’(”)),,zo on intervals [0, Tgloc’(")] with
us® () = u&@=D (724"~ ‘yhere we set T,°“V := 0 and 4 := ug. Due to Corollary 5.11 the time 7,°%"”
is given by

1 _ _ —2/(a—8
Tg]oc,(n) :ZE(CMS_’_CMngr(us,(n 1)(T£10c,(n 1)))) /(« ). (90)
Note that, in contrast to the proof of Corollary 5.12, Tgloc’(") now really depends on n and we might have
ano TSIOC’(") < 00. As in [21, Theorem 6.12] we can concatenate the sequence u®O ye M 4o a solution u®

to (89) which is defined up to its “blow-up” time
blow-
! ow-up _ Z Tgloc,(n)
n>0
(which might be larger than T or even infinite). Let us set

blow-up
&

T =T A

5 oD

To show P(T¢ =T) =01 we prove that for any r > O we have P(stlow'up < t) — 0. By inspecting the definition

of r(...) in the proof of Corollary 5.11 we see that given the (bounded) sequence of initial condition u the size of

T‘,gblowup can be controlled by the quantity M®. More precisely there is a deterministic, decreasing function TSdet :

R+ — R such that
stlow-up > Tsdet( Ms)

and such that for any K > 0 (due to the presence of the factor £" in (90))

e—0

T(K) = . 92)

0 . . .
Let t > 0 and K¢ :=sup(K > 0 | T%{(K) > t}. Note that we must have K7 > oo since otherwise we contradict
(92). But this already implies the desired convergence:
: K¢
P(TP < 1) < P(TY(M?) < 1) <P(M* > KF) 50,
where we used in the last step the boundedness of the moments of M¢ due to Lemma 5.3.

It remains to show that the extensions £fu® converge to u. By Skohorod representation we know that
E°6°, 87X, E5(X], &°) in Lemma 5.5 converge almost surely on a suitable probability space. We will work on
this space from now on. The application of the Skohorod representation theorem is indeed allowed since the limiting
measure of these objects has support in the closure of smooth compactly supported functions and thus in a sepa-
rable space. We can further assume by Skohorod representation that (a.s.) Tgblow'up — 00 so that almost surely we
have T¢ =T for all ¢ < gy with some (random) &9. Having proved that the sequence u° is uniformly bounded in

@Z:”T‘g (G°, e7) we know, by Lemma 2.24, that £u° is uniformly bounded in @Z:%s (R?, 7). Due to (the continuous
version of) Lemma A.7 there is at least a subsequence of £ u®" that converges to some u € @;‘:‘;(Rd, e] Y(R?) in
the topology of @Z:?, (R, e}’/). If we can show that this limit solves (87) we can argue by uniqueness that (the full

sequence) E°u® converges to u. We have
glfn gsnuen — 5englfnusn — 56n (Fen (u€n)($€n _ C/in F/(O))), (93)
where .,S,”lf Efu® should be read as in (43). Note that the left-hand side of (93) converges as

n—0

g/jga"uf" — (gﬁn _ DZL)SSHMSU _}_gﬂg&zusn 2 0 _|_$Mu :DZLM
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due to Lemma 3.4. For the right-hand side of (93) we apply the same decomposition as in (83) = () + (®) +
(#) + (Ry) + (R,x). While (the extensions of) the terms (R,), (R,x) of (83) vanish as ¢ tends to 0, we can use the
property (€) of the operators acting in the terms (&), (®), () to identify their limits. Consider for example the product
u®Xie (XfL e &%) = F'(0O)u® (XfL e £%) in (®) whose extension we can rewrite as

E(F'Oyu (X @ &)
= F'(0)E™ (u™ © (X;» @ &) +u™ & (X;" 0 ) +u @ (X[ 0 1))
(i) F/(O)[gsnusn © Ekn (X}in .Ean) + Enyfn g Ebn (Xlin ° i_—sn) 4 EEnyn @ En (X}in .Esn)] +05n(1)7

where we applied the property (£) of ©, ©, ® (Lemma 4.2) in the second step. By continuity of the involved operators
and Lemma 5.5 we thus obtain

1im056" (F'(Ou (X 0£™)) =F'(O)[u© (Xo&)+uc (Xe§) +ud (Xef)]
&n—>
=F (Ou(X e &).
Proceeding similarly for all terms in the decomposition of the right-hand side of (93) one arrives at

Z,u= lim Egnfj"ug" = limoé's” (an (ug")(fg‘e" — cffF/(O))) =F'(O)u ¢&,
En—

en—0

which finishes the proof. |

Since the weights we are working with are increasing, the solutions #® and the limit u are actually classical tem-
pered distributions. However, since we need the S, spaces to handle convolutions in e] weighted spaces it is natural
to allow for solutions in S),. In the linear case, F = Id, we can allow for sub-exponentially growing initial conditions
ug since the only reason for choosing the parameter / in the weight 7, smaller than —7" was to be able to estimate

e, < (efﬂ)2 to handle the quadratic term. In this case the solution will be a genuine ultra-distribution.
Appendix
Results related to Section 2

Lemma A.1. The mappings (Fg, F_C,:l) defined in Section 2.3 map the spaces (S,(G), Sw(a)) and (S,,(9), S(’U(G\))
to each other.

Proof. We only consider the non-standard case w = | - |. Given f € Sw(g) the sequence

]:gf(-x) — |g| Zf(k)eZT[lkx
keG

obviously converges to a smooth function that is periodic on G. We estimate on G (and thus by periodicity uniformly
d
on R%)

80{ Z |g|f‘(k)627'[lkx

keG

S0 Y (G| e MK

keG

We can use Lemma A.2 for | - |/?le=*'1” with Q = G and ¢ > 0 of the form ¢ = C(}») - Cl¢! (C denoting a positive
constant that may change from line to line) which yields

ao{ Z |g|f(k)627rlkx

keG

<, Clel / e[l gy
R4
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We now proceed as in [31, Lemma 12.7.4] and estimate the integral by the I —function

o0 oo
o o o
f |x||a|e—,\\x| dng pleltd=1,=ar" 4. SM\—M/J/ plal+d=1,-r7 4.
R4 0 0

Stirling
<ATTr (lal+d —1) /o) < aTlel/oclel|g /o

Since we can choose A > 0 arbitrarily large we see that indeed f € C.° (ff).

For the opposite direction, f € Sw(g) we use that by integration by parts |zl ]-E ! f <! supA(Bi)l =<
C'e'l'/7 forall z € G, 1>0,i=1,...,d. With Stirling’s formula and Lemma 3.7 we then obtain | Fj r@)) <
e*2I” | This shows the statement for the pair (S4,(9), S, (g)) The estimates above show that Fg, ]-' -1 are in fact

continuous w.r.t. to the corresponding topologies so that the statement for the dual spaces (S,,(G), S, (Q )) immediately
follows. =

Lemma A.2. Given a lattice G as in (2) we denote the translations of the closed parallelotope G = [0, 1]a; +

<4 [0,1layg by G:={g+G | g €G}. Let Q C G and set Q := UG’eG,G’mQ;&z G'. If for a measurable function
f:Q— Ry there exists ¢ > 1 such that for any g € Q there isa G'(g) € G, g € G'(g) with f(g) < c-essinfycg f(x)
then it also holds

> 1gif@ =2 [ feox

ge

Proof. Indeed

Zlglf(g)<ch fdr<ed > S dx

g€ geQ geQ G'eG:geG’ G'®
<> X / F)de ©2de Z | fd
G'CQgefgeCG’
= ZdC/ f(x)dx,
Q
where we used in (A) that the d-dimensional parallelotope has 2¢ vertices. (]

Lemma A.3 (Mixed Young inequality). For f: R¢ — C and g: G — C we set for x € R¢

frgg(x) =Y |G|f(x —k)gk).
keg

Then forr, p,q € [l,00]lwith 1+ 1/r=1/p+1/q
=2
If *g &llLrrey < Suﬂgd lree =910, - 1F1 7 gaylgllLeg)

(with the convention 1/00 =0, co/oo = 1).
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Proof. We assume p, g, r € (1, oo). The remaining cases are easy to check. The proof is based on Holder’s inequality
ongwith%+ﬁ+i=1

£ 56 80| = Y1911 £ =B [g@|) - | Fe =0 7 |gt)| 7
keG
Holder r r—p r—q
= 1056 =801 gy M=l 71 g - NeOT ],

1/r r=p r—g
< <Z|Q||f(x —k)|”|g(k)|q> g;lﬂgd”f(x/ D Y

keG

Raising this expression to the rth power and integrating it shows the claim. (]
Results related to Section 3
Lemma Ad4. For T >0, p €[1, 0], p € p(w) we have uniformly int € [0, T] and ¢ € (0, 1]
le 5 £l Loige. py S UFILrige. o,
and for 8 >0

[ £ 1 oigepy 121 Nl 2 ey

Proof. With the random walk (Xf);er, which is generated by Lj, on G° we can express the semigroup as el fx) =
E[f(x 4+ X{)], so that

& /0() & &
loe ™ £ L oigey = H]E[mp(' +X7) f(-+ X )}

LP(G%)

p(x) Ao (XF)
<E| sup ————= | fllLr, }SEew A e ge,
[x€g€ ,O(x + Xf) P(Ge,p) [ ] ?(G%.p)

An application of the next lemma finishes the proof of the first estimate. The second estimate follows as in Lemma 6.6.
of [21]. O

Lemma A.S. The random walk generated by L}, on G° satisfies for any > > 0 and t € [0, T]
E[eka)(Xf)] §A,T 1.

Proof. We assume @ = wg ', if w is of the polynomial form the proof follows by similar, but simpler arguments. In

this proof we write shorthand s = 1 /0. By the Lévy-Khintchine-formula we have E[¢'?X/ ] = ¢~/ e Jg (=) dux) _
e 1@ for all @ € R. We want to bound first for k > 1

d
B[|X;, [+ + X5 4[] = 3|0k lo—oB[e X ]].
j=1

To this end we apply Fad-di-Brunos formula with u(v) = e™"?, v(0) = lfl (6). Note that with Lemma 3.5 for m € N
and j=1,...,d

u™(0) = (=)™,

|95 v(0)] S5 8™ (m))°.
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Thus with A, ¢ = {(a1, ..., ) €N | Y7 o -i =k} we get for any § € (0, 1]

|a§j|9:0E[e’9Xf]|= Z —u<m>(0)]_[< ag v(0)>

1<m<k,a€A,x

KL T a1 iy SRS o kL T i i —1)
SEED DT | (DR A A ) atncl
i=

I<m<k,a€Api ~ i=I 1<m<k,a€Am k

"S”S’Sk ek Y KL m ks —1) SUENE o 3 (kH* m

! o!
1<m<k,a€A; k I<m<k,ac€Ay k
= el KD D Al =85 Crk) D k=1 m
= m,k m—1
1<m<k 1<m<k

=8 Ckun (1 + 0 < sfek T+ 0k,
where C > 0 denotes as usual a generic constant that changes from line to line. With |x |£ = |x1|F 4+ |xg|* we get
[|x8| ] Sskckuny a+ok

and therefore, using once more Stirling’s formula and |x | < ck.|x |’,§,

E[ AlXELS ]<1~|—IE[ MX717 1\X€\>l <1-|-Z |Xa’rka1]

X~k ko X~k ko ko
ck(l +1 cksko (1 41
S1+) (k%)a(kﬂfkoﬂk”“gw(lﬂ)} —ZkJ“) k<1,
k=0 k=0

where in the last step we chose § > 0 small enough to make the series converge. (]

Results related to Section 4

Lemma A.6. Let G° as in Definition 2.2, let © € @, and let (99 ) j—
For —1 <i < j < jge the function

,,,,, jge be a partition of unity as on page 2065.

A7 f1- 89 fe8,(9°)

is spectrally supported in a set of the form 2/ BN ?8, where B is a ball around O that can be chosen independently of
i,jande¢. For fi, f» €S, (G%) and 0 < j < jge the function

ST f1-AY h eS8, (6°),

is spectrally supported in a set of the form 27 AN G®, where A is an annulus around O that can be chosen independently
of jande.

Proof. We can rewrite
Fg (A7 fi- 29 f) = (0f Fge ) xg: (o7 Foe 1)

= /g (¢ Foe £) @ - (9 Fo ) (I — 2lg:) dz,
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where we used formal notation in the last step and [-]g. as in (8). From this one sees that the spectral support of
Gt G, . . .
A fie Aj f> is contained in

(supp (p,-gg + supp (pjgg +%°) N G, (94)

where we recall that supp (pl.gs ={xe Ge | (piga (x) # 0} is a subset of (the closure of) G € R?, while the sum of sets
in the parentheses should be read as a subset of R?. Now, by the dyadic scaling of <pgs we have for all i < j

supp@? + supp <pjgg c B(0,2/b)

for some b > 0, independent of € and j. Set: B := B(0, b) and consider first the case 2/ B3] = B(0,2/b) C 58. In this
case we have

(supp (pigg + supp (pjgg +%)NG C (2/By + %°) N Gt =2/B NG =2/B.
On the other hand, if 2/8; = B(0, 2] b) ¢ 58 we are in the regime j ~ jg- and take a ball B, around O such that
2/B, 2 G* and hence 2/B, N G¥ = G* for all J ~ jge (by the dyadic scaling of G® from Definition 2.2 we have
2/¢* = ¢ . &~ so that we can choose B, independently of &). Choosing then B = B1 U BB, shows the first part of the
claim.

Let us now consider Sj.gil fi- A?S f2. With gogg > jr<j—1 gojg,g we see as above that the spectral support of

. ‘ <j-1"=
Sjg fi 'A]g. f> is contained in
(supp gog;fl + supp (pjga +%)NGE. (95)

We already know from above that this set is contained in a ball of size 2/ so that is enough to show that (95) is bounded
away from 0. Since supp <pg i and supp (pjg are symmetric and disjoint, we have due to the scaling from (38) and
(39), which we observed in the proof of Lemma 2.25, that

dist(supp gog;_l —+ supp (p;.;g, 0) > 274
for some a > 0 and
suppg?,_, +suppy§ C B(0,27 -5, (96)

for some b’ > 0. Note, that we can choose b’ > 0 small enough such that B(0, 2J/ge b)Y NZ%° = {0}. Indeed, otherwise
there are x| € supp ¢g;gg—1’ X2 € supp wj.ggi such that x| + x, = r for some r € %* \ {0}. But from |x{| < dist(3G¢, 0)
one sees that |xo| = |[r —x1| > diam(ég )/2 which contradicts x> € supp (pjgg c G®. This choice of the parameter b’ can
be done independently of ¢ due to the dyadic scaling of our lattice (Definition 2.2).

Consequently, there exists r > 0 such that dist(B(0, 2/b") + %¢ \ {0}, 0) = 2/r (to see that r > 0 is independent of
&, use once more the dyadic scaling of the sequence G¢). But then we have

dist((suppcpgjﬁ_l + supp(p?T +Z%)NG",0) > (anr)-2/,

which closes the proof. U
Results related to Section 5

Proof of Lemma 5.4. We will write shorthand ;‘E 1= Fgeye [ and ﬁ := F(rdyk fk- The claimed convergence is a
consequence of the results in [6]. For z € G® let G®(2) =z 4+ [—¢/2,¢/2)a1 + -+ -+ [—¢€/2,¢/2)aq, where ay, ..., aq
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denote the vectors that span G. For x € R? let [x], be the (unique) element in G® such that x € G®([x],) and for
x € RH% set [x], = ([x1]e, ..., [xxk]s). We will start by showing

511310” FE(1e) = f HLZ((JRd)k) =0 ©7)

for all k.
By Parseval’s identity we have || f7 ([-1e) — fill L2k = [ Fmay (f ([-1e)) — ﬁlle((Rd)k), where Fay+ denotes
the Fourier transform on (R?)* for which one easily checks that

]‘—(Rd)k (f]éE ([]8)) = (?k?)ext ’ pi’

where we recall that (?E)ext is the periodic extension of the discrete Fourier transform of f,f (on (Rd)k) asin (12) and
where

dZ dzk _
pi(yl""’yk)zf W@ 2mie(yrez1+-- +ykzk)
O A

The function p; is uniformly bounded and tends to 1 as & goes to 0. Now we apply Parseval’s identity, once on (R
and once on (é\g )k, and obtain

drp - de [ (F) o)t = Y |G| A G 2o
21502k €GE

Y 2
=/§kdx1-~dxk!f,f<x1,...,xk>!
(G%)

(R

and thus

A I T B (U D CRe
(DK ©

e)k

Since 1(@),(?,? is uniformly in ¢ bounded by g € L2((R?¥) and since 1 — | p€|2 converges pointwise to zero, it

follows from the dominated convergence theorem that 1(((};)1()5(?,?)6“ p,ﬁ converges to zero in L2((R?Y*). Thus, we
get

SIER)” (?E)extpi - ﬁ” LRIk = Eli_r)r})”l@)k?zp,ﬁ - ﬁ” L2((RI)k)
= sh_r)‘%” (l(ﬁ)k?l? - ﬁ)pi ||L2((Rd)k) + ;E}})”ﬁ(l - Pli) ||L2((Rd)k) =0,

where for the first term we used that pj is uniformly bounded in ¢ and that by assumption l(g;)k fk converges to
fk in L?((R%)¥) and for the second term we combined the fact that p¢ . converges pointwise to 1 with the dominated
convergence theorem. We have therefore shown (97). Note that this implies

£ (o) Witz iz = fill ey = 0 and [ £ (L) aigjizt=tz; 0. | 12y = O- ©98)

L2(

As in the proof of Lemma 5.1 we identify G° with an enumeration N — G¢ and use the set Ak {aeN"| Z a; =
k} so that we can write

I fi = Z r! Z |gs|kf£]fa(z1,...,zr)-Hgs(zl/)%’

I<r<k,acAk 1< <z Jj=1

where we denote as in the proof of Lemma 5.1 by fgk , the symmetrized restriction of fsk to (R%)”". By Theorem 2.3
of [6] we see that due to (98) the r = k term of .%; f,f converges in distribution to the desired limit, so that we only
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have to show that the remaining terms vanish as ¢ tends to 0. The idea is to redefine for fixed a € AX the noise as
ES, (z) = ég(z)o"f/r;‘-(z) where r;(z) = /Var(&¢(2)°%) - [G¢| < |G°|1=4)/2, so that in view of [6, Lemma 2.3] it
suffices to show that

Z |Q€|rl_[r;5(Zj)2'|f,ia(21,...,zr)|2,§ Z |Q‘9|k'|f,ia(zl,...,zr)|2—>0,

71 <<z j=1 71 <<z

but this follows from (98). O

Lemma A.7. Let (fn)n>0 be a sequence which is bounded in the space f;’}x (G.e7) and let o' € (0,a) and o’ €

(0, 0). There is a subsequence ( f,)k>0, convergent in f;;‘ g, e;’/), with limit f such that

1£117% @y < HminflLfu, | 27 g.er) (99)
Proof. Take in the following & = O"EO‘ and 6 = % By definition of .Z V‘TX(Q e]) we know that (g,)n>0 1=
((t, x) — t7 fu(t, x))n>0 is bounded in Ca/zLP(g ef) N CrCy(G, ef). Interpolation then shows that (gn)x>0 is
bounded in Ca/ZC (G,ef) N CB’C"‘ (G, e7) for some 8,8, > 0. We obtain by compact embeddmg (Lemma 2. 22)
for &% € (0,6x), 8, € (0,8,) the existence of a convergent subsequence (g,,k)k>0 in C% C (G, ef ) N CT Cg (G, e )

with some limit g. From the convergence of g,, — g in C"‘ C (g, 7N C C"‘ (G, ef ") it follows that for f:i=t"Vg
we have f,, — fm.i” T (g, ).
The estimate (99) is then just an iterative application of Fatou like arguments for the norms from which

Il LIEGp) is constructed. (Il
Glossary

e Paraproduct, either on R or on a Bravais lattice 2083

< Modified paraproduct 2086

® Resonant term, either on R? or on a Bravais lattice 2083

° Renormalized resonant term 2090

¢ Renormalized product for PAM (on R2) 2100

o Wick product 2089

[~]§ Periodic map from R4 to a 2063
B¢ Besov space 2070

P
(6 Besov space with g = 0o 2070
cy Ultra-differentiable functions 2067

@;g Space of paracontrolled distributions for PAM 2096
A9 Discrete Littlewood—Paley block 2065

E¢ Extension from Bravais lattices G¢ to RY 2072

e/ Time-dependent, sub-exponential weight 2081

Fg Fourier transform on a Bravais lattice G 2062
g

@7 (discrete) Dyadic partition unity 2065

G, G® Bravais lattices, G° = ¢ - G denotes the scaled lattice 2061
g Fourier cell for a Bravais lattice G 2061

Jg The index where supp ¢; touches 3G 2065
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I, Fourier multiplier for the diffusion operator Lj, 2078
LY, Z,ES) (discrete) Diffusion operator and its associated operator .,ff) =0; — L,(f) 2076
Z; ;f Parabolic space 2081
MEX Weighted space 2081
n(w) Set of jump measures for symmetric random walks 2075
® Set of functions wP!, wy ¥ that classify weights 2066
P Polynomial, decaying weight p*(x) = (1 + |x|)~* 2081
v Smear function 2072
wY.J Fourier transform of (pjg 2070
W< Abbreviation for Y, _; W9+ 2070
4 Reciprocal Lattice 2061
p(w) The set of weights, whose growth/decay is controlled by w € @ 2066
S, Ultra-differentiable Schwartz functions 2067
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