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Abstract. We investigate the motion of an inert (massive) particle being impinged from below by a particle performing (reflected)
Brownian motion. The velocity of the inert particle increases in proportion to the local time of collisions and decreases according
to a constant downward gravitational acceleration. We study fluctuations and strong laws of the motion of the particles. We further
show that the joint distribution of the velocity of the inert particle and the gap between the two particles converges in total variation
distance to a stationary distribution which has an explicit product form.

Résumé. Nous étudions le mouvement d’une particule inerte (massive) qui est frappé par en dessous par une particule effectuant
un mouvement brownien (réfléchi). La vitesse de la particule inerte augmente proportionnellement au temps local des collisions et
diminue en fonction d’une accélération gravitationnelle constante vers le bas. Nous étudions les fluctuations et les lois fortes du
mouvement des particules. Enfin, nous montrons que la distribution conjointe de la vitesse de la particule inerte et de l’écart entre
les deux particules converge pour la distance de variation totale vers une distribution stationnaire qui a une forme produit explicite.
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1. Introduction

We will investigate the motion of an inert (massive) particle that is impinged from below by a particle performing
(reflected) Brownian motion. Whenever the two particles collide, the velocity of the inert particle increases in propor-
tion to the local time of collisions. Furthermore, there is a gravitational field that pulls the inert particle downwards
by giving it a constant acceleration. The Brownian particle is reflected on the trajectory of the inert particle according
to the usual Skorokhod recipe.

Formally, the motion of the two particles will be defined by a system of SDE’s. We will denote the driving Brow-
nian motion by B . We will use X and S to denote the trajectories of the reflecting Brownian particle and the inert
particle, respectively, and V to denote the velocity of the inert particle. Gravitation will be represented by a constant
acceleration g > 0. We will write L to denote the intersection local time between the two particles, defined as the
unique continuous non-decreasing process increasing only when St = Xt (i.e., Lt − L0 = ∫ t

0 I{Su=Xu} dLu for all
t ≥ 0). The SDE’s are⎧⎪⎨⎪⎩

dXt = dBt − dLt ,

dVt = dLt − g dt,

dSt = Vt dt.

(1.1)
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There is also an extra condition that St ≥ Xt for all t ≥ 0, that is, the Brownian particle and the inert particle can
collide but their trajectories cannot cross (this applies, in particular, to the initial condition, i.e., S0 ≥ X0). We will
show existence and uniqueness of the strong solution to (1.1) in Theorem 3.4.

The model without the gravitational component was originally introduced in [9]. The motivation came from trying
to mathematically model the joint motion of a Brownian particle in a liquid and a semi-permeable membrane (thought
of as the inert particle) which is permeable to the microscopic liquid molecules but not to the macroscopic Brownian
particle. Without gravitation, the inert particle moves with constant velocity in the absence of collisions and the
velocity increases (in proportion to the local time of collisions) only when the particles collide. Thus, it is clear
that there will be a random time after which the particles never collide and the inert particle “escapes” the Brownian
particle with constant velocity. The laws of the inverse velocity process V (−1) and the “escape velocity” were explicitly
computed in [9].

A more realistic situation arises when we take into account the effect of gravitation which exerts a constant down-
ward force on the inert particle (membrane) but barely affects the fluid molecules or the Brownian particle. We use the
term “gravitation” as a representative of any constant force on the inert particle due to a potential or mechanical pres-
sure. The gravitation component significantly changes the behavior of the model as the velocity of the inert particle
is no longer an increasing process and the inert particle can never escape the Brownian particle (they keep colliding).
The joint behavior of the two particles is thus, a priori, far from clear. Among other things, we will show that in this
battle between the gravitational pull and the Brownian push, gravitation “wins” as both particles eventually “fall” with
asymptotic velocity −g.

A number of related models were studied in [2,4,15]. In [2], reflecting diffusions were considered in bounded
smooth domains in R

d , that acquired drift proportional to the local time spent on the boundary of the domain. Product
form stationary distributions were derived for the joint law of the position of the reflecting process and its drift. In [15],
general classes of processes with inert drift were constructed and recurrence, transience and stationary distributions
were investigated for some particular examples. In [4], some Markov processes with discrete state spaces were studied
as approximations to processes with inert drift. Necessary and sufficient conditions in order to have a stationary
distribution in product form were given for these discrete state space Markov processes and it was conjectured that
these conditions carry over to some models with continuous state space via appropriate limiting operations.

Besides its initial motivation from physics, some important diffusion limits arising from heavy traffic asymptotics
of ‘join the shortest queue’ systems with many servers (see the diffusion described in Theorem 2 of [5]) can be
approximated by inert drift systems with gravitation and damping. The techniques introduced in this paper turn out to
be crucial in understanding the stationary behavior of these diffusions. This is an ongoing project of the first author
with Debankur Mukherjee (see [1]).

We will now discuss a few aspects of the model that we find intriguing. The constant g enters the model as the
acceleration but ends up as the asymptotic velocity for both inert and Brownian particles, S and X (see Theorem 2.3).
With the hindsight, one could provide the following “explanation” for this strange transformation of the role of g.
Since the local time represents the change of position for X and the change of velocity for S, it is perhaps not so
surprising that the acceleration of S becomes the velocity for X. Because of the parabolic drift, excursions of S above
X are not very large, which makes the two particles remain close on large time scales, so their asymptotic velocity
must be the same. We study the “zero-noise case” (i.e. with Bt ≡ 0) in Remark 2.4 and show that an analogous result
holds for this deterministic system, which provides further evidence as to why this result might be true even in the
presence of noise.

The product form of the stationary distribution for (V ,S − X) (see Theorem 2.1) came as a surprise to us but, with
the hindsight, we see that the model (1.1) fits into the framework of [4, Section 3]. In other words, an appropriate
discretized version of (1.1) should satisfy [4, Cor. 2.3], and it might be possible to perform a limiting operation on
that discretized model as conjectured in [4] and deduce the product form stationary distribution for the original model,
although we do not prove this in this paper.

The variance of the first component of the stationary distribution, representing V , does not depend on g. Once
again, this is not surprising with the hindsight, since the stationary distribution for the local time in a related model in
[2, Thm. 6.2] does not depend on the state space (Euclidean domain) for the Brownian particle.

The rest of the article is organized as follows. Our main results are stated in Section 2. Existence and uniqueness of
the strong solution to (1.1) is proved in Section 3. Section 4 is devoted to some technical estimates. These estimates
are used to obtain universal fluctuation results for V and S − X and laws of large numbers in Section 7. Finally, the
stationary distribution for the velocity and gap processes is derived in Section 6.
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2. Main results

This section contains statements of those of our main results that are non-technical.
The first theorem states that Z := (V ,S −X) has a unique stationary distribution which is the product of a Gaussian

distribution and an exponential distribution. We will prove in Section 6 that the laws of Zt converge in the total
variation distance to the stationary distribution.

Theorem 2.1. The process Z := (V ,S − X) has a unique stationary distribution with the density with respect to
Lebesgue measure given by

ξ(v,h) = 2g√
π

e−2ghe−(v+g)2
, v ∈ R, h ≥ 0. (2.1)

Furthermore, Zt converges to this distribution in total variation distance as t → ∞.

The next result shows that the fluctuations of the velocity process are of the order
√

log t while the fluctuations of
the “gap process” St − Xt are of the order log t .

Theorem 2.2. For any Z0 = z, almost surely,

− lim inf
t→∞

Vt√
log t

= lim sup
t→∞

Vt√
log t

= 1, (2.2)

lim sup
t→∞

St − Xt

log t
= 1

2g
, (2.3)

lim inf
t→∞

St − Xt

log t
= 0. (2.4)

We will show that both the “inert particle” St and the reflected Brownian particle Xt behave like Brownian motion
with constant negative drift −g on the large scale and, therefore, they satisfy the same Strong Law of Large Numbers
as Brownian motion with drift. The next theorem gives precise estimates on the oscillations of S and X from Brownian
motion with drift −g. The strong law follows as a consequence.

Theorem 2.3. For any Z0 = z, almost surely,

− lim inf
t→∞

Xt − (Bt − gt)√
log t

= lim sup
t→∞

Xt − (Bt − gt)√
log t

= 1,

lim sup
t→∞

St − (Bt − gt)

log t
= 1

2g
,

lim inf
t→∞

St − (Bt − gt)

log t
= 0.

It follows that, a.s.,

lim
t→∞

Xt

t
= lim

t→∞
St

t
= −g.

Remark 2.4. To gain some insight into why one might expect limt→∞ Xt

t
= limt→∞ St

t
= −g to hold almost surely,

we consider the “zero-noise case”, i.e., the deterministic two-particle system driven by (1.1) with Bt ≡ 0. Suppose we
start from the initial conditions S0 = X0,V0 < 0. Let τ = inf{t > 0 : Vt = 0}. Then on [0, τ ], St is decreasing and one
can conclude from the Skorohod equation (see [8, Lem. 6.14, Ch. 3]) that Lt = supu≤t (S0 − Su) = S0 − St . Using this
in (1.1), we obtain

St = Xt, Vt = −g + (V0 + g)e−t for all t ≤ τ. (2.5)
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The above implies τ = ∞ and Vt → −g as t → ∞. Thus,

lim
t→∞

Xt

t
= lim

t→∞
St

t
= lim

t→∞
1

t

∫ t

0
Vu du = −g (2.6)

holds for the zero-noise case when S0 = X0,V0 < 0. If S0 > X0 and V0 ∈ R, it follows from (1.1) that if σ = inf{t ≥
0 : St = Xt }, then σ < ∞ and Vσ < 0, and thus, we can perform the same computations for t > σ to deduce that (2.6)
holds.

Finally, suppose S0 = X0 and V0 ≥ 0. If St = Xt for all t ≥ 0, we use (1.1) to obtain dLt = −dXt = −dSt = −Vtdt

which gives us dVt = −Vtdt − gdt . This yields (2.5) and consequently (2.6). Otherwise, there exists t0 > 0 such that
St0 > Xt0 and the previous calculations again yield (2.6). Thus, we see that limt→∞ Xt

t
= limt→∞ St

t
= −g always

holds in the zero-noise case. As this is a “law of large numbers” type result, it is natural to expect that this result
would also hold with the Brownian noise via some scaling properties of Brownian motion. In the proof of Theorem
2.3, however, we derive the fluctuation results quite differently via some technical estimates and derive (2.6) as a
consequence of these results.

We will use the following notation: a ∧ b = min(a, b) and a ∨ b = max(a, b).

3. Existence and uniqueness of the process

In this section, we prove the existence and pathwise uniqueness of solutions to (1.1). We also prove the well-posedness
of the submartingale problem corresponding to the process. The latter fact will be an essential ingredient in proving
the existence of the stationary distribution in Section 6.

For notational convenience, all vectors written in the form v = (v1, . . . , vk) for some k ∈ N should be thought of as
column vectors. We will use vT to denote the corresponding row vector.

Remark 3.1. The following translation invariance property follows immediately from the form of equations (1.1).
Consider real numbers x, s, v, l with s ≥ x and l ≥ 0. If {(Xt , St ,Vt ,Lt ), t ≥ 0} solves (1.1) with the initial conditions
(X0, S0,V0,L0) = (0, s − x, v,0) then {(X̂t , Ŝt , V̂t , L̂t ), t ≥ 0} := {(x + Xt, x + St ,Vt , � + Lt), t ≥ 0} is a solution to
(1.1) with the initial conditions (X̂0, Ŝ0, V̂0, L̂0) = (x, s, v, �). Because of this, we will always assume in our technical
estimates that B0 = X0 = L0 = 0, unless explicitly stated otherwise.

The process given by Ht = St − Xt will be called the gap process. If we know both V and H , we can recover the
movement of the individual particles by first integrating V to obtain S, and then computing Xt = St − Ht .

Thus, existence and uniqueness of a strong solution to the system (1.1) are equivalent to those of the following
system of equations:{

dVt = dLt − g dt,

dHt = −dBt + Vt dt + dLt ,
(3.1)

where Bt is a standard one dimensional Brownian motion, Ht ≥ 0 for all t ≥ 0, and Lt is a continuous, non-decreasing
process satisfying dLt = I{0}(Ht ) dLt . As before, we will write Zt = (Vt ,Ht ).

If Bt and Zt are given, then Lt can be computed from the equation Lt = L0 + Vt − V0 + gt . Thus, the complete
description of the strong solution to (3.1) can be given in terms of only Z and B .

Even though reflected diffusions in H =R×R+ are well studied and many classical results are available, we have
not found a direct reference for existence and uniqueness of equations (3.1), mainly due to two technical issues: (i)
Zt is not a strictly elliptic diffusion, and (ii) the drift vector (−g,Vt ) is unbounded in the v-component. We will split
our proof of existence and uniqueness into two lemmas: one that shows that a local solution exists, and another that
extends local solutions to global ones. The second lemma will also be used to show that the submartingale problem is
well posed.

In the following, we will write

L = 1

2
∂hh + v ∂h − g ∂v
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for the second order differential operator associated to the generator of the Markov process Zt satisfying (3.1) (pro-
vided it exists) in the interior of the upper half plane H.

Lemma 3.2. For each N ≥ 0, there is a weak solution ZN
t = (V N

t ,HN
t ) of (3.1) up to time T N = inf{t > 0 : |ZN

t | >
N}. Also, (3.1) satisfies pathwise uniqueness up to time T N .

Proof. Note that equation (3.1) can be written as

dZt =
(

0 0
0 −1

)
dB∗

t +
(−g

Vt

)
dt +

(
1
1

)
dLt , (3.2)

where B∗
t = (Wt ,Bt ) and Wt is a standard, one dimensional Brownian motion independent of B , that has no effect

on the paths of Zt , that is, if we replace Wt with another Brownian motion W ′
t then the same process Zt will solve

(3.2). We will now apply a standard localization technique. Note that if a weak solution ZN
t exists for a modified

version of (3.2) with the drift vector replaced by (−g,Vt ∧ N), then ZN
t will also be a weak solution to the original

equation (3.2) up to time T N . The drift and diffusion coefficients for the modified version of (3.2) are Lipschitz and
bounded and thus, the equation fits into the setup of Theorem 1 in [14]: the diffusion matrix a = σσT has component
a22 = 1, the drift vector is Lipschitz and bounded, and the reflection vector γ := (1,1) is constant with a unit length
component in the direction of the normal to the boundary. Even though the statement of Theorem 1 in [14] is about
weak existence and weak uniqueness, its proof actually shows pathwise uniqueness. This implies the two claims made
in the lemma. �

Lemma 3.3. For each N ≥ 1, let ZN
t be a weak solution up to time T N = inf{t > 0 : |ZN

t | > N} of (3.1), with
ZN

0 = z. Then

(a) There are constants C1,C2 > 0, independent of N , such that E(|ZN
t∧T N |2) ≤ C1e

C2t .

(b) All processes ZN
t can be chosen to be strong solutions of (3.1). They can be constructed so that ZN

t = ZN ′
t for

t ≤ T N if N ≤ N ′. Hence, they can be extended to a strong solution Zt up to time T ∗ := supN T N . Pathwise
uniqueness holds for Zt up to time T ∗.

(c) T ∗ = ∞ a.s.

Proof.
To prove (a), set η(v,h) = 2h2 + v2 − 2hv, and recall that Lη = 1

2∂hhη + v∂hη − g∂vη and γ = (1,1). It is
elementary to check that 1

3 (h2 + v2) ≤ η(v,h) ≤ 3(h2 + v2). Since |ZN
t | < N for t < T N , we have by Itô ’s formula

1

3
E
(∣∣ZN

t∧T N

∣∣2)≤ Eη
(
ZN

t∧T N

)= η(z) +E

∫ t∧T N

0
Lη

(
ZN

u

)
du +E

∫ t∧T N

0
∇η

(
ZN

u

)T
γ dLN

u

= η(z) +E

∫ t∧T N

0
Lη

(
ZN

u

)
du,

since ∇η(ZN
u )T γ dLN

u = 2HN
u dLN

u = 0. To bound the integral on the right hand side, we note that there exist con-
stants K1,K2 > 0 such that |Lη(z)| ≤ K1 + K2|z|2. Putting all these inequalities together we obtain

E
(∣∣ZN

t∧T N

∣∣2)≤ 9|z|2 + 3K1t + 3K2

∫ t

0
E
(∣∣ZN

u∧T N

∣∣2)du.

Now (a) follows from Gronwall’s inequality.
Since pathwise uniqueness holds for (3.1) up to time T N , we can apply a well-known argument by Yamada and

Watanabe (see [6, Ch. IV, Thm. 11] or [8, Ch. 5, Corollary 3.23]) with minor modifications to show that ZN
t can

be chosen as a strong solution up to time T N . By pathwise uniqueness, if M > N we have that ZM
t = ZN

t for
t < T N . This allows us to define Zt = ZN

t for t < T N in a consistent way, and thus obtain a strong solution for
t < T ∗ = supN T N . It is clear that pathwise uniqueness also holds up to time T ∗. This shows (b).
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It remains to show that T ∗ = ∞ almost surely. For any α > 0 and R > 0, by (a), we have

P
(
T ∗ ≤ α

)≤ E

( |ZR
α |2

R2
I{T R≤α}

)
≤ C1

R2
eC2α.

Taking R → ∞ on the right hand side, we conclude that P(T ∗ ≤ α) = 0 for each α > 0, and thus T ∗ = ∞ a.s. �

As a direct consequence of the two previous lemmas, we are able to show existence and pathwise uniqueness for
equation (3.1), which we record in the following theorem.

Theorem 3.4. The system of stochastic equations (3.1) has a square integrable, strong solution (Vt ,Ht ), and satisfies
pathwise uniqueness.

Our next theorem will be used in the derivation of the stationary distribution of Zt . Recall that H = R × R+.
We will denote by C the set of continuous functions from [0,∞) to H. We denote by Ck

0(A) the set of compactly
supported functions on A with continuous derivatives up to order k, allowing k = ∞. We will use B to denote the
Borel σ−algebra of C, and {Ft } will denote the natural filtration on C. Recall that γ = (1,1) and Lf (v,h) = 1

2∂hhf +
v∂hf − g∂vf .

Theorem 3.5. The submartingale problem for (L, γ ) in H is well-posed, that is, there is a unique family of measures
{Pz : z ∈ H} on (C,B) such that, for each z ∈ H, the following properties hold

1. Pz(ω(0) = z) = 1.
2. For t ≥ 0, and each f ∈ C2

0(R2) such that ∇f (y)T γ ≥ 0 for all y ∈ ∂H, the process

St [f ] := f
(
ω(t)

)−
∫ t

0
Lf

(
ω(u)

)
du (3.3)

is a submartingale in (Pz,C,B, {Ft }).
Moreover, the unique solution to the submartingale problem corresponds to the law of the process Zt = (Vt ,Ht )

solving (3.1).

Before proceeding to the proof of Theorem 3.5, we will prove an important property about the amount of time the
process associated to a solution to the submartingale problem spends on the boundary of the domain.

Lemma 3.6. Let Z∗
t = (V ∗

t ,H ∗
t ) be a solution of the submartingale problem for (L, γ ) in H. Then∫ t

0
I∂H

(
Z∗

u

)
du = 0 a.s.

Proof. We will write z = (v,h) to simplify the notation. For n > 0, define qn(h) = h2 exp(−nh). Note that qn(h) =
∂hqn(h) = 0 on ∂H. For N > 0, let ϕN be a C2

0(R2) function satisfying: 0 ≤ ϕN(z) ≤ 1, ϕN(z) = 1 for |z| ≤ N ,
and ϕN has uniformly (in N ) bounded derivatives up to the second order. Let q̃n,N (z) = qn(h)ϕN(z). Since qn(h) is
bounded above by 4e−2/n2, it is clear that

lim
n→∞ q̃n,N (z) = 0, lim

n→∞E
(
q̃n,N

(
Z∗

t

))= 0 for any t ≥ 0. (3.4)

We have,∫ t

0
Lq̃n,N

(
Z∗

u

)
du =

∫ t

0

(
ϕN

(
Z∗

u

)
Lqn

(
H ∗

u

)+ qn

(
H ∗

u

)
LϕN

(
Z∗

u

)+ ∂hqn

(
H ∗

u

)
∂hϕN

(
Z∗

u

))
du.

We will argue that the integrals of the second and third terms on the right hand side go to zero as n → ∞, for
every fixed N . The claim holds for the second term because qn(h) is bounded above by 4e−2/n2 and LϕN(z)(h) is
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uniformly bounded. The function ∂hqn(h) converges to zero, and is uniformly bounded in n. The function ∂hϕN(Z∗
u)

is uniformly bounded. These observations prove the claim for the third term.
We now turn our attention to the first term on the right hand side. The function ϕN(z)Lqn(h) is uniformly bounded

and converges to ϕN(z) I{0}(h) as n goes to infinity. Therefore, applying the dominated convergence theorem, we see
that

lim
n→∞E

(∫ t

0
Lq̃n,N

(
Z∗

u

)
du

)
= E

(∫ t

0
ϕN

(
Z∗

u

)
I∂H

(
Z∗

u

)
du

)
. (3.5)

Since (∇q̃n,N (z))T γ = 0 on ∂H we have that St [q̃n,N ] − S0[q̃n,N ] is a martingale (this can be proved by considering
the submartingale problem applied to q̃n,N and −q̃n,N ). Therefore,

E
(
q̃n,N

(
Z∗

t

))= q̃n,N (z) +E

(∫ t

0
Lq̃n,N

(
Z∗

u

)
du

)
.

Letting n → ∞ in the above equation and using (3.4) and (3.5), we obtain

E

(∫ t

0
ϕN

(
Z∗

u

)
I∂H

(
Z∗

u

)
du

)
= 0.

The lemma now follows from the monotone convergence theorem upon taking N → ∞. �

Proof of Theorem 3.5. Using Itô’s formula, it is straightforward to check that solutions Z to (3.1), for different initial
values Z0 = z, constitute a family that solves the submartingale problem for (L, γ ) in H. It only remains to prove the
uniqueness in law of this solution. To this end, we will show that any solution Z∗ to the submartingale problem is a
weak solution of (3.1).

Consider a solution Z∗
t = (V ∗

t ,H ∗
t ) = ω(t) to the submartingale problem (3.3) with Z∗

0 = z ∈ H. We will use
Theorem 2.4 of [12]. That paper is concerned with processes whose diffusion coefficients aij are strictly elliptic
and drift coefficients bi are bounded (see page 147, and (i’) and (ii’) on page 159). Our diffusion coefficients are
not elliptic and our drift coefficients are not bounded, so, the results from the cited paper do not apply directly to
our setting. However, these assumptions are used neither in the definition of the class F in [12, page 161], nor in
the statements and proofs of Lemmas 2.3, 2.4, and 2.5, and Theorem 2.4 in that paper. Also, the definition of the
submartingale problem in [12] is slightly different than ours, because, in their setting, the integral in (3.3) has the
indicator function of H as a factor in the integrand, which is not an issue in view of Lemma 3.6 above. In order to use
Theorem 2.4 of [12], we will show that all functions f ∈ C2

0(R2) belong to the class F (whose definition we provide
next), by modifying an argument from [12].

The class F consists of those function f : [0,∞) ×R
2 → R which satisfy:

(i) f is bounded and continuous, and all its first order partial derivatives (both with respect to t and xi ) exist and are
bounded and continuous on [0,∞) × ∂H,

(ii) there is a bounded, continuous function Kf such that

Nt [f ] = f
(
t,Z∗

t

)−
∫ t

0
IH Kf

(
u,Z∗

u

)
du

is a local martingale in H.
(iii) there is a real valued, continuous, non-anticipating process Lt [f ] such that:

(a) L0[f ] = 0, Lt [f ] is of locally bounded variation, and E(|Lt [f ]|) < ∞) for t ≥ 0,
(b) Nt [f ] − Lt [f ] is a martingale.

(iv) if g ∈ C
1,2
b ([0,∞) ×R

2), that is, partial derivatives in t , and second partial derivatives in xi are continuous and
bounded, then f = f + g, satisfies (i), (ii) and (iii), and if (∇f )T γ ≥ 0 on [0,∞) × R

2, then Lt [f ] can be
chosen to be non-decreasing.
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We will briefly sketch the underlying idea of the proof. By setting Kf = Lf , Theorem 2.4 of [12] shows (without
using ellipticity or boundedness of drift) that there is a unique, continuous, non-decreasing, non-anticipating “local
time” L∗, such that

Mt [f ] = f
(
Z∗

t

)−
∫ t

0
Lf

(
Z∗

u

)
du −

∫ t

0

(∇f
(
Z∗

u

))T
γ dL∗

u

is a martingale for each f ∈ F . We will first show that every f ∈ C2
0(R2) belongs to the class F . Then, by appropriate

choices of f ∈ C2
0(R2), it will be shown that any solution Z∗ to the submartingale problem is also a weak solution of

(3.1) with L taken as L∗ determined by the class of functions F as described above.
We will first show that (i) and (ii) in the definition of F are satisfied by any f ∈ C2

0(R2). To see this, fix an arbitrary
f ∈ C2

0(R2). First, suppose that f has support in H, so that (∇f )T γ = 0 on ∂H. Hence, St [f ] is a martingale. For
general f ∈ C2

0(R2), let Hn = {(v,h) : h > n−1, |v| < n} and consider ηn ∈ C∞
0 (R2) such that ηn = 1 in Hn and

ηn = 0 outside of Hn+1. Define the “smooth localization” fn ∈ C2
0(R2) of f as fn = f ηn. For any stopping time τ ,

set τn = τ ∧ n, and τ ′
n = inf{t ≥ τn : Z∗

t /∈Hn} ∧ n. It follows that St∧τ ′
n
[fn] − St∧τn[fn] is a martingale. But

St∧τ ′
n
[f ] − St∧τn [f ] = St∧τ ′

n
[fn] − St∧τn[fn].

By taking n ↑ ∞, we obtain that St [f ] is a local martingale in H, in the sense of [12, page 158]. Since Kf = Lf is
bounded for any f ∈ C2

0(R2), we see that (i) and (ii) in the definition of F are satisfied.
Next, we will show that (iii) and (iv) are satisfied by any f ∈ C2

0(R2). If f ∈ C2
0(R2) satisfies (∇f )T γ ≥ 0 on ∂H,

then from the statement of the submartingale problem above, St [f ] is a locally bounded, continuous submartingale.
By the Doob-Meyer decomposition theorem, it follows that there is an integrable, non-decreasing, non-anticipating
continuous function Lt [f ] such that L0[f ] = 0 and St [f ] − Lt [f ] is a martingale. For general f ∈ C2

0(R2), consider
φ(v,h) = arctan(h), which is a defining function for H in the sense of [12] (see page 158), set α = − inf{(∇f (y))T γ :
y ∈ ∂H}, and define fα = f + αφ. It is clear that (∇fα)T γ ≥ 0, and we can define Lt [f ] = Lt [fα] − αLt [φ]. We
obtain that Lt [f ] is a non-anticipating continuous function of bounded variation such that L0[f ] = 0, E(|Lt [f ]|) ≤
E(Lt [fα]) + αE(Lt [φ]) < ∞, and St [f ] − Lt [f ] is a martingale. This shows (iii) and (iv) in the definition of F , and
proves that f belongs to the class F , for any f ∈ C2

0(R2).
Hence, we can apply [12, Thm. 2.4] to see that there exists a unique, continuous, non-decreasing, non-anticipating

process t �→ L∗
t , such that L∗

0 = 0, E(L∗
t ) < ∞, dL∗

t = I∂H(Z∗
t ) dL∗

t , and

Mt [f ] = f
(
Z∗

t

)−
∫ t

0
Lf

(
Z∗

u

)
du −

∫ t

0

(∇f
(
Z∗

u

))T
γ dL∗

u (3.6)

is a martingale for each f ∈ F , and in particular, for f ∈ C2
0(R2).

Using that Lf 2(z) = 2f (z)Lf (z) + |∂hf (z)|2, we obtain

Mt

[
f 2]= f

(
Z∗

t

)2 −
∫ t

0

∣∣∂hf
(
Z∗

u

)∣∣2 du − 2
∫ t

0
f
(
Z∗

u

)
Lf

(
Z∗

u

)
du − 2

∫ t

0
f
(
Z∗

u

)(∇f
(
Z∗

u

))T
γ dL∗

u.

Using (3.6) to compute df (Z∗
t ), we see that∫ t

0
f
(
Z∗

u

)
df

(
Z∗

u

)=
∫ t

0
f
(
Z∗

u

)
dMu[f ] +

∫ t

0
f
(
Z∗

u

)
Lf

(
Z∗

u

)
du +

∫ t

0
f
(
Z∗

u

)(∇f
(
Z∗

u

))T
γ dL∗

u.

It follows that

f
(
Z∗

t

)2 − 2
∫ t

0
f
(
Z∗

u

)
df

(
Z∗

u

)= Mt

[
f 2]− 2

∫ t

0
f
(
Z∗

u

)
dMu[f ] +

∫ t

0

∣∣∂hf
(
Z∗

u

)∣∣2 du.

Itô’s formula shows that the left hand side in the equation above equals to f (Z∗
0)2 + 〈f (Z∗)〉t , where the bracket

〈·〉 stands for quadratic variation. The right hand side has two continuous martingales plus a continuous process of
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bounded variation. By uniqueness of the decomposition of continuous semimartingales, we conclude that

〈
f
(
Z∗)〉

t
=
∫ t

0

∣∣∂hf
(
Z∗

u

)∣∣2 du. (3.7)

Since f (Z∗
t ) − Mt [f ] is continuous with bounded variation, we see that 〈M[f ]〉t = 〈f (Z∗)〉t is also given by (3.7).

This formula suggests that there is a Brownian motion B∗ such that dMt [f ] = ∂hf (Z∗
t ) dB∗

t for all f ∈ C2
0(R2). We

proceed to prove this by localization.
Let T N = inf{t ≥ 0 : |Z∗

t | > N}, and ZN
t = Z∗

t∧T N . For μ,λ ∈ R, let f be a C2
0(R2) function such that f (v,h) =

μh + λv for |(v,h)| < N . From (3.7) we obtain 〈μH ∗ + λV ∗〉t∧T N = μ2 · (t ∧ T N). By Levy’s characterization
theorem, there is a Brownian motion BN

t (in a possibly enlarged probability space) such that Mt [f ] = M0[f ] − μBN
t

for t < T N . Unravelling our definitions and using (3.6) for f at time t ∧ T N we obtain

μH ∗
t∧T N + λV ∗

t∧T N = μH ∗
0 + λV ∗

0 − μBN
t∧T N +

∫ t∧T N

0

(
μV ∗

u − gλ
)
du + (μ + λ)dL∗

t∧T N .

From this, it is direct to see that for each N ≥ 0, ZN
t is a weak solution to (3.1) up to time T N . It follows from

Lemma 3.3 that Z∗ is a weak solution to (3.1). Since this equation satisfies pathwise uniqueness by Theorem 3.4, it
also satisfies uniqueness in law ([8, Ch. 5, Proposition 3.20] with minor modifications for the reflected case), which
shows that there is a unique solution to the submartingale problem. �

4. Hitting time estimates

In this section, we derive some preliminary estimates for hitting times of V and S −X. These will be essential in most
of the calculations leading to fluctuation results, strong laws and convergence to stationarity.

We will use �·� to denote the greatest integer function. We will write C,C′,C′′, . . . for finite positive constants,
whose values might change from line to line.

Recall that Ht = St − Xt . Let

τV
a = inf{t ≥ 0 : Vt = a},

τH
a = inf{t ≥ 0 : Ht = a},

τB,c
a = inf{t ≥ 0 : Bt + ct = a},

σ (u) = inf{t ≥ u : St = Xt },
where a, c ∈ R, u ≥ 0, with the convention that inf∅ = ∞.

Remark 4.1. If a > V0, then SτV
a

= XτV
a

, as otherwise, by path continuity of S and X, there will exist a small time

interval [τV
a − δ, τV

a ] for some δ > 0 such that Su > Xu for all u ∈ [τV
a − δ, τV

a ] and consequently, the velocity will be
strictly decreasing in this interval, which is a contradiction to τV

a being the first hitting time of level a by the velocity
process V . It is not necessarily true that SτV

a
= XτV

a
for a < V0.

Remark 4.2. For any initial values V0 = v, X0 = x and S0 = y, σ(0) < ∞, a.s. To see this, note that on the event
{σ(0) = ∞}, the trajectory of S is a downward parabola and the trajectory of X is the trajectory of Brownian motion
B shifted by a constant, and staying forever under the parabola. This event has zero probability because Bt/t → 0,
a.s.

It is elementary to check that if S0 ≥ B0 = X0, then the local time satisfies the usual Skorohod equation (see [8,
Lem. 6.14, Ch. 3]),

Lt = 0 ∨ sup
u≤t

(Bu − Su), t ≥ 0. (4.1)
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We will be frequently approximating the local time L by using the local time of standard Brownian motion B

reflected, via the Skorohod equation, downward on a line of slope a passing through the origin. We will use the
following notation,

L
(a)
t = sup

u≤t
(Bu − au). (4.2)

We will use the following well known formulas (see [8, Ch. 2, (9.20); Ch. 3, (5.12) and (5.13)]). If B0 = 0 then

P

(
sup
s≤t

Bs ≥ x
)

= 2
∫ ∞

x

1√
2πt

e−u2/(2t) du ≤ 2
√

t√
2πx

e−x2/(2t), t, x > 0, (4.3)

P
(
τB,m
a ∈ dt

)= |a|√
2πt3

exp
(−(a − mt)2/(2t)

)
dt, t ≥ 0, (4.4)

P
(
τB,m
a < ∞)= exp

(
ma − |ma|). (4.5)

The following two lemmas contain estimates for the hitting times of different levels by the velocity process Vt , for
starting points in different ranges of values.

Lemma 4.3. Assume that H0 = 0. Then for 0 < a1 < a2, and t ≥ 2(a2 − a1)/a1,

P
(
τV−g−a1

> t | V0 = −g − a2
)≤ 4(a2 − a1)

((a2 − a1) + a1t)a1
√

2πt
e−a2

1 t/8. (4.6)

Proof. It follows easily from (4.1)–(4.2) that, assuming that V0 = −g −a2 and t < τV−g−a1
, we have Lt ≥ L

(−g−a1)
t =

supu≤t (Bu + (g + a1)u). We will use similar inequalities between Lt and L
(m)
t later in the paper a number of times,

without explicitly referring to (4.1)–(4.2). We have,

P
(
τV−g−a1

> t | V0 = −g − a2
)

= P(Ls − gs < a2 − a1 for s ≤ t)

≤ P

(
sup
u≤s

(
Bu + (g + a1)u

)− gs < a2 − a1 for s ≤ t
)

≤ P
((

Bs + (g + a1)s
)− gs < a2 − a1 for s ≤ t

)
= P(Bs + a1s < a2 − a1 for s ≤ t)

= P
(
τ

B,a1
a2−a1

> t
)
.

This and (4.4) imply that,

P
(
τV−g−a1

> t | V0 = −g − a2
)≤

∫ ∞

t

a2 − a1√
2πu3

exp

(
− ((a2 − a1) − a1u)2

2u

)
du.

Making a change of variable from u to z = a2−a1√
u

− a1
√

u, and using the fact that t ≤ u, we see that

P
(
τV−g−a1

> t | V0 = −g − a2
)

≤
∫ ∞

t

a2 − a1√
2πu3

exp

(
− ((a2 − a1) − a1u)2

2u

)
du

= (a2 − a1)

∫ a2−a1√
t

−a1
√

t

−∞
u−3/2

(
1

2
(a2 − a1)u

−3/2 + 1

2
a1u

−1/2
)−1 1√

2π
e−z2/2 dz
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= (a2 − a1)

∫ a2−a1√
t

−a1
√

t

−∞

(
1

2
(a2 − a1) + 1

2
a1u

)−1 1√
2π

e−z2/2 dz

≤ 2(a2 − a1)

(a2 − a1) + a1t

∫ a2−a1√
t

−a1
√

t

−∞
1√
2π

e−z2/2 dz.

Note that, when t ≥ 2(a2 − a1)/a1, a2−a1√
t

≤ a1
√

t
2 . Thus, the last estimate and (4.3) yield

P
(
τV−g−a1

> t | V0 = −g − a2
)≤ 2(a2 − a1)

(a2 − a1) + a1t

∫ a2−a1√
t

−a1
√

t

−∞
1√
2π

e−z2/2 dz

≤ 2(a2 − a1)

(a2 − a1) + a1t

∫ −a1
√

t/2

−∞
1√
2π

e−z2/2 dz

≤ 2(a2 − a1)

(a2 − a1) + a1t
· 2√

2πa1
√

t
e−a2

1 t/8,

which proves the lemma. �

Lemma 4.4. Assume that H0 = 0. Then for 0 < a1 < a2,

(i) If a1 > g, then for t ≥ 2(a2 − a1)/g,

P
(
τV−g+a1

> t | V0 = −g + a2
)≤ e−g(a1−g)t . (4.7)

(ii) If a1 ≤ g, then for t ≥ 2(a2 − a1)/a1,

P
(
τV−g+a1

> t | V0 = −g + a2
)≤ 4

a1
√

2πt
e−a2

1 t/8. (4.8)

Proof. For t < τV−g+a1
, the following inequality holds, Lt ≤ L

(−g+a1)
t = supu≤t (Bu − (a1 − g)u). Therefore for a1 >

g and t ≥ 2(a2 − a1)/g,

P
(
τV−g+a1

> t | V0 = −g + a2
) = P

(
Ls − gs > −(a2 − a1) for s ≤ t

)
≤ P

(
sup
u≤s

(
Bu − (a1 − g)u

)− gs > −(a2 − a1) for s ≤ t
)

≤ P

(
sup
u≤t

(
Bu − (a1 − g)u

)− gt > −(a2 − a1)
)

≤ P

(
sup
u<∞

(
Bu − (a1 − g)u

)
> gt − (a2 − a1)

)
= P

(
τ

B,−(a1−g)

gt−(a2−a1)
< ∞)

.

We use (4.5) and the assumption that a2 − a1 ≤ gt/2 to conclude that

P
(
τV−g+a1

> t | V0 = −g + a2
)≤ exp(−2(a1 − g)

(
gt − (a2 − a1)

)≤ e−g(a1−g)t .

This proves (i).
For a1 ≤ g and t ≥ 2(a2 − a1)/a1,

P
(
τV−g+a1

> t | V0 = −g + a2
)= P

(
Ls − gs > −(a2 − a1) for s ≤ t

)
≤ P

(
sup
u≤s

(
Bu + (g − a1)u

)− gs > −(a2 − a1) for s ≤ t
)



1542 S. Banerjee, K. Burdzy and M. Duarte

≤ P

(
sup
u≤t

Bu + (g − a1)t − gt > −(a2 − a1)
)

≤ P

(
sup
u≤t

Bu > a1t/2
)
.

This and (4.3) show that

P
(
τV−g+a1

> t | V0 = −g + a2
)≤ 4

a1
√

2πt
e−a2

1 t/8,

which proves (ii). �

The following lemma gives a uniform control over σ(t) (the first time the Brownian particle and the inert particle
meet after time t ) over all times in a large interval.

Lemma 4.5. For every δ > 0 and C0, we can find positive constants C1,C2, a0 such that for all a ≥ a0 and all
v ∈ [−g − δ2a2/8,−g + √

gδa/4], the following holds for V0 = v, H0 = 0, and any m ≥ 1:

P

(
σ(t) > t + 3

δa√
g

for some t ≤ C0a
m ∧ τV

−g+√
gδa/4 ∧ τV

−g−δ2a2/8

)
≤ C1a

m−1e−C2a
3
.

Proof. Fix any δ > 0 and v ∈ [−g− δ2a2

8 ,−g+
√

gδa

4 ]. Assume that V0 = v and H0 = 0. Note that for t ≤ τV
−g+√

gδa/4,

Lt − gt ≤ δ2a2

8
+

√
gδa

4
,

St ≤
(

−g +
√

gδa

4

)
t,

where we used V0 = v ≥ −g − δ2a2

8 to obtain the first inequality.
These together yield

St − Xt = St − Bt + Lt ≤ −Bt +
√

gδa

4
t + δ2a2

8
+

√
gδa

4
.

Thus we have

P

(
Sδa/

√
g − Xδa/

√
g > δ2a2,

δa√
g

≤ τV
−g+√

gδa/4

)
≤ P

(
−Bδa/

√
g + 3δ2a2

8
+

√
gδa

4
> δ2a2

)
≤ P

(
−Bδa/

√
g >

9

16
δ2a2

)
≤ e−√

gδ3a3/8. (4.9)

The second inequality holds for large enough a (depending on δ) and the last inequality follows from (4.3).
Suppose that the following event holds{

σ

(
δa√
g

)
> 3

δa√
g

,Sδa/
√

g − Xδa/
√

g ≤ δ2a2,
δa√
g

≤ τV
−g+√

gδa/4

}
. (4.10)

Then S is a parabola on the interval [ δa√
g
, 3δa√

g
]. If w = Vδa/

√
g then the parabola increment over this interval is

−1

2
g

(
2δa√

g

)2

+ w
δa√
g

≤ −1

2
g

(
2δa√

g

)2

+
(

−g +
√

gδa

4

)
δa√
g

≤ −3

2
δ2a2.
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Since Sδa/
√

g − Xδa/
√

g ≤ δ2a2 and X stays below S on the interval [ δa√
g
, 3δa√

g
], the following event must hold,

{
B3δa/

√
g − Bδa/

√
g ≤ −δ2a2/2

}
.

Recalling (4.10), we conclude that

P

(
σ

(
δa√
g

)
> 3

δa√
g

,Sδa/
√

g − Xδa/
√

g ≤ δ2a2,
δa√
g

≤ τV
−g+√

gδa/4

)
≤ P

(
B 3δa√

g
− B δa√

g
≤ −δ2a2/2

)
.

This, (4.9) and (4.3) yield for large a,

P

(
σ

(
δa√
g

)
> 3

δa√
g

,
δa√
g

≤ τV
−g+√

gδa/4

)
≤ P

(
Sδa/

√
g − Xδa/

√
g > δ2a2,

δa√
g

≤ τV
−g+√

gδa/4

)
+ P

(
σ

(
δa√
g

)
> 3

δa√
g

,Sδa/
√

g − Xδa/
√

g ≤ δ2a2,
δa√
g

≤ τV
−g+√

gδa/4

)
≤ e−√

gδ3a3/8 + P
(
B3δa/

√
g − Bδa/

√
g ≤ −δ2a2/2

)
≤ e−√

gδ3a3/8 + e−√
gδ3a3/16. (4.11)

Define stopping times T0 = 0 and

Tk+1 = inf{t ≥ Tk + δa/
√

g : Ht = 0},

for k ≥ 0. Then by (4.11), the strong Markov property applied at Tk , and Remark 3.1, for large a,

P

(
Tk+1 − Tk > 3

δa√
g

, τV
−g+√

gδa/4 ≥ Tk + δa/
√

g, τV
−g−δ2a2/8 ≥ Tk

)
≤ P

(
Tk+1 − Tk > 3

δa√
g

, τV
−g+√

gδa/4 ≥ Tk + δa/
√

g

)
≤ e−√

gδ3a3/8 + e−√
gδ3a3/16. (4.12)

Consider any m ≥ 1. Suppose that there is t1 ∈ [0,C0a
m ∧ τV

−g+√
gδa/4 ∧ τV

−g−δ2a2/8
] such that σ(t1) > t1 + 3 δa√

g
.

Then t1 ∈ [0,C0a
m] and, therefore, we can find 0 ≤ k1 ≤ C0

√
gam−1/δ with Tk1 ≤ t1 ≤ Tk1+1, because Tk+1 − Tk ≥

δa/
√

g for all k.

It follows from the definition of Tk+1 that σ(t1) − t1 ≤ Tk1+1 − Tk1 . Since V0 ≤ −g +
√

gδa

4 and H0 = 0, the
processes S and X must take the same value at the time τV

−g+√
gδa/4, by Remark 4.1. Hence, if τV

−g+√
gδa/4 ∈ [t1, Tk1 +

δa/
√

g], then

σ(t1) ≤ τV
−g+√

gδa/4 ≤ Tk1 + δa/
√

g ≤ t1 + δa/
√

g,

which contradicts the assumption that σ(t1) > t1 + 3 δa√
g

. Thus, if t1 ≤ τV
−g+√

gδa/4 and σ(t1) > t1 + 3 δa√
g

then

τV
−g+√

gδa/4 ≥ Tk1 + δa/
√

g. These observations and (4.12) imply that

P

(
σ(t) > t + 3

δa√
g

for some t ≤ am ∧ τV
−g+√

gδa/4 ∧ τV
−g−δ2a2/8

)
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≤
�C0

√
gam−1/δ�∑
k=0

P

(
σ(t) > t + 3

δa√
g

, t ≤ τV
−g+√

gδa/4 ∧ τV
−g−δ2a2/8 for some t ∈ [Tk,Tk+1]

)

≤
�C0

√
gam−1/δ�∑
k=0

P

(
Tk+1 − Tk > 3

δa√
g

, τV
−g+√

gδa/4 ≥ Tk + δa/
√

g, τV
−g−δ2a2/8 ≥ Tk

)
≤ (⌊

C0
√

gam−1/δ
⌋+ 1

)(
e−√

gδ3a3/8 + e−√
gδ3a3/16).

This proves the lemma. �

The following lemma tells us that the probability of the velocity staying inside the interval [−g − a,−g + a] for
all times up to t decays exponentially with t .

Lemma 4.6. For any a > 0, there exists p0 ∈ (0,1) depending on a such that for any integer m ≥ 1,

sup
v∈[−g−a,−g+a]

P
(|Vt + g| ≤ a for all t ∈ [

0,m(1 + 2a/g)
] | V0 = v,H0 = 0

)≤ pm
0 . (4.13)

Proof. Assume without loss of generality that B0 = 0. Note that Lt = supu≤t (Bu − Su) ≥ Bt − St . If Vu ∈ [−g −
a,−g + a] for all 0 ≤ u ≤ t , then St ≤ (−g + a)t . This gives Lt ≥ Bt + (g − a)t . Thus,

Vt = V0 + Lt − gt ≥ −g − a + Bt + (g − a)t − gt = Bt − at − g − a,

and, therefore,{|Vt + g| ≤ a for all t ∈ [0,1]}⊂ {V1 + g ≤ a} ⊂ {B1 − 2a ≤ a} = {B1 ≤ 3a}.
Let p0 = P(B1 ≤ 3a) < 1. Then,

sup
v∈[−g−a,−g+a]

P
(|Vt + g| ≤ a for all t ∈ [0,1] | V0 = v,H0 = 0

)
≤ P(B1 ≤ 3a) = p0.

If Vu ∈ [−g − a,−g + a] for all 0 ≤ u ≤ 1 + 3a/g, then σ(1) ≤ 1 + 2a/g, for otherwise there would be t ∈ [1 +
2a/g,1 + 3a/g) with Vt < −g − a. Thus, applying the strong Markov property at σ(1), in view of Remark 3.1, we
have for any m ≥ 2,

sup
v∈[−g−a,−g+a]

P
(|Vt + g| ≤ a for all t ∈ [

0,m(1 + 2a/g)
] | V0 = v,H0 = 0

)
≤ sup

v∈[−g−a,−g+a]
P
(|Vt + g| ≤ a for all t ∈ [0,1] | V0 = v,H0 = 0

)
× sup

v∈[−g−a,−g+a]
P
(|Vt + g| ≤ a for all t ∈ [

0, (m − 1)(1 + 2a/g)
] | V0 = v,H0 = 0

)
≤ p0 × sup

v∈[−g−a,−g+a]
P
(|Vt + g| ≤ a for all t ∈ [

0, (m − 1)(1 + 2a/g)
] | V0 = v,H0 = 0

)
.

Recursively applying the same argument, we get (4.13). �

Lemma 4.7. There exist positive constants a0 and C1,C2 such that for any a ≥ a0:

P
(
τV−g+a < τV

−g+1 | V0 = v,H0 = 0
)≤ C1e

−C2a
2

uniformly over all v ∈ [−g + 2,−g + a/2].
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Proof. For a ≥ 4, applying the strong Markov property at time τV
−g+a−1 and Remarks 3.1 and 4.1, we have for any

v ∈ [−g + 2,−g + a − 1],
P
(
τV−g+a < τV

−g+1 | V0 = v,H0 = 0
)

= P
(
τV
−g+a−1 < τV

−g+1 | V0 = v,H0 = 0
)
P
(
τV−g+a < τV

−g+1 | V0 = −g + a − 1,H0 = 0
)
. (4.14)

We estimate the second probability on the right hand side of the above equation as follows,

P
(
τV−g+a < τV

−g+1 | V0 = −g + a − 1,H0 = 0
)

(4.15)

=
a−1∑
k=2

P
(
τV−g+k < τV−g+a ≤ τV

−g+k−1 | V0 = −g + a − 1,H0 = 0
)
.

If V0 = −g + k and t ≤ τV
−g+k−1 then Lt ≤ L

(−g+k−1)
t = supu≤t (Bu + (g − k + 1)u). Thus, for 2 ≤ k ≤ a − 1,

P
(
τV−g+k < τV−g+a ≤ τV

−g+k−1 | V0 = −g + a − 1,H0 = 0
)

≤ P
(
τV−g+a ≤ τV

−g+k−1 | V0 = −g + k,H0 = 0
)

= P
(
inf{t ≥ 0 : Lt − gt = a − k} < inf{t ≥ 0 : Lt − gt = −1} | V0 = −g + k,H0 = 0

)
≤ P

(
inf

{
t ≥ 0 : L(−g+k−1)

t − gt = a − k
}

< inf
{
t ≥ 0 : L(−g+k−1)

t − gt = −1
} | V0 = −g + k,H0 = 0

)
≤ P

(
inf

{
t ≥ 0 : L(−g+k−1)

t − gt = a − k
}

< ∞ | V0 = −g + k,H0 = 0
)

= P
(
inf

{
t ≥ 0 : Bt + (g − k + 1)t − gt = a − k

}
< ∞)

= P
(
inf

{
t ≥ 0 : Bt − (k − 1)t = a − k

}
< ∞)

= e−2(k−1)(a−k),

for sufficiently large a. In the first step, we used the strong Markov property at the stopping time U = inf{t ≥ τV−g+k :
Vt = −g + k,St = Xt } which satisfies τV−g+k ≤ U < τV−g+a on the event {τV−g+k < τV−g+a ≤ τV

−g+k−1}, by Remark
4.1. We also used Remark 3.1. For the last step, we used (4.5). For a ≥ 4, (k − 1)(a − k) ≥ a/2 for 2 ≤ k ≤ a − 1 and
thus, substituting the above estimate back into (4.15), we get

P
(
τV−g+a < τV

−g+1 | V0 = −g + a − 1,H0 = 0
)≤ (a − 2)e−a

for a ≥ 4. This, along with (4.14), gives us for v ∈ [−g + 2,−g + a − 1],
P
(
τV−g+a < τV

−g+1 | V0 = v,H0 = 0
)≤ P

(
τV
−g+a−1 < τV

−g+1 | V0 = v,H0 = 0
)
(a − 2)e−a.

For a ≥ 10, we apply the above estimate inductively with a replaced by a/2, a/2 + 1, . . . , a/2 + k∗, where k∗ is the
largest integer such that a/2 + k∗ ≤ a, to obtain

sup
v∈[−g+2,−g+a/2]

P
(
τV−g+a < τV

−g+1 | V0 = v,H0 = 0
) ≤ C(a − 2)a/2+1 exp

(
−

�a�∑
k=�a/2�

k

)
,

for some positive constant C, which implies the bound claimed in the lemma. �

Remark 4.8. We will sketch an argument showing that for any initial values V0 = v, X0 = x and S0 = y, and any
z ∈ R we have τV

z < ∞, a.s.
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In view of Remark 4.2, we can assume that H0 = 0. By Lemma 4.6, the process V cannot stay in any bounded
interval forever, a.s. By Lemmas 4.3 and 4.4, the probability that V converges to ∞ or −∞ is 0, a.s.

Suppose that lim supt→∞ Vt = ∞ and lim inft→∞ Vt is finite with positive probability. Let a ∈ R and ε > 0 be
such that P(lim inft→∞ Vt ∈ (a, a + 1)) > ε. The methods used in our proofs show easily that for some p > 0, all
v ∈ (a, a + 1), and all x < y, if V0 = v, S0 = y and X0 = x then τV

a−3 < ∞ with probability greater than p. It is now
standard to prove that on the event where V visits (a, a + 1) infinitely often, it has to visit (a − 2, a − 1) infinitely
often as well, and, therefore, lim inft→∞ Vt cannot lie in (a, a +1) with positive probability, a contradiction. A similar
argument shows that the event that lim inft→∞ Vt = −∞ and lim supt→∞ Vt is finite has probability 0.

5. Renewal times

We will define several sequences of stopping times and derive tail estimates for them that will help us estimate the
fluctuations of the velocity process Vt and the gap process St − Xt . The path {Zs : s ≤ t} will be decomposed into
cycles between consecutive renewal times defined in this section. In Section 7, fluctuation results will be established
for these cycles. These, in turn, will yield global fluctuation results and strong laws for St and Xt stated in Theorem 2.2
and Theorem 2.3.

We assume that the starting configuration is V0 = −g and H0 = 0, although the results that follow will not depend
on this choice. Fix a0 > g. We define a sequence of renewal times {ζk}k≥0 as follows. Let ζ0 = 0 and for k ≥ 0,

ηk = inf
{
t ≥ ζk : |Vt + g| = a0 + 2

}
, (5.1)

ζk+1 = inf{t ≥ ηk : Vt = −g and St = Xt }. (5.2)

Define α−1 = 0. If τV
−g+a0+2 < τV

−g−a0−2, define αk = 0 for all k ≥ 0 and let N− = 0. On the event {τV
−g−a0−2 <

τV
−g+a0+2}, define α0 = τV

−g−a0−2. For k ≥ 0, if Vα3k
= −g − a0 − 2, then define

α3k+1 = inf{t ≥ α3k : St = Xt },
α3k+2 = inf{t ≥ α3k+1 : Vt = −g − a0 − 1}, (5.3)

α3k+3 = inf{t ≥ α3k+2 : Vt = −g or − g − a0 − 2}.
If Vα3k

= −g, then define αj = α3k for all j ≥ 3k. Define N− = inf{k ≥ 1 : Vα3k
= −g}. This corresponds to the first

hitting of −g by the velocity after time τV
−g−a0−2. By Remark 4.1, if Vα3k

= −g then Sα3k
= Xα3k

. Thus, on the event

{τV
−g−a0−2 < τV

−g+a0+2}, we have that ζ1 = α3N− . Also, note that Vα3k+1 ≤ −g − a0 − 2, and Hα3k+2 = 0 for k < N−.

Define β−1 = 0. If τV
−g−a0−2 < τV

−g+a0+2, define βk = 0 for all k ≥ 0 and let N+ = 0. On the event {τV
−g+a0+2 <

τV
−g−a0−2}, define β0 = τV

−g+a0+2. For k ≥ 0, if Vβ3k
= −g + a0 + 2, then define

β3k+1 = inf{t ≥ β3k : Vt = −g + a0 + 1},
β3k+2 = inf{t ≥ β3k+1 : St = Xt or Vt = −g},
β3k+3 = inf{t ≥ β3k+2 : Vt = −g or − g + a0 + 2}.

Otherwise, if Vβ3k
= −g, define βj = β3k for all j ≥ 3k. Define N+ = inf{k ≥ 1 : Vβ3k

= −g}. This corresponds to the
first down-crossing of the velocity below the level −g after τV

−g+a0+2. But with positive probability, Sβ3N+ > Xβ3N+ .
Thus, to reach the renewal time ζ1, we will define a further set of stopping times {̃αk}k≥−1 till the first time the velocity
hits −g again from below and thus the processes S and X coincide.

If τV
−g−a0−2 < τV

−g+a0+2, we define α̃k = 0 for all k ≥ −1 and we let Ñ− = 0. On the event {τV
−g+a0+2 < τV

−g−a0−2},
let

α̃−1 = inf{t ≥ β3N+ : St = Xt or Vt = −g − a0 − 2},
α̃0 = inf{t ≥ α̃−1 : Vt = −g or − g − a0 − 2}.
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For k ≥ 0, if Vα̃3k
= −g − a0 − 2, define α̃i for i = 3k + 1,3k + 2,3k + 3 exactly as in (5.3) replacing the α’s with

α̃’s. If Vα̃3k
= −g, define α̃j = α̃3k for all j ≥ 3k. Let Ñ− = inf{k ≥ 0 : Vα̃3k

= −g}. Thus, on the event {τV
−g+a0+2 <

τV
−g−a0−2}, we have ζ1 = α̃3Ñ− .

We will argue that all stopping times αk are finite a.s. First of all, by Lemma 4.6,

P
({

τV
−g−a0−2 < ∞}∪ {

τV
−g+a0+2 < ∞})= 1,

so at least one of the sequences {αk} or {βk} is non-trivial. Suppose that α3k < ∞, a.s. Then α3k+1 < ∞, a.s., by
Remark 4.2. If α3k+1 < ∞, a.s. then α3k+2 < ∞, a.s., by Remark 4.8. Since the argument in that remark was only
sketched, note that we can alternatively apply Lemma 4.3 which has a detailed proof. Finally, if α3k+2 < ∞, a.s. then
α3k+3 < ∞, a.s., by Lemma 4.6. A similar argument applies to βk’s and α̃k’s.

In the following lemma, we will show that the distribution of ζ1 has a rapidly decaying tail and thus has finite
moments of all orders. We remark here that to prove the main results in this article, we only need the first moment of
ζ1 to be finite. Due to the degeneracy and high correlations in the system, we did not find a direct proof of this result
and adopted a “hands-on” approach via controlling excursions. Nevertheless, besides being of independent interest,
we believe that the tail estimate of ζ1 will be useful in obtaining the rate of convergence to stationarity, which we hope
to address in a subsequent article.

Lemma 5.1. Suppose that V0 = −g and H0 = 0. There exist constants C,C′ > 0 such that for all t ≥ 0,

P(ζ1 > t) ≤ Ce−C′t1/2
.

It follows that for any integer n ≥ 1, E(ζ n
1 ) < ∞.

Proof. In this proof, we will assume that t is sufficiently large without explicitly mentioning it every time.
First, we consider the event {τV

−g−a0−2 < τV
−g+a0+2}. Write

p− = P
(
τV
−g−a0−2 < τV−g | V0 = −g − a0 − 1,H0 = 0

)
.

Note that if V0 = −g − a0 − 1,H0 = 0, then for t ≤ τV−g , we have Lt ≥ L
(−g)
t . Note that

P
(
inf

{
t ≥ 0 : L(−g)

t − gt = −1
}≤ 1/g

)≤ P

(
sup

t≤1/g

(Bt + gt) − g(1/g) < −1
)

= 0.

This implies that

p− ≤ P
(
inf

{
t ≥ 0 : L(−g)

t − gt = −1
}

< inf
{
t ≥ 0 : L(−g)

t − gt = a0 + 1
})

≤ P

(
sup

t≤1/g

(Bt + gt) − g(1/g) ≤ a0 + 1
)

< 1.

Hence, for any integer n ≥ 1, we can apply the strong Markov property successively at α3n−1, α3n−4, . . . to get

P
(
N− > n

)≤ (
p−)n. (5.4)

For t > 0 and n ≥ 1,

P

(
1 ≤ N− ≤ n, sup

0≤k≤N−−1
(α3(k+1) − α3k) > 3t

)
≤

n−1∑
k=0

P
(
α3(k+1) − α3k > 3t,N− ≥ k + 1

)
. (5.5)

For all k and t ∈ [α3k−1, α3k], we have Vt ∈ [−g − a0 − 2,−g + a0 + 2]. Therefore, by the strong Markov property
applied at α3k−1, and Lemma 4.6, there exist constants C > 0 and p0 ∈ (0,1) such that for any integer m ≥ 1,

P
(
α3k − α3k−1 > Cm,N− ≥ k + 1

)≤ P(α3k − α3k−1 > Cm)

≤ P
(|Vs + g| ≤ a0 + 2 for all s ∈ [0,Cm] | V0 = −g − a0 − 1,H0 = 0

)≤ pm
0 . (5.6)
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If Vα3k−3 = −g then α3k+1 − α3k = 0. If Vα3k−3 = −g − a0 − 2 then Vα3k−1 = −g − a0 − 1 and, by Remark 4.1,
Sα3k−1 = Xα3k−1 . These remarks and the strong Markov property applied at time α3k−1 show that for any δ > 0 and
sufficiently large t ,

P
(
α3k+1 − α3k > δt1/3, α3k − α3k−1 ≤ t,N− ≥ k + 1

)
≤ P

(
α3k+1 − α3k > δt1/3, α3k − α3k−1 ≤ t

)
= P

(
σ(α3k) − α3k > δt1/3, α3k − α3k−1 ≤ t

)
≤ P

(
σ(u) > u + δt1/3 for some u ≤ t ∧ τV

−g−a0−2 ∧ τV
−g+a0+2 | V0 = −g − a0 − 1,H0 = 0

)
≤ Ce−C′t . (5.7)

The last estimate follows from Lemma 4.5 by applying it with a = √
gt1/3/3 and m = 3. We combine (5.6), taking

m = t/C there, and (5.7), to obtain,

P
(
α3k+1 − α3k > δt1/3,N− ≥ k + 1

)≤ Ce−C′t . (5.8)

We claim that for sufficiently large t ,

P
(
α3k+2 − α3k+1 > t,α3k+1 − α3k ≤ δt1/3,N− ≥ k + 1

)
≤ sup

v∈[a0+2,a0+2+gδt1/3]
P
(
τV
−g−a0−1 > t | V0 = −g − v,H0 = 0

)
≤ sup

v∈[a0+2,a0+2+gδt1/3]
4(v − a0 − 1)

((v − a0 − 1) + (a0 + 1)t)(a0 + 1)
√

2πt
e−(a0+1)2t/8 ≤ Ce−C′t . (5.9)

The first inequality follows from the strong Markov property applied at α3k+1. For the second inequality, we ap-

ply Lemma 4.3 with a1 = a0 + 1 and a2 = v. Note that as 2(v−a0−1)
(a0+1)

≤ 2(1+gδt1/3)
(a0+1)

< t for sufficiently large t , the
hypotheses of Lemma 4.3 are satisfied.

By Lemma 4.6,

P
(
α3k+3 − α3k+2 > t,N− ≥ k + 1

)≤ P(α3k+3 − α3k+2 > t) ≤ Ce−C′t . (5.10)

From (5.8), (5.9) and (5.10), we get

P
(
α3(k+1) − α3k > 3t,N− ≥ k + 1

)≤ Ce−C′t .

Substituting this into (5.5), we obtain

P

(
1 ≤ N− ≤ t, sup

0≤k≤N−−1
(α3(k+1) − α3k) > 3t

)
≤ Cte−C′t . (5.11)

Recall that if τV
−g−a0−2 < τV

−g+a0+2 then ζ1 = α3N− . Thus, using (5.4) and (5.11),

P
(
ζ1 > 3t2, τV

−g−a0−2 < τV
−g+a0+2

)= P
(
α3N− > 3t2,N− ≥ 1

)
≤ P

(
N− > t

)+ P

(
N−−1∑
k=0

(α3(k+1) − α3k) > 3t2,1 ≤ N− ≤ t

)

≤ P
(
N− > t

)+ P

(
1 ≤ N− ≤ t, sup

0≤k≤N−−1
(α3(k+1) − α3k) > 3t

)
≤ (

p−)t + Cte−C′t .
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After readjustment of constants we get

P
(
ζ1 > t2, τV

−g−a0−2 < τV
−g+a0+2

)≤ Ce−C′t . (5.12)

We record a related estimate for later use. Note that inf{t ≥ α2 : Vt = −g} ≤ ζ1. Hence our argument proving (5.12)
also shows

P
(
τV−g > t2 | V0 = −g − a0 − 1,H0 = 0

)≤ Ce−C′t . (5.13)

Next consider the event {τV
−g+a0+2 < τV

−g−a0−2}. Note that if we start with V0 = v ∈ [−g,−g+a0 +1] and H0 = 0,

then for t ≤ τV−g , it holds that Lt ≤ L
(−g)
t . Therefore, for some p+ < 1,

inf
v∈[−g,−g+a0+1]P

(
τV−g < τV

−g+a0+2 | V0 = v,H0 = 0
)

≥ P
(
inf

{
t ≥ 0 : L(−g)

t − gt = 1
}

> inf
{
t ≥ 0 : L(−g)

t − gt = −a0 − 1
})

≥ P

(
sup

t≤2(a0+1)/g

(Bt + gt) < 1
)

= 1 − p+ > 0.

Therefore, for any integer n ≥ 1, we can apply the strong Markov property successively at times β3n−1, β3n−4, . . . to
get

P
(
N+ > n

)≤
(

sup
v∈[−g,−g+a0+1]

P
(
τV−g > τV

−g+a0+2 | V0 = v,H0 = 0
))n ≤ (

p+)n. (5.14)

As before, we can write

P

(
1 ≤ N+ ≤ n, sup

0≤k≤N+−1
(β3(k+1) − β3k) > 3t

)
≤

n−1∑
k=0

P
(
β3(k+1) − β3k > 3t,N+ ≥ k + 1

)
. (5.15)

Let 0 ≤ k ≤ n − 1. By Lemma 4.4, for large t ,

P
(
β3k+1 − β3k > t,N+ ≥ k + 1

)≤ P(β3k+1 − β3k > t) ≤ Ce−C′t . (5.16)

For N+ ≥ k + 1, we have

−g < Vβ3k+2 = −g + a0 + 1 − g(β3k+2 − β3k+1)

yielding

β3k+2 − β3k+1 <
a0 + 1

g
. (5.17)

By Lemma 4.6,

P
(
β3k+3 − β3k+2 > t,N+ ≥ k + 1

)≤ P(β3k+3 − β3k+2 > t) ≤ Ce−C′t . (5.18)

Combining (5.15), (5.16), (5.17) and (5.18), we get

P

(
1 ≤ N+ ≤ t, sup

0≤k≤N+−1
(β3(k+1) − β3k) > 3t

)
≤ Cte−C′t .

This and (5.14) can be combined as in the proof of (5.12) to show that for large t ,

P
(
β3N+ > t2, τV

−g+a0+2 < τV
−g−a0−2

)≤ Ce−C′t . (5.19)
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The following estimate, needed later in the paper, can be derived just like the last estimate:

P
(
τV−g > t2 | V0 = −g + a0 + 1,H0 = 0

)≤ Ce−C′t . (5.20)

Next we will estimate the remaining time ζ1 − β3N+ before renewal happens. First consider the event {N+ ≥
1, Ñ− = 0} where the first renewal time ζ1 is reached before the velocity hits level −g − a0 − 2. Under this event,
there are the following two possibilities. If Sβ3N+ = Xβ3N+ , then ζ1 = β3N+ . Otherwise, Vα̃−1 ∈ (−g − a0 − 2,−g),
Vα̃0 = −g and ζ1 = α̃0. As the inert particle falls freely in the time interval [β3N+ , α̃−1], we have

α̃−1 − β3N+ ≤ (a0 + 2)/g. (5.21)

By the strong Markov property applied at α̃−1 and Lemma 4.6,

P
(̃
α0 − α̃−1 > t,N+ ≥ 1, Ñ− = 0

)≤ Ce−C′t . (5.22)

From (5.19), (5.21) and (5.22), it follows that

P
(
ζ1 > t2,N+ ≥ 1, Ñ− = 0

)≤ Ce−C′t . (5.23)

We will next address the case when Ñ− ≥ 1. Note that this implies that N+ ≥ 1. In this case the velocity V first
reaches level −g + a0 + 2 and then −g − a0 − 2 before the renewal time ζ1. Under this event, Vα̃0 = −g − a0 − 2 and
ζ1 = α̃3Ñ− . We need to control α̃1 − α̃0 and α̃2 − α̃1. At α̃2, we have Vα̃2 = −g − a0 − 1 and Sα̃2 = Xα̃2 and we can
apply the same analysis as in the case of the event {τV

−g−a0−2 < τV
−g+a0+2}, replacing α’s with α̃’s and N− with Ñ−.

Note that for Ñ− ≥ 1, α̃0 = τV
−g−a0−2 and α̃1 = σ(τV

−g−a0−2). For any δ, ε > 0, we have

P
(̃
α1 − α̃0 > δ

√
t, Ñ− ≥ 1

)
≤ P

(̃
α1 − α̃0 > δ

√
t, α̃0 ≤ τV

ε
√

t
∧ t2, Ñ− ≥ 1

)+ P
(
τV

ε
√

t
< α̃0,N

+ ≥ 1
)+ P

(̃
α0 > t2, Ñ− ≥ 1

)
. (5.24)

If we take C0 = 1, a = √
t and m = 4 in Lemma 4.5 then we obtain for some C1 and C2, and all t > 0,

P

(
σ(s) > s + 3

δ
√

t√
g

for some s ≤ t2 ∧ τV

−g+√
gδ

√
t/4

∧ τV
−g−δ2t/8 | V0 = 0,H0 = 0

)
≤ C1t

3/2e−C2t
3/2

.

Since α̃0 = τV
−g−a0−2, we have α̃0 ≤ τV

−g−δ2t/8
for large t . Adjusting the values of the constants in the last estimate,

we obtain that for any δ > 0, we can find ε > 0 such that for sufficiently large t ,

P
(̃
α1 − α̃0 > δ

√
t, α̃0 ≤ τV

ε
√

t
∧ t2, Ñ− ≥ 1

)≤ Ct3/2e−C′t3/2
. (5.25)

It follows from Lemma 4.7 that for sufficiently large a > 0.

P
(
τV
a < τV

−g+1 | V0 = −g + a0 + 2,H0 = 0
)≤ Ce−C′a2

. (5.26)

Since Remark 4.1 implies that Sβ3k
= Xβ3k

, we can apply this inequality at t = β3k , by the strong Markov property at
β3k . Note that sups∈[β3k+1,β3k+3] Vs ≤ −g + a0 + 2 so for large a,{

sup
s∈[β3k,β3k+3]

Vs > a
}

=
{

sup
s∈[β3k,β3k+1]

Vs > a
}
.

By definition, β3k+1 < inf{s ≥ β3k : Vs = −g + 1}. These remarks and (5.26) imply that, for large a,

P

(
sup

s∈[β3k,β3k+3]
Vs > a,N+ ≥ k + 1

)
= P

(
sup

s∈[β3k,β3k+1]
Vs > a,N+ ≥ k + 1

)
≤ Ce−C′a2

.
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This and (5.14) show that for sufficiently large integer a > 0,

P
(
τV
a < β3N+ ,N+ ≥ 1

)≤
a2−1∑
k=0

P

(
sup

s∈[β3k,β3k+3]
Vs > a,N+ ≥ k + 1

)
+ P

(
N+ > a2)

≤ Ca2e−C′a2 + (
p+)a2

≤ Ce−C′a2
. (5.27)

Recall that on the event {N+ ≥ 1}, Vu ∈ [−g,−g − a0 − 2] for all u ∈ [β3N+ , α̃0]. Therefore, for a > −g,

P
(
τV
a < α̃0,N

+ ≥ 1
)= P

(
τV
a < β3N+ ,N+ ≥ 1

)
.

Thus, (5.27) with a = ε
√

t gives us, for sufficiently large t > 0,

P
(
τV

ε
√

t
< α̃0,N

+ ≥ 1
)≤ Ce−C′ε2t . (5.28)

To estimate the last probability in (5.24), note that under the event {Ñ− ≥ 1}, Vα̃−1 ∈ [−g − a0 − 2,−g) and
Vα̃0 = −g − a0 − 2. Using (5.19), (5.21) and (5.22), we get

P
(̃
α0 > t2, Ñ− ≥ 1

)≤ Ce−C′t . (5.29)

Combining the estimates (5.25), (5.28) and (5.29) with (5.24), we see that for any δ > 0 there is t0 > 0 such that for
t ≥ t0,

P
(̃
α1 − α̃0 > δ

√
t, Ñ− ≥ 1

)≤ Ce−C′t , (5.30)

where C,C′ may depend on δ.
We next control α̃2 − α̃1. Write

P
(̃
α2 − α̃1 > t, Ñ− ≥ 1

)≤ P
(̃
α2 − α̃1 > t, α̃1 − α̃0 ≤ √

t, Ñ− ≥ 1
)+ P

(̃
α1 − α̃0 >

√
t, Ñ− ≥ 1

)
. (5.31)

Applying the strong Markov property at α̃1 and then Lemma 4.3, we obtain for large t ,

P
(̃
α2 − α̃1 > t, α̃1 − α̃0 ≤ √

t, Ñ− ≥ 1
)

≤ sup
v∈[a0+2,a0+2+g

√
t]
P
(
τV
−g−a0−1 > t | V0 = −g − v,H0 = 0

)
≤ sup

v∈[a0+2,a0+2+g
√

t]
4(v − a0 − 1)

((v − a0 − 1) + (a0 + 1)t)(a0 + 1)
√

2πt
e−(a0+1)2t/8 ≤ Ce−C′t . (5.32)

Note that the hypotheses of Lemma 4.3 hold because t ≥ 2(1 + g
√

t)/(a0 + 1) for large t .
Substituting the estimates obtained in (5.30) (with δ = 1) and (5.32) into (5.31), we get

P
(̃
α2 − α̃1 > t, Ñ− ≥ 1

)≤ Ce−C′t . (5.33)

The strong Markov property applied at α̃2 and (5.13) imply that

P
(̃
α3Ñ− − α̃2 > t2, Ñ− ≥ 1

)≤ P
(
τV−g > t2 | V0 = −g − a0 − 1,H0 = 0

)≤ Ce−C′t .

Thus,

P
(
ζ1 − α̃2 > t2, Ñ− ≥ 1

)= P
(̃
α3Ñ− − α̃2 > t2, Ñ− ≥ 1

)≤ Ce−C′t . (5.34)
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Combining (5.29), (5.30), (5.33) and (5.34), we get

P
(
ζ1 > t2, Ñ− ≥ 1

)≤ Ce−C′t . (5.35)

From (5.23) and (5.35), we obtain

P
(
ζ1 > t2, τV

−g+a0+2 < τV
−g−a0−2

)≤ Ce−C′t . (5.36)

The lemma follows from (5.12) and (5.36). �

6. The stationary distribution for Z = (V,S − X)

We will use results from [7,13] to establish existence of a unique stationary distribution for Z = (V ,S − X) and
convergence of Z to the stationary distribution in total variation distance. For this reason, we will refer the reader to
the book [13] even for definitions of widely use terms. For example, the definition of the total variation distance can be
found in [13, Ch. 1, Section 5.3]. We would like to point out that an alternative proof of the existence of the stationary
distribution is contained in Corollary 6.3 and the calculations in the proof of Theorem 2.1. Hence, the arguments in
this section are mostly needed for the proof of uniqueness and convergence in total variation distance.

The process Z = (V ,S − X) is a classical regenerative processes (see [13, Ch. 10, Section 3]) with regeneration
times ζk defined in Section 5. This means that the process starts afresh at each ζk and the cycles of the process Z given
by Ck = (Zt )t∈[ζk−1,ζk) for k ≥ 1 form an i.i.d sequence. The gaps {ζk+1 − ζk, k ≥ 0} between the regeneration times
are called inter-regeneration times. If the process starts from some z ∈H := R× [0,∞) then we will write Pz and Ez

for the law of Z and the corresponding expectation. If we are not assuming that Z starts from the renewal state, it will
be convenient to redefine ζ0 as

ζ0 = inf
{
t ≥ 0 : Zt = (−g,0)

}
(6.1)

and then shift the definition of the sequence ζk by ζ0. The arguments used in the proof of Lemma 5.1 show that
P(ζ0 < ∞) = 1. We will use PR and ER to denote probability and expectation when Z starts from the renewal state,
i.e., Z0 = (−g,0). The following lemma will be used in the proof of Theorem 6.2.

Lemma 6.1. The inter-regeneration time ζ1 − ζ0 has a density with respect to Lebesgue measure.

Proof. Recall η0 defined in (5.1) and the notation H=R×R+.
By the strong Markov property applied at ζ0, for any z ∈ H and any measurable set A ⊆ [0,∞), Pz(ζ1 − ζ0 ∈ A) =

PR(ζ1 ∈ A). Thus, it is enough to prove that starting from V0 = −g,H0 = 0, the random variable ζ1 has a density.
Note that ζ1 ≥ η0 > 0, a.s., under PR . By the Radon–Nikodym theorem it suffices to show that PR(ζ1 ∈ A) = 0 for
any b < ∞ and any set A ⊆ [0, b] of Lebesgue measure zero.

Consider the stopping time

T = inf{t ≥ η0 : Vt ≤ −g,St = Xt }.
Since T ≤ ζ1 a.s., by Remark 4.1 we have that ζ1 = T + τV−g ◦ θT , where θ is the standard shift operator for Markov
processes. Applying the strong Markov property at T we obtain

PR(ζ1 ∈ A) =
∫ −g

−∞

∫ b

0
P
(
τV−g ∈ A − t | V0 = v,H0 = 0

)
PR(T ∈ dt,VT ∈ dv). (6.2)

Suppose that V0 = v < −g. Note that

τV−g = inf
{
t ≥ 0 : sup

u≤t
(Bu − Su) − gt = −g − v

}
= inf{t ≥ 0 : Bt − St − gt = −g − v}

= inf

{
t ≥ 0 : Bt −

∫ t

0
(Vu + g)du = −g − v

}
.
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Consider Brownian motion with drift

Wt = Bt −
∫ t

0

(
V
(
u ∧ τV−g ∧ τV

v−g supA

)+ g
)
du,

and let τW
a be the hitting time of a by W . The last displayed formula shows that {τV−g ∈ A − t} = {τW−g−v ∈ A − t}.

Since the drift of W is bounded on finite time intervals, the Girsanov theorem implies that the laws of W and B are
mutually absolutely continuous on finite time intervals. The event {τB,0

−g−v ∈ A− t} ∈FsupA ⊆Fb has probability zero

since the law of τ
B,0
−g−v is absolutely continuous, and A− t has zero Lebesgue measure. Thus, the event {τW−g−v ∈ A− t}

has probability zero. We conclude that P(τV−g−v ∈ A − t | V0 = v,H0 = 0) = 0 for any v < −g.
The discussion above allows us to transform (6.2) into

PR(ζ1 ∈ A) =
∫ b

0
IA(t)PR(T ∈ dt,VT = −g) ≤ PR(VT = −g) = PR(T = ζ1). (6.3)

We will show that T < ζ1, a.s. This holds if Vη0 = −g − a0 − 2 because then Vt ≤ −g − a0 − 2 for t ∈ [η0, T ].
Suppose that Vη0 = −g + a0 + 2 and note that Sη0 = Xη0 , by Remark 4.1. Hence, by the strong Markov property, it
is enough to show that starting from V0 = −g + a0 + 2 and H0 = 0, we have T = σ(τV−g) < ζ0, a.s. (recall (6.1)). We
will show that, with probability one, BτV−g

−SτV−g
< supu≤τV−g

(Bu −Su), or, equivalently, in view of (4.1), XτV−g
< SτV−g

.

This shows that, a.s., σ(τV−g) > τV−g and, therefore, Vσ(τV−g) < −g, implying that σ(τV−g) < ζ0.

For any r > −g + a0 + 2, the process V ∗
t := Vt∧τV−g∧τV

r
is bounded and thus the exponential local martingale

t �→ exp

{∫ t

0
V ∗

u dBu − 1

2

∫ t

0

(
V ∗

u

)2
du

}
(6.4)

is a positive martingale for all t ≥ 0. Hence, by the Girsanov Theorem, the laws of processes Bt − St and Bt are
mutually absolutely continuous on finite time intervals. For t ≥ 0, let us define

Mt = sup
u≤t

Bu, τ
M,−g
a = inf{t ≥ 0 : Mt − gt = a}.

The mutual absolute continuity of the laws of Bt − St and Bt implies that if

P

(
B

τ
M,−g
−a0−2

= sup
u≤τ

M,−g
−a0−2

Bu

)
= 0, (6.5)

then

P

(
BτV−g

− SτV−g
= sup

u≤τV−g

(Bu − Su), τ
V−g ≤ τV

r | V0 = −g + a0 + 2,H0 = 0
)

= 0. (6.6)

We will prove that (6.5) is true. We need more definitions. Set

M−1(t) = inf{u > 0 : Mu > t},
λ(x) = inf

{
t ≥ 0 : M−1(t) − t/g ≥ x

}
.

Note that

gτ
M,−g

−a0−2 − a0 − 2 = λ
(
(a0 + 2)/g

)
. (6.7)

Now we will use some facts from the theory of Levy processes. It is well known that M−1
t is a stable process with

index 1/2. By [3, Thm. 5(i), Ch. VIII], we have lim supt↓0 M−1(t)t2−ε = 0, a.s., for every ε > 0. It follows that 0 is
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an irregular point for [0,∞), i.e., if M−1(0) = 0 then

P
(
inf

{
t > 0 : M−1(t) − t/g ∈ [0,∞)

}= 0
)= 0.

This fact implies that the ascending ladder height process K , which can roughly be viewed as the values taken by
M−1(t) − t/g at its successive new maxima (see [10, Section 6.2] for a more precise definition), is a compound
Poisson subordinator (see the last paragraph on p. 150 of [10]). This implies that the jump distribution of K does not
have atoms and thus, a.s., K does not hit specified points (see the last paragraph in the proof of [10, Lem. 7.10]). Thus,
a.s.,

M−1(λ((a0 + 2)/g
))− λ((a0 + 2)/g)

g
> (a0 + 2)/g,

which, by the definition of τ
M,−g

−a0−2 and (6.7), gives, a.s.,

M−1(M
τ

M,−g
−a0−2

) = M−1(gτ
M,−g

−a0−2 − a0 − 2
)
> τ

M,−g

−a0−2.

This means that at the stopping time τ
M,−g

−a0−2, Brownian motion B lies strictly below its running maximum, which
gives (6.5) and thus (6.6). By letting r → ∞ in (6.6), we get BτV−g

− SτV−g
< supu≤τV−g

(Bu − Su), a.s., which in turn

implies that T < ζ1, a.s., in view of the opening remarks of the proof. �

Recall that Z = (V ,S − X) has the state space H=R× [0,∞).

Theorem 6.2. For any z ∈H, assuming that Z0 = z, when t → ∞, the law of Zt converges in total variation distance
to a unique stationary distribution π , given by

π(A) = ER(
∫ ζ1

0 IA(Zu)du)

ER(ζ1)
, (6.8)

for any measurable set A ⊆H. Furthermore, for every z ∈ H, Pz-a.s.,

lim
t→∞

∫ t

0 IA(Zu)du

t
= π(A). (6.9)

Proof. Recall the regeneration times ζk from the beginning of this section. Lemma 5.1 shows that E(ζ1 − ζ0) < ∞.
By Lemma 6.1, the distribution of an inter-regeneration time ζk+1 − ζk is spread out in the sense of [13, Ch. 10,
Section 3.5]. The convergence in total variation distance and, hence, the uniqueness of the stationary distribution now
follows from part (b) of [13, Ch. 10, Thm. 3.3] (see Section 2.4 in that chapter for the notation used in the cited
theorem). The representation (6.8) follows from (2.1) in [13, Ch. 10, Thm. 2.1].

Let Nt = sup{k ≥ 0 : ζk ≤ t} be the number of renewals up to time t . The arguments applied in the proof of Lemma
5.1 can be used to show that P(ζ0 < ∞) = 1. To prove (6.9), note that for any measurable set A ⊆H, we have∫ t

0
IA(Zu)du =

∫ ζ0

0
IA(Zu)du +

Nt∑
k=1

∫ ζk

ζk−1

IA(Zu)du +
∫ t

ζNt

IA(Zu)du.

Clearly (1/t)
∫ ζ0

0 IA(Zu)du → 0, a.s., as t → ∞. Furthermore, (1/t)
∫ t

ζNt
IA(Zu)du ≤ (1/t)(t − ζNt ) → 0, a.s., by

[11, Prop. 7.3]. The same proposition implies that∑Nt

k=1

∫ ζk

ζk−1
IA(Zu)du

t
→ ER(

∫ ζ1
0 IA(Zu)du)

ER(ζ1)
,

almost surely as t → ∞, so (6.9) follows from (6.8). �
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The following corollary to Theorem 3.5 shows that we can use [7, Thm. 1] in our context, and will be the main tool
in the proof of Theorem 2.1. Recall that H =R×R+.

Corollary 6.3. Let π be a probability measure on (H,B(H)), with π(∂H) = 0. Then, π is a stationary distribution
for the solution to (3.1) if and only if, for every f ∈ C2

c (H) such that (∇f (z))T γ ≥ 0 for all z ∈ ∂H, the inequality∫
H

Lf (z)π(dz) ≤ 0. (6.10)

holds.

Proof. By Theorem 3.5, the law of the solution to (3.1) and the solution to the submartingale problem for (L, γ ) in
H are the same. We only need to show that [7, Thm. 1] applies.

Note that for any constant c ∈ R we have Lc = 0, thus, the set C2
c (H) and the set H from [7] coincide. Also, the

set V from [7] is empty in our case. We next check that Assumption 1 in [7] holds.

1. Routine arguments show that C2
c (H) separates points.

2. We will use the notation from [7], including but not limited to Assumption 1. Since our reflection field γ = (1,1)

is constant, we have d(x) ∩ S1(0) = 1√
2
γ . The function f (v,h) = v + h satisfies (∇f (v,h))T 1√

2
γ = 1. Let η ∈

C∞(H) be compactly supported and equal to 1 on an open neighborhood of x. The function fr,s := f η satisfies
the condition stated in Assumption 1 of [7].

This shows that Assumption 1 holds so [7, Thm. 1] applies in our case. �

Proof of Theorem 2.1. The existence and uniqueness of the stationary distribution and convergence of Zt to this
distribution in total variation distance were proved in Theorem 6.2.

We will apply Corollary 6.3. It is readily verifiable from (2.1) that the proposed stationary distribution π(dv, dh) =
ξ(v,h) dv dh is indeed a probability distribution, and as it has a density, therefore trivially, we have π(∂H) = 0. We
next show that (6.10) holds.

Recall that Lf (v,h) = 1
2∂hhf + v∂hf − g∂vf , and γ = (1,1). Let f ∈ C2

c (H) be a function satisfying(∇f (v,0)
)T

γ = ∂hf (v,0) + ∂vf (v,0) ≥ 0 (6.11)

for v ∈ R. We proceed by direct computation. By Fubini’s Theorem,∫
H

Lf ξ(v,h)dv dh = 2g√
π

∫ ∞

0

∫ ∞

−∞

(
1

2
∂hhf + v∂hf − g∂vf

)
e−2ghe−(v+g)2

dv dh

= − 2g2

√
π

∫ ∞

0

∫ ∞

−∞
∂vf (v,h)e−(v+g)2

dve−2gh dh

+ 2g√
π

∫ ∞

−∞

∫ ∞

0

(
1

2
∂hhf + v∂hf

)
e−2gh dhe−(v+g)2

dv.

Next, we integrate by parts the inner integral of each term; actually, we have to integrate by parts twice. We get∫
H

Lf ξ(v,h)dv dh = − 4g2

√
π

∫ ∞

0

∫ ∞

−∞
f (v,h)(v + g)e−(v+g)2

dve−2gh dh

− 2g√
π

∫ ∞

−∞

(
1

2
∂hf (v,0) + (v + g)f (v,0)

)
e−(v+g)2

dv

+ 2g√
π

∫ ∞

−∞

∫ ∞

0

(
2g2 + 2vg

)
f (v,h)e−2gh dhe−(v+g)2

dv.
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The two double integrals above cancel each other so we are left with a single integral,∫
H

Lf ξ(v,h)dv dh = − 2g√
π

∫ ∞

−∞

(
1

2
∂hf (v,0) + (v + g)f (v,0)

)
e−(v+g)2

dv

= − 2g√
π

∫ ∞

−∞

(
1

2
∂hf (v,0)e−(v+g)2 − 1

2
f (v,0)∂ve

−(v+g)2
)

dv.

Integrating by parts once again we obtain∫
H

Lf ξ(v,h)dv dh = − g√
π

∫ ∞

−∞
(
∂hf (v,0)e−(v+g)2 + ∂vf (v,0)e−(v+g)2)

dv

= − g√
π

∫ ∞

−∞
(
∂hf (v,0) + ∂vf (v,0)

)
e−(v+g)2

dv

= − g√
π

∫ ∞

−∞
(∇f (v,0)

)T
γ e−(v+g)2

dv,

which is nonpositive by (6.11). �

Remark 6.4. Recall that we showed existence and uniqueness of the stationary distribution in Theorem 6.2. The
existence is also implied by [7, Thm. 1] via Corollary 6.3 since we showed that (6.10) holds for the distribution π

with density (with respect to Lebesgue measure) given by (2.1). We also believe that the uniqueness of the stationary
distribution follows from the Harris irreducibility of our process. But the main power of Theorem 6.2 comes from
the fact that it uses Lemma 5.1 and Lemma 6.1 to show convergence to stationarity in total variation distance (the
existence and uniqueness of the stationary distribution follow as a by-product of this convergence).

7. Fluctuations and strong laws of large numbers

This section is dedicated to the proofs of Theorem 2.2 and Theorem 2.3. We first derive fine estimates for a number
of hitting times of the velocity process and the gap process. These, in turn, are used to establish precise estimates for
the fluctuations of V and S − X on the intervals [ζn, ζn+1] for n ≥ 0, where (ζn)n≥0 are the renewal times defined in
Section 5. The global fluctuation results of Theorem 2.2 and Theorem 2.3 are then proved by decomposing the path
{Zs : s ≤ t} into random time intervals [ζn, ζn+1] and applying the fluctuation results proved on these intervals.

Lemma 7.1.

(i) For some C > 0, all 0 ≤ h ≤ 1 and a ≤ −g − 2,

E
(
τV−g | V0 = a,H0 = h

)≤ C|a|.
(ii) For some C > 0, all h ≥ 0 and a ∈R,

E
(
τV
a+1 | V0 = a,H0 = h

)≥ C
1

(−a) ∨ 1
.

(iii) For some C > 0, all h ≥ 0 and a ≥ 2,

E
(
τV−g | V0 = a,H0 = h

)≤ Ca.

(iv) For any h ≥ 0 and a ∈ R,

E
(
τV
a−1 | V0 = a,H0 = h

)≥ 1/g.
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(v) For some C > 0, any h ≥ 1 and −g − 2 ≤ a ≤ −g − 1,

E
(
τV−g | V0 = a,H0 = h

)≤ C
√

h.

(vi) For some C > 0, any h ≥ 1 and a ∈ R,

E
(
τH
h−1 ∧ τV

a−1 | V0 = a,H0 = h
)≥ C

1

(−a) ∨ 1
.

Proof. (i) If V0 = a ≤ −g − 2, then τV−g = σ(0) + τV−g ◦ θσ(0) where θ is the standard shift operator for Markov
processes. By applying the strong Markov property at time σ(0) we obtain

E
(
τV−g | V0 = a,H0 = h

)
≤ E

(
σ(0) | V0 = a,H0 = h

)+
∞∑

k=0

E
(
τV−g | V0 = a − k − 1,H0 = 0

)
P(Vσ(0) ≤ a − k | V0 = a,H0 = 0)

≤ E
(
σ(0) | V0 = a,H0 = h

)+
∞∑

k=0

E
(
τV−g | V0 = a − k − 1,H0 = 0

)
P
(
σ(0) ≥ k/g | V0 = a,H0 = 0

)
. (7.1)

We will next estimate the terms in the sum.
Suppose that B0 = 0, a ≤ 0, V0 = a, h ≥ 0 and H0 = h. If σ(0) ≥ s then Bt ≤ h + at − gt2/2 ≤ h − gt2/2 for all

t ≤ s. In particular, Bs ≤ h − gs2/2. Thus, using (4.3), for s ≥ 2
√

h/g,

P
(
σ(0) ≥ s | V0 = a,H0 = h

)≤ P
(
Bs ≤ h − gs2/2

)≤ C

√
s

gs2 − 2h
e−(h−gs2/2)2/(2s). (7.2)

This implies the following two bounds, with 0 < C,C1 < ∞,

E
(
σ(0) | V0 = a,H0 = h

)≤ C, 0 ≤ h ≤ 1 (7.3)

P
(
σ(0) ≥ k/g | V0 = a,H0 = h

)≤ Ck−1e−C1k
3
, k ≥ 1. (7.4)

Next, we bound the expectations in (7.1). Consider b ≤ −g − 2. According to Lemma 4.3 applied with −g − a1 =
b + 1 and −g − a2 = b, for t ≥ 2/(−g − b − 1),

P
(
τV
b+1 > t | V0 = b,H0 = 0

)≤ 4

(1 + (−g − b − 1)t)(−g − b − 1)
√

2πt
e−(−g−b−1)2t/8.

Since −g − b − 1 ≥ 1, we obtain for t ≥ 2,

P
(
τV
b+1 > t | V0 = b,H0 = 0

)≤ 4

(1 + t)
√

2πt
e−t/8.

Hence,

E
(
τV
b+1 | V0 = b,H0 = 0

)≤ C.

Recall from Remark 4.1 that if V0 = b − k then SτV
b−k+1

= XτV
b−k+1

. Hence, the repeated application of the last estimate

at the stopping times τV
b−k+1, τ

V
b−k+2, τ

V
b−k+3, . . . , shows that if b ≤ −2g − 1 then

E
(
τV
b | V0 = b − k,H0 = 0

)≤ Ck. (7.5)

We can take a0 = g + 1 in (5.13) to obtain for −2g − 2 ≤ b ≤ −2g − 1,

E
(
τV−g | V0 = b,H0 = 0

)≤ E
(
τV−g | V0 = −2g − 2,H0 = 0

)≤ C.
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This, the strong Markov property applied at τV
b where b satisfies −2g − 2 ≤ b ≤ −2g − 1, and (7.5) imply that for

a ≤ −g − 2,

E
(
τV−g | V0 = a,H0 = 0

)≤ C(−g − a). (7.6)

Substituting (7.3), (7.4) and (7.6) into (7.1), we get

E
(
τV−g | V0 = a,H0 = h

)≤ C +
∞∑

k=1

C(−g − a + k + 1)k−1e−C1k
3 ≤ C|a|.

(ii) It is easy to see that for all h ≥ 0,

E
(
τV
a+1 | V0 = a,H0 = h

)≥ E
(
τV
a+1 | V0 = a,H0 = 0

)
,

so we will assume that V0 = a and H0 = 0.
For t ≤ 1/g, we have Vt ≥ a − 1, so Lt ≤ L

(a−1)
t = supu≤t (Bu − (a − 1)u). Suppose that a ≤ −g/2 + 1 and,

therefore, 0 ≤ −1/(2(a − 1)) ≤ 1/g. If supu≤−1/(2(a−1)) Bu < 1/2 then,

L−1/(2(a−1)) ≤ L
(a−1)
−1/(2(a−1)) = sup

u≤−1/(2(a−1))

(
Bu − (a − 1)u

)≤ sup
u≤−1/(2(a−1))

Bu + a − 1

2(a − 1)
< 1,

and, therefore, τV
a+1 ≥ −1/(2(a − 1)). It follows that,

E
(
τV
a+1 | V0 = a,S0 − X0 = 0

)≥ 1

−2(a − 1)
P

(
τV
a+1 ≥ 1

−2(a − 1)

)
≥ 1

−2(a − 1)
P

(
sup

u≤−1/(2(a−1))

Bu < 1/2
)

≥ C/|a|.

It is easy to check that for every a ≥ −g/2 + 1, the same argument generates a bound at least as large as for
a = −g/2 + 1. This easily translates onto the statement in part (ii) of the lemma.

(iii) Consider a ≥ 2 and take any v ∈ (a − 1, a]. According to Lemma 4.4(i) applied with −g + a1 = a − 1 and
−g + a2 = v, for t ≥ 2/g,

P
(
τV
a−1 > t | V0 = v,H0 = 0

)≤ e−g(a−1)t ≤ e−gt .

Hence,

sup
v∈(a−1,a]

E
(
τV
a−1 | V0 = v,H0 = 0

)≤ C. (7.7)

We can write τV
a−1 = σ(0) ∧ τV

a−1 + τV
a−1 ◦ θσ(0)∧τV

a−1
where θ is the standard shift map. Therefore, by the strong

Markov property applied at the stopping time σ(0), we get for any h ≥ 0,

E
(
τV
a−1 | V0 = a,H0 = h

)= E
(
σ(0) ∧ τV

a−1 + τV
a−1 ◦ θσ(0)∧τV

a−1
| V0 = a,H0 = h

)
≤ E

(
σ(0) ∧ τV

a−1 | V0 = a,H0 = h
)+ sup

v∈(a−1,a]
E
(
τV
a−1 | V0 = v,H0 = 0

)
.

Note that if σ(0) > 1/g, then τV
a−1 = 1/g. Thus, E(σ (0) ∧ τV

a−1 | V0 = a,H0 = h) ≤ 1/g. Applying this and (7.7) to
the above inequality yields

sup
h≥0

E
(
τV
a−1 | V0 = a,H0 = h

)≤ C.



Gravitation versus Brownian motion 1559

The repeated application of the last estimate at the stopping times τV
a−1, τ

V
a−2, τ

V
a−3, . . . , shows that if a − k ≥ 1 and

h ≥ 0 then

E
(
τV
a−k | V0 = a,H0 = h

)≤ Ck. (7.8)

For 1 ≤ a ≤ 2 and h ≥ 0, we can write τV−g = σ(0) ∧ τV−g + τV−g ◦ θσ(0)∧τV−g
. It is clear that σ(0) ∧ τV−g ≤ (g + 2)/g.

Thus, we get

E
(
τV−g | V0 = a,H0 = h

)≤ (g + 2)/g + sup
v∈(−g,2]

E
(
τV−g | V0 = v,H0 = 0

)
. (7.9)

By another application of the strong Markov property, we can write

sup
v∈(−g,2]

E
(
τV−g | V0 = v,H0 = 0

)≤ sup
v∈(−g,2]

E
(
τV−g ∧ τV

2 | V0 = v,H0 = 0
)+E

(
τV−g | V0 = 2,H0 = 0

)
.

Applying Lemma 4.6, we get supv∈(−g,2]E(τV−g ∧ τV
2 | V0 = v,H0 = 0) ≤ C. Further, taking a0 = g + 1 in (5.20), we

obtain E(τV−g | V0 = 2,H0 = 0) ≤ C. Substituting these estimates into (7.9), we get

sup
a∈[1,2],h≥0

E
(
τV−g | V0 = a,H0 = h

)≤ C.

This, the strong Markov property applied at τV
a−k where k satisfies 1 ≤ a − k ≤ 2, and (7.8) imply that for a ≥ 2 and

h ≥ 0,

E
(
τV−g | V0 = a,H0 = h

)≤ Ca.

(iv) The estimate follows from the equation dVt = dLt − g dt and the fact that L is non-decreasing.
(v) Assume that V0 = a, and H0 = h ≥ 1. By (7.2), we have for s ≥ 2/

√
g:

P
(
σ(0) ≥ s

√
h
)≤ C

h1/4√s

ghs2/2 − h
e−(h−ghs2/2)2/(2s

√
h) ≤ C

√
s

gs2/2 − 1
e−(1−gs2/2)2/(2s).

This implies that

E
(
σ(0) | V0 = a,H0 = h

)≤ C
√

h. (7.10)

Note that Vσ(0) = a − gσ(0) so (7.2) yields for k ≥ 2
√

hg,

P
(
Vσ(0) ∈ [a − k − 1, a − k])≤ P(Vσ(0) ≤ a − k) = P

(
σ(0) ≥ k/g

)
≤ C

√
k/g

g(k/g)2 − 2h
e−(h−g(k/g)2/2)2/(2k/g).

This, the strong Markov property applied at σ(0), (7.6) and (7.10) imply that

E
(
τV−g | V0 = a,H0 = h

)
≤ E

(
σ(0) | V0 = a,H0 = h

)+
∞∑

k=0

C(−g − a + k + 1)P
(
Vσ(0) ∈ [a − k − 1, a − k])

≤ C
√

h + (−g − a + 2
√

hg + 1)

+
∞∑

k=�2
√

hg�+1

C(−g − a + k + 1)

√
k/g

g(k/g)2 − 2
e−(1−g(k/g)2/2)2/(2k/g)
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≤ C
√

h + (−g + g + 2 + 2
√

hg + 1)

+
∞∑

k=�2
√

hg�+1

C(−g + g + 2 + k + 1)

√
k/g

g(k/g)2 − 2
e−(1−g(k/g)2/2)2/(2k/g)

≤ C
√

h.

(vi) Suppose that S0 = h ≥ 1, X0 = 0 and V0 = a ≤ −√
g/8. Then, for 0 ≤ t ≤ −1/(4a),

St ≥ h − gt2/2 + at ≥ h − g

2
· 1

16a2
− a

1

4a
≥ h − 1/2.

Therefore, for any t0 ∈ (0,−1/(4a)], if supu≤t0
Bu ≤ 1/2, then Xt ≤ 1/2 for 0 ≤ t ≤ t0 and, therefore, τH

h−1 ≥ t0.
The local time L does not increase on the interval [0, τH

h−1] because S and X do not meet on this interval. Hence, V

decreases at the constant rate on this interval and, therefore, τH
h−1 ∧ τV

a−1 = τH
h−1 ∧ 1/g. Thus,

P

(
τH
h−1 ∧ τV

a−1 ≥ 1

(−4a) ∨ g

)
= P

(
τH
h−1 ∧ 1/g ≥ 1

(−4a) ∨ g

)
= P

(
τH
h−1 ≥ 1

(−4a) ∨ g

)
≥ P

(
sup

u≤1/((−4a)∨g)

Bu ≤ 1/2
)

≥ C,

and, therefore,

E
(
τH
h−1 ∧ τV

a−1 | V0 = a,S0 − X0 = h
)≥ C · 1

(−4a) ∨ g
,

proving part (vi) of the lemma in the case h ≥ 1 and a ≤ −√
g/8.

For a ≥ −√
g/8 and 0 ≤ t ≤ 1/(4

√
g/8),

St ≥ h − gt2/2 + at ≥ h − gt2/2 −√
g/8t ≥ h − 1/2,

so the analogous argument gives

E
(
τH
h−1 ∧ τV

a−1 | V0 = a,H0 = h
)≥ C,

completing the proof of part (vi) of the lemma in the case h ≥ 1 and a ∈ R. �

Lemma 7.2. Assume that V0 = −g,H0 = 0 and let {ζk}k≥0 be the renewal times defined in (5.2). Then there exists
a0 > 0 and positive constants Ck , k = 1, . . . ,6, such that for a, r ≥ a0,

C1
1

a
e−a2+2a(g−1) ≤ P

(
τV−a < ζ1

)≤ C2e
−a2+2a(g+1), (7.11)

C3
1

a
e−a2−2a(g+1) ≤ P

(
τV
a < ζ1

)≤ C4
1

a
e−a2−2a(g−1), (7.12)

C5
1√
r
e−2gr ≤ P

(
τH
r < ζ1

)≤ C6e
−2gr . (7.13)

Proof. Recall from Lemma 5.1 that E(ζ1) < ∞. We can apply (6.8) to a set A ⊂R× [0,∞) and use (2.1) to see that

E

(∫ ζ1

0
IA(Zu)du

)
= Cπ(A) = C

∫∫
A

2g√
π

e−2ghe−(v+g)2
dv dh. (7.14)
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(i) Fix a ≥ g + 2. We apply (7.14) to the set A = (−a − 1,−a] × [0,1] to see that

E

(∫ ζ1

0
I(−a − 1 ≤ Vu ≤ −a,Hu ≤ 1) du

)
= C

∫ 1

0

∫ −a

−a−1

2g√
π

e−2ghe−(v+g)2
dv dh

≥ C

∫ −a

−a−1
e−(v+g)2

dv

≥ Ce−(a+1−g)2

≥ C′e−a2−2a(1−g). (7.15)

Let T = inf{t ≥ 0 : Vt ∈ [−a − 1,−a],Ht ≤ 1}. Note that (7.15) only involves paths of (Vt ,Ht ) such that T < ζ1.
It follows from Remark (4.1) that T + τV−g ◦ θT = ζ1 on the event {T < ζ1}. Lemma 7.1(i) and the strong Markov
property applied at T imply that

E

(∫ ζ1

0
I(−a − 1 ≤ Vu ≤ −a,Hu ≤ 1) du

)
≤ E

(
I(T < ζ1)(ζ1 − T )

)
≤ P(T < ζ1) × sup

v∈[−a−1,−a],h∈[0,1]
E
(
τV−g | V0 = v,H0 = h

)
≤ CaP(T < ζ1).

This and (7.15) yield

P
(
τV−a < ζ1

)≥ P(T < ζ1) ≥ C
1

a
e−a2−2a(1−g).

This proves the lower bound in (7.11) for a ≥ g + 2.
(ii) Fix a ≥ g + 2. We apply (7.14) to the set A = (−∞,−a + 1] × [0,∞) and use (4.3) to see that

E

(∫ ζ1

0
I(Vu ≤ −a + 1) du

)
= C

∫ ∞

0

∫ −a+1

−∞
2g√
π

e−2ghe−(v+g)2
dv dh

= C

∫ −a+1

−∞
1√
π

e−(v+g)2
dv

≤ C′ 1

a − 1 − g
e−(a−1−g)2

≤ C′′ 1

a
e−a2+2a(g+1). (7.16)

Let T = inf{t ≥ τV−a : Vt = −a + 1}. Note that if τV−a < ζ1 then T < ζ1. Lemma 7.1(ii) implies that

E

(∫ ζ1

0
I(Vu ≤ −a + 1) du

)
≥ P

(
τV−a < ζ1

)× inf
h≥0

E
(
τV
−a+1 | V0 = a,H0 = h

)
≥ C

a
P
(
τV−a < ζ1

)
,

so (7.16) yields

P
(
τV−a < ζ1

)≤ Ce−a2+2a(g+1).

This proves the upper bound in (7.11) for a ≥ g + 2.
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(iii) Fix a ≥ 2. We apply (7.14) to the set A = [a,∞) × [0,∞) to see that

E

(∫ ζ1

0
I(Vu ≥ a)du

)
= C

∫ ∞

0

∫ ∞

a

2g√
π

e−2ghe−(v+g)2
dv dh

≥ C

∫ ∞

a

e−(v+g)2
dv ≥ C′e−(a+1+g)2 ≥ C′′e−a2−2a(g+1). (7.17)

It follows from Remark (4.1) that on the event {τV−g < ζ1}, V will not take values greater than −g on the interval

[τV−g, ζ1]. Lemma 7.1(iii) and the strong Markov property applied at τV
a imply that

E

(∫ ζ1

0
I(Vu ≥ a)du

)
≤ P

(
τV
a < ζ1

)
E
(
τV−g | V0 = a,H0 = 0

)≤ Ca P
(
τV
a < ζ1

)
.

This and (7.17) yield

P
(
τV
a < ζ1

)≥ C
1

a
e−a2−2a(g+1).

This proves the lower bound in (7.12) for a ≥ 2.
(iv) Fix a ≥ 2. We apply (7.14) to the set A = [a − 1,∞) × [0,∞) and use (4.3) to see that

E

(∫ ζ1

0
I(Vu ≥ a − 1) du

)
= C

∫ ∞

0

∫ ∞

a−1

2g√
π

e−2ghe−(v+g)2
dv dh

= C

∫ ∞

a−1

1√
π

e−(v+g)2
dv

≤ C′ 1

a − 1 + g
e−(a−1+g)2

≤ C′′ 1

a
e−a2−2a(g−1). (7.18)

Let T = inf{t ≥ τV
a : Vt = a − 1}. Note that if τV

a < ζ1 then T < ζ1. Lemma 7.1(iv) implies that

E

(∫ ζ1

0
I(Vu ≥ a − 1) du

)
≥ P

(
τV
a < ζ1

)
E
(
τV
a−1 | V0 = a,H0 = 0

)
≥ (1/g)P

(
τV
a < ζ1

)
,

so (7.18) yields

P
(
τV
a < ζ1

)≤ C
1

a
e−a2−2a(g−1).

This proves the upper bound in (7.12) for a ≥ 2.
(v) Consider r ≥ 1. We apply (7.14) to the set A = [−g − 2,−g − 1] × [r,∞) to see that

E

(∫ ζ1

0
I(−g − 2 ≤ Vu ≤ −g − 1,Hu ≥ r) du

)
= C

∫ ∞

r

∫ −g−1

−g−2

2g√
π

e−2ghe−(v+g)2
dv dh ≥ Ce−2gr . (7.19)
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Let T = inf{t ≥ 0 : Vt ∈ [−g − 2,−g − 1],Ht ≥ r}. It follows from Remark (4.1) that on the event {T < ζ1},
inf{t ≥ T : Vt = −g} = ζ1. Lemma 7.1(v) and the strong Markov property applied at T imply that

E

(∫ ζ1

0
I(−g − 2 ≤ Vu ≤ −g − 1,Hu ≥ r) du

)
≤ P(T < ζ1) × sup

v∈[−g−2,−g−1],h≥r

E
(
τV−g | V0 = v,H0 = h

)≤ C
√

r P(T < ζ1).

This and (7.19) yield

P
(
τH
h < ζ1

)≥ P(T < ζ1) ≥ C
1√
r
e−2gr .

This proves the lower bound in (7.13) for r ≥ 1.
(vi) Fix r ≥ 2. We apply (7.14) to the set A = [k − 2, k + 1) × [r − 1,∞) and use (4.3) to see that

E

(∫ ζ1

0
I(k − 2 ≤ Vu < k + 1,Hu ≥ r − 1) du

)
= C

∫ ∞

r−1

∫ k+1

k−2

2g√
π

e−2ghe−(v+g)2
dv dh = Ce−2g(r−1)

∫ k+1

k−2

1√
π

e−(v+g)2
dv

≤ Ce−2g(r−1) 1

|k| + g + 1
e−((|k|+g−2)∨0)2

. (7.20)

Let

Tk = inf
{
t ≥ τH

r : Ht = r − 1 or Vt = k − 2
}
.

Note that if τH
r < ζ1 then Tk ≤ ζ1 for every integer k. Lemma 7.1(vi) implies that

E

(∫ ζ1

0
I(k − 2 ≤ Vu < k + 1,Hu ≥ r − 1) du

)
≥ P

(
τH
r < ζ1, k − 1 ≤ VτH

r
< k

)× inf
v∈[k−1,k]E

(
τH
r−1 ∧ τV

v−1 | V0 = v,H0 = r
)

≥ C
1

(−k) ∨ 1
P
(
τH
r < ζ1, k − 1 ≤ VτH

r
< k

)
,

so (7.20) yields

P
(
τH
r < ζ1, k − 1 ≤ VτH

r
< k

)≤ C
(
(−k) ∨ 1

)
e−2g(r−1) 1

|k| + g + 1
e−((|k|+g−2)∨0)2

.

It follows that

P
(
τH
r < ζ1

)=
∞∑

k=−∞
P
(
τH
r < ζ1, k − 1 ≤ VτH

r
< k

)
≤

∞∑
k=−∞

C
(
(−k) ∨ 1

)
e−2g(r−1) 1

|k| + g + 1
e−((|k|+g−2)∨0)2 ≤ C′e−2gr .

This proves the upper bound in (7.13) for r ≥ 2. �
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Proof of Theorem 2.2. Fix arbitrarily small ε > 0. By (7.12) of Lemma 7.2, for n ≥ 0,

P

(
sup

t∈[ζn,ζn+1]
Vt >

√
(1 + ε) logn

)
≤ C

n1+ε/2

and

P

(
sup

t∈[ζn,ζn+1]
Vt >

√
(1 − ε) logn

)
≥ C

n1−ε/2
.

As the {ζn}n≥0 are renewal times, therefore by the Borel Cantelli lemma, a.s.,

√
1 − ε ≤ lim sup

n→∞
supt∈[ζn,ζn+1] Vt√

logn
≤ √

1 + ε. (7.21)

By Lemma 5.1, E(ζ1) < ∞ and thus, by the Strong Law of Large Numbers, ζn/n → E(ζ1), a.s. From the lower bound
in (7.21), with probability 1, there exists a subsequence nk → ∞ and tnk

∈ [ζnk
, ζnk+1] such that Vtnk

/
√

lognk ≥√
1 − ε. Moreover, the SLLN implies that, a.s., log tnk

≤ (1 + ε) lognk for sufficiently large k. Therefore, a.s.,

Vtnk√
log tnk

≥
√

1 − ε

1 + ε

for sufficiently large k. Since this holds for every ε > 0, we obtain, a.s.,

lim sup
t→∞

Vt√
log t

≥ 1. (7.22)

From the upper bound in (7.21) and the SLLN, we see that, a.s., there is a positive integer n0 such that for all
n ≥ n0, Vt/

√
logn ≤ √

1 + ε and log t ≥ (1 − ε) logn for all t ∈ [ζn, ζn+1]. These imply

Vt√
log t

≤
√

1 + ε

1 − ε

for all t ≥ ζn0 . Since ε > 0 can be taken arbitrarily small, we have, a.s.,

lim sup
t→∞

Vt√
log t

≤ 1.

This inequality and (7.22) prove the second equality in (2.2).
The proofs of the first equality in (2.2) and the equality in (2.3) follow similarly by using (7.11) and (7.13) of

Lemma 7.2, respectively. The claim in (2.4) follows from the fact that ζk’s are i.i.d. with E ζk > 0, and St − Xt = 0 if
t is a renewal time. �

Proof of Theorem 2.3. We have

Xt − (Bt − gt) = (X0 + V0) − Vt ,

St − (Bt − gt) = Xt − (Bt − gt) + (St − Xt) = (X0 + V0) − Vt + (St − Xt).

These identities and Theorem 2.2 easily imply the assertions made in Theorem 2.3. �
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