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Abstract. This paper is concerned with parametric inference for a stochastic differential equation driven by a pure-jump Lévy
process, based on high frequency observations on a fixed time period. Assuming that the Lévy measure of the driving process be-
haves like that of an α-stable process around zero, we propose an estimating functions based method which leads to asymptotically
efficient estimators for any value of α ∈ (0,2) and does not require any integrability assumptions on the process. The main limit
theorems are derived thanks to a control in total variation distance between the law of the normalized process, in small time, and the
α-stable distribution. This method is an alternative to the non Gaussian quasi-likelihood estimation method proposed by Masuda
(Stochastic Process. Appl. (2018) To appear) where the Blumenthal–Getoor index α is restricted to belong to the interval [1,2).

Résumé. Dans cet article, nous étudions l’estimation des paramètres d’une équation différentielle stochastique dirigée par un pro-
cessus de saut pur, à partir d’observations hautes fréquences du processus sur un intervalle de temps fixe. En supposant que la
mesure de Lévy du processus de saut qui dirige l’équation se comporte autour de zéro comme la mesure de Lévy d’un processus
α-stable, nous proposons une méthode d’estimation basée sur des fonctions estimantes qui conduit à des estimateurs asymptoti-
quement efficaces des paramètres de tendance et d’échelle, pour toute valeur de α ∈ (0,2), et qui ne nécessite pas de conditions
d’intégrabilité du processus. Les principaux résultats asymptotiques sont obtenus grâce à un contrôle en variation totale entre la loi
du processus renormalisé, en temps petit, et la loi α-stable. Cette méthode est une alternative à la méthode de quasi-vraisemblance
non gaussienne proposée par Masuda (Stochastic Process. Appl. (2018) To appear), où l’indice de Blumenthal–Getoor α appartient
à l’interval [1,2).
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1. Introduction

Pure-jump processes are widely used and appropriate in several fields such as traffic modeling, energy market model-
ing and estimation of such processes is a currently active topic. In this paper we are interested in parametric estimation
of the drift and scale coefficients for a one-dimensional stochastic differential equation

dXt = b(Xt , θ) dt + a(Xt−, σ ) dLt ,

where L is a locally stable pure-jump Lévy process with Blumenthal–Getoor index α ∈ (0,2). This choice of L

encompasses stable processes and also many other interesting processes.
We study the estimation of (θ, σ ) from discrete equidistant observations of X on a fixed time interval with time grid

mesh shrinking to zero. In this high-frequency observation context it is known that the estimation of θ is impossible
if the driving process L contains a Brownian part (which corresponds to the case α = 2). However when α < 2,
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both parameters θ and σ can be estimated. This problem has been studied first when X is a Lévy process (which
corresponds to constant coefficients a and b) in several papers, see for example Aït-Sahalia and Jacod [1,2], Kawai and
Masuda [15,16], Masuda [20], Ivanenko, Kulik and Masuda [11]. In all these papers, the increments of the observed
process X are independent with an explicit characteristic function. However, contrarily to the jump-diffusion case,
for a general pure-jump driven SDE the literature is much smaller. It has been established recently in Clément and
Gloter [7], Clément, Gloter and Nguyen [8] that the Local Asymptotic Mixed Normality property holds when the
scale coefficient a is assumed to be constant and L is a truncated α-stable process. This result permits to identify
the Fisher information matrix for the parameters (θ, σ ) and to show that the rate of convergence is n1/α−1/2 for the
estimation of θ and n1/2 for the estimation of σ . It is important to remark that the estimation rate for θ is slower than
the usual rate n1/2 when α > 1 and faster when α < 1. Concerning the estimation problem, this has been addressed
by Masuda [21] assuming that α ∈ [1,2) using a quasi-likelihood estimation method. Indeed, in that case, the drift
contribution is negligible compared to the jump part and the law of the normalized increment h−1/α(Xt+h − Xt −
hb(Xt , θ))/a(Xt , σ ) is close to the α-stable distribution as h goes to zero. However, this method does not seem to be
extended to the case α ∈ (0,1) mainly because of the great contribution of the drift.

In this paper, we propose an estimating functions based method which applies to any value of α ∈ (0,2). Estimating
equation methods are useful alternative methods in situations where the likelihood function is not known in a tractable
form and have been widely used in estimating diffusion processes from discrete time observations (see for example
Bibby and Sørensen [5], Kessler and Sørensen [17]). We also refer to the papers by Barndorff-Nielsen and Sørensen
[4], Sørensen [23], Jacod and Sørensen [14] for general asymptotic results on estimating equation methods. In this
work, we consider estimating equations derived by approximating the score function and by changing the above
normalized increment by h−1/α(Xt+h − ξ

Xt

h (θ))/a(Xt , σ ), where (ξx
t (θ))t solves the ordinary differential equation

ξx
t (θ) = x +

∫ t

0
b
(
ξx
s (θ), θ

)
ds.

The introduction of this ordinary differential equation is convenient for dealing with any value of α but we can also
replace it by a numerical approximation scheme whose order has to be high when α is small. Conditionally on Xt the

density of h−1/α(Xt+h − ξ
Xt

h (θ))/a(Xt , σ ) converges when h tends to zero to the density of the α-stable distribution.
This has been established by Kulik [18] when L is an α-stable process (and also in [9] when L is a truncated α-stable
process assuming that a is constant). However to prove consistency and asymptotic mixed normality of our estimators,
the convergence of the densities is not sufficient and we also need a rate of convergence. This is the most technical
part of the paper. For L a locally α-stable process, we prove that the total variation distance between the conditional
law of h−1/α(Xt+h − ξ

Xt

h (θ))/a(Xt , σ ) and the α-stable distribution is bounded by εh such that h−1/2εh tends to zero.
This result is the key ingredient to derive some limit theorems (Law of Large Numbers, Central Limit Theorem) for
functionals of normalized discrete time observations of the process X.

At last, it should be noted that the estimation method proposed in this paper requires that the Blumenthal–Getoor
index α is known. This is also the case in Masuda [21]. A large literature is devoted to the estimation of the jump
activity of jump-diffusion processes from high frequency observations, based on truncated power variation or on
empirical characteristic function. We mention among others the papers by Aït-Sahalia and Jacod [3], Todorov [24],
Todorov and Tauchen [25].

This paper is organized as follows. Section 2 introduces the notations and assumptions. Section 3 is devoted to the
estimating function method and states consistency and asymptotic mixed normality of our estimators after establishing
some limit theorems. Section 4 is dedicated to some critical total variation distance estimates. Section 5 contains the
proof of limit theorems stated in Section 3.

2. Notation and setup

We consider the stochastic differential equation:

Xt = x0 +
∫ t

0
b(Xs, θ) ds +

∫ t

0
a(Xs−, σ ) dLs, t ∈ [0,1], (2.1)
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where a and b are known functions from R × R to R and (θ, σ ) are real parameters. We assume that (Lt )t∈[0,1] is a
pure-jump Lévy process defined on a filtered space (�,F, (Ft ),P).

We introduce also the ordinary differential equation

ξ
x0
t (θ) = x0 +

∫ t

0
b
(
ξx0
s (θ), θ

)
ds, t ∈ [0,1]. (2.2)

It will be shown in Section 4 that if (Lt )t∈[0,1] is a locally α-stable process with α ∈ (0,2), then the distribution of
n1/α(X1/n − ξ

x0
1/n(θ))/a(x0, σ ) is close to the distribution of n1/αL1/n.

We observe the process on discrete times ti = i/n for i = 1, . . . , n for the value (θ0, σ0) of the parameter and based
on these observations our aim is to estimate (θ0, σ0).

We make the following assumptions.
H1 (Regularity): (a) Let Vθ0 × Vσ0 be a neighborhood of (θ0, σ0). We assume that x �→ a(x,σ0) is C2 on R, b is C2

on R× Vθ0 and

sup
x

(
sup

θ∈Vθ0

∣∣∂xb(x, θ)
∣∣ + ∣∣∂xa(x,σ0)

∣∣) ≤ C,

∣∣∂2
xb(x, θ0)

∣∣ + ∣∣∂2
xa(x,σ0)

∣∣ ≤ C
(
1 + |x|p)

, for some p > 0,

∀x ∈ R,∀σ ∈ Vσ0, a(x, σ ) > 0 and sup
σ∈Vσ0

1

a(x,σ )
≤ C

(
1 + |x|p)

, for some p > 0.

(b) ∀x ∈R, θ �→ b(x, θ) and σ �→ a(x,σ ) are C3 and

sup
(θ,σ )∈Vθ0×Vσ0

max
1≤l≤3

(∣∣∂l
θ b(x, θ)

∣∣ + ∣∣∂l
σ a(x,σ )

∣∣) ≤ C
(
1 + |x|p)

, for some p > 0,

sup
θ∈Vθ0

∣∣∂x∂θb(x, θ)
∣∣ ≤ C

(
1 + |x|p)

, for some p > 0.

Under the boundedness assumption on the derivative with respect to x, the coefficients a and b are globally Lipschitz
and equation (2.1) admits a unique strong solution.

H2 (Lévy measure): (a) The Lévy measure of (Lt ) satisfies ν(dz) = g(z)

|z|α+1 1R\{0}(z) dz, where α ∈ (0,2) and g :
R �→ R is a continuous symmetric non negative bounded function with g(0) = 1.

(b) g is differentiable on {0 < |z| ≤ η} for some η > 0 with continuous derivative such that sup0<|z|≤η | g′
g
| < ∞.

This assumption is satisfied by a large class of processes: α-stable process (g = 1), truncated α-stable process
(g = τ a truncation function), tempered stable process (g(z) = e−λ|z|, λ > 0).

H3 (Nondegeneracy): Almost surely, ∃t1, t2 ∈ (0,1), such that ∂σ a(Xt1, σ0) 
= 0, ∂θb(Xt2, θ0) 
= 0, where
(Xt )t∈[0,1] solves (2.1) for the value (θ0, σ0) of the parameter.

We will use the following notation. By ‖·‖, we denote a vector norm or a matrix norm, AT is the transpose of a
matrix A, and for a bounded function f : R �→ R, we set ‖f ‖∞ = supx |f (x)|. In the sequel, we denote by a′, b′
the derivative of a, b with respect to x, ȧ, ḃ the derivative with respect to the parameter and ä, b̈ the second order

derivative with respect to the parameter. We will also use the notation ξi(θ) = ξ
Xi/n

1
n

(θ), for i = 0 to n.

Throughout the paper, C or Cp denote some constants whose value does not depend on n and may change from
line to line.

3. Estimating function method and main statistical results

To estimate (θ, σ ), we will use the estimating function method (see for example [14] and [23]). To this end, we
consider the functions

Gn(θ,σ ) =
(

G1
n(θ, σ )

G2
n(θ, σ )

)
, (3.1)
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with for k = 1,2

Gk
n(θ, σ ) =

n∑
i=1

gk(X i−1
n

,X i
n
, θ, σ ),

where gk will be specified below. An estimator of (θ, σ ) is obtained by solving Gn(θ,σ ) = 0 and the properties of
this estimator depend on the choice of the functions g1 and g2.

Denoting by p1/n(x, y) the transition density of the Markov chain (Xi/n)i solution of (2.1), we can prove the
convergence as n goes to infinity

a(x,σ )

n1/α
p1/n

(
x,

a(x,σ )

n1/α
y + ξx

1/n(θ)

)
−→ ϕα(y),

where ϕα is the density of Lα
1 , a stable random variable with characteristic function e−C(α)|u|α (see [9] assuming

that a is constant and (Lt ) is a truncated α-stable process or [18] for more general assumptions on the coefficients
assuming that (Lt ) is an α-stable process). Note that a(x0,σ )

n1/α p1/n(x0,
a(x0,σ )

n1/α y + ξ
x0
1/n(θ)) is the density of n1/α ×

(X1/n − ξ
x0
1/n(θ))/a(x0, σ ) and that we also give in Section 4 a rate of convergence in total variation distance between

the law of n1/α(X1/n − ξ
x0
1/n(θ))/a(x0, σ ) and the law of Lα

1 .

This observation suggests to approximate p1/n(x, y) by n1/α

a(x,σ )
ϕα(n1/α

(y−ξx
1/n(θ))

a(x,σ )
) and then approximating the score

function, a natural choice of estimating functions is

g1(x, y, θ, σ ) = n1/α

n

ḃ(x, θ)

a(x,σ )

ϕ′
α

ϕα

(
zn(x, y, θ, σ )

)
, (3.2)

g2(x, y, θ, σ ) = ȧ(x, σ )

a(x,σ )

(
1 + zn(x, y, θ, σ )

ϕ′
α

ϕα

(
zn(x, y, θ, σ )

))
, (3.3)

where

zn(x, y, θ, σ ) = n1/α
(y − ξx

1/n(θ))

a(x,σ )
. (3.4)

For this choice of estimating functions, we prove below that solving Gn(θ,σ ) = 0 gives a consistent and asymptotic
mixed normal estimator of (θ0, σ0). This result is based on limit theorems for normalized sums

1

n

n∑
i=1

f (X i−1
n

, θ, σ )h
(
zn(X i−1

n
,X i

n
, θ, σ )

)
,

where zn is defined by (3.4). We first establish a uniform Law of Large Numbers for (θ, σ ) in V
(η)
n (θ0, σ0), where for

η > 0

V (η)
n (θ0, σ0) = {

(θ, σ );∥∥u−1
n (θ − θ0, σ − σ0)

T
∥∥ ≤ η

}
, (3.5)

with

un =
(

1
n1/α−1/2 0

0 1
n1/2

)
. (3.6)

Theorem 3.1. We assume that H1 and H2 hold. Let h : R �→ R be a continuous bounded function with bounded
derivative and let f : R × R

2 �→ R be a continuous function with continuous partial derivative with respect to the
second variable such that

sup
(θ,σ )∈Vθ0×Vσ0

(∣∣f (x, θ, σ )
∣∣ + ∣∣∂θf (x, θ, σ )

∣∣ + ∣∣∂σ f (x, θ, σ )
∣∣) ≤ C

(
1 + |x|p)

, for some p > 0.
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Then we have the convergence in probability:

(i)

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣1

n

n∑
i=1

f (X i−1
n

, θ, σ )h
(
zn(X i−1

n
,X i

n
, θ, σ )

) −
∫ 1

0
f (Xs, θ0, σ0) dsEh

(
Lα

1

)∣∣∣∣∣ → 0.

(ii) Moreover if Eh(Lα
1 ) = 0

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣ 1

n1/α

n∑
i=1

f (X i−1
n

, θ, σ )h
(
zn(X i−1

n
,X i

n
, θ, σ )

)∣∣∣∣∣ → 0 in probability.

Obviously (ii) is a consequence of (i) in the case α ≤ 1 and only the case α > 1 requires a proof.
We also establish the stable convergence in law of functionals of the form

1

n1/2

n∑
i=1

f (X i−1
n

, θ0, σ0)h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

)
.

Thanks to the control in total variation distance given in Section 4 between zn(X i−1
n

,X i
n
, θ0, σ0) and n1/α�Li , this

can be reduced to the stable convergence in law for

1

n1/2

n∑
i=1

f (X i−1
n

, θ0, σ0)h
(
n1/α�Li

)
.

This is established in the next theorem.

Theorem 3.2. We assume that H1 and H2 hold. Let h1, h2 : R → R be bounded functions and let f1, f2 : R →
R be continuous functions. We assume that Eh1(L

α
1 ) = Eh2(L

α
1 ) = Eh1(L

α
1 )h2(L

α
1 ) = 0. Then we have the stable

convergence in law with respect to σ(Ls, s ≤ 1):

1

n1/2

n∑
i=1

(
f1(X i−1

n
)h1(n

1/α�Li)

f2(X i−1
n

)h2(n
1/α�Li)

)
=⇒ �1/2N ,

where N is a standard Gaussian variable independent of � and

� =
(∫ 1

0 f 2
1 (Xs) dsEh2

1(L
α
1 ) 0

0
∫ 1

0 f 2
2 (Xs) dsEh2

2(L
α
1 )

)
.

From this theorem we deduce the following corollary.

Corollary 3.1. We assume that H1 and H2 hold. Let h1, h2 : R → R be bounded functions with bounded derivative
and let f1, f2 : R → R be continuous functions. We assume that Eh1(L

α
1 ) = Eh2(L

α
1 ) = Eh1(L

α
1 )h2(L

α
1 ) = 0. Then

we have the stable convergence in law with respect to σ(Ls, s ≤ 1):

1

n1/2

n∑
i=1

(
f1(X i−1

n
)h1(zn(X i−1

n
,X i

n
, θ0, σ0))

f2(X i−1
n

)h2(zn(X i−1
n

,X i
n
, θ0, σ0))

)
=⇒ �1/2N ,

where N is a standard Gaussian variable independent of � and

� =
(∫ 1

0 f 2
1 (Xs) dsEh2

1(L
α
1 ) 0

0
∫ 1

0 f 2
2 (Xs) dsEh2

2(L
α
1 )

)
.
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The proofs of Theorem 3.1, Theorem 3.2 and Corollary 3.1 are postponed to Section 5. They are mainly based on
the total variation distance estimates given in Section 4.

From these results, we can establish the asymptotic properties of our estimating functions based estimator.

Theorem 3.3. Let Gn be defined by (3.1) with g1 and g2 given by (3.2) and (3.3). Under the assumptions H1, H2 and
H3, there exists an estimator (θ̂n, σ̂n) solving the equation Gn(θ,σ ) = 0 with probability tending to 1, that converges
in probability to (θ0, σ0). Moreover we have the convergence in law(

n1/α−1/2(θ̂n − θ0)

n1/2(σ̂n − σ0)

)
=⇒ I (θ0, σ0)

−1/2N ,

where N is a standard Gaussian variable independent of I (θ0, σ0) and

I (θ, σ ) =
⎛⎝∫ 1

0
ḃ(Xs,θ)2

a(Xs,σ )2 ds
∫
R

ϕ′
α(u)2

ϕα(u)
du 0

0
∫ 1

0
ȧ(Xs,σ )2

a(Xs,σ )2 ds
∫
R

(ϕα(u)+uϕ′
α(u))2

ϕα(u)
du

⎞⎠ .

Before proving Theorem 3.3, we make some remarks.

Remark 3.1. We observe that the estimation rate for the drift parameter θ degenerates as α goes to 2. Indeed, the limit
case α = 2 corresponds to the situation where (Lt ) is a Brownian motion and where the estimation of θ is impossible
from high frequency observations on a fixed time period. On the contrary, when α < 1, the estimation rate for θ is
faster than the usual one n1/2.

Remark 3.2. The LAMN property with information I (θ, σ ) has been established in [8] for this experiment, assuming
that a is constant and g is a truncation function. This result permits to deduce that our estimator is efficient.

If the solution to the ordinary differential equation (2.2) is not explicit, we can replace it in the expression of zn by a
numerical scheme ξ

x

1/n(θ). The next proposition gives sufficient conditions on the scheme to preserve the conclusion
of Theorem 3.3.

Proposition 3.1. Let ξ
x

1/n(θ) be an approximation of ξx
1/n(θ) such that

(i) supθ∈Vθ0
|ξx

1/n(θ) − ξ
x

1/n(θ)| ≤ C(1 + |x|p)/nk with k > 1/α + 1/2,

(ii) supθ∈Vθ0
|∂θ ξ

x

1/n(θ) − ḃ(x,θ)
n

| ≤ C(1 + |x|p)/n2, for some p > 0.

Then under H1, H2 and H3 if we replace zn by zn(x, y, θ, σ ) = n1/α (y−ξ
x
1/n(θ))

a(x,σ )
in equations (3.2) and (3.3), there

exists an estimator (θn, σ n) that solves Gn(θ,σ ) = 0 with probability tending to 1. This estimator has the same
asymptotic properties as the estimator defined in Theorem 3.3.

The proof of Proposition 3.1 is omitted since it follows the same arguments as the proof of Theorem 3.3 replacing
zn by zn.

Example 3.1. We assume that the function b is of class Ck with k ≥ 2 and that

sup
θ∈Vθ0

max
1≤l≤k−1

(∣∣∂l
xb(x, θ)

∣∣ + ∣∣∂θ∂
l
xb(x, θ)

∣∣) ≤ C
(
1 + |x|p)

.
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For f : R×Vθ0 �→R of class Ck , we set A0f = f , Af = bf ′ and define recursively Ajf = A(Aj−1f ) for 2 ≤ j ≤ k.
We have f (ξx

t (θ), θ) = f (x, θ) + ∫ t

0 (Af )(ξx
s (θ), θ) ds and consequently we obtain

ξx
t (θ) = x +

∫ t

0

(
A0b

)(
ξx
s (θ), θ

)
ds

= x + t
(
A0b

)
(x, θ) +

∫ t

0

∫ t1

0
(Ab)

(
ξx
t2
(θ), θ

)
dt2 dt1

= ξ
x

t (θ) +
∫ t

0

∫ t1

0
...

∫ tk−1

0

(
Ak−1b

)(
ξx
tk
(θ), θ

)
dtk · · ·dtt1,

with ξ
x

t (θ) = x + t (A0b)(x, θ) + t2

2 (Ab)(x, θ) + · · · + tk−1

(k−1)! (A
k−2b)(x, θ). We deduce that if k > 1/α + 1/2, (i) and

(ii) are satisfied and the result of Proposition 3.1 can be applied. If α > 2/3, the simple choice ξ
x

1/n(θ) = x +b(x, θ)/n

is convenient.

Proof of Theorem 3.3. The proof is based on the results established in Sørensen [23] to obtain the consistency and
asymptotic normality of estimators constructed from estimating functions. We first remark that from H3, we have
I (θ0, σ0) > 0 almost surely.

We define the matrix Jn((θ1, σ1), (θ2, σ2)) by

Jn

(
(θ1, σ1), (θ2, σ2)

) =
n∑

i=1

(
∂θg

1(X i−1
n

,X i
n
, θ1, σ1) ∂σ g1(X i−1

n
,X i

n
, θ1, σ1)

∂θg
2(X i−1

n
,X i

n
, θ2, σ2) ∂σ g2(X i−1

n
,X i

n
, θ2, σ2)

)
.

We also recall that V
(η)
n (θ0, σ0) and un are respectively defined by (3.5) and (3.6). With these notations, the result of

Theorem 3.3 is a consequence of the two following sufficient conditions:
C1: ∀η > 0, we have the convergence in probability:

sup
(θ1,σ1),(θ2,σ2)∈V

(η)
n (θ0,σ0)

∥∥unJn

(
(θ1, σ1), (θ2, σ2)

)
un − I (θ0, σ0)

∥∥ → 0.

C2: (unGn(θ0, σ0))n stably converges in law to I (θ0, σ0)
1/2N , where N is a standard Gaussian variable indepen-

dent of I (θ0, σ0) and the convergence is stable with respect to the σ -field σ(Ls, s ≤ 1).
These conditions imply the ones given in [23] which are sufficient to prove consistency in the case of a random

information matrix. In [23] the Central Limit Theorem is established for a deterministic information only, however
the proof can be easily extended to the random case enhancing the convergence in law by the stable convergence in
law.

To check the conditions C1 and C2, we first recall that

unJn

(
(θ1, σ1), (θ2, σ2)

)
un =

n∑
i=1

(
n

n2/α ∂θg
1(X i−1

n
,X i

n
, θ1, σ1)

1
n1/α ∂σ g1(X i−1

n
,X i

n
, θ1, σ1)

1
n1/α ∂θg

2(X i−1
n

,X i
n
, θ2, σ2)

1
n
∂σ g2(X i−1

n
,X i

n
, θ2, σ2)

)
.

We compute explicitly the partial derivatives appearing in this matrix. Recalling that g1 and g2 are given by (3.2) and

(3.3) and observing that ∂θzn(x, y, θ, σ ) = − n1/α

a(x,σ )
ξ̇ x

1/n(θ) and ∂σ zn(x, y, θ, σ ) = − ȧ(x,σ )
a(x,σ )

zn(x, y, θ, σ ) we get

∂θg
1(x, y, θ, σ ) = n1/α

n

b̈(x, θ)

a(x,σ )

ϕ′
α

ϕα

(
zn(x, y, θ, σ )

) − n2/α

n

ḃ(x, θ)

a(x,σ )2
ξ̇ x

1/n(θ)

(
ϕ′

α

ϕα

)′(
zn(x, y, θ, σ )

)
,

∂σ g1(x, y, θ, σ ) = −n1/α

n

ȧ(x, σ )

a(x,σ )2
ḃ(x, θ)

[
ϕ′

α

ϕα

(
zn(x, y, θ, σ )

) + zn(x, y, θ, σ )

(
ϕ′

α

ϕα

)′(
zn(x, y, θ, σ )

)]
,

∂θg
2(x, y, θ, σ ) = −n1/α ȧ(x, σ )

a(x,σ )2
ξ̇ x

1/n(θ)

[
ϕ′

α

ϕα

(
zn(x, y, θ, σ )

) + zn(x, y, θ, σ )

(
ϕ′

α

ϕα

)′(
zn(x, y, θ, σ )

)]
,
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∂σ g2(x, y, θ, σ ) =
(

äa − ȧ2

a2

)
(x, σ )

[
1 + zn(x, y, θ, σ )

ϕ′
α

ϕα

(
zn(x, y, θ, σ )

)]

−
(

ȧ2

a2

)
(x, σ )zn(x, y, θ, σ )

[
ϕ′

α

ϕα

(
zn(x, y, θ, σ )

) + zn(x, y, θ, σ )

(
ϕ′

α

ϕα

)′(
zn(x, y, θ, σ )

)]
.

Proof of C1. We will use intensively the result of Theorem 3.1.
We first remark that the condition C1 reduces to the uniform convergence of unJn((θ, σ ), (θ, σ ))un. In the sequel

we use the notation hα = ϕ′
α

ϕα
and gα(z) = hα(z) + zh′

α(z). The functions hα and gα are bounded with bounded
derivative (see [2]). We also set:

unJn

(
(θ, σ ), (θ, σ )

)
un =

(
I

1,1
n I

1,2
n

I
2,1
n I

2,2
n

)
.

With these notations we have using the above calculus

I 1,1
n = 1

n1/α

n∑
i=1

b̈(X i−1
n

, θ)

a(X i−1
n

, σ )
hα

(
zn(X i−1

n
,X i

n
, θ, σ )

) −
n∑

i=1

ḃ(X i−1
n

, θ)

a(X i−1
n

, σ )2
ξ̇

X i−1
n

1/n (θ)h′
α

(
zn(X i−1

n
,X i

n
, θ, σ )

)
,

I 1,2
n = −1

n

n∑
i=1

ȧ(X i−1
n

, σ )

a(X i−1
n

, σ )2
ḃ(X i−1

n
, θ)gα

(
zn(X i−1

n
,X i

n
, θ, σ )

)
,

I 2,1
n = −

n∑
i=1

ȧ(X i−1
n

, σ )

a(X i−1
n

, σ )2
ξ̇

X i−1
n

1/n (θ)gα

(
zn(X i−1

n
,X i

n
, θ, σ )

)
,

I 2,2
n = 1

n

n∑
i=1

(
äa − ȧ2

a2

)
(X i−1

n
, σ )

[
1 + zn(X i−1

n
,X i

n
, θ, σ )hα

(
zn(X i−1

n
,X i

n
, θ, σ )

)]
− 1

n

n∑
i=1

(
ȧ2

a2

)
(X i−1

n
, σ )zn(X i−1

n
,X i

n
, θ, σ )gα

(
zn(X i−1

n
,X i

n
, θ, σ )

)
.

From H1, obviously the functions ḃ/a, ȧ/a, b̈/a, ä/a satisfy the assumptions of Theorem 3.1.
Since Ehα(Lα

1 ) = 0, the first term in the expression of I
1,1
n goes to zero (Theorem 3.1(ii)).

For the second term we observe that (ξ̇ x
t (θ))t solves

ξ̇ x
t (θ) =

∫ t

0
b′(ξx

s (θ), θ
)
ξ̇ x
s (θ) ds +

∫ t

0
ḃ
(
ξx
s (θ), θ

)
ds,

and from H1 and Gronwall’s Lemma we can deduce (we omit the details of this standard proof)

sup
θ∈Vθ0

∣∣∣∣ξ̇ x
1/n(θ) − 1

n
ḃ(x, θ)

∣∣∣∣ ≤ C
(
1 + |x|p)

/n2, (3.7)

so from Theorem 3.1(i) we deduce the convergence of the second term of I
1,1
n to − ∫ 1

0
ḃ(Xs,θ0)

2

a(Xs,σ0)
2 dsE(

ϕ′
α

ϕα
)′(Lα

1 ). Since∫
ϕ′′

α(x) dx = 0, we deduce E(
ϕ′

α

ϕα
)′(Lα

1 ) = −E(
ϕ′

α

ϕα
)2(Lα

1 ) and finally

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣I 1,1
n −

∫ 1

0

ḃ(Xs, θ0)
2

a(Xs, σ0)2
dsE

(
ϕ′

α

ϕα

)2(
Lα

1

)∣∣∣∣ → 0.
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Using the symmetry of the function ϕα we have Egα(Lα
1 ) = 0 and we deduce easily from Theorem 3.1(i) and (3.7)

that

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣I 1,2
n

∣∣ → 0 and sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣I 2,1
n

∣∣ → 0.

Turning to I
2,2
n , we have by integrating by part E(1 + Lα

1 hα(Lα
1 )) = 0. Consequently

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣I 2,2
n +

∫ 1

0

(
ȧ2

a2

)
(Xs, σ0) dsELα

1 gα

(
Lα

1

)∣∣∣∣ → 0,

and it remains to check ELα
1 gα(Lα

1 ) = −E
(ϕα(Lα

1 )+Lα
1 ϕ′

α(Lα
1 ))2

ϕα(Lα
1 )2 . This is done by integrating by parts. This achieves the

proof of C1. �

Proof of C2. We recall that

unGn(θ0, σ0) = 1

n1/2

n∑
i=1

⎛⎜⎜⎝
ḃ(X i−1

n
,θ0)

a(X i−1
n

,σ0)

ϕ′
α

ϕα
(zn(X i−1

n
,X i

n
, θ0, σ0))

ȧ(X i−1
n

,σ0)

a(X i−1
n

,σ0)
[1 + zn(X i−1

n
,X i

n
, θ0, σ0)

ϕ′
α

ϕα
(zn(X i−1

n
,X i

n
, θ0, σ0))]

⎞⎟⎟⎠ .

Applying Corollary 3.1 with f1 = ḃ/a, f2 = ȧ/a, h1 = ϕ′
α/ϕα , h2(z) = 1 + zh1(z) (h1 and h2 are bounded func-

tions with bounded derivative, see for example [2]), we deduce immediately C2. �
�

4. Total variation distance estimates

This section is the most technical part of the paper and contains some crucial estimates to derive the asymptotic
properties of the estimating functions considered in the previous section. We consider here the process (Xt )t∈[0,1] that
solves (2.1) for the value (θ0, σ0) of the parameter and to simplify the notation we omit the dependence on (θ0, σ0) in
the expressions of the functions a, b and ξx0 .

We will prove that we can approximate n1/α(X 1
n

− ξ
x0
1
n

) by n1/αa(x0)L 1
n

and control this approximation. This is

done by estimating the total variation distance between n1/α(X 1
n

− ξ
x0
1
n

) and n1/αa(x0)L 1
n

. We also give a weak rate

of convergence of the rescaled Lévy process n1/αL1/n to the α-stable process Lα
1 which is estimated by the total

variation distance between n1/αL1/n and Lα
1 .

Theorem 4.1. We assume H1(a) and H2. There exists a constant C such that for any measurable bounded function
h, we have:∣∣Eh

(
n1/α

(
X 1

n
− ξ

x0
1
n

)) −Eh
(
n1/αa(x0)L 1

n

)∣∣ ≤ C
(
1 + |x0|

)
εn‖h‖∞,

where

• if α ≤ 1, ∀ε ∈ (0,1), εn = 1
n1−ε ;

• if α > 1, ∀ε ∈ (0,1/α), εn = 1
n1/α−ε .

In particular, in both cases n1/2εn → 0.

Theorem 4.2. Under H2, we have for any bounded function h:∣∣Eh
(
n1/αL1/n

) −Eh
(
Lα

1

)∣∣ ≤ C‖h‖∞εn,

where εn is as in Theorem 4.1.
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Combining Theorem 4.1 and Theorem 4.2, we see that the total variation distance between the distribution of
n1/α

a(x0)
(X 1

n
− ξ

x0
1
n

) and the distribution of Lα
1 is bounded by C(1 + |x0|)εn.

To prove these results, it is convenient to introduce an adequate truncation function and to consider a rescaled pro-
cess. This is explained in the next subsections. Moreover, the proof of Theorems 4.1 and 4.2 requires some Malliavin
calculus and we recall in what follows all the technical tools to make easier the understanding of the paper.

Remark 4.1. In the statement of Theorem 4.1, we give a control for the distance in total variation between the laws of
the processes X and L, under a short time asymptotic 1/n → 0. If we assume that h admits a bounded derivative, it is
possible to get some related control from the study of the strong error |n1/α(X 1

n
−ξ

x0
1
n

)−n1/αa(x0)L 1
n
|. In Lemma 4.2

below we state an upper bound, in probability, for this error. In the case α > 1, using the controls in Lp-norm given
in the proof of Lemma 4.2, we can show∣∣Eh

(
n1/α

(
X 1

n
− ξ

x0
1
n

)) −Eh
(
n1/αa(x0)L 1

n

)∣∣ ≤ C
(
1 + |x0|

)(‖h‖∞ + ∥∥h′∥∥∞
)
/n1/α−ε.

Unfortunately, this proof does not work in the case α ≤ 1 and we have not been able to give a simple proof of the
above result in that case. The Malliavin calculus, especially the integration by part formula and the Malliavin weights,
permit to compensate the lack of integrability of the process (Lt ) and additionally to weaken the assumptions on the
function h.

4.1. Localization and rescaling

We first introduce a truncation function in order to suppress the big jumps of (Lt ). Let τ : R �→ [0,1] be a symmetric
function, continuous with continuous derivative, such that τ = 1 on {|z| ≤ K(a)/2}, τ = 0 on {|z| ≥ K(a)} where

K(a) = 1

2

(
η ∧ 1

‖a′‖∞

)
(4.1)

for η defined in H2(b).
On the same probability space (�,F, (Ft ),P), we consider the Lévy process (Lt )t∈[0,1] with Lévy measure ν

and the truncated Lévy process (Lτ
t )t∈[0,1] with Lévy measure ντ given by ντ (dz) = g(z)

|z|α+1 τ(z)1R\{0}(z) dz. This can

be done by setting Lt = ∫ t

0

∫
R

zμ̃(ds, dz), respectively Lτ
t = ∫ t

0

∫
R

zμ̃τ (ds, dz), where μ̃, respectively μ̃τ , are the
compensated Poisson random measures associated respectively to

μ(A) =
∫

[0,1]

∫
R

∫
[0,1]

1A(t, z)μg(dt, dz, du), A ⊂ [0,1] ×R,

μτ (A) =
∫

[0,1]

∫
R

∫
[0,1]

1A(t, z)1{u≤τ(z)}μg(dt, dz, du), A ⊂ [0,1] ×R

for μg a Poisson random measure on [0,1] ×R× [0,1] with compensator μg(dt, dz, du) = dt
g(z)

|z|α+1 1R\{0}(z) dz du.
By construction, the restrictions of the measures μ and μτ to [0,1/n] ×R coincide on the event

�n = {
ω ∈ �;μg

([0,1/n] × {
z ∈ R; |z| ≥ K(a)/2

} × [0,1]) = 0
}
. (4.2)

Since μg([0,1/n] × {z ∈R; |z| ≥ K(a)/2} × [0,1]) has a Poisson distribution with parameter

λn = 1

n

∫
|z|≥K(a)/2

g(z)/|z|α+1 dz ≤ C/n,

we deduce that

P
(
�c

n

) ≤ C/n. (4.3)
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We consider now the truncated process

Xτ
t = x0 +

∫ t

0
b
(
Xτ

s

)
ds +

∫ t

0
a
(
Xτ

s−
)
dLτ

s , t ∈ [0,1]. (4.4)

Obviously (Xt ,Lt )t∈[0,1/n] = (Xτ
t ,Lτ

t )t∈[0,1/n] on �n and consequently since P(�c
n) ≤ C/n, the result of Theo-

rem 4.1 consists in proving∣∣Eh
(
n1/α

(
Xτ

1/n − ξ
x0
1/n

)) −Eh
(
n1/αa(x0)L

τ
1/n

)∣∣ ≤ C
(
1 + |x0|

)
εn‖h‖∞.

To clarify the proofs, it will be useful to rescale the truncated process (Xτ
t )t∈[0,1/n]. To this end we introduce an

auxiliary Lévy process (Ln
t )t∈[0,1] defined possibly on an other filtered space (�,F, (F t ),P) and admitting the de-

composition

Ln
t =

∫ t

0

∫
R

zμ̃n(dt, dz), t ∈ [0,1], (4.5)

where μ̃n is a compensated Poisson random measure, μ̃n = μn − μn, with compensator μn(dt, dz) = dt
g(z/n1/α)

|z|α+1 ×
τ(z/n1/α)1R\{0}(z) dz. By construction, the process (Ln

t )t∈[0,1] is equal in law to the rescaled truncated process
(n1/αLτ

t/n)t∈[0,1]. We now consider the rescaled stochastic differential equation

Yn
t = x0 + 1

n

∫ t

0
b
(
Yn

s

)
ds + 1

n1/α

∫ t

0
a
(
Yn

s−
)
dLn

s , t ∈ [0,1], (4.6)

and the rescaled ordinary differential equation

ξ
n,x0
t = x0 + 1

n

∫ t

0
b
(
ξn,x0
s

)
ds, t ∈ [0,1]. (4.7)

The equality in law(
Yn

t − ξ
n,x0
t ,Ln

t

)
t∈[0,1]

law= (
Xτ

t/n − ξ
x0
t/n, n

1/αLτ
t/n

)
t∈[0,1] (4.8)

is straightforward and consequently with these notations the result of Theorem 4.1 follows from∣∣Eh
(
n1/α

(
Yn

1 − ξ
n,x0
1

)) −Eh
(
a(x0)L

n
1

)∣∣ ≤ C
(
1 + |x0|

)
εn‖h‖∞.

It is worth to note that the jumps of (Ln
t ) are bounded by n1/αK(a), and then the processes (Ln

t ) and (Y n
t ) admit

moments of all orders. More precisely, we have the following result.

Lemma 4.1. Assuming H1(a) and H2(a), we have

∀p ≥ 1, sup
n

E

(
sup

t∈[0,1]
∣∣Yn

t

∣∣p)
≤ Cp

(
1 + |x0|p

)
, (4.9)

∀p ≥ 1 and p > α, E sup
t∈[0,1]

∣∣Yn
t − x0

∣∣p ≤ Cp

(
1 + |x0|p

)1

n
. (4.10)

The proof of both inequalities is based on Burkholder type inequalities (see 2.1.36 and 2.1.37 in Lemma 2.1.5 of
[13]) for purely discontinuous martingales and standard arguments (convexity inequality, Lipschitz assumption on the
coefficients and Gronwall’s lemma). We omit it.

We end this subsection with a control of supt≤1/n |n1/α(Xt − ξ
x0
t (θ0)) − n1/αa(x0)Lt | which can be established

using both the truncation and rescaling procedure.
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Lemma 4.2. Assuming H1(a) and H2(a), there exists p > 0 such that for any ε > 0

P

(
sup

t≤1/n

∣∣n1/α
(
Xt − ξ

x0
t (θ0)

) − n1/αa(x0)Lt

∣∣ > ε
)

≤
{

C(ε)(1 + |x0|p)
logn
nα if α < 1,

C(ε)(1 + |x0|p) 1
n1−δ ,∀δ ∈ (0,1) if α ≥ 1,

where C(ε) is a positive constant.

Proof. Recalling that (Xt ,Lt )t∈[0,1/n] = (Xτ
t ,Lτ

t )t∈[0,1/n] on �n and that P(�c
n) ≤ 1/n, it is sufficient to study the

convergence in probability of supt≤1/n |n1/α(Xτ
t − ξ

x0
t (θ0))−n1/αa(x0)L

τ
t |. Now using the rescaled process (Ln

t ) this
is equivalent to study the convergence in probability of supt∈[0,1] |n1/α(Y n

t −ξ
n,x0
t )−a(x0)L

n
t |. We have the inequality

for t ∈ [0,1]

sup
s≤t

∣∣n1/α
(
Yn

s − ξn,x0
s

) − a(x0)L
n
s

∣∣ ≤ ‖b′‖∞
n

∫ t

0
sup
u≤s

∣∣n1/α
(
Yn

u − ξn,x0
u

) − a(x0)L
n
u

∣∣ds

+ ‖b′‖∞|a(x0)|
n

sup
t∈[0,1]

∣∣Ln
t

∣∣ + sup
t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn

s

∣∣∣∣,
and from Gronwall’s inequality we deduce

sup
t∈[0,1]

∣∣n1/α
(
Yn

t − ξ
n,x0
t

) − a(x0)L
n
t

∣∣ ≤ C

(
1

n
sup

t∈[0,1]

∣∣Ln
t

∣∣ + sup
t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn

s

∣∣∣∣). (4.11)

In what follows, we will distinguish between the small jumps and the big jumps of Ln
t . To this end we have

Ln
t =

∫ t

0

∫
{0<|z|≤1}

zμ̃n(dt, dz) +
∫ t

0

∫
{|z|>1}

zμ̃n(dt, dz) := L
n,1
t + L

n,2
t . (4.12)

Control of the small jumps part Ln,1.
Since E supt∈[0,1] |Ln,1

t |2 ≤ C we deduce P( 1
n

supt∈[0,1] |Ln,1
t | > ε) ≤ C/(n2ε2). Turning to the other term

supt∈[0,1] |
∫ t

0 (a(Y n
s−) − a(x0)) dL

n,1
s |, we have using Lemma 4.1

E

(
sup

t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,1

s

∣∣∣∣2)
≤ CE

(
sup

t∈[0,1]

∣∣Yn
t − x0

∣∣2
)

≤ C
(
1 + |x0|2

)
/n,

and we get P(supt∈[0,1] |
∫ t

0 (a(Y n
s−) − a(x0)) dL

n,1
s | > ε) ≤ C(ε)(1 + |x0|2)/n.

Control of the big jumps part Ln,2.
We distinguish between the cases α ≥ 1 and α < 1.
• α ≥ 1.
Using inequality 2.1.36 in [13] with α < p < 2, the boundedness of g and the definition of τ , we obtain:

E

(
sup

t∈[0,1]

∣∣Ln,2
t

∣∣p)
≤ C

∫
{1<|z|≤K(a)n1/α}

|z|p
|z|α+1

dz ≤ Cnp/α/n,

and then from Markov inequality

P

(
1

n
sup

t∈[0,1]

∣∣Ln,2
t

∣∣ > ε

)
≤ C(ε)np/α/np+1 ≤ C(ε)/n.

Similarly we get using Lemma 4.1

E sup
t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dL2,n

s

∣∣∣∣p ≤ CE

(
sup

t∈[0,1]
∣∣Yn

t − x0
∣∣p)

np/α/n ≤ C
(
1 + |x0|p

)np/α

n2
,
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this gives choosing p = α(1 + δ)

P

(
sup

t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dL2,n

s

∣∣∣∣ > ε

)
≤ C(ε)

(
1 + |x0|p

)
/n1−δ.

• α < 1.
Thanks to the symmetry of the compensator μn, we have L

n,2
t = ∫ t

0

∫
|z|>1 zμn(ds, dz). Then we can write

∣∣Ln,2
t

∣∣α =
∣∣∣∣∫ t

0

∫
{|z|>1}

zμn(dt, dz)

∣∣∣∣α ≤
∫ 1

0

∫
{|z|>1}

|z|αμn(dt, dz),

consequently E(supt∈[0,1] |Ln,2
t |α) ≤ C logn, and then

P

(
1

n
sup

t∈[0,1]

∣∣Ln,2
t

∣∣ > ε

)
≤ C(ε)

logn

nα
.

Similarly, we have∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,2

s

∣∣∣∣α ≤
∫ 1

0

∫
{|z|>1}

∣∣a(
Yn

s−
) − a(x0)

∣∣α|z|αμn(ds, dz).

Taking the expectation and using the Lipschitz assumption on a, this yields

E

(
sup

t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,2

s

∣∣∣∣α)
≤ CE

(
sup

t∈[0,1]
∣∣Yn

t − x0
∣∣α)

logn ≤ C
(
E sup

t∈[0,1]
∣∣Yn

t − x0
∣∣)α

logn,

where for the second inequality we used Hölder’s inequality with p′ = 1/α > 1. From Lemma 4.1, we deduce

E

(
sup

t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,2

s

∣∣∣∣p)
≤ C

(
1 + |x0|p

)
logn/nα

and we obtain P(supt∈[0,1] |
∫ t

0 (a(Y n
s−) − a(x0)) dLn

s | > ε) ≤ C(ε)(1 + |x0|p) logn/nα .
Putting all these results together, Lemma 4.2 is proved. �

4.2. Malliavin calculus

In this section, we recall some results on Malliavin calculus for jump processes. We refer to [6] for a complete
presentation and to [7] for the adaptation to our framework. We will work on the Poisson space associated to the
measure μn defining the process (Ln

t ) of Section 4.1, assuming that n is fixed. By construction, the support of μn is
contained in [0,1] × En, where

En = {
z ∈R; |z| < K(a)n1/α

}
, (4.13)

and K(a) is defined by (4.1). We recall that the measure μn has compensator

μn(dt, dz) = dt
g(z/n1/α)

|z|α+1
τ
(
z/n1/α

)
1R\{0} dz := dtFn(z) dz. (4.14)

In this section we assume that the truncation function τ satisfies the additional assumption∫
R

∣∣∣∣τ ′(z)
τ (z)

∣∣∣∣pτ(z) dz < ∞, ∀p ≥ 1. (4.15)

We define the Malliavin operators L and � (we omit the dependence in n) and their basic properties (see Bichteler,
Gravereaux, Jacod, [6] Chapter IV, Sections 8–9–10). For a test function f : [0,1] × R �→ R (f is measurable,
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C2 with respect to the second variable, with bounded derivatives, and f ∈ ⋂
p≥1 Lp(Fn(z) dz)), we set μn(f ) =∫ 1

0

∫
R

f (t, z)μn(dt, dz) (in the sequel this notation is also used for f : R �→ R). As auxiliary function, we consider
ρ : R �→ [0,∞) such that ρ is symmetric, two times differentiable and such that ρ(z) = z4 if z ∈ [0,1/2] and ρ(z) = z2

if z ≥ 1. Note that thanks to the truncation τ , we do not need that ρ vanishes at infinity. Assuming H2(b), we check

that ρ, ρ ′ and ρ
F ′

n

Fn
belong to

⋂
p≥1 Lp(Fn(z) dz). With these notations, we define the Malliavin operator L, on a

simple functional μn(f ) as follows

L
(
μn(f )

) = 1

2
μn

(
ρ′f ′ + ρ

F ′
n

Fn

f ′ + ρf ′′
)

, (4.16)

where f ′ and f ′′ are the derivatives with respect to the second variable. This definition permits to construct a linear
operator on a space D ⊂ ⋂

p≥1 Lp which is self-adjoint:

∀�,� ∈ D, E�L� = EL��.

We associate to L, the symmetric bilinear operator �:

�(�,�) = L(��) − �L� − �L�. (4.17)

If f and h are two test functions, we have:

�
(
μn(f ),μn(h)

) = μn
(
ρf ′h′), (4.18)

The operators L and � satisfy the chain rule property:

LF(�) = F ′(�)L� + 1

2
F ′′(�)�(�,�), (4.19)

�
(
F(�),�

) = F ′(�)�(�,�). (4.20)

These operators permit to establish the following integration by parts formula (see [6], Theorem 8-10, p. 103).

Theorem 4.3. Let � and � be random variables in D, and f be a bounded function with bounded derivatives up to
order two. If �(�,�) is invertible and �−1(�,�) ∈ ⋂

p≥1 Lp , we have

Ef ′(�)� = Ef (�)H�(�), (4.21)

with

H�(�) = −2��−1(�,�)L� − �
(
�,��−1(�,�)

)
. (4.22)

In the next section, we will apply this Malliavin calculus to the random variables Ln
1 and Yn

1 , which belong to the
domain of the operators L and �. From the preceding definitions, we compute easily L(Ln

1), �(Ln
1,Ln

1) and HLn
1
(1).

We have

L
(
Ln

1

) = 1

2
μn

(
ρ′ + ρ

F ′
n

Fn

)
,

�
(
Ln

1,Ln
1

) = μn(ρ),

HLn
1
(1) = �(Ln

1,�(Ln
1,Ln

1))

�(Ln
1,Ln

1)2
− 2

L(Ln
1)

�(Ln
1,Ln

1)
= μn(ρρ′)

μn(ρ)2
− μn(ρ′ + ρ

F ′
n

Fn
)

μn(ρ)
.

(4.23)

This leads to the expression

HLn
1
(1) = μn(ρρ′)

μn(ρ)2
− μn(ρ′ − (α + 1) 1

z
ρ)

μn(ρ)
+ 1

n1/α
Rn, (4.24)
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where Rn is given by

Rn = μn(ρ
g1
n

gn
)

μn(ρ)
+ μn(ρ

τ 1
n

τn
)

μn(ρ)
:= R1

n + R2
n,

with the additional notations gn(z) = g(z/n1/α), g1
n(z) = g′(z/n1/α), τn(z) = τ(z/n1/α), τ 1

n (z) = τ ′(z/n1/α).
From the choice of ρ we can prove that

E
1

μn(ρ)p
≤ Cp, ∀p ≥ 1. (4.25)

This is obtained remarking that (see [7], p. 2324)

E
1

μn(ρ)p
≤ E

1

μn(ρ1{|z|≤1/2})p
= Cp

∫ ∞

0
up−1

E
(
e−uμn(ρ1{|z|≤1/2}))du.

From the classical exponential formula for Poisson measures, we have

Ee−uμn(ρ1{|z|≤1/2}) = e
− ∫

{|z|≤1/2}(1−e−uρ(z))
gn(z)

|z|α+1 τn(z) dz ≤ e
− ∫

{|z|≤1/2}(1−e−uz4
) C

|z|α+1 dz
,

where we used that g is lower bounded by C > 0 in a neighborhood of zero (recall that g is continuous and g(0) = 1),
τ = 1 and ρ(z) = z4 on {|z| ≤ 1/2}. We conclude observing that

lim inf
u→∞

1

lnu

∫
{|z|≤1/2}

1{z4≥1/u}
C

|z|α+1
dz = +∞.

Moreover on En we observe that |z|/n1/α ≤ η and then assuming H2(b) we have the bound∣∣R1
n

∣∣ ≤ C. (4.26)

Turning to R2
n, and using the definition of τ we have

∣∣R2
n

∣∣ ≤ μn(ρ| τ 1
n

τn
|1{K(a)n1/α/2<|z|<K(a)n1/α})

μn(ρ1{K(a)n1/α/2<|z|<K(a)n1/α})
≤ μn

(∣∣∣∣τ 1
n

τn

∣∣∣∣1{K(a)n1/α/2<|z|<K(a)n1/α}
)

.

Since μn = μ̃n + μn, we deduce from inequalities 2.1.36 and 2.1.37 in [13], the change of variable u = z/n1/α and
assumption (4.15) that

E
∣∣R2

n

∣∣p ≤ Cp/n, ∀p ≥ 1. (4.27)

This permits to deduce the following useful inequalities.

Lemma 4.3. We have

sup
n

E
∣∣HLn

1
(1)

∣∣p ≤ Cp, ∀p ≥ 1, (4.28)

sup
n

E

∣∣∣∣∫ 1

0

∫
{|z|>1}

|z|μn(ds, dz)HLn
1
(1)

∣∣∣∣p ≤ Cp, ∀p ≥ 1, (4.29)

sup
n

E sup
t∈[0,1]

∣∣Ln
t

∣∣|HLn
1
(1) ≤ C. (4.30)
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Proof. Obviously (4.30) is a consequence of (4.28) and (4.29). From (4.26) and (4.27), to prove (4.28) we just have
to consider the first two terms in the right-hand side of (4.24). Distinguishing between the small jumps and the big
jumps of the Poisson measure we have for the first term

μn(ρρ′)
μn(ρ)2

≤ μn(ρρ′1{|z|<1})
μn(ρ)2

+ μn(ρρ′1{|z|≥1})
μn(ρ1{|z|≥1})2

.

We conclude immediately using (4.25) that ∀p ≥ 1, supn E|μn(ρρ′1{|z|<1})
μn(ρ)2 |p ≤ Cp . Moreover, recalling that ρ(z) = z2

for |z| ≥ 1 we deduce that
μn(ρρ′1{|z|≥1})
μn(ρ1{|z|≥1})2 ≤ 2 and this yields ∀p ≥ 1, supnE|μn(ρρ′)

μn(ρ)2 |p ≤ Cp . We proceed similarly for

μn(ρ′−(α+1) 1
z
ρ)

μn(ρ)
and this achieves the proof of (4.28).

It remains to prove (4.29). We check immediately from (4.26) and (4.27) that

E

∣∣∣∣∫ 1

0

∫
{|z|>1}

|z|μn(ds, dz)
1

n1/α
Rn

∣∣∣∣p ≤ Cp.

Turning to
∫ 1

0

∫
{|z|>1} |z|μn(ds, dz)

μn(ρρ′)
μn(ρ)2 , from the Cauchy–Schwarz inequality (and using ρ(z) = z2 if |z| ≥ 1) we

get
∫ 1

0

∫
{|z|>1} |z|μn(ds, dz) ≤ μn(1{|z|≥1})1/2μn(ρ1{|z|≥1})1/2 and we deduce the bound∫ 1

0

∫
{|z|>1}

|z|μn(ds, dz)
μn(|ρρ′|)
μn(ρ)2

≤ μn(1{|z|≥1})1/2 μn(|ρρ′|)
μn(ρ)3/2

.

Remarking that μn(1{|z|≥1}) has a Poisson distribution with some parameter λn
α bounded by λα independent of n we

get that

sup
n

E

∣∣∣∣μn(1{|z|≥1})1/2 μn(|ρρ′|1{|z|<1})
μn(ρ)3/2

∣∣∣∣p ≤ Cp, ∀p ≥ 1.

Considering the large jumps part, we have

μn(1{|z|≥1})1/2 μn(|ρρ′|1{|z|≥1})
μn(ρ)3/2

≤ μn(1{|z|≥1})1/2 μn(|ρρ′|1{|z|≥1})
μn(ρ1{|z|≥1})3/2

≤ 2μn(1{|z|≥1})1/2,

and this permits to conclude that

sup
n

E

∣∣∣∣∫ 1

0

∫
{|z|>1}

|z|μn(ds, dz)
μn(ρρ′)
μn(ρ)2

∣∣∣∣p ≤ Cp, ∀p ≥ 1.

In the same way, we have for the last term∫ 1

0

∫
{|z|>1}

|z|μn(ds, dz)

∣∣∣∣μn(ρ′ − (α + 1) 1
z
ρ)

μn(ρ)

∣∣∣∣ ≤ Cμn(1{|z|≥1})1/2 μn(|ρ′ + ρ/z|)
μn(ρ)1/2

.

We conclude as previously remarking that for the large jumps part we have, using once again the Cauchy–Schwarz
inequality,

μn(1{|z|≥1})1/2 μn(|ρ′ + ρ/z|1{|z|≥1})
μn(ρ)1/2

≤ 3μn(1{|z|≥1}).

This ends the proof of (4.29). �

With this background, we can proceed to the proof of Theorems 4.1 and 4.2.
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4.3. Proof of Theorem 4.1

From the the localization and rescaling procedure, we just have to prove∣∣Eh
(
n1/α

(
Yn

1 − ξ
n,x0
1

)) −Eh
(
a(x0)L

n
1

)∣∣ ≤ C
(
1 + |x0|

)
εn‖h‖∞.

Now, considering a regularizing sequence (hp) converging to h in L1-norm, such that ∀p, hp admits a bounded
derivative and ‖hp‖∞ ≤ ‖h‖∞, we may assume that h admits a bounded derivative.

Using the integration by part formula (4.21) and denoting by H any primitive function of h

Eh
(
a(x0)L

n
1

) = EH
(
a(x0)L

n
1

)
Ha(x0)L

n
1
(1),

and then from the triangle inequality, we have to bound the two following terms:

T1 := ∣∣Eh
(
n1/α

(
Yn

1 − ξ
n,x0
1

)) −EH
(
n1/α

(
Yn

1 − ξ
n,x0
1

))
Ha(x0)L

n
1
(1)

∣∣, (4.31)

T2 := ∣∣EH
(
n1/α

(
Yn

1 − ξ
n,x0
1

))
Ha(x0)L

n
1
(1) −EH

(
a(x0)L

n
1

)
Ha(x0)L

n
1
(1)

∣∣. (4.32)

Bound for T2.
We have

T2 ≤ ‖h‖∞E
∣∣n1/α

(
Yn

1 − ξ
n,x0
1

) − a(x0)L
n
1

∣∣∣∣Ha(x0)L
n
1
(1)

∣∣,
and from (4.11) we get

T2 ≤ ‖h‖∞
1

|a(x0)|
(

1

n
E sup

t∈[0,1]

∣∣Ln
t

∣∣∣∣HLn
1
(1)

∣∣ +E sup
t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn

s

∣∣∣∣∣∣HLn
1
(1)

∣∣),

where as a consequence of the linearity property of the operators � and L, we have used Ha(x0)L
n
1
(1) = 1

a(x0)
HLn

1
(1).

From (4.30), the first term in the right-hand side of the above inequality is bounded by C/n.
Turning to the second term E supt∈[0,1] |

∫ t

0 (a(Y n
s−) − a(x0)) dLn

s ||HLn
1
(1)|, we use once again the decomposition

(4.12). For the small jumps part, Hölder’s inequality and inequality 2.1.36 in [13] with 1 < p < 2, p > α and q such
that 1/p + 1/q = 1, lead to

E sup
t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,1

s

∣∣∣∣∣∣HLn
1
(1)

∣∣ ≤ Cp

(
E sup

t∈[0,1]
∣∣a(

Yn
t−

) − a(x0)
∣∣p)1/p(

E
∣∣HLn

1
(1)

∣∣q)1/q
.

From the Lipschitz assumption on a, the result of Lemma 4.1 and (4.28), we conclude

E sup
t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,1

s

∣∣∣∣∣∣HLn
1
(1)

∣∣ ≤ Cp

(
1 + |x0|

) 1

n1/p
.

This gives the bound

E sup
t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,1

s

∣∣∣∣∣∣HLn
1
(1)

∣∣ ≤ Cp

(
1 + |x0|

)
εn,

with εn given as in Theorem 4.1.
For the big jumps part, we remark first that∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,2

s =
∫ t

0

∫
{|z|>1}

(
a
(
Yn

s−
) − a(x0)

)
zμn(dt, dz),

and then

E sup
t∈[0,1]

∣∣∣∣∫ t

0

(
a
(
Yn

s−
) − a(x0)

)
dLn,2

s

∣∣∣∣∣∣HLn
1
(1)

∣∣ ≤ E

[
sup

t∈[0,1]
∣∣a(

Yn
t−

) − a(x0)
∣∣ ∫ t

0

∫
{|z|>1}

|z|μn(dt, dz)

∣∣∣HLn
1
(1)

]
.
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As for the small jumps part, we conclude applying successively Hölder’s inequality, Lemma 4.1 and (4.29) and this
shows finally

T2 ≤ C
(
1 + |x0|

)
εn.

Bound for T1.
It remains to consider (4.31).
From (4.22) and (4.17), we remark that

Ha(x0)L
n
1
(1) = L

(
1

�(a(x0)L
n
1, a(x0)L

n
1)

)
a(x0)L

n
1 − L(a(x0)L

n
1)

�(a(x0)L
n
1, a(x0)L

n
1)

− L

(
a(x0)L

n
1

�(a(x0)L
n
1, a(x0)L

n
1)

)
,

and using the self-adjoint property of the operator L for the first and third terms we obtain

EH
(
n1/α

(
Yn

1 − ξ
n,x0
1

))
Ha(x0)L

n
1
(1)

= E

(
L(H(n1/α(Y n

1 − ξ
n,x0
1 ))a(x0)L

n
1) − H(n1/α(Y n

1 − ξ
n,x0
1 ))L(a(x0)L

n
1) − L(H(n1/α(Y n

1 − ξ
n,x0
1 )))a(x0)L

n
1

�(a(x0)L
n
1, a(x0)L

n
1)

)
.

Using again (4.17) and the chain rule we get

EH
(
n1/α

(
Yn

1 − ξ
n,x0
1

))
Ha(x0)L

n
1
(1) = Eh

(
n1/α

(
Yn

1 − ξ
n,x0
1

))�(n1/α(Y n
1 − ξ

n,x0
1 ), a(x0)L

n
1)

�(a(x0)L
n
1, a(x0)L

n
1)

and so

T1 ≤ ‖h‖∞E

∣∣∣∣�(n1/α(Y n
1 − ξ

n,x0
1 ), a(x0)L

n
1)

�(a(x0)L
n
1, a(x0)L

n
1)

− 1

∣∣∣∣.
From the linearity property of � and since ξ

n,x0
1 is deterministic, we have �(n1/α(Y n

1 − ξ
n,x0
1 ), a(x0)L

n
1) =

n1/αa(x0)�(Y n
1 ,Ln

1) and �(a(x0)L
n
1, a(x0)L

n
1) = a(x0)

2�(Ln
1,Ln

1).

Setting Un
t = n1/α�(Y n

t ,Ln
t ), t ∈ [0,1], this leads to the simplification

∣∣∣∣�(n1/α(Y n
1 − ξ

n,x0
1 ), a(x0)L

n
1)

�(a(x0)L
n
1, a(x0)L

n
1)

− 1

∣∣∣∣ = 1

|a(x0)|
|Un

1 − a(x0)
∫ 1

0

∫
En

ρ(z)μn(ds, dz)|∫ 1
0

∫
En

ρ(z)μn(ds, dz)
,

and

T1 ≤ ‖h‖∞
1

|a(x0)|E
( |Un

1 − a(x0)
∫ 1

0

∫
En

ρ(z)μn(ds, dz)|∫ 1
0

∫
En

ρ(z)μn(ds, dz)

)
. (4.33)

From Theorem 10-3 p.130 in [6], we can prove that the process (Un
t ) solves

Un
t = 1

n

∫ t

0
b′(Yn

s

)
Un

s ds

+ 1

n1/α

∫ t

0

∫
En

a′(Yn
s−

)
Un

s−zμ̃n(ds, dz) +
∫ t

0

∫
En

a
(
Yn

s−
)
ρ(z)μn(ds, dz), t ∈ [0,1]. (4.34)

Introducing the linear stochastic equation

Zn
t = 1 + 1

n

∫ t

0
b′(Yn

s

)
Zn

s ds + 1

n1/α

∫ t

0

∫
En

a′(Yn
s−

)
Zn

s−zμ̃n(ds, dz), t ∈ [0,1], (4.35)
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and using Itô’s formula, we show that Zn
t admits an inverse, denoted by (Zn

t )−1, that solves

(
Zn

t

)−1 = 1 − 1

n

∫ t

0
b′(Yn

s

)(
Zn

s

)−1
ds − 1

n1/α

∫ t

0

∫
En

a′(Y n
s−)z

1 + a′(Y n
s−)z/n1/α

(
Zn

s−
)−1

μ̃n(ds, dz)

+ 1

n2/α

∫ t

0

∫
En

(a′(Y n
s−)z)2

1 + a′(Y n
s−)z/n1/α

(
Zn

s−
)−1

μn(ds, dz), t ∈ [0,1]. (4.36)

Note that on En, 0 < 1
1+a′(Y n

s−)z/n1/α ≤ 2 and the above integrals are well defined.

With these processes we can solve (4.34) and we obtain the explicit expression

Un
t = Zn

t

∫ t

0

∫
En

a(Y n
s−)ρ(z)

1 + a′(Y n
s−)z/n1/α

(
Zn

s−
)−1

μn(ds, dz), t ∈ [0,1]. (4.37)

Moreover we can prove the following bounds for the processes (Zn) and (Zn)−1.

Lemma 4.4. Let p ≥ 1 and p > α, then

E sup
t∈[0,1]

∣∣Zn
t − 1

∣∣p ≤ Cp/n, (4.38)

E sup
t∈[0,1]

∣∣(Zn
t

)−1 − 1
∣∣p ≤ Cp/n. (4.39)

The result of Lemma 4.4 follows from convexity inequality, inequality 2.1.36 (or 2.1.37 if p ≥ 2) in [13] and
Gronwall’s Lemma. We omit its standard proof.

Plugging (4.37) into (4.33), we split the right-hand side of (4.33) into four parts:

T1,1 = E

( |Zn
1

∫ 1
0

∫
En

(a(Y n
s−)−a(x0))ρ(z)

1+a′(Y n
s−)z/n1/α (Zn

s−)−1μn(ds, dz)|∫ 1
0

∫
En

ρ(z)μn(ds, dz)

)
,

T1,2 = E

( |Zn
1 − 1|| ∫ 1

0

∫
En

a(x0)ρ(z)

1+a′(Y n
s−)z/n1/α (Zn

s−)−1μn(ds, dz)|∫ 1
0

∫
En

ρ(z)μn(ds, dz)

)
,

T1,3 = E

( | ∫ 1
0

∫
En

((Zn
s−)−1−1)

1+a′(Y n
s−)z/n1/α a(x0)ρ(z)μn(ds, dz)|∫ 1

0

∫
En

ρ(z)μn(ds, dz)

)
,

T1,4 = E

( | ∫ 1
0

∫
En

a′(Y n
s−)z/n1/α

1+a′(Y n
s−)z/n1/α a(x0)ρ(z)μn(ds, dz)|∫ 1

0

∫
En

ρ(z)μn(ds, dz)

)
.

Considering first T1,1, we have

T1,1 ≤ 2E
(∣∣Zn

1

∣∣ sup
t∈[0,1]

∣∣(Zn
t

)−1∣∣ sup
t∈[0,1]

∣∣a(
Yn

t−
) − a(x0)

∣∣),

and from Hölder’s inequality with conjugated p and q such that 1 < p < 2 and p > α we obtain from Lemma 4.1
(with p) and Lemma 4.4 (with q)

T1,1 ≤ Cp

(
1 + |x0|

)
εn,

where εn is defined in Theorem 4.1. Turning to T1,2, we have

T1,2 ≤ 2
∣∣a(x0)

∣∣E(∣∣Zn
1 − 1

∣∣ sup
t∈[0,1]

∣∣(Zn
t

)−1∣∣),
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and as previously using Lemma 4.4, we deduce

T1,2 ≤ Cp

(
1 + |x0|

)
εn.

The third term satisfies T1,3 ≤ 2|a(x0)|E(supt∈[0,1] |(Zn
t )−1 − 1|) and so

T1,3 ≤ Cp

(
1 + |x0|

)
εn.

Finally for the last term, we observe that

T1,4 ≤ 2
∣∣a(x0)

∣∣∥∥a′∥∥∞E

(∫ 1
0

∫
En

(|z|/n1/α)ρ(z)μn(ds, dz)∫ 1
0

∫
En

ρ(z)μn(ds, dz)

)

≤ C
(
1 + |x0|

)( 1

n1/α
+E

(∫ 1
0

∫
En∩{|z|>1}(|z|/n1/α)ρ(z)μn(ds, dz)∫ 1

0

∫
En∩{|z|>1} ρ(z)μn(ds, dz)

))
.

But remarking that∫ 1
0

∫
En∩{|z|>1}(|z|/n1/α)ρ(z)μn(ds, dz)∫ 1

0

∫
En∩{|z|>1} ρ(z)μn(ds, dz)

≤
∫ 1

0

∫
En∩{|z|>1}

(|z|/n1/α
)
μn(ds, dz)

and taking the expectation we deduce that if α 
= 1

E

∫ 1
0

∫
En∩{|z|>1}(|z|/n1/α)ρ(z)μn(ds, dz)∫ 1

0

∫
En∩{|z|>1} ρ(z)μn(ds, dz)

≤ C/n,

and if α = 1

E

∫ 1
0

∫
En∩{|z|>1}(|z|/n1/α)ρ(z)μn(ds, dz)∫ 1

0

∫
En∩{|z|>1} ρ(z)μn(ds, dz)

≤ C logn/n.

This yields to

T1,4 ≤ Cεn.

Combining all these results we obtain

T1 ≤ C
(
1 + |x0|

)
εn,

and the proof of Theorem 4.1 is finished.

4.4. Proof of Theorem 4.2

As in the proof of Theorem 4.1 we will use Malliavin calculus integration by part formula. The first step is
to construct on the same probability space two random variables whose laws are close to the laws of n1/αL1/n

and Lα
1 . We recall briefly the notations of Section 4.1: μn is a Poisson random measure with compensator

μn(dt, dz) = dt
g(z/n1/α)

|z|α+1 τ(z/n1/α)1R\{0}(z) dz, where τ is a truncation function, and the process (Ln
t )t defined by

Ln
t = ∫ t

0

∫
R

zμ̃n(ds, dz), with μ̃n = μn − μn is such that (see (4.3), (4.8))

∣∣E[
h
(
n1/αL1/n

)] −E
[
h
(
Ln

1

)]∣∣ ≤ C
‖h‖∞

n
. (4.40)

We now construct a variable approximating the law of Lα
1 , and based on the Poisson measure μn.
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For x > 0 we define

G(x) =
∫ ∞

x

g(z)τ (z)

z1+α
dz, and H(x) =

∫ ∞

x

τ (z)

z1+α
dz. (4.41)

Recall that τ is a truncation function equal to 1 on [−K(a)/2,K(a)/2] and equal to 0 on [−K(a),K(a)]c . We
assume for the sequel of the proof that τ(z) > 0, g(z) > 0, for |z| < K(a). Indeed, τ is a truncation function that
can be chosen non vanishing on (−K(a),K(a)), and up to reducing the value of η in the Assumption H2(b) we can
assume that g does not vanish on [−K(a),K(a)]. Then, it is immediate to check that G and H are non increasing, one
to one, functions from (0,K(a)] to (∞,0]. We define sn(z) = n1/αG−1(H(n−1/αz)) for z ∈ (0, n1/αK(a)], sn(0) = 0,
and sn(z) = −sn(−z) for z ∈ [−n1/αK(a),0). The function sn is increasing, odd and one to one, from the interval
[−n1/αK(a),n1/αK(a)] on itself and we let hn = s−1

n : [−n1/αK(a),n1/αK(a)] → [−n1/αK(a),n1/αK(a)] be its
inverse function. Let us admit temporarily the next lemma about the behaviour of the functions hn as n → ∞.

Lemma 4.5. (1) There exists ε > 0 such that, for |z| ≤ εn1/α ,

∣∣hn(z) − z
∣∣ ≤ C

z2

n1/α
+ C

|z|α+1

n
, if α 
= 1,

∣∣hn(z) − z
∣∣ ≤ C

z2

n

∣∣∣∣log

( |z|
n

)∣∣∣∣, if α = 1.

(2) The function hn is C1 on (−εn1/α, εn1/α) and for |z| < εn1/α ,∣∣h′
n(z) − 1

∣∣ ≤ C
|z|

n1/α
+ C

|z|α
n

, if α 
= 1,

∣∣h′
n(z) − 1

∣∣ ≤ C
|z|
n

∣∣∣∣log

( |z|
n

)∣∣∣∣, if α = 1.

Using the previous lemma, we can define a process (L
α,n
t )t∈[0,1] by setting

L
α,n
t =

∫ t

0

∫
{|z|≤n1/αK(a)}

hn(z)μ̃
n(ds, dz). (4.42)

We can compute the characteristic function of the random variable L
α,n
1 . Indeed, using the exponential formula for

Poisson measure,

E
[
eiuL

α,n
1

] = exp

(∫
{|z|≤K(a)n1/α}

(
eiuhn(z) − 1 − iuhn(z)

)g(zn−1/α)τ (zn−1/α)

|z|1+α
dz

)

= exp

(∫
{|w|≤K(a)n1/α}

(
eiuw − 1 − iuw

)τ(wn−1/α)

|w|1+α
dw

)
, (4.43)

where in the second line we have used the change of variable w = hn(z) and the relation

g(sn(w)n−1/α)τ (sn(w)n−1/α)s′
n(w)

|sn(w)|1+α
= τ(wn−1/α)

|w|1+α
, (4.44)

that can be derived for w > 0 from the differentiation of the relation G(n−1/αsn(w)) = H(n−1/αw), and is extended
to w < 0 by symmetry of g and τ . From (4.43) we see that L

α,n
1 has the law of an α-stable process whose jumps are

truncated with the function τ . Similarly to (4.40) (in the situation g = 1), we deduce∣∣E[
h
(
Lα

1

)] −E
[
h
(
L

α,n
1

)]∣∣ ≤ C
‖h‖∞

n
. (4.45)

Theorem 4.2 is a consequence of (4.40), (4.45) and of the following lemma.
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Lemma 4.6. Let h be as in Theorem 4.2, then we have,∣∣E[
h
(
L

α,n
1

)] −E
[
h
(
Ln

1

)]∣∣ ≤ Cεn‖h‖∞,

where εn is defined in the statement of Theorem 4.1.

Proof. The scheme of the proof follows the same lines as the proof of Theorem 4.1, and is based on the comparison
of the representation of the random variables (4.5) and (4.42). Since, in Lemma 4.5, the difference hn(z) − z is only
controlled for |z| ≤ εn1/α with some ε > 0, we need to introduce an additional localization procedure consisting in
regularizing 1{μn([0,1]×{z∈R;|z|>εn1/α})=0}. Let I be a smooth function defined on R, and with values in [0,1], such that

I(x) = 1 for x ≤ 1/2, and I(x) = 0 for x ≥ 1. We denote by ξ a smooth function on R, with values in [0,1] and such
that ξ(z) = 0 for |z| ≤ 1/2 and ξ(z) = 1 for |z| ≥ 1, and we set

V n =
∫ 1

0

∫
R

ξ

(
z

εn1/α

)
μn(ds, dz)

=
∫ 1

0

∫
{ 1

2 εn1/α≤|z|≤εn1/α}
ξ

(
z

εn1/α

)
μn(ds, dz) +

∫ 1

0

∫
{|z|>εn1/α}

μn(ds, dz), (4.46)

Wn = I
(
V n

)
. (4.47)

From the construction, Wn is a Malliavin differentiable random variable such that Wn 
= 0 implies μn([0,1] × {z ∈
R; |z| > εn1/α}) = 0, and one can show that P(Wn 
= 1) = O(n−1). From the latter, it is clear that the proof of the
lemma reduces in proving the upper bound∣∣E[

h
(
L

α,n
1

)
Wn

] −E
[
h
(
Ln

1

)
Wn

]∣∣ ≤ Cεn‖h‖∞.

Using a regularizing sequence as in the proof of Theorem 4.1, we can assume that h is C1 with bounded derivative.
Then by the integration by part formula (4.21), we can write E[h(Ln

1)Wn] = E[H(Ln
1)HLn

1
(Wn)] where H is some

primitive function of h and the Malliavin weight can be written, using (4.22) and the chain rule property of the
operator �,

HLn
1

(
Wn

) = WnHLn
1
(1) − �(Wn,Ln

1)

�(Ln
1,Ln

1)
. (4.48)

Using the triangle inequality, we are now left to find upper bounds for the following two terms

T̃1 := ∣∣E[
h
(
L

α,n
1

)
Wn

] −E
[
H

(
L

α,n
1

)
HLn

1

(
Wn

)]∣∣, (4.49)

T̃2 := ∣∣E[
H

(
L

α,n
1

)
HLn

1

(
Wn

)] −E
[
H

(
Ln

1

)
HLn

1

(
Wn

)]∣∣. (4.50)

Bound for T̃2.
Using (4.48) and the Lipschitz property of the function H , we have

T̃2 ≤ ‖h‖∞E
[∣∣Lα,n

1 − Ln
1

∣∣∣∣HLn
1
(1)

∣∣Wn
] + ‖h‖∞E

[∣∣Lα,n
1 − Ln

1

∣∣∣∣∣∣�(Wn,Ln
1)

�(Ln
1,Ln

1)

∣∣∣∣]. (4.51)

We focus on the first expectation appearing in the right-hand side of (4.51). Using (4.5) and (4.42), we have

E
[∣∣Lα,n

1 − Ln
1

∣∣∣∣HLn
1
(1)

∣∣Wn
]

= E

[∣∣∣∣∫ 1

0

∫
R

(
hn(z) − z

)
μ̃n(ds, dz)

∣∣∣∣∣∣HLn
1
(1)

∣∣Wn

]
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≤ E

[∣∣∣∣∫ 1

0

∫
{|z|≤1}

(
hn(z) − z

)
μ̃n(ds, dz)

∣∣∣∣∣∣HLn
1
(1)

∣∣Wn

]

+E

[∣∣∣∣∫ 1

0

∫
{1<|z|≤εn1/α}

(
hn(z) − z

)
μn(ds, dz)

∣∣∣∣∣∣HLn
1
(1)

∣∣Wn

]
, (4.52)

where we have used that hn is an odd function with the symmetry of the compensator μn, and the fact that on Wn 
= 0
we have μn([0,1] × {z ∈ R; |z| > εn1/α}) = 0. The two terms in the right-hand side of (4.52) are controlled using
Lemma 4.5(1). For the sake of shortness, we only give the details of the proof in the case α 
= 1. In the case α = 1,
one needs to modify this control with an additional logarithmic term. For the small jumps term, from inequality 2.1.37
in [13] and Lemma 4.5(1), we deduce E| ∫ 1

0

∫
{|z|≤1}(hn(z) − z)μ̃n(dz, ds)|p < Cp(n−1/α + n−1)p , for any p ≥ 2 and

using 0 ≤ Wn ≤ 1 and (4.28) we get from Hölder’s inequality

E

[∣∣∣∣∫ 1

0

∫
{|z|≤1}

(
hn(z) − z

)
μ̃n(s, dz)

∣∣∣∣∣∣HLn
1
(1)

∣∣Wn

]
≤ Cn−1/α + Cn−1.

The large jumps term of (4.52) is upper bounded by

E

[∫ 1

0

∫
{1<|z|≤εn1/α}

( |z|α
n

+ |z|
n1/α

)
μn(ds, dz)

∫ 1

0

∫
{1<|z|≤εn1/α}

|z|μn(ds, dz)
∣∣HLn

1
(1)

∣∣Wn

]
,

where we have used Lemma 4.5(1), and the basic inequality,∫ 1

0

∫
{1<|z|≤εn1/α}

|z|βμn(ds, dz) ≤
∫ 1

0

∫
{1<|z|≤εn1/α}

|z|β−1μn(ds, dz)

∫ 1

0

∫
{1<|z|≤εn1/α}

|z|μn(ds, dz)

for β ≥ 1. From μn = μ̃n + μn and inequality 2.1.36 in [13], one can easily show that for q ∈ (1,2),

E

[∫ 1

0

∫
{1<|z|≤εn1/α}

|z|μn(ds, dz)

]q

≤ C
(
1 + nq/α−1),

E

[∫ 1

0

∫
{1<|z|≤εn1/α}

|z|αμn(ds, dz)

]q

≤ Cnq−1.

By Hölder’s inequality and (4.29), we deduce that the large jumps term of (4.52) is eventually smaller than C(n−1/α +
n−1/q) for any q ∈ (1,2), and in turn

E
[∣∣Lα,n

1 − Ln
1

∣∣∣∣HLn
1
(1)

∣∣Wn
] ≤ Cεn.

Let us now study the second expectation in the right-hand side of (4.51), which can be rewritten, using (4.47) and
the chain rule property of the operator �

E

[∣∣Lα,n
1 − Ln

1

∣∣∣∣I ′(V n
)∣∣∣∣∣∣�(V n,Ln

1)

�(Ln
1,Ln

1)

∣∣∣∣]. (4.53)

Using (4.46), we get the explicit expression for �(V n,Ln
1) = ∫ 1

0

∫
R

ρ(z)ξ ′( z

εn1/α )μn(ds, dz)n−1/αε−1, from which

we deduce |�(V n,Ln
1)

�(Ln
1 ,Ln

1)
| ≤ C‖ξ ′‖∞n−1/α . Hence, the term (4.53) is smaller than

Cn−1/α
E

[∣∣∣∣∫ 1

0

∫
{|z|≤K(a)n1/α}

(
hn(z) − z

)
μ̃n(ds, dz)

∣∣∣∣∣∣I ′(Vn)
∣∣].
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Remarking that I ′(x) = 0 for x ≥ 1, we deduce that |I ′(V n)| 
= 0 implies μn([0,1] × {z ∈ R; |z| > εn−1/α}) = 0.
Consequently, (4.53) is upper bounded by

C
∥∥I ′∥∥∞n−1/α

E

[∣∣∣∣∫ 1

0

∫
{|z|≤εn1/α}

(
hn(z) − z

)
μ̃n(ds, dz)

∣∣∣∣],

where we used the symmetry of the compensator μn. Using Lemma 4.5, one can show that

E

[∣∣∣∣∫ 1

0

∫
{|z|≤εn1/α}

(
hn(z) − z

)
μ̃n(ds, dz)

∣∣∣∣] ≤ Cn1/α−1,

and deduce that (4.53) is smaller than Cn−1. This finishes the proof that T̃2 ≤ C‖h‖∞εn.
Bound for T̃1.
Using (4.17) and (4.22) we can write

HLn
1

(
Wn

) = −WnL(Ln
1)

�(Ln
1,Ln

1)
+ L

(
Wn

�(Ln
1,Ln

1)

)
Ln

1 − L

(
Ln

1Wn

�(Ln
1,Ln

1)

)
,

and with computations using that L is a self-adjoint operator, as in the proof of Theorem 4.1, we get that

T̃1 =
∣∣∣∣E[

h
(
L

α,n
1

)
Wn

] −E

[
h
(
L

α,n
1

)�(L
α,n
1 ,Ln

1)

�(Ln
1,Ln

1)
Wn

]∣∣∣∣
≤ ‖h‖∞E

[∣∣∣∣�(Ln
1 − L

α,n
1 ,Ln

1)

�(Ln
1,Ln

1)

∣∣∣∣Wn

]
.

But �(Ln
1 − L

α,n
1 ,Ln

1) = ∫ 1
0

∫
{|z|≤K(a)n1/α} ρ(z)(1 − h′

n(z))μ
n(ds, dz). Using Lemma 4.5(2), we deduce that on the

event Wn 
= 0,

∣∣�(
Ln

1 − L
α,n
1 ,Ln

1

)∣∣ ≤ C

∫ 1

0

∫
{|z|≤εn1/α}

ρ(z)

( |z|
n1/α

+ |z|α
n

)
μn(ds, dz)

≤ C

∫ 1

0

∫
{|z|≤1}

ρ(z)

( |z|
n1/α

+ |z|α
n

)
μn(ds, dz)

+ C

∫ 1

0

∫
{1<|z|≤εn1/α}

ρ(z)μn(ds, dz)

∫ 1

0

∫
{1<|z|≤εn1/α}

( |z|
n1/α

+ |z|α
n

)
μn(ds, dz).

From this equation, we deduce that

T̃1 ≤ C‖h‖∞
(
n−1/α + n−1) + C‖h‖∞E

∫ 1

0

∫
{1<|z|≤εn1/α}

( |z|
n1/α

+ |z|α
n

)
μn(ds, dz)

≤ C‖h‖∞
(
n−1/α + log(n)n−1).

This is the required upper bound for T̃1. �

Proof of Lemma 4.5. As x �→ hn(x) is an odd function, it is sufficient to study this function on [0,∞). Recall that
for 0 < x < K(a)n1/α , hn(x) = s−1

n (x) and sn(x) = n1/αG−1(H(n−1/αx)), where G and H are defined in (4.41). As
τ(x) = 1 for |x| ≤ K(a)/2, we have H(x) = α−1x−α + κ1 for 0 < x < K(a)/2, where κ1 is some constant. Using
that g(x) = 1 + O(x) as x → 0, we get

G(x) =
∫ K(a)

x

g(z)τ (z)

z1+α
dz =

{
α−1x−α + κ2 + O(x1−α), if α 
= 1,

α−1x−α + O(| log(x)|), if α = 1,
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where κ2 is some constant. Then, by elementary computations we deduce that if u ∈ (0,∞) is large enough,

∣∣G−1(u) − (αu)−1/α
∣∣ ≤

{
Cu−2/α + Cu−1−1/α, if α 
= 1,

Cu−2| log(u)|, if α = 1.
(4.54)

From the expression H(x) = α−1x−α + κ1 and (4.54), it comes, for x/n1/α small enough,

∣∣sn(x) − x
∣∣ = ∣∣n1/αG−1(H (

n−1/αx
)) − x

∣∣ ≤
{

C x2

n1/α + C x1+α

n
, if α 
= 1,

C x2

n
| log( x

n
)| if α = 1.

(4.55)

Now, the first part of the lemma follows from hn = s−1
n .

For the second part we use (4.44) to get, if x/n1/α is small enough,

s′
n(x) =

(
sn(x)

x

)1+α 1

g(n−1/αsn(x))
.

From (4.55) and 1
g(n−1/αsn(x))

= 1 + O(sn(x)/n1/α) = 1 + O(x/n1/α), we deduce the second part of the lemma. �

5. Proof of Theorems 3.1 and 3.2

5.1. Proof of Theorem 3.1

Before proceeding to the proof of Theorem 3.1, we first recall the following useful result to prove convergence in
probability of triangular arrays (see [13]).

Let (ζ n
i ) be a triangular array such that ζ n

i is F i
n

-measurable then the two following conditions imply the conver-

gence in probability
∑n

i=1 ζ n
i → 0:

n∑
i=1

∣∣E|F i−1
n

ζ n
i

∣∣ → 0 in probability, (5.1)

n∑
i=1

E|F i−1
n

∣∣ζ n
i

∣∣2 → 0 in probability. (5.2)

To prove Theorem 3.1, the idea is to replace zn defined by (3.4), for (θ, σ ) ∈ V
(η)
n (θ0, σ0), by the normalized

increment n1/α�Li = n1/α(L i
n

− Li−1
n

). This approximation is justify by the next lemma which is an extension of

Lemma 4.2 given in Section 4.1.

Lemma 5.1. Assuming H1 and H2(a), there exists p,q > 0 such that

∀ε > 0, P|F i−1
n

(
sup

(θ,σ )∈V
(η)
n (θ0,σ0)

∣∣zn(X i−1
n

,X i
n
, θ, σ ) − n1/α�Li

∣∣ > ε
)

≤ C(ε)
(
1 + |Xi−1

n
|p)

/nq, (5.3)

where C(ε) is a positive constant and �Li = L i
n

− Li−1
n

.

Proof. We have the decomposition

zn(X i−1
n

,X i
n
, θ, σ ) =

a(X i−1
n

, σ0)(zn(X i−1
n

,X i
n
, θ0, σ0) − n1/α�Li)

a(X i−1
n

, σ )
+

a(X i−1
n

, σ0)

a(X i−1
n

, σ )
n1/α�Li

+ n1/α

a(X i−1
n

, σ )

(
ξi−1(θ0) − ξi−1(θ)

)
.
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From H1 we have for t ∈ [0,1/n] and θ ∈ V (θ0)∣∣ξx
t (θ) − ξx

t (θ0)
∣∣ ≤ ∥∥b′∥∥∞

∫ t

0

∣∣ξx
s (θ) − ξx

s (θ0)
∣∣ds + |θ − θ0|

(
1 + sup

t∈[0,1/n]
∣∣ξx

t (θ0)
∣∣p)

/n,

moreover from Gronwall’s Lemma we check easily that

sup
t∈[0,1/n]

∣∣ξx
t (θ0)

∣∣ ≤ C
(
1 + |x|).

This leads to the bound (using once again Gronwall’s Lemma)∣∣ξi−1(θ0) − ξi−1(θ)
∣∣ ≤ C

n
|θ − θ0|

(
1 + |Xi−1

n
|p)

.

Now for (θ, σ ) ∈ V
(η)
n (θ0, σ0), we have |θ − θ0| ≤ η/n1/α−1/2 and |σ − σ0| ≤ η/n1/2 so from H1 we get that∣∣∣∣ n1/α

a(X i−1
n

, σ )

(
ξi−1(θ0) − ξi−1(θ)

)∣∣∣∣ ≤ C
(
1 + |Xi−1

n
|p)

/n1/2.

Using once again H1 and a Taylor expansion, we have for (θ, σ ) ∈ V
(η)
n (θ0, σ0),∣∣∣∣a(X i−1

n
, σ0)

a(X i−1
n

, σ )
− 1

∣∣∣∣ ≤ C
(
1 + |Xi−1

n
|p)

/n1/2.

This gives the bound

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣zn(X i−1
n

,X i
n
, θ, σ ) − n1/α�Li

∣∣ ≤ C
(
1 + |Xi−1

n
|p)∣∣zn(X i−1

n
,X i

n
, θ0, σ0) − n1/α�Li

∣∣
+ C

(
1 + |Xi−1

n
|p)n1/α|�Li |

n1/2
+ C

(
1 + |Xi−1

n
|p) 1

n1/2
.

The Markov property and the result of Lemma 4.2 give for some p′, q > 0

P|F i−1
n

(
C

(
1 + |Xi−1

n
|p)∣∣zn(X i−1

n
,X i

n
, θ0, σ0) − n1/α�Li

∣∣ > ε
) ≤ C(ε)

(
1 + |Xi−1

n
|p′)

/nq.

Moreover from Theorem 2 in Luschgy-Pagès [19], we have E|n1/α�Li |q ≤ C, for q < α and we deduce that

P|F i−1
n

((
1 + |Xi−1

n
|p)n1/α|�Li |

n1/2
> ε

)
≤ C(ε)

(
1 + |Xi−1

n
|pq

)
/nq/2.

This finally leads to the bound (5.3). �

We can now proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. (i) From the triangle inequality, it is sufficient to prove the four following convergences in
probability:

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣1

n

n∑
i=1

(
f (X i−1

n
, θ, σ ) − f (X i−1

n
, θ0, σ0)

)
h
(
zn(X i−1

n
,X i

n
, θ, σ )

)∣∣∣∣∣ → 0, (5.4)

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣1

n

n∑
i=1

f (X i−1
n

, θ0, σ0)
(
h
(
zn(X i−1

n
,X i

n
, θ, σ )

) − h
(
n1/α�Li

))∣∣∣∣∣ → 0, (5.5)
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n

n∑
i=1

f (X i−1
n

, θ0, σ0)
(
h
(
n1/α�Li

) −Eh
(
Lα

1

))∣∣∣∣∣ → 0, (5.6)

∣∣∣∣∣1

n

n∑
i=1

f (X i−1
n

, θ0, σ0) −
∫ 1

0
f (Xs, θ0, σ0) ds

∣∣∣∣∣ → 0. (5.7)

The last point (5.7) is the convergence of a Riemann sum since t �→ Xt is càdlàg and f is continuous.
Since h is bounded and sup(θ,σ )∈Vθ0×Vσ0

(|∂θf (x, θ, σ )| + |∂σ f (x, θ, σ )|) ≤ C(1 + |x|p), we get easily (5.4) from

a Taylor expansion and using |θ − θ0| ≤ η/n1/α−1/2 and |σ − σ0| ≤ η/n1/2, for (θ, σ ) ∈ V
(η)
n (θ0, σ0).

To prove (5.5), we introduce the truncation 1{sup
(θ,σ )∈V

(η)
n (θ0,σ0)

|zn(X i−1
n

,X i
n
,θ,σ )−n1/α�Li |≤ε} for ε > 0, and since h

and h′ are bounded we get

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣h(
zn(X i−1

n
,X i

n
, θ, σ )

) − h
(
n1/α�Li

)∣∣
≤ ε

∥∥h′∥∥∞ + 2‖h‖∞1{sup
(θ,σ )∈V

(η)
n (θ0,σ0)

|zn(X i−1
n

,X i
n
,θ,σ )−n1/α�Li |>ε}.

This yields

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣1

n

n∑
i=1

f (X i−1
n

, θ0, σ0)
(
h
(
zn(X i−1

n
,X i

n
, θ, σ )

) − h
(
n1/α�Li

))∣∣∣∣∣
≤ εC

(
1 + sup

s∈[0,1]
|Xs |p

)∥∥h′∥∥∞ + C‖h‖∞
1

n

n∑
i=1

(
1 + |Xi−1

n
|p)

1{sup
(θ,σ )∈V

(η)
n (θ0,σ0)

|zn(X i−1
n

,X i
n
,θ,σ )−n1/α�Li |>ε}.

For any ε > 0, 1
n

∑n
i=1(1 + |Xi−1

n
|p)1{sup

(θ,σ )∈V
(η)
n (θ0,σ0)

|zn(X i−1
n

,X i
n
,θ,σ )−n1/α�Li |>ε} goes to zero in probability (we

check easily (5.1) and (5.2) from Lemma 5.1) and we deduce (5.5) letting ε go to zero.
The proof of (5.6) is established by checking (5.1) and (5.2) with

ζ n
i = 1

n
f (X i−1

n
, θ0, σ0)

(
h
(
n1/α�Li

) −Eh
(
Lα

1

))
.

From Theorem 4.2 we get (5.1) and the boudedness of h implies immediately (5.2).
(ii) As mentioned before, only the case α > 1 requires a proof.
We first remark that we just have to prove the convergence in probability, for any K > 0 fixed

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣ 1

n1/α

n∑
i=1

f (X i−1
n

, θ, σ )1{|X i−1
n

|≤K}h
(
zn(X i−1

n
,X i

n
, θ, σ )

)∣∣∣∣∣ → 0. (5.8)

Indeed, 1{|X i−1
n

|>K} ≤ 1{supt∈[0,1] |Xt |>K} and since P(supt∈[0,1] |Xt | > K) goes to zero as K goes to infinity, we deduce

(ii) from (5.8) letting successively n and K go to infinity.
The proof of (5.8) is obtained by establishing the three following convergences in probability:

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣ 1

n1/α

n∑
i=1

f (X i−1
n

, θ, σ )

× 1{|X i−1
n

|≤K}
[
h
(
zn(X i−1

n
,X i

n
, θ, σ )

) − h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

)]∣∣∣∣∣ → 0, (5.9)
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sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣ 1

n1/α

n∑
i=1

f (X i−1
n

, θ, σ )

× 1{|X i−1
n

|≤K}
[
h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

) −E|F i−1
n

h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

)]∣∣∣∣∣ → 0, (5.10)

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣∣ 1

n1/α

n∑
i=1

f (X i−1
n

, θ, σ )1{|X i−1
n

|≤K}E|F i−1
n

h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

)∣∣∣∣∣ → 0. (5.11)

Considering first (5.9), we have

zn(X i−1
n

,X i
n
, θ, σ ) =

a(X i−1
n

, σ0)

a(X i−1
n

, σ )
zn(X i−1

n
,X i

n
, θ0, σ0) + n1/α

a(X i−1
n

, σ )

(
ξi−1(θ0) − ξi−1(θ)

)
.

Now, we have the bounds (this has been established in the proof of Lemma 5.1)

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣ n1/α

a(X i−1
n

, σ )

(
ξi−1(θ0) − ξi−1(θ)

)∣∣∣∣ ≤ C
(
1 + |Xi−1

n
|p)

/n1/2,

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣∣∣a(X i−1
n

, σ0)

a(X i−1
n

, σ )
− 1

∣∣∣∣ ≤ C
(
1 + |Xi−1

n
|p)

/n1/2.

This leads to

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣zn(X i−1
n

,X i
n
, θ, σ ) − zn(X i−1

n
,X i

n
, θ0, σ0)

∣∣ ≤ C
(
1 + |Xi−1

n
|p)( |zn(X i−1

n
,X i

n
, θ0, σ0)|

n1/2
+ 1

n1/2

)
,

and finally adding and subtracting n1/α�Li

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣zn(X i−1
n

,X i
n
, θ, σ ) − zn(X i−1

n
,X i

n
, θ0, σ0)

∣∣
≤ C

(
1 + |Xi−1

n
|p) |zn(X i−1

n
,X i

n
, θ0, σ0) − n1/α�Li | + n1/α|�Li | + 1

n1/2
.

Introducing the truncation 1{|zn(X i−1
n

,X i
n
,θ0,σ0)−n1/α�Li |≤ε} for ε > 0, we deduce that

sup
(θ,σ )∈V

(η)
n (θ0,σ0)

∣∣f (X i−1
n

, θ, σ )1{|X i−1
n

|≤K}
(
h
(
zn(X i−1

n
,X i

n
, θ, σ )

) − h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

))∣∣
≤ CK

(∥∥h′∥∥∞
(ε + 1 + n1/α|�Li |)

n1/2
+ ‖h‖∞1{|zn(X i−1

n
,X i

n
,θ0,σ0)−n1/α�Li |>ε}

)
.

Observing that 1/α + 1/2 > 1, to prove (5.9) it remains to check the two convergences in probability

1

n1/α

n∑
i=1

n1/α|�Li |
n1/2

→ 0,
1

n1/α

n∑
i=1

1{|zn(X i−1
n

,X i
n
,θ0,σ0)−n1/α�Li |>ε} → 0.

Since α > 1, Theorem 2 in [19] gives En1/α|�Li | ≤ C and we deduce E[ 1
n1/α

∑n
i=1

n1/α |�Li |
n1/2 ] → 0. Moreover using

the result of Lemma 4.2, we deduce E1{|zn(X i−1
n

,X i
n
,θ0,σ0)−n1/α�Li |>ε} ≤ CKC(ε)/n1−δ for any δ ∈ (0,1) and this

permits to obtain the second convergence. This achieves the proof of (5.9).
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Turning to (5.11), since Eh(Lα
1 ) = 0, we deduce from Theorem 4.2∣∣E|F i−1

n

h
(
n1/α�Li

)∣∣ ≤ Cεn,

moreover from Theorem 4.1, we get∣∣E|F i−1
n

(
h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

) − h
(
n1/α�Li

))∣∣ ≤ C
(
1 + |Xi−1

n
|)εn,

with
√

nεn → 0. This permits to conclude that (5.11) holds.
It remains to prove the uniform convergence of the martingale part (5.10). For any (θ, σ ) ∈ Vθ0 × Vσ0 the conver-

gence in probability

1

n1/α

n∑
i=1

f (X i−1
n

, θ, σ )1{|X i−1
n

|≤K}
(
h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

) −E|F i−1
n

h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

)) → 0,

is immediate (we check easily (5.2) since 2/α > 1). To prove the uniform convergence we use a tightness criteria (see
for example the Appendix of [10]). Denoting

Mn(θ,σ ) = 1

n1/α

n∑
i=1

f (X i−1
n

, θ, σ )1{|X i−1
n

|≤K}
(
h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

) −E|F i−1
n

h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

))
,

it is sufficient to check, for (θi, σi) ∈ Vθ0 × Vσ0 , i = 1,2,

sup
n

E
∣∣Mn(θ1, σ1) − Mn(θ2, σ2)

∣∣4 ≤ C
∥∥(θ1, σ1)

T − (θ2, σ2)
T
∥∥4

.

From Burkholder inequality for discrete martingale (see [22]):

E
∣∣Mn(θ1, σ1) − Mn(θ2, σ2)

∣∣4 ≤ C

n4/α
E

(
n∑

i=1

∣∣mi(θ1, σ1) − mi(θ2, σ2)
∣∣2

)2

,

where mi(θ, σ ) = f (X i−1
n

, θ, σ )1{|X i−1
n

|≤K}(h(zn(X i−1
n

,X i
n
, θ0, σ0)) − E|F i−1

n

h(zn(X i−1
n

,X i
n
, θ0, σ0))), and from

Cauchy–Schwarz inequality

E
∣∣Mn(θ1, σ1) − Mn(θ2, σ2)

∣∣4 ≤ C

n4/α
nE

n∑
i=1

∣∣mi(θ1, σ1) − mi(θ2, σ2)
∣∣4

.

This gives from a first order Taylor expansion of f

E
∣∣Mn(θ1, σ1) − Mn(θ2, σ2)

∣∣4 ≤ CK

n4/α
n2‖h‖∞

∥∥(θ1, σ1)
T − (θ2, σ2)

T
∥∥4

.

Since n2/n4/α → 0, the result is established. �

5.2. Proof of Theorem 3.2 and Corollary 3.1

Proof of Theorem 3.2. We will prove the stable convergence in law with respect to σ(Ls, s ≤ 1) of the process

�n
t = 1

n1/2

[nt]∑
i=1

(
f1(X i−1

n
)h1(n

1/α�Li)

f2(X i−1
n

)h2(n
1/α�Li)

)
, t ∈ [0,1],
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in D([0,1],R2) equipped with the Skorokhod topology. To this end we introduce the processes

L
n

t =
[nt]∑
i=1

�Li, t ∈ [0,1],

�′n
t = 1

n1/2

[nt]∑
i=1

(
h1(n

1/α�Li)

h2(n
1/α�Li)

)
, t ∈ [0,1].

The process (L
n

t )t converges in probability to (Lt )t for the Skorokhod topology and according to Lemma 2.8 in [12],
if (L

n

1,�′n
1 ) converges in law to (L1, γ

′) where γ ′ is a Gaussian variable independent of L1 with variance

�′ =
(
Eh2

1(L
α
1 ) 0

0 Eh2
2(L

α
1 )

)
, (5.12)

then there exists a two-dimensional standard Brownian motion (Bt ) = (B1
t ,B2

t ) independent of (Lt ) such that the
processes (L

n
,�n,�′n) converge in law to (L,�, (�′)1/2B), where

�t =
∫ t

0

(
f1(Xs) 0

0 f2(Xs)

)(
�′)1/2

dBs.

This result implies the stable convergence stated in Theorem 3.2.
To study the convergence in law of (L

n

1,�′n
1 ), we denote by �n the characteristic function of (L

n

1,�′n
1 ), and by φn

the characteristic function of the (L1/n,
1

n1/2 h1(n
1/αL1/n),

1
n1/2 h2(n

1/αL1/n)). Then we have

log�n = n logφn,

and we just have to study the asymptotic behavior of φn. By definition

φn(u, v,w) = Ee
iuL1/n+i v

n1/2 h1(n
1/αL1/n)+i w

n1/2 h2(n
1/αL1/n)

.

A Taylor expansion of the exponential function gives:

e
i v

n1/2 h1(n
1/αL1/n)+i w

n1/2 h2(n
1/αL1/n) = 1 + i

v

n1/2
h1

(
n1/αL1/n

) + i
w

n1/2
h2

(
n1/αL1/n

)
− v2

2n
h2

1

(
n1/αL1/n

) − w2

2n
h2

2

(
n1/αL1/n

) − vw

n
(h1h2)

(
n1/αL1/n

)
+ o(1/n),

where for any p ≥ 0, o(1/np) is a bounded term such that npo(1/np) → 0 as n goes to infinity. Consequently we
obtain

φn(u, v,w) = EeiuL1/n + i
v

n1/2
EeiuL1/nh1

(
n1/αL1/n

) + i
w

n1/2
EeiuL1/nh2

(
n1/αL1/n

)
− v2

2n
EeiuL1/nh2

1

(
n1/αL1/n

) − w2

2n
EeiuL1/nh2

2

(
n1/αL1/n

) − vw

n
EeiuL1/n(h1h2)

(
n1/αL1/n

)
+ o(1/n).

From this expansion, we have to study the convergence of

1. EeiuL1/n ,
2. EeiuL1/nh(n1/αL1/n) for h a bounded function such that Eh(Lα

1 ) = 0,
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3. EeiuL1/nh2(n1/αL1/n) for h a bounded function,
4. EeiuL1/n(h1h2)(n

1/αL1/n) for h1, h2 bounded and such that E(h1h2)(L
α
1 ) = 0.

The terms 1., 3., and 4. are easy to study and only 2. requires some more work.
Term 1. We have EeiuL1/n = 1 + ψ(u)/n + o(1/n), where ψ is the Lévy–Khintchine exponent of L1.
Term 3. We decuce from Theorem 4.2 that EeiuL1/nh2(n1/αL1/n) = EeiuLα

1 /n1/α
h2(Lα

1 ) + o(1/n1/2). Moreover
from dominated convergence Theorem, we have

EeiuLα
1 /n1/α

h2(Lα
1

) = Eh2(Lα
1

) + o(1),

we conclude that

EeiuL1/nh2(n1/αL1/n

) = Eh2(Lα
1

) + o(1).

Term 4. In the same way, we have

EeiuL1/n(h1h2)
(
n1/αL1/n

) = o(1).

Term 2. Theorem 4.2 yields

EeiuL1/nh
(
n1/αL1/n

) = EeiuLα
1 /n1/α

h
(
Lα

1

) + o
(
1/n1/2).

Now we observe that EeiuLα
1 /n1/α

h(Lα
1 ) = E(eiuLα

1 /n1/α − 1)h(Lα
1 ). To control this term, we consider separately the

cases α > 1 and α ≤ 1.
• α > 1. Since E|Lα

1 | < ∞ and h is bounded, we immediately obtain∣∣E(
eiuLα

1 /n1/α − 1
)
h
(
Lα

1

)∣∣ ≤ C|u|/n1/α = o
(
1/n1/2).

• α ≤ 1. From the Lévy–Itô representation, we have

Lα
1 = L

α,1
1 + L

α,2
1 ,

where

L
α,1
1 =

∫ 1

0

∫
{0<|z|≤1}

zμ̃α(dt, dz), L
α,2
1 =

∫ 1

0

∫
{|z|>1}

zμα(dt, dz),

μα is a Poisson random measure with compensator dt 1
|z|α+1 dz and μ̃α is the compensated measure. With these

notations, we set

An = {
μα

([0,1] × {|z| > n1/α
}) = 0

}
.

Since μα([0,1] × {|z| > n1/α}) has a Poisson distribution with parameter bounded by C/n, we deduce that

P
(
Ac

n

) ≤ C/n.

Using the truncation 1An , this permits to get the bound∣∣E(
eiuLα

1 /n1/α − 1
)
h
(
Lα

1

)∣∣ ≤ CE
∣∣eiuLα

1 /n1/α − 1
∣∣1An + C/n ≤ CE

(∣∣Lα
1

∣∣1An

)
/n1/α + C/n.

Obviously we have E|Lα,1
1 | ≤ C and for the big jumps component we get

E
∣∣Lα,2

1

∣∣1An ≤
∫

{1<|z|≤n1/α}
|z|

|z|α+1
dz ≤

{
C logn, if α = 1,

Cn1/α/n, if α < 1.
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This leads to

∣∣E(
eiuLα

1 /n1/α − 1
)
h
(
Lα

1

)∣∣ ≤
{

C logn/n, if α = 1,

C/n, if α < 1.

In both cases, we conclude for the term 2. that∣∣EeiuL1/nh
(
n1/αL1/n

)∣∣ ≤ o
(
1/n1/2).

Putting all these results together, we finally obtain the convergence

log�n(u, v,w) = n logφn(u, v,w) → ψ(u) − v2

2
Eh2

1

(
Lα

1

) − w2

2
Eh2

2

(
Lα

1

)
,

and we get the convergence in law of the vector (L
n

1,�′n
1 ) to (L1, γ

′) where γ ′ is a Gaussian variable independent of
L1 with variance �′ defined by (5.12).

This achieves the proof of Theorem 3.2. �

Proof of Corollary 3.1. From Theorem 3.2, it is sufficient to prove that for f : R �→ R a continuous function and
h :R �→ R a bounded function with bounded derivative

1

n1/2

n∑
i=1

f (X i−1
n

, θ0, σ0)
(
h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

) − h
(
n1/α�Li

)) → 0, in probability.

For this we check the conditions (5.1) and (5.2) with

ζ n
i = 1

n1/2
f (X i−1

n
, θ0, σ0)

(
h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

) − h
(
n1/α�Li

))
.

From Theorem 4.1∣∣E|F i−1
n

h
(
zn(X i−1

n
,X i

n
, θ0, σ0)

) −E|F i−1
n

h
(
n1/α�Li

)∣∣ ≤ C
(
1 + |Xi−1

n
|)εn‖h‖∞,

where n1/2εn → 0 and (5.1) is immediate. Turning to (5.2) and using that h and h′ are bounded, we have for all ε > 0

E|F i−1
n

∣∣h(
zn(X i−1

n
,X i

n
, θ0, σ0)

) − h
(
n1/α�Li

)∣∣2 ≤ Cε2 + CE|F i−1
n

1{|zn(X i−1
n

,X i
n
,θ0,σ0)−n1/α�Li |>ε}.

From Lemma 4.2, ∀ε > 0, E|F i−1
n

1{|zn(X i−1
n

,X i
n
,θ0,σ0)−n1/α�Li |>ε} ≤ C(ε)(1 + |Xi−1

n
|p) 1

nq for p,q > 0 and we deduce

lim sup
n

1

n

n∑
i=1

f 2(X i−1
n

, θ0, σ0)E|F i−1
n

1{|zn(X i−1
n

,X i
n
,θ0,σ0)−n1/α�Li |>ε} = 0 a.s.

This yields

lim sup
n

n∑
i=1

E|F i−1
n

∣∣ζ n
i

∣∣2 ≤ Cε2 a.s.

and we get (5.2) letting ε go to zero. �
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