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Abstract. We consider Activated Random Walk (ARW), a particle system with mass conservation, on the cycle Z/nZ. One starts
with a mass density μ > 0 of initially active particles, each of which performs a simple symmetric random walk at rate one and
falls asleep at rate λ > 0. Sleepy particles become active on coming in contact with other active particles. There have been several
recent results concerning fixation/non-fixation of the ARW dynamics on infinite systems depending on the parameters μ and λ.
On the finite graph Z/nZ, unless there are more than n particles, the process fixates (reaches an absorbing state) almost surely in
finite time. In a first rigorous result for a finite system, establishing well known beliefs in the statistical physics literature, we show
that the number of steps the process takes to fixate is linear in n (up to poly-logarithmic terms), when the density is sufficiently
low compared to the sleep rate, and exponential in n when the sleep rate is sufficiently small compared to the density, reflecting the
fixation/non-fixation phase transition in the corresponding infinite system as established in (Invent. Math. 188 (2012) 127–150).

Résumé. Nous considérons la marche aléatoire activée (Activated Random Walk, ARW), un système de particules avec conserva-
tion de masse sur le cycle Z/nZ. Partant d’un état initial avec une densité μ > 0 de particules actives, chacune d’entre elles évolue
selon une marche simple symétrique à taux 1, et s’endort à taux λ > 0. Les particules endormies deviennent actives lorsqu’elles
entrent en contact avec d’autres particules actives. Plusieurs résultats récents se sont penchés sur la fixation ou la non-fixation de la
dynamique en volume infini, en fonction des paramètres μ et λ. Sur le graphe fini Z/nZ, à moins qu’il y ait plus de n particules,
le processus se fixe (en atteignant un état absorbant) presque sûrement en temps fini. Nous établissons un premier résultat rigou-
reux sur ces systèmes finis, confirmant des prédictions bien connues de la littérature de physique statistique, en montrant que le
nombre d’étapes avant fixation est linéaire en n (à des termes poly-logarithmiques près) lorsque la densité est suffisamment petite
par rapport au taux d’endormissement, et exponentielle en n lorsque le taux d’endormissement est suffisamment petit par rapport à
la densité, ce qui reflète la transition de phase entre fixation et non-fixation établie dans (Invent. Math. 188 (2012) 127–150) pour
le système infini.
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1. Introduction

Consider the following interacting particle system on a one dimensional lattice. Given a configuration of particles,
initially all active, the dynamics, which conserves the particles, proceeds as follows. Each active particle independently
does a simple symmetric random walk at rate one in continuous time and falls asleep at rate λ > 0. Each sleepy
particle is awakened when an active particle occupies the same site. This model, known as Activated Random Walk
(ARW), has attracted interest in non-equilibrium statistical mechanics as well as probability literature in recent years
in connection with studying fixed energy sandpile models [5,7,8,22,28–30]. The motivation of studying this model is
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two-fold. ARW can be regarded as a special case of driven diffusive epidemic process introduced by Spitzer in 1970s,
and studied later in [13–16]. ARW was also introduced in the physics literature as a more mathematically tractable
approximation of the Stochastic Sandpile Model (SSM), and is one of the paradigm examples of the widely studied
phenomenon of self-organized ciriticality (SOC) [4,6,20,21].

ARW is believed to manifest self-organized criticality when run in a finite volume with carefully controlled driven
diffusive dynamics. However, the rigorous study of ARW has so far been mostly restricted to the case of infinite
volume limit where the counterpart of SOC is known as Absorbing state Phase Transition (APT) (although some
recent results have called into question the exact relationship between these two notions [10,11,17]). Absorbing state
Phase Transition was rigorously established for ARW on Z a few years ago in the fundamental work of Rolla and
Sidoravicius [22]. Let us briefly explain their result. Consider ARW started with initial configuration of particles
coming from a product measure with density μ; denote this process by ARW(μ,λ). One would expect that for a
fixed λ, if μ is very small, then all the particles will eventually fall asleep, whereas for large μ the activity would go
on forever. Indeed, in [22] it was shown that for each λ > 0, there exists μc(λ) ∈ [ λ

λ+1 ,1] such that for μ < μc the
process ARW(μ,λ) on Z fixates (i.e., the total number of jumps at origin is finite) almost surely, and for μ > μc the
process remains almost surely active forever. Observe that it is easy to understand heuristically why μc ≤ 1. If μ > 1,
there are “more particles than sites” and hence not all particles can eventually fall asleep [1,22,23]. Complementing
the results of [22], the first three authors showed in [2] that for any fixed μ > 0, the process almost surely does not
fixate if λ is sufficiently small; thus showing μc → 0 as λ → 0, and answering a question from [8,22]. Subsequently, a
statement similar to the latter was proven for transient Euclidean lattices in [25], which also analyzed ARW dynamics
on transitive graphs where the random walk is ballistic. However, to rigorously establish the critical or near-critical
behaviour in these models seems far out of reach of the current mathematical techniques.

The results in [2,22] are in the setting of ARW on the inifinite lattice Z. Indeed, there has been a flurry of recent
mathematically rigorous results on ARW following the breakthrough work [22], but most of them have been in the
context of Euclidean lattices or other infinite graphs [1,23–27]. From the point of view of understanding self-organized
criticality, it is interesting to study this model on a finite lattice, with say a periodic boundary condition. On a finite
graph, if the total number of particles is more than the number of vertices, then the process will continue for ever. If
the total number of particles is at most the number of vertices, this is an absorbing Markov chain, so all the particles
will almost surely fall asleep after a finite time. One would expect the absorbing state phase transition to be manifested
in the finite process as a phase transition for the absorption time. For many finite systems of these type, it is generally
believed that absorption time has three different scalings with the system size, polynomial (with different exponents)
for the sub-critical and critical systems, and exponential for the super-critical system. Indeed a version of the above
statement in the set up of [22] and [2] respectively are the main results of this paper. In physics literature there are
many non-rigorous and numerical results about the critical and near-critical scaling of this and related quantities for
SSM and its many variants (see, e.g., [19] and references therein). However, as with the infinite system, rigorous
analysis of the critical scaling behaviour remains a challenging problem.

1.1. Main results

Consider an n-cycle Z/nZ with nearest neighbour edges. Fix λ > 0 and μ ∈ (0,1). Consider the initial configuration
with independent Ber(μ) many particles at each site. (We will denote the product Bernoulli measure by P

μ). Consider
ARW started with this configuration with sleep rate λ; denote this process by ARW(μ,λ). As mentioned before, this
is an absorbing Markov chain and hence the process reaches the absorbing state of all sleepy particles (the set of all
such configuration will be henceforth called the cemetery set and written �) after a finite time almost surely. Let
Tn(μ,λ) denote the total number of attempts by any active particle to either jump or to try to sleep. Note that the
continuous time ARW dynamics can be coupled naturally to the following discrete time dynamics: at every positive
integer time, pick an active particle uniformly at random. With probability 1

2(1+λ)
each, the particle jumps to one of

the neighbouring sites, and with probability λ
1+λ

it tries to fall asleep. It is easy to see that under the natural coupling,
Tn(μ,λ) is the absorption time of the latter dynamics.

Our first result shows that if the particle density μ is sufficiently small compared to λ then Tn(μ,λ) is linear up to
poly-logarithmic correction factors.
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Theorem 1. Consider ARW(μ,λ) on Z/nZ. For any λ > 0 and μ < λ
1+λ

, there exist positive constants C0, b

depending on μ and λ, such that for all large enough n,

P
(
Tn(μ,λ) > C0n log2 n

) ≤ 1

nb
.

Observe that μ < λ
λ+1 is precisely the regime in which [22] showed fixation on Z. It is also easy to observe that the

bound is tight up to the polylogarithmic factor. To see this, observe that the expected total number of jumps a particle
takes before trying to fall asleep is 1+λ

λ
. Thus, if the number of particles is linear in n, the total number of jumps is

also at least linear in n.
In the heavily super-critical regime, that is, when λ is sufficiently small compared to μ, we have the following

complementary result (This result should be compared to [2, Theorem 1].).

Theorem 2. For any 0 < μ < 1, there exists λ0 > 0 and c > 0 such that for any λ < λ0, and all large enough n,

P
(
Tn(μ,λ) < ecn

)
< e−cn.

Theorem 1 relies heavily on the uniformity of the locations of the particles in the initial configuration (note how-
ever, that the arguments in this paper do not depend on the specific nature of the Bernoulli distribution of the initial
configuration). In fact, it can be shown that Tn(μ,λ) is at least of order n3 when all the particles start at the origin.
An exponential upper bound for Tn(μ,λ) is also relatively easy to establish. See Remarks 3.13 and 4.6 for further
elaboration.

We list below the new contributions in this paper and relations to existing results: Although the linear to exponential
phase transition for absorption time is widely expected in the statistical physics literature, to the best of our knowledge
this is the first rigorous result establishing such a transition for some variant of fixed energy sandpile models. We rely
crucially on the recent progress [2,22] in understanding ARW on the infinite line. However one needs certain new
ideas to deal with the finite case. Following the argument of [22], the main obstacle in showing fast fixation for low
particle density is the wrapping around issue, that is, to make sure the particles do not wrap around the cycle, and
wake up already settled particles. We get around this by a block argument and a two-sided variant of the stabilizing
algorithm in [22]. In the process of attaining the quantitatively optimal result Theorem 1, we encounter a particle
system similar to internal erosion (see [17]).

For the slow fixation part, that is, Theorem 2, we first recall that the argument from [2] essentially tells us that
when we stabilize a certain density of particles on Z/nZ until they hit 0, for small enough sleep rate only a small
fraction of the particles fall asleep. The key observation in this paper is that the above step can be applied iteratively
for exponentially many rounds. A naive application of the iteration scheme only allows the number of steps to be loga-
rithmic in n since a constant fraction of particles fall asleep in every round. However the finiteness of the environment
allows us to recycle particles which fell asleep in earlier rounds once they get woken up in later rounds. To this end we
strengthen the argument in [2] by showing that with exponentially small failure probability all the particles that were
asleep at the start of the round get woken before the end of the round and not too many particles fall asleep. Thus we
can sustain the process for exponentially many steps.

In the next section we elaborate on the above ideas further.

1.2. Sketch of the proofs

A crucial property of many interacting particle systems that serve as models of distributed networks is the Abelian
property. Informally it means that the final outcome of a certain probabilistic experiment does not depend on the order
in which operations at different sites are performed.

In the context of ARW, one exploits the Abelian property via the Diaconis–Fulton representation, which is roughly
the following (see Section 2.1 for a more formal description). At every site in Z/nZ, we have a sequence of i.i.d.
instructions (referred to as the “stack of instructions”) to either jump to one of the two neighbours, with probability

1
2(1+λ)

each, or to fall asleep, with probability λ
1+λ

. Given these stacks, one way to run the process is: as long as
there is some active particle, pick an arbitrary site x ∈ Z/nZ with at least one active particle, and use the first unused



Activated random walk on a cycle 1261

instruction from the stack to topple the site. That is, if the instruction is a jump instruction, then the particle jumps to
a neighbouring site accordingly, and otherwise tries to fall asleep.

The Abelian property then states that the final configuration of particles after every particle has fallen asleep
does not depend on the order in which the sites were toppled. Thus in this language Tn(μ,λ) is the total number of
instructions across all the stacks used until the end of the toppling process.

We also rely on the following monotonicity property of the ARW dynamics: given a set of stacks of instructions,
while toppling sites, if we ignore any sleep instruction, then the total number of topplings required to reach � can
only increase. Here ‘ignoring a sleep instruction’ means the configuration does not turn an active particle to a sleepy
particle, even though the instruction is a sleep instruction. This monotonicity is certainly heuristically plausible and,
indeed, is a well-known consequence of the Abelian property. (See Lemma 2.3 and the discussion preceding it for
formal definitions.)

1.2.1. Sketch of the proof of Theorem 1
Given the above two properties, to prove Theorem 1 we will provide a toppling scheme which will end with a con-
figuration in the cemetery set �. Our toppling procedure will ignore certain sleep instructions and hence by the
monotonicity property, the total number of instructions used in the actual process in the Diaconis–Fulton representa-
tion is upper bounded by the number of instructions used in our scheme. The basic idea is to break the cycle Z/nZ in
to sub-intervals I1, I2, . . . of size c0 logn for some constant c0. Our toppling scheme is then a combination of toppling
schemes, one for each of the sub-intervals. The toppling scheme for Ii is designed to stabilize particles inside Ii for
i = 1,2, . . . , n

c0 logn
. The toppling scheme in each of the intervals is a variant of the trap-setting procedure appearing in

[22]. We prove that with very small failure probability (exponential in the size of the interval) the toppling procedure
in the interval succeeds to stabilize everything. A union bound over all the intervals show that with high probability
the procedure succeeds simultaneously for all the intervals, and hence stabilizes the system. Recall that the failure
probability for each interval is exponential in the size of the interval which forces us to choose the size of the intervals
to be logarithmic (in n) as otherwise the union bound over polynomially (in n) many such intervals will fail; this also
explains the logarithmic correction term in the statement of Theorem 1.

We now briefly describe our toppling scheme (see Figure 1). It consists of broadly two parts.

(1) Phase 1: Given the initial configuration, the first step is to gather particles which are initially located uniformly
over Z/nZ, to a set of points we call Sources. We will take this set to be { c0

2 logn,
3c0
2 logn, . . .} for some

carefully chosen value of c0, depending on the parameters μ and λ. Thus we first ignore all the sleep instructions
and allow the particles to do independent random walks till they hit an element of Sources. Large deviation
estimates imply that with high probability the number of particles at each Source at the end of this process is
roughly c0μ logn. Recall that we are using the monotonicity property mentioned above, and hence we can ignore
certain sleep instructions.

(2) Phase 2: The intervals I1, I2. . . . inside which we run our toppling scheme are of size c0 logn, and centred at the
sources. The proof proceeds by showing that there is a toppling procedure which carefully ignores certain sleep
instructions allowing the particles to fall asleep only at certain well chosen ‘traps’ which prevents interaction with
other particles. The remainder of the proof then shows that the above scheme succeeds with high probability.

Even though the trap setting scheme is inspired from [22], the argument in the latter was particularly tailored to the
ARW process on the infinite line and does not directly work on the cycle: this is because, on the cycle, each particle
has a chance of order 1

n
to wrap around the cycle before falling into the trap and thereby waking up the already asleep

particles. To circumvent this we introduce a two sided version, which, relying on estimates for random walk on the
interval, can be shown to work in our setting.

1.2.2. Sketch of the proof of Theorem 2
For the proof of Theorem 2 we rely on the non-fixation result from [2]. The technical core of that paper (see the proof
of [2, Lemma 18]) was to establish the following non-fixation phenomenon. Consider a sufficiently large interval [0, r]
with at least μr many active particles, and stabilize the particle system inside the interior of the interval [0, r], that is,
the particles are stopped upon hitting {0, r}. Then, given ε > 0, for any mass density μ, and for all small enough λ,
at the end of the stabilization procedure, the number of particles accumulating at {0, r} is at least (1 − ε) fraction of
the total number, with failure probability exponentially small in r . This was used in [2] to show infinite activity on the
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Fig. 1. (a) The toppling scheme for fixation in the sub-critical regime: in the first step of the stabilization scheme, we ignore sleep instructions to get
every particle to a nearby source vertex. Particles at a particular source are then stabilized inside an interval of length c0 logn using a trap-setting
procedure. (b) The toppling scheme for non-fixation in the supercritical regime: 0 and n/2 are the north and south ‘poles’ of the cycle. We run
several rounds of the following stabilization loop where we first try to topple all particles located away from 0 or n/2 until they fall asleep or hit
{0, n/2}. Then we try to topple particles starting from 0 until they hit n/2 or fall asleep, and afterwards do the same at n/2, namely topple all
particles starting from n/2 until they hit 0 or fall asleep. These three actions are repeated until all particles are asleep: our proof shows that this
loop can be sustained for exponentially many steps (in n) with high probability.

line, by considering a growing sequence of r and then using the above statement to show that particles from arbitrary
far away would hit the origin, thus implying non-fixation. For a finite system, we cannot rely on an argument which
uses particles arbitrarily far away. Instead we use the following ‘recycling particles’ approach: represent the cycle
Z/nZ as the interval [−n/2, n/2] with endpoints identified. We run the following rounds of particle stabilization:

(1) We first treat the ‘poles’ 0 and n/2 as boundary points, and topple particles not at those sites until they fall asleep
or land at one of the sites 0 or n/2. By the arguments in [2], a constant fraction of all particles will make it to
either 0 or n/2 with exponentially high probability.

(2) We topple particles that ended up at 0 in the previous stage until they fall asleep or hit n/2. The particles that did
not start at 0 do not move, but they can be woken up by other active particles during this stage. Using ideas from
[2, Lemma 18], we show that most particles will make it to the boundary before falling asleep with exponentially
high probability.

(3) Just as the previous step, we only topple particles that started at n/2 at the end of the previous stage, running the
dynamics until all such particles are asleep or at 0.

Since all these steps keep most particles awake with exponentially high probability, we can run the loop exponentially
many times. Moreover, since each loop takes at least one stack instruction to run, the Abelian property implies that
Tn(μ,λ) is at least exponential in n.

2. Abelian property for activated random walk

For brevity, we will denote Z/nZ by Cn. We follow [22] in formally describing the set up of ARW. To avoid unnec-
essary notational overhead we describe the bare minimum of the formalism necessary. We always work with ARW on
Cn for some fixed but large n, and the notation is adapted accordingly. In particular, for the remainder of this section,
addition and subtraction will be considered modulo n whenever appropriate and we shall not mention that explicitly
every time.

For any time t ≥ 0 and location x ∈ Cn, ηt (x) denotes the state of the system at location x at time t . We write
ηt (x) = ρ if there is one sleepy particle at x ∈ Cn at time t . If there is not a sleepy particle present we let ηt (x) ∈ N

denote the number of particles at x ∈ Cn at time t . Then ηt = {ηt (x)}x∈Cn
denotes the state of the system at time t .

We shall use two operations (called topplings) on the space of configurations. For x ∈ Z and y = x ± 1, let τx,y(η)

denote the configuration obtained by moving one of the active particles from x to y. This operation will be called
illegal (for the configuration) if there are no active particles at x and the system remains unchanged. Let τx,ρ(η)
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denote the configuration obtained from η by making the solitary particle at x fall asleep. Moreover if x has more
than one active particle, the sleep instruction has no effect, so τx,ρ(η) = η. Again if there are no particles at x, this
instruction is called illegal and the system is not changed.

Now we can formally define ARW as a finite state space continuous time Markov chain with transitions η → τx,yη

at rate A(ηt (x)) 1
2 1y=x±1, and η → τx,ρη at rate λA(ηt (x)) where A(η(x)) denote the number of active particles at site

x in configuration η. Let Pν denote the law of the process started from an initial configuration distributed according
to ν.

2.1. Diaconis–Fulton representation

We will now describe the Diaconis–Fulton representation of the ARW dynamics which will be convenient for our
purposes. For an extensive discussion of the Diaconis–Fulton representation of ARW dynamics, the Abelian property
and its consequences, see [22]. For completeness we recall the relevant results from [22], suitably adapted to the
setting of a finite cycle.

The Diaconis–Fulton representation [3,9] maps the ARW process to sequence of instructions attached to the sites.
The advantage of this representation is the Abelian property, which allows one to disregard the order in which different
steps were performed in certain settings. We start by introducing a series of notations. Recall the operations τx,y and
τx,ρ from above. Now consider the following array of random variables:

I =
. . . ξ(−2,1) ξ(−1,1) ξ(0,1) ξ(1,1) ξ(2,1) . . .

. . . ξ(−2,2) ξ(−1,2) ξ(0,2) ξ(1,2) ξ(2,2) . . .
...

...
...

...
...

...
...

, (2.1)

where ξ(x,j) are independent for any x ∈ Cn and j ∈ N and moreover,

ξ(x,j) =

⎧⎪⎨⎪⎩
τx,x−1 with probability 1

2(λ+1)
,

τx,x+1 with probability 1
2(λ+1)

,

τx,ρ with probability λ
λ+1 .

(2.2)

We will now show that using these instructions one can define a discrete time version of the ARW process. In fact we
can define many such versions. But they will all have the same configuration when it is finally stabilized and the same
set of instructions that have been implemented.

We call the ξ(x,j)’s instructions at the site x and the underlying product measure P .
Given a configuration η at each discrete time step t , one can choose (arbitrarily) an unstable site x and use the first

unused element from the stack ξ(x,·) and use it to perform the transition to a configuration η′ at time step (t + 1). As
mentioned in Section 1.2, we call such an operation “toppling” at site x. We keep track of the number of topplings at
every site. Let η be the configuration after applying h(x) many topplings at each site x ∈ Cn. Let us denote

h := (
h(x) : x ∈ Z/nZ

)
(2.3)

which we will call the odometer function. Let 
x(η) denote the configuration obtained by toppling the site x next,
that is, we apply the instruction ξx,h(x)+1, and also increase h at x by one (h at other sites does not change). We say

x is legal for η if x is unstable in η. For any sequence α = (x1, x2, . . . , xk) we define the sequence of topplings at x1,
followed by x2 and so on through until xk by 
α , that is, 
α = 
xk

. . .
x1 . We now say that α is a legal sequence
for initial configuration η if 
xi

is legal for 
xi−1 . . .
x1(η) for all i = 1, . . . , k. We abuse notation a little to denote
by hα the odometer function after performing the sequence of toppling given by α, that is, for any x ∈ Cn,

hα(x) =
k∑

i=1

1(αi = x). (2.4)

Given the above preparation we can now formally state the Abelian property, which says that given two sequence
of legal topplings that result in the same odometer function (see (2.4)), the final configuration is the same in both the
cases, that is, the order in which topplings are performed does not matter.
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Lemma 2.1 (Abelian Property [22, Lemma 2]). Given any two legal sequence of topplings α and α′ such that
hα = hα′ , then


α(η) = 
α′(η).

The next lemma is a consequence of the Abelian property. It shows that any legal sequence of topplings must occur in
any stabilizing sequence (i.e., a legal sequence which leads to all stable sites).

Lemma 2.2 (Least Action Principle [22, Lemma 1]). Let α, α′ be two legal sequences of topplings such α stabilizes
η, then hα′ ≤ hα , that is, all the topplings in α′ are also needed in α.

Observe that Lemma 2.2 immediately implies that any two stabilizing sequence must lead to the same odometer
function, and in turn by Lemma 2.1 this implies that the final configuration after stabilization is also independent of
the stabilizing sequence. This will imply that for any stabilizing sequence α, for an initial configuration of product
Ber(μ) many particles, we have

Tn(μ,λ) =
∑
x∈Cn

hα(x).

This will be the fundamental tool used in our proofs. Finally we need another lemma to compare the stabilizing
sequences which formalizes the intuitively plausible statement: for a stabilizing sequence where we ignore some of
the sleep instructions, the total number of jumps is larger than if we hadn’t ignored those sleep instructions. Formally
we need to introduce a new notation to define precisely the meaning of ignoring a sleep instruction. Recall the stack
of instructions I from (2.1) and the action of the instructions τx,ρ and τx,x±1 on the particle configuration η. Let us
introduce a null instruction n which acts on a configuration to create no change, that is, nη = η for all η. Now given
a stack of instructions, I = {ξ(·,·)}, as in (2.1), let I′ = {ξ ′

(·,·)}, be another stack, with the property that for each (x, j)

either, ξ(x,j) = ξ ′
(x,j), or ξ(x,j) = τx,ρ , and ξ ′

(x,j) = n. Thus informally I′ is any set of toppling instructions obtained
from I by ignoring certain sleep instructions.

Lemma 2.3 ([22, Lemma 5]). Given any I, I′ as above, and any initial configuration η, let α and α′ be two legal
toppling sequences stabilizing η, using instructions from I and I′, respectively. Let hα(·) and hα′(·) be the respective
odometer functions. Then hα′(x) ≥ hα(x) for every x ∈ Cn.

Often our argument will be based on running the ARW dynamics on certain sub-intervals of Cn, and hence to
be completely formal one needs to introduce stacks corresponding to such intervals. However to avoid introducing
additional notation, we will identify the latter in the natural way with the corresponding subset of stacks of I.

3. Fast fixation under low density

We prove Theorem 1 in this section. By the discussion at the end of last section and Lemma 2.3, we shall provide an
algorithm for toppling which will ignore some sleep instruction and which stabilizes all sites in Cn within O(n log2 n)

many topplings with high probability. (Note that the probability here is over both the random initial configuration and
also the random stack of instructions.) We shall formalize the sketch provided in Section 1.2 to build the toppling
procedure.

Let η be a initial configuration of particles on Cn distributed according to law P
μ. Also fix a realization I of

the stack of instructions. For the remainder of this section, we shall always talk about toppling the configuration η

sequentially using instructions from I.

3.1. Random walk estimates

As explained before, the first phase will be to topple any unstable site that is not a Source and ignore any sleep
instructions encountered in the process. So at the end of this phase of the toppling all the particles will be herded at



Activated random walk on a cycle 1265

the Source vertices. Let η(1) denote the configuration at the end of this phase, which is supported on Source vertices.
Because we ignore the sleep instructions, this procedure is the same as letting all the particles in η be independent
simple symmetric random walks stopped at hitting one of the sources. Thus we shall need a couple of basic random
walk estimates to estimate the distribution η(1), as well as the total number of jumps to reach that configuration.

Recall that the ith source is located at the vertex zi := (i − 1
2 )c0 logn. Let η

(1)
i denote the number of particles η(1)

has in this vertex. Also recall that to reduce notation we assumed that n is an integer multiple of c0 logn, which itself
is an even integer. Let K = n

c0 logn
be the number of sources. In the general case we can take all the intervals to be

�c0 logn� except possibly one which has length between �c0 logn� and 2�c0 logn�.
The following lemma is our first random walk estimate.

Lemma 3.1. For each ε > 0, there exists a > 0 such that for all large enough c0 and n,

P

(
sup

1≤i≤K

∣∣η(1)
i − μc0 logn

∣∣ ≥ εc0 logn
)

≤ e−ac0 logn.

Proof. For this proof we shall forget about I and the toppling procedure, and treat η(1) as the configuration obtained
from letting all the particles of η perform independent simple symmetric random walks stopped at hitting any of
the source vertices (thus particles initially located at source vertices do not move at all). We first recall a standard
concentration inequality for sums of independent but not necessarily identically distributed Bernoulli variables that
we will use later in the proof. Let X1, . . . ,Xk be independent Bernoulli variables with means p1, . . . , pk respectively.
Let ν = p1 + · · · + pk . Then

P

(∣∣∣∣∣
k∑
i

Xi − ν

∣∣∣∣∣ ≥ δν

)
≤ e− δ2ν2

k
. (3.1)

Let us consider the first source z1. Clearly, any particle that ended up at z1 in η(1) must have been located at some
j ∈ V1 = (− c0

2 logn,
3c0
2 logn). Let Zj denote the indicator of the event that there was a particle at j in η and that

ended up at z1 in η(1). Clearly

η
(1)
i =

∑
j∈V1

Zj .

Observe that a standard Gambler’s ruin calculation yields that the probability that a random walk started at j ∈ V1

would reach z1 before reaching either z0 or z2 is g(j) = 1 − |j− c0
2 logn|

c0 logn
. It follows that Zj ’s are independent Bernoulli

variables with mean μg(j). Observe that∣∣∣∣∑
j∈V1

g(j) − c0 logn

∣∣∣∣ ≤ 1,

and hence using (3.1) we get that for each ε > 0, and for all n sufficiently large

P
(∣∣η(1)

1 − μc0 logn
∣∣ ≥ εc0 logn

) ≤ e−2ac0 logn (3.2)

for some a depending on μ, ε (but not on c0). By the rotational symmetry of Cn and of the law of the initial configu-
ration P

μ, we have the same bound for all η
(1)
i for all 1 ≤ i ≤ K . Now since the number of source vertices is less than

n, using (3.2) and a union bound over all source vertices, we get

P

(
sup

1≤i≤K

∣∣η(1)
i − μc0 logn

∣∣ ≥ εc0 logn
)

≤ ne−2ac0 logn ≤ e−ac0 logn,

where we have chosen c0 sufficiently large (depending on μ, ε) so that the last inequality holds. This completes the
proof of the lemma. �
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Recall the basic setting of toppling sites using instructions from stack I. The next lemma will prove that the total
number of instructions explored until the end of phase one is at most order n log2 n with high probability.

Lemma 3.2. Let T (1)(μ,λ) denote the total number of instructions that have been explored until the end of phase
one. Then there exists C2, θ > 0 such that

P
(
T (1)(μ,λ) > C2n log2 n

) ≤ n−θ .

For this step we shall need a concentration result for sums of geometric random variables. Although the result we
need at this step is pretty standard, we shall need a more complicated variant later on, and we also need a concentration
for some of exponential random variables for a later part of the argument. For convenience we quote, at this point, the
following result from [12] which shall cover all our needs (see Theorems 2.1 and 5.1 there).

Lemma 3.3. The following concentration results hold:

(i) Fix p ∈ (0,1), and let Y1, Y2, . . . be i.i.d. geometric random variables with parameter p, so EY1 = 1/p. Then for
any δ > 0 and any M ∈N,

P

(∣∣∣∣∣
M∑
i=1

Yi − M/p

∣∣∣∣∣ ≥ δ
M

p

)
≤ 2 exp

(
−(

δ − log(1 + δ)
)M

p

)
.

(ii) Suppose Z1,Z2, . . . are independent exponential random variables with means a1, a2, . . . , and set a∗ = infi ai ,
κ = ∑

1≤i≤M ai . Then for any δ > 0 and M ∈ N,

P

(∣∣∣∣∣
M∑
i=1

Zi − κ

∣∣∣∣∣ ≥ δκ

)
≤ 2 exp

(−a∗κ
(
δ − log(1 + δ)

))
.

For the proof of Lemma 3.2 we need the following result.

Lemma 3.4. Let n be an integer multiple of r and consider fixed locations at distance r on Cn (without loss of
generality take them to be multiples of r). Let k independent identically distributed lazy symmetric random walks
started from arbitrary locations on Cn and stopped on hitting the nearest integer multiple of r . Let Ti be the total
number of steps taken by the ith walk (including the lazy steps). Then there exists C > 0 such that

P

(
k∑

i=1

Ti ≥ Cr2k

)
≤ e−Ck,

where C depends on the laziness parameter (i.e., the probability of not jumping).

Proof. Standard simple random walk estimates show that if τ is the hitting time of {0, r} for a lazy simple random
walk on Z (with laziness p), then for each x ∈ �0, r�, we have Px(τ < Cr2) ≥ 1

2 where Px , denotes the probability
measure for the random walk started at x and C depends only on the laziness parameter. It follows then that for
any arbitrary location of the k particles, each Ti is stochastically dominated by r2G where G is a geometric random
variable with mean 2. The statement now follows from part (i) of Lemma 3.3. �

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. First notice that the total number of instructions used by the particles ignoring the sleep instruc-
tions is the same as the total number of steps taken when the particles do independent lazy symmetric random walks
on Cn, where the laziness (probability of not jumping) is λ

1+λ
(exactly the probability that an instruction is a sleep in-

struction). Now as an easy consequence of (3.1), for any ε > 0, the total number of particles in η is in (μ − ε,μ + ε)n
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with probability at least 1 − e−cn for some c = c(ε,μ) > 0. We can therefore condition on the number of particles
being m ∈ (μ − ε,μ + ε)n. Let T ∗ denote the total number of steps taken by these particles until the end of phase
one. Using Lemma 3.4 with r = c0 logn, we get that P(T ∗ > Cn log2 n) ≤ e−cn. �

3.2. Phase two: Stabilizing from the sources

We describe the second phase of our toppling scheme now. Recall that we start with the configuration η(1) that is
supported on the Source vertices. Throughout the section we shall assume that η(1) satisfies the high probability event
described in Lemma 3.1, where ε will be chosen sufficiently small depending on μ and λ later. Recall the intervals
Ii = [(i − 1)c0 logn, ic0 logn] for 1 ≤ i ≤ K . Observe that the ith source zi is the midpoint of the interval Ii .

As mentioned before, for each 1 ≤ i ≤ K , we start stabilizing particles at zi sequentially, in any arbitrary manner of
toppling, until one of the particles hit the boundary of Ii , in which case we term the process a failure. On the contrary,
we denote by Si the event that all the η

(1)
i particles all fall asleep before hitting the boundary of Ii : call this event

Success at source zi . Clearly on the event that Si occurs for all i, the system stabilizes. The main step is to show
that Si occurs with high enough probability so that one can take a union bound over all intervals Ii . Because of the
underlying symmetry, we state the following result for a generic interval [− r

2 , r
2 ], where we assume r is even to avoid

rounding issues.

Proposition 3.5. Consider ARW, with sleep rate λ, on [− r
2 , r

2 ], started with m particles at the origin. Let ε > 0 be
such that μ + 2ε < λ

1+λ
, and let m ≤ (μ + ε)r . Let S denote the event that all the particles fall asleep before any

particle hits {− r
2 , r

2 }. Then there exists c > 0, such that for all r sufficiently large we have P(Sc) ≤ e−cr .

Proposition 3.5 is the most technically complicated result that goes into the proof of Theorem 1, and the proof will
be spread over the next two subsections. Before delving into this proof, we want to complete the remaining steps in
the argument proving Theorem 1. First we need to prove the following easy lemma.

Lemma 3.6. Consider ARW with sleep rate λ, started from η(1). Let T (2) = T (2)(μ,λ) denote the total number of
steps taken by all the particles until stabilization. Then there exists C3 > 0, and θ > 0, such that on the event

⋂
Si ,

we have

P
(
T (2) ≥ C3n log2 n

) ≤ n−θ

for all n sufficiently large.

Proof. Observe that arguing as in the proof of Lemma 3.4, taking r = c0 logn, on Si , the number of steps taken by
each particle started from zi is dominated by Cc2

0 log2 nG where G is a geometric random variable with mean 2 and
C depends on λ. The rest of the proof is identical to that of Lemma 3.4 and its application in the proof of Lemma 3.2.
We skip the details. �

We can now complete the proof of Theorem 1.

Proof of Theorem 1. Fix μ < λ
1+λ

and recall our two phase stabilization procedure. Recall T (1) from Lemma 3.2 and

T (2) from Lemma 3.6, and the stack of instructions I from (2.1). Note that our toppling scheme produces a stack of
instructions I∗ obtained from I, where the sleep instructions which are ignored by our toppling scheme are replaced
by n instructions (see the definitions before Lemma 2.3). Moreover, given the stack I∗, by the Abelian property
(Lemma 2.1), on the event

⋂
Si , the total number of instructions needed to stabilize is T (1) + T (2), since our toppling

scheme uses exactly those many instructions from I∗. Finally, using Lemma 2.3, the total number of instructions used
to stabilize, for the stack I, is upper bounded by T (1) + T (2). Thus it will suffice to show that

P
(
T (1) + T (2) > C0n log2 n

) ≤ n−b. (3.3)
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We first fix ε > 0 so that the hypothesis of Proposition 3.5 is satisfied. Then fix c0, C2, a so that the conclusions of
Lemma 3.1 (with the same ε) and Lemma 3.2 hold. Thus, the event

A =
{

sup
1≤i≤K

∣∣η(1)
i − μc0 logn

∣∣ ≤ εc0 logn
}

∩ {
T (1)(μ,λ) < C2n log2 n

}
occurs with probability at least 1 − n−θ for some θ > 0.

On A, by definition, for each 1 ≤ i ≤ K , η
(1)
i satisfies the hypothesis of Proposition 3.5, and hence applying the

latter with r = c0 logn and a union bound we get

P

(⋂
Si

)
≥ 1 − ne−hc0 logn ≥ 1 − n−θ

for some h > 0, and by choosing c0 sufficiently large the final inequality holds for some θ > 0. We can now infer (3.3)
for all sufficiently large n, from Lemma 3.6, choosing C0 sufficiently large compared to C2 and C3 and choosing b

sufficiently small. �

3.3. Setting the traps

It remains to prove Proposition 3.5. For this proof we shall work with the Diaconis–Fulton representation of ARW on
[− r

2 , r
2 ] using the stack of instructions I as explained at the end of Section 2.

For the remainder of this section, we shall be in the set-up of Proposition 3.5. Also without loss of generality we
shall assume that the total number of particles at the origin is m = μr , and we run ARW with sleep rate λ where
μ < λ

1+λ
. Using Abelian property (Lemma 2.1), our goal will be to provide a toppling procedure (with some possibly

ignored sleep instructions) that, when it succeeds, will lead to a stable configuration before any of the particles reach
{− r

2 , r
2 }. Our job will be finished once we show that the algorithm succeeds with high probability. Next we describe

in detail the steps of our algorithm, which employs a variant of the algorithm in [22, Section 5], along with a more
complicated trap setting procedure in the finite setting. We elaborate on the differences from [22] and their necessity
later, but first we describe the procedure.

3.3.1. Exploration, and locating the traps
Recall that the number of particles at the origin is m. Let us enumerate the particles y1, y2, . . . , ym. The algorithm
consists of applying a settling procedure to each particle. This procedure explores I until it identifies a suitable trap for
the particle. The exploration follows the path that the particle would perform if we always toppled the site it occupies,
and stops when the trap has been chosen. In the absence of a suitable trap, we declare the algorithm to have failed. We
set two initial barriers a0 = − r

2 , b0 = r
2 . We will recursively define barrier processes a0 < a1 < · · · and b0 > b1 > · · ·

that are functions of I. Having defined ai and bi , we define ai+1 and bi+1 as follows:
Topple the particle yi+1 using the previously unexplored instructions in I until it hits either ai or bi , that is,

we always topple the site where this particle is currently located. At this stage we ignore all the sleep instructions.
Eventually the particle hits either ai or bi , call the site hit qi . Let us suppose qi = ai and the exploration process hits
qi at step τi . We set bi+1 = bi and explore the accessed sites backwards from ai , until we reach zero. If we reach a
site v where the second to last instruction accessed was a sleep instruction (notice that the last instruction must have
been a step towards ai ) that was ignored, then we set ai+1 = v, and call ai+1 = Trapi+1. See Figure 2. If no such site
exists we declare the procedure to have failed. Observe that provided we can successfully set the barriers then they are
moving towards the origin from both sides. We declare the trap setting scheme a success if am < 0 < bm. Note that
this is a sufficient condition for us to be able to set barriers for all the m particles.

In [22], the argument is based on considering the infinite half line and hence in that setting, it suffices to only
consider a single barrier process a0 < a1 < · · · In contrast, in our setting, we want the particles to not exit the interval
[− r

2 , r
2 ], and hence do not want the situation where a certain random walk hits the barrier process a0 < a1 < · · · ,

after a long excursion outside the interval of our interest. This creates the necessity to have another barrier process,
· · · < b1 < b0, which the particle would hit instead on such a journey, preventing its exit from the interval.
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Fig. 2. This figure is similar to the one appearing in [22]. The blue, red and green paths are the exploration trajectories for three consecutive
particles labelled yk , yk+1, yk+2 respectively, starting at the origin. The ←, → denote jump instructions whereas X denotes a sleep instruction.
The first particle is stopped on hitting the barrier ak−1 and hence it advances to ak which is the closest site where the second last instruction was
a sleep instruction ignored. The particle now falls asleep at ak instead of exploring the path beyond ak . As shown in Lemma 3.9, ak − ak−1 is
dominated by a Geometric variable of mean 1+λ

λ . However the barrier bk−1 stays as it is and is renamed bk . The second particle hits barrier bk

which now advances to bk+1 where the particle uses the previously ignored sleep instruction to fall asleep, whereas ak is renamed ak+1. Thus the
trap setting scheme proceeds to find traps for each individual particle to fall asleep.

3.3.2. Running the dynamics
Let us suppose that the realization of I is such that the trap setting procedure is a success. On this event, let us give
a toppling scheme which will utilize the traps to stabilize all the particles before they hit a0 or b0. We topple the
particles sequentially. Assuming the particles up to yi−1 have been settled, we start the toppling of the particle yi ,
ignoring all the sleep instructions until the particle hits Trapi for the last time before hitting ai−1 or bi−1. Observe
that because the instructions used were never used in the in exploration process of the previous particles, the path of
this particle is the same as the exploration path, up until it hits Trapi for the last time. We let the sleep instruction that
was the second to last one accessed at Trapi be executed and this settles the particle yi at Trapi . The key thing to
notice here is that all the subsequent instructions accessed by the exploration process (but not in the actual dynamics)
are located outside (ai, bi), hence the future exploration processes will never try to access them by definition. This
implies that the procedure can be continued with all the particles settled at their respective traps if the trap setting
procedure succeeds, and additionally the consecutive exploration paths are independent of each other. This fact will
be crucial for us when we try to estimate the growth of the barrier processes.

We summarize the upshot of the toppling procedure and the discussion above in the following lemma.

Lemma 3.7. In the set-up of Proposition 3.5, suppose the trap setting procedure described above succeeds. Then S
occurs.

Proof. The proof is a straightforward consequence of Lemmas 2.3 and 2.1. �

Using Lemma 3.7, the proof of Proposition 3.5 will now be complete, if we show that the probability that the trap
setting procedure fails is exponentially small in r . As mentioned before, our toppling scheme succeeds if am < 0 < bm

where m is the total number of particles initially at 0. The proof of Proposition 3.5 follows from the next lemma.

Lemma 3.8. Let m = βr be the total number of particles at the origin, and consider the trap setting procedure
described above. For β < λ

1+λ
, there exists c = c(β,λ) > 0 such that for all sufficiently large r we have

P(am < 0 < bm) ≥ 1 − e−cr .
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Let us first provide a brief outline of our argument. Observe that at each stage i, exactly one of the barriers advances
towards the origin. The probability of this being the left one or the right one is equal by symmetry at step 1 and hence
equal to 1

2 . The proof now involves showing that it remains close to 1
2 throughout. Also we show that the distance

a barrier moves at each step has mean 1+λ
λ

. So the total distance covered by the barriers after βr many moves is
approximately 1

2βr 1+λ
λ

, which is smaller than r
2 because of the assumption on β and λ. Since the initial location of

the barriers were at − r
2 and r

2 , the above implies that none of the barriers cross the origin.
We now make the above argument formal. The first lemma we need is the following. A similar observation was

already present in [22].

Lemma 3.9. At the ith stage, the distance of Trapi from the barrier qi−1 hit by the ith exploration process is domi-
nated by a geometric random variable with mean 1 + 1

λ
independent of everything else.

Proof. Without loss of generality we assume that qi−1 = ai−1. Recall from (2.2) that each instruction ξ(x,j) in I

is a sleep instruction with probability λ
1+λ

and jump instruction otherwise, independent of everything else. Thus,
conditioning on the ith exploration path, the number of sleep instructions ignored at any site x ∈ Cn between successive
jumps at x are i.i.d. random variables distributed as Geom( 1

1+λ
) − 1 (we adopt the standard notation of denote a

Geometric random variable with mean p−1 by Geom(p)). In particular the number of sleep instructions between
successive jumps is zero with probability 1

1+λ
. Thus at any site, the probability that there was a sleep instruction

ignored before the last jump instruction is λ
1+λ

. Thus Trapi −ai−1 is dominated by Geom( 1+λ
λ

) variable, independent
of everything else. Note that this is not a distributional identity, as Trapi − ai−1 is bounded above by r − ai−1. �

The next step is to show that roughly half of the particles hit the barriers on either side. For i = 1,2, . . . ,m, let
Ui denote the indicator that the i-th particle exploration process hits the left barrier first, that is, qi−1 = ai . Also let
Vi = 1 − Ui . We have the following lemma.

Lemma 3.10. In the above set-up, for each δ > 0, there exists c = c(δ) > 0 such that

P

(
m∑

i=1

Ui ≥
(

1

2
+ δ

)
m

)
≤ e−cr ; P

(
m∑

i=1

Vi ≥
(

1

2
+ δ

)
m

)
≤ e−cr .

The proof of Lemma 3.10 is involved and requires a somewhat complicated coupling to a different process; we
postpone it to the next subsection. Using this, however, the proof of Lemma 3.8 is almost immediate and we complete
that part of the argument now.

Proof of Lemma 3.8. Let X1,X2, . . . and Y1, Y2, . . . be two independent sequences of i.i.d. Geom( λ
1+λ

) variables
independent of the sequences {Ui}mi=1 defined above. It follows from Lemma 3.9 that am is stochastically dominated
by − r

2 + ∑m
i=1 XiUi , and similarly bm stochastically dominates r

2 − ∑m
i=1 YiVi . Now clearly, using Lemma 3.3 it

follows that for all δ, δ′ > 0 there exists c = (δ, δ′) > 0 such that

P

(( 1
2 +δ)m∑
i=1

Xi ≥ (
1 + δ′)1 + λ

λ

(
1

2
+ δ

)
m

)
≤ e−cr .

Choosing δ and δ′ sufficiently small so that (1 + δ′) 1+λ
λ

( 1
2 + δ)β < 1

2 (this is possible since β < λ
1+λ

and m = βr) it
follows using Lemma 3.10 that P(am < 0) ≥ 1 − e−cr . By symmetry an identical bound holds for P(0 < bm) and we
are done by taking a union bound. �

3.4. Coupling with an internal erosion process

It only remains to prove Lemma 3.10. As alluded to before to this end we shall use a coupling to a process called
internal erosion (see [18] for a nice exposition on the latter). Let X1,X2, . . . and Y1, Y2, . . . be two independent
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sequences of i.i.d. Geom( λ
1+λ

) variables. Let Si = ∑i
j=1 Xj and Ti = ∑i

j=1 Yj denote the sequence of partial sums.
Let τ1 (resp. τ2) denote the largest positive integer i such that Si (resp. Ti ) is less than r

2 . Now let {Zi}1≤i<τ1 (resp.
{Wi}1≤i<τ2 ) be a sequence of independent exponential random variables with means f (i) (resp. g(i)) where f (i) =
r
2 − Si (resp. g(i) = r

2 − Ti ). Consider the two following continuous time counting processes:

N(1)(t) = sup

{
n ≥ 0 :

n∑
i=1

Zi ≤ t

}
; N(2)(t) = sup

{
n ≥ 0 :

n∑
i=1

Wi ≤ t

}
.

Set also N(t) = N(1)(t) + N(2)(t). We shall crucially use the following connection of the above process with the trap
setting procedure described in the previous subsection.

Lemma 3.11. Consider the barrier processes {ai}, {bi} and the internal erosion process described above. There is
a coupling between the two processes satisfying the following: for all t ≥ 0 such that N(1)(t) < τ1 and N(2)(t) < τ2,

one has aN(t) = − r
2 + ∑N(1)(t)

i=1 Xi and bN(t) = r
2 − ∑N(2)(t)

i=1 Yi . Moreover, N1(t) is the number of times the barrier
a0 < a1 < · · · is hit among the first N(t) particles.

Proof. The proof is a consequence of the memoryless property of Exponential variables. Recall from the proof of
Lemma 3.9 that the consecutive non-zero increments of the process a0 ≤ a1 ≤ · · · , are distributed as X1,X2, . . . ,
truncated at certain values which are functions of both the barrier processes. However note that while neither barrier
process has reached zero, the issue of truncation does not arise. And hence we can couple the increments of the
{ai}i≥1 exactly to the process {Xi}i≥1 for the first τ1 increments. Similarly the decrements of the process {bi}i≥1 can
be coupled exactly to the process {Yi}i≥1 for the first τ2 decrements (see Figure 2 for an illustration).

Thus to finish the proof of the lemma, we have to argue that the probability of the j th particle hitting the barrier
aj−1 instead of bj−1 is the same as the process N1(t) increasing before N2(t) when N(t) = j − 1 for any j such
that both N1(t) < τ1 and N2(t) < τ2. Note that the probability of the (N(t) + 1)th particle hitting the barrier aN(t) as
opposed to bN(t) has probability

bN(t)

bN(t) − aN(t)

= g(N(2)(t))

f (N(1)(t)) + g(N(2)(t))
. (3.4)

Note that given the filtration up to time t , N1
t increases before N2(t) if and only if

N1(t)+1∑
i=1

Zi − t ≤
N1(t)+1∑

i=1

Wi − t.

Now given the filtration up to time t , using the memoryless property, it follows that

N1(t)+1∑
i=1

Zi − t is distributed as ZN1(t)+1,

and similarly
∑N2(t)+1

i=1 Wi − t is distributed as WN2(t)+1. Thus using the fact that

P(ZN1(t)+1 < ZN2(t)+1) = g(N(2)(t))

f (N(1)(t)) + g(N(2)(t))
,

the proof is complete using (3.4). �

Using Lemma 3.11 to prove Lemma 3.10, it suffices to prove the following lemma. Recall that m = βr is the total
number of particles.
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Lemma 3.12. Let β < λ
1+λ

and let δ > 0 be fixed (and sufficiently small as a function of λ
1+λ

− β). Let M1 =
( 1

2 − δ)βr , M2 = ( 1
2 + δ)βr . Let E denote the event that there exists t such that {N(1)(t) ≥ M2,N

(2)(t) ≤ M1} or
{N(2)(t) ≥ M2,N

(1)(t) ≤ M1}. Then there exists c > 0 such that P(E) ≤ e−cr .

Proof. First observe that, by Lemma 3.3, max(SM2, TM2) ≤ r
2 (since δ is sufficiently small) with exponentially small

failure probability and hence we have min(τ1, τ2) ≥ M2 with exponentially small failure probability. Thus we can
safely restrict our analysis to the latter event. Observe next that it suffices to prove that with exponentially (in r) small
failure probability, we have

M2∑
i=1

Zi >

M1∑
i=1

Wi;
M2∑
i=1

Wi >

M1∑
i=1

Zi. (3.5)

Conditional on the sequences Si and Ti , the concentration estimates in Lemma 3.3 imply that the terms A1 :=∑M1
i=1 Zi , A2 := ∑M1

i=1 Wi , A3 := ∑M2
i=1 Zi,A4 := ∑M2

i=1 Zi are all concentrated near their means p1, p2, p3, p4, with
exponentially small failure probability. The proof is then essentially completed by comparing the means. Note that the
means are themselves random (functions of Si and Ti ) and hence the last detail is to show that the means themselves
are concentrated.

Formally we first observe that p1 = M1
r
2 −∑M1

i=1 iXM1−i+1 and similar expressions holds for p2, p3 and p4. Note

that E(p1) = M1
r
2 − 1+λ

λ

M2
1

2 + O(M). There are several ways to prove concentration of p1 and below we sketch a
way to use Lemma 3.3 to achieve this. Note that the latter only allows for sums of geometric variables, whereas we
have a linear combination of them. Since we can afford to be rather crude with our estimates, we use the following
decomposition

p1 = M1
r

2
−

M1∑
i=1

i∑
j=1

Xj .

Thus by union bound, after applying Lemma 3.3 to each of the terms of form
∑i

j=1 Xj , it follows that: for all ε1 small
enough, there exists c depending on all the parameters except r , such that

P
(∣∣p1 −E(p1)

∣∣ ≥ ε1r
2) < e−cr .

Similar analysis allows us to conclude similar bounds as above for p2, p3, p4. By choice of M1 and M2, note that there
exists ε1 such that E(p3) − E(p1) ≥ 4ε1r

2 and similarly E(p4) − E(p2) ≥ 4ε1r
2. Thus we see that with probability

at least 1 − e−cr , the sequences Si , Ti are such that

p3 − p1 > 2ε1r
2 and p4 − p2 > 2ε1r

2.

Moreover, conditioned on the above events, for j = 1,2,3,4, Lemma 3.3 implies the following concentration esti-
mates:

P

(
|Aj − pj | ≥ ε1

2
r2

)
< e−cr . (3.6)

Thus combining the above inequalities and union bound the lemma follows. �

We are now ready to complete the proof of Lemma 3.10.

Proof of Lemma 3.10. We shall use the coupling described in Lemma 3.11. Let M1, M2 be as in Lemma 3.12.
Now by the coupling discussed above and Lemma 3.12, it follows that with exponential (in r) failure probability, M1
particles hit both barriers before M2 particles hit any barrier.

Since the total number of of particles is m ≤ M1 + M2 it follows that, with exponentially high probability neither∑m
i=1 Ui nor

∑m
i=1 Vi can exceed M2. Since β < λ

1+λ
, we can safely ignore the exponentially (in r) unlikely event

that M2 ≥ min(τ1, τ2) and hence assume that coupling in Lemma 3.11 does not fail. �
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Remark 3.13. It can be shown that Tn(μ,λ) will be of order n3, if all the particles (approximately μn) were initially
located at the same site and hence Theorem 1 relies heavily on the location of the particles in the initial configuration
being uniform. To see this, note that by the above discussion regarding topplings, when a linear in n, say αn, number
of particles start at the origin, then to stabilize, due to lack of space, at least αn

2 particles must move outside an interval
of size αn

2 centred at the origin. Since a random walk path takes time �(n2) on average to exit such an interval, the
observation follows.

4. Slow fixation for low sleep rate

In this section we prove Theorem 2. That is, we prove that for any μ > 0 and sufficiently small sleep rate λ, ARW(μ,λ)

on Cn takes at least exponentially many steps before reaching the absorbing state with failure probability exponentially
small in n.

4.1. The stabilization loop

We shall now describe the toppling scheme outlined in Section 1.2 in more detail. Let μ ∈ (0,1) be fixed and λ be
sufficiently small. By Lemma 2.1 it suffices to exhibit a sequence of legal topplings with exponentially many steps.
We shall show that our procedure satisfies this property with exponentially high probability if λ is sufficiently small.

While running this scheme, particles will switch between two different states, which we call states X and Y .
Particles in state X follow normal ARW dynamics among themselves as described in Section 2.1, and can wake up
sleeping Y -particles. Y -particles, on the other hand, do not move, and have no effect on the states of any other particles.
Thus a state of the system during this toppling scheme consists of all the particles, each in state X or state Y , and each
asleep or awake. When a site is toppled, only X-particles at that site follow the corresponding stack instructions from
I (see Section 2.1). So Y -particles only undergo the transition from sleepy to active when an active X-particle reaches
the same site.

As described in Section 1.2, our toppling procedure will run multiple rounds of what we call stabilization loop.
Formally, starting from a particle configuration η – that is, the values ηt (x) for x ∈ Cn – stabilizing the system in a
subset D of sites in Cn means choosing some particles to be in state X and the rest to be in state Y . Then running the
particle dynamics described above, only toppling sites inside D, until all X-particles are asleep in D or are outside D.
Now the obvious strong Markov property of the above dynamics makes the different stabilization rounds conditionally
independent which would be crucial in our calculations.

It will be convenient to identify Cn with the interval [−r, r] with −r and r identified, that is, assume n = 2r for
integer r . We shall denote the origin by 0 and the identified vertex r = −r will be denoted by r. The stabilization steps
we run will alternate between taking D = Cn \ {0, r}, D = Cn \ {0} and D = Cn \ {r}.
1. Stabilization Step A: Stabilize all the particles in Cn \ {0, r}. That is, treat particles in Cn \ {0, r} as X-particles,

stopped upon hitting {0, r}, and all other particles as Y -particles. So at the end of this procedure all active particles
will be at 0 or r.

2. Stabilization Step B: Reset the X and Y labels: the particles initially at 0 become X-particles, and all other
particles become Y -particles. Then stabilize all X-particles with particles stopped at r. With the identification of
Cn with [−r, r], this step is the same as stabilizing the ARW dynamics in the interior of [−r, r] where the initial
particle configuration is supported at the center of the interval, a special case of the more general process analyzed
later in Lemma 4.5 using results from [2].

3. Stabilization Step C: This is identical to the Stabilization Step B above with the roles of 0 and r interchanged.

The algorithm receives an initial particle configuration η on Cn drawn from P
μ as an input. Then we perform the

Stabilization Loop, which is Stabilization Step A, followed by Stabilization Step B and Stabilization Step C. We
repeat the Stabilization Loop until all of the particles are asleep.

We now state the main lemma about the Stabilization Loop and use it to prove Theorem 2.

Lemma 4.1. Fix μ ∈ (0,1), ε ∈ (0,2μ/5) and any particle configuration η with at least (μ − ε)n particles, and sup-
pose at least μn/2 particles are active in η. Let η̃ denote the configuration after we have performed the Stabilization
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Loop. Then for λ = λ(μ) > 0 sufficiently small, there exists c > 0 such that

P(̃η has less than μn/2 active particles) < e−cn.

Using this lemma we now prove Theorem 2.

Proof of Theorem 2. By the Abelian property it suffices to demonstrate that with high probability there is a toppling
algorithm that does not terminate before exponentially many steps are executed. By a Chernoff bound for any μ and ε

the probability that there are at least (μ − ε)n particles is exponentially close to one. In the initial stage at least μn/2
of the particles are awake. By Lemma 4.1, the number of consecutive rounds that the Stabilization Loop is performed
is at least e

c
2 r with probability at least 1 − e− c

2 r before all the particles are asleep. Each time the Stabilization Loop
is performed, there must be at least one jump or sleep instruction occurring in it. As n = 2r this completes the proof
of Theorem 2. �

To prove Lemma 4.1 we rely on two results that are proved by adapting the analysis in [2]. Our first goal is to show
that with exponentially high probability after performing Stabilization Step A there are at least μn/4 active particles.
By definition these active particles are all at 0 or r.

Lemma 4.2. Fix μ ∈ (0,1), ε ∈ (0,2μ/5) and any particle configuration η with at least (μ − ε)n particles of which
at least μn/2 are active.

Let η̃A denote the configuration after we have performed the Stabilization Step A. Then for λ = λ(μ) > 0 suffi-
ciently small, there exists c > 0 such that

P
(
η̃A has less than μn/4 active particles

)
< e−cn.

Thus after performing Stabilization Step A there are likely to be either at least μn/8 active particles at 0 or at
least μn/8 active particles at r. Suppose there at least μn/8 active particles at 0. Our next result says that with high
probability after running Stabilization Step B at least 90% of active particles that were at 0 are now active particles
at r. Also all Y particles are now active.

Lemma 4.3. Fix μ > 0 and any particle configuration η with at least A ≥ μn/8 active particles at 0.
Let η̃B denote the configuration after we have performed Stabilization Step B. Then for λ = λ(μ) > 0 sufficiently

small, there exists c > 0 such that

P
(
η̃B has all Y particles active and at least 0.9A active particles at r

)
> 1 − e−cn.

We postpone the proofs of Lemma 4.2 and Lemma 4.3 for now and complete the proof of Lemma 4.1.

Proof of Lemma 4.1. After performing Stabilization Step A, by Lemma 4.2 there are at least μn/4 active particles
at either 0 or r except exponentially small failure probability. On this high probability event, after performing Stabi-
lization Step B then except for exponentially small failure probability there are at least μn/8 active particles at r by
Lemma 4.3. (Note that this is true no matter how the active particles were split among 0 and r at the start of Stabiliza-
tion Step B). On the event that, the high probability event happens at both of these steps, when we start Stabilization
Step C there are at least μn/8 active particles at r. Thus we can apply Lemma 4.3, and it follows that, again except for
exponentially small failure probability, at the end of Stabilization Step C all Y particles are active and at least 90%
of the X particles are active. Since, by hypothesis, the total number of particles is at least (μ − ε)n and ε < 2μ/5,
easy algebra shows that on the event that none of the three steps resulted in the failure events of exponentially small
probability, the loop results in a particle configuration with at least μn/2 active particles. The lemma now follows
by taking a union bound over the three failure events. (Note that implicitly we are using the obvious strong Markov
property of the above dynamics.) �
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4.2. Proving Lemmas 4.2 and 4.3

Now we show how to derive Lemmas 4.2 and 4.3 from [2]. The following lemma will be the key in both arguments.

Lemma 4.4. Fix δ0 ∈ (0,1) and c0 > 0. Consider ARW with sleep rate λ on the interval [−r, r] starting from an
initial configuration η with at least δ0r active particles. Let S denote the number of sleepy particles in (−r, r) after
stabilizing. There exists C = C(δ0, c0) and λ0 = λ0(δ0, c0) > 0 such that for all λ < λ0

P(S ≥ c0r) ≤ e−Cr .

for all r sufficiently large.

Proof. This lemma comes from calculations contained in [2]. Recall the odometer function from (2.3) and let h(0)

denote the odometer at the origin at the end of the stabilization process and let E = {h(0) ≤ r6}. We break up {S ≥ c0r}
in two parts

{S ≥ c0r} ⊂ ({S ≥ c0r} ∩ E
) ∪ Ec.

First we use random walk estimates to prove P(Ec) ≤ e−Cr . This is the same as the argument presented in [2]
(Lemma 32) but we provide the short proof for completeness. To start, note that the probability that a lazy random
walk started arbitrarily inside [−r, r] does not hit {−r, r} in Kr2 steps is at most e−Kc′

, where c′ depends on the
laziness parameter. Now there are at most 2r particles, each of which moves along an independent, λ

1+λ
-lazy, random

walk trajectory. So the probability that any of these particles take more than 0.5r5 steps before hitting {−r, r} is
exponentially small. A union bound then implies that the sum of the number of steps taken by all the particles before
reaching {−r, r} is exponentially unlikely to be more than r6 and hence we get

P(E) = P
(
h(0) ≤ r6) ≥ 1 − e−Cr .

Fix c1 such that c0/4 > c1 > 0. Equation (6.21) in [2] shows for λ sufficiently small (and r sufficiently large)

E
((

eS1 + eS2
)
1E

) ≤ ec1r ,

where S1 and S2 denote the number of sleepy particles in (−r,0] and [0, r) respectively. Thus by Markov’s inequality,

P
({S ≥ c0r} ∩ E

) ≤ E((eS1 + eS2)1E )

e
c0
2 r

≤ 2ec1r

e
c0
2 r

≤ e−Cr

for some C > 0, since S > c0r implies either S1 or S2 is at least c0r
2 . �

Proof of Lemma 4.2. If there are at most μn/4 active particles after Stabilization Step A then at least μn/4 particles
must have fallen asleep in this step. Thus either

(1) there were initially at least μn/5 active particles on (0, r) in η and there were at least μn/20 sleepy particles on
(0, r) in η̃A or

(2) there were initially at least at least μn/5 active particles on (−r,0) in η and there were at least μn/20 sleepy
particles on (−r,0) in η̃A.

By Lemma 4.4 both of those events have exponentially small probability. Thus the lemma follows from an union
bound over the two cases. �

For the proof of Lemma 4.3 we shall use the following lemma which is immediate from Lemma 4.4 by taking c0

sufficiently small and we omit the proof.
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Lemma 4.5. For each δ0 > 0, the following holds for λ sufficiently small. Consider stabilizing any particle configu-
ration η supported on [−r, r], that is, particles hitting {−r, r} are ignored. Call the stabilized system η′. If η has A

many active particles with A ≥ δ0r then

P
(
the total number of particles supported on {−r, r} in η′ is at least 0.9A

) ≥ 1 − e−cr .

Proof of Lemma 4.3. For this lemma we have to show the two events have exponentially small failure probability:
(i) η̃B has at least 0.9A active particles at r, and (ii) all Y particles are active. The first part is immediate from
Lemma 4.5. For (ii), observe the following.

Each X-particle, whenever it moves, follows an independent random walk trajectory that is stopped at hitting
{−r, r} (the number of steps in this trajectory that is realized has a complicated dependent structure). By symmetry
each of these trajectories are equally likely to end at −r and r . Since A ≥ μn/8 and using a standard Chernoff bound,
it follows that with failure probability exponentially small in n, no more than 0.6A of these trajectories end at r (also
at −r). Since by the first part, we know that at least 0.9A of these particles follows their trajectories to hit {−r, r}, this
implies that except for exponentially small failure probability, both r and −r are hit by at least 0.3A many X-particles,
that is, r is hit from both positive and negative side. This implies that every Y particle is hit by an X particle, and
hence all Y particles are active in η̃B . �

We finish with a remark on lower bounding Tn(μ,λ).

Remark 4.6. An exponential upper bound for Tn(μ,λ) is relatively easy to establish. Note that starting from any
configuration, ignoring sleep instructions, one can get each particle to a different location, using only polynomial
in n many instructions with probability at least 1 − e−cn, since for a random walk on Cn, the hitting time for any
point is a sub-exponential variable at scale n2. Once the particles are all located at different sites, with probability at
least ( λ

1+λ
)n, all of their next instructions are sleep instructions which causes the system to stabilize. Thus starting

from any configuration, the probability of stabilizing in polynomially many steps is at least ( λ
1+λ

)n, which implies an
exponential upper bound on the fixation time, by running independent trials of the above argument until one trial does
succeed to stabilize the system.
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