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Abstract. We consider the discrete Gaussian Free Field (DGFF) in scaled-up (square-lattice) versions of suitably regular contin-
uum domains D ⊂C and describe the scaling limit, including local structure, of the level sets at heights growing as a λ-multiple of
the height of the absolute maximum, for any λ ∈ (0,1). We prove that, in the scaling limit, the scaled spatial position of a typical
point x sampled from this level set is distributed according to a Liouville Quantum Gravity (LQG) measure in D at parameter
equal λ-times its critical value, the field value at x has an exponential intensity measure and the configuration near x reduced by
the value at x has the law of a pinned DGFF reduced by a suitable multiple of the potential kernel. In particular, the law of the total
size of the level set, properly-normalized, converges to that of the total mass of the LQG measure. This sharpens considerably an
earlier conclusion by Daviaud (Ann. Probab. 34 (2006) 962–986).

Résumé. Nous considérons le champs Gaussien libre discret (DGFF) sur des versions renormalisées sur le réseau carré de do-
maines continus suffisamment réguliers D ⊂ C et décrivons la limite d’échelle, incluant la structure locale, des lignes de niveau
lorsque que la hauteur croît comme λ-fois la hauteur du maximum absolu, pour tout λ ∈ (0,1). Nous montons que, dans la limite
d’échelle, la position normalisée d’un point typique x tiré aléatoirement sur cette ligne de niveau a la loi de la mesure de Gravité
Quantique de Liouville (LQG) dans D avec paramètre égal à λ-fois sa valeur critique, la valeur du champs en x ayant une mesure
d’intensité exponentielle et la configuration près de x, réduite par la valeur en x, ayant la loi d’un champ libre épinglé DGFF réduit
par un multiple adéquat du noyau potentiel. En particulier, la loi de la taille totale de la ligne de niveau, proprement normalisée,
converge vers celle de la masse totale de la mesure LQG. Ceci améliore considérablement les résultats précédents de Daviaud (Ann.
Probab. 34 (2006) 962–986).
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1. Introduction

It has long been recognized that the two-dimensional continuum Gaussian Free Field (CGFF) offers a variety of
constructions of random fractals with an underlying conformally-invariant structure. This has been used fruitfully in
the work of Schramm and Sheffield [30] on the convergence to SLE4 of the level lines at specific heights of order
unity and the ensuing coupling of the whole field to the Conformal Loop Ensemble by Sheffield and Werner [32,33].
Other examples include the study of the Gaussian Multiplicative Chaos associated with the CGFF, known widely
as the Liouville Quantum Gravity measure. This goes back, in greater generality, to the works of Kahane [21] (see
Section 2.3 below) and is also a part of the recent research programs of Miller and Sheffield on its connection to the
Brownian Map [24,28] and on imaginary geometry [23,25–27].
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Fig. 1. Plots of the level sets (1.3) for a sample of the DGFF on a square domain with N := 500 and λ taking values (as labeled left to right) 0.1,
0.3 and 0.5, respectively. The clustering (and fractal) nature of these sets is quite apparent.

A parallel, and largely independent, line of recent research has focused on various quantitative aspects of the
extremal values associated with the discrete Gaussian Free Field (DGFF). This is a Gaussian process {hx : x ∈ Z2}
marked by a proper (typically finite) subset V of the square lattice (other infinite graphs can be considered as well)
with the law determined by

E(hx)= 0 and E(hxhy)=GV (x, y), (1.1)

where GV denotes the Green function of the simple symmetric random walk in V killed upon exit from V . (In
particular, h vanishes outside of V almost surely.) Here an early paper of Bolthausen, Deuschel and Giacomin [12]
showed that the maximum of the DGFF in square boxes VN := (0,N)2 ∩Z2 grows as

max
x∈VN

hx ∼ 2
√

g logN, N →∞, (1.2)

where “∼” designates that the ratio of the two quantities tends to one in the stated limit and g := 2/π is a constant
such that the Green function obeys GVN (x, x) = g logN +O(1) as N →∞ for x “deep” inside VN . Daviaud [17]
subsequently finessed the approach of [12] to capture some geometric aspects of the intermediate level sets

{x ∈ VN : hx ≥ 2
√

gλ logN} for λ ∈ (0,1). (1.3)

Specifically, he showed that this set contains N2(1−λ2)+o(1) points, where o(1)→ 0 in probability as N →∞, and
thus demonstrated a fractal nature of this set. A continuum version of Daviaud’s result dealing with thick points of the
CGFF has subsequently been proved by Hu, Peres and Miller [20]. As explained in Chatterjee, Dembo and Ding [16],
the structure of the exponent is quite universal. Multifractal aspects of more general chaos measures have been studied
extensively in the past (see, e.g., the review by Barral and Mandelbrot [4]).

The objective of the present paper is to show that the intermediate level set (1.3) admits a non-trivial scaling limit
which can be quite explicitly characterized. A number of issues need to be addressed when setting the problem up
mathematically. The first one is a proper formulation of the limit. Indeed, after scaling the space by N , the set (1.3)
is increasingly dense everywhere in the unit square [0,1]2 and so taking its limit directly (e.g., in the topology of
Hausdorff convergence) does not seem useful. We resolve this by encoding the level set into the point measure∑

x∈VN

δx/N ⊗ δhx−aN
, (1.4)

where aN is a scale sequence such that, in light of (1.2),

aN

logN
−→

N→∞ 2
√

gλ (1.5)
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for some λ ∈ (0,1). The next issue is unbounded mass, and that even under integration against compactly-supported
continuous functions. We resolve this by showing that (1.4) can be normalized by a deterministic quantity so that
a non-degenerate distributional limit becomes possible. Another issue is dependence on the underlying domain; we
resolve this by working in a class of lattice approximations DN of a “nice” continuum set D ⊂C. This will be useful
technically and will permit discussion of behavior under conformal maps.

2. Main results

Throughout the rest of the paper we will write hV (x) to denote the DGFF in V evaluated at x. The presentation of our
results opens up with the existence of the scaling limit.

2.1. Existence of scaling limit

We start by fixing the class of admissible domains. Let D be the class of all bounded open sets D ⊂ C with a finite
number of connected components and with boundary ∂D that has only a finite number of connected components with
each having a positive (Euclidean) diameter. Given D ∈D, we will restrict to sequences {DN } of lattice domains such
that

DN ⊆
{
x ∈ Z2 : d∞

(
x/N,Dc)> 1

N

}
(2.1)

and, for each δ > 0 and all N sufficiently large, also

DN ⊇
{
x ∈ Z2 : d∞

(
x/N,Dc)> δ

}
, (2.2)

where d∞ denotes the �∞-distance on Z2. Note that x ∈DN implies x/N ∈D.
Next let us consider the DGFF φ on Z2 pinned to zero at the origin or, equivalently, the DGFF on Z2 \ {0}. This is

a Gaussian process {φx : x ∈ Z2} with law to be denoted by ν0 which is of mean zero and covariance given by

Eν0(φxφy)= a(x)+ a(y)− a(x − y), (2.3)

where a : Z2 → [0,∞) is the potential kernel, i.e., the unique function that obeys a(0) = 0, is discrete harmonic
on Z2 \ {0} and has the asymptotic form a(x)= g log |x| +O(1) as |x| →∞, with |x| denoting the Euclidean norm
of x. Our main result is then:

Theorem 2.1. For each λ ∈ (0,1) and each D ∈D, there is a random Borel measure ZD
λ on D with E[ZD

λ (D)] ∈
(0,∞) such that the following holds for each sequence aN satisfying (1.5) and each sequence DN of scaled-up
versions of D obeying (2.1)–(2.2): Set

KN := N2

√
logN

e−
a2
N

2g logN (2.4)

and, for each sample hDN of the DGFF in DN , define the point measure

ηD
N :=

1

KN

∑
x∈DN

δx/N ⊗ δhDN (x)−aN
⊗ δ{hDN (x)−hDN (x+z) : z∈Z2}. (2.5)

Then, relative to the topology of vague convergence of measures on D×R×RZ
2
,

ηD
N

law−→
N→∞ ZD

λ (dx)⊗ e−αλh dh⊗ νλ(dφ), (2.6)
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where α := 2/
√

g and νλ is the probability measure on RZ
2

defined by

νλ(·) := ν0
(

φ + 2√
g

λa ∈ ·
)

, (2.7)

with ν0 and a as specified above.

As it turns out, the convergence in (2.6) actually holds in (a somewhat larger) space of Radon measures on D ×
(R∪ {+∞})×RZ

2
. As an immediate consequence we thus get:

Corollary 2.2. Let D ∈D. For any DN related to D as in (2.1)–(2.2), any sequence aN such that (1.5) holds with
some λ ∈ (0,1), and KN as in (2.4),

1

KN

#
{
x ∈DN : hDN (x)≥ aN

} law−→
N→∞ (αλ)−1ZD

λ (D), (2.8)

where α := 2/
√

g. Moreover, the random variables on the left are uniformly integrable and the convergence thus holds
also under expectation.

As is readily checked, (1.5) yields KN = N2(1−λ2)+o(1) as N →∞. Since ZD
λ (D) ∈ (0,∞) a.s. (see Theo-

rem 2.3(7)), (2.8) determines the asymptotic size of the level set (1.3). This strengthens considerably the aforemen-
tioned conclusion of Daviaud [17]. The asymptotic positivity of the size of the level set normalized by its expectation
appears already in the recent work by the first author, Ding and Goswami [8].

2.2. Properties of Zλ-measures

In order to make our description of the limit law in (2.6) complete, we have to characterize the law of the random
measure ZD

λ . For this, we will first note a number of properties of these measures that will in fact be proved jointly
with the above convergence theorem.

We first need some additional notations. For each D ∈D and each x ∈D, let �D(x, ·) denote the harmonic measure
on ∂D relative to x. As is well known (see, e.g., [9, Lemma 2.3]), if D̃ ⊆D are two admissible domains, then

CD,D̃(x, y) := g

∫
∂D

�D(x,dz) log |y − z| − g

∫
∂D̃

�D̃(x,dz) log |y − z| (2.9)

defines a symmetric, positive semi-definite function CD,D̃ : D̃ × D̃→R which is smooth in both variables. We may
thus define {�D,D̃(x) : x ∈ D̃} to be a Gaussian field with mean zero and covariance CD,D̃ ; this field has smooth
sample paths a.s. For λ≥ 0, we define ψD

λ : D→[0,∞) by

ψD
λ (x) := exp

{
2λ2

∫
∂D

�D(x,dz) log |x − z|
}
. (2.10)

For D simply connected, ψD
λ (x) is the 2λ2-th power of the conformal radius of D from x. Setting ψD

λ (x) := 0 for x ∈
∂D, the resulting function is continuous on D. Writing Leb(A) to denote the Lebesgue measure of a (measurable)
set A⊂R2, we then have:

Theorem 2.3. Let λ ∈ (0,1) and recall that α := 2/
√

g. Then the family of (laws of) random measures {ZD
λ : D ∈D}

obeys the following properties:

(1) For each D ∈D, the measure ZD
λ is supported on D; i.e., ZD

λ (R2 \D)= 0 a.s.
(2) If A⊂D ∈D is measurable with Leb(A)= 0, then ZD

λ (A)= 0 a.s.
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(3) There is c= c(λ) ∈ (0,∞) such that for each D ∈D and each measurable A⊂D,

EZD
λ (A)= c

∫
A

ψD
λ (x)dx. (2.11)

(4) If D,D̃ ∈D obey D ∩ D̃ =∅, then

ZD∪D̃
λ (dx)

law= ZD
λ (dx)+ZD̃

λ (dx), (2.12)

with the measures ZD
λ and ZD̃

λ on the right regarded as independent.
(5) (Gibbs–Markov) If D,D̃ ∈D obey D̃ ⊆D and Leb(D \ D̃)= 0, then

ZD
λ (dx)

law= eαλ�D,D̃(x)ZD̃
λ (dx), (2.13)

where {�D,D̃(x) : x ∈ D̃} is independent of ZD̃
λ with the law as above.

(6) The law of ZD
λ is translation invariant; Za+D

λ (a + dx)
law= ZD

λ (dx) for each a ∈R2.
(7) For each A⊂D non-empty and open, ZD

λ (A) > 0 a.s.

The properties (1)–(6), for a given c > 0 in (2.11), determine the laws of {ZD
λ : D ∈D} uniquely.

Obviously, (2) follows from (3) although we prefer to state these separately. The constant c in (2.11) can be
computed explicitly; just compare (2.8) with (3.6). Perhaps the most important property of all is (5). Here we note
that the measure on the right of (2.13) is well defined due to the fact that ZD̃

λ (D \ D̃)= 0 a.s. thanks to property (1),
and this carries no loss on the left-hand side because also ZD

λ (D \ D̃)= 0 a.s. thanks to property (2). We will refer
to property (5) – sometimes also in conjunction with (4) – as the Gibbs–Markov property. This is because properties
(4)–(5) arise directly from the Gibbs–Markov decomposition of the DGFF; see (A.6).

By property (6), the law of ZD
λ transforms canonically under the spatial shifts. The behavior of ZD

λ under scaling
of D is more subtle as it is intimately tied to the existence of the limit (2.6) and its independence of the sequence of
discrete domains DN and of how the centering sequence aN achieves the overall asymptotic (1.5). Once a suitable
scaling relation is established, the Gibbs–Markov property and (3) yield also rotation invariance and, in fact, lead to:

Theorem 2.4. Let λ ∈ (0,1). Under any conformal bijection f : D → f (D) between the admissible domains
D,f (D) ∈D, the laws of the above measures transform as

Z
f (D)
λ ◦ f (dx)

law= ∣∣f ′(x)
∣∣2+2λ2

ZD
λ (dx). (2.14)

2.3. Connection to Liouville quantum gravity

Although the above properties already determine the law of {ZD
λ : D ∈D} uniquely, we are able to make even a more

explicit connection with the so called Liouville Quantum Gravity measures. These are natural examples of Gaussian
Multiplicative Chaos considered already by Kahane [21] who was in turn inspired by earlier work of Mandelbrot and
others (see, e.g., Barral and Mandelbrot [4] for a review). They owe their name to a recent work of Duplantier and
Sheffield [19] who proved that these measures obey the KPZ relation for scaling exponents. (As mentioned to us by
a referee, these measures are only “baby” versions of actual Liouville Quantum Gravity. Notwithstanding, the name
seems to have stuck in the probability community.) We refer to Rhodes and Vargas [29] or Berestycki [6] for recent
reviews of this subject area.

We start again with some definitions. Let H1
0(D) denote the closure of the set of smooth, functions with compact

support in D with respect to the norm induced by the Dirichlet inner product 〈f,g〉∇ := 1
4

∫
D
∇f (x) ·∇g(x)dx. Given

a sequence {Xn : n ≥ 1} of i.i.d. standard normal random variables and an orthonormal basis {fn : n ≥ 1} in H1
0(D),

define

ϕn(x) :=
n∑

k=1

Xkfk(x). (2.15)
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Fig. 2. A sample of the LQG measure ψD
λ (x)μ

D,β∞ (dx) for D a unit square and parameters β = λα and λ= 0.3. The high points indicate places
of high local intensity.

For each β ∈ [0,∞), define the random measure

μD,β
n (dx) := 1D(x)eβϕn(x)− β2

2 E[ϕn(x)2] dx. (2.16)

As goes back to Kahane [21] there exists a random, a.s. finite (albeit possibly trivial) Borel measure μ
D,β∞ – called the

Gaussian multiplicative chaos associated with the continuum Gaussian Free Field – which is concentrated on D and
such that, for each measurable set A,

μD,β
n (A) −→

n→∞ μ
D,β∞ (A) a.s. (2.17)

It is also known (cf. a remark after Rhodes and Vargas [29, Theorem 5.5]) that for each β ∈ (0, βc), where (in our
normalization) βc := α = 2/

√
g, we have μ

D,β∞ (D) > 0 a.s. Moreover, as was shown in [29, Theorem 5.5], the law
of the limit measure does not depend on the choice of the above orthonormal basis. (In fact, thanks to Shamov [31,
Corollary 5], the law of μ

D,β∞ is determined solely by its expectation and the way the measure transforms under the
Cameron–Martin shifts of the underlying CGFF.) With this stated, we now claim:

Theorem 2.5. Let λ ∈ (0,1), α := 2/
√

g and consider the family of measures {ZD
λ : D ∈ D} as above. Then, for

c ∈ (0,∞) as in (2.11) and for each D ∈D,

ZD
λ (dx)

law= cψD
λ (x)μD,λα∞ (dx), (2.18)

where ψD
λ is as in (2.10). In particular, ZD

λ has the law of the Liouville Quantum Gravity measure in D corresponding
to (subcritical) parameter β := λα.

2.4. Remarks and open problems

We proceed by a series of remarks and questions left to be studied.
(1) General Gaussian processes: We believe that the form of the limit measure in (2.6) is actually quite universal.

For instance, for i.i.d. Gaussians indexed by the vertices in DN (see Figure 3) with variance g logN with same KN

we get the same limit statement with ZD
λ replaced by (a multiple of) the Lebesgue measure on D and νλ by the point

mass concentrated on φ defined by φ0 := 0 and φx := −∞ for x �= 0. That ZD
λ is itself random in the case of the

DGFF is a reflection of long-range correlations.
(2) Simultaneous limit for all λ: Our proofs are technically based on the computation of the first two moments of

the measure ηD
N integrated against compactly-supported, continuous functions. (This is literally true when λ < 1/

√
2

with a truncation needed for complementary λ.) One could use similar techniques to study the level sets for several
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Fig. 3. Left: A sample of the measure in (1.4) on a square of side-length N := 300 with λ := 0.2. Right: A corresponding sample for i.i.d. normals
with mean zero and variance g logN . Only the points with positive vertical coordinate are depicted.

values of λ simultaneously but the number of required moments seems to increase with the number of the levels to be
controlled. In particular, we presently do not see a way to solve:

Problem 2.6. Find a way to extract a joint distributional limit of the level sets (1.3), or their associated point measures
(2.5), simultaneously for all λ ∈ (0,1).

Our belief that a joint limit should exist is supported by the fact that (2.15)–(2.17), and a suitable continuity argu-
ment, define the LQG measure for all β ∈ (0, βc) at the same time. This is because the LQG measure is a measurable
function of the underlying CGFF.

(3) Connection to Liouville Quantum Gravity: A referee of of the first submission of this paper wondered why it
does not seem possible to derive the existence of the limit of discrete LQG measures

1

K ′
N

∑
x∈DN

eβh
DN
x δx/N , (2.19)

for a suitable sequence K ′
N , from Theorem 2.1, and vice versa. We note that this is in spite of the fact that this

measure is, for β = λα, supported near the level set h
DN
x ≥ 2

√
gλ logN . A formal reason is that the growth of

h �→ eβh matches the decay of the measure on the right of (2.6) and so the limit cannot be applied to the test function
f (x,h,φ) := eβh. A deeper (albeit related) reason is that the measure (2.19) is actually not supported on the level
set where h

DN
x ≈ 2

√
gλ logN but over a range of values within distance order

√
logN from 2

√
gλ logN , and so K ′

N

needs to be taken larger by factor
√

logN than KN in (2.4).
(4) Relation to extremal process: Our point process-based approach is strongly motivated by recent advances in

the understanding of the extremal values of the DGFF; i.e., roughly speaking, the set (1.3) with λ := 1. Here, first,
building on the work of Bolthausen, Deuschel and Zeitouni [13] and Bramson and Zeitouni [15], Bramson, Ding and
Zeitouni [14] showed that for

mN := 2
√

g logN − 3

4
√

g log logN, (2.20)

the centered maximum, maxx∈VN
hx − mN , converges to a non-degenerate distributional limit as N →∞. Then,

in [9–11], the present authors described the limit of the full extremal process for the DGFF expressed in terms of the
“structured” point process,

ηD
N,r :=

∑
x∈DN

1{hx=maxz∈�r (x) hz}δx/N ⊗ δhx−mN
⊗ δ{hx−hx+z : z∈Z2}, (2.21)

where �r(x) := {z ∈ Z2 : |z− x| ≤ r} and the indicator thus effectively restricts the sum to the points where the field
has an r-local maximum. The main result of [9–11] is that, for any rN with rN →∞ and N/rN →∞, relative to the
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topology of vague convergence,

ηD
N,rN

law−→
N→∞ PPP

(
ZD

1 (dx)⊗ e−αh dh⊗ ν1(dφ)
)
, (2.22)

where PPP stands for Poisson point process, ZD
1 is a random a.s.-finite Borel measure on D, and ν is a (deterministic)

probability measure on [0,∞)Z
2
; cf. (2.27). In a recent update of [9], the ZD

1 measure was identified with a version
of the critical Liouville Quantum Gravity constructed in Duplantier, Rhodes, Sheffield and Vargas [18].

As part of the proof in [9] it was shown that

Z
f (D)

1 ◦ f (dx)
law= ∣∣f ′(x)

∣∣4ZD
1 (dx). (2.23)

This corresponds, at least formally, to λ ↑ 1 limit of (2.14). The λ ↓ 0 limit reduces ZD
λ to (a multiple of) the Lebesgue

measure on D.
(5) Conformal invariance and uniqueness of LQG measure: The previous remark brings us to the formulation of

the conformal transformation rule in Theorem 2.4. In Duplantier and Sheffield [19, Proposition 1.2], a version of this
rule is stated for the LQG measure in the following form: Supposing that the CGFF hD in a domain D transforms
under a conformal map f : D→ f (D) (in our parametrization) as follows

hf (D) law= hD ◦ f +
(

2

β
+ 2β

α2

)
log
∣∣f ′∣∣, (2.24)

which, we note, requires working with CGFF of non-zero mean and/or Cameron–Martin shifts, the LQG measure
in D for parameter β transforms into the corresponding LQG measure in f (D). Leaving aside the somewhat peculiar
fact that the transformation (2.24) is tied to β and changes the mean of the field, the statement harbors a technical
caveat: The measure must be realized as a unique function of the CGFF or, at least, one that is independent of the
approximation scheme used to define it. This is in fact a subtle issue that has been fully settled only quite recently (cf.
the aforementioned references to [29, Theorem 5.5] or [31, Corollary 5]).

Our approach to Theorem 2.4 has the advantage that it works solely with the family of random measures {ZD
λ : D ∈

D} and, in particular, avoids dealing with the uniqueness of LQG and/or its dependence on the underlying CGFF. In
fact, Theorem 2.4 could concisely be stated as:

Theorem 2.7. Every family of measures {ZD
λ : D ∈D} satisfying properties (1)–(6) in Theorem 2.3 obeys also (2.14),

for each conformal bijection f : D→ f (D) with D,f (D) ∈D.

Our proof of the transformation rule (2.14) reduces, after some minor amount of preparation, to the same argument
as the proof of (2.23) in Theorem 7.2 in [9]. The only time when we need to invoke uniqueness of the LQG measure
is, quite naturally, when we identify ZD

λ with the (unique) LQG measure in the proof of Theorem 2.5.
(6) Fluctuations around random limit: Our next remark concerns going beyond the limit statement (2.6). The point

is that the limit measure, albeit random, captures only the leading-order growth of the level set. We thus pose:

Problem 2.8. Characterize the limit law of the (suitably scaled) fluctuations in the limit (2.6).

To make the formulation easier, one may choose to work in the setting when all the DGFFs are defined on the same
probability space as the limit LQG measure. Perhaps the easiest underlying graph for this is the triangular lattice.

(7) Crossover to critical regime: Of quite some interest is how the behavior for λ < 1 blends with that at λ = 1.
Our proofs only apply for aN such that aN/ logN is, in the limit, strictly less than 2

√
g. This is for a good reason:

When aN/ logN → 2
√

g, the growth rate of the requisite normalizing sequence should be slower than (2.4). This
stems from a subtle entropic-repulsion effect that lies at the heart of the paper [11] and can be seen by noting that
plugging aN :=mN for mN as in (2.20) results in KN ∼ logN (and not in KN of order unity!). We thus pose:

Problem 2.9. Suppose that aN/ logN → 2
√

g yet mN − aN →∞. Prove that, for a suitably re-defined KN , we still
have (2.5) with ZD

λ replaced by the critical LQG measure ZD from (2.22).
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An affirmative resolution of this problem may in fact require that mN − aN tends to infinity at some minimal rate.
A reasonable guess is that mN − aN of order

√
logN should already be enough. This scale appears naturally as it

marks the level where the discrete approximation to the critical LQG measure is typically supported. We refer to the
last chapter of the recent review (Biskup [7]) for more discussion and specific conjectures.

We note that, as suggested by a referee, if a solution to Problem 2.6 includes a statement of continuity in λ as λ ↑ 1,
we could perhaps solve Problem 2.9 by taking a suitable limit. For the family of LQG measures, continuity as the
critical value is approached from below has been shown quite recently (Aru, Powell and Sepúlveda [3]). For the
Branching Random Walk this has been proved by Madaule [22].

(8) Beyond two-dimensional DGFF: A natural question is of course whether the above results are in any sense
universal for other models that are, at least at large spatial scales, well captured by CGFF. These include general
logarithmically-correlated Gaussian fields, gradient models and local time of a two-dimensional simple random walk.
Some progress on these has already been made (e.g., Belius and Wu [5], Abe [1]).

2.5. Proof strategy

The overall strategy of our proofs is rather simple. Through moment calculations for the size of the level set, we
establish tightness and asymptotic non-triviality of the measures {ηD

N : N ≥ 1} relative to the vague topology. This
permits extraction of subsequential weak limits. We then proceed to derive various relations that such limits have to
satisfy which ultimately characterize them uniquely. This proves existence of the limit as well as its desired properties.

The specific “characterization” steps are as follows. First we focus only on the measures (2.5) restricted to the
first two coordinates. One more (subtle) second moment calculation shows that every subsequential limit ηD of such
two-coordinate measures admits the decomposition

ηD(dx dh)=ZD
λ (dx)⊗ e−αλh dh, (2.25)

with ZD
λ a non-degenerate, a.s. finite measure whose law possibly depends on the subsequence, the sequence of

approximation domains DN as well as the way aN approaches the limit (1.5).
Next we demonstrate that the measures ZD

λ , with D restricted to a suitable countable collection of domains (this
is the best one can hope to have when extracting limits by subsequences), obey properties (1)–(7) in Theorem 2.3.
Property (5) is then particularly important, as it yields a representation of ZD

λ , for D a dyadic square, in terms of
a multiplicative chaos measure. From here we get uniqueness of the law of ZD

λ on dyadic squares; one more use of
property (5) then extends this to all D ∈D. The existence of the limit of ηD

N , and its independence of the approximation
domains DN or the specific way aN achieves the limit aN/ logN → 2

√
gλ, follow. This pretty much completes the

proof of Theorems 2.1, 2.3 and Theorem 2.5 for the two-coordinate measures.
The sheer existence of the limit (and translation invariance of the DGFF) now implies the transformation rule for

shifts and scaling of the underlying domain:

Za+rD
λ (a + r dx)

law= r2+2λ2
ZD

λ (dx), a ∈R2, r > 0. (2.26)

The representation using multiplicative chaos adds rotation invariance to this as well. One more use of property (5)
for a decomposition of a given D using a myriad of tiny dyadic squares then permits us to apply these symmetries
“infinitesimally” thus proving, with the help of conformal invariance of the “binding” fields �D,D̃ , Theorem 2.4.

As a final step, we extend control to the full three-coordinate process (2.5). This boils down to yet another moment
calculation, which yields factorization of the limit into the product measure on the right of (2.6). It is easy to see why
the limit law of hDN (x)−hDN (x+·) should be described by (2.7): Conditioning on hDN (x) to be roughly 2

√
gλ logN

changes the mean of the field at y by, roughly, 2√
g
λa(y− x) while the variance tends to that of the DGFF on Z2 \ {0}.

We note that a similar reasoning applies also to the extremal process limit (2.22) except there the “cluster law” ν1
requires an extra conditioning (to ensure a local maximum at x) and taking a limit,

ν1(·)= lim
r→∞ν0

(
φ + 2√

g
a ∈ ·

∣∣∣∣ φ(x)+ 2√
g
a(x)≥ 0 : |x| ≤ r

)
. (2.27)

This limit is singular, which is a source of much headache in the proofs of [11].
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Remark 2.10. The above strategy – extract a subsequential limit and then prove its uniqueness – also lies at the core
of our earlier work [9–11] on the extrema of the DGFF. However, the two approaches are technically quite different,
both in the proof of the factorization (which, in [9–11], relies on a connection with particle systems) and in the proof
of uniqueness (which, for the extremal values, relies on the existence of the limit of the centered absolute maximum).

Since we are dealing with scaling limits of the DGFF, it is no surprise that we will need to invoke bounds on, as
well as limits of, the Green function in various lattice domains of interest. The limit statements in particular require
weak convergence of the harmonic measure on 1

N
∂DN to that on ∂D. This is where the containment D ∈ D and

relations (2.1)–(2.2) are required. To make referencing easier, we collect the needed statements in the Appendix.

3. Proofs in the second moment regime

We are now ready to commence the exposition of our proofs. As noted above, the starting point are calculations
of the first two moments of the size of the level set. These are straightforward for λ ∈ (0,1/

√
2) but harder in the

complementary regime of λ, where additional (albeit standard) truncations are required to keep the second moment
comparable to the square of the first. For ease of exposition as well as pedagogical appeal, we will first deal with the
former regime leaving the latter to a subsequent section.

Throughout this section, we thus assume that aN is a sequence such that (1.5) holds for some λ ∈ (0,1/
√

2). We
suppose that, for each D ∈ D, a sequence {DN } of approximating lattice domains is given satisfying (2.1)–(2.2).
Unless stated otherwise, all estimates will depend on the choice of D and the sequences aN and DN .

3.1. Level-set size moments

For each b ∈R, define

�D
N (b) := {x ∈DN : hDN (x)≥ aN + b

}
. (3.1)

We begin by a bound on the overall size of �D
N (b):

Lemma 3.1. For each D ∈D and each δ ∈ (0,1) there is c = c(δ,D) ∈ (0,∞) such that for all b ∈ R with |b| ≤
logN , all sequences aN satisfying δ logN ≤ aN ≤ δ−1√g logN , all sequences {DN } satisfying (2.1)–(2.2), all A⊂
DN and all N ≥ 1, we have

E
∣∣�D

N (b)∩A
∣∣≤ cKN

|A|
N2

e−
aN

g logN
b
. (3.2)

Proof. The claim will follow by summing over x ∈DN once we prove that, for some constant c depending only on δ

and the diameter of D, we have

P
(
hDN (x)≥ aN + b

)≤ c
1√

logN
e−

a2
N

2g logN e−
aN

g logN
b (3.3)

uniformly in x ∈DN and in b ∈ [− logN, logN ]. To this end we first invoke the Gibbs–Markov property of the DGFF

(cf. (A.6)) to note that, if U ⊂ V are finite lattice domains, then by writing hV (x)
law= hU(x)+ ϕV,U (x) and requiring

ϕV,U (x)≥ 0,

P
(
hU(x)≥ a

)≤ 2P
(
hV (x)≥ a

)
. (3.4)

By enlarging DN to, say, a square domain D̃N of comparable diameter, we may thus assume that all x ∈DN lie deep
inside D̃N . The variance of hD̃N (x) is then within a constant of g logN uniformly in x ∈ DN and so we get, for
some c > 0 independent of N , and all N larger than some constant (which suffices for the full claim),

P
(
hD̃N (x)≥ aN + b

)≤ 1√
2π

1√
g logN − c

∫ ∞

b

e−
(aN+s)2

2g logN+c ds. (3.5)
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Bounding (aN + s)2 ≥ a2
N + 2aNs, we can bound the exponent from below by the quantity a2

N/(2g logN)2 +
(aN/g logN)s − c′, where c′ depends only on c and the assumed upper bound on aN . The integral over s is then
performed with the result as stated. �

With the overall scale under control, we can now calculate the leading-order asymptotic of the above expectation
for nice-enough sets A.

Lemma 3.2. There is a constant c0 ∈R such that for each b ∈R and each open set A⊆D,

E
∣∣{x ∈ �D

N (b) : x/N ∈A
}∣∣= e2c0λ

2/g

λ
√

8π
e−αλb

[∫
A

ψD
λ (x)dx + o(1)

]
KN, (3.6)

where o(1)→ 0 as N →∞ uniformly on compact sets of b.

Proof (sketch). Thanks to the uniform control from Lemma 3.1, we may assume that the closure of A lies in D. We
will need the asymptotic

GDN
(�xN�, �xN�)= g logN + g

∫
∂D

�D(x,dz) log |x − z| + c0 + o(1), (3.7)

with c0 the constant from the asymptotic of the potential kernel in (A.2) and o(1)→ 0 as N →∞ uniformly on
compact sets in D, and thus in x ∈A. (This is where the conditions on DN are relevant, see (A.4)–(A.5) or Biskup [7,
Theorem 1.17].) Now we repeat the calculation from the proof of Lemma 3.1 while keeping careful track of all non-
vanishing terms. The boundedness and continuity of ψD

λ finally permit us to replace a Riemann sum by the integral in
(3.6). �

Our next lemma concerns the second moment estimate for the size of �D
N (b). It is here where we need to limit the

range of possible λ:

Lemma 3.3. Suppose 0 < λ < 1/
√

2. For each b0 ∈R and each D ∈D there is c1 = c1(λ, b0,D) ∈ (0,∞) such that
for each b ∈ [−b0, b0] and each N ≥ 1,

E
(∣∣�D

N (b)
∣∣2)≤ c1K

2
N (3.8)

Moreover, there is an absolute constant c2 ∈ (0,∞) such that for all D ∈D,

lim sup
N→∞

1

K2
N

E
(∣∣�D

N (0)
∣∣2)≤ c2

∫
D×D

( [diamD]2
|x − y|

)4λ2

dx dy, (3.9)

where diamD is the diameter of D in the Euclidean norm.

Proof of (3.8). Thinking, without much loss of generality, of b as absorbed into aN , we can assume b := 0 in the
following. Writing

E
(∣∣�D

N (0)
∣∣2)= ∑

x,y∈DN

P
(
hDN (x)≥ aN,hDN (y)≥ aN

)
(3.10)

we will need a good estimate on the probability on the right-hand side. First we again take D̃N to be a neighborhood
of DN of diameter twice the diameter of DN and note that, by the argument leading to (3.4) and the FKG inequality
for ϕV,U (implied by Cov(ϕV,U (x),ϕV,U (y))≥ 0)

P
(
hDN (x)≥ aN,hDN (y)≥ aN

)≤ 4P
(
hD̃N (x)≥ aN,hD̃N (y)≥ aN

)
. (3.11)
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Next we invoke the Gibbs–Markov decomposition (see (A.6))

hD̃N (y)= gx(y)hD̃N (x)+ ĥD̃N\{x}(y), (3.12)

where hD̃N (x) and ĥD̃N\{x} on the right-hand side are independent with ĥD̃N \{x} having the law of the DGFF in D̃N \
{x} and where gx is a function that is harmonic in D̃N \{x}, vanishing outside D̃N and normalized such that gx(x)= 1.
Using this decomposition, the above probability is recast as

P
(
hD̃N (x)≥ aN,hD̃N (y)≥ aN

)
=
∫ ∞

0
P
(
ĥD̃N \{x}(y)≥ aN

(
1− gx(y)

)− sgx(y)
)
P
(
hD̃N (x)− aN ∈ ds

)
. (3.13)

We will pick δ > 0 and bound the right-hand side by P(hD̃N ≥ aN) when |x − y| ≤ δ
√

KN so let us suppose that
|x − y|> δ

√
KN from now on.

Observe that since x, y lie “deep” inside D̃N and |x − y|> δ
√

KN =N1−λ2+o(1), we have

gx(y)= GD̃N (x, y)

GD̃N (x, x)
≤ log N

|x−y| + c

logN − c
≤ 1− (1− λ2)+ o(1)= λ2 + o(1), (3.14)

where o(1)→ 0 uniformly in x, y ∈DN . Assuming s ∈ [0, aN ], from λ < 1/
√

2 we then have

aN

(
1− gx(y)

)− sgx(y) > εaN (3.15)

for some ε > 0 as soon as N is large enough, uniformly in x, y ∈DN . The argument in Lemma 3.1 in conjunction
with gx(y) ∈ [0,1] and the asymptotic (1.5) then show

P
(
ĥD̃N\{x}(y)≥ aN

(
1− gx(y)

)− sgx(y)
)

≤ c√
logN

e−
[aN (1−gx (y))−sgx (y)]2

2G(y,y) ≤ c
KN

N2
egx(y)

a2
N

g logN
+ aN

G(y,y)
gx(y)s

, (3.16)

where we wrote G(y,y) for GD̃N\{x}(y, y) to reduce clutter of indices and then used that |G(y,y) − g logN | ≤ c

uniformly in y ∈DN . The explicit form of the law of hDN with respect to the Lebesgue measure readily shows

P
(
hD̃N (x)− aN ∈ ds

)≤ c
KN

N2
e−

aN
G(x,x)

s ds. (3.17)

Since G(x,x)/G(y, y)= 1+o(1) and gx(y)≤ λ2+o(1) < 1, the integral in (3.13) over s ∈ [0, aN ] yields a harmless
multiplicative factor. Also, the middle inequality in (3.14) implies

egx(y)
a2
N

g logN ≤ c

(
N

|x − y|
)4λ2+o(1)

(3.18)

with o(1)→ 0 uniformly in x, y ∈DN with |x − y|> δ
√

KN . From (3.11) we thus get

P
(
hDN (x)≥ aN,hDN (y)≥ aN

)≤ 4P
(
hD̃N (x)≥ 2aN

)+ c

(
KN

N2

)2(
N

|x − y|
)4λ2+o(1)

(3.19)

uniformly in x, y ∈DN with |x − y|> δ
√

KN .
In order to finish the proof, we now write(∣∣�D

N (0)
∣∣2)≤ ∑

x,y∈DN

|x−y|≤δ
√

KN

P
(
hDN (x)≥ aN

)+ ∑
x,y∈DN

|x−y|>δ
√

KN

P
(
hDN (x)≥ aN,hDN (y)≥ aN

)
. (3.20)
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Summing over y and invoking Lemma 3.1 bounds the first term by a factor of order (δKN)2. The contribution of the
first term on the right of (3.19) to the second sum is bounded via Lemma 3.1 as well:

P
(
hD̃N (x)≥ 2aN

)≤ c√
logN

e−2
a2
N

g logN = c

(
KN

N2

)2

e−
a2
N

g logN
√

logN ≤ cδ

(
KN

N2

)2

. (3.21)

Plugging in also the second term on the right of (3.19), we thus get

E
(∣∣�D

N (0)
∣∣2)≤ 8cδ(KN)2 + c

(
KN

N2

)2 ∑
x,y∈DN

|x−y|>δ
√

KN

(
N

|x − y|
)4λ2+o(1)

. (3.22)

The standard domination by integrals bounds the sum by c(N2)2
∫
D×D

|x − y|−4λ2+o(1) dx dy regardless of δ, with

the integral convergent since λ < 1/
√

2 implies 4λ2 < 2. Hence, also the second term on the right is of order (KN)2,
thus proving (3.8). �

Proof of (3.9). For the limit statement (3.9), we will have to reveal the D-dependence of certain constants in the
above derivation. The bound (3.22) – and the fact that the sum therein is dominated by pairs of vertices in distances of
order N from each other – shows that we need to consider only pairs x, y ∈DN with |x− y| ≥ εN as the contribution
of the complementary pairs is negligible in the limit N →∞ and ε ↓ 0. We only need to refine the bounds (3.17) and
(3.18). Concerning (3.17), the asymptotic (3.7) along with the fact that diam(D̃N)≤ 2 diam(DN) gives

GD̃N (x, x)≤ g logN + g log(2 diamD)+ c0 + o(1) (3.23)

and so, in light of aN =O(logN), the constant c in (3.17) is bounded by a numerical constant (which comes from
bounding such constants in the probability density of hD̃N (x)) times

e
a2
N

g(logN)2
log(diamD)+o(1) = (diamD)4λ2+o(1) (3.24)

with o(1)→ 0 as N →∞. Concerning (3.18), the asymptotic of the Green function (A.5) at points of distance order N

in turns gives

gx(y)≤ 1

logN

[
− log

|x − y|
N

+ log(2 diamD)+ o(1)

]
(3.25)

which then implies

egx(y)
a2
N

g logN ≤ c

(
N diamD

|x − y|
)4λ2+o(1)

. (3.26)

Using (3.24) and (3.26) in the derivation of (3.19) and taking N →∞ followed by ε ↓ 0, we then readily get (3.9) as
well. �

3.2. Subsequential limits and factorization

We will now start deriving consequences of the above lemmas for the random measures ηD
N from (2.5). Since our

strategy is to first deal only with events/functions that are trivial in the third “coordinate,” we will temporarily abuse
notation and set

ηD
N :=

1

KN

∑
x∈DN

δx/N ⊗ δhDN (x)−aN
(3.27)

instead of the full definition in (2.5). As a direct consequence of the above lemmas and the fact that D× (R∪ {∞}) is
a separable metric space, we then get:
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Corollary 3.4. Suppose λ ∈ (0,1/
√

2). Then {ηD
N : N ≥ 1} is tight with respect to the vague topology on the space

of Radon measures on D × (R ∪ {∞}). Moreover, every subsequential weak limit ηD of these measures satisfies, for
each b ∈R,

P
(
ηD
(
D× [b,∞))<∞)= 1 (3.28)

and, for each non-empty open A⊂D and each b ∈R,

P
(
ηD
(
A× [b,∞)

)
> 0
)
> 0. (3.29)

Furthermore, we have ηD(A×R)= 0 a.s. for each measurable A with Leb(A)= 0 and, in particular, ηD(∂D×R)=
0 a.s.

Proof. The first part of the statement requires showing that, for any continuous compactly-supported function f : D×
(R ∪ {∞}) → R, the family of random variables {〈ηD

N ,f 〉 : N ≥ 1} is tight. For this it suffices to show that the
family {ηD

N(D × [b,∞)) : N ≥ 1} is tight for each b ∈ R. This is a consequence of Lemma 3.1 and the fact that
ηD

N(D× [b,∞))= |�D
N (b)|.

Let now ηD be a subsequential weak limit of the measures {ηD
N : N ≥ 1}. Fatou’s lemma, a straightforward ap-

proximation argument and Lemma 3.1 then show EηD(D × [b,∞)) <∞ for each b ∈ R. Lemma 3.1 also gives
ηD(A × R) = 0 a.s. whenever Leb(A) = 0. It remains to show that ηD is non-trivial in the sense stated in (3.29).
Let A ⊂ D be non-empty and open and pick b ∈ R. Denote XN := ηD

N(A × [b,∞)). Lemma 3.3 shows that
supN≥1 E(X2

N) <∞ and so the family {XN : N ≥ 1} is uniformly integrable. Since infN≥1 E(XN) > 0 by Lemma 3.2
and the fact that ψD

λ > 0, any distributional limit of XN has positive expectation as well. �

Given a function f : D× (R∪ {∞})→R and b ∈R, define

fb(x,h) := f (x,h+ b)e−αλb. (3.30)

A key step is now the proof of:

Proposition 3.5. Suppose λ ∈ (0,1/
√

2). Any subsequential limit ηD of {ηD
N : N ≥ 1} obeys the following: For

each b ∈R and each f : D× (R∪ {∞})→R of the form f (x,h)= 1A(x)1[0,∞)(h) with A⊂D open,〈
ηD,fb

〉= 〈ηD,f
〉 ∈R (3.31)

holds with probability one.

The proof of this proposition relies on a calculation that is formalized as:

Lemma 3.6. For any λ ∈ (0,1/
√

2), any open A⊂D, any b ∈R, and AN := {x ∈ Z2 : x/N ∈A},

lim
N→∞

1

KN

E
∣∣∣∣�D

N (0)∩AN

∣∣− eαλb
∣∣�D

N (b)∩AN

∣∣∣∣= 0. (3.32)

Proof. Since any open set A⊂D can be written as the union of an increasing sequence of open sets whose closure
lies inside D, in light of Lemma 3.1 we can assume that A has positive Euclidean distance to Dc. Then, using Cauchy–
Schwarz, we may as well show

lim
N→∞

1

K2
N

E
((∣∣�D

N (0)∩AN

∣∣− eαλb
∣∣�D

N (b)∩AN

∣∣)2)= 0. (3.33)
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Invoking (3.10), the calculation in the proof of Lemma 3.3 shows that the second moment of |�D
N (b)| is dominated by

the sum of pairs x, y ∈DN that are within distance of order N . It thus suffices to prove that, for any ε > 0,

max
x,y∈AN

|x−y|≥εN

(
P
(
hDN (x)≥ aN,hDN (y)≥ aN

)
− eαλbP

(
hDN (x)≥ aN + b,hDN (y)≥ aN

)
− eαλbP

(
hDN (x)≥ aN,hDN (y)≥ aN + b

)
+ e2αλbP

(
hDN (x)≥ aN + b,hDN (y)≥ aN + b

))= o

(
K2

N

N4

)
(3.34)

as N →∞. For this we need to compute a sharp leading order asymptotic of the probability P(hDN (x) ≥ aN +
b1, h

DN (y)≥ aN + b2) for the four possible choices b1, b2 ∈ {0, b}.
We will invoke the decomposition (3.12) and the representation (3.13). Writing again G(y,y) for GDN\{x}(y, y),

for any s ∈ [0, aN + b1] we then get

P
(
ĥDN\{x}(y)≥ aN

(
1− gx(y)

)− sgx(y)+ b2
)

= c+ o(1)√
logN

e−
[aN (1−gx (y))−sgx (y)+b2]2

2G(y,y) = c+ o(1)√
logN

e−
[aN (1−gx (y))−sgx (y)]2

2G(y,y) e−αλb2

= (e−αλb2 + o(1)
)
P
(
ĥDN\{x}(y)≥ aN

(
1− gx(y)

)− sgx(y)
)
, (3.35)

where c > 0 is a numerical constant and where we used that gx(y)=O(1/ logN) when |x−y| ≥ εN and then applied
the asymptotic of aN and GDN\{x}(y, y)= g logN +O(1) enabled by the fact that now y is “deep” inside DN \ {x}
as implied by the assumptions on A and x, y. In addition, writing G(x,x) for GDN (x, x), we also get

P
(
hDN (x)− aN − b1 ∈ ds

) = c+ o(1)√
logN

e−
[aN+b1+s]2

2G(x,x) ds

= e−αλb1
c+ o(1)√

logN
e−

[aN+s]2
2G(x,x) ds

= (e−αλb1 + o(1)
)
P
(
hDN (x)− aN ∈ ds

)
, (3.36)

where c is again a positive constant and o(1)→ 0 as N →∞ uniformly in s ∈ [0, aN ]. Putting (3.35)–(3.36) together
and integrating over s ∈ [0, aN ] we get

P
(
hDN (x)≥ aN + b1, h

DN (y)≥ aN + b2
)

= (e−αλ(b1+b2) + o(1)
)
P
(
hDN (x)≥ aN,hDN (y)≥ aN

)
, (3.37)

where we used that, by the FKG inequality and Lemma 3.2,

P
(
hDN (x)≥ 2aN

)= o(1)P
(
hDN (x)≥ aN,hDN (y)≥ aN

)
(3.38)

with o(1)→ 0 as N →∞ uniformly in x, y ∈AN with |x − y| ≥ εN . Plugging (3.37) into (3.34), the desired claim
follows. �

We are now ready to give:

Proof of Proposition 3.5. Let f (x,h) := 1A(x)1[0,∞)(h) with A⊂D closed. Lemma 3.6 can be rephrased as

lim
N→∞E

∣∣〈ηD
N ,f

〉− 〈ηD
N ,fb

〉∣∣= 0, b ∈R. (3.39)
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Taking the distributional limit (choosing further subsequence if necessary) of 〈ηD
N ,f − fb〉 then shows, by Fa-

tou’s lemma, 〈ηD,f − fb〉 = 0 a.s. which is the desired claim. (The finiteness follows from the tightness proved
in Lemma 3.1.) �

The identity (3.31) now readily yields the desired factorization property:

Lemma 3.7 (Factorization). Suppose ηD is a Borel measure on D ×R with ηD(∂D ×R)= 0 a.s. such that (3.31)
holds for each function f : D × R→ R of the form f (x,h) := 1A(x)1[0,∞)(h) with A ⊂ D open and each b ∈ R.
Then, with probability one, ηD takes the form

ηD(dx dh)=ZD
λ (dx)⊗ e−αλh dh (3.40)

for some finite random Borel measure ZD
λ on D.

Proof. For A ⊂ D Borel, define ZD
λ (A) := αληD(A× [0,∞)). This is automatically a finite Borel measure on D.

The condition (3.31) now shows that, almost surely if A is open then

ηD
(
A× [b,∞))= e−αλb

〈
ηD,fb

〉 a.s.= e−αλb
〈
ηD,f

〉
= (αλ)−1e−αλbZD

λ (A)=
∫

A×[b,∞)

ZD
λ (dx)e−αλh dh. (3.41)

The (implicit) null event in this statement may depend on A and b but we can choose a common null event for all sets
in the class {A×[b,∞) : A⊂D open dyadic square, b ∈Q} as it is countable. The equality of the measures (3.40) on
D then follows from the fact that this class is a π -system (in the sense of Dynkin) which generates the product Borel
σ -algebra on D×R. As ηD(∂D ×R)=ZD

λ (∂D)= 0, the equality in (3.40) extends to all of D. �

3.3. Uniqueness of subsequential limit

At this point we have shown that, assuming λ ∈ (0,1/
√

2), every subsequential limit ηD of the measures {ηD
N : N ≥ 1},

with ηD
N as in (3.27), factors into the form (3.40). The goal of this subsection is to show that the measure ZD

λ , and thus
also the subsequential limit ηD , is in fact unique. This will in particular show that ηD

N converges in distribution to the
same limit, regardless of the approximating sequence DN or the way aN achieves the asymptotic (1.5).

As our first lemma we will check that ZD
λ obeys the properties listed in Theorem 2.3. However, these require

extracting subsequential limits for multiple domains at the same time. Cantor’s diagonal argument makes this possible
provided we restrict ourselves to a countable class D0 of domains in D. We will assume that D0 contains all open
squares of the form(

k2−n, (k + 1)2−n
)× (�2−n, (�+ 1)2−n

)
, k, �, n ∈ Z, (3.42)

and all finite unions thereof. For each domain D ∈D0 we then fix a sequence {DN } of lattice approximations satisfying
(2.1)–(2.2). All (simultaneous) subsequential limits will naturally pertain to the specific choice of D0 as well as the
lattice approximations {DN }.

Proposition 3.8. Assume λ ∈ (0,1/
√

2) and let {ηD : D ∈D0} be subsequential limits (along the same subsequence)
of {ηD

N : N ≥ 1} for D ∈D0. For each D ∈D0, let ZD
λ be the measure associated with ηD as in (3.40). Then {ZD

λ : D ∈
D0} obeys properties (1)–(7) in Theorem 2.3, with all domains restricted to be contained in D0 or translates thereof.

Proof of properties (1)–(6). Properties (1), (2) are direct consequences of Lemma 3.1. Property (3) holds for all
open A ⊂ D thanks to Lemma 3.2; the equality for general measurable A ⊂ D is then obtained by realizing that
(2.11) represents equality of two Borel measures. Property (4) is a consequence of the representation of ηD∪D̃

N as the

sum of independent copies of ηD
N and ηD̃

N – which itself follows by representing hDN∪D̃N as the sum of independent

fields hDN and hD̃N . The translation invariance in property (6) is immediate.
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Concerning property (5), let D,D̃ ∈D0 with D̃ ⊂D and Leb(D \ D̃)= 0. The Gibbs–Markov decomposition of
the DGFF (see (A.6)) then yields

hDN
law= hD̃N + ϕDN,D̃N . (3.43)

This means that if f : D×R→R is continuous with compact support in D̃, then〈
ηD

N ,f
〉 law= 〈ηD̃

N ,fϕ

〉
(3.44)

where

fϕ(x,h) := f
(
x,h+ ϕDN,D̃N

(�xN�)) (3.45)

with ϕDN,D̃N independent of ηD̃
N on the right-hand side of (3.44). As shown in [11, Lemma B.14], for each N ≥ 1 and

each δ > 0, there is a coupling of ϕDN,D̃N (�·N�) with �D,D̃ such that the supremum of the difference on Dδ tends to
zero in probability; see (A.8). Thanks to continuity and restriction on the support of f , we thus have〈

ηD̃
N ,fϕ

〉 law= 〈ηD̃
N ,f�

〉+ o(1), (3.46)

where o(1)→ 0 in probability (as N →∞) and where

f�(x,h) := f
(
x,h+�D,D̃(x)

)
(3.47)

with �D,D̃ independent of ηD̃
N on the right-hand side of (3.46). Since x �→�D,D̃(x) is continuous on D̃ a.s., for any

simultaneous subsequential limits ηD of {ηD
N : N ≥ 1} and ηD̃ of {ηD̃

N : N ≥ 1}, we thus obtain〈
ηD,f

〉 law= 〈ηD̃, f�

〉
, (3.48)

where �D,D̃ (implicitly contained in f�) is independent of ηD̃ on the right-hand side. But the representation (3.40)
now permits us to write〈

ηD̃, f�

〉= ∫
D×R

ZD̃
λ (dx)e−αλh dhf

(
x,h+�D,D̃(x)

)
=
∫

D×R
ZD̃

λ (dx)e−αλ(h−�D,D̃(x)) dhf (x,h).

(3.49)

As this holds for any continuous f : D ×R→ R with support in D̃, and since both ZD̃
λ and ZD

λ assign zero mass to
D \ D̃ due to the fact that Leb(D \ D̃)= 0, property (5) follows. �

For property (7), and also later use, we will need:

Lemma 3.9. For each λ ∈ (0,1/
√

2) there is c ∈ (0,∞) such that for any open square S ⊂C

E
[
ZS

λ(S)2]≤ c
[
EZS

λ(S)
]2

. (3.50)

Proof. Suppose S is a translation (and rotation) of (0, r)2. Then (3.9) in Lemma 3.3 along with Fatou’s lemma,
the inequality 4λ2 < 2 and a scaling argument show that E[ZS

λ(S)2] ≤ cr4+4λ2
for some constant c independent

of r . On the other hand, Lemma 3.2 along with uniform integrability of normalized level-set sizes and the fact that
ψrD

λ (rx)= r2λ2
ψD

λ (x) show E[ZS
λ(S)] ≥ c̃r2+2λ2

for some absolute c̃ > 0. The claim follows. �

Proof of property (7). It suffices to prove this for all squares of the form (3.42) as each open set contains at least
one such square. (Note that D0 contains all these squares.) For n ∈ Z, let pn := P(Z

Sn

λ > 0) where (appealing to
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translation invariance), Sn := (0,2−n)2. The second moment estimate in conjunction with (the second moment esti-
mate in) Lemma 3.9 show that p := infn∈Z pn > 0. Decomposing Sn into 4m translates Sn+m,1, . . . , Sn+m,4m of the
square Sn+m, the Gibbs–Markov property yields

Z
Sn

λ (Sn)
law=

4m∑
i=1

∫
Sn+m,i

Z
Sn+m,i

λ (dx)eαλ�Sn,S̃n,m (x), (3.51)

where S̃n,m :=⋃4m

i=1 Sn+m,i . Then Z
Sn

λ (Sn) = 0 forces Z
Sn+m,i

λ (Sn+m,i) = 0 for all i = 1, . . . ,4m. Since the latter

measures are independent of one another as well as of the field �Sn,S̃n,m , we have

1− pn ≤ (1− pn+m)4m ≤ (1− p)4m

. (3.52)

Taking m→∞ we get pn = 1 for each n ∈ Z and so property (6) follows. �

Using the same notation as in the previous proof, in order to prove uniqueness, we will first characterize Z
Sn

λ as the
limit of the measures

YSn
m (dx) := c

4m∑
i=1

eαλ�Sn,S̃n,m (x)ψ
Sn+m,i

λ (x)1Sn+m,i
(x)dx, (3.53)

where c is the constant from (2.11). Indeed, we have:

Lemma 3.10. For each λ≥ 0, there exists an a.s. finite random measure Y
Sn∞ (possibly degenerate to zero), such that

for each bounded, measurable f : D→R,〈
YSn

m ,f
〉 −→
m→∞

〈
YSn∞ , f

〉
, a.s. (3.54)

Proof. Thanks to the structure of the covariances (2.9), we can write �Sn,S̃n,m(x) as the sum of independent fields

�Sn,S̃n,m(x)=
m∑

j=1

�S̃n,j−1,S̃n,j (x), (3.55)

where S̃n,0 := Sn. In light of the fact that

4m∑
j=1

ψ
Sn+m,j

λ (x)1Sn+m,j
(x)=ψ

S̃n,m

λ (x), x ∈ S̃n,m (3.56)

and that, for any D̃ ⊂D,

Eeαλ�D,D̃(x) = e
1
2 α2λ2CD,D̃(x) = ψD

λ (x)

ψD̃
λ (x)

, x ∈ D̃, (3.57)

a straightforward calculation shows that {〈YSn
m ,f 〉 : m≥ 1} is a martingale with respect to the filtration

Fm := σ
(
�S̃n,j−1,S̃n,j (x) : x ∈ S′n, j = 1, . . . ,m

)
where S′n :=

⋂
m≥1

S̃n,m. (3.58)

(Note that, as Leb(Sn \ S′n) = 0, restricting the measures to S′n carries no loss.) Since for f ≥ 0 the martingale is
non-negative, the Martingale Convergence Theorem shows that

L(f ) := lim
m→∞

〈
YSn

m ,f
〉

(3.59)
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exists almost surely for each bounded measurable f (we treat the positive and the negative parts of f separately). The
null event in this statement may depend on f .

In order to show that the limit is an integral of f with respect to a random measure, we follow a standard argument
from multiplicative chaos theory: Fix a countable dense subset A⊂ C(D). Fatou’s lemma yields

E
∣∣L(f )

∣∣≤ c

∫
Sn

∣∣f (x)
∣∣ψD

λ (x)dx, f ∈ C(D), (3.60)

and so by the Markov inequality, on an event of full probability, the linear functional f �→ L(f ) is well-defined for
all f ∈A simultaneously and bounded on A by a multiple of the supremum norm. It follows that f �→ L(f ) extends
uniquely to an almost-everywhere defined continuous linear functional f �→ L(f ) on C(D) such that L(f )= L(f )

holds almost surely for each f ∈ C(D). (The null event may still depend on f .) The Riesz Representation Theorem
then readily gives existence of a Borel measure Y

Sn∞ on D such that L(f ) = 〈YSn∞ , f 〉 holds almost surely for each
f ∈ C(D). The measure is finite a.s. (albeit possibly trivially zero) thanks to (3.60). �

The desired uniqueness of the law of ZD
λ will now follow from:

Proposition 3.11. Suppose λ ∈ (0,1/
√

2). Then for each n ∈ Z,

Z
Sn

λ (dx)
law= YSn∞ (dx). (3.61)

For the proof of this proposition, let f : Sn →[0,∞) be a bounded, measurable function. Our aim is to prove that

Ee−〈Z
Sn
λ ,f 〉 =Ee−〈Y

Sn∞ ,f 〉. (3.62)

We will do this by separately proving ≥ and ≤.

Proof of ≥ in (3.62). Thanks to the Gibbs–Markov property, we may represent Z
Sn

λ as

Z
Sn

λ (dx)=
4m∑
i=1

eαλ�Sn,S̃n,m (x)1Sn+m,i
(x)Z

Sn+m,i

λ (dx), (3.63)

where Z
Sn+m,i

λ , i = 1, . . . ,4m, are independent of one another as well as of �Sn,S̃n,m on the right-hand side. In light of
(2.11) we have

E
(〈
Z

Sn

λ , f
〉|σ (�Sn,S̃n,m

))= 〈YSn
m ,f

〉
. (3.64)

Jensen’s inequality then shows

Ee−〈Z
Sn
λ ,f 〉 ≥Ee−〈Y

Sn
m ,f 〉 −→

m→∞Ee−〈Y
Sn∞ ,f 〉, (3.65)

where the limit uses Lemma 3.10 and the Bounded Convergence Theorem. �

For the opposite bound, we will need the following “reverse Jensen” inequality:

Lemma 3.12. If X1, . . . ,Xn are non-negative independent random variables, then for each ε > 0,

E

(
exp

{
−

n∑
i=1

Xi

})
≤ exp

{
−e−ε

n∑
i=1

E(Xi;Xi ≤ ε)

}
. (3.66)
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Proof. Thanks to independence, it suffices to prove this for n = 1. This is done by bounding E(e−X) ≤ E(e−X̃),
where X̃ :=X1{X≤ε}, writing

− logE
(
e−X̃

)= ∫ 1

0
ds

E(X̃e−sX̃)

E(e−sX̃)
(3.67)

and invoking the bounds E(X̃e−sX̃)≥ e−εE(X̃) and E(e−sX̃)≤ 1. �

We will also need to invoke an additional truncation: For δ ∈ (0,1/2), let Sδ
k be the translate of (δ2−k, (1− δ)2−k)

centered at the same point as Sk . Analogously, let Sδ
n+m,i be the corresponding truncation of Sn+m,i . Then set S̃δ

n,m :=⋃4m

i=1 Sδ
n+m,i and let

fm,δ(x) := 1S̃δ
n,m

(x)f (x). (3.68)

Thanks to f ≥ 0 we have 〈YSn
m ,fm,δ〉 ≤ 〈YSn

m ,f 〉 ≤ 〈YSn
m ,fm,δ〉 + ‖f ‖YSn

m (Sn \ S̃δ
n,m) where here and hence-

forth ‖f ‖ denotes the supremum norm of f . Markov’s inequality and the definition of Y
Sn
m then show P(Y

Sn
m (Sn \

S̃δ
n,m) > ε)≤ ε−1 Leb(Sn \ S̃δ

n,m)≤ cε−1δ with c independent of m. In conjunction with Lemma 3.10, it follows that

lim
δ↓0

lim sup
m→∞

P
(∣∣〈YSn

m ,fm,δ

〉− 〈YSn∞ , f
〉∣∣> ε

)= 0. (3.69)

This will permit us to work with fm,δ instead of f . Next we will need:

Lemma 3.13. Suppose λ ∈ (0,1/
√

2). Given δ ∈ (0,1/2), for each i = 1, . . . ,4m abbreviate

Xi :=
∫

Sδ
n+m,i

eαλ�Sn,S̃n,m (x)fm,δ(x)Z
Sn+m,i

λ (dx). (3.70)

Then for each ε > 0,

4m∑
i=1

E(Xi;Xi > ε) −→
m→∞ 0. (3.71)

Proof. Abbreviate L := 2m throughout this proof. Since E(Xi;Xi > ε)≤ 1
ε
E(X2

i ), we can bound the sum in (3.71)
by

1

ε

L2∑
i=1

E
(
X2

i

)≤ ‖f ‖2

ε

L2∑
i=1

E

∫
Sδ

n+m,i×Sδ
n+m,i

eαλ[�Sn,S̃n,m (x)+�Sn,S̃n,m (y)]ZSn+m,i

λ (dx)Z
Sn+m,i

λ (dy). (3.72)

Since Z
Sn+m,i

λ , i = 1, . . . ,4m, are independent of the field, we will now take conditional expectation given these
measures and invoking that

Eeαλ[�Sn,S̃n,m (x)+�Sn,S̃n,m (y)] = e
1
2 α2λ2 Var(�Sn,S̃n,m (x)+�Sn,S̃n,m (y))

≤ ce
1
2 α2λ24g log(L) = cL8λ2

(3.73)

for some constant c that arises from the uniform bound Var(�Sn,S̃n,m(x)) ≤ c′ + g log(2m) valid with the same con-
stant c′ for all x ∈ S̃δ

n,m. The right-hand side of (3.72) is thus at most

c
‖f ‖2

ε
L8λ2

L2∑
i=1

E
(
Z

Sn+m,i

λ (Sn+m,i)
2). (3.74)
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Under the condition λ ∈ (0,1/
√

2), Lemma 3.9 implies

E
(
Z

Sn+m,i

λ (Sn+m,i)
2)≤ c

[
E
(
Z

Sn+m,i

λ (Sn+m,i)
)]2 (3.75)

and an elementary scaling argument applied to (2.11) shows

E
(
Z

Sn+m,i

λ (Sn+m,i)
)≤ cL−(2+2λ2), (3.76)

where c depends on n, which is fixed throughout the proof. These observations yield

L2∑
i=1

E(Xi;Xi > ε)≤ c

ε
‖f ‖2L8λ2−2−4λ2 = c

ε
‖f ‖2L−2(1−2λ2). (3.77)

As L= 2m, this tends to zero as m→∞ for all λ < (0,1/
√

2) as claimed. �

Proof of ≤ in (3.62). Consider the σ -algebra F := σ(�Sn,S̃n,m(x) : x ∈ S̃n,m) and note that, for Xi as in (3.70), we
have 〈YSn

m ,fm,δ〉 =∑4m

i=1 E(Xi |F). Fix ε > 0. The “reverse Jensen” inequality (3.66) for the conditional expectation
given F then yields

Ee−〈Z
Sn
λ ,f 〉 ≤Ee−〈Z

Sn
λ ,fm,δ〉 ≤E

(
exp

{
−e−ε

[〈
YSn

m ,fm,δ

〉− 4m∑
i=1

E(Xi1{Xi>ε}|F)

]})
. (3.78)

From (3.69) we know that 〈YSn
m ,fm,δ〉 → 〈YSn∞ , f 〉 in probability as m→∞ followed by δ ↓ 0, while Lemma 3.13

shows

4m∑
i=1

E(Xi1{Xi>ε}|F) −→
m→∞ 0, in probability. (3.79)

Since the square bracket on the right-hand side of (3.78) is non-negative, taking m→∞ and δ ↓ 0 with the help of
the Bounded Convergence Theorem yields

Ee−〈Z
Sn
λ ,f 〉 ≤Ee−e−ε〈YSn∞ ,f 〉. (3.80)

From here ≤ in (3.62) follows by taking ε ↓ 0. �

Proof of Proposition 3.11. Since the Laplace transform determines the law for non-negative random variables, (3.62)

implies 〈ZSn

λ , f 〉 law= 〈YSn∞ , f 〉 for each bounded, measurable f . This is what is represented by (3.61). �

We are now ready to summarize our conclusions in:

Theorem 3.14. For each λ ∈ (0,1/
√

2) and each D ∈D there is a random Borel measure ZD
λ on D such that the

following holds for each aN satisfying (1.5) and each sequence {DN } of lattice domains satisfying (2.1)–(2.2): The
family of measures {ηD

N : N ≥ 1} from (3.27) obeys

ηD
N

law−→
N→∞ ZD

λ (dx)⊗ e−αλh dh. (3.81)

The measures {ZD
λ : D ∈D} obey conditions (1-7) from Theorem 2.3 and these identify their laws uniquely. In partic-

ular, on dyadic squares we have Z
Sn

λ (dx)
law= Y

Sn∞ (dx).
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Proof. That subsequential limits of ηD
N take the form on the right of (3.81) has been shown in Lemma 3.7 and that

the resulting ZD
λ measures obey properties (1)–(7) from Theorem 2.3 is the content of Proposition 3.8. Thanks to the

representation in Proposition 3.11, the law of ZD
λ is determined for D being any dyadic square. In order to prove the

theorem, it thus suffices to show that the law of ZD
λ is similarly determined for all D ∈D.

Let D ∈D. Since we may assume that D belongs to the distinguished set D0 of domains, the properties (1)–(7)
from Theorem 2.3 apply to D as well. Thus, in particular, ZD

λ (D \Dn)→ 0 for any sequence of measurable sets Dn

such that Dn ↑D. Thanks to property (1) in Theorem 2.3, the same holds even if we take Dn to be the union of all
open dyadic squares Sn,i , i = 1, . . . ,m(n) of side length 2−n whose closure is contained in D. However, in light of
properties (4)–(5) in Theorem 2.3, in this case we may write

1Dn(x)ZD
λ (dx)

law= eαλ�D,Dn
(x)

m(n)∑
i=1

Y
Sn,i∞ (dx), (3.82)

where {YSn,i∞ : i = 1, . . . ,m(n)} are independent of �D,Dn
and of one another and are equidistributed, modulo a shift,

to Y
Sn∞ . The law of ZD

λ is thus determined solely by those of {YSn∞ : n ≥ 1} and the Gaussian fields {�D,Dn : n ≥ 1}.
We conclude that limit (3.81) exists for all D ∈D and is the same regardless of the approximating sequence of lattice
domains DN and/or the way aN approaches the limit (1.5). �

4. Beyond untruncated second moments

Our next goal is to eliminate the restriction to λ < 1/
√

2 assumed throughout the proofs in the previous section. There
were three specific steps where this restriction was crucially used: the non-triviality of the subsequential limits of
{ηD

N : N ≥ 1}, the factorization property in Lemma 3.6 and the estimate (3.77) of expectations of integrals against Zλ-
measures in Lemma 3.13 based on Lemma 3.9. This is because all three rely on the second moment estimate on the
size of the level-set in Lemma 3.3 which fails when λ≥ 1/

√
2. (Lemmas 3.1 and 3.2 hold for all λ ∈ (0,1).)

It turns out, and this is no surprise in this subject area, that the lack of the second moment is remedied by introducing
a suitable truncation. This will help us fix the above three second-moment calculations while preserving the overall
strategy of the proof.

4.1. Truncated measures

Let us start with a truncated version of the measures in (3.27). Pick a sequence of domains {DN } approximating, via
(2.1)–(2.2), a given continuum domain D ∈D. Recall our earlier notation �r(x) := {z ∈ Z2 : |z − x| ≤ r} and, for
each N ≥ 1 and each x ∈DN , let

n(x) :=max
{
n≥ 0 : �en+1(x)⊆DN

}
. (4.1)

Observe that logN − c ≤ n(x) ≤ logN + c′ for all x ∈ DN such that dist(x,Dc
N) > εN , with the first constant

depending (for large N ) only on the choice of ε > 0 and the second only on D. Define now the sequence of domains

�k(x) :=

⎧⎪⎨⎪⎩
∅ for k = 0,

�ek (x) for k = 1, . . . , n(x)− 1,

DN for k = n(x).

(4.2)

In accord with (A.6), for V ⊆U let us write ϕU,V for the conditional field E(hU |σ(hU (z) : z ∈U \ V )). We now set

Sk(x) := ϕDN,�k(x)(x), k = 0, . . . , n(x). (4.3)

Observe that, by definition, S0(x)= hDN (x) while Sn(x)(x)= 0.
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Next, for a given sequence aN such that (1.5) holds for some λ ∈ (0,1) and M > 0, define the truncation event

TN,M(x) :=
n(x)⋂
k=kN

{∣∣∣∣Sk(x)− aN

n(x)− k

n(x)

∣∣∣∣≤M
(
n(x)− k

)3/4
}
, (4.4)

where

kN :=
⌊

1

8
log(KN)

⌋
= 1

4

[(
1− λ2)+ o(1)

]
log(N) (4.5)

and the intersection is regarded as empty when kN > n(x). Consider the point measure

η̂
D,M
N := 1

KN

∑
x∈DN

1TN,M(x)δx/N ⊗ δhDN (x)−aN
. (4.6)

Obviously, 〈̂ηD,M
N ,f 〉 ≤ 〈ηD

N ,f 〉 for any measurable f ≥ 0. We will now re-run the arguments from the previous
section replacing the key second-moment lemmas by their suitable truncated versions. These are the content of Lem-
mas 4.1–4.3 below which will be proved in the next subsection.

Our starting point is that the difference between the measures η̂
D,M
N and ηD

N disappears when the truncation is
removed by taking M →∞. For this we introduce the truncated level set

�̂
D,M
N (b) := {x ∈DN : hDN (x)≥ aN + b,TN,M(x) occurs

}
. (4.7)

Then we have:

Lemma 4.1. For each λ ∈ (0,1) and each b0 > 0 there are constants c, c̃ ∈ (0,∞) such that for all D ∈ D, all
b ∈ [−b0, b0], all M ≥ 1 and all N sufficiently large,

E
∣∣�D

N (b) \ �̂
D,M
N (b)

∣∣≤ ce−c̃M2
(diamD)2+2λ2

KN. (4.8)

Using this lemma we immediately get that for any continuous, compactly-supported function f : D×R→R,

lim
M→∞ lim sup

N→∞
E
∣∣〈̂ηD,M

N ,f
〉− 〈ηD

N ,f
〉∣∣= 0. (4.9)

Since Lemma 3.1 and the aforementioned domination of η̂
D,M
N by ηD

N show that the family of measures {̂ηD,M
N : N ≥ 1}

is tight in the topology of vague convergence, we can extract a subsequential weak limit η̂D,M and study its properties.
The next point to address is non-triviality of the limit. Here we need an analogue of Lemma 3.3, now without

restrictions on λ. For b, b′ ∈R with b < b′, abbreviate

�̂
D,M
N

(
b, b′

) := �̂
D,M
N (b) \ �̂

D,M
N

(
b′
)
. (4.10)

Then we have:

Lemma 4.2. Let λ ∈ (0,1). For all ε > 0, all M ≥ 0 and all b, b′ ∈R with b < b′, there is c= c(M,b, b′, ε) ∈ (1,∞)

such that for all D ∈D and all N large enough,

E
(∣∣�̂D,M

N

(
b, b′

)∩Dε
N

∣∣2)≤ c(diamD)4+4λ2
K2

N . (4.11)

The second moment calculation spelled out in the proof of Corollary 3.4 together with Lemma 4.1 then show that
every subsequential weak limit η̂D,M of measures {̂ηD,M

N : N ≥ 1} has positive total mass with positive probability,

provided M is chosen large enough. In light of the domination of η̂
D,M
N by ηD

N , the same applies to any subsequential
limit of the measures {ηD

N : N ≥ 1}.
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The next, and technically hardest, point to be addressed is factorization. This is the subject of the following lemma
which effectively replaces Lemma 3.6:

Lemma 4.3. Let λ ∈ (0,1). Using the notation AN := {x ∈ Z2 : x/N ∈A}, for each open A⊆D and each b ∈R, we
have

lim
N→∞

1

KN

E
∣∣∣∣�̂D,M

N (0)∩AN

∣∣− eαλb
∣∣�̂D,M

N (b)∩AN

∣∣∣∣= 0. (4.12)

Lastly, we will need one more lemma dealing with the maximum of the field �Sn,S̃n,m , where Sn is a dyadic square
of side-length 2−n and Sn,m is the disjoint union of 4m dyadic squares of side-length 2−(n+m) that just barely fit into Sn.
Recall that S̃δ

n+m is the union of “shrunk” dyadic squares Sδ
n,m centered at the same points as Sn,m, respectively. See

the paragraph before (3.69).

Lemma 4.4. For each δ > 0 there is a constant c= c(δ) such that

P
(

sup
x∈S̃δ

n,m

�Sn,S̃n,m(x) > 2
√

g log
(
2m
)+ c

√
log
(
2m
)) −→

m→∞ 0. (4.13)

Deferring (as mentioned above) the proofs of Lemmas 4.1–4.3 to the next subsection and that of Lemma 4.4 to the
Appendix, we now use them to prove:

Theorem 4.5. The statement of Theorem 3.14 applies to all λ ∈ (0,1).

Proof. Consider a countable family D0 of domains in D which include all dyadic squares and all finite unions
thereof. A diagonal argument permits us to to extract a subsequence along which η̂

D,M
N tends in law to a limit η̂D,M

for every D ∈D0 and every integer M ≥ 1. Applying monotonicity in M , we can then define ηD := limM→∞ η̂D,M .
By (4.9), ηD is the limit of ηD

N along the chosen subsequence. Lemma 4.3 implies that ηD obeys (3.31) for every f of
the stated form. By Lemma 3.7 we then have

ηD(dx dh)=ZD
λ (dx)⊗ e−αλh dh, D ∈D0, (4.14)

for some a.s.-finite random Borel measure ZD
λ which has positive mass with positive probability. By the same rea-

soning as in the proof of Proposition 3.8, the measures {ZD
λ : D ∈ D0} obey properties (1)–(7) in Theorem 2.3. In

particular, ZD
λ charges every non-empty open set a.s.

In order to determine the law of ZD
λ uniquely, and thus prove the existence of the limit (3.81), we claim that, on

the dyadic square Sn, we have the representation

Z
Sn

λ (dx)
law= YSn∞ (dx), (4.15)

where Y
Sn∞ is the measure constructed in Lemma 3.10. As the Gibbs–Markov property for ZD

λ was already proved as
part of the properties of Theorem 2.3 above, the starting equation (3.63) is valid and the argument thereafter applies.
We just need to replace Lemma 3.13 with a suitable analogue that does not rely on the existence of the second moment
of Z

Sn

λ (Sn).
The idea is to reintroduce the truncation while sticking with the N →∞ limit measures. Indeed, using the above

subsequential limit point η̂D,M of {̂ηD,M
N : N ≥ 1}, we define

Ẑ
D,M
λ (A) := αλη̂D,M

(
A× [0,∞)

)
(4.16)

for each Borel measurable A. These measures are not expected to obey most of the properties in Theorem 2.3. Notwith-
standing, we have

Ẑ
D,M
λ (A)≤ZD

λ (A) and Ẑ
D,M
λ (A) ↑ZD

λ (A) as M →∞. (4.17)

We will refer to Ẑ
D,M
λ as a “truncated measure” although this not very accurate.
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Remark 4.6. Note that Lemma 4.3 gives us a factorization property (4.14) for η̂D,M as well; just replace ZD
λ by

Ẑ
D,M
λ . One might thus be tempted to think that η̂D,M also satisfies the Gibbs–Markov property. However, this is false

because the addition of the “binding field” �D,D̃ changes the truncation events on the subdomain D̃. In any case, if
the properties (1)–(7) of Theorem 2.3 were true for Ẑ

D,M
λ , our argument from the previous section would represent

this measure using a derivative martingale and, later, by the LQG measure. This would lead to a contradiction because
the LQG measure is known to lack the second moment for all λ ∈ [1/

√
2,1) yet (by Fatou) Ẑ

D,M
λ is square integrable

for all λ ∈ (0,1).

Moving back to the proof of Theorem 4.5, we now define a measure Z̃
Sn,M
m by (3.63) with the Z

Sn+m,i

λ on the
right-hand side now replaced by their truncated analogues,

Z̃
Sn,M
λ (dx) :=

4m∑
i=1

eαλ�Sn,S̃n,m (x)1Sn+m,i
(x)Ẑ

Sn+m,i ,M

λ (dx). (4.18)

For each bounded, measurable f : D �→ [0,∞) and each δ > 0 we then have

E
(
e−〈Z

Sn
λ ,f 〉)≤E

(
e−〈Z̃

Sn,M
λ ,f 〉)≤E

(
e−〈Z̃

Sn,M
λ ,fm,δ〉), (4.19)

where we fm,δ is as defined in (3.68). Let �Sn,S̃n,m be independent of the truncated measures {ẐSn+m,i ,M

λ : i =
1, . . . ,4m}, which are themselves regarded as independent, and set

X̃i :=
∫

Sn+m,i

eαλ�Sn,S̃n,m (x)fm,δ(x)Ẑ
Sn+m,i ,M

λ (dx). (4.20)

Noting that 〈Z̃Sn,M
λ ,fm,δ〉 =∑4m

i=1 X̃i , we then get for each ε > 0,

E
(
e−〈Z̃

Sn,M
λ ,fm,δ〉)≤E

(
exp

{
−e−ε

4m∑
i=1

E
(
X̃i1{X̃i≤ε}|�Sn,S̃n,m

)})
(4.21)

from the “reverse Jensen” inequality in Lemma 3.12.
To replace Lemma 3.13, we claim that, for each ε > 0,

4m∑
i=1

E
(
X̃i1{X̃i>ε}|�Sn,S̃n,m

) −→
m→∞ 0 in probability. (4.22)

For this abbreviate L := 2m and let An,m denote the event in (4.13). Restricting to the complement of An,m, we first
bound X̃i1{X̃i>ε} ≤ ε−1X̃2

i and then bound the field �Sn,S̃n,m in one of the terms using the bound on the maximum.

In light of the independence of �Sn,S̃n,m and Z
Sn+m,i ,M

λ we can then take expectation over the remaining occurrence

of �Sn,S̃n,m and apply the uniform bound Var(�Sn,S̃n,m(x))≤ c+ g log(L) with the result

E
(
1Ac

n,m
E
(
X̃i1{X̃i>ε}|�Sn,S̃n,m

))
≤ 1

ε
E
(
1Ac

n,m
E
(
X̃2

i |�Sn,S̃n,m
))

≤ ‖f ‖
2

ε
e2αλ

√
g log(L)+c(δ)

√
log(L)E

(
Ẑ

Sn+m,i ,M

λ

(
Sδ

n+m,i

)∫
Sδ

n+m,i

eαλ�Sn,S̃n,m (x)Ẑ
Sn+m,i ,M

λ (dx)

)

≤ c
‖f ‖2

ε
e2αλ

√
g log(L)+c(δ)

√
log(L)e

1
2 α2λ2g log(L)E

(
Ẑ

Sn+m,i ,M

λ

(
Sδ

n+m,i

)2)
. (4.23)
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Here we will finally benefit from using the truncated measures Ẑ
Sn+m,i ,M

λ . Indeed, Lemma 4.2, monotonicity and
Lemma 3.2 together with the scaling of the integral in (3.6) ensure that, for some c, c′ ∈ (0,∞) depending on M , n

and δ but not on m or i,

E
(
Z̃

Sn+m,i ,M

λ

(
Sδ

n+m,i

)2)≤ c
[
E
(
Z

Sn+m,i

λ (Sn+m,i)
)]2 ≤ c′L−2(2+2λ2), (4.24)

where the last inequality follows from (3.76). Since 2αλ
√

g = 4λ while 1
2α2λ2g = 2λ2, the right-hand side of (4.23)

decays as L−2−2(1−λ)2
. For any ζ > 0 we thus get

P

(
4m∑
i=1

E
(
X̃i1{X̃i>ε}|�Sn,S̃n,m

)
> ζ

)
≤ P(An,m)+ c′′

εζ
L−2(1−λ)2

ec(δ)
√

logL (4.25)

for some c′′ independent of m. Hereby (4.22) follows from (4.13).
Using (4.22) in (4.21) then gives

lim sup
m→∞

E
(
e−〈Z̃

Sn,M
λ ,fm,δ〉)≤ lim sup

m→∞
E
(
e−e−εE(〈Z̃Sn,M

λ ,fm,δ〉|�Sn,S̃n,m )
)
. (4.26)

Our next task is to prove

E
(〈
Z

Sn

λ , fm,δ

〉|�Sn,S̃n,m
)−E

(〈
Z̃

Sn,M
λ ,fm,δ

〉|�Sn,S̃n,m
)−→ 0 (4.27)

in probability in the limit as m→∞ followed by M →∞. Since the difference of expectations is non-negative, it
thus suffices to show convergence to 0 in the mean.

As Var(�Sn,S̃n,m(x))≤ g log(2m)+ c uniformly on S̃δ
n,m, we have

E
(
l.h.s. of (4.27)

)≤ c
(
2m
)2λ2

4m‖f ‖[E(ZSn+m

λ (Sn+m)
)−E

(
Ẑ

Sn+m,M

λ (Sn+m)
)]

. (4.28)

Lemma 4.1 now implies

E
(
Z

Sn+m

λ (Sn+m)
)−E

(
Ẑ

Sn+m,M

λ (Sn+m)
)≤ ce−c̃M2(

2m
)−2−2λ2

. (4.29)

This bounds the expectation of (4.27) by ce−c̃M2‖f ‖ which tends to zero as M →∞.
Combining (4.19) with (4.26)–(4.27), using (3.64), Lemma 3.10 and the limits ε ↓ 0 and δ ↓ 0 (with (3.69)) thus

show

E
(
e−〈Z

Sn
λ ,f 〉)≤E

(
e−〈Y

Sn∞ ,f 〉). (4.30)

Jointly with (3.65), we then get (4.15). The same argument as in the proof of Theorem 3.14 now gives uniqueness of
the law of ZD

λ for all D ∈D. �

4.2. Truncated moment calculations

We now move to the technical statements (Lemmas 4.1–4.3) in the proof of Theorem 4.5 whose proof was deferred
from the previous subsection to here. For small enough ε > 0, we write Dε

N := {x ∈ DN : dist(x,Dc
N) > εN}. We

start by some observations concerning the law of the random variables Sk defined in (4.3).

Lemma 4.7. Recall that g := 2/π . For each ε > 0 and each r > 0, there is c= c(ε, r) ∈ (0,∞) such that for all D ∈
D with diamD ≤ r and all N large enough, we have:

(1) For all x ∈DN and all kN ≤ k ≤m < n(x),

Var
(
Sk(x)− Sm(x)

)= (m− k)g + o(1), (4.31)

where o(1)→ 0 when N →∞ uniformly in k and x ∈Dε
N .
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(2) For all x ∈Dε
N and all k with kN ≤ k ≤ n(x),∣∣Var

(
Sk(x)

)− (n(x)− k
)
g
∣∣≤ c. (4.32)

Moreover, for all �≥ 1 there is c′ = c′(ε, �) > 0 such that for all x ∈Dε
N , all k with kN ≤ k ≤ n(x), all m satisfying

k − �≤m≤ k and all y ∈DN such that �m+1(y)⊆�k(x) \ {x}, we have

E
(
Sk(x)Sm(y)

)≤ (n(x)− k
)
g + c′ and Var

(
Sm(y)− Sk(x)

) ∈ [g/4, c] (4.33)

as soon as N is sufficiently large.

Proof. Fix r > 0 and consider any domain D ∈ D with diamD ≤ r . By the Gibbs–Markov property, translation
invariance and Green function asymptotics (A.5),

Var
(
Sk(x)− Sm(x)

)=Var
(
ϕ�em(0),�ek (0)(0)

)
=G�em(0)(0,0)−G�ek (0)(0,0)= g(m− k)+ o(1). (4.34)

This gives the first statement. For the second, we assume that k < n(x) since otherwise it is trivially true. Then, since
n(x) ≥ logN − c for c = c(ε) > 0, we may find c̃ = c̃(ε, r) > 0 such that DN ⊆ �en(x)+c̃ (x). Monotonicity of the
Green function with respect to inclusion and similar considerations as above now show

Var
(
Sk(x)

)≤G�en(x)+c̃ (0)(0,0)−G�ek (0)(0,0)≤ (n(x)− k
)
g + gc̃+ o(1). (4.35)

On the other hand, by definition DN ⊇�en(x)+1(x) and consequently

Var
(
Sk(x)

)≥G�en(x)+1 (0)(0,0)−G�ek (0)(0,0)≥ (n(x)− k
)
g + g/2+ o(1). (4.36)

This completes the second statement.
Turning to the third statement, here we first observe that the expectation there can be written explicitly as

E[ϕDN,�k(x)(x)ϕDN,�k(x)(y)]. By the Gibbs–Markov property, this expectation equals

E
(
hDN (x)hDN (y)

)−E
(
h�k(x)(x)h�k(x)(y)

)≤ (n(x)− k
)
g + c′, (4.37)

where we have used the Green function asymptotics again. The constant c′ > 0 above depends on the distance of y to
the boundary of �k(x) relative to its diameter. This in turn is governed by the choice of �.

Finally, the upper bound on the variance follows from the above bounds together with

Var
(
Sm(y)− Sk(x)

)=Var
(
Sm(y)

)+Var
(
Sk(x)

)− 2E
(
Sm(y)Sk(x)

)
(4.38)

and the relation between m and k. As for the lower bound,

Var
(
Sm(y)− Sk(x)

)=Var
(
ϕD,�k(x)(y)− ϕD,�k(x)(x)+ ϕ�k(x),�m(y)(y)

)
≥Var

(
ϕ�k(x),�m(y)(y)

)≥Var
(
ϕ�m+1(x),�m(y)(y)

)≥ g+ o(1) (4.39)

thus proving the third statement as well. �

The next lemma notes that the dependency structure of the process Sk(x) is tree-like.

Lemma 4.8. If x, y ∈ DN and 0 ≤ k1 < k2 ≤ n(x), 0 ≤ m1 < m2 ≤ n(y) are such that �k2(x) ⊆ �m1(y), then
the increments Sk1(x) − Sk2(x) and Sm1(y) − Sm2(y) are independent. In particular, for any x ∈ DN , the process

(Sk(x))
n(x)
k=0 has independent increments.
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Proof. This is a direct consequence of the definition and the Gibbs–Markov property. �

Finally, we will also need the following simple fact:

Lemma 4.9. Suppose X
law= N (0, σ 2

X) and Y
law= N (0, σ 2

Y ) are independent. Then (X|X + Y), i.e., X conditional on
X+ Y , obeys

(X|X+ Y)
law= N

(
σ 2

X

σ 2
X + σ 2

Y

(X+ Y),
σ 2

Xσ 2
Y

σ 2
X + σ 2

Y

)
. (4.40)

Proof. By way of a simple manipulation we get

X = σ 2
X

σ 2
X + σ 2

Y

(X+ Y)+ σ 2
Y X− σ 2

XY

σ 2
X + σ 2

Y

. (4.41)

The second expression on the right is a Gaussian random variable that is independent of X + Y , has mean zero and
variance as the random variable on the right of (4.40). �

We are now ready to control the defect to the level set size caused by the truncation:

Proof of Lemma 4.1. Pick b, b′ ∈R with b < b′. Let ε > 0 and note that

E
∣∣�D

N (b) \ �̂
D,M
N (b)

∣∣
≤E

∣∣�D
N (b) \Dε

N

∣∣+E
∣∣�D

N

(
b′
)∣∣

+
∑

x∈Dε
N

n(x)∑
k=kN

P

(
hDN (x)− aN ∈

[
b, b′

)
,

∣∣∣∣Sk(x)− aN

n(x)− k

n(x)

∣∣∣∣> M
(
n(x)− k

)3/4
)

. (4.42)

By Lemma 3.1, the sum of the first two expectations are bounded by the desired estimate provided we take ε small
and b′ sufficiently large (proportional to M). We thus have to show the bound for the double sum regardless of ε > 0
and b′ ∈ [b,∞).

Fix x ∈ Dε
N and let k ∈ {0, . . . , n(x)}. We will estimate the probability on the right-hand side of (4.42) by con-

ditioning on the value of hDN (x). For this we note that, by Lemma 4.8, hDN (x) is the sum of independent random
variables Sk(x) and S0(x) − Sk(x). Applying Lemma 4.9 for X := Sk(x) and Y := S0(x) − Sk(x), we thus get for
s ∈ [b, b′](

Sk(x)|hDN (x)= aN + s
) law= N

(
Var(Sk(x))

Var(S0(x))
(aN + s),

Var(Sk(x))Var(S0(x)− Sk(x))

Var(S0(x))

)
. (4.43)

Invoking the variance estimates in Lemma 4.7, we obtain∣∣∣∣Var(Sk(x))

Var(S0(x))
− n(x)− k

n(x)

∣∣∣∣≤ c1

n(x)
(4.44)

and

Var(Sk(x))Var(S0(x)− Sk(x))

Var(S0(x))
≤ c2

(
n(x)− k

)
, (4.45)

where the constants c1 and c2 are independent of k, x and n(x) as chosen above. Plugging these in (4.43) and using
that aN is proportional to n(x), a standard Gaussian estimate yields

P

(∣∣∣∣Sk(x)− aN

n(x)− k

n(x)

∣∣∣∣> M
(
n(x)− k

)3/4|hDN (x)= aN + s

)
≤ ce−c̃M2(n(x)−k)1/2

. (4.46)
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Thanks to the uniformity in s of (4.46), the last term in (4.42) is bounded by

c
∑

x∈Dε
N

∞∑
k=1

e−c̃M2k1/2
P
(
hDN (x)− aN ∈

[
b, b′

))≤ c′e−c̃M2
E
∣∣�D

N (b)
∣∣. (4.47)

By Lemma 3.2, this obeys the desired bound as soon as N is sufficiently large. �

Next we move to the proof of the second moment estimate for truncated level sets:

Proof of Lemma 4.2. Pick b, b′ ∈R with b < b′ and fix ε > 0 and M > 0. Given N ≥ 1 and x, y ∈Dε
N , we will first

estimate the probability that x, y ∈ �̂D
N (b, b′) for |x − y|> K

1/4
N . Denote

k := (⌈log+ |x − y|⌉+ 1
)∧ n(x), (4.48)

and let �≥ 1 be the minimal such that

�k−�(x)∩�k−�(y)=∅ and �k−�+1(x)∪�k−�+1(y)⊆�k(x). (4.49)

Observe that since n(x)≤ logN + c and n(y)≥ logN − c′ for c = c(D) > 0 and c′ = c(ε) > 0 we must have �≤ c̃

with c̃= c̃(ε,D) > 0. Also note that

hDN (x)= Sk(x)+ (Sk−�(x)− Sk(x)
)+ (S0(x)− Sk−�(x)

)
(4.50)

and

hDN (y)= Sk(x)+ (Sk−�(y)− Sk(x)
)+ (S0(y)− Sk−�(y)

)
. (4.51)

By (4.49) and Lemma 4.8, the three terms on the right of (4.50) are independent of each other, while for the terms on
the right of (4.51) we get that the last one is independent of the first two as well as of of the last term on the right of
(4.50). For any t ∈ [−M(n(x)− k)3/4,M(n(x)− k)3/4], any s1, s2 ∈ [b, b′) and any u1, u2 ∈ [−n(x)3/4, n(x)3/4] and
employing the convention that P(X ∈ dx)= f (x)dx abbreviates P(X ∈A)= ∫

A
f (x)dx we then write

P

(
h(x)− aN ∈ ds1, h(y)− aN ∈ ds2|Sk(x)− aN

n(x)− k

n(x)
= t,

Sk−�(x)− Sk(x)= u1, Sk−�(y)− Sk(x)= u2

)
= P

(
S0(x)− Sk−�(x)− aN

k

n(x)
+ t + u1 ∈ ds1

)
× P

(
S0(y)− Sk−�(y)− aN

k

n(x)
+ t + u2 ∈ ds2

)

≤ c

k
exp

{
− (

aN

n
(x)k − t − u1 + s1)

2 + (
aN

n
(x)k − t − u2 + s2)

2

2gk

}
ds1 ds2

≤ c

k
exp

{
− a2

N

gn2
k+ aN

gn
(2t + u1 + u2 − s1 − s2)

}
ds1 ds2. (4.52)

Here in the first inequality we used Lemma 4.7 to replace variances of the random variables S0(x) − Sk−�(x) and
S0(y)− Sk−�(y) by gk. This causes only a change in the multiplicative constant because, by our assumptions on t ,
u1, u2, s1 and s2, the quantities in the squares in the exponent are both at most order k. In the second inequality we
opened up the squares and retained, through a bound, only the quantities that depend on aN .
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Our next step is to integrate the above conditional probability with respect to the conditional law of Sk−�(y)−Sk(x)

and Sk−�(x)− Sk(x) given Sk(x). For this we will need to examine the dependency of Sk−�(y)− Sk(x) on Sk(x). By
Lemma 4.7, there are c > 0 and c′′ > c′ > 0 such that E((Sk−�(y)− Sk(x))Sk(x)) ≤ c and Var(Sk−�(y)− Sk(x)) ∈
[c′, c′′]. Consequently for all t with |t | ≤M(n(x)− k)3/4,∣∣∣∣E(Sk−�(y)− Sk(x)|Sk(x)− aN

n(x)− k

n(x)
= t

)∣∣∣∣≤ ct/
(
n(x)− k + 1

)≤ cM (4.53)

and

Var
(
Sk−�(y)− Sk(x)|Sk(x)

)≤Var
(
Sk−�(y)− Sk(x)

)≤ c′′, (4.54)

with the conditional expectation vanishing and the conditional variance bounded similarly for Sk−�(x)− Sk(x). Since
aN/n(x) is bounded, the Cauchy–Schwarz inequality shows

E

(
e

aN
gn

(Sk−�(y)−Sk(x))+ aN
gn

(Sk−�(x)−Sk(x))|Sk(x)− aN

n(x)− k

n(x)
= t

)
≤ c̃, (4.55)

uniformly in t as above. In conjunction with (4.52), this yields

P

(
hDN (x)− aN ∈

[
b, b′

)
, hDN (y)− aN ∈

[
b, b′

)|Sk(x)− aN

n(x)− k

n(x)
= t

)
≤ P

(∣∣Sk−l(x)− Sk(x)
∣∣∨ ∣∣Sk−l (y)− Sk(x)

∣∣> n3/4|Sk(x)− aN

n(x)− k

n(x)
= t

)

+ c

k

∫
[b,b′)

ds1

∫
[b,b′)

ds2 exp

{
− a2

N

gn2
k + aN

gn
(2t − s1 − s2)

}

≤ c′

k
exp

{
− a2

N

gn2
k+ 2

aN

gn
t

}
(4.56)

uniformly in above t above, where c′ depends on b, b′ and M and we have used the fact that the right hand side is at
least e−cn for some c > 0.

Now if k = n(x) then Sk(x)= t = 0 and therefore the right hand side above is also a bound on the unconditional
probability. Otherwise, we integrate the left-hand side of (4.56) with respect to the distribution of the random variable
Sk(x)− aN

n(x)−k
n(x)

to get (abbreviating θn(k) := (n(x)− k)3/4)

P
(
x, y ∈ �̂

D,M
N

(
b, b′

))
≤ P

(
hDN (x)− aN ∈

[
b, b′

)
, hDN (y)− aN ∈

[
b, b′

)
,

∣∣∣∣Sk(x)− aN

n(x)− k

n(x)

∣∣∣∣≤Mθn(k)

)

≤ c

k(n(x)− k)1/2
e
− a2

N

gn2 k
∫
|t |≤Mθn(k)

exp

{
2
aN

gn
t − (aN

n(x)−k
n

(x)+ t)2

2g(n(x)− k)

}
dt

≤ c

k(n(x)− k)1/2
e
− a2

N

gn2 k− a2
N

2gn2 (n(x)−k)
∫
|t |≤Mθn(k)

e+
aN
gn

t dt

≤ c′

k(n(x)− k)1/2
e
− a2

N

2gn2 k− a2
N

2gn2 n(x)+c̃Mθn(k)

≤ c′′KN

N2

n(x)1/2

k(n(x)− k+ 1)1/2
e
− a2

N

2gn2 k+c̃Mθn(k)
(4.57)

for some constants c, c′, c′′, c̃ ∈ (0,∞). The latter bound applies also to the case k = n(x).
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The desired expectation is now obtained by summing over x, y ∈Dε
N . This yields

E
∣∣�̂D,M

N

(
b, b′

)∩Dε
n

∣∣2 = ∑
x,y∈Dε

N

P
(
x, y ∈ �̂

ε,M
N

(
b, b′

))
≤

∑
x,y∈Dε

N

|x−y|≤K
1/4
N

P
(
x ∈ �̂

ε,M
N

(
b, b′

))+ ∑
x,y∈Dε

N

|x−y|>K
1/4
N

P
(
x, y ∈ �̂

ε,M
N

(
b, b′

))
. (4.58)

The first term on the right-hand side is bounded by K
1/2
N E|�̂D,M

N (b, b′)| =O(K
3/2
N ). For the second term we partition

the pairs (x, y) further depending on which annulus �k(x) \ �k−1(x) the vertex y belongs to. As there are order
N2e2k such pairs for a given k, the bound (4.57) gives

∑
x,y∈Dε

N

|x−y|>K
1/4
N

P
(
x, y ∈ �̂

ε,M
N

(
b, b′

))≤ c′KN

N2

n∑
k=kN

n1/2

k(n− k + 1)1/2
N2e

2k− a2
N

2gn2 k+c̃M(n(x)−k)3/4

, (4.59)

where we set n to be the maximum of n(x) over all x ∈Dε
N . (Here we note that a change in n by a additive constant

changes (4.57) only by a multiplicative constant.)

Now
a2
N

2gn2 is asymptotic to 2λ2 < 2 in the limit as N →∞ and so the exponent on the right of (4.59) grows
linearly with k. The sum is thus dominated by the k = n term. Since n= logN +O(1), simple algebra shows that the
expression on the right of (4.59) is O(K2

N). Since all bounds above were uniform in D ∈D with a given diameter,
say, diamD ≤ 1, we only need to show how to get the diameter dependence explicitly.

A key point is that the bounds were also independent of the approximating sequence of domains DN , nor of
the centering sequence aN as long as it obeyed (2.22) and not even much on the sequence kN in the cutoff for the
event TN,M as long as N is large enough. Fix D ∈D with r := diamD ≤ 1, let DN be a sequence of approximating
domains obeying (2.1)–(2.2) and set D′ := r−1D. Fix j ∈ {0,1, . . . , �r−1�} and set

D′
N :=D�N/r�−j , a′N := a�N/r�−j and k′N := k�N/r�−j . (4.60)

Then {D′
N } is a sequence of domains approximating, in the sense of (2.1)–(2.2), domain D′. Using a′N as the centering

sequence and k′N as the cutoff in the event TN,M in the definition of �̂
D′,M
N (b), we then get

�̂
D,M
�N/r�−j (b)= �̂

D′,M
N (b). (4.61)

A calculation now shows that the normalizing sequence K ′
N defined using a′N above obeys

K ′
N =

(
r2+2λ2 + o(1)

)
K�N/r�−j . (4.62)

Since every integer can be cast to the form �N/r�− j for some N and some j as above, the claim for D follows from
the claim for D′. �

Our final task is the proof of the factorization property for the truncated level sets:

Proof of Lemma 4.3. Using the Cauchy–Schwarz inequality, we bound the expression inside the limit in (4.12) by
the square root of

1

K2
N

∑
x,y∈AN

E
((

1{hDN (x)≥aN } − eαλb1{hDN (x)≥aN+b}
)
1TN,M(x)

× (1{hDN (y)≥aN } − eαλb1{hDN (y)≥aN+b}
)
1TN,M(y)

)
. (4.63)
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To bound the sum above, we first consider pairs x, y for which m= �log‖x − y‖∞� obeys

m≥ 3

2
kN and ‖x − y‖∞ ∈

[
em + 2ekN , em+1 − 2ekN

]
. (4.64)

For such x, y, we have

�k(x)∩�kN (y)=∅, k = kN, . . . , n(x), (4.65)

and similarly

�k(y)∩�kN (x)=∅, k = kN, . . . , n(y). (4.66)

Consequently, letting F := σ(h
DN(x)
z : z ∈DN \ (�kN (x)∪�kN (y))) the term corresponding to such x and y in (4.63)

can be written as

E
[(

P
(
hDN (x)≥ aN |F

)− eαλbP
(
hDN (x)≥ aN + b|F))1TN,M(x)

× (P (hDN (y)≥ aN |F
)− eαλbP

(
hDN (y)≥ aN + b|F))1TN,M(y)

]
. (4.67)

We now write hD
N(x) as hD

N(x) = (S0(x) − SkN
(x)) + SkN

(x) and note that the quantity in the parenthesis is inde-
pendent of SkN

(x), due to the fact that this term is F -measurable. Using a similar decomposition for hDN (y), the
expectation in (4.67) is bounded by

E

[
1TN,M(x)F

(
SkN

(x)− aN

logN − kN

logN

)
1TN,M(y)F

(
SkN

(y)− aN

logN − kN

logN

)]
, (4.68)

where

F(u)=
∣∣∣∣P(h̃(0)≥ aN

kN

logN
− u

)
− eαλbP

(
h̃(0)≥ aN

kN

logN
− u+ b

)∣∣∣∣ (4.69)

with h̃ denoting the DGFF on �ekN .
Since aNkN/ logN ∼ 2

√
gλkN and Eh̃(0)2 = gkN + O(1), if we assume that |u| < (kN)7/8 then we can use

tail asymptotics for the Gaussian density to estimate the quantities above. In particular, P(h̃(0) ≥ aN
kN

logN
− u +

b)/P (h̃(0)≥ aN
kN

logN
− u) is asymptotic to

aN
kN

logN
− u

aN
kN

logN
− u+ b

exp

{−2b(aN
kN

logN
− u)− b2

2E[h̃(0)2]
}
∼ e−αλb, N →∞. (4.70)

It follows that

F(u)= o(1)P

(
h̃(0)≥ aN

kN

logN
− u

)
(4.71)

with o(1)→ 0 as N →∞ uniformly in u satisfying |u|< (kN)7/8. Since∣∣∣∣SkN
(x)− aN

logN − kN

logN

∣∣∣∣< k
7/8
N , on TN,M(x), (4.72)

whenever N is large enough, with a similar condition holding for y under TN,M(y), we can apply (4.71) in (4.68).
Reversing the step (4.68), the expectation in (4.67) is thus bounded by

o(1)P
(
hDN (x)≥ aN,hDN (y)≥ aN,TN,M(x), TN,M(y)

)
. (4.73)
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Proceeding as in (4.59), the contribution to the sum in (4.63) from terms where (4.64) holds is therefore at most
o((KN)2).

Turning to the remaining terms in the sum in (4.63), if x, y satisfy m < 3
2kN , then we bound the corresponding

term by 4e2αλ(b∨0)P (hDN (x)≥ aN + b ∧ 0). As in (3.20) the contribution to the sum from all such terms is o(K2
N).

For the pairs with m ≥ 3
2kN not satisfying the second restriction in (4.64), we can bound by 4e2αλ(b∨0)P (hDN (x) ≥

aN −b∧0, hDN (y)≥ aN −b∧0). Observing that the number of such pairs for a given m is at most order N2em+kN =
o(1)N2e2m, the calculation in (4.59) again shows that such terms contribute o((KN)2) as well. The claim follows. �

5. Proofs of main theorems

The goal of this short section is to give formal proofs of our main theorems. Before we do that, we still have to address
one issue that has been excluded from the discussion so far: the third component of the point process that captures the
local behavior of the field near a point of an intermediate level set.

5.1. Local structure of intermediate level sets

Henceforth, let ηD
N denote the full three-component process defined in (2.5) and let η̂

D,M
N be its truncation to points x

where TN,M(x) holds. In addition, define

η̃
D,M
N := 1

KN

∑
x∈DN

δx/N ⊗ δhDN (x)−aN
⊗ δ{hDN (x)−hDN (x+z) : z∈Z2}1T̃N,M(x), (5.1)

where

T̃N,M(x) := TN,M(x)∩
{

max
y∈∂�kN (x)

∣∣hDN (x)− hDN (y)
∣∣≤ k2

N

}
(5.2)

with �k(x) and kN defined in (4.2) and (4.5), respectively. Obviously, ηD
N dominates η̂

D,M
N which in turn dominates

η̃
D,M
N . First we note that the truncations do not really matter as soon as proper limits are taken:

Lemma 5.1. For any continuous, compactly-supported function f : D×R×RZ
2 →R,

lim
M→∞ lim sup

N→∞
E
∣∣〈̃ηD,M

N ,f
〉− 〈ηD

N ,f
〉∣∣= 0. (5.3)

Proof. In light of Lemma 3.1 it suffices to show that for any ε > 0, the expected number of x ∈Dε
N where TN,M(x) \

T̃N,M(x) occurs is o(KN). Invoking the union bound, this is at most∑
x∈Dε

N

∑
y∈∂�kN (x)

P
(
hDN (x)− hDN (y) > k2

N

)
. (5.4)

Since hDN (x) − hDN (y) has mean zero and variance bounded by a constant times kN uniformly for all such pairs

whenever N is large enough, the probability on the right is at most e−ck3
N . As kN ∼ c′ logN and as the number of

terms in the sum is only order N2ekN , the claim follows. �

The principal computation to be done in this section is now the content of:

Proposition 5.2. Let ν be the measure in (2.7) and, given any continuous, compactly-supported function f : D×R×
RZ

2 →R, let

fν(x,h) :=Eν

(
f (x,h,φ)

)
(5.5)
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with the expectation over φ. Then for any M > 0,

lim
N→∞E

∣∣〈̃ηD,M
N ,f

〉− 〈̃ηD,M
N ,fν

〉∣∣= 0. (5.6)

For the proof we will need:

Lemma 5.3. Let ε > 0 and, for x ∈Dε
N and a sample of hDN , let ϕN denote the discrete-harmonic extension of the

values of hDN on {x} ∪�kN (x)c. Recall the notation a for the potential kernel associated with the simple symmetric
random walk on Z2. Then for any sequence aN related to λ ∈ (0,1) via the asymptotic (1.5),

max
x∈Dε

N

max
z∈�r(x)

sup
hDN ∈T̃N,M(x)

|hDN (x)−aN |≤log logN

∣∣∣∣hDN (x)− ϕN(z)− 2√
g

λa(z− x)

∣∣∣∣ −→N→∞ 0. (5.7)

Proof of Lemma 5.3. To show this, let HN,x(z, y) denote the probability that the simple random walk started at z

first returns to {x} ∪�kN (x)c at y. (Note that HN,x(x, x) > 0 in this case.) Then

hDN (x)− ϕN(z)=
∑

y∈∂�kN (x)

HN,x(z, y)
[
hDN (x)− hDN (y)

]
. (5.8)

Since Sk(x) is the average of {hDN (y) : y ∈ ∂�kN (x)} with respect to the exit distribution from �KN (x) of the simple
random walk started at x, we have

SkN
(x)

∑
y∈∂�kN (x)

HN,x(x, y)=
∑

y∈∂�kN (x)

HN,x(x, y)hDN (y). (5.9)

Swapping hDN (x) for SkN
(x) on the right hand side of (5.8) then gives

hDN (x)− ϕN(z) = (1−HN,x(z, x)
)[

hDN (x)− SkN
(x)
]

+
∑

y∈∂�kN (x)

(
HN,x(z, y)−HN,x(x, y)

)[
SkN

(x)− hDN (y)
]
. (5.10)

We claim that the second term on the right vanishes in the stated limits. Indeed, on T̃N,M(x) we have |hDN (x) −
hDN (y)| ≤ k2

N for each y ∈ ∂�kN (x) and so |hDN (y)− SkN
(x)| ≤ 2k2

N . The standard bounds on the regularity of the
harmonic measure show |HN,x(z, y) − HN,x(x, y)| ≤ cre−2kN for all z ∈ �r(x). The second term is thus of order
k2
N e−kN .

Concerning the first term on the right of (5.10) we note that, on the event TN,M(x)∩ {|hDN (x)− aN | ≤ log logN}
we have

hDN (x)− SkN
(x)= aN

kN

n(x)
+O

(
k

3/4
N

)
, (5.11)

where n= logN +O(1), while

gkN

(
1−HN,x(z, x)

)= a(z− x)+ o(1) (5.12)

uniformly in z ∈�r(x). Using the asymptotic (1.5) for aN , we then get (5.7). �

Proof of Proposition 5.2. By way of limit arguments, we may assume that f depends only on a finite number of
coordinates of φ, say, those in �r(0), and that f (x,h,φ) �= 0 implies dist(x,�c) > ε and h ∈ [b, b′) for some ε > 0
and b < b′. Abbreviate

F(x,h,φ) := f (x,h,φ)− fν(x,h). (5.13)
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Using Cauchy–Schwarz, the expectation in (5.6) squared is bounded by

1

K2
N

∑
x,y∈Dε

N

E

(
F

(
x

N
,hDN (x)− aN,

(
hDN (x)− hDN (x + z)

)
z∈�r(0)

)
1T̃N,M(x)

× F

(
y

N
,hDN (y)− aN,

(
hDN (y)− hDN (y + z)

)
z∈�r(0)

)
1T̃N,M(y)

)
. (5.14)

The argument at the end of the proof of Lemma 4.3 permits us to assume that x, y are such that (4.64) applies. We
also assume that N is so large that ekN > r . Conditioning on the sigma algebra

F := σ
(
hDN (z) : z /∈ [�kN (x)∪�kN (y)

] \ {x, y}) (5.15)

then splits the expectation into a product of two parts, one for x and the other for y. Using the Gibbs–Markov de-
composition to write hDN on �kN (x) \ {x} as ϕN + h̃N , where h̃N is the DGFF on �kN (x) \ {x} and ϕN is as in
Lemma 5.3, we now write the term corresponding to x as

E

(
F̃N

(
x

N
,hDN (x)− aN,hDN (x)− ϕN(· − x)

)
1T̃N,M(x)

∣∣∣∣F), (5.16)

where

F̃N (x,h,φ) :=EF(x,h,φ + h̃N ) (5.17)

with the expectation with respect to h̃N . Our aim is to show that the random variable under expectation in (5.16) is
small uniformly in x ∈Dε

N and the part of the configuration measurable with respect to F .
Thanks to uniform continuity of f , the identity (5.7) permits us to replace hDN − ϕN(· − x) in (5.16) by 2√

g
λa

at a cost that tends deterministically to zero. The random variable under expectation then depends on the conditional
field only through hDN (x). We now observe that, by the weak convergence of the DGFF on �kN

(0) \ {0} to the DGFF
on Z2 \ {0} – which can be verified by comparing covariances – we get

EF̃N

(
x,h,

2√
g

λa

)
−→

N→∞ 0 (5.18)

uniformly in x and h. We conclude that the conditional expectation in (5.16) is bounded by

o(1)1{hDN (x)−an∈[b,b′)}1TN,M(x) (5.19)

with o(1)→ 0 uniformly in x ∈Dε
N . In light of Lemma 4.3, the quantity in (5.14) tends to zero as N →∞. The claim

follows. �

5.2. Proofs of main results

We are now ready to give the proofs of our main theorems:

Proof of Theorem 2.1. Let f : D × R × RZ
2 → R be continuous with compact support and let fν be as in (5.5).

Theorems 3.14 and 4.5 and ensure that 〈ηD
N ,fν〉 tends in distribution to∫

ZD
λ (dx)⊗ e−αλh dhfν(x,h)=

∫
ZD

λ (dx)⊗ e−αλh dh⊗ ν(dφ)f (x,h,φ). (5.20)

Lemma 5.1 and Proposition 5.2 then identify this with the distributional limit of 〈ηD
N ,fν〉. As this holds for all such f ,

the claim follows. �
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Proof of Corollary 2.2. This follows from Theorem 2.1 with Lemma 3.1 used to reduce the problem to level sets
between two values of the form aN + b. �

Proof of Theorem 2.3. This was proved as part of the proofs of Theorems 3.14 and 4.5. �

Proof of Theorem 2.4. This is proved exactly as [9, Theorem 7.2]; one just needs to change the exponent 4 into 2+
2λ2 in suitable places. We only verify the parts of this theorem where this change shows up. First off, the independence
of the limit (2.6) on the particular sequence aN permits us to assume aN := 2

√
gλ logN for which we then have

KrN/KN → r2+2λ2
as N →∞. This implies the scaling relation (2.26). The representation of ZS

λ

law= YS∞ for any
square S then yields rotation invariance. This is because, under a conformal map f : D→ f (D), we have

Cf (D),f (D̃)
(
f (x), f (y)

)= CD,D̃(x, y) (5.21)

for any admissible D̃ ⊂D and thus

�f (D),f (D̃) ◦ f
law= �D,D̃. (5.22)

The rotation invariance of YS∞ then follows from the rotation invariance of the function ψD
λ .

With these properties verified, the proof of [9, Proposition 7.2] can then be followed literally to yield, for
any u : D→[0,∞) bounded and measurable,

E
(
e−〈Z

f (D)
λ ,u◦f 〉)≥E

(
e−〈ZD

λ ,|f ′◦f−1|2+2λ2
u〉). (5.23)

Iterating this with f replaced by f−1 then gives equality in (5.23). The claim follows. �

Proof of Theorem 2.5. Let D ∈D be such that it D fits an open dyadic square of side r . For any integer k ≥ 0, let
Sk,i , i = 1, . . . , n(k) be open dyadic squares of side r2−k that lie entirely in S. Clearly, each Sk,i has a non-empty
intersection and contains exactly 4 squares of the form Sk+1,j although there may be squares of the latter form that do
not belong to any square of the form Sk,i . For each k ≥ 1, let Hk be the set of functions in H1

0(D) that are harmonic on

each Sk,i , i = 1, . . . , n(k), and vanish on D \⋃n(k)
i=1 Sk,i . Then, as is checked by the Gauss-Green formula, {Hk : k ≥ 0}

are orthogonal subspaces of H1
0(D) with

H1
0(D)=

⊕
k≥0

Hk. (5.24)

A minor complication that arises in this setting is that each Hk is infinitely dimensional. Still, by separability of H1
0(D),

we can find an countable orthonormal basis {ϕ̃k,j : j ≥ 1} in each Hk .

Let {Xk,j : k, j ≥ 1} be i.i.d. standard normals and write D0 :=D and Dk :=⋃n(k)
i=1 Sk,i . A covariance calculation

shows

�Dk−1,Dk law=
∑
j≥1

Xk,j ϕ̃k,j on Dk, k ≥ 1. (5.25)

We also have

�D,Dm law=
m∑

k=1

�Dk−1,Dk

(5.26)

with the fields on the right-hand side regarded as independent. Using a suitable coupling to realize these distributional
identities as almost sure equalities, letting

YD
k (dx) := cψD

λ (x)

n(k)∑
i=1

eαλ�D,Dk
(x)− 1

2 α2λ2E[�D,Dk
(x)2]1Sk,i

(x)dx (5.27)
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and setting Fk := σ(X�,j : �+ j ≤ k}, then for any measurable A⊂D,

E
(
YD

m (A)|Fk

)= ∫
A

cψD
λ (x)μ

D,αλ
k(k−1)/2(dx), m≥ k, (5.28)

where μ
D,β
n is the measure defined in (2.16) for the basis {ϕn : n ≥ 1} in H1

0(D) which is obtained by reordering
{ϕ̃k,j : j ≥ 1} according to the complete order

(k, j) (k′, j ′) ⇔ k+ j < k′ + j ′ or k + j = k′ + j ′ & j ≤ j ′. (5.29)

Since λ < 1 and thus αλ < βc, it is known (cf. a remark after Rhodes and Vargas [29, Theorem 5.5]) that μ
D,β
n

converges to a non-trivial measure μ
D,β∞ almost surely and in L1. It follows that {YD

k (A),Fk : k ≥ 1} is a uniformly
integrable martingale. The Martingale Convergence Theorem then gives

YD
k (A) −→

k→∞ YD∞(A) a.s. and in L1. (5.30)

Using this in (5.28) shows

E
(
YD∞(A)|Fk

)= ∫
A

cψD
λ (x)μ

D,αλ
k(k−1)/2(dx), k ≥ 1. (5.31)

The Levy Backward Theorem and the convergence μ
D,β
n → μ

D,β∞ along with the fact that
⋂

k≥1 Fk is trivial now
identify YD∞ with the LQG measure on the right of (2.18).

To link this to the law of ZD
λ we note that, as part of the proofs of Theorems 3.14 and 4.5, we showed that

ZD
λ

law= YD∞ for D being a dyadic square. The Gibbs–Markov property and the construction (5.27) then readily extend
this to all D. �

Appendix: Useful properties and bounds

Here we will review some of the needed facts concerning the DGFF as well as the Green function of the simple
symmetric random walk on Z2. We begin with the latter.

Given D � Z2, the Green function GD(x, y) is the expected number of visits to y of the simple random walk
started at x before the walk exits D. Denoting V ′N := (−N,N)2 ∩Z2, the potential kernel can be defined by the limit

a(x) := lim
N→∞

[
GV ′N (0,0)−GV ′N (0, x)

]
. (A.1)

The potential kernel admits the asymptotic form

a(x)= g log |x| + c0 +O
(|x|−2), |x| →∞. (A.2)

with c0 a numerical constant. For D finite, the fact that a is discrete harmonic away from 0 while x �→GD(x, y) is
harmonic on D \ {y}, we have

GD(x, y)=−a(x − y)+
∑
z∈∂D

HD(x, z)a(y − z), (A.3)

where HD(x, z) is the probability that the simple random walk started at x exits D at z. As shown in [9, Lemma A.2],
the class of domains D is such that, for any D ∈D and any sequence DN approximating D in the sense of (2.1)–(2.2),
we have∑

z∈∂DN

HDN
(�xN�, z)δz/N(·) vaguely−→

N→∞ �D(x, ·), x ∈D, (A.4)
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where �D(x, ·) is the harmonic measure on (i.e., the hitting probability of the Brownian motion started from x to) the
boundary ∂D of the continuum domain D. Using this in conjunction with (A.2), for x, y ∈D with x �= y we then get

GDN
(�xN�, �yN�)=−g log |x − y| + g

∫
∂D

�D(x,dz) log |x − z| + o(1). (A.5)

For x = y we instead get (3.7) effectively replacing −g log |x − y| by g logN + c0.
Moving to the properties of the DGFF, one that is most fundamental is the Gibbs–Markov decomposition. If

V ⊂U ⊂ Z2 are finite domains and hU and hV the DGFFs on U , resp., V , then

hU law= hV + ϕU,V (A.6)

with ϕU,V independent of hV and having sample paths that are discrete harmonic on V and equidistributed to hU

on U \ V . The law of ϕU,V can be alternatively prescribed by its covariance structure, which turns out to be the
difference GU −GV . It is now easy to check from (A.3)–(A.4), this difference admits a scaling limit in the sense that,
for any D,D̃ ∈D with D̃ ⊂D and locally uniformly in x, y ∈ D̃

GDN
(�xN�, �yN�)−GD̃N

(�xN�, �yN�) −→
N→∞ CD,D̃(x, y), (A.7)

with CD,D̃ as in (2.9). Letting �D,D̃ be the Gaussian process with covariance CD,D̃ , for each N ≥ 1 and each δ > 0,
there is a coupling of ϕDN,D̃N with �D,D̃ such that

lim
N→∞P

(
sup
x∈D̃

dist(x,D̃c)>δ

∣∣ϕDN,D̃N
(�xN�)−�D,D̃(x)

∣∣> δ
)
= 0, (A.8)

see [11, Lemma B.14].
As our final item of business, we will prove a lemma that was used in the proof of Theorem 4.5. The proof is

standard; we include it merely for completeness of exposition.

Proof of Lemma 4.4. To lighten the notation suppose S is an open square of side r and let Si , i = 1, . . . ,L2 be

disjoint open squares of side r/L that just barely fit into S. Denote S̃ :=⋃L2

i=1 Si and let xi be the center point of Si ,

for each i. Then Var(�S,S̃ (xi))≤ g logL+ c for some constant c and so, by a straightforward union bound,

P
(

max
i=1,...,L2

�S,S̃(xi) > 2
√

g logL
)
≤ c′√

logL
. (A.9)

Next let Sδ
i := {z ∈ Si : dist(z, Sc

i ) > δ} and note that

max
i=1,...,L2

sup
z∈Sδ

i

Var
(
�S,S̃(z)−�S,S̃(xi)

)≤ c (A.10)

with c independent of L. Letting

M�
L := max

i=1,...,L2
sup
z∈Sδ

i

(
�S,S̃(z)−�S,S̃(xi)

)
(A.11)

the Borell–Tsirelson inequality (see Adler [2, Theorem 2.1]) shows that M�
L has a uniform Gaussian tail and so

P
(
M�

L −EM�
L >

√
logL

)≤ L−c (A.12)

for some c > 0 independent of L. It thus remains to control the growth rate of EM�
L. For this we consider the

pseudometric space (X, ρ), where X := {(i, z) : i = 1, . . . ,L2, z ∈ Sδ
i } and ρ((i, z), (i′, z′)) :=E[�S,S̃(z)−�S,S̃(z′)]
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when z ∈ Sδ
i and z′ ∈ Sδ

i′ . Writing Bρ((i, z), r) for the closed ball in X of radius r centered at (i, z) and using m for

the normalized Lebesgue measure on
⋃L2

i=1 Sδ
i , the Fernique criterion (cf. Adler [2, Theorem 4.1]) then gives

EM�
L ≤ c

∫ ∞

0
dr

√
log

1

m(Bρ(x, r))
(A.13)

for some universal constant c. The fact that (x, y) �→ CS,S̃(x, y) is uniformly Lipschitz on each Sδ
i gives

m(Bρ((i, z), r)) ≥ c′(r ∧ L−1)4 with c′ > 0 independent of L as soon as δ is sufficiently small. Plugging this into
(A.13), we get EM�

L ≤ c′′
√

logL. Combining this with (A.12) and (A.9), the claim follows. �
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