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Abstract. We investigate the influence of an infinite dimensional Gaussian noise on the bubbling phenomenon for the stochastic
harmonic map flow u(t, ·) : D2 → S2, from the two-dimensional unit disc onto the sphere. The diffusion term is assumed to have
range one pointwisely in the tangent space Tu(t,x)S

2, so that the noise preserves the 1-corotational symmetry of solutions. Under
the assumption that its space-correlation is of trace class (in some appropriate Hilbert space), we prove that the noise generates
blow-up with positive probability. This scenario happens no matter how we choose the initial data, provided it fulfills the latter
symmetry assumption.

Résumé. Nous analysons ici l’influence d’un bruit gaussien infini-dimensionnel sur le phénomène de bubbling relatif au flot
stochastique des applications harmoniques u(t, ·) :D2 → S2, du disque unité vers la sphère. On suppose que le terme de diffusion
est ponctuellement de rang un dans le plan tangent Tu(t,x)S

2, de sorte que le bruit préserve la symétrie 1-corotationnelle des
solutions. Sous l’hypothèse que sa corrélation spatiale est de trace finie (dans un espace de Hilbert ah hoc), nous montrons que le
bruit engendre une singularité avec probabilité non nulle. Ce scénario se produit indépendamment du choix de la condition initiale,
pourvu qu’elle soit 1-corotationnelle.
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1. Introduction and main results

1.1. Motivations

The effect of a noise term on the appearance of a finite-time singularity has already been investigated for several
stochastic PDE’s, including the Schrödinger equation [15,17] where it is shown to generate blow-up with positive
probability, for any initial data. Some results in the same spirit have been obtained for the stochastic heat equation
[19,35,36], and also for the so-called Dyadic Model [45], where the author shows in addition the ineluctability of
the blow-up. Our work comes from an attempt to understand the effect of noise on the bubbling phenomenon for
the two-dimensional stochastic Landau–Lifshitz–Gilbert equation (SLLG) [26,32], for which the stochastic harmonic
map flow turns out to be a simplified version.

The magnetization of a ferromagnetic material M ⊂ R3 can be represented as a time-dependent continuum u :
[0, T ] × M → S2, whose stationary solutions should solve the minimization problem for the Brown energy E ≡
(1/2)

∫
M

|∇u|2 dM , under the pointwise constraint∣∣u(t, x)∣∣ = 1, a.e. (1.1)
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The latter energy corresponds to closest neighbour interaction, and here we do not take into account other contributions
such as anisotropy, stray field or external field (for details see [8]). Ignoring for now the noise and dropping the so-
called gyromagnetic term (which has no effect on the energy), we obtain the harmonic map flow from M to the unit
sphere S2, namely{

∂tu=�u+ u|∇u|2 on (0, T ] ×M,

u= ϕ on [0, T ] × ∂M ∪ {0} ×M,
(HMF)

where � denotes the Laplacian with respect to each of the components of u ≡ (u1, u2, u3), and |∇u|2 :=∑
i≤3,j≤2(∂ju

i)2. Note that (HMF) is in fact the gradient flow associated to E, under the constraint (1.1). This model

has been independently studied e.g. in [20–22,29], where target manifolds more general than S2 are considered. It
provides a tool to construct a harmonic map in the homotopy class of ϕ, namely a regular solution to the minimization
problem associated to E.

Existence of finite-time blowing-up solutions has been shown in dimensions strictly greater than 2 in [13], and then
later in 2D in [12]. The two-dimensional case is more challenging in the sense that the H 1 a priori estimate barely
fails to give well-posedness. Another specific feature of the 2D case is that in the absence of noise, there can be at
most one energy-decreasing solution in the latter class [25]. Note however that the energy cannot be decreasing with
a stochastic term as in (SHMF) below (as can be shown by applying Itô Formula to E).

Singularities of symmetric solutions in 2D
The case where M is a surface is energy-critical, meaning that blow-up by concentration of energy can occur. If the
initial energy is less than some quantity

E(ϕ) < ε1, (1.2)

depending on M only, then the solution u(t, ·) of (HMF) is global and uniformly converges towards an harmonic map
u∞ as t →∞ (see [22,31,46]).

Oppositely, the local solution u of (HMF) may not be defined globally (in the classical sense) if (1.2) is not fulfilled.
Finite-time blowing-up solutions were provided in [12], for the case u : [0, T ] × D2 ≡ {x ∈ R2 : |x| < 1} → S2.
Considering 1-corotational solutions1 of the form u= uh with

uh(t, x) :=
(

x

|x| sinh
(
t, |x|); cosh

(
t, |x|)). (1.3)

The system (HMF) is reduced to a parabolic equation on the scalar map h(t, r):⎧⎪⎨⎪⎩
∂th= ∂rrh+ ∂rh

r
− sin 2h

2r2 for (t, r) ∈ [0, T ] × (0,1),

h(t,0)= 0, h(t,1)= γ for t ∈ [0, T ],
h(0, r)= h0(r) for r ∈ (0,1),

(1.4)

and a comparison principle for (1.4) holds. In [12], the authors exhibit a class of self-similar, blowing-up subsolutions
for the parabolic problem (1.4), implying by comparison:

∂rh(t,0)−→
t→t∗

∞, (1.5)

for some t∗ > 0 depending on the initial data. As described by M. Struwe [46], this implies “forward bubbling” for uh,
namely: as t ↗ t∗, the energy concentrates at the center of D2. The solution can be extended in distributional sense
after t∗ by simply taking the weak limit in H 1.

1In the existing literature, these maps are often called “equivariant”, or 1-equivariant, although the latter can have by definition an additional degree

of freedom b, so that u(r cos θ, r cos θ)=Rθ
t(a(r), b(r), c(r)) with a2 + b2 + c2 ≡ 1, Rθ corresponding to the rotation of angle θ and axis k. The

form given above corresponds to the special case where a(r)= sinh(r), b(r)= 0, c(r)= cosh(r) and should be rather called “1-corotational” (see
for instance [47]).
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In (1.4), the number γ is the angle between ϕ|∂D2 and the vertical axis, so that setting γ := 0 corresponds to

ϕ|∂D2 = k := (0,0,1). (1.6)

We will work in this homogeneous setting, although in [12] the authors assume γ > π (blow-up for γ = 0 is actually
shown in [6]).

Stability of blow-up under random perturbations
Concerning the deterministic equation (HMF), stability results (under perturbation of the initial data) have been ob-
tained in [34,42,47]. In [34], the authors show the existence, but instability, of initial data leading to blow-up for the
Landau–Lifshitz–Gilbert equation (more precisely for ∂tu= u×�u). It appears that instability is due to the necessary
extra degree of freedom compared to the “overdamped model” (HMF), for which a reduction to a scalar problem (1.4)
is possible. In this context, P. Raphaël and R. Schweyer (in case where D2 is replaced by R2) have shown that the
pre-blow-up set is stable under small perturbations in the direction preserving 1-corotational symmetry.

Whether (1.5) could be observed or not in presence of noise is the main topic treated in the present paper. Note that
it is different – though related – from the stability results obtained above, for the noise modifies the dynamics, and not
the initial data. Although being a seemingly academic question, it echoes practical issues related to magnetic storage
devices (see e.g. [7]), for which blow-up could be thought as spontaneous reversal of magnetization. The stochastic
term in (SLLG) corresponds to thermal fluctuations, see [5,9,37], which in theory are uncorrelated in time and space.
A Gaussian white noise acting orthogonally to u(t, x) (hence preserving (1.1)) has to be added in the equation, giving
e.g. : {

du= (�u+ u|∇u|2)dt + u× ◦dW, on (0, T ] ×D2,

u= k, on 	 := {0} ×D2 ∪ [0, T ] × ∂D2,
(1.7)

where u× denotes vector product, and t ∈ R+ → W(t) ≡ (w1(t),w2(t),w3(t)) ∈ L2(D2;R3) is a Wiener process
(with a given covariance in space), whereas “◦” means that the Stratonovitch rule is used.

Recent results for (SLLG) – the equation obtained when the term u × �u is added to the drift of (1.7) – in
dimensions less than or equal to 3, have been obtained in [2–4,10,27]. In these works a notion of “weak martingale
solution” corresponding to that of [14] is used. In particular, solutions belong pathwisely to the space C([0, T ];L2)∩
L∞([0, T ];H 1). For a direct treatment of (1.7) on the two-dimensional torus, where strong solutions are obtained, we
refer the reader to [30]. Strictly speaking, here we will focus on a model different from (1.7), which is more adapted
to our purpose, see (SHMF) below.

Another version of the stochastic harmonic map flow
It is worth noting that, as observed in a note of G. C. Price and D. Williams dating from the 80s [41], if
B ≡ (B1,B2,B3) is a Brownian motion in R3, then the three-dimensional SDE

dX =X× ◦dB, t ∈ (0, T ], X0 given in S2, (1.8)

gives a description of the Brownian motion on the manifold S2 ⊂ R3, in the sense that its infinitesimal generator
agrees with the Laplace–Beltrami operator. Therefore, at an intuitive level, the term “u × ◦dW ” in (1.7) should be
understood as a white noise with values in the “tangent space of u in L2(D2;S2)”, a difficulty with that terminology
being that the latter space admits no infinite-dimensional Riemannian manifold structure (see the related discussion
in [22, Chap. II§6]).

As for the manifold S2, it is seen from the formula given in [23, Chapter IX, Theorem 1A] that if we define the
standard mobile frame associated to the spherical coordinates of X ≡ (cos θ sinφ, sin θ sinφ, cosφ), namely:[

�θ,φ := (cos θ cosφ, sin θ cosφ,− sinφ),

�θ,φ = (− sin θ, cos θ,0),
(1.9)
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then the Brownian motion on S2 can be locally described by the SDE

dX =�θ,φ ◦ dB1 + �θ,φ

sinφ
◦ dB2, t ∈ (0, T ],X0 ∈ S2 \ {k}. (1.10)

If instead of (1.7) we consider an SDE describing the dynamics of a system of N spins (replace the drift by minus
the gradient of a suitable exchange energy), driven by N independent Brownian motions B1, . . . ,BN in R3, it is
straightforward to see that the law of the solution u= (u1, . . . , uN) : [0, T ]→R3N to (1.7) would remain unchanged
if we replaced the terms ui ◦ ×dBi by that given in (1.10) (see also [38, Prop. 3.2] for related computations). By
analogy with the finite-dimensional case, given g,h : [0, T ] ×D2 →R and letting (with a slight abuse of notation)

u= (cosg sinh, sing sinh, cosh), �u :=�g,h, �u :=�g,h, (1.11)

then the equation{
du= (�u+ u|∇u|2)dt + �u

sinh ◦ dw1 +�u ◦ dw2,

u= ϕ on 	,
(SHMF)

where as before w1 and w2 are Wiener processes with values in L2(D2;R), appears to be “more satisfactory” in the
sense that redundancies in the definition of the noise term are avoided (there are only two components in the noise
term, not three). Note that in the present article, it is really (SHMF) that we are dealing with – actually a degenerate
version thereof – and not (1.7), although we guess that it should be possible to prove their equivalence in law.

The case when w1 and w2 are space-time white noises will not be treated in this article. On the one hand it is
well-known that parabolic equations of the form (SHMF) can be ill-posed in dimension two, see e.g. [28]. On the
other hand, we need the noise to be regular enough to guarantee that the notion of blow-up makes sense. We will
build solutions that are strong in the probabilistic sense (see Definition 1.1 below), and sufficiently regular in space,
so that the singular time τ corresponds to the first moment when the solution leaves C1(D2). Further assumptions on
the spatial correlation of W will be done below.

We also point out that the existence of a finite-time blowing-up solution is mixed with the question of the uniqueness
of weak solutions (see [6]), but this problem will not be adressed here.

1.2. Main results

As immediately seen in (SHMF), there is no hope to preserve 1-corotational symmetry along the flow if w1 �= 0,
so that we simply drop this term and set w := w2. We also assume that w(t, x) depends only on t and r ≡ |x|, see
Figure 1. Fixing T > 0, this leads to the following 1-corotational preserving version of (SHMF):⎧⎪⎨⎪⎩

du= (�u+ u|∇u|2)dt +�u ◦ dwφ, t ∈ (0, T ] ×D2,

u|{t}×∂D2 = k, for every t ∈ [0, T ],
u(0)= uh0 ,

(SHMF′)

for a radially symmetric Wiener process wφ :�×[0, T ]→ L2(D2;R). More precisely, for (t, x) ∈ [0, T ]×D2 we let

wφ(t, x) :=
∑
k,j≥1

Bk(t)φk,j ej
(|x|), (1.12)

for some coefficients φk,j ∈R, k, j ≥ 1, where (ek)k≥1 denotes an orthonormal basis of the separable Hilbert space

H :=
{
f : [0,1]→R : |f |2H :=

∫ 1

0
f (r)2r dr <∞

}
, (1.13)

while the Bk’s are real-valued, independent and identically distributed Brownian motions on a given filtered probabil-
ity space (�,F ,P, (Ft )). Concerning the coefficients (φk,j ), we shall at least assume in the sequel that the induced
operator φ :L2(D2;R)→ L2(D2;R), h≡∑

k h
kek(| · |) →∑

j,k h
kφk,j ej (| · |) is Hilbert–Schmidt.
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Fig. 1. “1-corotational noise”, represented in red.

To state our main results, we need to introduce a few notations. Recall that the Dirichlet Laplacian �D is the
self-adjoint operator defined by the operation ∂11 + ∂22 on the domain

D(�D) :=W 2,2(D2;R)∩W
1,2
0

(
D2;R)

,

where W 2,2, W 1,2
0 are the usual Sobolev spaces, the latter being composed only of elements that vanish on ∂D2, in

the sense of traces. We denote by ((−�D)α,D((−�D)α)),α ∈R its associated fractional powers defined through the
Borel functional calculus, and we let

Hα :=D
(
(−�D)α/2)×D

(
(−�D)α/2)×Wα,2(D2;R)

.

Given t ≥ 0, we denote by u(t) the trace of u onto the time slice {t} ×D2. For convenience in the statements below
we define an extended state space H̄α := Hα ∪ {�}, where � is an isolated point. Finally, for a stopping time τ , we
denote by

�0, τ � := {
(ω, t) ∈�× [0, T ] : 0 ≤ t < τ(ω)

}
.

We will agree on the following notion of solution.

Definition 1.1. We will say that (u, τ ) is a 1-corotational, analytically weak solution of (SHMF′) if τ > 0 is a stopping
time and if the following properties hold.

(i) The process u :�×[0, T ]→ H̄1 is progressively measurable and has continuous trajectories. The singular time
τ is caracterized by the property:

u(ω, t)=� if and only if (ω, t) /∈ �0, τ �.

Moreover, the solution u fulfills the constraint∣∣u(ω, t, x)
∣∣ = 1, for P⊗ dt ⊗ dx-a.e. (ω, t;x) in �0, τ � ×D2. (1.14)

(ii) There exists a continuous, semi-martingale h≡X+ Y ∈ L2(�;C(0, T ;H)) with respect to (Ft ) where

• the process X has bounded variation in V ′ where V ′ is the topological dual of the Hilbert space

V :=
{
ϕ ∈H : |ϕ|2V :=

∫ 1

0

(
∂rϕ

2 + ϕ2

r2

)
r dr <∞

}
; (1.15)
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• the quadratic variation process of Y has finite trace in H .
• for dP⊗ dt ⊗ dx-a.e. (ω, t;x) in �0, τ � ×D2, there holds

u(t, x)= uh(t,|x|) :=
(

x

|x| sinh
(
t, |x|); cosh

(
t, |x|)). (1.16)

(iii) For every compactly supported ψ in C1(D2;R3), and almost every (ω, t) ∈ �0, τ �, there holds∫
D2

(
u(t, x)− u0(x)

) ·ψ(x)dx

=−
∫∫

[0,t]×D2
∇u(s, x) · ∇ψ(x)dx ds

+
∫∫

[0,t]×D2
u(s, x) ·ψ(x)

∣∣∇u(s, x)
∣∣2 dx ds

− 1

2

∑
k≥1

∫∫
[0,t]×D2

(
φek

(|x|))2
u(s, x) ·ψ(x)dx ds

+
∑
k≥1

∫∫
[0,t]×D2

ψ(x) ·�h(s,x)φek
(|x|)dx dBk(s), (1.17)

where �h is the tangent vector defined in (1.9).
(iv) For every t ≥ 0, a.s.:

u|{t}×∂D2 = k,

in the sense of traces.

With this definition at hand, we have the following.

Theorem 1 (Existence, uniqueness and regularity of the solutions). Let T > 0, fix 4 > β > 4/3, and consider a
radially symmetric, L2(D2)-valued Wiener process wφ as in (1.12). Assume in addition that φ : L2(D2) → Hβ ′

is
well-defined and Hilbert–Schmidt, for some β ′ > β .

For every 1-corotational u0 ≡ uh0 in Hβ (see (1.16)), there exist a stopping time τβ(h0) > 0 and a 1-corotational
analytically weak solution (u, τβ) of (SHMF′). For this solution, we have the properties:

(a) for P-a.e. ω ∈�, the path u(ω) belongs to the space C([0, τβ);Hβ);
(b) if ω ∈� is such that τ(ω) < T , then

lim sup
t↗τβ (ω)

∣∣u(ω, t)
∣∣
Hβ =∞.

Moreover, the solution (u, τβ) is unique in the class of 1-corotational, analytically weak solutions fulfilling (a)–(b).
Furthermore, the regularity propagates in the sense that

for every β1, β2 ∈ (2,4), τβ1 = τβ2 .

For the next theorem, we will assume stronger assumptions on the operator φ (and the initial data). This is due to the
fact that, contrary to the previous statement, we want to ensure that the solution lives in C1(D2), from the very first
time. Note that, according to Remark 1.3, a sufficient condition for this is that u have continuous trajectories in Hβ

for some β > 2.
In addition, it is crucial to add the non-degeneracy assumption (1.18) on φ, so that the associated Ornstein–

Uhlenbeck process has dense range (which will ensure irreducibility).
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Theorem 2 (Blow-up). Let β ∈ (2,4), and let T , β ′, φ, wφ be as in Theorem 1. Assume moreover that:

kerφ∗ = {0}, (1.18)

and consider a 1-corotational u0 ≡ uh0 in the space Hβ .
Then, denoting by (u, τβ) the solution built in Theorem 1 above (together with its maximal time of existence), for

every t∗ > 0, we have

P
(
τβ ≤ t∗

)
> 0.

Additionally, blow-up happens in the following sense: for a.e. ω ∈�,

τβ(ω) < T =⇒ lim sup
t↗τβ (ω)

∣∣u(ω, t)
∣∣
Hβ∗ =∞ for every β∗ > 2. (1.19)

Remark 1.1. It is natural to expect that the solution constructed above actually lives in H2, up to the singular time.
It can be shown, according to a bootstrap argument (see [30] for details in a slightly different setting), that provided
supt∈[0,σ ) |�u(t)|L2 <∞ for some stopping time σ ∈ (0, T ], then u|[0,σ ] has arbitrary regularity in space (with respect
to what is allowed by the data u0, φ). Consequently, in (1.19), blow-up happens also for β∗ = 2.

Outline of the paper
The proof of Theorem 1 will be adressed in Section 2. Denoting the parabolic boundary by 	 := {0}×[0,1]∪[0, T ]×
{0,1}, then (SHMF′) writes as an equation on the colatitude h of u:

dh=
(
∂rrh+ ∂rh

r
− h

r2
+ 2h− sin 2h

2r2

)
dt + dwφ, on (0, T ] × (0,1), (1.20)

where (h− h0)|	 = 0. The fact that (1.20) leads to (SHMF′), as well as the converse (namely that any 1-corotational
map u ≡ uh such that (SHMF′) holds is such that h verifies (1.20)), will be justified by a generalized Itô formula, a
slightly different version of which can be found e.g. in [18].

Due to compensations, when h is solution, we may have
∫ 1

0 (
∂rh
r

− sin 2h
2r2 )2r dr < ∞ even if both terms of the

integrand are not summable separately. This integral behaves as
∫ 1

0 (
∂rh
r

− h

r2 )
2r dr , which motivates the introduction

of the “linearized Hamiltonian”

A := ∂rr +
(

1

r
∂r − 1

r2

)
,

whose eigenpairs are related to the Bessel functions of the first kind.
The noise in (1.20) is additive, and thus we have h= v + z, where v solves the perturbed equation:

∂tv =Av + 2z+ 2v − sin 2(v + z)

2r2
, on (0, T ] × (0,1), (1.21)

with (v − h0)|	 = 0, and where z = z(t, r) denotes a generic trajectory Z(ω) in the support of the solution of the
stochastic linear equation

dZ =AZ dt + dwφ, Z|	 = 0.

Theorem 1 will be proved using Picard’s contraction mapping principle, at the level of the equation (1.21) on a suitable
subspace of C([0, T ];H) for T small enough, using that the support of Z as above is known.

Theorem 2 is proved in Section 3. Denoting by h = h(h0,Z) the local solution v + Z of (1.20), it is obtained a
consequence of the existence of a “nice” pre-blow-up set H, namely a set of initial data h0 such that: (a) states in
H are reachable by the Markov Chain h(h0,Z, t) (in a sense precised below); (b) the solutions starting from h0 ∈ H

blow up in finite time, with positive probability. Part of the property (a) will be formulated in Section 2, as it appears
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as a natural consequence of the fixed point argument. Section 3 is mainly devoted to the proof of property (b) (whose
precise statement is Proposition 3.1). Proposition 3.1 is the core of the argument. We point out that the topological
argument used in Section 3.3 to obtain existence of blowing-up solutions appears to be new in this context, and could
perhaps be used for other SPDEs. Technical facts related to local solvability and the comparison principle for (1.21)
are treated in the appendices.

1.3. General notation and framework

We denote by I the compact interval [0,1]. For 1 ≤ p < ∞, the notation L
p

r dr will be used to designate the Banach
space of real valued measurable maps r → f (r), r ∈ I , such that |f |Lp

r dr
:= (

∫
I
|f (r)|pr dr)1/p < ∞. The special

case H = L2
r dr , | · |H , defines a Hilbert space for the inner product f,g ∈H −→ 〈f,g〉 = ∫

I
f (r)g(r)r dr .

We need to introduce some functional spaces. Let A :D(A)⊂H →H be the unbounded linear operator given by⎡⎢⎢⎢⎣
D(A)=

{
f ∈H :

∫
I

[
(∂rrf )2 +

(
∂rf

r
− f

r2

)2]
r dr <∞, f ∈C(I) and f (0)= f (1)= 0

}
, (1.22)

Ah= ∂rrh+
(

1

r
∂r − 1

r2

)
h, h ∈D(A), (1.23)

which has eigenpairs {(ek, λk), k ≥ 1} with (ek) forming an orthonormal basis of H , while the values λk are negative
and asymptotically quadratic in k (see Section 2). For f,g ∈D(A), we have the integration by parts formula:∫

I

−Afgr dr =
∫
I

(
∂rf · ∂rg + f

r

g

r

)
r dr ≡

∫
I

∇rf · ∇rgr dr, (1.24)

where we introduce the nabla operator ∇r : V →H ×H , defined for f ∈ V (see (1.15)) as:

∇rh(r) :=
(
∂rh(r),

h(r)

r

)
, r ∈ I \ {0}. (1.25)

As an immediate consequence, A is symmetric. Furthermore, it is self-adjoint (see Section 2), so that from [43,
Theorem VIII.6], we can define, when β ≥ 0, the fractional power (−A)β/2. Explicitly, we have the formula

(−A)β/2h :=
∑
k∈N

(−λk)
β/2〈h, ek〉ek, (1.26)

for every h in Vβ where

Vβ :=D
(
(−A)β/2)≡ {

h ∈H, |h|2β :=
∑
k∈N

(−λk)
β〈h, ek〉2 <∞

}
. (1.27)

At this point, it is worth noting, from (1.24), that

〈−Af,f 〉 = ∣∣(−A)1/2f
∣∣2
H

= |∇rf |2H ,

and hence the topological spaces V and V1 ≡D((−A)1/2) coincide.
For β ≥ 0, the norm in C([0, T ];Vβ) (i.e. the space of continuous functions with values in Vβ ), will be denoted by

the double bars ‖ · ‖T ,β , namely if z ∈C([0, T ];Vβ) we write

‖z‖T ,β := sup
0≤t≤T

∣∣z(t)∣∣
β
. (1.28)

In the whole paper, we consider a filtered probability space (�,F,P, (Ft )t≥0) satisfying the usual conditions. Note
that the couples (Vβ, | · |β) form separable Hilbert spaces, and thus by the classical theory of SPDE’s [14], the adapted
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H -valued Wiener process

wφ(t)=
∑
k∈N

Bk(t)φek, (1.29)

where (Bk)k∈N stands for a sequence of real-valued independent brownian motions in time, (ek)k∈N is an ONB of H ,
and φ :H → Vβ is a Hilbert–Schmidt operator, has continuous paths in the space Vβ , with full probability.

The space of Hilbert–Schmidt operators from H into some Hilbert space K will be denoted by L2(H ;K).
Given a subset S of a topological space X, we recall that the interior of S, which we denote by IntS, consists of all

points of S that do not belong to the boundary of S.

Remark 1.2. For f ∈ H , if x ≡ r(cos θ, sin θ) ∈ D2, define F : D2 → R2 by F(x) = (f (r) cos θ, f (r) sin θ). We
have |f |H = (2π)1/2|F |L2(D2;R2) and if f ∈ V2, then F ∈D(�)≡W 2,2 ∩W

1,2
0 with

�F = (Af cos θ,Af sin θ). (1.30)

Plugging the ansatz above in ∇2F , there holds in addition:∫
D2

∣∣∇2F
∣∣2 dx = 2π

∫ 1

0
(∂rrf )2r dr + 4π

∫ 1

0

(
∂rf

r
− f

r2

)2

r dr. (1.31)

By a classical inequality, (1.31) justifies that the norms |∂rrf |H + |( ∂r
r

− 1
r2 )f |H and |f |2 ≡ |Af |H , are in fact

equivalent on V2.
Furthermore, it follows from complex interpolation theory (see [33, Chapter 4]) that F ∈ D((−�)β/2)2 if and

only if f ∈ Vβ . Letting f = sinh for some h ∈ V2, then direct computations show that, provided h is bounded then
|∇rf |H <∞⇔ |∇rh|H <∞, hence |(−A)1/2f |H <∞ ⇔ |(−A)1/2h|H <∞. Therefore, by giving the characteri-
zation of Sobolev spaces in terms of complex interpolation, it holds that for β > 1:

uh ∈ Hβ if and only if h ∈ Vβ, (1.32)

(recall (1.16)).

Remark 1.3. For p ∈ [1,∞), β ∈R, f ∈ Vβ , if β < 1 and if

1 ≤ p ≤ p∗ = 2

1 − β
,

the classical Sobolev Embedding Theorem in dimension 2 (see [1]) implies that |F |Lp(D2) � |(−�)β/2F |L2(D2), where
we use the notations of Remark 1.2. Since |F |Lp(D2) = (2π)1/p|f |Lp

r dr
, and |(−�)β/2F |L2(D2) = |f |β , it is straight-

forward that we have the continuous embedding: Vβ ↪→ L
p

r dr . Similarly if β > 1, then Vβ ↪→ C(I ;R). In addition,
by the formula

|∇F |2 = (∂rf )2 + f 2

r2
, (1.33)

then for any β > 2, there exists cβ > 0 such that for all f ∈ Vβ , |∂rf |L∞ ≤ cβ |f |β .

2. Proof of Theorem 1

2.1. Treatment of the associated scalar problem, interpolation lemma

Given β ≥ 0 and h0 ∈ Vβ equation (1.20) can be written as the infinite-dimensional equation in H :{
dh= (Ah+ b(r,h(t, r)))dt + dwφ, for t ∈R+,
h(0)= h0,

(2.1)
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where “d” denotes Itô differential, whereas for f ∈H , we denote by b(r, f (r)) the nonlinearity:

b
(
r, f (r)

) = 2f (r)− sin 2f (r)

2r2
, r ∈ I \ {0}, (2.2)

which will be sometimes abbreviated as bf . Note that bf is not always well-defined as an element of H . However,
assuming the existence of β > 4/3, such that f ∈ Vβ , then |bf |H <∞ (see (2.9) below) hence bf is well defined.

It is well known that the spectrum of A (identified with its standard complexification) consists exclusively of
eigenvalues whose associated vectors are proportionnal to J1(xk·), k ≥ 1, where J1 is the order one Bessel function of
the first kind, smooth solution to the ODE{

y2 d2J1
dy2 + y dJ1

dy + (y2 − 1)J1 = 0, for y > 0,

J1(0)= 0,

and where (xk), k ≥ 1 is a countable part of R+ \ 0, forming the zeros of J1. It is a well known fact that, if we arrange
them in ascending order (we will do this assumption in the sequel), then the xk’s are asymptotically linear in k ∈ N∗.
For k ∈N∗, the mappings

ek :=
(
r → 1

|J1(xk·)|H J1(xkr), r ∈ I

)
, (2.3)

define a family (ek)k∈N∗ of eigenvectors of A, with associated eigenvalues λk := −(xk)
2, k ∈ N∗, which forms an

orthonormal basis of H .
In particular, the spectrum of A lies in a sector containing the negative real axis, so that it generates an analytic

semigroup S. Furthermore, the following inequality holds, for any β ≥ 0:∣∣(−A)αS(t)
∣∣
L(Vβ)

≤ ct−α, for all t > 0 and every α ≥ 0, (2.4)

for a constant depending on α (we refer the reader, e.g. to [39, §2.6]).
The proof of local solvability relies mainly on (2.4), together with suitable estimates of bh in the scale (Vβ) (see

Corollary 2.1 below). The following interpolation lemma, which is needed for obtaining such estimates, is based on
expansion of functions in terms of their so-called Fourier–Bessel series (see [48, Chapter 18]), that is according to the
basis defined in (2.3).

Lemma 2.1. Let p ∈ [1,∞], ν ∈R.

(i) Take ν ≤ 2/p + 1 and define the operator T : D(T ) ⊂ Vβ → L
p

r dr by Tf = f
rν

for f ∈ D(T ) := {ϕ ∈
Vβ, | ϕrν |Lp

r dr
<∞}.

Provided β > (1 + ν − 2/p)∨ 1/2, then T has a bounded extension{
T : Vβ −→ L

p

r dr if p <∞ and ν < 2/p+ 1;
T : Vβ −→ L∞ if p =∞ and ν ≤ 1.

(ii) Similarly, the linear map ∂r : D(∂r) := {ϕ ∈ Vβ, |∂rϕ|Lp
r dr

< ∞} −→ L
p

r dr , has a bounded extension ∂r : Vβ →
L
p

r dr , provided β > (2 − 2/p)∨ 3/2.

Proof of Lemma 2.1. Case p =∞ According to (1.33) the following bound holds, provided β > 2:

sup
r∈I

{(
∂rf (r)

)2 + f (r)2

r2

}
≤ cβ |f |2β, for all f ∈ Vβ,

for some cβ > 0. This yields both (i) (when ν ≤ 1) and (ii).
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Proof of (i). Let p ∈ [1,∞). Using the orthonormal basis defined in (2.3), and for k ≥ 1 setting ck := |J1(xk·)|−1
H ,

one has by (2.3):∣∣∣∣ 1

rν
ek

∣∣∣∣2
L
p
r dr

= (ck)
2
∣∣∣∣ 1

rν
J1(xk·)

∣∣∣∣2
L
p
r dr

= (ck)
2(xk)

2ν−4/p
(∫ xk

0

|J1(y)|p
ypν−1

dy

)2/p

,

where we have done the change of variable y = xkr . Using classical properties of Bessel functions, see [48, Chapter 7],
there exist constants c, c′ > 0 such that

J1(y)≤ cy, ∀y ∈ I and
∣∣J1(y)

∣∣ ≤ c′y−1/2, y ∈ [1,∞). (2.5)

By (2.5), we obtain that for ν ∈R, provided every term below is finite:∫ xk

0

|J1(y)|p
ypν

y dy ≤ c′′
(∫ 1

0
yp−pν+1 dy +

∫ xk

1
y−p/2−pν+1 dy

)
. (2.6)

Since xk is asymptotically linear in k ≥ 1 ([48, p. 503–510]), the right hand side of (2.6) remains bounded indepen-
dently of k if and only if 2/p− 1/2 < ν < 2/p+ 1. Noticing furthermore that (ck)2 ≡ |J1(xk·)|−2

H =O(k) (this is left
to the reader), we have∣∣∣∣ 1

rν
ek

∣∣∣∣2
L
p
r dr

=
{
O(k1+2ν−4/p) if 2

p
− 1

2 < ν < 2
p
+ 1,

O(1) if ν ≤ 2
p
− 1

2 .

Using now triangle and Cauchy–Schwarz inequalities on the Fourier–Bessel series of f ∈ Vβ , we have formally

|Tf |Lp
r dr

≤
∑
k≥1

∣∣〈f, ek〉∣∣|T ek|Lp
r dr

≤ |f |β
(∑

k≥1

(xk)
−2β |T ek|2Lp

r dr

)1/2

. (2.7)

Taking β > 1 + ν − 2/p gives a convergent series in (2.7) in the case 2/p− 1/2 < ν < 2/p + 1, whereas β > 1/2 is
sufficient when ν ≤ 2/p− 1/2. In both cases, we obtain a continuous extension T : Vβ → L

p

r dr .
Proof of (ii). The proof of the second assertion is similar, using that |∂rek|Lp

r dr
= ckxk|J ′

1(xk·)|Lp
r dr

. The well-known

identity J ′
1(y) = J0(y)− J1(y)/y, y ≥ 0 (see [48, p. 17–19]), shows in particular that J ′

1(xk·) defines an element of
L
p

r dr near the origin. For some constant c > 0 we obtain

|∂rek|2Lp
r dr

≤ ck3−4/p
(∣∣J ′

1

∣∣p
L
p
r dr ([0,1])

+
∫ xk

1

∣∣∣∣J0(y)− J1(y)

y

∣∣∣∣py dy

)2/p

. (2.8)

Now, as for J1 there exists c′ > 0, such that: J0 ≤ c′y−1/2, the other term J1/y being smaller at infinity. Therefore, in
case p > 4, the integral in (2.8) is bounded, so that inequality (2.7), with T := ∂r and β > 2 − 2/p, gives the result.
Otherwise if p ∈ [1,4], we have |∂rek|2

L
p
r dr

=O(k4/p−1), and it is sufficient to take β > 3/2. �

We can now state our main estimates on b.

Corollary 2.1. For β > 4/3, we have the estimates

|bv|H ≤ c′|v|3β, for all v ∈ Vβ, (2.9)

|bu − bv|H ≤ c′′|u− v|β
(|u|2β + |v|2β

)
, for all u,v ∈ Vβ, (2.10)

with constants depending on β only.
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Proof of Corollary 2.1. Denoting by F : x → x − sin 2x/2, x ∈ R, and using the inequality |F(x)| ≤ c|x|3, x ∈ R,
for a certain c > 0, we have by an application of Lemma 2.1(i) with ν = 2/3, p = 6:

|bv|H =
∣∣∣∣F(v)

r2

∣∣∣∣
H

≤ c

∣∣∣∣ v

r2/3

∣∣∣∣3
L6
r dr

≤ c′|v|3β,

as soon as β > 4/3, which shows (2.9).
Similarly, using that for some c > 0, |F(x) − F(y)| ≤ c|x − y|(x2 + y2), ∀x, y ∈ R, then Hölder’s inequality

implies:

|bu − bv|H ≤ c

∣∣∣∣∣∣∣∣u− v

r2/3

∣∣∣∣((
u

r2/3

)2

+
(

v

r2/3

)2)∣∣∣∣
H

≤ c

∣∣∣∣u− v

r2/3

∣∣∣∣
L6
r dr

(∣∣∣∣ u

r2/3

∣∣∣∣2
L6
r dr

+
∣∣∣∣ v

r2/3

∣∣∣∣2
L6
r dr

)
.

An application of Lemma 2.1(i) with the same parameters as above leads to (2.10). �

2.2. Construction of a mild solution

In view of the previous analysis, we will first solve (2.1) under the mild form:

h(t)= S(t)h0 +
∫ t

0
S(t − s)bh(s)ds +

∫ t

0
S(t − s)dwφ(s), for t ∈ [0, τβ), a.s., (2.11)

where S ≡ e·A is the semigroup generated by A, each integral above being understood in the Bochner sense, in Vβ for
some β > 4/3. More precisely, our aim here is to show the following.

Claim 2.1. Let 4 > β > 4/3, β ′ > β , and take φ ∈ L2(H,Vβ ′). Then, for h0 ∈ Vβ , there exist a stopping time τβ(h0),
and a unique h with paths in C([0, τβ);Vβ), a.s. , mild solution of (2.1). The stopping time τβ is maximal in the sense
that for every R > 0, τβ ≥ inf{t ∈ [0, T ], |h(t)|β ≥R}.

Proof of Claim 2.1. We restrict our proof to the case β ∈ (4/3,2]. Higher regularity, as well as the propagation, are
treated in Appendix A.2. Fix T > 0. For ω ∈� and t ∈ [0, T ], define the Ornstein–Uhlenbeck process

Z(ω, t)=
∫ t

0
S(t − s)dwφ(s), ω ∈�, t ≥ 0. (2.12)

For an analytical semi-group S, since by assumption φ ∈ L2(H,Vβ ′) with β ′ > β − 1, then it is standard that:

Z is a random variable supported in the space C
([0, T ];Vβ

)
,

see [14, §6]. Therefore we can take z ∈ C([0, T ];Vβ), and argue pathwise, considering the translated equation (1.21)
with unknown v. For h0 ∈ Vβ , if a solution v exists up to τ = τ(z) > 0, it is well-known that h := v + z gives a
solution of (2.1) on {Z|[0,τ ] = z|[0,τ ]}. Thus, for each z ∈ C([0, T ];Vβ), we aim to find a fixed point v for the map
� = �h0,z,T , defined as

�(v)(t) := S(t)h0 +
∫ t

0
S(t − s)bv+z(s)ds, for t ∈ [0, T ]. (2.13)

We will show that if T∗ > 0 is sufficiently small, depending only on ‖z‖T ,β and |h0|β , then the mapping � is a
contraction of a certain ball of C([0, T∗];Vβ).
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Consider any z as above, and h0 ∈ Vβ . If v ∈ C([0, T ];Vβ), taking the Vβ -norm in (2.13) and using (2.4) and (2.9)
gives:∥∥�(v)∥∥

T ,β
≤ |h0|β + c1T

1−β/2(‖v‖3
T ,β + ‖z‖3

T ,β

)
. (2.14)

Then, using (2.13), for u,v ∈ C([0, T ];Vβ), we have by (2.4) and (2.10):∥∥�(u)− �(v)
∥∥
T ,β

≤ c2T
1−β/2(‖u‖2

T ,β + ‖v‖2
T ,β + 2‖z‖2

T ,β

)‖u− v‖T ,β . (2.15)

Set R := |h0|β ∨ ‖z‖T ,β + 1. Letting

T∗ := min

(
1

4c1R3
,

1

8c2R2

)1/(1−β/2)

, (2.16)

then (2.14) and (2.15) yield respectively ‖�(v)‖T∗,β ≤R − 1/2 and ‖�(u)− �(v)‖T∗,β ≤ (1/2)‖u− v‖T∗,β , so that:

• the ball BR ⊂ C([0, T∗];Vβ) centered at 0 and of radius R is left invariant by �h0,z,T∗ ;
• �h0,z,T∗ : BR → BR is a contraction.

Applying Picard Theorem (the underlying space is complete), there exists a unique fixed point v(h0, z) for �h0,z,T∗ ,
a mild solution to the perturbed equation (1.21), up to t = T∗. The maximal solution is obtained by reiteration of the
argument. �

Fixing h0 ∈ Vβ and z ∈ C([0, T∗];Vβ), the above proof shows that if R := |h0|β ∨ ‖z‖T ,β + 1 and T∗(R) is as in
(2.16), then the unique fixed point of �h0,z,T∗ |BR , which we denote by v0, depends continuously on z|[0,T∗] and h0.
Indeed, first note that by (2.16) we have

∥∥�h1,ζ (v)
∥∥
T∗,β ≤R − 1

4
and

∥∥�h1,ζ (u)− �h1,ζ (v)
∥∥
T∗,β ≤ 3

4
‖u− v‖T∗,β , (2.17)

for (h1, ζ ) lying in some neighbourhood V ×W of (h0, z). By the previous analysis, the bound (2.17) guarantees the
existence of the unique fixed point v1 of �h1,ζ,T∗ . For such (h1, ζ ), using that v0 = �h0,z(v0), v1 = �h1,ζ (v1), and
re-using the properties (2.4)–(2.9)–(2.10), we immediately obtain

‖v0 − v1‖T∗,β ≤ |h0 − h1|β + cT
1−β/2∗ R2(‖v0 − v1‖T∗,β + ‖z− ζ‖T∗,β

)
,

so that the continuity of v at (h0, z) ∈ V × W follows. This eventually gives the continuity for h := v + z, locally
on [0, T∗]. The continuity of these functionals remains true up to the maximal times, as stated in the next lemma (the
proof is postponed to Appendix A.2).

Lemma 2.2 (Continuous dependence). Let T > 0, z ∈ C([0, T ];Vβ), h0 ∈ Vβ and assume that h(h0, z, ·) exists on
[0, T ]. There exist open sets V ⊂ Vβ and W ⊂ C([0, T ];Vβ), with (h0, z) ∈ V×W , such that for all (h1, ζ ) ∈ V×W ,
there exists a unique mild solution h(h1, ζ, ·) ∈ C([0, T ];Vβ) of (2.1).

Moreover, the mapping V ×W → C([0, T ];Vβ), (h1, ζ ) → h(h1, ζ, ·)|[0,T ], is continuous.

2.3. Equivalence of formulations and conclusion

To show equivalence between the formulations (2.11) and (1.17), it is convenient to revert to an interpretation of a
solution with a more “variational appeal” (see e.g. the definition of a solution in [40]). For β > 4/3, if (h, τ ) is the
mild solution built in Claim 2.1, using [14, Proposition 6.4], it is true that (h, τ ) is also a weak solution, namely: for
every ζ in D(A), we have

〈
h(t)− h0, ζ

〉= ∫ t

0
〈h,Aζ 〉ds +

∫ t

0
〈bh, ζ 〉ds +

∫ t

0
〈dwφ, ζ 〉, a.s. for t < τ. (2.18)
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Furthermore, we can extend (2.18) to test functions that belong to the larger space V ≡D((−A)1/2). Indeed, from the
inequality | sin 2h| ≤ 2|h|, since∫

I

(
(∂rζ )

2 + ζ 2

r2

)
r dr <∞, ∀ζ ∈ V,

then one can integrate by parts (see (1.24)) in the first term of (2.18), the resulting expression depending continuously
of ζ in V . Using a density argument, we have for every ζ in V :

〈
h(t)− h0, ζ

〉=−
∫ t

0
〈∂rh, ∂rζ 〉ds −

∫ t

0

〈
sin 2h

r
,
ζ

r

〉
ds +

∫ t

0
〈dwφ, ζ 〉, a.s. for t < τ, (2.19)

which extends (2.18).
Now, for a solution of (2.19), the following generalized Itô Formula holds true: let ζ ∈ C1((0,1);R), compactly

supported, and ϕ ∈ C2(R3) with bounded derivatives, then we have:

〈
ϕ
(
h(t)

)− ϕ(h0), ζ
〉 = −

∫ t

0

〈∇rh(s),∇r

(
ϕ′(h(s))ζ )〉ds + ∫ t

0

〈
bh(s), ϕ

′(h(s))ζ 〉ds
+

∑
k≥1

∫ t

0

〈
ϕ′(h(s))φek, ζ 〉dBk + 1

2

∑
k≥1

∫ t

0

〈
ϕ′′(h(s))(φek)2, ζ

〉
ds, (2.20)

a.s. for t ∈ [0, T ]. Note that every term above makes sense, since on the one hand:

∣∣ϕ′(h)ζ
∣∣2
V
≡

∫
I

[(
ϕ′′(h)∂rhζ + ϕ′(h)∂rζ

)2 +
(
ϕ′(h)ζ

r

)2]
r dr <∞,

and, as already noticed in (2.9), we have on the other hand |bh|H ≤ c|h|3Vβ
<∞.

Proof of (2.20). The proof follows the lines of [18, Prop. A.1.], the difference being that: (i) functional spaces here
consist of radial functions; (ii) the mollification argument needs to fit with the data on the boundary (hence we need
to suitably extend h on a bigger space interval).

Define the “1-fattening” of a given f ∈ V as the map f̃ : [−1,2]→R such that

f̃ (r) :=

⎧⎪⎨⎪⎩
f (r) if r ∈ [0,1],
−f (−r) if r ∈ [−1,0),

−f (2 − r) if r ∈ (1,2].
(2.21)

For ζ ∈ C∞
0 (−1,1) (2.19), consider a decomposition

ζ = ζ− + ϑ + ζ+, where: Supp ζ− ⊂ (−1,0),ϑ is even and Supp ζ+ ⊂ (0,1), (2.22)

and denote by ζ0 := ζ− + ζ+. Owing to (2.19) and (2.21), we have∫ 0

−1

(
h̃(t, r)− h̃0(r)

)
ζ−(r)r dr =

∫ 1

0

(
h(t, r)− h0(r)

)
ζ−(−r)r dr

≡ −
∫ t

0

〈
∂rh, ∂r (ζ̌−)

〉
ds −

∫ t

0

〈
sin 2h

r
,
ζ̌−
r

〉
ds +

∫ t

0
〈dwφ, ζ̌−〉,

where ζ̌− := ζ−(−·), but on the other hand, we have for instance

−
∫ t

0

〈
∂rh, ∂r (ζ̌−)

〉
ds =+

∫∫
[0,t]×[0,1]

∂rh(r)∂rζ−(−r)r dr ds =−
∫∫

[0,t]×[−1,0]
∂r h̃(r)∂rζ−(r)r dr ds.
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The treatment of the other terms is similar, hence summing over ζ+, ζ−, we obtain∫
[−1,2]

(
h̃(t)− h̃0

)
ζ0r dr = −

∫∫
[0,t]×[−1,2]

∂r h̃∂rζ0r dr ds

−
∫∫

[0,t]×[−1,2]
sin 2h̃

r

ζ0

r
r dr ds +

∑
k≥1

∫∫
[0,t]×[−1,2]

(̃φek)ζ0r dr dBk, (2.23)

a.s. for t < τ .
Furthermore, using the fact that ϑ is even, it holds true that∫

[−1,0]
(
h̃(t)− h̃0

)
ϑr dr =−

∫
[0,1]

(
h̃(t)− h̃0

)
ϑr dr, (2.24)

−
∫∫

[0,t]×[−1,0]
∂r h̃∂rϑr dr ds =

∫∫
[0,t]×[0,1]

∂r h̃∂rϑr dr ds, (2.25)

∑
k≥1

∫∫
[0,t]×[−1,0]

(̃φek)ϑr dr dBk =−
∑
k≥1

∫∫
[0,t]×[0,1]

(̃φek)ϑr dr dBk, (2.26)

and concerning the singular term, we have for every 0 < ε < 1:

−
∫∫

[0,t]×[−1,−ε]
sin 2h̃

2r

ϑ

r
r dr ds =

∫∫
[0,t]×[ε,1]

sin 2h̃

2r

ϑ

r
r dr ds, (2.27)

which suggest that one can simply define, for every ζ ∈C∞
0 (−1,1) the integral

−
∫∫

[0,t]×[−1,1]
sin 2h̃

2r

ζ

r
r dr ds := lim

ε→0
−

∫∫
[0,t]×[−1,−ε]∪[ε,1]

sin 2h̃

2r

ζ

r
r dr ds (2.28)

(note the ressemblance with the notion of “Cauchy principal value”). Similar relations hold if ϑ is supported around
r = 1, changing the intervals from [−1,0], [0,1] to [0,1], [1,2]. Hence, (2.23) can be extended to test functions that
are not necessarily equal to zero at the origin.

Now, in (2.23), for every r ∈ I , test against ρε(r − ·), where (ρε) is an approximation of the identity such that for
every ε > 0:

ρε is even and Suppρε ⊂ (−1,1).

For f in V , denote by f ε(r) the convolution
∫
[−1,2] f̃ (r ′)ρε(r − r ′)r ′ dr ′, for f in H , and observe, using self-

adjointness, that

A
(
f ε(r)

) ≡ ∫
[−1,2]

f̃
(
r ′
)
Aρε

(
r − r ′

)
r ′ dr ′ =

∫
[−1,2]

Af̃
(
r ′
)
ρε

(
r − r ′

)
r ′ dr ′ = (Af )ε(t, r).

We hence obtain that

hε(t, r)= hε0(r)+
∫ t

0
A
(
hε(s, r)

)
ds +

∫ t

0

(
2h− sin 2h

2r2

)ε

(s, r)ds +
∑
k∈N

∫ t

0
φε
k (r)dBk(s), (2.29)

where we define φk := φek . Applying the 1-dimensional Itô Formula, multiplying by rζ(r), ζ ∈ C1
0(I ) and integrating

over r ∈ I , we end up with〈
ϕ
(
hε(t)

)− ϕ
(
hε0

)
, ζ

〉 = −
∫ t

0

〈
∂rh

ε, ∂rζ
〉
ds −

∫ t

0

〈
hε

r
,
ζ

r

〉
ds +

∫ t

0

〈(
2h− sin 2h

2r2

)ε

, ζ

〉
ds

+
∑
k∈N

∫ t

0

〈
φε
k , ζ

〉
dBk(s)+ 1

2

∑
k∈N

∫ t

0

〈
ϕ′′(hε(s))(φε

k

)2
, ζ

〉
ds. (2.30)
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At this step, the conclusion involves essentially the same arguments as that of [18], hence we only sketch the proof
here (we refer to the latter reference for details). For f ∈ H ≡ L2(I ; r dr), there hold the basic properties (see e.g.
[24]): ∣∣f ε

∣∣
H

≤ |f |H ,
∣∣f ε − f

∣∣
H

→ 0, and if f ∈D(A) then∣∣A(
f ε

)∣∣
H

≤ |Af |H ,
∣∣A(

f ε − f
)∣∣

H
→ 0. (2.31)

Interpolating, we also have∣∣f ε
∣∣
Vβ

≤ |f |Vβ ,
∣∣f ε − f

∣∣
Vβ

→ 0,

for every β ∈ (4/3,2]. Hence, each term in the drift of (2.30) converges to the corresponding term of h (note that for
β > 4/3 it has been already seen that |b(r,h(r))|H <∞, and recall that |∂rf |H + |f

r
|H � |f |V1/2 ), and similarly for

the left hand side.
Concerning the stochastic term, we have, using Burkholder–Davis–Gundy inequality:

E sup
t≤T

∣∣∣∣∑
k∈N

∫ t

0

〈
ϕ′(hε(s))φε

k − ϕ′(h(s))φk, ζ
〉
dBk(s)

∣∣∣∣
≤ cE

(∫ T

0

∑
k∈N

∣∣〈ϕ′(hε(s))φε
k − ϕ′(h(s))φk, ζ

〉∣∣2 ds

)1/2

≤ c′E
(∫ T

0

∣∣ϕ′(hε)− ϕ′(h)
∣∣2
H

∣∣φε
∣∣2
L2(H,V )

ds

)1/2

+ c′E
(∫ T

0

∣∣ϕ′(h)
∣∣2
H

∣∣φε − φ
∣∣2
L2(H,V )

ds

)1/2

,

where φε :=∑
k≥1 φ

ε
k 〈ek, ·〉. Since φ ∈ L2(L

2,Vβ ′)⊂ L2(L
2,V ) for β ′ > β > 1, dominated convergence and bound-

edness of ϕ′′ imply the desired convergence. �

Proof of Theorem 1. Existence. Consider h = h(t, r) as in Claim 2.1, and fix θ ∈ [0,π). According to the above
discussion, since the map

R � h → ϕ(h) := uh ≡ (cos θ sinh, sin θ sinh, cosh) ∈R3

has bounded derivatives up to second order, then for ψ ≡ (ψ1,ψ2,ψ3) in C∞
0 (D2;R3), we can apply (2.20) to

I � r → ζ iθ (r) :=ψi(r cos θ, r sin θ), for 1 ≤ i ≤ 3,

provided ψ vanishes at the origin. However, reasoning as above, we can give meaning to the formula for a general
ψ ∈ C∞

0 , if one replaces h by its 1-fattening h̃. More precisely, decomposing each map ϕ′(h)iζ iθ as in (2.22) (leaving
aside smoothness which is not crucial here), it is licit, as in (2.28), to define∫∫

[0,t]×[−1,1]
∇r h̃ · ∇r

(
ϕi(h̃)ζ iθ

)
r dr ds := lim

ε→0

∫∫
[0,t]×[−1,ε]∪[ε,1]

∇r h̃ · ∇r

(
ϕi(h̃)ζ iθ

)
r dr ds.

Hence, observing that ϕ′(h)i = uih+π/2 ≡�i
h, and summing over i = 1,2,3, one obtains:∫

[−1,1]
(
u
h̃
(t)− u

h̃0

) ·ψr dr

=−
∫∫

[0,t]×[−1,1]
∇r h̃ · ∇r (�h̃

·ψ)r dr ds +
∫∫

[0,t]×[−1,1]
2h̃− sin 2h̃

2r2
u
h̃
·ψr dr ds

− 1

2

∑
k≥1

∫∫
[0,t]×[−1,1]

u
h̃
(φek)

2ψr dr ds +
∑
k≥1

∫∫
[0,t]×[−1,1]

�
h̃
·ψ(φ̃ek)r dr dBk
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(here the integrand ψ is evaluated at (r cos θ, r sin θ)). Integrating over θ ∈ [0,π], changing the variables, we end up
with ∫

D2

(
uh(t)− uh0

) ·ψ dx =
∫ t

0

〈
Ah+ bh

(
s, |x|),�hψ

〉
W−1,2,W 1,2 ds

− 1

2

∑
k≥1

∫ t

0

〈
uh(φek)

2,ψ
〉
L2 ds +

∫ t

0
〈�h dwφ,ψ〉L2, (2.32)

where 〈·, ·〉W−1,2,W 1,2 denotes the dual pairing on the disk D2, this formula being justified by the fact that∣∣∇(�h ·ψ)
∣∣2
L2

≡
∫∫

I×[0,2π]

(
−∂rh(uh ·ψ)+�h · ((cos θ − sin θ)∂1ψ + (sin θ + cos θ)∂2ψ

)+ � ·ψ
r

)2

r dr dθ <∞

(again, ψ is evaluated at (r cos θ, r sin θ) and we define � = (− cos θ, sin θ,0)). Furthermore, direct computations
show that in the sense of distributions in D2, we have the identity

�uh + uh|∇uh|2 =
(
∂rrh+ ∂rh

|x| − sin 2h

|x|2
)
�h. (2.33)

Hence, we obtain that u verifies (ii)–(iii) in Definition 1.1. The property (i) is trivial.
Considering, for t ∈ [0, τ β), the Fourier–Bessel series

hN(t, ·) :=
N∑

k=1

〈
h(t), ek

〉
ek(·),

by the definition (2.3), we observe that hN(t,1) = 0, for every N ≥ 1, independently of the time-variable. By the
Sobolev embedding Vα ⊂ L∞, when α > 1 (see Remark 1.3) the property remains also true for h≡ limN→∞,Vβ h

N .
This shows the property (iv).

Uniqueness. Conversely, let u(t, x)≡ uh(t,|x|) be a 1-corotational map such that (1.17) is fulfilled for every smooth
ψ with compact support in D2. Consider ψ(x) := ζ(|x|) where ζ has compact support in (0,1), and write w̌φ(t, x),
resp. ȟ(t, x) instead of wφ(t, |x|), resp. h(t, |x|). Using e.g. the Itô Formula2 given in [40], since u⊥�h, there holds:

0 ≡ d
(〈u,�

ȟ
ψ〉L2

)= 〈du,◦�
ȟ
ψ〉

W−1,2,W
1,2
0

+ 〈
u,◦d(�

ȟ
)ψ

〉
W

1,2
0 ,W−1,2

(differential sense). Hence, by [18, Prop. A.1.], one has

0 = 〈(
�u+ u|∇u|2)dt +�

ȟ
◦ dw̌φ,�ȟ

ψ
〉
W−1,2,W

2,1
0

− 〈
dȟ,◦(u · u)ψ 〉

W−1,2,W
1,2
0

=
〈
∂rr ȟ+ ∂r ȟ

|x| − sin 2ȟ

|x|2 ,ψ

〉
W−1,2,W

1,2
0

dt + 〈dw̌φ,ψ〉L2 − 〈dȟ,ψ〉
W−1,2,W

1,2
0

where we have used (2.33), u · u ≡ |u|2 = 1, and also the fact that, according to the Itô Formula in [40], there holds
for any ϕ in W

1,2
0 (D2):

d
(〈�

ȟ
,ϕ〉)= 〈

d�x

dx

∣∣∣∣
x=h

◦ (dȟ), ϕ
〉
W−1,2,W

1,2
0

≡ 〈−u ◦ dȟ, ϕ〉
W−1,2,W

1,2
0

.

2in fact there holds d(u ·�
ȟ
)= du · ◦�h + u · ◦d(�h) in W−1,2; to see this apply Theorem 4.2.5. to |u|2

L2 , and |�h|2L2 , and then polarize.
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Changing the variables in the latter integrals, it follows that h is a weak solution of (2.1), in the sense that it fulfills
(2.19). Hence, by the fact that weak solutions are also mild solutions (see [14, Prop. 6.3]), uniqueness follows from
Claim 2.1 and Remark 1.2. �

3. Proof of Theorem 2

3.1. Preliminary material and key proposition

Fix 4 > β > 2. According to Remark 1.2, we can focus on the proof of blow-up for h, i.e. the colatitude of u given by
Claim 2.1. In the sequel, when (h0, z) ∈ Vβ × C([0,∞);Vβ), we will systematically denote by (h(h0, z), τ

β(h0, z))

the mild solution of (2.1) on {Z = z}, and its maximal time of existence in Vβ , namely:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(h0, z) := v + z,

where v = v(h0, z) solves in the mild sense:{
∂tv =Av + bv+z on [0, τβ(h0, z))× I,

v|t=0 = h0,

and where τβ(h0, z) <∞ implies lim sup
t→τβ (h0,z)

∣∣h(h0, z, t)
∣∣
Vβ

=∞,

(3.1)

(see Section 2). Our approach is to show first that a fixed z ∈C([0,2t∗];Vβ) with z(0)= 0, there exists a “pre-blow-up
set” Hz, namely a set of initial conditions h0 such that the associated solution h(h0, z, ·) blows up before t∗.

Proposition 3.1. Let 4 > β > 2, and fix t∗ > 0. There exists η̄ > 0, such that for all z ∈ C([0,2t∗];Vβ) with ‖z‖2t∗,β ≤
η̄, there exists a parabola χ∗ = χ∗(z) belonging to the family (3.5), and satisfying the property that: if h0 ∈ Vβ with
h0 ≥ χ∗, then

τβ(h0, z)≤ t∗.

Moreover, the pre-blow-up set H= {h0 ∈ Vβ,h0 ≥ χ∗}, has nonempty interior in Vβ .

The following will be obtained in Section 3.3 through a topological argument.

Corollary 3.1. Let 4 > β > 2. For any t∗ > 0, there exist two subsets H of Vβ , Z of C([0, t∗];Vβ), with nonempty
interiors, such that for all (h0, z) ∈H× Z:

τβ(h0, z)≤ t∗.

A few preliminaries and notations are now needed to prepare the proof of Proposition 3.1. As in Chang–Ding–Ye’s
proof, we will make use of a comparison principle for the scalar parabolic equation (1.4). It is however different
from that of [6,12], because the nonlinearity depends on the realization of the Ornstein Uhlenbeck process Z :�→
C([0, T ];Vβ). However additiveness of the noise in (1.20) allows to appeal to deterministic theory only, fixing ω ∈�

and letting z := Z(ω).
We consider equations of the form

∂tf =Af − p(z(t, r)+ f (t, r))

r2
, for (t, r) ∈ [0, κ] × I \ {0}, (3.2)

where p :R→R vanishes at the origin and

z ∈ C
([0, κ];Vβ

)
for some β > 1 and z|{0}×I = 0 (3.3)

(for such z, using the definition of the scale (Vβ), we have in fact z|	 = 0). In order to take into account the main
cases we have in mind, we will assume that the nonlinearity fulfills the following properties.
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Assumptions on p. We will assume that p :R→R is of class C2 around the origin, and that

p(0)= 0; p′(0) >−1; ∣∣p(x)− p(y)
∣∣ ≤K|x − y|, ∀x, y ∈R, (3.4)

for some universal constant K > 0.

Remark 3.1. Assumptions (3.4) do cover the cases where: (a) p(x)= 0 (comparison principle for the linear equation
(∂t −A)f = 0), and (b) p(x)= sin(2x)/2 − x (comparison principle for (2.1)).

The proof of the following result is postponed to C. Here J denotes any compact subinterval of I .

Comparison principle for (3.2). Fixing some β > 1, assume that the assumptions (3.3) and (3.4) are fulfilled, and
that we are given f,g ∈ C([0, κ);Vβ)∩C1([0, κ);H), such that

(i) − ∫ κ

0

∫
J
f ∂t ζ r dr dt ≤− ∫ κ

0

∫
J
(∂rf ∂rζ + f+p(z+f )

r2 ζ )r dr dt ,

(ii) − ∫ κ

0

∫
J
g∂t ζ r dr dt ≥− ∫ κ

0

∫
J
(∂rg∂rζ + g+p(z+g)

r2 ζ )r dr dt ,

for all nonnegative ζ ∈ C∞([0, κ]×J ) with ζ(t, r)= 0 on the parabolic boundary 	 := {0}×J ∪[0, κ)×∂J . Assume
moreover that f ≤ g on 	. Then:

For almost every (t, r) ∈ [0, κ)× J,we have f (t, r)≤ g(t, r).

In the sequel, for k > 0, and r ∈ I , we denote by

χk(r) := k
(
2r − 3r3 + r5)= kr

(
1 − r2)(2 − r2), (3.5)

see Figure 2. Initial data h0 will be compared according to their position with respect to the reference family (χk)k∈N,
see the subsections below. The choice of such parabolae rules out the pathological case where τβ(χk, z) equals 0.
Indeed, on the one hand we have A2χk(r)= 48kr , r ∈ I \ {0}, which belongs to V1/2−ε for any ε > 0 (this fact is left
to the reader). On the other hand: χk(∂I )≡ 0, and Aχk(∂I)≡ 0, which ensures that for k ∈R:

χk ∈ Vα, for any α <
9

2
. (3.6)

Fig. 2. Plots of ψλ0 , ψλ1 for some λ1 < λ0, together with χ6, χ11 and γ , for r ∈ I ≡ [0,1].
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3.2. First step in the proof of Theorem 2: Proof of Proposition 3.1

In the following lemma, we exhibit an explicit family of maps {ψε,μ,λ0,ξ } satisfying the differential inequality

∂tψ ≤Aψ + bψ+z, (3.7)

up to some positive time. Note that in the sequel, since β is strictly bigger than 1, we restrict our attention to maps
that have a continuous version (see Remark 1.3). Hence, when f,g ∈ Vβ we may write f ≤ g for 〈f, ζ 〉 ≤ 〈g, ζ 〉 for
all non-negative ζ ∈ C∞

0 (I ).
Here we denote by J := [0, r1] for some r1 ∈ (0,1).

Lemma 3.1. Fix z in C([0,∞);Vβ) with z(0) = 0. For λ0, ε, δ > 0, define λ : t ∈ [0, Tλ0) → λ(t) as the solution of
the ODE:

λ′ = −δλε, 0 < t ≤ Tλ0 := λ1−ε
0

(1 − ε)δ
, with initial data λ(0)= λ0. (3.8)

Assume that there exist t+ > 0, ξ ∈ Vβ , ξ ≥ 0, depending on z, such that

x(t, r) := S(t)ξ(r)+ z(t, r)≥ 0 for t ∈ [0, t+] and r ∈ J, (3.9)

where S(t)= etA, see (1.22).
Fix 0 < ε < 1. There exist positive constants μ̄(ε), δ̄(ε), such that for all μ≥ μ̄(ε) and 0 < δ ≤ δ̄(ε), for all λ0 > 0

defining λ= λε,δ,λ0(t) as in (3.8), then the map

ψ(r, t)= arccos

(
λ(t)2 − r2

λ(t)2 + r2

)
+ arccos

(
μ2 − r2+2ε

μ2 + r2+2ε

)
+ S(t)ξ(r), (3.10)

fulfills the differential inequality (3.7) on [0, t+ ∧ Tλ0] × J .

Proof of Lemma 3.1. Let 0 < ε < 1. As in [12], we set for (λ, r) ∈R∗+ × J :

ϕλ(r) := arccos

(
λ2 − r2

λ2 + r2

)
, θε,μ(r) := arccos

(
μ2 − r2+2ε

μ2 + r2+2ε

)
. (3.11)

Recall that for any fixed triplet λ, ε,μ > 0, the maps ϕλ, θε,μ satisfy for r ∈ J (see [12]):

Aϕλ(r)= sin 2ϕλ(r)− 2ϕλ(r)

2r2
,

Aθε,μ(r)= (1 + ε)2 sin 2θε,μ(r)− 2θε,μ(r)

2r2
.

(3.12)

Now, since θε,μ(r)→ 0 as μ→∞, it is possible to choose a parameter μ̄(ε), such that for all r ∈ J ,

cos θε,μ(r)≥ 1

1 + ε
. (3.13)

Take μ≥ μ̄, and let z ∈ C([0, t+];Vβ) be such that x = Sξ+z takes nonnegative values on [0, t+]×J . For t ∈ [0, Tλ0),
r ∈ J , define ψ(t, r) := ϕλ(t)(r) + θ(r) + S(t)ξ(r), and denote by θ := θε,μ(·), ϕ := ϕλ(·)(·), and Sξ := t ∈ R+ →
S(t)ξ . On the one side, using (3.12), the trigonometric identities sin 2θ = 2 cos θ sin θ and sin 2ϕ − sin 2(ϕ + θ) =
−2 sin θ cos(2ϕ + θ), there comes

Aψ + bψ+z = A(ϕ + θ + Sξ)+ bϕ+θ+x

= 1

2r2

[
(1 + ε)2 sin 2θ + sin 2ϕ − sin 2(ϕ + θ)
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+ 2x + sin 2(ϕ + θ)− sin 2(ϕ + θ + x)
]+ AS ξ

= 1

2r2

[
2(1 + ε)2 sin θ cos θ − 2 sin θ cos(2ϕ + θ)+ Fϕ,θ (x)

]+ AS ξ, (3.14)

where we denote by Fϕ,θ (x) = 2x − (sin 2(ϕ + θ + x)− sin 2(ϕ + θ)), x ∈ R, for ϕ, θ ∈ R. Using (3.13), the right
hand side in (3.14) is bounded below by 1/(2r2)[(2 + 2ε − 2 cos(2ϕ + θ)) sin θ + Fϕ,θ (x)] + AS ξ , so that Aψ +
b(r,ψ + z)≥ 1/(2r2)[2ε sin θ + Fϕ,θ (x)] + AS ξ . Expanding sin θ , we eventually obtain

Aψ + b(r,ψ + z)(t, r)≥ 2εμrε−1

μ2 + r2(1+ε)
+ Fϕ,θ (x(t, r))

r2
+ AS(t)ξ(r)

≥ 2εμrε−1

μ2 + 1
+ Fϕ,θ (x(t, r))

r2
+ AS(t)ξ(r),

a.e. on [0, t+] × J \ {0} (and therefore in the sense of positive test functions). Now, regardless of the values taken by
the parameters θ , ϕ, the map Fϕ,θ vanishes at the origin, and has nonnegative derivative on R+. We deduce that since
x ≥ 0 on [0, t+] × J , then so is Fϕ,θ (x). Moreover, simple computations show that for r ∈ J :

∂tψ(t, r)= 2δλ(t)εr

λ(t)2 + r2
+ AS(t)ξ(r).

Thus, if for every (t, r) in [0, t+] × J , we have 2εμrε−1/(μ2 + 1) ≥ 2δλ(t)εr/(λ(t)2 + r2), then ∂tψ ≤ Aψ +
b(r,ψ + z) holds. Setting s = r/λ(t), it is however sufficient to verify that: sups∈R s2−ε

1+s2 ≤ με

δ(μ2+1)
, which is true if

δ ≥ δ̄ for μ̄ > 0 as in (3.13). This proves the lemma. �

Remark 3.2. Let β > 2, and consider ξ , z, t+ as in Lemma 3.1, and assume that

t+ ≥ Tλ0 ≡ λ1−ε
0

(1 − ε)δ
. (3.15)

Then, the map f := ψε,μ,λ0,ξ constructed above blows up at t = Tλ0 . Indeed, since ξ ∈ Vβ with β > 2, then
|∂rS(t)ξ |L∞ is bounded for t ∈ [0, Tλ0) (see Remark 1.3), and:

∂rψ(t,0)= ∂rϕ(t,0)+ θ ′(0)+ ∂rS(t)ξ(0)= 2

λ(t)
+ ∂rS(t)ξ(0) −→

t→Tλ0

∞.

Let (h, τ ) := (h(h0, z), τ
β(h0, z)) be the mild solution defined in (3.1), where h0 ∈ Vβ . Assume τ ≥ Tλ0 , and that:

f ≤ g on {0} × J ∪ [0, Tλ0)× ∂J, (3.16)

where we let g := h− z, and J := [0, r1] for some r1 ∈ (0,1).
Up to a straightforward extension of f on the whole space interval I , observe that f ∈ C([0, T ];Vβ) ∩

C1([0, T ];H) (this can be shown by direct computations). On the other hand, recall that g ≡ h(z) − z satisfies
g(t)= S(t)h0 + ∫ t

0 S(t − s)bg+z ds for t ≤ τ . Since β > 4/3, then (2.9) yields bg+z ∈C([0, T ];H), so that

g ∈ C
([0, T ];Vβ

)∩C1([0, T ];H )
. (3.17)

By (3.16), (3.17) and Lemma 3.1, the comparison principle for (1.21) can be applied so that f ≤ g on [0, Tλ0)× J .
Since the maps f , g vanish at the origin regardless of the time variable, it follows that:

∂rf (t,0)≤ ∂rg(t,0), for all t ∈ [0, Tλ0),

and then |∂rh|L∞ → ∞ as t → Tλ0 , which by Remark 1.3 implies blow-up also in the sense that
lim supt→Tλ0

|h(t)|β =∞.



1032 A. Hocquet

We can now turn to the proof of Proposition 3.1.

Proof of Proposition 3.1. Fix 2 < β < 4. For each z ∈ C([0,2t∗];Vβ), and ξ ∈ Vβ , we define x = xξ,z by:

x(t)= S(t)ξ + z(t), for t ≤ 2t∗. (3.18)

In what follows we denote by J the compact interval [0,1/2].
Step 1: nonnegativeness of x up to a positive time. Assume that ξ ≥ χ1 on J , where χ1 is the parabola defined by

(3.5). Note that such ξ ∈ Vβ exists for β > 2 since is suffices to let for instance ξ := χ1, see (3.6). Our aim now is
to show that if the perturbation z is not too large in C([0,2t∗];Vβ), then the map x defined above stays nonnegative
on J .

We first claim that there exists a constant η > 0, such that for all ξ, y ∈ Vβ with ξ ≥ χ1,

|ξ − y|β ≤ 2η ⇒ y|J ≥ 0. (3.19)

Indeed, since β > 2, then there exists cβ > 0, such that for all y ∈ Vβ (see Remark 1.3),

|∂rξ − ∂ry|L∞(J ) ≤ cβ |ξ − y|β.
Choose η = c/(2cβ), where c is such that χ1(r)− cr ≥ 0 for r ∈ J (note that c and therefore η do not depend on ξ ),
so that |y − ξ |β ≤ η will imply |∂ry − ∂rξ |L∞ ≤ c/2. We conclude by the Mean Value Theorem, observing first that
both maps equal zero at the origin: if |ξ − y|β ≤ η, then ∀r ∈ J , y(r) ≥ ξ(r)− cr ≥ χ1(r)− cr and thus y(r) ≥ 0,
which proves (3.19).

Furthermore, for a fixed ξ ∈ Vβ with ξ ≥ χ1, since S is a strongly continuous semigroup, there exists t+(ξ) > 0
such that

for all t ∈ [
0, t+(ξ)

]
,

∣∣S(t)ξ − ξ
∣∣
β
≤ η,

and thus for 0 ≤ t ≤ t+(ξ), ‖z‖2t∗,β ≤ η, the map x defined in (3.18) verifies∣∣x(t)− ξ
∣∣
β
≤ ∣∣S(t)ξ − ξ

∣∣
β
+ ∣∣z(t)∣∣

β
≤ 2η. (3.20)

We have to get rid of the dependence of t+(ξ) with respect to ξ . But if ξ ∈ Vβ with ξ ≥ χ1 on I , apply the linear
comparison principle (see the previous subsection) on the whole interval I to f := S(·)χ1, g := S(·)ξ , κ := 2t∗ (note
that we have f ≤ g on {0} × I ∪ [0,2t∗] × ∂I ). We obtain that

t+(ξ)≥ t+(χ1).

Now define t+ := t+(χ1). We have proven that there exists η > 0 such that for all t ∈ [0, t+], for all ξ ∈ Vβ with ξ ≥ χ1
on I , for all z ∈ C([0,2t∗];Vβ) with ‖z‖2t∗,β ≤ η, then

x|[0,t∗]×J ≥ 0. (3.21)

Step 2. Construction of a pre-blow-up set for a fixed z. Once and for all, fix η as in Step 1, z ∈ C([0,2t∗];Vβ) with
‖z‖2t∗,β ≤ η, and ξ ∈ Vβ with ξ ≥ χ1 on J , so that (3.21) holds for x = xξ,z.

It suffices to prove the proposition with t∗ ∧ t+ instead of t∗. Therefore, without loss of generality we assume in
the sequel that

t+ = t∗.

In order to lighten the notations we also denote by τ = τβ(·, z), and h= h(·, z). Take any 0 < ε < 1, and fix μ≥ μ̄(ε),
δ ≤ δ̄(ε) and λ= λε,δ,λ0(t) as in Lemma 3.1, where λ0 > 0 is chosen such that

Tλ0 = λ1−ε
0

δ(1 − ε)
≤ t+,
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so that we know by Lemma 3.1, that the map f0 :=ψε,μ,λ0,ξ defined as in (3.10), fulfills

∂tf0 ≤Af0 + b(r, f0 + z) on [0, Tλ0)× J, (3.22)

with blow-up at t = Tλ0 . Our strategy is to take h0 ≥ f0|t=0, compare g := h(h0, z, ·)− z with this ansatz, and then
conclude by Remark 3.2 that blow-up of h happens before t+. For that purpose it remains however to choose h0 in
such a way that (3.16) holds. Note that if h0 ∈ Vβ is taken such that(

h(h0)− z
)|[0,t+]×{ 1

2 } > sup
(r,λ)∈J×R

∗+

(
ϕλ(r)+ θ(r)+ S(t)ξ(r)

)
, (3.23)

then we will have(
h(h0)− z

)|[0,t+]×{ 1
2 } ≥ψε,μ,λ0,ξ

(
t,

1

2

)
,

with ψ as in (3.10), and this will hold regardless of ε, μ, λ0, and 0 ≤ t ≤ t+. In particular (3.23) will imply the bound
needed on [0, t+] × ∂J . Moreover, note that π is an upper bound for the family of maps (ϕλ(·))λ>0 (see Figure 2).
This motivates the following definition: let

γ := π + |θε,μ|L∞ + sup
t≥0

∣∣S(t)ξ ∣∣
L∞ , (3.24)

and for h0 ∈ Vβ , define

t	(h0)= inf
{
0 ≤ t ≤ τ(h0),

(
h(h0, t)− z(t)

)|{ 1
2 } ≤ γ

}
, (3.25)

with the understanding that t	(h0)= τ(h0) if the set is empty.
Note that γ is well-defined. Indeed for any u = 	kukek ∈ Vβ , by Remark 1.3, since β > 1, the mapping t →

|S(t)u|L∞ = |	kuke
tλk ek|L∞ , t ≥ 0, is bounded (see (2.3)).

We claim now that there exists an integer k = k(z)≥ 1 such that for all h0 ∈ Vβ , if h0 ≥ χk on I , then

τ(h0)≤ t+. (3.26)

Indeed, let h0 ∈ Vβ with h0|J ≥ f0|{0}×J and assume that τ(h0) > t+. Note that necessarily inft∈[0,t+](h(h0) −
z)|[0,t+]×{ 1

2 } < γ , otherwise by comparison between f0 and g := h(h0) − z, Remark 3.2 would yield blow-up for

h(h0) before t+. So we have

t	(h0)≤ t+. (3.27)

Now, choose any λ1 > 0 with Tλ1 = λ1−ε
1 /(δ(1 − ε)) ≤ t	(h0), and define f1 := ψε,μ,λ1,ξ by the formula (3.10)

with λ1 instead of λ0. Since arccos is Lipschitz out of 0, we can always find k ≥ 1 such that for r ∈ J :

χk(r)≥ f1(0, r)≡ arccos

(
λ2

1 − r2

λ2
1 + r2

)
+ arccos

(
μ2 − r2+2ε

μ2 + r2+2ε

)
+ ξ(r), (3.28)

where χk is as in (3.5). Consider any h1 ∈ Vβ with h1 ≥ χk on I . One has the following alternative.

First case: t	(h1)≥ t	(h0). In this situation, we have:

Tλ1 ≤ t	(h1)≤ τ(h1), and h(h1)≥ f1 on {0} × J ∪ [0, Tλ1 ] × ∂J, (3.29)

and the comparison principle for (1.21) can be applied with κ = Tλ1 , f := f1 and g := h(h1)− z. By Remark 3.2 we
obtain that h blows-up before Tλ1 , whence Tλ1 = τ(h1)≤ t+.
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Second case: t	(h1) < t	(h0). In this case, apply the comparison principle for (1.21) on the whole interval I with
κ := τ(h0)∧ τ(h1), f := h(h0)− z, and g := h(h1)− z, so that in particular:

on [0, τ (h0)∧ τ(h1)), there holds f

(
·, 1

2

)
≤ g

(
·, 1

2

)
. (3.30)

Therefore, necessarily τ(h1)= t	(h1), otherwise we would have

g

(
t	(h1),

1

2

)
≡ γ < f

(
t	(h1),

1

2

)
,

contradicting (3.30). Moreover, one has t	(h1)≤ t+, and thus τ(h1)≤ t+.

We see that in both cases (3.26) is true, and the claim implies that

H := {h1 ∈ Vβ,h1 ≥ χk(z)}
defines a pre-blow-up set for the individual element z.

Step 3. Nonemptiness of IntH. It suffices to show the result when k = 1, namely that the set H= {h1 ∈ Vβ,h1 ≥ χ1}
has nonempty interior for the topology of Vβ . Set h0 = χ2 ∈ H, so that h0 ∈ H. By Remark 1.3, since β > 2, there
exists a sufficiently small radius R > 0 such that if h1 ∈ Vβ with |h1 −h0|β , then |∂rh1 −∂rh0|L∞ ≤ 1/2. By the Mean
Value Theorem, since h0 and h1 vanish for r ∈ {0,1}, then for all r ∈ [0,1/2]: |h1(r)− h0(r)| ≤ (1/2)r ≤ r(1 − r),
and the same holds when r ∈ [1/2,1]. Thus for a.e. r ∈ I :∣∣h1(r)− h0(r)

∣∣ ≤ r(1 − r).

The reader may also check that

∀r ∈ I, χ1(r)= r
(
1 − r2)(2 − r2)≥ r(1 − r).

Thus, for all h1 belonging to an open ball centered at h0 = χ2, and for all r ∈ I : h1(r)≥ χ2(r)− cr(1 − r)≥ χ1(r),
which means that h1 ∈H. This finishes the proof of Proposition 3.1. �

3.3. Second step in the proof of Theorem 2: Proof of Corollary 3.1

Fix η̄ > 0 as in Proposition 3.1. So far, we have shown that given a trajectory z in the ball B ⊂ C([0,2t∗];Vβ),
centered at zero and of radius η̄, there exist an integer k(z), such that for all h0 ∈ Vβ , h0 ≥ χk(z), then τβ(h0, z)≤ t∗.
To conclude we would need in some sense to “reverse the quantifiers”. It turns out that this can be achieved by a simple
topological argument, the use of which seems to be new in the context of SPDEs (to the best of our knowledge).

Define

Fk(t∗)=
{
z ∈ B,∀h0 ∈ Vβ with h0 ≥ χk on I, τβ(h0, z)≤ t∗

}
.

We claim that Fk(t∗) is a closed subset of B. Indeed, by definition: if z ∈ B \Fk(t∗), there exists h0 ∈ Vβ with h0 ≥ χk

on I and τ(h0, z) > t∗. Let zn ∈ B→ z in B, as n→ ∞. Let ε > 0 such that h(h0, z, ·) is defined on [0, t∗ + ε]. By
Lemma 2.2, h(h0, z

n, ·) will be defined up to t∗ + ε, provided n is large enough. And thus (Fk(t∗))c is an open set of
B, which proves the claim.

By Proposition 3.1, if z ∈ B, then there exists k such that z ∈ Fk(t∗), thus

B=
⋃
k∈N

Fk(t∗).

Hence, by Baire’s Theorem, there exists at least one k∗ such that Fk∗(t∗) has non-empty interior. Thus we can set
Z = Fk∗(t∗). If we define H = {h0 ∈ Vβ,h0 ≥ χk∗}, then for all (h0, z) ∈ H × Z, there holds τ(h0, z) ≤ t∗. This
finishes the proof of Proposition 3.1.
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3.4. End of the proof of Theorem 2 and closing remarks

Given T1 > 0 and h0, h1 ∈ Vβ , observe that there exists a control z1 ∈ C([0, T1];Vβ) with z1(0) = 0, such that:
h(h0, z1, ·) exists on [0, T1], and

h(h0, z1, T1)= h1. (3.31)

Indeed, similar to [15], we set for t ∈ [0, T1]: ϕ(t) := (T1 − t)h0/T1 + th1/T1, and define f (t) := (ϕ(t)− h0)−∫ t

0 (Aϕ(s)+ bϕ(s))ds. Taking now

z1(t)=
∫ t

0
S(t − s)

df

ds
ds, t ∈ [0, T1],

then the map v := ϕ − z1 is a solution of the translated equation (1.21) with z = z1, so that by the uniqueness part
above there holds: ϕ = h(h0, z1, ·)|[0,T1]. Note that df

dt ∈ C([0, T1];Vβ−2), so that by classical theory of parabolic
equations, we have indeed z1 ∈ C([0, T1];Vβ).

We have now all at hand to prove Theorem 2. The proof follows standard arguments, which are detailed for the
sake of completeness (the key property being Proposition 3.1).

Proof of Theorem 2. Fix t∗ > 0, s ∈ (0, t∗) and take H, Z as in Proposition 3.1, with t∗ replaced by t∗ − s. Since the
interior of H is nonempty, we can take h1 ∈ IntH. By the controlability property (3.31), there exists z1 ∈C([0, s];Vβ)

such that h(h0, z1, ·) is defined on [0, s] and h(h0, z1, s)= h1. Using in addition Lemma 2.2, we see that there exists
a neighbourhood V1 of z1 in C([0, s];Vβ), such that

∀z ∈ V1, h(h0, z, s) ∈H.

Since kerφ∗ = {0}, then φ has dense range in Vβ and the process Z(t)= ∫ t

0 S(t−σ)dwφ(σ), t ≥ 0, is non-degenerate.
Therefore,

p0 := P ◦Z|−1
[0,s](V1) > 0, (3.32)

and similarly

p1 := P ◦Z|−1
[0,t∗−s](Z) > 0. (3.33)

Now, define the extended state space X = Vβ ∪ {�} where the terminal state � is an isolated point, and extend the
process Xt,h0(ω) := h(h0, t,Z(ω)) on X, by achieving � if and only if t ≥ τβ(h0,Z(ω)). By standard arguments (see
e.g. [45] and references therein), the family of probability measures (Px ≡ P ◦X−1·,x )x∈X on W̄ := C([0,∞);X), the
space of trajectories equipped with the σ -algebra corresponding to Borelian sets, is Markovian. Letting A := {w ∈
W̄ : τ(w)≥ s}, we have

Px

(
A∩ {

w :w(t∗)=�
})= ∫

A

Pw′(s)
(
w :w(t∗ − s)=�

)
Px

(
dw′). (3.34)

Denote by P(x, t; ·) the associated transition probabilities, namely Px(w : w(t) ∈ �) where � ⊂ X is Borelian, and
by πs : W̄ →X, w →w(s). Then (3.34) implies

Px(τ ≤ t∗)≥
∫
H∩πs(A)

P
(
t∗ − s, ξ ; {�})P(s, x;dξ)≥ p1

∫
H∩πs(A)

P (h0, s;dξ),

where we have used (3.33) to bound P(t∗ − s, ξ, {�}) independently of ξ ∈ H. Using in addition (3.32), we obtain
Px(τ ≤ t∗) > p1p0 which is positive. Furthermore, using the equivalence of formulations (1.17) and (2.11) (together
with Remark 1.2), then Theorem 2 is proved. �
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Closing remark 1. Ineluctability of blow-up for 1-corotational solutions of (SHMF′) remains an open problem. Let
(Px)x∈X be the Markovian family on (W̄ ,B(W̄ )) defined in the proof of Theorem 2. The following observation is
made in [45, Section 5] (note that we could also let X be any Polish space with additional isolated point {�}):

For w ∈ W̄ denote by τ(w) := inf{t ≥ 0;w(t)=�}. Assume that there exist T > 0, and an open set B0 ⊂ X, such
that:

Condition 1 (Uniform lower bound). There exists a constant p0, independent of x ∈ B0 with Px(τ ≤ T )≥ p0;

Condition 2 (Conditional recurrence). For all x ∈ X, Px(σ = ∞ and τ = ∞) = 0, where for w ∈ W̄ , σ(w) is
defined as inf{t ≥ 0,w(t) ∈ B0}.

Then for each x ∈X

Px(τ <∞)= 1.

Taking B0 := IntH, where H is as in Proposition 3.1, then Condition 1 has already been checked in (C.4): it suffices
to let p0 := P ◦Z|−1

[0,T ](Z), where Z is as in Proposition 3.1. However Condition 2, i.e. the conditional recurrence for
the pre-blow-up set IntH, seems difficult to check, because it relates large time behaviour of solutions of (SHMF′).
A natural idea would be to replace first H by some neighbourhood V of 0 in C1([0,1]), say, and then to bound below
the probability to reach H from V . In the deterministic case, such stability results are for instance obtained in [31] or
[11] for the full LLG equation, and rely on the energy estimate E(t)−E(0)+ ∫∫

[0,t]×D2 |u×�u|2 = 0, which gives
uniform bounds in t > 0. The main difficulty here is that the counterpart of the above identity writes:

E(t)−E0 +
∫∫

[0,t]×D2
|u×�u|2 dt = Cφt +Mφ(t) (3.35)

Mφ being a martingale, and Cφ a positive constant, but note that (3.35) is not sufficient to obtain uniform boundedness
of 1

t
E

∫ t

0 E(s)ds.

Closing remark 2. As already mentioned in the introduction, it is not expected that the pre-blow-up sets remain open
if we release the 1-corotational symmetry assumption. Consider maps with two degrees of freedom: ug,h(t, x) :=
(cosg sinh, sing sinh, cosh) where x = (r cos θ, r sin θ), g = g(t, r, θ) and h = h(t, r, θ). Putting ug,h in (SHMF),
then we obtain the following parabolic system:{

dg = (∂rrg + ∂rg
r

+ ∂θθ g

r2 + 2
tanh (∂rg∂rh+ ∂θ g∂θ h

r2 ))dt + 1
sinh ◦ dw1

dh= (∂rrh+ ∂rh
r

+ ∂θθ h

r2 − (∂rg
2 + ∂θ g

2

r2 ) sin 2h/2)dt + dw2,
(3.36)

where w1(t, r, θ),w2(t, r, θ) are independent.
The above conjecture gives some indication that blow-up phenomenon should not happen for (3.36), even if u is 1-

equivariant, that is g(t, r, θ)= θ + g̃(t, r) and where, in order to preserve this symmetry, we would take wj =wj(t, r)

for j = 1,2. Non-constant g̃(t, r) are shown in [34] to stabilize the solutions of the Heisenberg equation, which is
related to the fact that the gyromagnetic term u×�u makes the solution turn around the vertical axis k ≡ (0,0,1).
This necessary extra degree of freedom also appears when taking the full noise term �u

sinh ◦ dw1 +�u ◦ dw2 in the
equation. For this reason, we believe that finite-time blow-up for general solutions of (SHMF) is a zero-probability
event.

Appendix A: Complements in the proof of Theorem 1

A.1. Self-adjointness of A

Let (A1,D(A1)) be the unbounded linear operator defined by the operation ∂rr + ( 1
r
∂r − 1

r2 ) on the domain

D(A1) :=
{
f ∈ C∞(I ;R), f (0)= f (1)= 0

}
.
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For f ∈D(A1), the term “( 1
r
∂r − 1

r2 )f ” which should be understood in distributional sense over the interval I \ {0},
is well defined by the fact that for r in (0,1]:(

∂rf (r)

r
− f (r)

r2

)
= 1

r
f ′(0)− 1

r

(
lim
r→0

f (r)

r

)
+ g(r)≡ g(r),

where from Taylor Formula the remainder g belongs to H .
By [44, Theorem X.39], since A1 is symmetric (this follows by (1.24)), and since linear combinations of eigenval-

ues are dense in H (the Bessel functions are smooth), it is essentially self-adjoint.
Now, let fn,n≥ 0, f , g in H such that fn → f and Afn → g. Note that Afn also converges to Af as a distribution

in D ′(0,1), hence Af ≡ g ∈H . Owing to (1.30)–(1.31), it follows that we have also∫
I

[
(∂rrf )2 +

(
1

r
∂rf − f

r2

)2]
r dr <∞,

hence f ∈D(A) (continuity follows from Remark 1.3). This shows that (Ā1,D(Ā1))⊂ (A,D(A)).
Conversely, if f belongs to D(A), consider the sequence fn := f̃ ∗ ρn|I , where f̃ is as in (2.21), and ρn ∈

C∞
0 (−1,1) is an even approximation of the Dirac delta. From the same computations as in (2.24)–(2.27), we have

fn(0)≡
∫
[−1,1]

f̃
(
r ′
)
ρn

(−r ′
)
r ′ dr ′ = 0, and similarly fn(1)= 0,

(this holds because ρn is even, whereas we extend f in a skew-symmetric way) hence fn ∈D(A). Moreover fn → f

in H , and since Afn = Ãf ∗ ρn it follows that we have also

Afn →Af in H.

Hence the opposite inclusion is also true, so that (A,D(A))≡ (Ā1,D(Ā1)) is self-adjoint.

A.2. Higher regularity

Local solvability
Take 2 < β < 4, β ′ > β − 1, let h0 ∈ Vβ and assume that φ ∈ L2(H ;Vβ ′). By the same argument as above, we can
fix z ∈ C([0, T∗];Vβ) with z(0) = 0, and argue pathwise. Denote by (h, τβ−2), the maximal solution obtained in
Section 3, which therefore belongs to C([0, τβ−2);Vβ). We aim to find an a priori bound on ‖h‖T ,β guaranteeing
existence during a positive time. Write for 0 ≤ t < τβ−2:

h(t)= S(t)h0 +
∫ t

0
(−A)δS(t − s)

[
(−A)−1−δ(−Abh)

]
ds + z(t), (A.1)

where δ := (β − 2)/2 ∈ (0,1), and using (2.4), we obtain the bound |h(t)|β ≤ |S(t)h0|β + ∫ t

0 (t − s)−δ|Abh|H ds +
|z(t)|β , provided all terms are finite. Therefore, there remains to evaluate the term |Abv|H . Direct computations lead
to

Ab(r,h) = 1 − cos 2h

r2
∂rrh

+ 1 − cos 2h

r3
∂rh− 6h− 3 sin 2h

2r4

+ 2 sin 2h

r2
(∂rh)

2 + 6h− 3 sin 2h

r4
− 4(1 − cos 2h)

r3
∂rh,

where, due to compensations, each line of the right hand side must be treated separately. Using the triangle inequality,
we write for h ∈ Vβ , |Ab(r,h)|H ≤ I + II + III, and deal with each term separately. For the sake of clarity, from now
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until the end of the proof, we use the notation T1(h) � T2(h) if two terms involving h ∈ Vβ are comparable up to a
multiplicative constant that does not depend on h.

In the sequel, we fix an arbitrary ε > 0. Using the bound |G(x)| ≤ c|x|2, x ∈ R, where G : x ∈ R → 1 − cos(2x),
Remark 1.2, and Lemma 2.1(i) in the case ν = 1, p = ∞, the first term satisfies I � |h

r
|2L∞|∂rrh|H � |h|22+ε |h|2,

whereas for the second term we have:

II �
∣∣∣∣h2

r2

(
∂rh

r
− h

r2

)∣∣∣∣
H

+
∣∣∣∣1 − cos 2h− 2h2

r3
∂rh− 3

2

(
2h− sin 2h− (4/3)h3

r4

)∣∣∣∣
H

= II1 + II2.

Using Lemma 2.1(i) with ν = 1, p = ∞, and Remark 1.2, there holds II1 � |h/r|2L∞|∂rh/r − h/r2|H � |h|22+ε |h|2.
Moreover, by the classical inequalities |1 − cos 2x − 2x2| ≤ cx4, |2x − sin 2x − (4/3)x3| ≤ c|x|5 for x ∈ R, Hölder
inequality, and Lemma 2.1(i) with (ν,p) = (3/4,40/3), and then (ii) with p = 5 (resp. (i) with (ν,p) = (4/5,10)),
the following bound is obtained:

II2 �
∣∣∣∣h4

r3
∂rh

∣∣∣∣
H

+
∣∣∣∣h5

r4

∣∣∣∣
H

�
∣∣∣∣ h

r3/4

∣∣∣∣4
L

40/3
r dr

|∂rh|L5
r dr

+
∣∣∣∣ h

r4/5

∣∣∣∣5
L10
r dr

� |h|58/5+ε .

The bound on III is obtained in a similar way. We write that III ≤ III1 + III2, with

III2 =
∣∣∣∣2 sin 2h− 4h

r2
(∂rh)

2 + 3

(
2h− sin 2h− (4/3)h3

r4

)
− 4

(
1 − cos 2h− 2h2

r3

)
∂rh

∣∣∣∣
H

�
∣∣∣∣ h

r2/3

∣∣∣∣3
L30
r dr

|∂rh|2L5
r dr

+
∣∣∣∣ h

r4/5

∣∣∣∣5
L10
r dr

+
∣∣∣∣ h

r3/4

∣∣∣∣4
L

40/3
r dr

|∂rh|L5
r dr

which is bounded by c|h|58/5+ε , by the Sobolev embeddings of Remark 1.3. For the first term III1 = |(h/r)∂rh(∂rh/r−
h/r2)+ h2/r2(h/r2 − ∂rh/r)|H , we use Remark 1.2 and Lemma 2.1(i) with (ν,p)= (1,∞). We finally get:

III1 �
∣∣∣∣hr

∣∣∣∣
L∞

∣∣∣∣∂rhr − h

r2

∣∣∣∣
H

(
|∂rh|L∞ +

∣∣∣∣hr
∣∣∣∣
L∞

)
� |h|2|h|22+ε .

Going back to (A.1), and fixing ε > 0, we see that for some constant cε > 0:

∣∣h(t)∣∣
β
≤ c|h0|β + cε

∫ t

0
(t − s)−δg(s)ds + ‖z‖τβ−2,β , t ∈ [0, τβ−2), (A.2)

where we let

g(s) := ∣∣h(s)∣∣58/5+ε
+ ∣∣h(s)∣∣22+ε

∣∣h(s)∣∣2. (A.3)

By a classical generalization of Gronwall Lemma, (A.2) implies existence in Vβ for some positive time 0 < τβ ≤
τβ−2. By Remark 1.2, existence in Hβ follows.

Propagation of regularity
Since the integrand g(s) defined in (A.3) does not depend on |h(s)|β as soon as β ≥ 2 + ε, we see that h can always
be extended continuously in Vβ after t provided |h(t)|2+ε <∞. Therefore:

τ 2+ε = τβ for every 2 + ε ≤ β < 4, (A.4)

and every ε > 0. Recalling that |uh|Hβ , |h|Vβ are equivalent quantities (see Remark 1.2), this finishes the proof of
Theorem 1.
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Appendix B: Proof of Lemma 2.2: Continuous dependence of the solution h(h0, z) with respect to its
arguments

The following proof is adapted from that of [15,16]. In the sequel, we fix β ∈ (4/3,2], h0 ∈ Vβ and z ∈ C([0, T ];Vβ).
For R,T > 0, we denote by BR

T (resp. BR) the ball of radius R, centered at z in C([0, T ];Vβ) (resp. h0 in Vβ ).
If (h1, ζ ) ∈ Vβ × C([0, T ];Vβ), we will denote by v(h1, ζ, ·) the corresponding (maximal) mild solution of (1.21),
obtained by reiteration of the fixed point argument for �h1,ζ,T (see Section 3). We also denote by τ(h1, ζ ) its existence
time.

Proof of Lemma 2.2. Assume that τ(h0, z) > T , and let

R := ∥∥v(h0, z)
∥∥
T ,β

∨ ‖z‖T ,β + 1, (B.1)

define T∗(R) as in (2.16), and set N :=  T/T∗!. We prove the result by induction. For each k ∈ {1, . . . ,N} denote by
(Hk) the sentence:

(Hk). “There exists δk > 0, such that if (h0, z) ∈ Bδk ×B
δk
T , then: τ(h0, z) > kT∗, and the map (h0, z) ∈ Bδk ×B

δk
kT∗ →

v(h0, z, kT∗) is continuous.”

The case k = 1 has been proved in Section 3: it suffices to take δ1 > 0 depending on R only, so that (2.17) holds
for all (h1, ζ ) ∈ BR ×BR

T∗ .
Inductive step. Let k ≥ 1 and assume (H )0≤ ≤k . In particular (Hk) implies the existence of δ > 0, such that

|v(h1, ζ, kT∗)− v(h0, z, kT∗)|β < δ1 for every (h1, ζ ) ∈ Bδ ×Bδ
kT∗ . For t ∈ [0, T∗], denoting by x(t) := z(t + kT∗)−

S(t)z(kT∗), by ξ(t) := ζ(t + kT∗) − S(t)ζ(kT∗), and assuming without loss of generality that δ < δ1/2, we have
‖ξ − x‖T∗,β < δ1. By (H1), this implies that v(h1, ζ, ·) is at least defined up to (k + 1)T ∗. Moreover, by uniqueness:

v
(
h1, ζ, (k + 1)T∗

)= v
(
v(h1, ζ, kT∗), ξ, T∗

)
. (B.2)

Still by (H1), (B.2) defines a continuous map with respect to (h1, ζ ) ∈ Bδk∧δ ×B
δk∧δ
(k+1)T∗ . This proves (Hk+1), letting

δk+1 := δk ∧ δ.
In particular, (HN) is true, which implies the proposition when β ∈ (4/3,2]. Higher regularity is standard. �

Appendix C: Proof of the comparison principle

For J := [0, r1] ⊂ I , we denote the parabolic boundary by 	κ := {0} × J ∪ [0, κ) × ∂J . To avoid cumbersome
computations, when f ∈H we denote by

∫
J
f := ∫

J
f (r)r dr , and fixing z as in (3.3) we write

qf (t, r) := f (t, r)+ p
(
z(t, r)+ f (t, r)

)
, (t, r) ∈ [0, κ)× J.

Take now 0 < T < κ , and let t → ζ(t, ·) ∈ C([0, T )× [0, r1]) be a non-negative map such that ζ(t, r) vanishes for
(t, r) ∈	T . Using i and ii, we obtain

−
∫ t

0

∫
J

(f − g)∂t ζ ≤−
∫ t

0

∫
J

∂r (f − g)∂rζ + (qf − qg)ζ

r2
. (C.1)

Recall that if ϕ ∈ V2, and ψ ∈ V1, there holds the integration by parts formula (1.24). Due to (3.3)–(3.4), and
because of f,g ∈ C([0, T ];V1), then the right hand side of (C.1) is bounded by c‖f − g‖T ,1‖ζ‖T ,1. By density (C.1)
can thus be extended to the larger class of test functions

T := {
ζ : [0, T ] × J →R+, ζ |	T

= 0 and ‖ζ‖T ,1 + ‖∂t ζ‖T ,0 <∞}
.
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Denote by [x]+ := max{x,0}, and define ζ(t, r) := [f − g]+(t, r). The fact that f,g ∈ C1([0, T ];H) implies

d

dt

∫
J

[f − g]2+ = 2
∫
J

∂t (f − g)ζ, (C.2)

which is summable on [0, T ]. Noticing furthermore that ζ ∈ T (note that f ∈ V1 ⇒ [f ]+ ∈ V1), applying (C.1) to ζ ,
(C.2) and integrating by parts gives:

1

2

∫
J

[
f (t)− g(t)

]2
+ ≤−

∫∫
[0,t]×J

1f≥g

(
∂r (f − g)

)2 + [f − g]+(qf − qg)

r2

≤−
∫∫

[0,t]×J

[f − g]+(qf − qg)

r2
, (C.3)

where we have used the fact that the weak derivative of x ∈ R → [x]+, is the map x ∈ R → 1R+(x). By (3.3)–(3.4),
and since β > 1 (implying the uniform continuity of z, f , g on compacts, see Remark 1.3), we can find ε(t, r)

depending on p′′(0), f , g, such that ε(t, r)→ 0 as r → 0, uniformly in t ∈ [0, T ], and such that qf (t, r)− qg(t, r)=
(1 + p′(0)+ ε(t, r))(f (t, r)− g(t, r)). Since p′(0) >−1 and f |	 ≤ g|	 , this yields the existence of r̄ = r̄(T ) such
that:

[f − g]+(qf − qg)≥ 0 for a.e. (t, r) ∈ [0, T ] × [0, r̄]. (C.4)

Finally we write for all t ∈ [0, T ]:∫
J

[
f (t)− g(t)

]2
+ ≤−

∫∫
[0,t]×[0,r̄]

[f − g]+(qf − qg)

r2
+ 1

2r̄2

∫∫
[0,t]×[r̄ ,1]

[f − g]+|qf − qg|,

which by (C.4) and (3.4), is bounded by K

r̄2

∫∫
[0,t]×J

[f − g]2+. We finally obtain |[f − g]+|2H (t) ≤ K

r̄2

∫ t

0 |[f −
g]+|2H (s)ds for t ∈ [0, T ], and [f − g]+|[0,T ]×J ≡ 0 follows by Gronwall Lemma. Reiterating on every subinter-
val [0, T ] ⊂ [0, κ) gives f ≤ g on [0, κ).
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[4] L. Baňas, Z. Brzeźniak, M. Neklyudov and A. Prohl. A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–

Gilbert equation. IMA J. Numer. Anal. 34 (2) (2013) 502–549. MR3194798
[5] D. Berkov. Magnetization dynamics including thermal fluctuations. In Handbook of Magnetism and Advanced Magnetic Materials 795–823.

H. Kronmüller and S. Parkin (Eds) 2. Wiley Online Library, 2007.
[6] M. Bertsch, R. Dal Passo and R. van der Hout. Nonuniqueness for the heat flow of harmonic maps on the disk. Arch. Ration. Mech. Anal. 161

(2) (2002) 93–112. MR1870959
[7] H.-B. Braun. Stochastic magnetization dynamics in magnetic nanostructures: From Neel–Brown to soliton-antisoliton creation. In Interna-

tional Symposium on Structure and Dynamics of Heterogeneous Systems: From Atoms, Molecules and Clusters in Complex Environment to
Thin Films and Multilayers 274. Duisburg, Germany, 24–26 February 1999. World Scientific, 2000.

http://www.ams.org/mathscinet-getitem?mr=2424078
http://www.ams.org/mathscinet-getitem?mr=3255230
http://www.ams.org/mathscinet-getitem?mr=3157451
http://www.ams.org/mathscinet-getitem?mr=3194798
http://www.ams.org/mathscinet-getitem?mr=1870959


Finite-time singularity of the stochastic harmonic map flow 1041

[8] W. F. Brown. Micromagnetics. Interscience, New York, 1963.
[9] W. F. Brown. Thermal fluctuations of a single-domain particle. Phys. Rev. 130 (5) (1963) 1677.
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