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Abstract. Let Mn be the length (number of steps) of the loop-erasure of a simple random walk up to the first exit from a ball of
radius n centered at its starting point. It is shown in (Ann. Probab. 46 (2) (2018) 687–774) that there exists β ∈ (1, 5

3 ] such that

E(Mn) is of order nβ in 3 dimensions. In the present article, we show that the Hausdorff dimension of the scaling limit of the
loop-erased random walk in 3 dimensions is equal to β almost surely.

Résumé. Soit Mn la longueur (nombre de pas) d’une marche aléatoire simple à boucles effacées considérée jusqu’à la première
sortie d’une boule de rayon n centrée en son point de départ. Il est démontré dans (Ann. Probab. 46 (2) (2018) 687–774) qu’il existe
β ∈ (1, 5

3 ] tel que E(Mn) est d’ordre nβ en dimension 3. Dans le présent article, nous montrons que la dimension de Hausdorff de
la limite d’échelle de la marche aléatoire effacée en dimension 3 est égale à β presque sûrement.
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1. Introduction

1.1. Introduction

Loop-erased random walk (LERW) is a simple path obtained by erasing all loops from a random walk path chrono-
logically (see Section 2.1 for the precise definition), which was originally introduced in [7]. In this article, we study
the Hausdorff dimension of the scaling limit of LERW in three dimensions.

It is known that the scaling limit of LERW in Z
d exists for every d . Let S be the simple random walk in Z

d started

at the origin and τn be the first exit time from a ball of radius n. We write LEWn = LE(S[0,τn])
n

for the rescaled loop-
erased random walk obtained by multiplying LERW up to τn by 1

n
(see Section 2.1 for the definition of LE). We think

of LEWn as a random element of the metric space of compact subsets in the closed unit ball in R
d endowed with the

Hausdorff distance. Then LEWn converges weakly to a d-dimensional Brownian motion for d ≥ 4 (Theorem 7.7.6 of
[8]), and converges weakly to SLE2 ([13,17]) for d = 2 (actually, even in a stronger sense). For d = 3, the sequence
LEW2n is Cauchy in the metric space and it converges weakly to a random compact subset in the closed unit ball in R

3,
see [6]. We denote the weak convergence limit by K in d = 3 and call it the scaling limit of LERW in 3 dimensions.
It is also known that K is invariant under rotations and dilations, see [6].

While the scaling limit of LERW for d ≥ 4 and d = 2 are well-studied, little is known about K when d = 3.
Recently some topological properties of K were studied in [16]. In [16], it was proved that K is a simple path almost
surely, and that the random set obtained by adding the loops of the independent Brownian loop soup of parameter 1
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that meet K (see [14] for the Brownian loop soup) to K, has the same distribution as the trace of Brownian motion (see
Section 2.3 for details). Furthermore, bounds on the Hausdorff dimension of K were also derived in [16]. Namely, one
has

2 − ξ ≤ dimH(K) ≤ β, almost surely, (1.1)

where ξ ∈ ( 1
2 ,1) is the intersection exponent for three dimensional Brownian motion (see [9] for ξ ) and β ∈ (1, 5

3 ] is
the growth exponent for LERW in d = 3, i.e., if we write Mn for the length (the number of steps) of LE(S[0, τn]),
then [18] shows that the following limit exists in 3 dimensions:

lim
n→∞

logE(Mn)

logn
= β. (1.2)

In particular, we have 1 < dimH(K) ≤ 5
3 almost surely.

In the present article, we will show that dimH(K) ≥ β , i.e., the main result of the article is the following.

Theorem 1.1. Let d = 3. We have

dimH(K) = β, almost surely. (1.3)

The exact value of β is not known or even conjectured. Numerical simulations suggest that β = 1.62 ± 0.01, see
[4,19]. The best rigorous bounds are β ∈ (1, 5

3 ], see [11].
The Hausdorff dimension of the scaling limit of LERW is equal to 2 for d ≥ 4 (Theorem 7.7.6 of [8]), and is equal

to 5
4 for d = 2 ([2,13]) almost surely. The exponent 5

4 is called the growth exponent for LERW for d = 2, that is, it is

known that E(Mn) is of order n
5
4 in 2 dimensions (see [5,15] and [12]).

1.2. Some words about the proof

In order to show that the Hausdorff dimension of K is bounded below by β , we will use a standard technique referred
to as Frostman’s lemma (see Lemma 5.1). We explain how to apply it to our situation here.

By Frostman’s lemma, we need to construct a positive (random) measure μ supported on K such that its (β − δ)-
energy Iβ−δ(μ) (see Lemma 5.1 for the β-energy) is finite with high probability for any δ > 0.

With this in mind, we partition the unit ball D into a collection of ε-cubes formed by bx = ε
∏3

i=1[xi, xi + 1]
for x = (x1, x2, x3) ∈ Z

3. We first want to construct a random measure με which approximates μ as follows. We
introduce a (random) measure με whose density, with respect to Lebesgue measure, is comparable to 1

P(K∩bx �=∅)
on

each ε-cube bx with 1
3 ≤ |εx| ≤ 2

3 such that K hits bx and assigns measure zero elsewhere (see Section 5.1 for the
precise definition of με ). Then the limit of the support of με as ε → 0 is contained in K almost surely. Therefore we
need to show that for every δ > 0 and r > 0 there exist constants cr > 0,Cδ,r < ∞, which do not depend on ε, such
that

P
(
Iβ−δ(με) ≤ Cδ,r

) ≥ 1 − r, (1.4)

P
(
με(D) ≥ cr

) ≥ 1 − r. (1.5)

for all ε > 0. Once (1.4) and (1.5) are proved, it follows that there exists some subsequential weak limit measure μ of
the με such that μ is a positive measure satisfying that its support is contained in K and the (β − δ)-energy is finite
with probability at least 1 − 2r . Using Frostman’s lemma, we get dimH(K) ≥ β − δ with probability ≥ 1 − 2r , and
Theorem 1.1 is proved.

let μ be any weak limit of the με . Then the measure μ is a positive measure satisfying that its support is contained
in K and the (β − δ)-energy is finite with probability at least 1− r . Using Frostman’s lemma, we get dimH(K) ≥ β − δ

with probability ≥ 1 − r , and Theorem 1.1 is proved.
Next we explain how to prove (1.4) and (1.5). For (1.4), by Markov’s inequality, it suffices to show that the first

moment of Iβ−δ(με) is bounded above by some constant Cδ uniformly in ε. In order to estimate the first moment, by
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definition of με , we need to give an upper bound of the probability that K hits two distinct ε-cubes bx and by with 1
3 ≤

|εx|, |εy| ≤ 2
3 (see the proof of Lemma 5.2). Such a bound will be given in the important Theorem 3.1. Theorem 3.1

roughly claims that P 0(K∩bx �=∅,K∩by �=∅) is bounded above by CP 0(K∩bx �=∅)P εx(K∩by �=∅), where P z

denotes the probability measure for K started at z. Since the domain Markov property of K has not been established
up to now, we will consider the corresponding probability for LERW as follows. As LEW2k converges to K by [6],
we can couple them on the same probability space such that the Hausdorff distance between LEWn and K is bounded
above by ε2 for large n = 2k with high probability. Then the problem boils down to estimates of P(LE(S[0, τn]) ∩
nbx �= ∅,LE(S[0, τn]) ∩ nby �= ∅). It is crucial to control the dependence of these two events with the help of the
domain Markov property for LERW (see Lemma 2.3 for the domain Markov property). This key step will be done
in Theorem 3.1. In Theorem 3.1, we will show that the probability is bounded above by CP(LE(S[0, τn]) ∩ nbx �=
∅)P εnx(LE(S[0, τn]) ∩ nby �= ∅), and using some results derived in [18], we will derive a bound of this product in
terms of escape probabilities defined as follows. Let R1 ≤ R2 and let S1, S2 be two independent simple random walks
started at the origin. We write τ i

R for the first time that Si hits the boundary of the ball of radius R. We define the
escape probability Es(R1,R2) by

Es(R1,R2) = P1 ⊗ P2
(
LE

(
S1[0, τ 1

R2

])[s, u] ∩ S2[0, τ 2
R2

] =∅
)
,

where u is the length of LE(S1[0, τ 1
R2

]), and s is its last visit to the ball of radius R1 before time u (see Section 2.2 for
escape probabilities). In order for z to be in LE(S[0, τn]), by definition of LE (see Definition 2.1), the following two
conditions are required: (i) S hits z before τn. (ii) The loop-erasure of S from the origin to the last visit of z does not
intersect the remaining part of S from z to S(τn). Reversing a path, the probability for z to be in the LERW is equal
to the probability that with S1(0) = S2(0) = z,

• S1 hits the origin before exiting the ball of radius n,
• The loop-erasure of S1 from z to the last visit of the origin does not intersect S2 up to exiting the ball.

It turns out that this probability is comparable to n−1 Es(0, n) if n
3 ≤ |z| ≤ 2n

3 . Furthermore, a similar consideration
gives that the probability of LE(S[0, τn]) hitting nbx is comparable to ε Es(εn,n), which leads that the probability
of K hitting bx is also comparable to ε Es(εn,n). (In fact, we will set 1

ε Es(εn,n)
on each bx hit by K for the density

of με , where we chose n as an arbitrary large integer so that the distance between LEWn and K is small with high
probability as explained above. We also point out that for all large n, Es(εn,n) is of order εα+o(1) for some constant
α, see Theorem 2.7.) Finally Theorem 3.1 concludes that

P(K ∩ bx �=∅,K ∩ by �=∅) ≤ Cε

|x − y| Es(εn,n)Es
(
εn, εn|x − y|), (1.6)

which is a new result to our knowledge. Combining (1.6) with estimates for the escape probabilities obtained in [18]
(see Section 2.2), we get (1.4).

Next we consider (1.5). The definition of με immediately gives that με(D) is equal to ε2Y ε

Es(εn,n)
, where Y ε stands

for the number of ε-cubes bx with 1
3 ≤ |εx| ≤ 2

3 such that K hits bx . (Recall that we choose n large enough so that
the Hausdorff distance between LEWn and K is smaller than ε2 with high probability in the coupling explained as
above.) Therefore, in order to prove (1.5), it suffices to show that for all r > 0 there exists cr > 0 such that

P
(
Y ε ≥ crε

−2 Es(εn,n)
) ≥ 1 − r, (1.7)

for all ε > 0.
Since the probability of K hitting bx is comparable to ε Es(εn,n), the first moment of Y ε is of order ε−2 Es(εn,n).

Using (1.6), it turns out that the second moment of Y ε is comparable to the square of its first moment. So the second
moment method gives that Y ε is bounded below by cε−2 Es(εn,n) with positive probability for some c > 0 (Corol-
lary 3.11). However this is not enough to prove (1.7) and we need more careful considerations that we will explain
below.

In order to prove (1.7), again we use the coupling of K and LEWn explained as above. Then (1.7) boils down to
the corresponding estimates for LERW as follows. Let Y ε

n be the number of εn-cubes nbx with 1
3 ≤ |εx| ≤ 2

3 such that
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LE(S[0, τn]) hits nbx . Then (1.7) is reduced to proving that for all r > 0 there exists cr > 0 such that

P
(
Y ε

n ≥ crε
−2 Es(εn,n)

) ≥ 1 − r. (1.8)

We will prove (1.8) in Proposition 4.5 using Markovian-type “iteration arguments” that we will briefly explain
here. In order to prove (1.8), we consider N cubes Ai (i = 1, . . . ,N ) of side length n

3 + in
3N

. We are interested in a
subpath γi of γ := LE(S[0, τn]) which consists of γ between its first visit to ∂Ai and that to ∂Ai+1 (see the beginning
of Section 4 for the precise definition of γi ). We want to show that for all r > 0, by choosing N = Nr and cr suitably,
the probability that at least one of γi hits crε

−2 Es(εn,n) εn-cubes is bigger than 1 − r . To achieve this, we prove
in Lemma 4.4 that given γ1, . . . , γi the probability that γi+1 hits crε

−2 Es(εn,n) cubes is bigger than some universal
constant c > 0 for each i. This enables us to show that the probability in (1.8) is bigger than 1 − (1 − c)N and finish
the proof of (1.8) by taking N such that (1 − c)N < r . To establish Lemma 4.4, it is crucial to deal with some sort
of independence of γi . The domain Markov property (see Lemma 2.3) tells that we need to study a random walk
conditioned not to intersect γ1, . . . , γi . We will study such a conditioned random walk in Section 4.1. Then we will
prove Lemma 4.4 and (1.7) by using results derived there in Section 4.2. To our knowledge the tail estimate of Y ε

as in (1.7) is also new. This iteration argument is based on the same spirit of the proof of Theorem 6.7 of [1] and
Theorem 8.2.6 of [18] where exponential lower tail bounds of Mn were established for d = 2 ([1]) and d = 3 ([18]).

Remark 1.2. As we discussed above, E(Y ε) is comparable to ε−2 Es(εn,n), which is of order ε−(2−α)+o(1) for some
exponent α ∈ [ 1

3 ,1) (see Theorem 2.7). It turns out that β in Theorem 1.1 is equal to 2 − α.

Remark 1.3. It is crucial that both the upper bound in the right hand side of (1.6) and the lower bound of Y ε are given
in terms of the escape probabilities. Since Es(εn,n) = εα+o(1) (see Theorem 2.7), one may suppose that in order to
prove Theorem 1.1, it suffices to show that for every δ > 0, Y ε ≥ cε−(2−α)+δ with high probability instead of proving
(1.7). However this is not the case. Energy estimates as in Lemma 5.2 do not work if we rely on only such estimates
without using the escape probabilities.

1.3. Structure of the paper

The organization of the paper is as follows. In the next subsection, we will give a list of notation used throughout the
paper.

In Section 2, we will review known facts about LERW. We explain some basic properties of LERW in Section 2.1.
In order to show Theorem 1.1, the probability that an LERW and an independent simple random walk do not intersect
up to exiting a large ball, which is referred to as an escape probability, is a key tool. That probability will be considered
in Section 2.2. The precise definition and some properties of K will be given in Section 2.3.

One of the key results in the paper is Theorem 3.1, which gives an upper bound of the probability that K hits two
small boxes. The proof of Theorem 3.1 will be given in Section 3.1. Using Theorem 3.1, we study the number of small
boxes hit by K in Section 3.2. By the second moment method, we give a lower bound of the number of those boxes
hit by K in Corollary 3.11.

To establish (1.3) almost surely, we need to show (1.7) which is an improvement of Corollary 3.11 in Section 4.
Following iteration arguments used in the proof of Theorem 6.7 [1] and Proposition 8.2.5 of [18], we study a random
walk conditioned not to intersect a given simple path in Section 4.1. Using estimates derived there, we will prove (1.7)
and (1.5) in Section 4.2.

We will prove (1.4) in Section 5.1. Finally, using Frostman’s lemma (see Lemma 5.1), we will prove Theorem 1.1
in Section 5.2.

1.4. Notation

In this subsection, we will give some definitions which will be used throughout the paper.
Let λ = [λ(0), λ(1), . . . , λ(m)] be a sequence of points in Z

d . We call it a path if |λ(j − 1) − λ(j)| = 1 for all j .
In that case we say λ has a length m and denote the length of λ by lenλ. We call λ a simple path if λ(i) �= λ(j) for all
i �= j .
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We use | · | for the Euclid distance in R
d . For n ≥ 0 and z ∈ Z

d , define Bz,n = B(z,n) := {x ∈ Z
d | |x − z| < n}.

If z = 0, we write B0,n = B(0, n) = B(n). We write D = {x ∈ R
d | |x| < 1} and D for its closure. For r > 0, let

Dr = {x ∈ R
d | |x| < r} and Dr for its closure.

For a subset A ⊂ Z
d , we let ∂A = {x /∈ A | there exists y ∈ A such that |x − y| = 1} and ∂iA = {x ∈ A |

there exists y /∈ A such that |x − y| = 1}. We write A := A ∪ ∂A. Given a subset A ⊂ Z
d and r > 0, we write

rA := {ry | y ∈ A}.
Throughout the paper, S, S1, S2, S3 and S4 denote independent simple random walks on Z

d . For the probability
law and the expectation of S started at z, we use P z and Ez respectively. If z = 0, we write P 0 = P and E0 = E. For
the probability law and the expectation of Si started at z, we use P z

i and Ez
i respectively. If z = 0, we write P 0

i = Pi

and E0
i = Ei .

Given n ≥ 1, let τn := inf{k | S(k) /∈ B(n)} and τ i
n := inf{k | Si(k) /∈ B(n)}. For z ∈ Z

d , we write Tz,n := inf{k |
S(k) ∈ ∂B(z,n)} and T i

z,n := inf{k | Si(k) ∈ ∂B(z,n)}.
For a subset A ⊂ Z

d , define Green’s function in A by G(x,y,A) = GA(x, y) = Ex(
∑τ−1

j=0 1{S(j) = y}) for x, y ∈
A, where τ = inf{t | S(t) ∈ ∂A}.

We use c,C,C1, · · · to denote arbitrary positive constants which may change from line to line. If a constant is to
depend on some other quantity, this will be made explicit. For example, if C depends on δ, we write Cδ . To avoid
complication of notation, we do not use �r (the largest integer ≤ r) even though it is necessary to carry it.

2. Loop-erased random walk

In this section, we will review some known facts about loop-erased random walk (LERW). In Section 2.1, we begin
with the definition of loop-erasure and LERW. Then we state the time reversibility and the domain Markov property
of LERW. All results in Section 2.1 hold for LERW in Z

d (even in any graphs).
As we discussed in Section 1.2, the probability that an LERW and an independent simple random walk do not

intersect up to exiting a large ball, which is referred to as escape probability, is a key tool in the paper. We will define
and consider the escape probability for LERW in Z

3 in Section 2.2. Most of estimates for escape probabilities stated
there are results derived in [18], and those results will be repeatedly used throughout the paper.

We will explain some known results about the scaling limit of LERW in 3 dimensions in Section 2.3.

2.1. Basic properties

In this subsection, we first define the loop-erasure of a given path in Definition 2.1. LERW is a (random) simple
path obtained by loop-erasing from a random walk. It satisfies the time reversibility (see Lemma 2.2). LERW is
not a Markov process by definition, but it satisfies the domain Markov property (see Lemma 2.3). Lemma 2.2 and
Lemma 2.3 hold for LERW in Z

d for all d .
We begin with the definition of loop-erasure of a path.

Definition 2.1. Given a path λ = [λ(0), λ(1), . . . , λ(m)] ⊂ Z
d , define its loop-erasure LE(λ) as follows. Let

s0 := max
{
t | λ(t) = λ(0)

}
, (2.1)

and for i ≥ 1, let

si := max
{
t | λ(t) = λ(si−1 + 1)

}
. (2.2)

We write n = min{i | si = m}. Then define LE(λ) by

LE(λ) = [
λ(s0), λ(s1), . . . , λ(sn)

]
. (2.3)

If λ = [λ(0), λ(1), . . .] ⊂ Z
d is an infinite path satisfying that {k ≥ 0 | λ(k) = λ(n)} is finite for each n, then we

define LE(λ) similarly.
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Throughout the paper, we are interested in the loop-erasure of random walks running until some stopping time, the
loop-erased random walk.

For two paths λ1 = [λ1(0), λ1(1), . . . , λ1(m1)] and λ2 = [λ2(0), λ2(1), . . . , λ2(m2)] in Z
d with λ1(m1) = λ2(0),

we write

λ1 + λ2 := [
λ1(0), λ1(1), . . . , λ1(m1), λ2(1), . . . , λ2(m2)

]
. (2.4)

We will use repeatedly the following notation for LE(λ1 + λ2). Let u = min{t | LE(λ1)(t) ∈ λ2} and let s = max{t |
λ2(t) = LE(λ1)(u)}. Define

LE(1) = LE1(λ1, λ2) := LE(λ1)[0, u], LE(2) = LE2(λ1, λ2) := LE
(
λ2[s,m2]

)
. (2.5)

Then it is easy to check that LE(λ1 + λ2) = LE(1) +LE(2).
For a path λ = [λ(0), λ(1), . . . , λ(m)] ⊂ Z

d , define its time reversal λR by λR := [λ(m),λ(m− 1), . . . , λ(0)]. Note
that in general, LE(λ) �= (LE(λR))R . However, as next lemma shows, the time reversal of LERW has same distribution
to the original LERW. Let �m be the set of paths of length m started at the origin.

Lemma 2.2 (Lemma 7.2.1 [8]). For each m ≥ 0, there exists a bijection T m : �m → �m such that for each λ ∈ �m,

LE(λ) = (
LE

((
T mλ

)R))R
. (2.6)

Moreover, it follows that λ and T mλ visit the same edges in the same directions with the same multiplicities.

Note that LERW is not a Markov process. However it satisfies the domain Markov property in the following sense.

Lemma 2.3 (Proposition 7.3.1 [8]). Let D ⊂ Z
d be a finite subset. Suppose that λi (i = 1,2) are simple paths of

length mi with λ1 ⊂ D, λ1(m1) = λ2(0). Suppose also that λ1 + λ2 is a simple path from λ1(0) terminated at ∂D. Let
Y be a random walk R started at λ2(0) conditioned on R[1, σR

D ] ∩ λ1 = ∅. Here σR
D = inf{t | R(t) /∈ D}. Then we

have

P λ1(0)
(
LE

(
S[0, σD]) = λ1 + λ2 | LE

(
S[0, σD])[0,m1] = λ1

) = P
(
LE

(
Y

[
0, σ Y

D

]) = λ2
)
, (2.7)

where σD (resp. σY
D ) is the first exit time from D for S (resp. Y ).

Suppose that S is the simple random walk started at the origin. Since S is transient for d ≥ 3, we can define the
infinite loop-erased random walk LE(S[0,∞)). Let R > 0. We write

γ = LE
(
S[0, τ4R]), γ ′ = LE

(
S[0,∞)

). (2.8)

Let

τ
γ

R = inf
{
k | γ (k) /∈ B(R)

}
, τ

γ ′
R = inf

{
k | γ ′(k) /∈ B(R)

}
. (2.9)

We write

�(R) = {
λ | P (

γ
[
0, τ

γ

R

] = λ
)
> 0

}
. (2.10)

for a set of simple paths which can be γ [0, τ
γ

R ] with positive probability.

It is clear that γ [0, τ
γ

R ] does not coincide with γ ′[0, τ
γ ′
R ]. However, the next proposition says that their distributions

are comparable.

Proposition 2.4 (Proposition 4.4 [15]). Let d ≥ 3. There exists c > 0 such that for all R > 0 and a simple path
λ ∈ �(R),

cP
(
γ
[
0, τ

γ

R

] = λ
) ≤ P

(
γ ′[0, τ

γ ′
R

] = λ
) ≤ 1

c
P

(
γ
[
0, τ

γ

R

] = λ
)
,
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where γ, γ ′, τ γ

R , τ
γ ′
R and �(R) are defined in (2.8), (2.9) and (2.10), respectively.

2.2. Escape probabilities

As we discussed in Section 1.2, the probability that an LERW and an independent simple random walk do not intersect
up to hitting the boundary of a large ball is a key ingredient in the present paper. Such a probability is called an escape
probability. The escape probability was studied in order to estimate the length of LERW for d = 2 in [1,15] and
for d = 3 in [18]. In this subsection, we will explain it. In this subsection we recall several results proved in [18].
Throughout this subsection, we will assume d = 3.

Definition 2.5. Let m < n. Suppose that S1 and S2 are independent simple random walks started at the origin on Z
3.

Define escape probabilities Es(n), Es(n) and Es(m,n) as follows: Let

Es(n) := P1 ⊗ P2
(
S1[1, τ 1

n

] ∩ LE
(
S2[0, τ 2

n

]) =∅
)
, (2.11)

i.e., Es(n) is the probability that a simple random walk up to exiting B(n) does not intersect the loop erasure of an
independent simple random walk up to exiting B(n). Let

Es(n) := P1 ⊗ P2
(
S1[1, τ 1

n

] ∩ η1
0,n

(
LE

(
S2[0, τ 2

4n

])) =∅
)
, (2.12)

where η1
z,n(λ) = λ[0, u] with u = inf{t | λ(t) ∈ ∂B(z,n)}. For Es(n), we first consider the loop erasure of a random

walk up to exiting B(4n), then we only look at the loop erasure from the origin to the first visit to ∂B(n). Es(n) is
the probability that this part of the loop erasure does not intersect an independent simple random walk up to exiting
B(n). Finally, let

Es(m,n) := P1 ⊗ P2
(
S1[1, τ 1

n

] ∩ η2
0,m,n

(
LE

(
S2[0, τ 2

n

])) =∅
)
, (2.13)

where η2
z,m,n(λ) = λ[s, u] with s = sup{t ≤ u | λ(t) ∈ ∂B(z,m)} (u was defined as above). For Es(m,n), we first

consider the loop erasure of a random walk up to exiting B(n), then we only look at the loop erasure after the last visit
to B(m). Es(m,n) is the probability that this part of the loop erasure does not intersect an independent simple random
walk up to exiting B(n).

In the next proposition we collect various relations between the escape probabilities on various scales.

Proposition 2.6 (Propositions 6.2.1, 6.2.2, and 6.2.4 [18]). Let d = 3. There exists a constant C < ∞ such that for
all l ≤ m ≤ n,

1

C
Es(n) ≤ Es(n) ≤ C Es(n),

1

C
Es

(
n′) ≤ Es(n) ≤ C Es

(
n′), for all n ≤ n′ ≤ 4n,

1

C
Es(n) ≤ Es(m)Es(m,n) ≤ C Es(n),

1

C
Es(l, n) ≤ Es(l,m)Es(m,n) ≤ C Es(l, n).

(2.14)

The next theorem deals with the rate of growth for Es(n) and Es(m,n) in d = 3.

Theorem 2.7 (Theorem 7.2.1 and Lemma 7.2.2 [18]). Let d = 3. There exists α ∈ [ 1
3 ,1) such that

lim
n→∞

log Es(n)

logn
= −α. (2.15)
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Furthermore, for all κ > 0 there exists cκ > 0 and nκ ∈N such that

cκ

(
n

m

)−α−κ

≤ Es(m,n) ≤ 1

cκ

(
n

m

)−α+κ

, (2.16)

for all nκ ≤ m ≤ n.

The next lemma gives bounds of the ratio of escape probabilities, which will be used repeatedly in the paper.

Lemma 2.8 (Lemma 7.2.3 [18]). Let d = 3. For all κ > 0, there exists Cκ < ∞ such that for all 1 ≤ m ≤ n,

mα+κ Es(m) ≤ Cκnα+κ Es(n). (2.17)

Furthermore, for l ≤ m, by dividing both sides above by Es(l) and using Proposition 2.6, we see that for all 1 ≤ l ≤
m ≤ n

mα+κ Es(l,m) ≤ C2Cκnα+κ Es(l, n), (2.18)

where C is a constant as in Proposition 2.6.

Let τn = inf{t | S(t) ∈ ∂B(n)} and let Mn = len LE(S[0, τn]). The next theorem relates the length of LERW with
the escape probability.

Theorem 2.9 (Theorem 8.1.4 and Proposition 8.1.5 [18]). Let d = 3. There exists a constant C < ∞ such that for
all n ≥ 1,

1

C
n2 Es(n) ≤ E(Mn) ≤ Cn2 Es(n). (2.19)

In particular, we have

lim
n→∞

logE(Mn)

logn
= 2 − α. (2.20)

In the rest of this subsection, we will give some extension of Theorem 6.1.5 [18] which is referred to as the
“separation lemma”. Let R ≥ 4, n ≥ 1 and Rn ≤ L ≤ 4Rn. We are interested in the following event.

FL,R,n := {
η2

0,n,Rn

(
LE

(
S1[0, τ 1

L

])) ∩ S2[0, τ 2
Rn

] =∅
}
, (2.21)

where η2 was defined right after (2.13) in Definition 2.5. Let

A+
R,n :=

{
x = (x1, x2, x3) ∈R

3
∣∣∣ x1 ≥ 2Rn

3

}
∪ B

(
3Rn

4

)
,

A−
R,n :=

{
x = (x1, x2, x3) ∈R

3
∣∣∣ x1 ≤ −2Rn

3

}
∪ B

(
3Rn

4

)
.

(2.22)

Define

SepL,R,n := {
η2

0,n,Rn

(
LE

(
S1[0, τ 1

L

])) ⊂ A−
R,n, S

2[0, τ 2
Rn

] ⊂ A+
R,n

}
. (2.23)

The next lemma shows that when a simple random walk does not intersect an independent LERW, they are “well-
separated” with positive probability, i.e., the simple random walk lies in A+

R,n and the LERW lies in A−
R,n with positive

conditional probability under the conditioning. The lemma will be used to compare escape probabilities on various
scales by attaching paths to the separated paths (see Lemma 2.11, Proposition 3.10 and Lemma 4.3 for the applications
of Lemma 2.10).
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Lemma 2.10. Let d = 3. There exists c > 0 such that for all R ≥ 4, n ≥ 1 and Rn ≤ L ≤ 4Rn, we have

P1 ⊗ P2(SepL,R,n | FL,R,n) ≥ c. (2.24)

Proof. Throughout the proof of this lemma, let γ := LE(S1[0, τ 1
L]) and γ ′ := LE(S1[0,∞)). Note that γ ′ is well-

defined since S1 is transient for d = 3. For m < k, let �m,k be the set of pairs of two paths (λ1, λ2) satisfying that

• λ1 is a simple path started at the origin. λ2 is a path started at the origin.
• λi[0, lenλi] ⊂ B(k) and λi(lenλi) ∈ ∂B(k) for each i = 1,2.
• η2

0,m,k(λ
1) ∩ λ2 =∅.

We write τ
γ
m = inf{t | γ (t) ∈ ∂B(m)} and define τ

γ ′
m similarly. For (λ1, λ2) ∈ �

n, Rn
8

, let

G′ := {
γ ′[τγ ′

Rn
8

, τ
γ ′
Rn
4

] ∩ S2[τ 2
Rn
8

, τ 2
Rn
4

] =∅, γ ′[τγ ′
Rn
8

, τ
γ ′
Rn
4

] ∩ λ2 =∅, S2[τ 2
Rn
8

, τ 2
Rn
4

] ∩ λ1 =∅
}
,

H ′ := {
γ ′[τγ ′

Rn
8

, τ
γ ′
Rn
4

] ⊂ A−
R
4 ,n

, S2[τ 2
Rn
8

, τ 2
Rn
4

] ⊂ A+
R
4 ,n

}
.

(We define G and H by replacing γ ′ by γ above.) Then (6.15) of [18] shows that there exists an absolute constant
c > 0 such that for all (λ1, λ2) ∈ �

n, Rn
8

, we have

P1 ⊗P2
(
G′,H ′ | γ ′[0, τ

γ ′
Rn
8

] = λ1, S2[0, τ 2
Rn
8

] = λ2) ≥ cP1 ⊗P2
(
G′ | γ ′[0, τ

γ ′
Rn
8

] = λ1, S2[0, τ 2
Rn
8

] = λ2). (2.25)

Taking sum for (λ1, λ2) ∈ �
n, Rn

8
, we have

P1 ⊗ P2
(
G′

1,H
′, η2

0,n, Rn
8

(
γ ′[0, τ

γ ′
Rn
8

]) ∩ S2[0, τ 2
Rn
8

] =∅
)

≥ cP1 ⊗ P2
(
G′

1, η
2
0,n, Rn

8

(
γ ′[0, τ

γ ′
Rn
8

]) ∩ S2[0, τ 2
Rn
8

] =∅
)
, (2.26)

where

G′
1 := {

γ ′[τγ ′
Rn
8

, τ
γ ′
Rn
4

] ∩ S2[τ 2
Rn
8

, τ 2
Rn
4

] =∅, γ ′[τγ ′
Rn
8

, τ
γ ′
Rn
4

] ∩ S2[0, τ 2
Rn
8

] =∅,

S2[τ 2
Rn
8

, τ 2
Rn
4

] ∩ γ ′[0, τ
γ ′
Rn
8

] =∅
}
.

(Again we define G1 by replacing γ ′ by γ above.)

But by Proposition 2.4, the distribution of γ ′[0, τ
γ ′
Rn
4

] is comparable to that of γ [0, τ
γ
Rn
4

]. Therefore,

P1 ⊗ P2
(
G1,H,η2

0,n, Rn
8

(
γ
[
0, τ

γ
Rn
8

]) ∩ S2[0, τ 2
Rn
8

] =∅
)

≥ cP1 ⊗ P2
(
G1, η

2
0,n, Rn

8

(
γ
[
0, τ

γ
Rn
8

]) ∩ S2[0, τ 2
Rn
8

] =∅
)
. (2.27)

Once γ [0, τ
γ
Rn
4

] and S2[0, τ 2
Rn
4

] are separated as in H , by attaching paths from ∂B(Rn
4 ) to ∂B(L), we see that

P1 ⊗ P2(SepL,R,n,FL,R,n) ≥ cP1 ⊗ P2
(
G1,H,η2

0,n, Rn
8

(
γ
[
0, τ

γ
Rn
8

]) ∩ S2[0, τ 2
Rn
8

] =∅
)
, (2.28)

for some c > 0.
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Suppose that γ [τγ
Rn
8

, τ
γ

Rn]∩∂B(n) =∅. Then η2
0,n, Rn

8
(γ [0, τ

γ
Rn
8

])∪γ [τγ
Rn
8

, τ
γ
Rn
4

] ⊂ η2
0,n,Rn(γ ). Therefore if we write

σ := max{t ≤ τ
γ

Rn | γ (t) ∈ B(n)}, then

P1 ⊗ P2
(
G1, η

2
0,n, Rn

8

(
γ
[
0, τ

γ
Rn
8

]) ∩ S2[0, τ 2
Rn
8

] =∅
)

≥ P1 ⊗ P2
(
γ
[
τ

γ
Rn
8

, τ
γ

Rn

] ∩ ∂B(n) =∅, η2
0,n,Rn(γ ) ∩ S2[0, τ 2

Rn

] =∅, γ [0, σ ] ∩ S2[τ 2
Rn
8

, τ 2
Rn
4

] =∅
)

≥ P1 ⊗ P2
(
η2

0,n,Rn(γ ) ∩ S2[0, τ 2
Rn

] =∅, γ [0, σ ] ∩ S2[τ 2
Rn
8

, τ 2
Rn
4

] =∅
)

− P1 ⊗ P2
(
γ
[
τ

γ
Rn
8

, τ
γ

Rn

] ∩ ∂B(n) �=∅
)

≥ P1 ⊗ P2
(
η2

0,n,Rn(γ ) ∩ S2[0, τ 2
Rn

] =∅, γ [0, σ ] ∩ S2[τ 2
Rn
8

, τ 2
Rn
4

] =∅
) − C

R
,

for some C < ∞. Here we used Proposition 1.5.10 [8] in the last inequality. Let

q := max
{
k | γ [0, σ ] ⊂ B

(
2kn

)}
.

Since γ [0, σ ] ⊂ B(Rn), we have q ≤ log2 R + 1. Therefore,

P1 ⊗ P2
(
η2

0,n,Rn(γ ) ∩ S2[0, τ 2
Rn

] =∅, γ [0, σ ] ∩ S2[τ 2
Rn
8

, τ 2
Rn
4

] =∅
) − C

R

≥ P1 ⊗ P2(FL,R,n) − P1 ⊗ P2
(
γ [0, σ ] ∩ S2[τ 2

Rn
8

, τ 2
Rn
4

] �=∅
) − C

R
. (2.29)

But by Proposition 1.5.10 [8],

P1 ⊗ P2
(
γ [0, σ ] ∩ S2[τ 2

Rn
8

, τ 2
Rn
4

] �=∅
)

≤
log2 R+1∑

k=1

P1 ⊗ P2
(
q = k, γ [0, σ ] ∩ S2[τ 2

Rn
8

, τ 2
Rn
4

] �=∅
)

≤
log2 R+1∑

k=1

P1 ⊗ P2
(
q = k,B

(
2kn

) ∩ S2[τ 2
Rn
8

, τ 2
Rn
4

] �=∅
) ≤

log2 R+1∑
k=1

C2−k 2k

R
≤ C logR

R
.

Combining this with (2.28) and (2.29), we have

P1 ⊗ P2(SepL,R,n,FL,R,n) ≥ c1P1 ⊗ P2(FL,R,n) − C1 logR

R
,

for some c1 > 0,C1 < ∞. However, by Corollary 4.2 [10], it follows that there exist c2 > 0 and ξ ∈ ( 1
2 ,1) such that

P1 ⊗ P2(FL,R,n) ≥ P1 ⊗ P2
(
S1[τ 1

n , τ 1
L

] ∩ S2[0, τ 2
Rn

] =∅
) ≥ c2R

−ξ ,

where ξ is referred to as the intersection exponent (see [10] for ξ ). Since we know that ξ < 1 (see [10]), there exists
C < ∞ such that c1c2R

−ξ >
2C1 logR

R
for all R ≥ C. Then for all R ≥ C, we see that P1 ⊗ P2(SepL,R,n ∩FL,R,n) ≥

c1
2 P1 ⊗ P2(FL,R,n), which finishes the proof for R ≥ C. It is easy to check that the lemma holds for R ≤ C, so we

finish the proof of lemma. �

Once we show Lemma 2.10, using the same argument as in the proof of Proposition 6.2.1 [18], we get the following
lemma immediately. We shall omit its proof and leave it to the reader.
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Lemma 2.11. Let d = 3. There exists C < ∞ such that for all for all R ≥ 4, n ≥ 1 and Rn ≤ L ≤ 4Rn, we have

1

C
P1 ⊗ P2(FL,R,n) ≤ Es(n,L) ≤ CP1 ⊗ P2(FL,R,n), (2.30)

where FL,R,n was defined as in (2.21).

2.3. Scaling limit of LERW in three dimensions

In this subsection, we will review some known facts about the scaling limit of LERW in three dimensions. As we
explain in Section 1.1, the scaling limit of LERW for d = 3 exists [6], and some properties of it were studied in [16].
We will explain the details here.

Let D = {x ∈ R
3 | |x| < 1} and D be its closure. Let

LEWn = LE(S[0, τn])
n

. (2.31)

Here S is a simple random walk started at the origin on Z
3 and τn = inf{t | S(t) ∈ ∂B(n)}.

We write H(D) for the metric space of the set of compact subsets in D with the Hausdorff distance dH. Thinking
of LEWn as random elements of H(D), let P (n) be the probability measure on H(D) induced by LEWn. Then [6]
shows that P (2j ) is Cauchy with respect to the weak convergence topology, and therefore P (2j ) converges weakly. Let
ν be its limit probability measure. We call ν the scaling limit measure of LERW in three dimensions. We write K for
the random compact subset associated with ν. We call K the scaling limit of LERW in three dimensions. It is also
shown in [6] that K is invariant under rotations and dilations.

Some properties of K were studied in [16]. In [16], it is shown that K is a simple path almost surely (Theorem 1.2
[16]). Furthermore, if we let Y be the union of K and loops from independent Brownian loop soup in D which intersect
K, more precisely,

Y := K ∪ {� ∈ BS | � ∩K �=∅}, (2.32)

then Y has the same distribution in H(D) as the trace of three dimensional Brownian motion up to exiting from D

(Theorem 1.1 [16]). Here BS is the Brownian loop soup in D which is independent of K (see [14] for the Brownian
loop soup).

We denote the Hausdorff dimension by dimH(·). Bounds of dimH(K) were given in Theorem 1.4 [16] as follows.
Let ξ be the intersection exponent for three dimensional Brownian motion (see [9] for ξ ). Let β = 2 − α, where α is
the exponent as in Theorem 2.7. Then Theorem 1.4 [16] shows that

2 − ξ ≤ dimH(K) ≤ β, almost surely. (2.33)

In particular, since ξ ∈ ( 1
2 ,1) (see [9]) and β ∈ (1, 5

3 ] (see [11]), we have

1 < dimH(K) ≤ 5

3
, almost surely. (2.34)

The main purpose of the present paper is to show that

dimH(K) ≥ β, almost surely, (2.35)

which concludes that dimH(K) = β almost surely.

3. The number of small boxes hit by K

From here to the end of the present paper, we will assume d = 3. In this section, we will give bounds of the number
of small boxes hit by K. To do it, we will first estimate the probability that K hits two distinct small boxes (see
Theorem 3.1), which is one of the key result in the paper. We will show Theorem 3.1 in Section 3.1. Then using the
second moment method, we will give some bounds of the number of boxes hit by K in Section 3.2.
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3.1. Probability of K hitting two small boxes

Recall that D = {x ∈ R
3 | |x| < 1} and D is its closure. For r > 0, we write Dr = {x ∈ R

3 | |x| < r} and let Dr be its
closure. For x = (x1, x2, x3) ∈ Z

3, let

Bx =
3∏

i=1

[xi, xi + 1]. (3.1)

In this subsection, we will establish an upper bound of the probability that K hits both εBx and εBy with 1
3 ≤

|εx|, |εy| ≤ 2
3 and x, y ∈ Z

3 (see Theorem 3.1). The upper bound will be given in terms of escape probabilities
defined in Section 2.2. In the proof of Theorem 3.1, we will repeatedly use several properties of escape probabilities
explained in Section 2.2 as well as Proposition 4.2, 4.4 and 4.6 in [15].

Let LEWn = LE(S[0,τn])
n

. Here S is a simple random walk started at the origin on Z
3 and τn = inf{t | S(t) ∈ ∂B(n)}.

Since LEW2j converges weakly to K (see Section 2.3), we can define {LEW2j }j≥1 and K on the same probability
space (�,F,P ) such that

lim
j→∞dH(LEW2j ,K) = 0, P -almost surely, (3.2)

where dH is the Hausdorff metric on H(D) (see Section 2.3 for H(D)).
Take ε > 0. By (3.2), for P -a.s., ω, there exists Nε(ω) < ∞ such that

dH(LEW2j ,K) < ε2, for all j ≥ Nε.

Since P(Nε < ∞) = 1, there exists jε such that

P(Nε < jε) ≥ 1 − ε100. (3.3)

On the event {Nε < jε}, if we write nε := 2jε , then

dH(LEWnε ,K) < ε2. (3.4)

From now on, we fix n = nε = 2jε for each ε > 0 such that (3.3) holds.
One of the key results in this paper is the following theorem.

Theorem 3.1. Fix ε > 0 and take n = nε = 2jε such that (3.3) holds. Suppose that x �= y ∈ Z
3 satisfy

εBx ⊂ D 2
3
\ D 1

3
and εBy ⊂ D 2

3
\ D 1

3
. (3.5)

Let l := |x − y|. Then there exists an absolute constant C < ∞ such that

P(K ∩ εBx �=∅ and K ∩ εBy �=∅) ≤ C Es(εn, lεn)Es(εn,n)
ε

l
. (3.6)

Remark 3.2. Since the proof of Theorem 3.1 is quite long, we explain some of its ideas here. Take n = nε = 2jε such
that (3.3) holds. Since ε100 � Es(εn, lεn)Es(εn,n) ε

l
, we may suppose that dH(LEWn,K) < ε2. In that case if K hits

both εBx and εBy , then γ := LE(S[0, τn]) hits both εnB ′
x and εnB ′

y , where B ′
z = ∏3

i=1[zi − 2, zi + 2]. So we need
to estimate

P
(
γ ∩ εnB ′

x �=∅, γ ∩ εnB ′
y �=∅

) ≤ P
(
τγ,x < τγ,y < ∞) + P

(
τγ,y < τγ,x < ∞)

. (3.7)

Here τγ,z := inf{t | γ (t) ∈ εnB ′
z}. We want to show that

P
(
τγ,x < τγ,y < ∞) ≤ CP

(
τγ,x < ∞)

P εnx
(
τγ,y < ∞)

. (3.8)
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Note that if γ were S[0, τn], (3.8) would hold because of the strong Markov property. However, since γ = LE(S[0, τn])
is not a Markov process, the distribution of γ [τγ,x, τ γ,y] strongly depends on the shape of γ [0, τ γ,x]. We need to
control such dependence and this will be done in Lemma 3.6, Lemma 3.7 and 3.8. Then we will prove (3.8). Once
(3.8) is proved then Theorem 3.1 immediately follows because

P
(
τγ,x < ∞)

P εnx
(
τγ,y < ∞) ≤ C Es(εn, lεn)Es(εn,n)

ε

l
, (3.9)

and the second probability in RHS of (3.7) can be estimated similarly.

We will split the proof of Theorem 3.1 as follows. Since we want to estimate the probability in LHS of (3.8) in
terms of escape probabilities, we first rewrite the probability in terms of independent random walks by reversing paths
in Lemma 3.3. Such independent random walks consist of three walks S1, . . . , S3 with S1(0) = S2(0) ∈ ∂(εnB ′

x) and
S3(0) ∈ ∂(εnB ′

y) (see Figure 1). In order for γ = LE(S[0, τn]) to hit εnB ′
x , the loop erasure of the time reverse of

S1, say (S1)R , does not intersect a composition of two walks S2 and S3. In addition, in order for γ to hit εnB ′
y ,

the loop erasure of a composition of two walks (S1)R and S2 does not intersect S3. To control the independence,
we will replace the latter event by events that the loop erasure of (S2)R up to some stopping time does not intersect
S3 in Lemma 3.6 (S4 corresponds to (S2)R up to that stopping time in Lemma 3.6). The distribution of the loop
erasure of (S2)R up to the stopping time will be studied in Lemma 3.7, which allows us to think that the latter event
is independent from the former one, and to estimate the probability of the latter event in terms of escape probabilities.
Finally in Lemma 3.8 we will estimate the probability of the former event using escape probabilities, and then prove
Theorem 3.1.

Proof. It suffices to show (3.6) for l ≥ 106. Indeed, Es(εn, lεn) ≥ c for l ≤ 106 and we already showed that

P(K ∩ εBx �=∅) ≤ C Es(εn,n)ε.

(See the proof of Lemma 7.1 [16] for this inequality.) Therefore,

P(K ∩ εBx �=∅ and K ∩ εBy �=∅) ≤ C Es(εn,n)ε ≤ C Es(εn, lεn)Es(εn,n)
ε

l
,

for l ≤ 106.
Thus we may assume that 106 ≤ l ≤ 2

ε
. Note that by (2.16),

ε100 ≤ C Es(εn, lεn)Es(εn,n)
ε

l
.

So by (3.3),

P
(
K ∩ εBx �=∅,K ∩ εBy �=∅, dH(LEWn,K) ≥ ε2) ≤ P(K ∩ εBx �=∅,K ∩ εBy �=∅,Nε ≥ jε)

≤ ε100 ≤ C Es(εn, lεn)Es(εn,n)
ε

l
.

Therefore it suffices to show that

P
(
K ∩ εBx �=∅,K ∩ εBy �=∅, dH(LEWn,K) < ε2) ≤ C Es(εn, lεn)Es(εn,n)

ε

l
. (3.10)

Suppose that K∩εBx �=∅,K∩εBy �=∅, dH(LEWn,K) < ε2. Let B ′
x = ∏3

i=1[xi −2, xi +2] and B ′
y = ∏3

i=1[yi −
2, yi + 2]. Then

LEWn ∩ εB ′
x �=∅, LEWn ∩ εB ′

y �=∅. (3.11)

So we have to estimate

P
(
LEWn ∩ εB ′

x �=∅,LEWn ∩ εB ′
y �=∅

) = P
(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅,LE

(
S[0, τn]

) ∩ εnB ′
y �= ∅

)
.
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Fig. 1. A simple path from O to C stands for γ = LE(S[0, τn]). Points A and B stand for last visits of γ to εnB ′
x and εnB ′

y . Then
A = S1(0) = S2(0) and B = S3(0). We let S1 run until it hits O , let S2 run until it hits B , and let S3 run until it hits C. The simple path
from O to A corresponds to the loop erasure of the time reverse of S1, say (S1)R . The simple path from O to B corresponds to the loop erasure of
(S1)R + S2. Finally, γ corresponds to the loop erasure of (S1)R + S2 + S3.

Suppose that LE(S[0, τn]) ∩ εnB ′
x �= ∅,LE(S[0, τn]) ∩ εnB ′

y �= ∅. Then clearly S[0, τn] ∩ εnB ′
x �= ∅, S[0, τn] ∩

εnB ′
y �=∅. So we may define

T x = max
{
t ≤ τn | S(t) ∈ ∂

(
εnB ′

x

)}
, T y = max

{
t ≤ τn | S(t) ∈ ∂

(
εnB ′

y

)}
.

Then

P
(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅,LE

(
S[0, τn]

) ∩ εnB ′
y �=∅

)
≤ P

(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅,LE

(
S[0, τn]

) ∩ εnB ′
y �=∅, T x < T y

)
+ P

(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅,LE

(
S[0, τn]

) ∩ εnB ′
y �=∅, T x > T y

)
. (3.12)

We will deal with only the first probability in the right hand side of (3.12). The second probability can be estimated
similarly.

Define

σ i
z = max

{
t ≤ τ 1

n | Si(t) = z
}
, (3.13)

and

σ 1 := inf
{
t | LE

(
S1[0, σ 1

z

])
(t) ∈ ∂

(
εnB ′

x

)}
,

σ 2 := inf
{
t | LE

(
S1[0, σ 1

z

] + S2[0, σ 2
w

])
(t) ∈ ∂

(
εnB ′

y

)}
.

(3.14)
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The estimate of the first probability in the right hand side of (3.12) will be carried out below, but it is quite long.
So we will split it into shorter claims (Lemma 3.3, 3.6, 3.7, and 3.8).

In order to estimate the first probability in the right hand side of (3.12) in terms of the escape probabilities, we need
to decompose the simple random walk path into three parts; S from the origin to the εn cube around x, S from the
εn cube around x to the cube around y, and S from the cube around y to the boundary of B(n). By using a standard
technique called “last exit decomposition” (see Proposition 2.4.1 [8] for details), Lemma 3.3 below deals with this
decomposition. In the Lemma 3.3, these three parts in the decomposition correspond to S1, S2, and S3 respectively.

Lemma 3.3. There exists a C < ∞ such that

P
(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅,LE

(
S[0, τn]

) ∩ εnB ′
y �=∅, T x < T y

)
≤ C

∑
z∈∂(εnB ′

x)

∑
w∈∂(εnB ′

y)

P 0
1 ⊗ P z

2 ⊗ P w
3

(
σ 1

z < τ 1
n , σ 2

w < τ 2
n ,

S2[1, σ 2
w

] ∩ (
εnB ′

x

) =∅, S3[1, τ 3
n

] ∩ (
εnB ′

y

) =∅

LE
(
S1[0, σ 1

z

])[0, σ 1] ∩ (
S2[0, σ 2

w

] ∪ S3[0, τ 3
n

]) =∅,

LE
(
S1[0, σ 1

z

] + S2[0, σ 2
w

])[0, σ 2] ∩ S3[0, T 3
w, εln

4

] =∅
)
. (3.15)

Proof. Suppose that LE(S[0, τn]) ∩ εnB ′
x �=∅. Let

σ ′
1 = inf

{
t | LE

(
S[0, τn]

)
(t) ∈ ∂

(
εnB ′

x

)}
, σ ′

1 = inf
{
t | LE

(
S
[
0, T x

])
(t) ∈ ∂

(
εnB ′

x

)}
. (3.16)

Note that

LE
(
S
[
0, T x

])[
0, σ ′

1

] ∩ S
[
T x, τn

] =∅. (3.17)

To see this, we let LE(1) = LE1(λ1, λ2) and LE(2) = LE2(λ1, λ2) where λ1 = LE(S[0, T x]) and λ2 = S[T x, τn] (see
(2.5) for LE(i)). Then LE(S[0, τn]) = LE(1) +LE(2). Let u = inf{t | λ1(t) ∈ λ2} and s = sup{λ2(t) = λ1(u)}. Then
LE(1) = λ1[0, u] and LE(2) = LE(λ2[s, lenλ2]). If LE(S[0, T x])[0, σ ′

1] ∩ S[T x, τn] �= ∅, then u ≤ σ ′
1. By defini-

tion of σ ′
1, this implies that LE(S[0, T x])[0, u] ∩ εnB ′

x = ∅. Moreover, since S[T x, τn] ∩ εnB ′
x = ∅, we see that

LE(2) ∩εnB ′
x =∅. This implies that LE(S[0, τn]) ∩ εnB ′

x =∅ and we get a contradiction. Therefore (3.17) holds and
σ ′

1 < u. Thus LE(S[0, τn])[0, σ ′
1] = LE(S[0, T x])[0, σ ′

1] and σ ′
1 = σ ′

1.
Thus,

P
(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅,LE

(
S[0, τn]

) ∩ εnB ′
y �=∅, T x < T y

)
≤ P

(
LE

(
S
[
0, T x

])[
0, σ ′

1

] ∩ S
[
T x, τn

] =∅,

LE
(
S
[
0, T y

])[
0, σ ′

2

] ∩ S
[
T y, τn

] =∅, T x < T y < τn

)
, (3.18)

where σ ′
2 = inf{t | LE(S[0, T y])(t) ∈ ∂(εnB ′

y)}.
Next we will decompose S[0, τn] into three parts, S[0, T x], S[T x,T y] and S[T y, τn]. Note that by the Markov

property at time k1 and k1 + k2, we have

P
(
LE

(
S
[
0, T x

])[
0, σ ′

1

] ∩ S
[
T x, τn

] =∅,LE
(
S
[
0, T y

])[
0, σ ′

2

] ∩ S
[
T y, τn

] =∅, T x < T y < τn

)
=

∑
k1>0

∑
k2>0

∑
z∈∂(εnB ′

x)

∑
w∈∂(εnB ′

y)

P
(
T x = k1, S(k1) = z,T y = k1 + k2, S(k1 + k2) = w,k1 + k2 < τn

LE
(
S
[
0, T x

])[
0, σ ′

1

] ∩ S
[
T x, τn

] =∅,LE
(
S
[
0, T y

])[
0, σ ′

2

] ∩ S
[
T y, τn

] =∅
)

=
∑
k1>0

∑
k2>0

∑
z∈∂(εnB ′

x)

∑
w∈∂(εnB ′

y)

P 0
1 ⊗ P z

2

(
S1(k1) = z, k1 < τ 1

n , S2(k2) = w,k2 < τ 2
n
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S2[1, τ 2
n

] ∩ (
εnB ′

x

) =∅, S2[k2 + 1, τ 2
n

] ∩ (
εnB ′

y

) =∅

LE
(
S1[0, k1]

)[0, σ 1] ∩ S2[0, τ 2
n

] =∅,LE
(
S1[0, k1] + S2[0, k2]

)[0, σ 2] ∩ S2[k2, τ
2
n

] =∅
)

=
∑

z∈∂(εnB ′
x)

∑
w∈∂(εnB ′

y)

1

pz

1

pw

P 0
1 ⊗ P z

2 ⊗ P w
3

(
σ 1

z < τ 1
n , σ 2

w < τ 2
n ,

S2[1, σ 2
w

] ∩ (
εnB ′

x

) =∅, S3[1, τ 3
n

] ∩ ((
εnB ′

x

) ∪ (
εnB ′

y

)) =∅

LE
(
S1[0, σ 1

z

])[0, σ 1] ∩ (
S2[0, σ 2

w

] ∪ S3[0, τ 3
n

]) =∅,

LE
(
S1[0, σ 1

z

] + S2[0, σ 2
w

])[0, σ 2] ∩ S3[0, τ 3
n

] =∅
)

(
where pz = P z

(
z /∈ S[1, τn]

))
(3.19)

which finishes the proof of Lemma 3.3. �

Remark 3.4. There are six events in the probability in the right hand side of (3.15). We want to say they are “inde-
pendent up to constant”. Namely, we will show that the probability in RHS of (3.15) is comparable to the product of
six probabilities coming from each of six events. Then we need to estimate each of those probabilities. The first four
events are easy to estimate. The fifth event corresponds to the probability that the loop erasure of a random walk from
the εn cube around x to the origin does not intersect a random walk from the cube around x to the boundary of B(n).
This probability is comparable to Es(εn,n). Similarly we will see that the sixth event corresponds to Es(εn, εln).

With the strategy in Remark 3.4 in mind, we introduce some notation before going to the next lemma.
We write

F 1 := {
σ 1

z < τ 1
n , σ 2

w < τ 2
n , S2[1, σ 2

w

] ∩ (
εnB ′

x

) =∅, S3[1, τ 3
n

] ∩ (
εnB ′

y

) =∅

LE
(
S1[0, σ 1

z

])[0, σ 1] ∩ (
S2[0, σ 2

w

] ∪ S3[0, τ 3
n

]) =∅,

LE
(
S1[0, σ 1

z

] + S2[0, σ 2
w

])[0, σ 2] ∩ S3[0, τ 3
n

] =∅
}
. (3.20)

By Lemma 3.3, we have to estimate P 0
1 ⊗ P z

2 ⊗ P w
3 (F 1). To do so, define Ar

z = B(z,2r εn) \ B(z,2r−1εn) for
r ≥ 1 and A0

r = B(z, εn). Let u(1) = len LE(S1[0, σ 1
z ]) and

q(1) = max
{
r ≥ 0 | LE

(
S1[0, σ 1

z

])[
σ 1, u

(1)
] ∩ Ar

z �=∅
}
. (3.21)

(q(1) is well-defined because LE(S1[0, σ 1
z ])[σ 1, u

(1)] ∩ A0
r �= ∅.) We will first deal with the case of q(1) ≤ log2 l − 3

so that 2q(1)
εn ≤ 2−3lεn. So suppose that q(1) = r ≤ log2 l − 3. Let

T 2
z, lεn

2
= inf

{
t

∣∣∣ S2(t) ∈ ∂B

(
z,

lεn

2

)}
. (3.22)

Then by the strong Markov property for S2 at T 2
z, lεn

2
,

P 0
1 ⊗ P z

2 ⊗ P w
3

(
F 1, q(1) = r

)
=

∑
z′∈∂B(z, lεn

2 )

P 0
1 ⊗ P z

2 ⊗ P w
3

(
F 1, q(1) = r, S2(T 2

z, lεn
2

) = z′)

=
∑

z′∈∂B(z, lεn
2 )

P 0
1 ⊗ P z

2 ⊗ P z′
4 ⊗ P w

3

(
σ 1

z < τ 1
n , σ 4

w < τ 4
n ,

(
S2[1, T 2

z, lεn
2

] ∪ S4[0, σ 4
w

]) ∩ (
εnB ′

x

) =∅, S3[1, τ 3
n

] ∩ (
εnB ′

y

) =∅
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LE
(
S1[0, σ 1

z

])[0, σ 1] ∩ (
S2[0, T 2

z, lεn
2

] ∪ S4[0, σ 4
w

] ∪ S3[0, τ 3
n

]) =∅

LE
(
S1[0, σ 1

z

] + S2[0, T 2
z, lεn

2

] + S4[0, σ 4
w

])[0, σ 2] ∩ S3[0, τ 3
n

] =∅, q(1) = r, S2(T 2
z, lεn

2

) = z′). (3.23)

We define an event F 2 by

F 2 = {
σ 1

z < τ 1
n , S2[1, T 2

z, lεn
2

] ∩ (
εnB ′

x

) =∅,

LE
(
S1[0, σ 1

z

])[0, σ 1] ∩ S2[0, T 2
z, lεn

2

] =∅, q(1) = r, S2(T 2
z, lεn

2

) = z′}. (3.24)

Define a sequence of stopping times Ti by T0 = 0 and

T2i+1 = inf

{
t ≥ T2i

∣∣∣ S4(t) ∈ ∂B

(
w,

εln

4

)}
,

T2i = inf

{
t ≥ T2i−1

∣∣∣ S4(t) ∈ ∂B

(
w,

εln

800

)}
.

(3.25)

Let

u′
4 = u′

4,i := inf

{
t

∣∣∣ LE
(
S4[0, T2i+1]

)
(t) ∈ ∂B

(
w,

εln

1600

)}
,

σ 
4 = σ

4,i := max
{
t ≤ u′

4 | LE
(
S4[0, T2i+1]

)
(t) ∈ ∂B(w,8εn)

}
.

(3.26)

Remark 3.5. Recall that z and w are points in the εn neighborhood of x and y. By reversing paths of S1 and S2

in the probability in RHS of (3.23), S1 is a random walk from z to the origin, S2 is a random walk from z to z′, S4

is a random walk from w to z′, and S3 is a random walk from w to ∂B(n). We want to deal with eight events in
the probability of (3.23) as if they were independent. Some technical issues arise when we deal with the fifth, sixth,
and seventh events. We will first deal with the sixth event in the next lemma below, by using entrance and exit times
defined as in (3.25).

We have to estimate the probability in RHS of (3.23). With the strategy in Remark 3.5 in mind, we first deal with
the sixth event of the probability in (3.23). The sixth event is written in terms of the loop-erasure of three walks S1,
S2 and S4. We want to replace it by the loop-erasure of S4 only. In the next lemma, we will do the replacement by
using entrance and exit times defined in (3.25).

Lemma 3.6. Suppose that r ≤ log2 l − 3. Then there exists C < ∞ such that

P 0
1 ⊗ P z

2 ⊗ P w
3

(
F 1, q(1) = r, S2(T 2

z, lεn
2

) = z′)

≤ CE0
1 ⊗ Ez

2

{
1F 2

×
(

C

εn

1

εln

∞∑
i=0

P w
4 ⊗ P w

3

(
T2i+1 < τ 4

n ,LE
(
S4[0, T2i+1]

)[
σ

4, u
′
4

] ∩ S3[0, T 3
w, lεn

4

] =∅
) + C

(εln)2

)

× max
w1∈∂B(w, εln

4 )

P
w1
3

(
LE

(
S1[0, σ 1

z

])[0, σ 1] ∩ S3[0, τ 3
n

] =∅
)}

. (3.27)

(See (3.25) and (3.26) for Ti , σ
4, and u′

4.)
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Proof. Condition on S1[0, τ 1
n ] and S2[0, T 2

z, lεn
2

] on F 2, let

γ = LE
(
S1[0, σ 1

z

] + S2[0, T 2
z, lεn

2

])
,

γ1 = LE1
(
S1[0, σ 1

z

]
, S2[0, T 2

z, lεn
2

])
,

γ2 = LE2
(
S1[0, σ 1

z

]
, S2[0, T 2

z, lεn
2

])
,

(3.28)

so that γ = γ1 + γ2. Since LE(S1[0, σ 1
z ])[0, σ 1] ∩ S2[0, T 2

z, lεn
2

] =∅ on F 2, we see that lenγ1 > σ 1, LE(S1[0, σ 1
z ])[0,

σ 1] ⊂ γ1, γ2(0) ∈ LE(S1[0, σ 1
z ])[σ 1, u

(1)] and γ2(lenγ2) = z′.
Conditioning S1[0, τ 1

n ] and S2[0, T 2
z, lεn

2
] on F 2, we will deal with S4 and S3. Suppose that LE(S1[0, σ 1

z ])[0, σ 1] ∩
S4[0, σ 4

w] =∅. Let

λ = LE
(
S1[0, σ 1

z

] + S2[0, T 2
z, lεn

2

] + S4[0, σ 4
w

])
,

λ1 = LE1
(
γ,S4[0, σ 4

w

])
,

λ2 = LE2
(
γ,S4[0, σ 4

w

])
,

(3.29)

so that λ = λ1 +λ2. Since LE(S1[0, σ 1
z ])[0, σ 1] ∩ S4[0, σ 4

w] =∅, we see that lenλ1 > σ 1, λ2(0) ∈ γ1[σ 1, lenγ1] ∪ γ2

and LE(S1[0, σ 1
z ])[0, σ 1] ⊂ λ1.

Let u2 = lenλ1 and let T ′ = max{t ≤ σ 4
w | S4(t) = λ1(u2)}. We see that S4(T ′) = λ1(u2) = λ2(0) ∈ γ1[σ 1, lenγ1]∪

γ2. Suppose that q(1) = r ≤ log2 l − 3. Then γ1[σ 1, lenγ1] ⊂ LE(S1[0, σ 1
z ])[σ 1, u

(1)] ⊂ B(z,2r εn) ⊂ B(z, lεn
4 ). Thus

S4(T ′) ∈ B(z, lεn
2 ).

Note that u2 = inf{t | γ (t) ∈ S4[0, σ 4
w]} and T ′ = max{t ≤ σ 4

w | S4(t) = γ (u2)}. Conditioning S1[0, τ 1
n ] and

S2[0, T 2
z, lεn

2
] on F 2, we are interested in

p̃1 := P z′
4 ⊗ P w

3

(
T ′ ≤ σ 4

w < τ 4
n , S4(T ′) ∈ γ1[σ 1, lenγ1] ∪ γ2, S

3[1, τ 3
n

] ∩ (
εnB ′

y

) =∅,

LE
(
S1[0, σ 1

z

])[0, σ 1] ∩ S3[T 3
w, lεn

4
, τ 3

n

] =∅,LE
(
S4[T ′, σ 4

w

])[0, σ 4] ∩ S3[0, T 3
w, lεn

4

] =∅
)

(
where σ 4 := inf

{
t | LE

(
S4[T ′, σ 4

w

])
(t) ∈ ∂

(
εnB ′

y

)})
≤ P z′

4 ⊗ P w
3

(
T ′ ≤ σ 4

w < τ 4
n , S4(T ′) ∈ γ1[σ 1, lenγ1] ∪ γ2,

S3[1, T 3
w, lεn

4

] ∩ (
εnB ′

y

) =∅,LE
(
S4[T ′, σ 4

w

])[0, σ 4] ∩ S3[0, T 3
w, lεn

4

] =∅
)

× max
w1∈∂B(w, εln

4 )

P
w1
3

(
LE

(
S1[0, σ 1

z

])[0, σ 1] ∩ S3[0, τ 3
n

] =∅
)
. (3.30)

We will consider the time reverse of S4[0, σ 4
w]. Note that for each SRW path η = [η(0), . . . , η(m)] with η(0) = z′

and η(m) = w, we have P z′
4 (S4[0, σ 4

w] = η) = pw

pz
P w

4 (S4[0, σ 4
z ] = ηR). Suppose that S4(0) = w and σ 4

z′ < τ 4
n (this

is equivalent to τ 4
z′ < τ 4

n ). Define u′
2 := inf{t | γ (t) ∈ S4[0, σ 4

w]} and T ′′ := inf{t | S4(t) = γ (u′
2)}. Let σ ′

4 := max{t |
LE(S4[0, T ′′])(t) ∈ ∂(εnB ′

y)} and u4 := len LE(S4[0, T ′′]). Then by the time reversibility of LERW (see Lemma 2.2),

the distribution of LE(S4[T ′, σ 4
w])[0, σ 4] under P z′

4 is same to that of (LE(S4[0, T ′′])[σ ′
4, u4])R under P w

4 . Therefore,

P z′
4 ⊗ P w

3

(
T ′ ≤ σ 4

w < τ 4
n , S4(T ′) ∈ γ1[σ 1, lenγ1] ∪ γ2,

S3[1, T 3
w, lεn

4

] ∩ (
εnB ′

y

) =∅,LE
(
S4[T ′, σ 4

w

])[0, σ 4] ∩ S3[0, T 3
w, lεn

4

] =∅
)
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= pw

pz

P w
4 ⊗ P w

3

(
T ′′ ≤ σ 4

z′ < τ 4
n , S4(T ′′) ∈ γ1[σ 1, lenγ1] ∪ γ2,

S3[1, T 3
w, lεn

4

] ∩ (
εnB ′

y

) =∅,LE
(
S4[0, T ′′])[σ ′

4, u4
] ∩ S3[0, T 3

w, lεn
4

] =∅
)

≤ c

εn
× max

w3∈∂B(w,6εn)
P w

4 ⊗ P
w3
3

(
T ′′ ≤ σ 4

z′ < τ 4
n , S4(T ′′) ∈ γ1[σ 1, lenγ1] ∪ γ2,

LE
(
S4[0, T ′′])[σ ′′

4, u4
] ∩ S3[0, T 3

w, lεn
4

] =∅
)
, (3.31)

where σ ′′
4 := max{t | LE(S4[0, T ′′])(t) ∈ ∂B(w,8εn)} and we used P w

3 (S3[1, T 3
w,6εn] ∩ (εnB ′

y) =∅) ≤ c
εn

in the last
inequality (see Proposition 1.5.10 [8] for this). By the Harnack principle (see Theorem 1.7.6 [8]),

RHS of (3.31) ≤ C

εn
P w

4 ⊗ P w
3

(
T ′′ ≤ σ 4

z′ < τ 4
n , S4(T ′′) ∈ γ1[σ 1, lenγ1] ∪ γ2,

LE
(
S4[0, T ′′])[σ ′′

4, u4
] ∩ S3[0, T 3

w, lεn
4

] =∅
)
. (3.32)

Let τ ′ := inf{t ≥ T 4
w, εln

1600
| S4(t) ∈ ∂B(w,8εn)}. Then P w

4 (τ ′ < σ 4
z′ < τ 4

n ) ≤ C

l2εn
(see Proposition 1.5.10 [8]).

Therefore,

P w
4 ⊗ P w

3

(
T ′′ ≤ σ 4

z′ < τ 4
n , S4(T ′′) ∈ γ1[σ 1, lenγ1] ∪ γ2,LE

(
S4[0, T ′′])[σ ′′

4, u4
] ∩ S3[0, T 3

w, lεn
4

] =∅
)

≤ P w
4 ⊗ P w

3

(
T ′′ ≤ σ 4

z′ < τ 4
n , τ ′ > σ 4

z′ , S4(T ′′) ∈ γ1[σ 1, lenγ1] ∪ γ2,

LE
(
S4[0, T ′′])[σ ′′

4, u4
] ∩ S3[0, T 3

w, lεn
4

] =∅
) + C

l2εn
. (3.33)

Suppose that q(1) = r ≤ log2 l − 3, T ′′ ≤ σ 4
z′ < τ 4

n and S4(T ′′) ∈ γ1[σ 1, lenγ1] ∪ γ2. Then S4(T ′′) ∈ B(z, εln
2 ) ⊂

B(w, εln
3 )c . Let i0 be the unique index i such that T2i+1 < T ′′ ≤ min{T2i+2, σ

4
z′ }. Suppose that τ ′ > σ 4

z′ . Since T2i0+1 <

T ′′ < T2i0+2 and S4[T2i0+1, T
′′] ∩ B(w, εln

800 ) =∅, we have

σ ′′
4 = max

{
t | LE

(
S4[0, T2i0+1]

)
(t) ∈ ∂B(w,8εn)

}
.

(Recall that σ ′′
4 := max{t | LE(S4[0, T ′′])(t) ∈ ∂B(w,8εn)}.) Furthermore, if we let

u′′
4 = inf

{
t

∣∣∣ LE
(
S4[0, T2i0+1]

)
(t) ∈ ∂B

(
w,

εln

1600

)}
,

then σ ′′
4 < u′′

4, σ ′′
4 = max{t ≤ u′′

4 | LE(S4[0, T2i0+1])(t) ∈ ∂B(w,8εn)} and

u′′
4 = inf

{
t

∣∣∣ LE
(
S4[0, T ′′])(t) ∈ ∂B

(
w,

εln

1600

)}
.

Therefore we see that LE(S4[0, T ′′])[σ ′′
4, u

′′
4] = LE(S4[0, T2i0+1])[σ ′′

4, u
′′
4] and

The first term of RHS of (3.33)

≤
∞∑
i=0

P w
4 ⊗ P w

3

(
T2i+1 < σ 4

z′ < τ 4
n , τ ′ > σ 4

z′ ,LE
(
S4[0, T2i+1]

)[
σ

4, u
′
4

] ∩ S3[0, T 3
w, lεn

4

] =∅
)

(
Recall that σ

4 and u′
4 were defined as in (3.26)

)
≤

∞∑
i=0

C

εln
P w

4 ⊗ P w
3

(
T2i+1 < τ 4

n ,LE
(
S4[0, T2i+1]

)[
σ

4, u
′
4

] ∩ S3[0, T 3
w, lεn

4

] =∅
)
, (3.34)
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where we used the strong Markov property and the fact that max
w′∈∂B(w, εln

4 )
P w′

4 (τ 4
z′ < ∞) ≤ C

εln
in the last inequality

(see Proposition 1.5.10 [8]), and we finish the proof of Lemma 3.6. �

Recall the strategy in Remark 3.5. By Lemma 3.6, we replaced the sixth event in (3.23) by the event the loop-
erasure of S4 up to some stopping time does not intersect S3. We want to show that the probability of that event is
bounded above by an escape probability, i.e., we want to prove that

∞∑
i=0

P w
4 ⊗ P w

3

(
T2i+1 < τ 4

n ,LE
(
S4[0, T2i+1]

)[
σ

4, u
′
4

] ∩ S3[0, T 3
w, lεn

4

] =∅
) ≤ C Es(εn, εln). (3.35)

In order to show (3.35), we need to study the distribution of LE(S4[0, T2i+1]). The next lemma compares the dis-
tribution of LE(S4[0, T2i+1]) with that of LE(S4[0, T1]). Note that the probability of T2i+1 < ∞ is bounded above
by ci for some c < 1. The next lemma shows that conditioned on T2i+1 < ∞, the distribution of LE(S4[0, T2i+1]) is
comparable to that of LE(S4[0, T1]).
Lemma 3.7. There exists a c ∈ ( 1

2 ,1) such that for all i ≥ 0 and for every simple path η = [η(0), . . . , η(m)] with

η(0) = w and η ⊂ B(w, εln
1600 ), we have

P w
4

(
T2i+1 < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η
) ≤ ciP w

4

(
LE

(
S4[0, T1]

)[0,m] = η
)
, (3.36)

where Ti was defined as in (3.25).

Proof. We will show this sublemma by induction. Take a simple path η = [η(0), . . . , η(m)] with η(0) = w and

η ⊂ B(w, εln
1600 ). The inequality (3.36) trivially holds when i = 0. So suppose that (3.36) holds for c ∈ ( 1

2 ,1) and i −1.
Note that

P w
4

(
T2i+1 < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η
)

= P w
4

(
T2i < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η
)

= P w
4

(
T2i < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η,S4[T2i , T2i+1] ∩ η = ∅
)

+ P w
4

(
T2i < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η,S4[T2i , T2i+1] ∩ η �=∅
)
. (3.37)

Suppose that T2i < τ 4
n , LE(S4[0, T2i+1])[0,m] = η and S4[T2i , T2i+1] ∩ η = ∅. Let LE(1) = LE1(λ1, λ2)

and LE(2) = LE2(λ1, λ2) where λ1 = LE(S4[0, T2i−1]) and λ2 = S4[T2i−1, T2i+1] (see (2.5) for LE(i)). Then
LE(S4[0, T2i+1]) = LE(1) +LE(2). Let u = len LE(1) = inf{t | λ1(t) ∈ λ2}. Then u > m. Indeed, if u ≤ m, then

LE(1)(u) = LE(S4[0, T2i+1])(u) = η(u). This implies η(u) ∈ λ2. Since S4[T2i−1, T2i] ∩ B(w, εln
1600 ) = ∅, we see

that η(u) ∈ S4[T2i , T2i+1], and we get a contradiction. Thus u > m. Therefore η = LE(S4[0, T2i+1])[0,m] =
LE(1)[0,m] = LE(S4[0, T2i−1])[0,m]. So

P w
4

(
T2i < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η,S4[T2i , T2i+1] ∩ η =∅
)

≤ P w
4

(
T2i−1 < τ 4

n ,LE
(
S4[0, T2i−1]

)[0,m] = η
) × max

w′∈∂B(w, εln
4 )

P w′
4

(
t1 < τ 4

n , S4[t1, t2] ∩ η =∅
)
, (3.38)

where t1 = inf{t | S4(t) ∈ ∂B(w, εln
800 )} and t2 = inf{t ≥ t1 | S4(t) ∈ ∂B(w, εln

4 )}.
Next we will deal with the second term in the RHS of (3.37). Suppose that T2i < τ 4

n , S4[T2i , T2i+1] ∩ η �= ∅ and
LE(S4[0, T2i+1])[0,m] = η. On this event, we may define u′ := inf{t | η(t) ∈ S4[T2i , T2i+1]}. Then u′ ≤ m. Note that

P w
4

(
T2i < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η,S4[T2i , T2i+1] ∩ η �=∅
)

=
m∑

j=0

P w
4

(
T2i < τ 4

n ,u′ = j,LE
(
S4[0, T2i+1]

)[0,m] = η
)
. (3.39)
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Suppose that T2i < τ 4
n , u′ = j and LE(S4[0, T2i+1])[0,m] = η. Since S4[T2i−1, T2i+1] does not intersect η[0, j −

1], in order for LE(S4[0, T2i+1])[0,m] to be η, η[0, j ] must be contained in the loop-erasure of S4 up to T2i−1. The
rest part of η, say η[j + 1,m], is constructed by the loop-erasure of S4[T2i , T2i+1]. Therefore, we have

• LE(S4[0, T2i−1])[0, j ] = η[0, j ],
• If we let τ 

η(j) := inf{t ≥ T2i−1 | S4(t) = η(j)}, then T2i < τ
η(j) < T2i+1 and S4[T2i , τ


η(j)] ∩ η[0, j − 1] = ∅,

• LE(S4[τ 
η(j), T2i+1])[0,m − j ] = η[j,m],

• S4[τ 
η(j), T2i+1] ∩ η[0, j − 1] = ∅.

So the probability in RHS of (3.39) is bounded above by the probability of four events above as follows.

P w
4

(
T2i < τ 4

n ,u′ = j,LE
(
S4[0, T2i+1]

)[0,m] = η
)

≤ P w
4

(
T2i < τ 4

n ,LE
(
S4[0, T2i−1]

)[0, j ] = η[0, j ], T2i < τ
η(j) < T2i+1, S

4[T2i , τ

η(j)

] ∩ η[0, j − 1] = ∅,

LE
(
S4[τ 

η(j), T2i+1
])[0,m − j ] = η[j,m], S4[τ 

η(j), T2i+1
] ∩ η[0, j − 1] = ∅

)
=

∑
w′∈∂B(w, εln

4 )

P w
4

(
T2i−1 < τ 4

n , S4(T2i−1) = w′,LE
(
S4[0, T2i−1]

)[0, j ] = η[0, j ])

× P w′
4

(
t1 < τ 4

n , τ 4
η(j) < t2, S4[t1, τ 4

η(j)

] ∩ η[0, j − 1] = ∅,

LE
(
S4[τ 4

η(j), t
2])[0,m − j ] = η[j,m], S4[τ 4

η(j), t
2] ∩ η[0, j − 1] = ∅

)
, (3.40)

where τ 4
η(j) = inf{t | S4(t) = η(j)}. Since η ⊂ B(w, εln

1600 ), in order for S4 to hit η, S4 must intersect ∂B(w, εln
800 )

before τ 4
η(j). So by using the strong Markov property at t1 first, then using it again at τ 4

η(j), we have

P w′
4

(
t1 < τ 4

n , τ 4
η(j) < t2, S4[t1, τ 4

η(j)

] ∩ η[0, j − 1] = ∅,

LE
(
S4[τ 4

η(j), t
2])[0,m − j ] = η[j,m], S4[τ 4

η(j), t
2] ∩ η[0, j − 1] = ∅

)
=

∑
w′′∈∂B(w, εln

800 )

P w′
4

(
S4(t1) = w′′)

× P w′′
4

(
τ 4
η(j) < t2, S4[0, τ 4

η(j)

] ∩ η[0, j − 1] = ∅,

LE
(
S4[τ 4

η(j), t
2])[0,m − j ] = η[j,m], S4[τ 4

η(j), t
2] ∩ η[0, j − 1] = ∅

)
=

∑
w′′∈∂B(w, εln

800 )

P w′
4

(
S4(t1) = w′′) × P w′′

4

(
τ 4
η(j) < t2, S4[0, τ 4

η(j)

] ∩ η[0, j − 1] = ∅
)

× P
η(j)

4

(
LE

(
S4[0, t2])[0,m − j ] = η[j,m], S4[0, t2] ∩ η[0, j − 1] = ∅

)
. (3.41)

By the equation in line 10, page 199 of [11], we can write the distribution of LERW in terms of Green’s functions and
non-intersecting probabilities of η as follows.

P
η(j)

4

(
LE

(
S4[0, t2])[0,m − j ] = η[j,m], S4[0, t2] ∩ η[0, j − 1] = ∅

)

=
m−1∏
q=j

G
(
η(q), η(q),B \ η[0, q − 1])P η(q)

4

(
S4(1) = η(q + 1)

)
G

(
η(m),η(m),B \ η[0,m − 1])

× P
η(m)

4

(
S4[1, t2] ∩ η[0,m] =∅

)
, (3.42)

where B = B(w, εln
4 ) and G(·, ·, ·) is Green’s function defined in Section 1.4.
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Take w′
0 ∈ ∂B(w, εln

4 ) and w′′
0 ∈ ∂B(w, εln

800 ) such that

P
w′

0
4

(
S4(t1) = w′′

0

) = max
w′∈∂B(w, εln

4 ),w′′∈∂B(w, εln
800 )

P w′
4

(
S4(t1) = w′′).

Then by using Proposition 1.5.10 [8], we see that

P
w′

0
4

(
S4(t1) = w′′

0

) ≤ 6400

(εln)2
. (3.43)

By (3.40)–(3.42), and by definition of w′
0 and w′′

0 ,

P w
4

(
T2i < τ 4

n ,u′ = j,LE
(
S4[0, T2i+1]

)[0,m] = η
)

≤
∑

w′∈∂B(w, εln
4 )

P w
4

(
T2i−1 < τ 4

n , S4(T2i−1) = w′,LE
(
S4[0, T2i−1]

)[0, j ] = η[0, j ])

×
∑

w′′∈∂B(w, εln
800 )

P w′
4

(
S4(t1) = w′′) × P w′′

4

(
τ 4
η(j) < t2, S4[0, τ 4

η(j)

] ∩ η[0, j − 1] = ∅
)

×
m−1∏
q=j

G
(
η(q), η(q),B \ η[0, q − 1])P η(q)

4

(
S4(1) = η(q + 1)

)
G

(
η(m),η(m),B \ η[0,m − 1])

× P
η(m)

4

(
S4[1, t2] ∩ η[0,m] =∅

)
≤ P w

4

(
T2i−1 < τ 4

n ,LE
(
S4[0, T2i−1]

)[0, j ] = η[0, j ])
×

∑
w′′∈∂B(w, εln

800 )

P
w′

0
4

(
S4(t1) = w′′

0

) × P w′′
4

(
τ 4
η(j) < t2, S4[0, τ 4

η(j)

] ∩ η[0, j − 1] = ∅
)

×
m−1∏
q=j

G
(
η(q), η(q),B \ η[0, q − 1])P η(q)

4

(
S4(1) = η(q + 1)

)
G

(
η(m),η(m),B \ η[0,m − 1])

× P
η(m)
4

(
S4[1, t2] ∩ η[0,m] =∅

)
. (3.44)

In order to estimate the RHS of (3.44), now we use the assumption of the induction for η[0, j ]. By using it as well as
the equation in line 10, page 199 of [11] for the distribution of LE(S4[0, T1])[0,m], we see that

≤ ci−1P w
4

(
LE

(
S4[0, T1]

)[0, j ] = η[0, j ])
×

∑
w′′∈∂B(w, εln

800 )

P
w′

0
4

(
S4(t1) = w′′

0

) × P w′′
4

(
τ 4
η(j) < t2, S4[0, τ 4

η(j)

] ∩ η[0, j − 1] = ∅
)

×
m−1∏
q=j

G
(
η(q), η(q),B \ η[0, q − 1])P η(q)

4

(
S4(1) = η(q + 1)

)
G

(
η(m),η(m),B \ η[0,m − 1])

× P
η(m)
4

(
S4[1, t2] ∩ η[0,m] =∅

)
= ci−1P w

4

(
LE

(
S4[0, T1]

)[0,m] = η[0,m])
×

∑
w′′∈∂B(w, εln

800 )

P
w′

0
4

(
S4(t1) = w′′

0

) × P w′′
4

(
τ 4
η(j) < t2, S4[0, τ 4

η(j)

] ∩ η[0, j − 1] = ∅
)

× G
(
η(j), η(j),B \ η[0, j − 1])P η(j)

4

(
S4[1, t2] ∩ η[0, j ] =∅

)
. (3.45)
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Let u := inf{t | η(t) ∈ S4[0, t2]}. In order for u to be j , first S4 hits η(j) before t2 and intersecting η[0, j − 1],
then S4 does not hit η[0, j − 1] from τ 4

η(j) to the last visit of η(j), and finally it exits B(w, εln
4 ) without intersecting

η[0, j − 1]. Thus we have

P w′′
4

(
u = j

)
=

∞∑
k=0

P w′′
4

(
τ 4
η(j) < t2, t = τ 4

η(j) + 2k,S4[0, t2] ∩ η[0, j − 1] = ∅
)

(
where t := max

{
t ≤ t2 | S4(t) = η(j)

})
=

∞∑
k=0

P w′′
4

(
τ 4
η(j) < t2, S4[0, τ 4

η(j)

] ∩ η[0, j − 1] = ∅
)

× P
η(j)

4

(
S4(2k) = η(j), S4[0,2k] ∩ η[0, j − 1] = ∅, S4[0,2k] ⊂ B

)
P

η(j)

4

(
S4[1, t2] ∩ η[0, j ] =∅

)
= P w′′

4

(
τ 4
η(j) < t2, S4[0, τ 4

η(j)

] ∩ η[0, j − 1] = ∅
)
G

(
η(j), η(j),B \ η[0, j − 1])

× P
η(j)

4

(
S4[1, t2] ∩ η[0, j ] =∅

)
.

Combining this with (3.45), we have

P w
4

(
T2i < τ 4

n ,u′ = j,LE
(
S4[0, T2i+1]

)[0,m] = η
)

≤ ci−1P w
4

(
LE

(
S4[0, T1]

)[0,m] = η[0,m]) ∑
w′′∈∂B(w, εln

800 )

P
w′

0
4

(
S4(t1) = w′′

0

)
P w′′

4

(
u = j

)
. (3.46)

Clearly events {u′ = j} are disjoint, and the same thing holds for events {u = j}. So taking sum for j in (3.46), we
have

P w
4

(
T2i < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η,S4[T2i , T2i+1] ∩ η �=∅
)

≤ ci−1P w
4

(
LE

(
S4[0, T1]

)[0,m] = η[0,m])
×

∑
w′′∈∂B(w, εln

800 )

P
w′

0
4

(
S4(t1) = w′′

0

)
P w′′

4

(
S4[0, t2] ∩ η[0,m] �=∅

)
. (3.47)

The estimate of the case that S4[T2i , T2i+1]∩η �=∅ was given as in (3.47). For the case that S4[T2i , T2i+1]∩η =∅,
by (3.38) and the assumption of the induction,

P w
4

(
T2i < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η,S4[T2i , T2i+1] ∩ η =∅
)

≤ ci−1P w
4

(
LE

(
S4[0, T1]

)[0,m] = η[0,m])
×

∑
w′′∈∂B(w, εln

800 )

P
w′

0
4

(
S4(t1) = w′′

0

)
P w′′

4

(
S4[0, t2] ∩ η[0,m] =∅

)
. (3.48)

But (3.43) shows that P
w′

0
4 (S4(t1) = w′′

0) is small enough compared with the number of lattice points in ∂B(w, εln
800 ).

Since we assume c ∈ ( 1
2 ,1) in the assumption of the induction, this leads to finish the proof of the induction as follows.

P w
4

(
T2i+1 < τ 4

n ,LE
(
S4[0, T2i+1]

)[0,m] = η
)

≤ ci−1P w
4

(
LE

(
S4[0, T1]

)[0,m] = η[0,m])



814 D. Shiraishi

×
∑

w′′∈∂B(w, εln
800 )

P
w′

0
4

(
S4(t1) = w′′

0

){
P w′′

4

(
S4[0, t2] ∩ η[0,m] �=∅

) + P w′′
4

(
S4[0, t2] ∩ η[0,m] =∅

)}

≤ ci−1P w
4

(
LE

(
S4[0, T1]

)[0,m] = η[0,m]) 6400

(εln)2

50(εln)2

640,000

≤ ciP w
4

(
LE

(
S4[0, T1]

)[0,m] = η[0,m]), (3.49)

which finishes the proof of Lemma 3.7. �

Recall the strategy in Remark 3.5. Since LE(S4[0, T2i+1])[σ
4, u

′
4] ⊂ B(w, εln

1600 ), by Lemma 3.7, Lemma 2.11 and
(2.14)

∞∑
i=0

P w
4 ⊗ P w

3

(
T2i+1 < τ 4

n ,LE
(
S4[0, T2i+1]

)[
σ

4, u
′
4

] ∩ S3[0, T 3
w, lεn

4

] =∅
)

≤
∞∑
i=0

ciP w
4 ⊗ P w

3

(
LE

(
S4[0, T1]

)[
t2 , t1

] ∩ S3[0, T 3
w, lεn

4

] =∅
)

(
where t1 := inf

{
t

∣∣∣ LE
(
S4[0, T1]

)
(t) ∈ ∂B

(
w,

εln

1600

)}

and t2 := max
{
t ≤ t1 | LE

(
S4[0, T1]

)
(t) ∈ ∂B(w,8εn)

})

≤ C Es(εn, εln). (3.50)

Therefore, by (3.33),

P w
4 ⊗ P w

3

(
T ′′ ≤ σ 4

z′ < τ 4
n , S4(T ′′) ∈ γ1[σ 1, lenγ1] ∪ γ2,LE

(
S4[0, T ′′])[σ ′′

4, u4
] ∩ S3[0, T 3

w, lεn
4

] =∅
)

≤ C

εln
Es(εn, εln), (3.51)

where we used l−1 ≤ Es(εn, εln) in the last inequality (see (2.16)).
Thus by (3.30),

p̃1 ≤ C

εn

1

εln
Es(εn, εln) max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, σ 1

z

])[0, σ 1] ∩ S3[0, τ 3
n

] =∅
)
. (3.52)

Combining (3.52) with (3.23), we have

P 0
1 ⊗ P z

2 ⊗ P w
3

(
F 1, q(1) = r, S2(T 2

z, lεn
2

) = z′) ≤ E0
1 ⊗ Ez

2(p̃11F 2)

(
Recall that F 2 was defined in (3.24)

)
≤ C

εn

1

εln
Es(εn, εln)E0

1 ⊗ Ez
2

{
1F 2 max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, σ 1

z

])[0, σ 1] ∩ S3[0, τ 3
n

] =∅
)}

. (3.53)

We need to estimate the expectation in RHS of (3.53). Using the time reversibility of LERW (see Lemma 2.2), we
can replace the loop erasure of S1 from the origin to z by the loop erasure of S1 from z to the origin. Therefore we
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have

E0
1 ⊗ Ez

2

{
1F 2 max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, σ 1

z

])[0, σ 1] ∩ S3[0, τ 3
n

] =∅
)}

= Ez
1 ⊗ Ez

2

{
1
F̃ 2 max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, τ 1

0

])[ũ1, ũ2] ∩ S3[0, τ 3
n

] =∅
)}

, (3.54)

where

ũ1 := max
{
t | LE

(
S1[0, τ 1

0

])
(t) ∈ ∂

(
εnB ′

x

)}
, ũ2 := len LE

(
S1[0, τ 1

0

])
, (3.55)

and

F̃ 2 := {
τ 1

0 < τ 1
n , S2[1, T 2

z, lεn
2

] ∩ (
εnB ′

x

) =∅, S2(T 2
z, lεn

2

) = z′,

LE
(
S1[0, τ 1

0

])[ũ1, ũ2] ∩ S2[0, T 2
z, lεn

2

] =∅,LE
(
S1[0, τ 1

0

])[0, ũ1] ∩ Ar
z �= ∅,

LE
(
S1[0, τ 1

0

])[0, ũ1] ⊂ B
(
z,2r εn

)}
. (3.56)

We have to estimate the expectation in RHS of (3.54). As we discussed, we want to deal with all events in F̃ 2 as if
they were independent. That will be done in the next lemma. In order to control the independence of LERW, we will
use Proposition 4.6 [15], which states that η1

0,R(S[0, τn]) and η2
0,4R,n(S[0, τn]) are “independent up to constant”.

Lemma 3.8. Suppose that r ≤ log2 l − 3. Then there exist universal constants C < ∞ and δ > 0 such that

Ez
1 ⊗ Ez

2

{
1
F̃ 2 max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, τ 1

0

])[ũ1, ũ2] ∩ S3[0, τ 3
n

] =∅
)}

≤ C

n

1

εn
2−δr Es(εn,n)P z

2

(
S2(T 2

z, lεn
2

) = z′). (3.57)

Proof. Throughout the proof, let

η2
R(λ) := λ[s, u],

where u = inf{t | λ(t) ∈ ∂B(z,R)} and s = sup{t ≤ u | λ(t) ∈ ∂(εnB ′
x)}. Suppose that LE(S1[0, τ 1

0 ])[0, ũ1] ∩ Ar
z �= ∅

and LE(S1[0, τ 1
0 ])[0, ũ1] ⊂ B(z,2r εn). Since r ≤ log2 l − 3, we see that

η2
n
16

(
LE

(
S1[0, τ 1

0

])) ⊂ LE
(
S1[0, τ 1

0

])[ũ1, ũ2], η2
εln

(
LE

(
S1[0, τ 1

0

])) ⊂ LE
(
S1[0, τ 1

0

])[ũ1, ũ2].
Therefore, if we write

F̃ 3 := {
τ 1

0 < τ 1
n , S2[1, T 2

z, lεn
2

] ∩ (
εnB ′

x

) =∅, S2(T 2
z, lεn

2

) = z′,

η2
εln

(
LE

(
S1[0, τ 1

0

])) ∩ S2[0, T 2
z, lεn

2

] =∅,

(
η1

z,2r εn

(
LE

(
S1[0, τ 1

0

])) \ η1
z,2r−1εn

(
LE

(
S1[0, τ 1

0

]))) ∩ (
εnB ′

x

) �=∅
}
, (3.58)

(recall that η1 was defined as in Definition 2.5) then we can replace LE(S1[0, τ 1
0 ])[ũ1, ũ2] as follows.

Ez
1 ⊗ Ez

2

{
1
F̃ 2∩G

max
w1∈∂B(w, εln

4 )

P
w1
3

(
LE

(
S1[0, τ 1

0

])[ũ1, ũ2] ∩ S3[0, τ 3
n

] =∅
)}

≤ Ez
1 ⊗ Ez

2

{
1
F̃ 3∩G

max
w1∈∂B(w, εln

4 )

P
w1
3

(
η2

n
16

(
LE

(
S1[0, τ 1

0

])) ∩ S3[0, τ 3
n

] =∅
)}

. (3.59)
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By Proposition 4.2, 4.4 [15] and Proposition 1.5.10 [8], the distribution of the loop erasure of a random walk con-
ditioned to hit the origin before exiting B(n) is equal to (up to multiplicative constants) the distribution of the loop
erasure of S1 up to exiting B(z, n

4 ). So we have

Ez
1 ⊗ Ez

2

{
1
F̃ 3∩G

max
w1∈∂B(w, εln

4 )

P
w1
3

(
η2

n
16

(
LE

(
S1[0, τ 1

0

])) ∩ S3[0, τ 3
n

] =∅
)}

≤ C

n
Ez

1 ⊗ Ez
2

{
1
F̃ 4∩G

max
w1∈∂B(w, εln

4 )

P
w1
3

(
η2

n
16

(
LE

(
S1[0, T 1

z, n
4

])) ∩ S3[0, τ 3
n

] =∅
)}

, (3.60)

where

F̃ 4 := {
S2[1, T 2

z, lεn
2

] ∩ (
εnB ′

x

) =∅, S2(T 2
z, lεn

2

) = z′, η2
εln

(
LE

(
S1[0, T 1

z, n
4

])) ∩ S2[0, T 2
z, lεn

2

] = ∅,

(
η1

z,2r εn

(
LE

(
S1[0, T 1

z, n
4

])) \ η1
z,2r−1εn

(
LE

(
S1[0, T 1

z, n
4

]))) ∩ (
εnB ′

x

) �=∅
}
. (3.61)

We will estimate the expectation in the RHS of (3.60). To do it, let γ := LE(S1[0, T 1
z, n

4
]) and τ

γ

R := inf{t | γ (t) ∈
∂B(z,R)}. Suppose that F̃ 4 and γ [τγ

n
16

, τ
γ
n
4
] ∩ B(z,2r+4εn) �= ∅ occur. Then S1 returns to B(z,8εn) after hitting

∂B(z,2r−1εn). After S1 returns to B(z,8εn) and goes to ∂B(z, n
16 ), S1 must return to B(z,2r+4εn). By Proposi-

tion 1.5.10 [8], that probability is bounded above by C 2r εn
n

εn
2r εn

= Cε. Thus by the strong Markov property, Proposi-
tion 1.5.10 [8], and (2.16),

C

n
P z

1 ⊗ P z
2

(
F̃ 4, γ

[
τ

γ
n
16

, τ
γ
n
4

] ∩ B
(
z,2r+4εn

) �=∅
) ≤ C

n

1

εn
P z

2

(
S2(T 2

z, lεn
2

) = z′) × ε

≤ C

n

1

εn
2−cr Es(εn,n)P z

2

(
S2(T 2

z, lεn
2

) = z′), (3.62)

for some c > 0. So it suffices to consider the case that γ [τγ
n
16

, τ
γ
n
4
] ∩ B(z,2r+4εn) = ∅. With this in mind, define

k0 := min{k | γ [τγ
n
16

, τ
γ
n
4
] ∩B(z,2−kn) =∅}. Then we may assume that 2−k0n ≥ 2r+4εn. Now we consider two cases.

Case-1: 2−k0n ≥ 4lεn.
In this case, we have η2

z,4εln, n
16

(γ ) = η1
z, n

16
(η2

z,4εln, n
4
(γ )) (see Definition 2.5 for ηi ). Thus by the Harnack principle

(see Theorem 1.7.6 [8]),

C

n
Ez

1 ⊗ Ez
2

{
1
F̃ 4∩Case-1 max

w1∈∂B(w, εln
4 )

P
w1
3

(
η2

n
16

(γ ) ∩ S3[0, τ 3
n

] =∅
)}

≤ C

n
Ez

1 ⊗ Ez
2

{
1
F̃ 4∩Case-1 max

w1∈∂B(w, εln
4 )

P
w1
3

(
η1

z, n
16

(
η2

z,4εln, n
4
(γ )

) ∩ S3[0, τ 3
n

] =∅
)}

≤ C

n
Ez

1 ⊗ Ez
2

{
1
F̃ 4∩Case-1P

z
3

(
η1

z, n
16

(
η2

z,4εln, n
4
(γ )

) ∩ S3[0, τ 3
n

] =∅
)}

. (3.63)

But by Proposition 4.6 [15], the distribution of γ from z to ∂B(z, εln) and the distribution of γ after last visit to
B(z,4εln) are independent (up to multiplicative constants). Therefore the RHS of (3.63) is bounded above by

C

n
P z

1 ⊗ P z
2

(
F̃ 4) × P z

1 ⊗ P z
3

(
η1

z, n
16

(
η2

z,4εln, n
4
(γ )

) ∩ S3[0, τ 3
n

] =∅
)
. (3.64)

By Lemma 2.11, Proposition 2.6, and the strong Markov property, we see that (3.64) is bounded above by

C

n

1

εn
2−cr Es(εn,n)P z

2

(
S2(T 2

z, lεn
2

) = z′). (3.65)

So we finish Case-1.
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Case-2: 2r+4εn ≤ 2−k0n ≤ 4lεn.
Suppose that k0 = k with 2r+4εn ≤ 2−kn ≤ 4lεn. Note that η2

z,2−kn, n
16

(γ ) = η1
z, n

16
(η2

z,2−kn, n
4
(γ )), and

(η2
z,2−kn, n

4
(γ ) \ η1

z, n
16

(η2
z,2−kn, n

4
(γ ))) ∩ B(z,2−(k−1)n) �= ∅. So by similar arguments using Proposition 4.6 [15] as

above, we see that

C

n
Ez

1 ⊗ Ez
2

{
1
F̃ 4∩{k0=k} max

w1∈∂B(w, εln
4 )

P
w1
3

(
η2

n
16

(γ ) ∩ S3[0, τ 3
n

] =∅
)}

≤ C

n
P z

1 ⊗ P z
2

((
η2

z,2−kn, n
4
(γ ) \ η1

z, n
16

(
η2

z,2−kn, n
4
(γ )

)) ∩ B
(
z,2−(k−1)n

) �=∅, F̃ 4
k

)
≤ C

n
P z

1 ⊗ P z
2

((
η2

z,2−kn, n
4
(γ ) \ η1

z, n
16

(
η2

z,2−kn, n
4
(γ )

)) ∩ B
(
z,2−(k−1)n

) �=∅
) × P z

1 ⊗ P z
2

(
F̃ 4

k

)
≤ C

n
Es

(
2−kn,n

)
2−ckP z

1 ⊗ P z
2

(
F̃ 4

k

)
, (3.66)

for some c > 0. Here F̃ 4
k is defined by

F̃ 4
k := {

S2[1, T 2
z, lεn

2

] ∩ (
εnB ′

x

) =∅, S2(T 2
z, lεn

2

) = z′, η2
2−(k+2)n

(γ ) ∩ S2[0, T 2
z, lεn

2

] =∅,

(
η1

z,2r εn(γ ) \ η1
z,2r−1εn

(γ )
) ∩ (

εnB ′
x

) �=∅
}
.

But by Lemma 2.11, Proposition 2.6, and the strong Markov property, RHS of (3.66) is bounded above by

C

n

1

εn
2−ck2−cr Es(εn,n)P z

2

(
S2(T 2

z, lεn
2

) = z′), (3.67)

for some c > 0. Taking sum for k, we have

C

n
Ez

1 ⊗ Ez
2

{
1
F̃ 4∩Case-2 max

w1∈∂B(w, εln
4 )

P
w1
3

(
η2

n
16

(γ ) ∩ S3[0, τ 3
n

] =∅
)}

≤ C

n

1

εn
2−cr Es(εn,n)P z

2

(
S2(T 2

z, lεn
2

) = z′). (3.68)

So we finish Case-2, and Lemma 3.8 is proved. �

Now we return to the proof of Theorem 3.1. Using Lemma 3.3, 3.6, 3.7, and 3.8, by (3.53),

P 0
1 ⊗ P z

2 ⊗ P w
3

(
F 1, q(1) = r, S2(T 2

z, lεn
2

) = z′)
≤ E0

1 ⊗ Ez
2(p̃11F 2)

≤ C

εn

1

εln

1

n

1

εn
2−δr Es(εn,n)Es(εn, εln)P z

2

(
S2(T 2

z, lεn
2

) = z′). (3.69)

Taking sum for z′ ∈ ∂B(z, εln
2 ) and 0 ≤ r ≤ log2 l − 3, by (3.23), we see that

P 0
1 ⊗ P z

2 ⊗ P w
3

(
F 1, q(1) ≤ log2 l − 3

) ≤ C

εn

1

εln

1

n

1

εn
Es(εn,n)Es(εn, εln). (3.70)

(Recall that F 1 was defined in (3.20).) For the case that q(1) ≥ log2 l − 3, by the same argument as above, one can
prove that

P 0
1 ⊗ P z

2 ⊗ P w
3

(
F 1, q(1) ≥ log2 l − 3

) ≤ C

εn

1

εln

1

n

1

εn
Es(εn,n)Es(εn, εln). (3.71)
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(We shall omit the proof of (3.71) and leave it to the reader.) Taking sum for z ∈ ∂(εnB ′
x) and w ∈ ∂(εnB ′

y), by (3.19),
we have

P
(
LE

(
S
[
0, T x

])[
0, σ ′

1

] ∩ S
[
T x, τn

] =∅,LE
(
S
[
0, T y

])[
0, σ ′

2

] ∩ S
[
T y, τn

] =∅, T x < T y < τn

)
≤ Cε

l
Es(εn,n)Es(εn, εln). (3.72)

(Note that �{z ∈ ∂(εnB ′
x) ∩ Z

3} ≤ C(εn)2.) Combining (3.72) with (3.12) and (3.18), we finish the proof of Theo-
rem 3.1. �

3.2. Estimates of the number of boxes hit by K

Now we are ready to estimate the first and the second moment of the number of cubes hit by K. For ε > 0, let

Y ε := �
{
x ∈ Z

3 | εBx ⊂ D 2
3
\ D 1

3
,K ∩ εBx �=∅

}
. (3.73)

(Recall that Bx was defined in (3.1).) In this subsection, we will give a lower bound of Y ε in Corollary 3.11. In order
to prove it, we first estimate the second moment of Y ε (see Corollary 3.9 below) using Theorem 3.1. Then we also
give a lower bound of E(Y ε) in Proposition 3.10, and using the second moment method we get Corollary 3.11 in the
end of this subsection.

Theorem 3.1 and estimates of escape probabilities introduced as in Section 2.2 immediately show the following
corollary, which gives a second moment estimate of Y ε .

Corollary 3.9. Take ε > 0 and fix n = nε = 2jε such that (3.3) holds. Then there exists an absolute constant C < ∞
such that

E
((

Y ε
)2) ≤ C

{
ε−2 Es(εn,n)

}2
. (3.74)

Proof. By Theorem 3.1, we have

E
((

Y ε
)2) ≤

∑
|x|,|y|∈[ 1

3ε
, 2

3ε
]
P(K ∩ εBx �=∅,K ∩ εBy �=∅)

≤ C
∑

|x|∈[ 1
3ε

, 2
3ε

]

2
ε∑

l=1

l2 Es(εn, lεn)Es(εn,n)
ε

l
+

∑
|x|∈[ 1

3ε
, 2

3ε
]
P(K ∩ εBx �=∅)

≤ Cε−2 Es(εn,n)

2
ε∑

l=1

l Es(εn, lεn). (3.75)

By Lemma 2.8, for any δ > 0 there exists C = Cδ < ∞ such that

(εln)α+δ Es(εln) ≤ Cδn
α+δ Es(n).

Dividing both sides by (εln)α+δ Es(εn) and using (2.14), we have

Es(εn, εln) ≤ Cδε
−α−δl−α−δ Es(εn,n).
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Fix δ > 0 so that 1 − α − δ > 0. Combining this with (3.75), we have

ε−2 Es(εn,n)

2
ε∑

l=1

l Es(εn, lεn)

≤ Cδε
−2 Es(εn,n)

2
ε∑

l=1

lε−α−δl−α−δ Es(εn,n)

= Cδε
−2−α−δ Es(εn,n)2

2
ε∑

l=1

l1−α−δ ≤ Cδε
−2−α−δ Es(εn,n)2ε−2+α+δ = Cδε

−4 Es(εn,n)2, (3.76)

which finishes the proof. �

Take ε > 0. Fix n = nε = 2jε such that (3.3) holds. Recall that B ′
x := ∏3

i=1[xi − 2, xi + 2] was defined just before
(3.11). In the proof of Lemma 7.1 [16], it was shown that

P
(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅

) ≤ Cε Es(εn,n),

for x ∈ Z
3 with 1

3 ≤ |εx| ≤ 2
3 . Using this and (3.3), we have

P(K ∩ εBx �=∅)

≤ P
(
K ∩ εBx �=∅, dH(LEWn,K) < ε2) + P

(
K ∩ εBx �=∅, dH(LEWn,K) ≥ ε2)

≤ P
(
LEWn ∩ εB ′

x �=∅
) + ε100 ≤ Cε Es(εn,n).

So we see that

E
(
Y ε

) ≤ Cε−2 Es(εn,n). (3.77)

In the next proposition, we will give the lower bound of E(Y ε). As Remark 7.2 [16] states, its proof is almost
included in the proof of Lemma 7.1 [16]. However we will give the proof for completeness.

Proposition 3.10. Take ε > 0 and fix n = nε = 2jε such that (3.3) holds. Then there exists an absolute constant c > 0
such that

E
(
Y ε

) ≥ cε−2 Es(εn,n). (3.78)

Proof. Take x = (x1, x2, x3) ∈ Z
3 with 1

3 ≤ |εx| ≤ 2
3 . Let x′ = (x1 + 1

2 , x2 + 1
2 , x3 + 1

2 ) be the center of Bx . Let
y = εnx′. We write B1 = B(y, rεn), B2 = B(y, εn

3 ) and B3 = B(y, εn
2 ) throughout the proof, where 0 < r � 1 is a

small constant which will be fixed later.
Using (3.3), it suffices to show that

P
(
LE

(
S[0, τn]

) ∩ B3 �=∅
) ≥ cε Es(εn,n), (3.79)

Let T := max{t | S(t) ∈ B1} and τ := min{t | LE(S[0, T ])(t) ∈ B3}. Then we have

P
(
LE

(
S[0, τn]

) ∩ B3 �=∅
) ≥ P

(
T < τn,LE

(
S[0, T ])[0, τ ] ∩ S[T + 1, τn] =∅

)
.

By the decomposition as in (3.19) and reversing a path, we have

P
(
T < τn,LE

(
S[0, T ])[0, τ ] ∩ S[T + 1, τn] =∅

)
≥

∑
z∈∂iB1

P z
1 ⊗ P z

2

(
τ 1

0 < τ 1
n , S2[1, τ 2

n

] ∩ B1 =∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)
,

where τ 1
0 = inf{t | S1(t) = 0}, σ1 = max{t | LE(S1[0, τ 1

0 ])(t) ∈ B3} and σ2 = len LE(S1[0, τ 1
0 ]).
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Let τ 2
B2

:= {t | S2(t) ∈ ∂B2}. Then for each z ∈ ∂iB1,

P z
1 ⊗ P z

2

(
τ 1

0 < τ 1
n , S2[1, τ 2

n

] ∩ B1 =∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

≥ P z
2

(
S2[1, τ 2

B2

] ∩ B1 =∅
)

× Ez
1

{
1{τ1

0 <τ 1
n } min

w∈∂B2
P w

2

(
S2[0, τ 2

n

] ∩ B1 =∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)}

.

However, by the Harnack principle (see Theorem 1.7.6 [8]), there exists c1 > 0 such that for any w ∈ ∂B2,

P w
2

(
S2[0, τ 2

n

] ∩ B1 =∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

= P w
2

(
LE

(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

− P w
2

(
S2[0, τ 2

n

] ∩ B1 �=∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

≥ c1P
z
2

(
LE

(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

− P w
2

(
S2[0, τ 2

n

] ∩ B1 �=∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)
.

On the other hand, by Proposition 1.5.10 [8] and the Harnack principle again, there exists C2 < ∞ such that

P w
2

(
S2[0, τ 2

n

] ∩ B1 �=∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

≤ C2r max
z′∈∂B1

P z′
2

(
LE

(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

≤ C2r
1

c1
P z

2

(
LE

(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)
.

Now we take r > 0 sufficiently small so that C2r
1
c1

≤ c1
2 . Then we have

P w
2

(
S2[0, τ 2

n

] ∩ B1 =∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

≥ c1

2
P z

2

(
LE

(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)
.

Thus,

P z
1 ⊗ P z

2

(
τ 1

0 < τ 1
n , S2[1, τ 2

n

] ∩ B1 =∅,LE
(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

≥ c

εn
P z

1 ⊗ P z
2

(
τ 1

0 < τ 1
n ,LE

(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)
.

Let B = B(z, n
4 ) and τi = inf{t | Si(t) ∈ ∂B} for i = 1,2. We write γ = LE(S1[0, τ1]) and let σ := max{t | γ (t) ∈

B3}. We define events F and G by

F =
{

dist
(
γ (lenγ ), S2[0, τ2]

) ≥ n

12
,dist

(
γ [σ, lenγ ), S2(τ2)

) ≥ n

12

}
,

G =
{
γ [0, σ ] ∩ B

(
γ (lenγ ),

n

12

)
=∅

}
.

By Proposition 1.5.10 [8], we have

P z
1 ⊗ P z

2

(
Gc

) ≤ Cε

n
.
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By the strong Markov property,

P z
1 ⊗ P z

2

(
τ 1

0 < τ 1
n ,LE

(
S1[0, τ 1

0

])[σ1, σ2] ∩ S2[0, τ 2
n

] =∅
)

≥ P z
1 ⊗ P z

2

(
τ 1

0 < τ 1
n ,F,G,γ [σ, lenγ ) ∩ S2[0, τ2] =∅, S1[τ1, τ

1
0

] ∩ S2[τ2, τ
2
n

] =∅,

(
S1[τ1, τ

1
0

] ∩ B
) ⊂ B

(
S1(τ1),

n

12

)
,
(
S2[τ2, τ

2
n

] ∩ B
) ⊂ B

(
S2(τ2),

n

12

))

≥ c

n
P z

1 ⊗ P z
2

(
F,G,γ [σ, lenγ ) ∩ S2[0, τ2] =∅

)
≥ c

n
P z

1 ⊗ P z
2

(
F,γ [σ, lenγ ) ∩ S2[0, τ2] =∅

) − Cε

n
.

However, by Lemma 2.10 and 2.11, we have

P z
1 ⊗ P z

2

(
F,γ [σ, lenγ ) ∩ S2[0, τ2] =∅

) ≥ cP z
1 ⊗ P z

2

(
γ [σ, lenγ ) ∩ S2[0, τ2] =∅

) ≥ c Es(εn,n).

Combining these estimates, we see that

P
(
LE

(
S[0, τn]

) ∩ B3 �=∅
) ≥

∑
z∈∂iB1

c

εn

1

n
Es(εn,n) ≥ cε Es(εn,n), (3.80)

which finishes the proof. �

By Corollary 3.9, Proposition 3.10 and the second moment method, we get the following lower bound of Y ε .

Corollary 3.11. Take ε > 0 and fix n = nε = 2jε such that (3.3) holds. Then there exists an absolute constant c > 0
such that

P
(
Y ε ≥ cε−2 Es(εn,n)

) ≥ c. (3.81)

4. Tightness of Yε

E(Y ε)

As we discussed in Section 1.2, in order to show that the Hausdorff dimension of K is equal to 2 − α almost surely (α
is the exponent as in Theorem 2.7), we need to improve Corollary 3.11, i.e., we have to prove that for all r > 0 there
exists cr > 0 such that

P
(
Y ε ≥ crε

−2 Es(εn,n)
) ≥ 1 − r, (4.1)

where ε > 0 is an arbitrary positive number and n = nε = 2jε is an integer satisfying (3.3).
In order to prove (4.1), again we use the coupling of K and LEWn explained as in Section 1.2. Then (4.1) boils

down to the corresponding estimates for LERW as follows. Let Y ε
n be the number of εn-cubes nbx with 1

3 ≤ |εx| ≤ 2
3

such that LE(S[0, τn]) hits nbx . Then (4.1) is reduced to proving that for all r > 0 there exists cr > 0 such that

P
(
Y ε

n ≥ crε
−2 Es(εn,n)

) ≥ 1 − r. (4.2)

To show (4.2), we will use “iteration arguments” as in the proof of Theorem 6.7 of [1] and Theorem 8.2.6 of [18]
where exponential lower tail bounds of Mn were established for d = 2 ([1]) and d = 3 ([18]). We explain it here. Take
integer N . Define a sequence of boxes Ai by Ai = [−n

3 − in
N

, n
3 + in

N
]3 for 0 ≤ i ≤ N

6 . We write γ = LE(S[0, τn])
and let τ(i) = τγ (i) be the first time that γ exits from Ai . It turns out that the expected number of εn-cubes hit by
γi := γ [τ(i), τ (i + 1)] is of order (εN)−2 Es(εn, n

N
) for each i. Conditioned on γ [0, τ (i)] = λ for a given path λ, we

are interested in the probability that the number of εn-cubes hit by γi is bigger than c1(εN)−2 Es(εn, n
N

) (we denote
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this probability by p(λ)). The domain Markov property (see Lemma 2.3) tells that we need to study a random walk
conditioned not to intersect λ. We will study such a conditioned random walk in Section 4.1 and show that there exists
a universal constant c1 > 0 which does not depend on λ such that the probability p(λ) above is larger than c1 for every
i (see Lemma 4.4). Using this and the domain Markov property, we have

P

(
Y ε

n ≤ c1(εN)−2 Es

(
εn,

n

N

))
≤ (1 − c1)

N
6 . (4.3)

Since Es(εn, n
N

) ≥ c2 Es(εn,n) for some absolute constant c2 > 0, taking N = Nr such that (1 − c1)
Nr
6 < r first, then

letting cr := c1c2N
−2
r , we get (4.2) and (4.1) (see Proposition 4.5 and 4.6).

4.1. Loop-erasure of conditioned random walks

Given a box and a simple path γ contained in the inside of the box except the end point γ (lenγ ) which is lying on
the boundary of the box. Following same spirits of Theorem 6.7 [1] and Theorem 8.2.6 [18], we are interested in a
random walk X staring from γ (lenγ ) conditioned that X[1, τ ] ∩ γ = ∅ for some stopping time τ . Estimates of such
a conditioned random walk X are crucial to prove (4.1). In this subsection, we will study X.

We begin with some notation.

Definition 4.1. Let M ≥ 20. Fix ε > 0 and take n = nε = 2jε such that (3.3) holds. Define

ki = 1

3
+ i

M
for i = 0,1, . . . ,

M

20
,

D(i) = [−ki, ki]3, A(i) = D(i + 1) \ D(i), Di,n = nD(i) ∩Z
3, Ai,n = nA(i) ∩Z

3.

(4.4)

Take i ∈ {0,1, . . . , M
20 }. Suppose that γ = γi is a simple path in Z

3 with γ (0) = 0, γ [0, lenγ − 1] ⊂ Di,n and
γ (lenγ ) ∈ ∂Di,n. Let v = γ (lenγ ). We denote a face of ∂Di,n containing v by π1. Let �1 be the line segment starting
at v and terminating at ∂Di+1,n which is perpendicular to ∂Di,n. We denote the middle point of �1 by o1. We define a
set F

γ

i,n by F
γ

i,n := (o1 + [− n
8M

, n
8M

]3) ∩Z
3.

Let X = Xγ be the random walk conditioned to hit ∂Bn before hitting γ , i.e., X is the simple random walk S

started at v conditioned on {S[1, τn] ∩ γ =∅}.

Suppose that x, y ∈ Z
3 satisfy εnB ′

x ⊂ F
γ

i,n and εnB ′
y ⊂ F

γ

i,n. (B ′
x was defined just before (3.11).) Let l := |x − y|.

As in (3.12), we are interested in

PX

(
LE

(
X

[
0, τX

n

]) ∩ εnB ′
x �=∅,LE

(
X

[
0, τX

n

]) ∩ εnB ′
y �=∅

)
, (4.5)

where we write PX for the probability law of X and let τX
n := inf{t | X(t) ∈ ∂Bn}. For this probability, we have the

following lemma, which is an analog of Theorem 3.1 for the probability that the loop erasure of X hits two distinct
cubes.

Lemma 4.2. Let X be the conditioned random walk defined in Definition 4.1 and suppose that x, y ∈ Z
3 satisfy

εnB ′
x ⊂ F

γ

i,n and εnB ′
y ⊂ F

γ

i,n (see Definition 4.1 for F
γ

i,n). Then there exists an absolute constant C < ∞ such that

PX

(
LE

(
X

[
0, τX

n

]) ∩ εnB ′
x �=∅,LE

(
X

[
0, τX

n

]) ∩ εnB ′
y �=∅

) ≤ CεM

l
Es(εn, εln)Es

(
εn,

n

M

)
, (4.6)

where l = |x − y|.

Proof. Throughout the proof, we will use same notation defined in the proof of Theorem 3.1.
Define

T x
X := max

{
t ≤ τX

n | X(t) ∈ ∂
(
εnB ′

x

)}
, T

y
X := max

{
t ≤ τX

n | X(t) ∈ ∂
(
εnB ′

y

)}
. (4.7)
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As in (3.12), it suffices to estimate

PX

(
LE

(
X

[
0, τX

n

]) ∩ εnB ′
x �=∅,LE

(
X

[
0, τX

n

]) ∩ εnB ′
y �=∅, T x

X < T
y
X

)
= P v(LE(S[0, τn]) ∩ εnB ′

x �=∅,LE(S[0, τn]) ∩ εnB ′
y �=∅, T x < T y,S[1, τn] ∩ γ =∅)

P v(S[1, τn] ∩ γ =∅)
. (4.8)

By the last exit decomposition as in (3.19), we have

P v
(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅,LE

(
S[0, τn]

) ∩ εnB ′
y �=∅, T x < T y,S[1, τn] ∩ γ =∅

)
≤ C

∑
z∈∂(εnB ′

x)

∑
w∈∂(εnB ′

y)

P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1, S1[1, σ 1

z

] ∩ γ =∅, S3[0, τ 3
n

] ∩ γ =∅
)
, (4.9)

where σ 1
z and F 1 were defined as in (3.13) and (3.20), respectively.

Let

W :=
(

o1 +
[
− n

4M
,

n

4M

]3)
∩Z

3, (4.10)

where o1 was defined in Definition 4.1. Then

P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1, S1[1, σ 1

z

] ∩ γ =∅, S3[0, τ 3
n

] ∩ γ =∅
)

≤ P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1

 , S1[1, σ 1
z

] ∩ γ =∅, S3[τ 3
∂W , τ 3

n

] ∩ γ =∅
)
, (4.11)

where τ 3
∂W = {t | S3(t) ∈ ∂W } and

F 1
 := {

σ 1
z < τ 1

n , σ 2
w < τ 2

n , S2[1, T 2
z,6εn

] ∩ (
εnB ′

x

) =∅, S3[1, T 3
w,6εn

] ∩ (
εnB ′

y

) =∅

LE
(
S1[0, σ 1

z

])[0, σ 1] ∩ (
S2[0, σ 2

w

] ∪ S3[0, τ 3
∂W

]) =∅,

LE
(
S1[0, σ 1

z

] + S2[0, σ 2
w

])[0, σ 2] ∩ S3[0, τ 3
∂W

] =∅
}
. (4.12)

(See (3.14) for σ 1 and σ 2.) By the strong Markov property,

P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1

 , S1[1, σ 1
z

] ∩ γ =∅, S3[τ 3
∂W , τ 3

n

] ∩ γ =∅
)

≤ P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1

 , S1[1, σ 1
z

] ∩ γ =∅
)

max
w∈∂W

P
w

3

(
S3[0, τ 3

n

] ∩ γ =∅
)
. (4.13)

Recall that q(1) was defined as in (3.21) (we use the same notation here). Suppose that 0 ≤ r ≤ log2 l − 3. We will
first deal with P v

1 ⊗ P z
2 ⊗ P w

3 (F 1
 , S1[1, σ 1

z ] ∩ γ =∅, q(1) = r). However, as in (3.53), we have

P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1

 , S1[1, σ 1
z

] ∩ γ =∅, q(1) = r
)

≤ C

εn

1

εln
Es(εn, εln)

×
∑

z′∈∂B(z, εln
2 )

Ev
1 ⊗ Ez

2

{
1F 2

 ∩{S1[1,σ 1
z ]∩γ=∅} max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, σ 1

z

])[0, σ 1] ∩ S3[0, τ 3
∂W

] =∅
)}

,

(4.14)

where

F 2
 = {

σ 1
z < τ 1

n , S2[1, T 2
z, lεn

2

] ∩ (
εnB ′

x

) =∅,

LE
(
S1[0, σ 1

z

])[0, σ 1] ∩ S2[0, T 2
z, lεn

2

] =∅, q(1) = r, S2(T 2
z, lεn

2

) = z′}. (4.15)
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(Recall that in order to show (4.14), we have to estimate p̃1 defined as in (3.30). Note that we don’t need to care about
the “non-intersecting with γ ” conditions as long as we deal with p̃1.)

Using the time reversibility of LERW (see Lemma 2.2) as in (3.54), we see that

Ev
1 ⊗ Ez

2

{
1F 2

 ∩{S1[1,σ 1
z ]∩γ=∅} max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, σ 1

z

])[0, σ 1] ∩ S3[0, τ 3
∂W

] =∅
)}

= Ez
1 ⊗ Ez

2

{
1F̃ 2

 ∩{S1[0,τ 1
v ]∩(γ \{v})=∅} max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, τ 1

v

])[ũ1, ũ2] ∩ S3[0, τ 3
∂W

] =∅
)}

, (4.16)

where

ũ1 := max
{
t | LE

(
S1[0, τ 1

v

])
(t) ∈ ∂

(
εnB ′

x

)}
, ũ2 := len LE

(
S1[0, τ 1

v

])
, (4.17)

and

F̃ 2
 := {

τ 1
v < τ 1

n , S2[1, T 2
z, lεn

2

] ∩ (
εnB ′

x

) =∅, S2(T 2
z, lεn

2

) = z′,

LE
(
S1[0, τ 1

v

])[ũ1, ũ2] ∩ S2[0, T 2
z, lεn

2

] =∅,LE
(
S1[0, τ 1

v

])[0, ũ1] ∩ Ar
z �=∅,

LE
(
S1[0, τ 1

v

])[0, ũ1] ⊂ B
(
z,2r εn

)}
. (4.18)

Let β = LE(S1[0, τ 1
v ]) and τ

β

z, n
12M

:= inf{t | β(t) ∈ ∂B(z, n
12M

)} . Since r ≤ log2 l − 3, on F̃ 2
 , we have

β
[
τ

β

z, n
12M

, ũ2
] ∩ (

εnB ′
x

) =∅. (4.19)

Indeed, if β[τβ

z, n
12M

, ũ2]∩(εnB ′
x) �=∅, then τ

β

z, n
12M

< ũ1, which implies that β[0, ũ1]∩∂B(z, n
12M

) �=∅. Since εnB ′
x ⊂

F
γ

i,n and εnB ′
y ⊂ F

γ

i,n, we have |εnx − εny| ≤
√

3n
4M

which implies that εl ≤
√

3
4M

. Thus

2r εn ≤ 2log2 −3εn ≤ 1

8
εln ≤

√
3n

32M
<

n

12M
,

which contradicts β[0, ũ1] ⊂ B(z,2r εn). Therefore, we get (4.19). Thus if we define ũ
1 by

ũ
1 := max

{
t ≤ τ

β

z, n
12M

| LE
(
S1[0, τ 1

v

])
(t) ∈ ∂

(
εnB ′

x

)}
,

then ũ1 = ũ
1. Since β[0, ũ

1] is β[0, τ
β

z, n
12M

]-measurable, by Proposition 4.2 and 4.4 [15], we see that

Ez
1 ⊗ Ez

2

{
1
F̃ 2

 ∩{S1[0,τ 1
v ]∩(γ \{v})=∅} max

w1∈∂B(w, εln
4 )

P
w1
3

(
LE

(
S1[0, τ 1

v

])[ũ1, ũ2] ∩ S3[0, τ 3
∂W

] =∅
)}

≤ CP z
1

(
τ 1
v < τ 1

n , S1[0, τ 1
v

] ∩ (
γ \ {v}) =∅

)
× Ez

1 ⊗ Ez
2

{
1
[
S2[1, T 2

z, lεn
2

] ∩ (
εnB ′

x

) =∅, S2(T 2
z, lεn

2

) = z′,

β̃[ũ3, ũ4] ∩ S2[0, T 2
z, lεn

2

] =∅, β̃[0, ũ3] ∩ Ar
z �=∅, β̃[0, ũ3] ⊂ B

(
z,2r εn

)]
× max

w1∈∂B(w, εln
4 )

P
w1
3

(
β̃[ũ3, ũ4] ∩ S3[0, τ 3

∂W

] =∅
)}

, (4.20)

where β̃ = LE(S1[0, T 1
z, n

3M
]), ũ4 = inf{t | β̃(t) ∈ ∂B(z, n

12M
)} and ũ3 = max{t ≤ ũ4 | β̃(t) ∈ ∂(εnB ′

x).
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However, as in (3.69), we have

(RHS of (4.20))

≤ CP z
1

(
τ 1
v < τ 1

n , S1[0, τ 1
v

] ∩ (
γ \ {v}) =∅

)
× 1

εn
P z

2

(
S2(T 2

z, lεn
2

) = z′)ES(εn, εln)2−δr Es

(
εln,

n

M

)
. (4.21)

Therefore, by (4.14),

P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1

 , S1[1, σ 1
z

] ∩ γ =∅, q(1) = r
)

≤ C

εn

1

εln

1

εn
2−δrES(εn, εln)Es

(
εn,

n

M

)
P z

1

(
τ 1
v < τ 1

n , S1[0, τ 1
v

] ∩ (
γ \ {v}) =∅

)
. (4.22)

Taking sum for r ≤ log2 l − 3, by (4.13),

P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1

 , S1[1, σ 1
z

] ∩ γ =∅, S3[τ 3
∂W , τ 3

n

] ∩ γ =∅, q(1) ≤ log2 l − 3
)

≤ C

εn

1

εln

1

εn
ES(εn, εln)Es

(
εn,

n

M

)
P z

1

(
τ 1
v < τ 1

n , S1[0, τ 1
v

] ∩ (
γ \ {v}) =∅

)
× max

w∈∂W
P

w

3

(
S3[0, τ 3

n

] ∩ γ =∅
)
. (4.23)

Similar argument gives that

P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1

 , S1[1, σ 1
z

] ∩ γ =∅, S3[τ 3
∂W , τ 3

n

] ∩ γ =∅
)

≤ C

εn

1

εln

1

εn
ES(εn, εln)Es

(
εn,

n

M

)
P z

1

(
τ 1
v < τ 1

n , S1[0, τ 1
v

] ∩ (
γ \ {v}) =∅

)
× max

w∈∂W
P

w

3

(
S3[0, τ 3

n

] ∩ γ =∅
)
. (4.24)

By reversing the path, we see that

P z
1

(
τ 1
v < τ 1

n , S1[0, τ 1
v

] ∩ (
γ \ {v}) =∅

) ≤ CM

n
P v

(
S[1, Tv, n

8M
] ∩ γ =∅

)
.

Recall that �1 was defined in Definition 4.1. Note that �1 intersects with ∂B(v, n
8M

) at only one point. We call the point
v′. Let A := ∂B(v, n

8M
)∩B(v′, n

16M
). By Proposition 6.1.1 [18] and by the Harnack principle (see Theorem 1.7.6 [8]),

P v
(
S[1, τn] ∩ γ =∅

)
≥ P v

(
S[1, Tv, n

8M
] ∩ γ =∅, S(Tv, n

8M
) ∈ A,τ∂W < τn,S[Tv, n

8M
, τ∂W ] ∩ γ =∅, S[τ∂W , τn] ∩ γ =∅

)
≥ cP v

(
S[1, Tv, n

8M
] ∩ γ =∅

)
max

w∈∂W
P

w

3

(
S3[0, τ 3

n

] ∩ γ =∅
)
. (4.25)

Thus by (4.24),

P v
1 ⊗ P z

2 ⊗ P w
3

(
F 1

 , S1[1, σ 1
z

] ∩ γ =∅, S3[τ 3
∂W , τ 3

n

] ∩ γ =∅
)

≤ C

εn

1

εln

1

εn

M

n
ES(εn, εln)Es

(
εn,

n

M

)
P v

(
S[1, Tv, n

8M
] ∩ γ =∅

)
× max

w∈∂W
P

w

3

(
S3[0, τ 3

n

] ∩ γ =∅
)

≤ C

εn

1

εln

1

εn

M

n
ES(εn, εln)Es

(
εn,

n

M

)
P v

(
S[1, τn] ∩ γ =∅

)
. (4.26)
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Taking sum for z ∈ ∂(εnB ′
x) and w ∈ ∂(εnB ′

y), by (4.9),

P v
(
LE

(
S[0, τn]

) ∩ εnB ′
x �=∅,LE

(
S[0, τn]

) ∩ εnB ′
y �=∅, T x < T y,S[1, τn] ∩ γ =∅

)
≤ CεM

l
Es(εn, εln)Es

(
εn,

n

M

)
P v

(
S[1, τn] ∩ γ =∅

)
.

Combining this with (4.8), we finish the proof. �

Next we will consider the lower bound of the probability that LE(X[0, τX
n ])∩εnB ′

x �=∅. Assume that γ is a simple
path and X is a conditioned random walk defined as in Definition 4.1. Let

t
γ

i,n := inf
{
t | LE

(
X

[
0, τX

n

])
(t) ∈ ∂Di+1,n

}
, (4.27)

where Di+1,n was defined in Definition 4.1. Then we have the following lemma, which is an analog of (3.79) for the
probability that the loop erasure of X hits a cube.

Lemma 4.3. Suppose that x ∈ Z
3 satisfies εnB ′

x ⊂ F
γ

i,n (see Definition 4.1 for F
γ

i,n). Then there exists an absolute
constant c > 0 such that

PX

(
LE

(
X

[
0, τX

n

])[
0, t

γ

i,n

] ∩ εnB ′
x �=∅

) ≥ cεM Es

(
εn,

n

M

)
. (4.28)

Proof. Take w ∈ ∂iB(εnx, εn
1000 ). Throughout the proof, we write

B1 := B

(
εnx,

εn

1000

)
, B2 := B

(
w,

εn

8

)
, B3 := B

(
w,

n

4M

)
. (4.29)

Suppose that S1 and S2 are independent simple random walks started at w. Let

t i := inf
{
t | Si(t) ∈ ∂B3

}
, (4.30)

for each i = 1,2. Recall that the line segment �1 was defined in Definition 4.1. We define random sets Ai as follows.
Let �1 be the line segment started at y1 := S1(t1) and terminated at v. Define A1 by A1 := {y | dist(y, �1) ≤ n

20M
}.

Let w1 be the intersection point of the line segment connecting v with w and ∂B3, and let w2 ∈ ∂B3 be the point

such that w1+w2

2 = w. Let �2 be the line segment starting from w2 terminated at ∂B(v,
L0n
M

) which is parallel to
�1. Here L0 is a (large) constant which will be defined later. Define A2 by A2 := {y | dist(y, �2) ≤ n

20M
}. Let ∂2 :=

∂A2 ∩ {y | dist(y, ∂B(v,
L0n
M

)) ≤ n
20M

}. For each i = 1,2, we write ui := {t ≥ t i | Si(t) ∈ ∂Ai}. Finally, let Hi :=
B(w, n

6M
) ∪ B(wi, n

8M
) for each i = 1,2 and ∂1 := ∂B3 ∩ B(w1, n

8M
).

We write

σ 1 := max
{
t | LE

(
S1[0, t1])(t) ∈ B2

}
and σ 2 := len LE

(
S1[0, t1]).

Let

τi,n := inf
{
t | LE

(
S[0, τn]

)
(t) ∈ ∂Di+1,n

}
.

Then we have

PX

(
LE

(
X

[
0, τX

n

])[
0, t

γ

i,n

] ∩ εnB ′
x �=∅

) = P v(LE(S[0, τn])[0, τi,n] ∩ εnB ′
x �=∅, S[1, τn] ∩ γ =∅)

P v(S[1, τn] ∩ γ =∅)
. (4.31)
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By considering the last exit from B1 and by reversing a path, we have

P v
(
LE

(
S[0, τn]

)[0, τi,n] ∩ εnB ′
x �=∅, S[1, τn] ∩ γ =∅

)
≥

∑
w∈∂iB1

P w
1 ⊗ P w

2

(
S2[1, t2] ∩ B1 =∅,LE

(
S1[0, t1])[σ 1, σ 2] ∩ S2[0, t2] =∅,

LE
(
S1[0, t1])[σ 1, σ 2] ⊂ H 1,LE

(
S1[0, t1])[0, σ 1] ∩ B

(
w1,

n

8M

)
=∅, S2[0, t2] ⊂ H 2,

S1[t1, τ 1
v

] ⊂ A1 ∩ (
γ \ {v})c

, S2(u2) ∈ ∂2, S
2[u2, τ 2

n

] ∩ γ =∅, S2[u2, τ 2
n

] ∩ B

(
v,

n

M

)
=∅

)
. (4.32)

By using Lemma 2.10 and 2.11 as in (3.80) and by the strong Markov property, we have

(
The probability in RHS of (4.32)

)
≥ cL0

εn
Es

(
εn,

n

M

)

× min
y1∈∂1,y2∈∂2

P
y1
1

(
S1[0, τ 1

v

] ⊂ A1 ∩ (
γ \ {v})c)

× P
y2
2

(
S2[0, τ 2

n

] ∩ γ =∅, S2[0, τ 2
n

] ∩ B

(
v,

n

M

)
=∅

)
. (4.33)

But by reversing a path and by Proposition 6.1.1 [18], we see that for each y1 ∈ ∂1,

P
y1
1

(
S1[0, τ 1

v

] ⊂ A1 ∩ (
γ \ {v})c) ≥ cM

n
P v

(
S[1, Tv, n

30M
] ∩ γ =∅

)
. (4.34)

On the other hand, by Lemma 6.1.2 [18] and the Harnack principle (see Theorem 1.7.6 [8]), there exists an absolute
constant C0 < ∞ such that

max
y∈B(v, n

M
)
P y

(
S[0, τn] ∩ γ =∅

) ≤ C0 min
y∈∂2

P y
(
S[0, τn] ∩ γ =∅

)
. (4.35)

Now take L0 such that 2C0
L0

< 1
2 . Then by the strong Markov property and Proposition 1.5.10 [8], we see that for each

y2 ∈ ∂2,

P
y2
2

(
S2[0, τ 2

n

] ∩ γ =∅, S2[0, τ 2
n

] ∩ B

(
v,

n

M

)
=∅

)

≥ P
y2
2

(
S2[0, τ 2

n

] ∩ γ =∅
) − P

y2
2

(
S2[0, τ 2

n

] ∩ γ =∅, S2[0, τ 2
n

] ∩ B

(
v,

n

M

)
�=∅

)

≥ P
y2
2

(
S2[0, τ 2

n

] ∩ γ =∅
) − 2

L0
max

y′∈B(v, n
M

)
P y′(

S[0, τn] ∩ γ =∅
)

≥ P
y2
2

(
S2[0, τ 2

n

] ∩ γ =∅
) − 2C0

L0
min
y′∈∂2

P y′(
S[0, τn] ∩ γ =∅

)

≥ P
y2
2

(
S2[0, τ 2

n

] ∩ γ =∅
) − 2C0

L0
P y

(
S[0, τn] ∩ γ =∅

)

≥ 1

2
min
y2∈∂2

P
y2
2

(
S2[0, τ 2

n

] ∩ γ =∅
)
. (4.36)
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Again by Lemma 6.1.2 [18] and the Harnack principle (see Theorem 1.7.6 [8]), we have

max
y∈B(v, n

30M
)
P y

(
S[0, τn] ∩ γ =∅

) ≤ C min
y2∈∂2

P
y2
2

(
S2[0, τ 2

n

] ∩ γ =∅
)
. (4.37)

Combining these estimates, we have

P v
(
LE

(
S[0, τn]

)[0, τi,n] ∩ εnB ′
x �=∅, S[1, τn] ∩ γ =∅

)
cεM Es

(
εn,

n

M

)
P v

(
S[1, Tv, n

30M
] ∩ γ =∅

)
max

y∈B(v, n
30M

)
P y

(
S[0, τn] ∩ γ =∅

)

cεM Es

(
εn,

n

M

)
P v

(
S[1, τn] ∩ γ =∅

)
, (4.38)

which finishes the proof. �

4.2. Proof of (4.1)

Suppose that γ is a simple path and X is a conditioned random walk not to hit γ as in Definition 4.1. Let

J
γ

i,n := �
{
x ∈ Z

3 | εnB ′
x ⊂ F

γ

i,n,LE
(
X

[
0, τX

n

])[
0, t

γ

i,n

] ∩ εnB ′
x �=∅

}
, (4.39)

where F
γ

i,n and t
γ

i,n were defined in Definition 4.1 and (4.27), respectively. We are interested in the lower bound
of J

γ

i,n. Using Lemma 4.2, 4.3, and the second moment method as in Corollary 3.11, we will prove Lemma 4.4
below. Lemma 4.4 is an analog of Corollary 3.11 for X. Then using iteration arguments as in Theorem 6.7 [1] and
Proposition 8.2.5 [18], we will prove Proposition 4.5 which immediately concludes (4.1).

We begin with the following lemma, which shows that the number of cubes hit by the loop erasure of the condi-
tioned random walk is bigger than the expected number of such cubes with positive probability. We may think of the
next lemma as an analog of Corollary 3.11 for the number of cubes hit by the loop erasure of X.

Lemma 4.4. There exists an absolute constant c1 > 0 such that

PX

(
J

γ

i,n ≥ c1(εM)−2 Es

(
εn,

n

M

))
≥ c1. (4.40)

Proof. By Lemma 4.2 and (2.16)

EX

((
J

γ

i,n

)2)
≤

∑
x,y∈Z3,εnB ′

x ,εnB ′
y⊂F

γ
i,n

PX

(
LE

(
X

[
0, τX

n

]) ∩ εnB ′
x �=∅,LE

(
X

[
0, τX

n

]) ∩ εnB ′
y �= ∅

)

≤ C
∑

x∈Z3,εnB ′
x⊂F

γ
i,n

1
εM∑
l=1

l2 εM

l
Es(εn, εln)Es

(
εn,

n

M

)

= C
∑

x∈Z3,εnB ′
x⊂F

γ
i,n

εM Es

(
εn,

n

M

) 1
εM∑
l=1

l Es(εn, εln)

≤ C
∑

x∈Z3,εnB ′
x⊂F

γ
i,n

εM Es

(
εn,

n

M

)
(εM)−α−δ Es

(
εn,

n

M

) 1
εM∑
l=1

l1−α−δ
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Here we used (2.16) to say that Es(εn, εln) ≤ C(εM)−α−δl−α−δ Es

(
εn,

n

M

)

for some δ > 0

)

≤ C

{
(εM)−2 Es

(
εn,

n

M

)}2

. (4.41)

On the other hand, by Lemma 4.3, we have

EX

(
J

γ

i,n

)
≥

∑
x∈Z3,εnB ′

x⊂F
γ
i,n

PX

(
LE

(
X

[
0, τX

n

])[
0, t

γ

i,n

] ∩ εnB ′
x �=∅

)

≥ c(εM)−2 Es

(
εn,

n

M

)
. (4.42)

Therefore, we see that EX((J
γ

i,n)
2) ≤ C(EX(J

γ

i,n))
2. By the second moment method, we finish the proof. �

Let

Jε,n := �

{
x ∈ Z

3
∣∣∣ εnB ′

x ⊂ B

(
2n

3

)
\ B

(
n

3

)
,LE

(
S[0, τn]

) ∩ εnB ′
x �=∅

}
. (4.43)

Now we use iteration arguments explained in the beginning of Section 4. Using the iteration argument, we prove
next proposition which gives (4.2).

Proposition 4.5. For every r > 0, there exists cr > 0 such that

P
(
Jε,n ≥ crε

−2 Es(εn,n)
) ≥ 1 − r, (4.44)

for all ε > 0 and n = nε = 2jε satisfying (3.3).

Proof. Take r > 0. Let Mr be an integer satisfying (1 − c1)
� Mr

20  < r where c1 > 0 is a constant as in Lemma 4.4. We
write Nr := �Mr

20 .
Let β := LE(S[0, τn]) and recall that τi,n = inf{t | β(t) ∈ ∂Di+1,n} where Di,n was defined as in Definition 4.1.

For each i = 1, . . . ,Nr , define

Ji := �
{
x ∈ Z

3 | εnB ′
x ⊂ F

β[0,τi−1,n]
i,n , β[τi−1,n, τi,n] ∩ εnB ′

x �=∅
}
. (4.45)

(See Definition 4.1 for F
γ

i,n.)
Then by the domain Markov property of LERW (see Lemma 2.3) and by Lemma 4.4,

P

(
Jε,n < c1(εMr)

−2 Es

(
εn,

n

Mr

))

≤ P

(
Ji < c1(εMr)

−2 Es

(
εn,

n

Mr

)
for all i = 1, . . . ,Nr

)

≤ E

{
Nr−1⋂
i=1

{
Ji < c1(εMr)

−2 Es

(
εn,

n

Mr

)}
P

(
JNr < c1(εMr)

−2 Es

(
εn,

n

Mr

) ∣∣∣ β[0, τNr−1,n]
)}
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≤ (1 − c1)P

(
Nr−1⋂
i=1

{
Ji < c1(εMr)

−2 Es

(
εn,

n

Mr

)})

≤ (1 − c1)
Nr < r. (4.46)

Since Es(εn, n
Mr

) ≥ c Es(εn,n) for some c > 0, if we let cr := cc1M
−2
r , we finish the proof. �

By Proposition 4.5, we get the following proposition immediately. Recall that Y ε was defined in (3.73).

Proposition 4.6. For all r > 0, there exists cr > 0 such that

P
(
Y ε ≥ crε

−2 Es(εn,n)
) ≥ 1 − r − ε100, (4.47)

for every ε > 0 and n = nε = 2jε satisfying (3.3).

Proof. Note that cY ε ≤ Jε,n ≤ 1
c
Y ε for some absolute constant c > 0 on {dH(K,LEWn) < ε2}. Thus if n = nε = 2jε

satisfies (3.3), by (3.4) and Proposition 4.5,

P
(
Y ε ≥ ccrε

−2 Es(εn,n)
)

≥ P
(
Y ε ≥ ccrε

−2 Es(εn,n), dH(LEWnε ,K) < ε2)
≥ P

(
Jε,n ≥ crε

−2 Es(εn,n), dH(LEWnε ,K) < ε2)
≥ P

(
Jε,n ≥ crε

−2 Es(εn,n)
) − P

(
dH(LEWnε ,K) ≥ ε2)

≥ 1 − r − ε100, (4.48)

which finishes the proof. �

Remark 4.7. By (3.77) and Markov’s inequality, we see that for all r > 0,

P

(
Y ε ≥ C

r
ε−2 Es(εn,n)

)
≤ E(Y ε)

C
r
ε−2 Es(εn,n)

≤ r, (4.49)

where C is a constant as in (3.77).

5. Lower bound of dimH(K)

In this section, we will prove that

dimH(K) ≥ 2 − α, almost surely. (5.1)

Combining this with Theorem 1.4 [16], we have

dimH(K) = 2 − α, almost surely. (5.2)

In order to prove (5.1), we will use a standard technique so called Frostman’s lemma (see Lemma 5.1). We will review
that lemma in Section 5.1. We then give some energy estimates for suitable sequence of measures whose supports
converge to K (see Lemma 5.2). Using Lemma 5.2, we will prove (5.1) in Section 5.2.
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5.1. Preliminaries

In order to give a lower bound of the Hausdorff dimension of a set in R
d , the Lemma 5.1 below is a standard criterion

referred to as Frostman’s lemma. In this subsection, we first state it. Then in Lemma 5.2, we will estimate β-energy
for suitable measures μk defined below.

Lemma 5.1 (Theorem 4.13 [3]). Suppose that K ⊂ D is a closed set and let μ be a positive measure supported on
K with μ(K) > 0. Define β-energy Iβ(μ) by

Iβ(μ) =
∫

D

∫
D

|x − y|−β dμ(x)dμ(y). (5.3)

If Iβ(μ) < ∞, then dimH(K) ≥ β .

According to Lemma 5.1, we need to construct a positive (random) measure μ supported on K such that its (β −δ)-
energy Iβ−δ(μ) is finite with high probability for any δ > 0, where β := 2 − α (see Theorem 2.7 for α). With this
in mind, let ε = εk = 2−k for k ≥ 1 and let n = nε = 2jε be an integer satisfying (3.3). Now we define a sequence
of measures μk which approximates μ as follows. Let μk be the (random) measure whose density, with respect to
Lebesgue measure, is 1

ε Es(εn,n)
on each box εBx with x ∈ Z

3 and εBx ⊂ D 2
3

\ D 1
3

or εBx ∩ ∂D i
3

�= ∅ for i = 1,2

such that K ∩ εBx �= ∅, and assigns measure zero elsewhere. Then it is easy to check that supp(μk+1) ⊂ supp(μk)

and with probability one
⋂∞

k=1 supp(μk) ⊂K.
Therefore, as we discussed as in Section 1.2, we need to show that for every δ > 0 and r > 0 there exist constants

cr > 0,Cδ,r < ∞ which do not depend on ε such that

P
(
Iβ−δ(μk) ≤ Cδ,r

) ≥ 1 − r, (5.4)

P
(
μk(D) ≥ cr

) ≥ 1 − r. (5.5)

for all k > 0. Once (5.4) and (5.5) are proved, it follows that there exists some subsequential weak limit measure μ

of the μk such that the measure μ is a positive measure satisfying that its support is contained in K and the (β − δ)-
energy is finite with probability at least 1 − r . Using Lemma 5.1, we get dimH(K) ≥ β − δ with probability ≥ 1 − r ,
and Theorem 1.1 is proved.

For (5.5), we have the following. Take an arbitrary r > 0. By Proposition 4.6, with probability at least 1 − r − ε100,
we have

μk(D) ≥
∑

x∈Z3,εBx⊂D 2
3
\D 1

3

1{K ∩ εBx �=∅} ε2

Es(εn,n)
= Y ε ε2

Es(εn,n)
≥ cr , (5.6)

for all k, which proves (5.5).
For (5.4), we start with the following lemma which gives a first moment estimate of Iβ−δ(μk) for an arbitrary

positive number δ.

Lemma 5.2. For every δ > 0, there exists Cδ < ∞ such that

E
(
Iβ−δ(μk)

) ≤ Cδ, (5.7)

for all k. Here β := 2 − α.

Proof. Recall that we write ε = εk = 2−k for k ≥ 1 and let n = nε = 2jε be an integer satisfying (3.3). Then by
Theorem 3.1,

E
(
Iβ−δ(μk)

)
≤

∑
x,y∈Z3,εBx,εBy⊂D 2

3
\D 1

3

E

{∫
εBx

∫
εBy

|z − w|−(β−δ) dμk(z) dμk(w)

}
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=
∑

x,y∈Z3,εBx,εBy⊂D 2
3
\D 1

3

(
ε Es(εn,n)

)−2
∫

εBx

∫
εBy

|z − w|−(β−δ) dz dwP (K ∩ εBx �=∅ and K ∩ εBy �=∅)

≤ C
∑

x∈Z3,εBx⊂D 2
3
\D 1

3

2
ε∑

l=1

l2(ε Es(εn,n)
)−2

(εl)−(β−δ)ε6 Es(εn, lεn)Es(εn,n)
ε

l

+ C
∑

x∈Z3,εBx⊂D 2
3
\D 1

3

(
ε Es(εn,n)

)−2
∫

εBx

∫
εBx

|z − w|−(β−δ) dz dw Es(εn,n)ε. (5.8)

But RHS of (5.8) is bounded above by

≤ Cε2−(β−δ) 1

Es(εn,n)

2
ε∑

l=1

l1−(β−δ) Es(εn, lεn) + Cεα+δ

Es(εn,n)

≤ Cε2−(β−δ) 1

Es(εn,n)

2
ε∑

l=1

l1−(β−δ)(εl)−α−η Es(εn,n) + Cεα+δ

Es(εn,n)(
Here η := δ

2
and we used (2.18)

)

≤ Cε2−(β−δ)−α−η

2
ε∑

l=1

l1−(β−δ)−α−η + Cεα+δ

Es(εn,n)
≤ Cδ

(
Here we used (2.16)

)
, (5.9)

which finishes the proof. �

5.2. Proof of (5.1)

Now we are ready to prove the following theorem.

Theorem 5.3. Let d = 3. Then

dimH(K) ≥ 2 − α, almost surely. (5.10)

Proof. Recall that r > 0 is an arbitrary positive number. Let δ > 0 be an arbitrary positive number also. Define
Cδ,r := Cδ

r
where Cδ is a constant as in Lemma 5.2. Take a constant cr > 0 as in Proposition 4.6. Let β := 2 − α. By

Lemma 5.2 and Markov’s inequality,

P
(
Iβ−δ(μk) ≥ Cδ,r

) ≤ Cδ

Cδ,r

= r, (5.11)

for all k. Combining this with (5.6), we have

P
(
μk(D) ≥ cr , Iβ−δ(μk) ≤ Cδ,r

) ≥ 1 − 2r − 2−100k,

for all k. By Fatou’s lemma, this implies

P
(
μk(D) ≥ cr , Iβ−δ(μk) ≤ Cδ,r i.o.

) ≥ 1 − 2r.
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On the event above, there exists some subsequential weak limit measure μ of the μk such that μ is supported on K,
μ(K) ≥ cr , and Iβ−δ(μ) ≤ Cδ,r . By Lemma 5.1, we have

P
(
dimH(K) ≥ 2 − α − δ

) ≥ 1 − 2r.

Since this holds for every r > 0 which is independent of δ > 0,

P
(
dimH(K) ≥ 2 − α − δ

) = 1.

Since this holds for every δ > 0, we see that

P
(
dimH(K) ≥ 2 − α

) = 1,

which finishes the proof. �

Remark 5.4. We expect that

Es(n) � n−α, (5.12)

in 3 dimensions. Here we write an � bn if there exists c > 0 such that cbn ≤ an ≤ 1
c
bn for all n.

This is proved for d = 2 [12]. The main steps in [12] are

• Write Es(n) in terms of simple random walk quantities.
• Estimate the simple random walk quantities.

The simple random walk quantities as above come from the random walk loop measure which is related to the winding
number of loops (see [12]). In [12], by estimating such simple random walk quantities carefully, not only the relation
as in (5.12) but the exact value of α were also obtained in two dimensions (α = 3

4 in two dimensions).
Is it possible to find suitable simple random walk quantities to calculate Es(n) and to compute the exact value of α

for d = 3?

Remark 5.5. Recall that we write Y for the union of K and loops from independent Brownian loop soup in D which
intersect K, see (2.32). Theorem 1.1 of [16] shows that Y has the same distribution as the trace of three-dimensional
Brownian motion. In Conjecture 1.3 of [16], we conjectured that the law of K would be characterized uniquely by
this decomposition. Namely, if the union of a random simple path K̃ and loops from independent Brownian loop soup
in D which intersect K̃ has the same distribution as the trace of three-dimensional Brownian motion, then we expect
that K̃ has the same distribution as K. Thanks to Theorem 1.3, in this characterization, we may add one additional
assumption for K̃, i.e., dimH(K̃) = β almost surely. We believe that this might be useful to prove the conjecture.
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