
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2019, Vol. 55, No. 1, 441–479
https://doi.org/10.1214/18-AIHP888
© Association des Publications de l’Institut Henri Poincaré, 2019

Finite rank perturbations in products of coupled random
matrices: From one correlated to two Wishart ensembles

Gernot Akemanna, Tomasz Checinskib, Dang-Zheng Liuc and Eugene Strahovd

aFaculty of Physics and Faculty of Mathematics, Bielefeld University, P.O. Box 100131, D-33501 Bielefeld, Germany.
E-mail: akemann@physik.uni-bielefeld.de

bFaculty of Physics, Bielefeld University, P.O. Box 100131, D-33501 Bielefeld, Germany. E-mail: tchecinski@uni-bielefeld.de
cKey Laboratory of Wu Wen-Tsun Mathematics, CAS, School of Mathematical Sciences, University of Science and Technology of China, Hefei

230026, P.R. China and Institute of Science and Technology Austria, Klosterneuburg 3400, Austria. E-mail: dzliu@ustc.edu.cn
dDepartment of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel. E-mail: strahov@math.huji.ac.il

Received 5 May 2017; revised 19 October 2017; accepted 23 January 2018

Abstract. We compare finite rank perturbations of the following three ensembles of complex rectangular random matrices: First,
a generalised Wishart ensemble with one random and two fixed correlation matrices introduced by Borodin and Péché, second, the
product of two independent random matrices where one has correlated entries, and third, the case when the two random matrices
become also coupled through a fixed matrix. The singular value statistics of all three ensembles is shown to be determinantal and
we derive double contour integral representations for their respective kernels. Three different kernels are found in the limit of
infinite matrix dimension at the origin of the spectrum. They depend on finite rank perturbations of the correlation and coupling
matrices and are shown to be integrable. The first kernel (I) is found for two independent matrices from the second, and two weakly
coupled matrices from the third ensemble. It generalises the Meijer G-kernel for two independent and uncorrelated matrices. The
third kernel (III) is obtained for the generalised Wishart ensemble and for two strongly coupled matrices. It further generalises the
perturbed Bessel kernel of Desrosiers and Forrester. Finally, kernel (II), found for the ensemble of two coupled matrices, provides
an interpolation between the kernels (I) and (III), generalising previous findings of part of the authors.

Résumé. Les perturbations de rang fini des trois ensembles de matrices aléatoires complexes rectangulaires suivants sont com-
parés: d’abord un ensemble de Wishart généralisé, avec une matrice aléatoire et deux matrices de corrélation fixées, introduit par
Borodin et Péché ; ensuite le produit de deux matrices aléatoires indépendantes, dont une a des éléments corrélés ; enfin le cas
où deux matrices aléatoires sont couplées par une matrice fixée. Nous prouvons que la statistique des valeurs singulières des trois
ensembles est déterminantale et nous dérivons des représentations en termes d’intégrales de contour doubles pour leurs noyaux
respectifs. Dans la limite de dimension de matrice infinie à l’origine du spectre, on trouve trois noyaux différents, qui dépendent
de la perturbation du rang fini des matrices de corrélation et du couplage et s’avèrent être intégrables. Le premier noyau (I) est
trouvé pour le cas de deux matrices indépendantes du second ensemble, et pour celui de deux matrices faiblement couplées du
troisième ensemble. Ce noyau généralise celui du type Meijer-G, valable pour deux matrices indépendantes et non corrélées. Le
troisième noyau (III) est obtenu pour l’ensemble de Wishart généralisé et pour deux matrices couplées de façon forte. Celui-là
généralise le noyau de Bessel perturbé de Desrosiers et Forrester. Finalement, le noyau (II), qui est trouvé pour l’ensemble de deux
matrices couplées, représente une interpolation entre les noyaux (I) et (III), ce qui généralise des résultats précédemment obtenus
par certains des auteurs.
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1. Introduction and main results

The topic of products of random matrices has seen a very rapid development in the past few years, in particular
for a finite number of factors at finite matrix size. For example, it has been understood for a fixed product of r

independent complex Gaussian random matrices that its singular value statistics is determinantal, and the same holds
for the complex eigenvalues, cf. [2] for a recent review and a list of references. This has opened up the possibility
for a detailed analysis of the local statistics. The global density of singular values of such a product, generalising the
Marchenko–Pastur distribution with r = 1, develops a singularity at the origin depending on r (see e.g. [21]). It is thus
not surprising that for the local statistics at the origin, representing a hard edge, a new family of Meijer G-kernels
labelled by r has been found [34]. It generalises the Bessel kernel at r = 1. On the other hand, in the bulk and at the
soft edge of the spectrum the respective Sine and Airy kernel have been recovered [36], agreeing with r = 1. The
kernels at r = 1 are well known to be universal, see [30] and references therein.

What is known about the universality of the Meijer G-kernel? While it is known to appear in ensembles with
Cauchy interaction [11] for r ≤ 3 (and conjectured ∀r), or when multiplying other types of e.g. truncated unitary
matrices [29], the question is open for products of matrices from unitary bi-invariant ensembles with general distribu-
tions. The difficulty is that the unitary group integrals needed after singular value decomposition are not available in
general (see however [35]).

Another direction to address its universality – apart from Wigner matrices that drop invariance entirely – is to
introduce correlations among the elements of each random matrix. This is the route we will choose here, for the
product of r = 2 matrices as a starting point. We will combine this with a coupling among the two random matrices of
scalar [5,6] or matrix-valued type [35], investigating the most general distribution that is quadratic in the two random
matrices and remains determinantal. A further direction was taken in [20] by adding an external field to the product of
r Gaussian matrices. All these deformations allow to study finite rank perturbations of the known Bessel and Meijer
G-kernel, extending the results of [15] for a single Wishart matrix with external field for the former, and of [20,35]
for the latter. Similar findings were made earlier for deformations of the Airy kernel at the soft edge [8,13,15], where
a relation to directed percolation was pointed out. We can only speculate if the deformed Bessel, and Meijer G-kernel
which we will find here, enjoy such a relation.

It is an open question if the analysis of [8], deforming the Tracy–Widom distribution by finite rank perturbations at
the soft edge, could be extended to the smallest singular value distribution p(s) in our setup. Apart from the Wishart–
Laguerre ensemble, where several equivalent representations for p(s) are available for the undeformed case, see e.g.
[16], Table 3, for a list including references, for the product of r ≥ 2 independent matrices the corresponding Painlevé
type systems of equations [40] become very rapidly cumbersome, cf. [43]. This is the reason why we will focus on
the kernel instead.

Let us introduce our most general ensemble of two correlated coupled matrices first. We consider two rectangular
complex random matrices, G of size L × M , and X of size M × N . Throughout this work we will keep the following
differences fixed:

κ = L − N ≥ 0, ν = M − N ≥ 0. (1.1)

These two random matrices have the probability distribution with density

P(G,X) = c exp
[−Tr

(
WGG∗)+ Tr

(
�GX + X∗G∗�∗)− Tr

(
QXX∗)], (1.2)

where c is a normalisation constant. Here, we have introduced three constant matrices. First, � is a fixed complex
matrix of size N × L with squared singular values δ1, . . . , δN ≥ 0. It parametrises the coupling between the matrices
G and X. Second, Q is a fixed Hermitian M × M matrix with positive eigenvalues q1, . . . , qM > 0. It introduces
correlations among the matrix elements of X – typically Q−1 denotes a given empirical covariance matrix. Third, W

is a fixed Hermitian matrix of size L × L, that we will take to be proportional to the identity, W = α1L, with α > 0
constant. We will show later, why the choice of a more general fixed matrix W with positive eigenvalues, introducing
correlations also among the matrix elements of G, leads out of the class of determinantal point processes. The joint



Finite rank perturbations in products of two coupled random matrices 443

distribution (1.2) of the matrices G and X is convergent if the following conditions are satisfied:

αqi − δj > 0 ∀i = 1, . . . ,M,∀j = 1, . . . ,N, (1.3)

see the discussion around (2.41) below. In the sequel we will determine the correlation functions of the squared
singular values of the product matrix Y = GX of the two random matrices that are coupled and correlated. Before
stating our main results for this ensemble let us state, in which special cases the distribution (1.2) has been investigated,
and compare to two related ensembles.

In [3,4] it was shown that the distribution of squared singular values of the product Y of two independent rectangular
matrices with � ≡ 0 and W,Q ∼ 1 forms a determinantal point process. There, its kernel was constructed in terms of
biorthogonal functions for finite matrix size. In [34] a double contour representation was found, leading to a limiting
kernel expressed in terms of Meijer G-functions, whence its name. Both, the results from [3] and [34], were derived
for arbitrary but fixed products of r ≥ 1 independent matrices. In [5] their independence was dropped and the product
Y of r = 2 coupled matrices was considered for Y square, i.e. L = N with ν ≥ 0, where

� = 1 − μ

2μ
1N, W = 1 + μ

2μ
1N and Q = 1 + μ

2μ
1M, (1.4)

depending on the parameter μ ∈ (0,1]. It allowed to interpolate between the ensemble of the product of two indepen-
dent matrices (μ = 1), and a single random matrix (μ → 0), due to G = X∗ in this limit. Once again the interpolating
ensemble was shown to be determinantal and was solved in terms of biorthogonal functions [5]. In [6] three different
scaling limits were identified at the origin of the spectrum representing a hard edge, with the following limiting ker-
nels: (I) the Meijer G-kernel for two independent matrices, proving its universality for a one-parameter family, (II) a
parameter dependent kernel that interpolates between the limit (I) and the limit (III), where the well-known universal
Bessel kernel (III) was obtained. In a subsequent paper [35] a full coupling matrix � was introduced as in (1.2), while
keeping the conditions on W = 1+μ

2μ
1N and Q = 1+μ

2μ
1M as in [5]. There, the kernels in the limits (I), (II) and (III)

were extended and finite rank perturbations in the limits (II) and (III) of [6] were found. In the present work we will
study the most general case of a coupling matrix and correlations amongst the matrix elements of the two random
matrices, that is compatible with a determinantal structure. Our findings generalise the kernels found in [6,35], to
include also finite rank perturbations in limit (I).

Next, we introduce the following two ensembles related to (1.2). First, consider the product of two independent
matrices Y = GX, where the second random matrix X has correlated entries

P2(G,X) = c2 exp
[−α Tr

(
GG∗)− Tr

(
QXX∗)]. (1.5)

All conditions on the dimensions of G,X, and Q are as in (1.2), α > 0 and c2 is a normalisation constant. Related
ensembles of products of r correlated random matrices have been considered by Forrester in the limit of infinite
product size r → ∞ [19], studying the Lyapunov exponents.

Second, following [13] we consider the generalised Wishart ensemble correlated from two sides:

P1(X) = c1 exp
[−Tr

(
X�X∗)− Tr

(
QXX∗)], (1.6)

with Q as before, � a fixed Hermitian N ×N matrix with positive eigenvalues, and normalisation c1. For both Q and
� having positive eigenvalues this ensemble is clearly convergent. However, we could also allow � (or Q) to have
several or all eigenvalues to be negative, as long as they are bounded in absolute value by the smallest eigenvalue of
Q (or �). In fact, when integrating out the random matrix G in ensemble (1.2), we arrive at −� = ��∗/α, with the
corresponding bounds (1.3). The ensemble (1.6) has been introduced in [13] for M = N and was called generalised
Wishart ensemble. The authors solved it for finite matrix size N using Schur processes, and then focused on the kernel
at the soft edge, without considering the hard edge.

Let �n(x1, . . . , xn) = ∏
1≤j<k≤n(xk − xj ) = det[xi−1

j ]ni,j=1 denote the Vandermonde determinant. We are now
ready to state our main results.

Theorem 1.1. Denote by x1, . . . , xN the squared singular values of X and by y1, . . . , yN the squared singular values
of Y = GX, where X and G are distributed according to (1.2), all parameters δ1, . . . , δN and q1, . . . , qM are mutually
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distinct and satisfy (1.3). Their joint probability density function is given by

P(x1, . . . , xN ;y1, . . . , yN) = 1

Z
det
[
y

κ
2
j Iκ(2

√
δlyj )

]N
j,l=1 det

[
x−κ−1
j exp

[
−α

yl

xj

]]N

j,l=1

× det
[
1, qi, . . . , q

ν−1
i , exp[−qix1], . . . , exp[−qixN ]]M

i=1, (1.7)

where we recall (1.1). Here, Iκ(z) denotes the modified Bessel function of the first kind and Z is a normalising constant
given by

Z = (N !)2(−α)Nν+ N(N−1)
2 α−Nκ�M(q1, . . . , qM)�N(δ1, . . . , δN )

N∏
j=1

δ
κ
2
j

M∏
i=1

N∏
j=1

(αqi − δj )
−1. (1.8)

In (1.7), in the determinant in the second line, the notation is such that the first ν columns are only present for M > N

and absent for M = N (ν = 0). When two or more parameters become degenerate the corresponding density follows
from l’Hôpital’s rule, see e.g. Appendix A.2. Integrating out the variables xj leads to the joint probability density of
the yj alone, given by the following

Corollary 1.2. The joint probability density of the squared singular values y1, . . . , yN of the product matrix Y = GX

from the ensemble (1.2) is equal to

P(y1, . . . , yN) = 2NN !
Z

det
[
ψi(yj )

]N
i,j=1 det

[
1, qi, . . . , q

ν−1
i , ϕi(y1), . . . , ϕi(yN)

]M
i=1, (1.9)

where Z is given by (1.8) and we have introduced the following notation

ψj (y) = y
κ
2 Iκ(2

√
δj y), j = 1, . . . ,N, ϕi(y) =

(
qi

αy

) κ
2

Kκ(2
√

αqiy), i = 1, . . . ,M. (1.10)

Here, Kκ(z) = K−κ(z) denotes the modified Bessel function of the second kind.

The joint probability density (1.9) lies outside the class of polynomial ensembles [31,32], that have many invariance
properties [14]. Although the two determinants have different sizes, (1.9) can be mapped to a bona fide biorthogonal
ensemble in the sense of [12] using the Schur complement formula, see Section 3. When we take the limit δl → 0
for all l = 1, . . . ,N in Theorem 1.1 (and Corollary 1.2), which corresponds to setting � = 0, we arrive at the joint
probability density of the ensemble (1.5) given by Theorem 2.2 (and Corollary 2.3). If in Theorem 1.1 we integrate out
the squared singular values y1, . . . , yN , which corresponds to integrating out the matrix G in our ensemble (1.2), we
arrive at the joint probability density for the squared singular values of the ensemble (1.6), as stated in Proposition 2.1.
For details of these short-cuts we refer to the Appendix A.

In special cases the joint densities from (1.7) and (1.9) were known. Setting all parameters qj = 1+μ
2μ

equal for all

j = 1, . . . ,M , they reduce to the joint probability densities in [35], and setting furthermore all parameters δl = (1−μ)2

4μ2

equal for all l = 1, . . . ,N , see (1.4), we reobtain the joint probability densities in [5].
Our next result is an example for biorthogonal ensembles [12]. In Proposition 3.1 we show how to construct the

kernel KN(x, y) for the determinantal point processes (1.9), given by

P(y1, . . . , yN) = 1

N ! det
[
KN(yi, yj )

]N
i,j=1, (1.11)

and the resulting k-point correlation functions defined in (3.4). We quote here the final answer obtained for this kernel.

Theorem 1.3. The correlation kernel for the ensemble (1.9) can be represented as a double contour integral:

KN(y1, y2) = 2
∮

γδ

dη

2πi

∮
γq

dζ

2πi

(
ζ

η

) κ
2 Iκ(2

√
ηy1)Kκ(2

√
ζy2)

η − ζ

N∏
l=1

ζ − δl

η − δl

M∏
l=1

η − αql

ζ − αql

. (1.12)
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Here, γδ is a closed contour encircling δ1, . . . , δN ≥ 0 in a counter-clockwise way, and γq is a closed contour encir-
cling αq1, . . . , αqM > 0 in counter-clockwise direction, excluding the origin and not intersecting γδ .

Note that the same formula for the kernel remains valid when two or more of the parameters become degenerate.
In (1.12) we have suppressed a factor (y1/y2)

κ/2 on the right hand side. More generally speaking, due to (1.11)
the following modification KN(y1, y2) → KN(y1, y2)f (y1)/f (y2) leads to an equivalent kernel, with the same joint
probability density and k-point correlation functions. We will frequently use such a transformation. Corollary 1.2
together with the representation of the kernel (1.12) constitutes the solution of the ensemble (1.2) for finite matrix
sizes. When setting all coupling parameters to zero, δl=1,...,N = 0, we obtain the kernel of the ensemble (1.5), see
Theorem 3.8.

Next, we turn to the main results taking three different large-N limits at the origin of the spectrum, with matrices
� and Q having finite rank perturbations from (1.4). In order to prepare these limits let us introduce the following
partial degeneracies among the sets of parameters δ1, . . . , δN and q1, . . . , qM , as parametrised by a single parameter
μ ∈ (0,1]:

δn+1 = · · · = δN = (1 − μ)2

4μ2
, qm+1 = · · · = qM = 1 + μ

2μ
. (1.13)

In addition we set

α = 1 + μ

2μ
. (1.14)

Let us first see what the degeneracies (1.13) imply. Clearly, because all parameters δl, qj and α are positive, the
condition for the convergence of the model (1.3) is equivalent to

1 − qj

α
< 1 − δl

α2
, j = 1, . . . ,M, l = 1, . . . ,N, (1.15)

even before degeneracies (1.13) and (1.14) are imposed. Because we can insert both, on the left hand side, or on the
right hand side of (1.15) the set of degenerate or non-degenerate parameters, together with (1.14) this leads to the
following four different inequalities:

1 − 2μqj

1 + μ
< 1 − 4μ2δl

(1 + μ)2
, j = 1, . . . ,m, l = 1, . . . , n, (1.16)

for the non-degenerate values,

1 − 2μ(1 + μ)

(1 + μ)2μ
= 0 < 1 − 4μ2δl

(1 + μ)2
, l = 1, . . . , n, (1.17)

1 − 2μqj

1 + μ
< 1 − (1 − μ)2

(1 + μ)2
= 4μ

(1 + μ)2
, j = 1, . . . ,m, (1.18)

for one of each sets being degenerate, and

0 <
4μ

(1 + μ)2
, (1.19)

for both sets being degenerate, which is trivially satisfied due to μ ∈ (0,1]. This brings us to the sets of parameters
that will be relevant for our limiting kernels. In view of (1.16) we define the quantities

πl = (1 + μ)2

4μ

(
1 − 4μ2δl

(1 + μ)2

)
, l = 1, . . . , n, (1.20)

θj = (1 + μ)2

4μ

(
1 − 2μqj

1 + μ

)
, j = 1, . . . ,m, (1.21)
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which satisfy

θj < πl, j = 1, . . . ,m, l = 1, . . . , n, (1.22)

due to (1.16), normalised by the right hand side of (1.19). The bounds for these quantities resulting from (1.17) and
(1.18), respectively, are

0 < πl, l = 1, . . . n and θj < 1, j = 1, . . . ,m, (1.23)

These will be useful when taking the three different large-N limits next.
At large-N limit the parameter μ is now considered as a function of N , μ = μ(N), taking values in (0,1]. We

will assume that also the remaining, non-degenerate parameters may become functions of N , that is, πl = πl(N),
l = 1, . . . , n and θj = θj (N), j = 1, . . . ,m. Let us recall here that the parameters κ and ν in (1.1) as well as n,m will
be kept fixed in these limits.

In the first limiting regime (I) the function μ(N) is such that limN→∞ μ(N)N = ∞. This regime includes
the situation when μ is constant. In this case the bounds in (1.23) together with (1.20) ensure that the limits ex-
ist

lim
N→∞

1

N
πl(N) = 0, l = 1, . . . , n. (1.24)

Noting the restriction (1.22), in order to obtain some nontrivial results we assume that θj (N) grows linearly with N

as N → ∞:

lim
N→∞

1

N
θj (N) = θ̂j ∈ (−∞,0], j = 1, . . . ,m. (1.25)

The corresponding limiting kernel that we will encounter in Theorem 1.4 below is defined as

K
(m)
I (y1, y2) =

∫ ∞

0
dt

∮
�0

ds

2πi
tκ−1s−κ−1 exp[s − t]

×
∮

�out

dv

2πi

∮
�in

du

2πi

exp[− v
s
y1 + u

t
y2]

u − v
e− 1

u
+ 1

v

(
v

u

)ν−m m∏
l=1

v − θ̂l

u − θ̂l

. (1.26)

Here, �0 is a closed contour encircling the origin counter-clockwise, �in is a closed contour encircling {0, θ̂1, . . . , θ̂m}
in counter-clockwise direction, and �out is a closed contour enclosing the contour �in counter-clockwise. This kernel
generalises the Meijer G-kernel for the product of two independent matrices [34] by a set of finite rank perturbations,
and it holds K(m=0)

I (x, y) =KMeijer(x, y), see (4.27) and (4.24) for integral representations of the latter. It was shown
in [14] for this Meijer G-kernel that it can also be written as a double integral of the Bessel kernel. The same relation
extends to the kernels with finite rank perturbations, comparing the second line of (1.26) with (1.30) below at n = 0,
the generalised Bessel kernel. We will show that a representation of the kernel (1.26) with only two integrals exists,
cf. (4.29).

In the second limiting regime (II) the function μ(N) behaves as limN→∞ μ(N)N = τ/4, with τ > 0. In this limit,
considering the definitions (1.20) and (1.21) together with (1.22) and (1.23), we may assume that

lim
N→∞

1

N
πl(N) = π̂l ∈

[
0,

1

τ

)
, l = 1, . . . , n and

lim
N→∞

1

N
θj (N) = θ̂j ∈

n⋂
k=1

(−∞, π̂k], j = 1, . . . ,m.

(1.27)

The limiting kernel in this regime (II) is a parameter dependent family of interpolating limiting kernels. It is defined
as

K
(n,m)
II (y1, y2; τ) = 2

τ

∮
�out

dv

2πi

∮
�in

du

2πi
Iκ

(
2
√

(1 − τv)y1/τ 2
)
Kκ

(
2
√

(1 − τu)y2/τ 2
)
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× e− 1
u
+ 1

v
1

u − v

(
1 − τu

1 − τv

) κ
2
(

v

u

)ν+n−m n∏
k=1

u − π̂k

v − π̂k

m∏
l=1

v − θ̂l

u − θ̂l

. (1.28)

Here, �in is defined as in the first limit (I), such that �(u) < 1/τ for u ∈ �in, and �out is a closed contour encircling
the parameters {π̂1, . . . , π̂m} and contour �in in counter-clockwise direction. It generalises the interpolating kernel of
[6], where no such parameters π̂k and θ̂l were present (although the representation of the kernel in [6] is different),
and the kernel of [35], where the parameters π̂k are present and θ̂k are absent. The kernel (1.28) can also be written as
a double integral of the generalised Bessel kernel (1.30) below, cf. (4.52).

The third limiting regime (III) is given by limN→∞ μ(N)N = 0, with limiting parameter assumptions

lim
N→∞

1

N
πl(N) = π̂l ∈ [0,∞), l = 1, . . . , n and

(1.29)

lim
N→∞

1

N
θj (N) = θ̂j ∈

n⋂
k=1

(−∞, π̂k], j = 1, . . . ,m.

The corresponding limiting kernel is a generalisation of the Bessel kernel with finite rank perturbations,

K
(n,m)
III (y1, y2) =

∮
�out

dv

2πi

∮
�in

du

2πi

exp[−y1v + y2u]
u − v

e− 1
u
+ 1

v

(
v

u

)ν+n−m n∏
k=1

u − π̂k

v − π̂k

m∏
l=1

v − θ̂l

u − θ̂l

, (1.30)

where �in is a closed contour encircling {0, θ̂1, . . . , θ̂m} counter-clockwise, and �out a closed contour enclosing
{π̂1, . . . , π̂m} and the contour �in counter-clockwise. Without finite rank perturbations it coincides with the Bessel
kernel, K(0,0)

III (x, y) = KBessel(x, y), as shown in [15], see (4.16) and (4.10) for representations of the latter. At m = 0
the kernel (1.30) was found earlier in [35] and agrees with the one from [15], Theorem 15, for a different ensemble.
The kernel (1.30) enjoys a formal duality relation, K(n,m)

III (x, y) → K
(m,n)
III (y, x)|

ν→−ν,π̂k↔−θ̂l
, as can be seen already

in the corresponding ensemble (1.6), by interchanging � ↔ Q and N ↔ M . It thus holds already for the kernel at
finite-N , cf. (3.20), and in particular also for the extended Airy kernel of [13] at the soft edge.

In all three kernels the contours can be chosen differently, for example when showing that they are integrable in
the sense of [25], see Corollaries 4.4, 4.5 and 4.2, respectively. Theorems 3.5, 4.1 and Corollary 4.2 solve an open
problem stated in [15], Section 7.2. The integrability found here implies that the asymptotic analysis of all three
kernels can be formulated as a Riemann–Hilbert problem. These three kernels can all be obtained from the kernel
(1.12) of ensemble (1.2).

Theorem 1.4 (Hard edge scaling limits). Consider the correlation kernel (1.12) from Theorem 1.3, with fixed non-
negative integers ν = M − N and κ = L − N , together with the definitions (1.20) and (1.21). With the three kernels
defined above, the following limits hold uniformly for any x, y in a compact subset of (0,∞) as N → ∞.

(I) Suppose that μ(N)N → ∞ and (1.25) hold true, then we have

lim
N→∞

μ(N)

N
KN

(
μ(N)

N
x,

μ(N)

N
y

)(
y

x

) κ
2 =K

(m)
I (x, y),

with the limiting parameters θ̂k=1,...,m ∈ (−∞,0].
(II) Suppose that μ(N)N → τ/4 with τ > 0 and (1.27) hold true, then we have

lim
N→∞

1

4N2
KN

(
x

4N2
,

y

4N2

)
=K

(n,m)
II (x, y; τ),

with π̂l=1,...,n ∈ [0,1/τ) and the limiting parameters θ̂k=1,...,m ∈⋂n
l=1(−∞, π̂l].
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(III) Suppose that μ(N)N → 0 and (1.29) hold true, then we have

lim
N→∞

1

4N2
KN

(
x

4N2
,

y

4N2

)
e

1
2μ(N)N

(
√

y−√
x) = 1

2
(xy)−

1
4 K

(n,m)
III (

√
x,

√
y),

with π̂l=1,...,n ∈ [0,∞) and the limiting parameters θ̂k=1,...,m ∈⋂n
l=1(−∞, π̂l].

The kernel in limit (I) is also obtained from ensemble (1.5) of the product of two independent random matrices
Y = GX, where the matrix elements of X are correlated, see Theorem 4.3. The kernel in limit (III) is also obtained
from ensemble (1.6) of a single random matrix, that has matrix elements correlated from both sides, see Theorem 4.1.
The fact that in Theorem 1.4 (III) we obtain this generalised Bessel kernel, rescaled and with square root arguments,
was already observed and explained in [5]. It is due to the fact that in this strongly coupled limit the squared singular
values of Y = X∗X are obtained. The kernel in the limit (II) is called interpolating in the following sense.

Theorem 1.5 (Interpolating kernel). The parameter dependent family of kernels (1.28) is interpolating between the
Meijer G-kernel and the Bessel kernel, both with finite rank perturbations. Namely, it holds for x, y in any compact
subset of R+:

(a) limτ→∞ τK
(n,m)
II (τx, τy; τ)(

y
x
)

κ
2 =K

(m)
I (x, y),

(b) limτ→0+ K
(n,m)
II (x, y; τ)e2(

√
y−√

x)/τ = 1
2 (xy)− 1

4 K
(n,m)
III (

√
x,

√
y).

This generalises the interpolating kernel derived in [35] for m = 0, and in [6] for m = n = 0, where an alternative
integral representation was given. It is an open problem to map these two representations.

In [8] a modification of the Tracy–Widom distribution for the largest eigenvalue was observed from finite rank
perturbations. One could ask if a similar phenomenon occurs here for the distribution of the smallest eigenvalue,
applying a Fredholm determinant representation in terms of the three different limiting kernels from our ensemble
(1.2). Here, we stress that the difference in scaling and thus of the fluctuations in limits (I) and (II) indicates such a
transition. On the other hand, the same scaling in limits (II) and (III) indicates a smooth interpolation, consistent with
the findings of [6] without finite rank perturbations.

The remainder of this article is organised as follows. In the next Section 2 we derive the joint densities of squared
singular values for all three ensembles. In Section 3 we show that all three ensembles represent determinantal point
processes, and derive their kernels at finite matrix size as double contour integrals. The last Section 4 is devoted to the
asymptotic analysis of the three kernels at the origin, their integrability and the interpolating property of the kernel in
limit (II).

2. Joint probability densities

For pedagogical reasons we will start with the derivation of the joint probability density of the generalised Wishart
ensemble (1.6), where we extend the results of [13] to rectangular matrices. Then, we move to the product of two
independent matrices (1.5) where one matrix has correlated entries, before coupling these two matrices in our most
general ensemble (1.2).

2.1. Joint probability density of the generalised Wishart ensemble

This ensemble that is correlated from two sides is defined following [13]. Let X be a complex random matrix of size
M × N with M − N = ν ≥ 0, and its matrix entries distributed as

P1(X) = c1 exp
[−Tr

(
X�X∗)− Tr

(
QXX∗)]. (2.1)

Here, � is a fixed Hermitian matrix of size N × N with eigenvalues σ1, . . . , σN , and Q is a fixed Hermitian matrix
of size M × M with eigenvalues q1, . . . , qM . For simplicity we first assume that these are all pairwise distinct. The
normalisation constant reads c1 = π−NM

∏M
i=1
∏N

j=1(qi + σj ). When thinking of � and Q as originating from given
empirical covariance matrices we would choose them to have only positive eigenvalues, ensuring convergence.
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For what follows below we will choose Q to have positive eigenvalues, and allow � to have also negative eigen-
values, which leads to the constraint

qi + σj > 0, ∀i = 1, . . . ,M,∀j = 1, . . . ,N. (2.2)

Note that the ensemble (2.1) is different from the doubly correlated Wishart ensemble, with distribution P̃(X) ∼
exp[−Tr(QX�X∗)], that has been considered in [42]. Our first result is the following

Proposition 2.1. The joint probability density of the squared singular values x1, . . . , xN of X distributed according
to (2.1) equals

P1(x1, . . . , xN) = 1

Z1
det
[
e−σixj

]N
i,j=1 det

[
1, qi, . . . , q

ν−1
i , e−qix1, . . . , e−qixN

]M
i=1, (2.3)

where the normalising constant is given by

Z1 = N !(−1)Nν�M(q1, . . . , qM)�N(σ1, . . . , σN)

M∏
i=1

N∏
j=1

(qi + σj )
−1. (2.4)

In the case of quadratic matrices with ν = 0, where the x-independent columns in the second determinant of the
distribution (2.3) are absent, this result was derived in [13].

Proof. As the first step we will reduce the rectangular matrix X to a quadratic matrix, following [17]. In the sequel
we will denote by O matrices with zero entries. Set

X = U

(
X0
O

)
, (2.5)

where U ∈ U(M)/U(N) × U(ν) is an M × M unitary matrix, and X0 is an N × N complex matrix. We note that
X∗X = X∗

0X0 is of size N × N and thus the matrices X and X0 have the same squared singular values. Inserting the
Jacobian [17] the joint probability distribution of X0 and U following from (2.1) is thus proportional to

P1(X)[dX] ∼ e−Tr(�X∗
0X0)e

−Tr
(
QU
(

X0X
∗
0 O

O O

)
U∗)

det
[
X∗

0X0
]ν[dX0]dμ(U). (2.6)

Here, dμ(U) denotes the corresponding Haar measure, [dX] =∏M
i=1
∏N

j=1 dXi,j
R dXi,j

I denotes the flat Lebesgue

measure over all independent matrix elements Xij , their real and imaginary parts Xi,j
R and Xi,j

I . In the following we
will suppress all proportionality constants that can be determined, and fix the normalisation Z1 of the joint probability
density of squared singular values (2.3) only at the end. The singular value decomposition for X0 can be written as

X0 = U�
1
2
x P ∗, �

1
2
x =

⎛⎜⎜⎜⎝
√

x1 0 . . . 0
0

√
x2 . . . 0

. . .

0 0 . . .
√

xN

⎞⎟⎟⎟⎠ , (2.7)

where U and P are unitary matrices with P ∈ U(N) and U ∈ U(N)/U(1)N . Here and further on we will use the
notion �x = diag(x1, . . . , xN) for this and other sets of variables. The measure [dX0] decomposes as

[dX0] ∼ �N(x1, . . . , xN)2 dx1 · · ·dxN dμ(U) dμ(P ), (2.8)

and we arrive at

P1(X)[dX] ∼ e−Tr(�P�xP ∗)e
−Tr
[
QU
(
U�xU

∗ O
O O

)∗] N∏
k=1

xν
k �N(x1, . . . , xN)2
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× dx1 · · ·dxN dμ(U)dμ(U) dμ(P ). (2.9)

To obtain (2.3) we need to compute the group integrals over P , and over U and U that have already decoupled.
Furthermore, we have to diagonalise the fixed matrices, � = V �σ V ∗ and Q = Ṽ �qṼ ∗, and absorb these extra factors
V and Ṽ of fixed unitary matrices through the invariance of the Haar measures of these group integrals. For the integral
over P this is straightforward and we can readily apply the standard Harish-Chandra–Itzykson–Zuber (HCIZ) integral
formula, reading [24,26]:∫

U(N)

dμ(P )e−Tr(�σ P�xP ∗) = const.
det[e−σixj ]Ni,j=1

�N(σ1, . . . , σN)�N(x1, . . . , xN)
. (2.10)

The constant that is independent of the σj and xj can be determined and depends only on the convention in normalising
the Haar measure of the unitary group.

Next we can turn to the integrals over U and U. Here, an additional integral over U1 can be introduced that we
choose to be over U(ν),

e
−Tr
[
QU
(
U�xU

∗ O
O O

)
U∗] = const.

∫
dμ(U1)e

−Tr
[
Ṽ �q Ṽ ∗U

(
U O
O U1

)
�̃x

(
U∗ O
O U∗

1

)
U∗]

,

where the extra zeros are denoted by the diagonal M × M matrix

�̃x = diag(x1, . . . , xN ,0, . . . ,0).

The three integrations over U , U, and U1 together parametrise the coset space U(M)/U(1)N , which can be used to
absorb Ṽ by invariance of the corresponding Haar measure. In order to apply the HCIZ formula (2.10) we need to
take into account that ν eigenvalues of �̃x are equal to zero, which can be obtained by l’Hôpital’s rule. We thus arrive
at ∫

dμ(U)dμ(U)e
−Tr
[
QU
(
U�xU

∗ O
O O

)
U∗] = const.

det[1, qi, . . . , q
ν−1
i , e−qix1 , . . . , e−qixN ]Mi=1

�M(q1, . . . , qM)�N(x1, . . . , xN)
∏N

k=1 xν
k

, (2.11)

where U is integrated over U(M)/U(N) × U(ν), U over U(N)/U(1)N (and U1 over U(ν)). Integrating (2.9) over
the corresponding coset spaces, from (2.11) together with (2.10) we arrive at (2.3), up to the normalisation constant
Z1. For its calculation we apply the generalisation [28], Appendix C, of the Andréief formula [7] that follows from
simple linear algebra. We quote the following form for later use:

N∏
j=1

∫ ∞

0
dxj det

[
Ra,b|1≤b≤N+k

1≤a≤k

ψb(xa)|1≤b≤N+k
1≤a≤N

]
det
[
Sb,a|1≤a≤l

1≤b≤N+l ϕb(xa)|1≤a≤N
1≤b≤N+l

]

= (−1)klN !det

[
Ok×l Ra,b|1≤b≤N+k

1≤a≤k

Sb,a |1≤a≤l
1≤b≤N+l

∫∞
0 dxϕb(x)ψa(x)|1≤a≤N+k

1≤b≤N+l

]
. (2.12)

Here, we have explicitly spelled out the dimension of the matrix block with zero elements O . This identity is valid for
two sets of functions ψj (x) and ϕk(x) that are suitably integrable, and two constant matrices R and S. The integration
domains can also be chosen differently, cf. [28]. When specifying to k = 0, that is in the absence of matrix R, and to
l = ν with Sb,a = qa−1

b , we obtain

N∏
k=1

∫ ∞

0
dxk det

[
ψi(xj )

]N
i,j=1det

[
1, qj , . . . , q

ν−1
j , ϕj (x1), . . . , ϕj (xN)

]M
j=1

= N !det

[
1, qj , . . . , q

ν−1
j ,

∫ ∞

0
dxψ1(x)ϕj (x), . . . ,

∫ ∞

0
dxψN(x)ϕj (x)

]M

j=1
. (2.13)



Finite rank perturbations in products of two coupled random matrices 451

The standard Andréief formula is obtained when also setting ν = 0, when the first ν columns on left and right hand
side (and thus matrix S in (2.12)) are absent. Inserting

ψ
(1)
i (x) = e−σix and ϕ

(1)
j (x) = e−qj x (2.14)

into (2.13) we have the resulting simple integral that we define for later purpose:

I
(1)
i,j =

∫ ∞

0
dxe−qixe−σj x = 1

qi + σj

for i = 1, . . . ,M, j = 1, . . . ,N. (2.15)

We can now apply the generalised Cauchy determinant derived by Basor and Forrester [9], Lemma 2, to (2.13)
and (2.15)

det

[
1, qj , . . . , q

ν−1
j ,

1

qj + σ1
, . . . ,

1

qj + σN

]M

j=1
= (−1)Nν �N(σ1, . . . , σN)�M(q1, . . . , qM)∏N

i=1
∏M

j=1(qj + σi)
, (2.16)

with ν = M − N . Equation (2.16) yields the normalisation in (2.4). �

2.2. Joint probability density of the product of two independent correlated matrices

Let us consider two independent complex random matrices G of size L × M , and X of size M × N . The matrix
elements of each G and X are correlated, given by the probability distribution

P2(G,X) =c2 exp
[−Tr

(
WGG∗)− Tr

(
QXX∗)]. (2.17)

Here, W is a fixed Hermitian matrix of size L × L with positive eigenvalues, and Q is a fixed Hermitian matrix of
size M × M with pairwise non-degenerate eigenvalues q1, . . . , qM > 0. In what follows we will restrict ourselves
to the case of W = α1L being proportional to the identity, with α > 0. The reason is that for generic W the joint
probability density of squared singular values of the product Y = GX is no longer determinantal, as we will show.
The normalising constant c2 in (2.17) can be computed by performing the Gaussian integrals over G and X, which
leads to c2 = π−M(L+N)αML

∏M
j=1 qN

j . Our first result is the following

Theorem 2.2. Denote by x1, . . . , xN the squared singular values of X and by y1, . . . , yN the squared singular values
of Y = GX, with G and X distributed according to (2.17) with W = α1L. Their joint probability density is given by

P2(x1, . . . , xN ;y1, . . . , yN) = 1

Z2

N∏
j=1

yκ
j �N(y1, . . . , yN)det

[
x−κ−1
j e

−α
yk
xj
]N
j,k=1

× det
[
1, qi, . . . , q

ν−1
i , e−qix1 , . . . , e−qixN

]M
i=1, (2.18)

where Z2 is a normalising constant given by

Z2 = (N !)2(−α)Nν+ N(N−1)
2 α−Nκ−NM

(
N∏

l=1

�(κ + l)�(l)

)
�M(q1, . . . , qM)

M∏
k=1

q−N
k . (2.19)

Proof. We start with a general fixed Hermitian matrix W up to the point where it becomes clear, why only W = α1L

leads to a determinantal point process. We begin by decomposing the random matrix X as in (2.5), leading immediately
to

P2(G,X)[dG][dX] ∼ e−Tr(WGG∗)e
−Tr
(
QU
(

X0X
∗
0 O

O O

)
U∗)

det
[
X∗

0X0
]ν[dG][dX0]dμ(U), (2.20)

in analogy to (2.6), where the corresponding measures are defined. We are interested in the singular values of the
product matrix Y = GX, and in view of (2.5) we set Ĝ = GU which is again a matrix of size L × M . We split this
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matrix Ĝ into its first N columns and its remaining ν columns by introducing the matrices Ĝ0 of size L × N and Ĝ1

of size L × ν as

GU = Ĝ = (Ĝ0, Ĝ1), (2.21)

with [dG] = [dĜ0][dĜ1]. It immediately follows that the matrices Ĝ0X0 and GX have the same singular values.
Furthermore, the product of GG∗ can be written as

GG∗ = ĜĜ∗ = (Ĝ0, Ĝ1)

(
Ĝ∗

0
Ĝ∗

1

)
= Ĝ0Ĝ

∗
0 + Ĝ1Ĝ

∗
1.

For that reason the matrix Ĝ1 completely decouples in the exponent in (2.20) and can be integrated out, being part of
the normalisation. Now consider the change of variables for invertible X0:

Ĝ0 −→ Y = Ĝ0X0, X0 −→ X0. (2.22)

Note that Y is a matrix of size L × N and that the Jacobian of this transformation is given by det[X∗
0X0]−L. Thus we

obtain that the joint distribution of Y , X0 and U is proportional to

e−Tr(WY(X∗
0X0)

−1Y ∗)e
−Tr
(
QU
(

X0X
∗
0 O

O O

)
U∗)

det
[
X∗

0X0
]ν−L[dY ][dX0]dμ(U). (2.23)

The singular value decomposition for Y is in analogy to that of X0 in (2.7), using the same notation:

Y = Ũ�
1
2
y V . (2.24)

Here, Ũ is an L × N matrix with Ũ∗Ũ = 1N , whereas V ∈ U(N) is a unitary matrix, cf. [17]. The measure [dY ] can
be expressed through the singular values y1, . . . , yN in analogy to (2.6) and (2.8), leading to

[dY ] ∼
N∏

l=1

yκ
l �N(y1, . . . , yN)2 dy1 · · ·dyN dμ(Ũ) dμ(V ).

The joint probability density of squared singular values of X0 and Y is obtained from the following relation between
probability measures:

P2(G,X)[dG][dX]

∼ e−Tr[(V P )∗�
1
2
y Ũ∗WŨ�

1
2
y (V P )�−1

x ]e−Tr
[
QU
(
U�xU

∗ O
O O

)
U∗] N∏

l=1

xν−L
l yκ

l �N(y1, . . . , yN)2

× �N(x1, . . . , xN)2 dy1 · · ·dyN dx1 · · ·dxN dμ(U)dμ(Ũ) dμ(V )dμ(U) dμ(P ). (2.25)

It remains to integrate over all remaining Haar measures, after diagonalising W = V1�wV ∗
1 and Q = V2�qV ∗

2 by
unitary transformations. Clearly the integrals over U and U decouple and lead to the same results as in (2.11). The
remaining integrals are over P , Ũ and V , and after using the invariance of the Haar measure to absorb V P → P and
V ∗

1 Ũ → Ũ we face the following group integral:

J =
∫

dμ(P )dμ(Ũ)e−Tr[P ∗�
1
2
y Ũ∗�wŨ�

1
2
y P�−1

x ]. (2.26)

This integral was computed by Simon, Moustakas and Marinelli [39] using character expansion techniques. However,
the final answer is given by a sum over representations that cannot be simplified to a determinantal expression, see
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[39], Eq. (59), and details therein. For this reason from now on we will simplify to W = α1L as for the result stated
in (2.18). In that case the integral (2.26) simplifies to the standard HCIZ integral (2.10), and we obtain

∫
U(N)

dμ(P )e−α Tr(P ∗�yP�−1
x ) = const.

det[e−α
yj
xi ]Ni,j=1

�N(y1, . . . , yN)�N(x1, . . . , xN)

N∏
j=1

xN−1
j , (2.27)

after using �N(x−1
1 , . . . , x−1

N ) = const. �N(x1, . . . , xN)/
∏N

j=1 xN−1
j . Integrating (2.25) over the corresponding coset

spaces, using (2.11) and (2.27) we arrive at the statement in (2.18). It remains to compute the normalisation constant
Z2 which we postpone to the proof of the next corollary. �

From (2.18) we can easily deduce the joint probability density of the variables yj alone, together with the correspond-
ing normalisation constant, as summarised in the following

Corollary 2.3. The joint probability density of the squared singular values y1, . . . , yN of the product matrix Y = GX,
where G and X are distributed according to (2.17) with W = α1L, is reading

P2(y1, . . . , yN) = 2NN !
Z2

det
[
y

κ+j−1
i

]N
i,j=1 det

[
1, qi, . . . , q

ν−1
i , ϕ

(2)
i (y1), . . . , ϕ

(2)
i (yN)

]M
i=1. (2.28)

Here, we have introduced the following notation

ϕ
(2)
i (y) =

(
qi

αy

) κ
2

Kκ(2
√

αqiy), (2.29)

and the normalising constant Z2 is defined as in (2.19).

Proof. We make use of the generalised Andréief formula (2.13) by integrating (2.18) over the xj :

N∏
j=1

∫ ∞

0
dxjP2(x1, . . . , xN ;y1, . . . , yN)

= N !
Z2

N∏
j=1

yκ
j �N(y1, . . . , yN)det

[
1, qi, . . . , q

ν−1
i ,

∫ ∞

0
dxx−κ−1e− αy1

x
−qix,. . . ,

∫ ∞

0
dxx−κ−1e− αyN

x
−qix

]M

i=1
.

The remaining integrals are obtained using [22], Eq. 3.471.9, and the identity K−κ(x) = Kκ(x) for the modified
Bessel function of the second kind,∫ ∞

0
dxx−κ−1e− a

x
−bx = 2

(
a

b

)− κ
2

Kκ(2
√

ab) for �(a) > 0,�(b) > 0. (2.30)

This yields (2.28) together with (2.29), after taking out factors of 2 of the determinant and the factors yκ
i into the Van-

dermonde determinant. To finally compute the normalisation constant Z2 we have to apply once again the generalised
Andréief formula (2.13) to (2.28). In there we identify

ψ
(2)
j (y) = yκ+j−1. (2.31)

The integral that remains to be evaluated is thus

I
(2)
i,j =

∫ ∞

0
dyyκ+j−1

(
qi

αy

) κ
2

Kκ(2
√

αqiy)

= �(κ + j)�(j)

2ακ+j
q

−j
i for i = 1, . . . ,M, j = 1, . . . ,N, (2.32)
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which we obtain by using the formula [22], Eq. 6.561.16. We thus arrive at

Z2 = (N !)2

(
N∏

l=1

�(κ + l)α−(κ+l)�(l)

)
det
[
1, qi, . . . , q

ν−1
i , q−1

i , . . . , q−N
i

]M
i=1, (2.33)

which is equivalent to (2.19), after taking out factors of q−N
i and rearranging columns. �

2.3. Joint probability density of the product of two correlated coupled matrices

Following the derivations from the previous two subsections we are now in the position to prove Theorem 1.1, the
joint probability density of the squared singular values of the random matrix X and of the product matrix Y = GX,
distributed according to (1.2):

P(G,X) = c exp
[−α Tr

(
GG∗)+ Tr

(
�GX + X∗G∗�∗)− Tr

(
QXX∗)]. (2.34)

Here, X and G are random, Q is fixed, as given before in Section 2.2, the second correlation matrix is W = α1L, with
α > 0, and the fixed matrix � that provides the coupling is of size N ×L, with squared singular values δ1, . . . , δN ≥ 0.
The normalisation is c = π−M(L+N)

∏M
i=1
∏N

j=1(αqi − δj ).

Proof of Theorem 1.1 and Corollary 1.2. Following the parametrisations (2.5), (2.21) and the change of variables
(2.22) of the previous subsections, as well as the singular value decompositions (2.7) and (2.24), we immediately
obtain that the probability measure from above is proportional to

P(G,X)[dG][dX]

∼ e−α Tr[(V P )∗�y(V P )�−1
x ]eTr[�Ũ�

1
2
y V +V ∗�

1
2
y Ũ∗�∗]e−Tr

[
QU
(
U�xU

∗ O
O O

)
U∗] N∏

j=1

xν−L
j yκ

j �N(y1, . . . , yN)2

× �N(x1, . . . , xN)2 dx1 · · ·dxN dy1 · · ·dyN dμ(U)dμ(Ũ) dμ(V )dμ(U) dμ(P ). (2.35)

The unitary integrals over the third exponential factor in the second line obviously decouple. We can decouple also
the first and second exponential factor by exploiting the invariance of the Haar measure dμ(P ) under V P → P .
Furthermore, in the same way we can absorb the fixed unitary matrices from the diagonalisation of Q = Ṽ �qṼ ∗ and

the singular value decomposition � = V1�
1
2
δ V ∗

2 , respectively. The new group integral over Ũ and V that we encounter
compared to the previous two subsections, and that is due to the coupling matrix �, is called Berezin–Karpelevich
integral [10]

∫
Ũ∗Ũ=1N

dμ(Ũ)

∫
U(N)

dμ(V )eTr(�
1
2
δ Ũ�

1
2
y V +V ∗�

1
2
y Ũ�

1
2
δ ) = const.

det[Iκ(2
√

δkyj )]Nj,k=1

∏N
k=1 y

− κ
2

k

�N(y1, . . . , yN)�N(δ1, . . . , δN )
, (2.36)

where the constant does not depend on y1, . . . , yN . This integral is an analogue of the Harish-Chandra–Itzykson–
Zuber integral. Such integrals were studied in Guhr and Wettig [23], and Jackson, Şener and Verbaarschot [27]. In Liu
[35] the same integral appears in the context of coupling uncorrelated Gaussian random matrices, see [35], Eq. (2.16).
For a similar integral we refer to [18], Proposition 11.6.2. Integrating over the coset spaces in (2.35), we obtain from
the HCIZ integrals (2.11) and (2.27) together with this integral (2.36) the following result for the joint probability
density

P(x1, . . . , xN ;y1, . . . , yN)

= const.
N∏

j=1

y
κ
2
j det

[
Iκ(2

√
δlyj )

]N
j,l=1

N∏
j=1

x−κ−1
j det

[
e
−α

yj
xi

]N
i,j=1

× det
[
1, qi, . . . , q

ν−1
i , e−qix1 , . . . , e−qixN

]M
i=1. (2.37)
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This is equivalent to Theorem 1.1, recalling (1.1), up to the normalisation constant Z that remains to be determined.
We will combine its calculation with the proof of Corollary 1.2. For this purpose we apply the generalised Andréief
formula (2.13) twice to the joint probability distribution (2.37): First, integrating over the xj we obtain

N∏
j=1

∫ ∞

0
dxjP (x1, . . . , xN ;y1, . . . , yN)

= N !2N

Z
det
[
y

κ
2
j Iκ(2

√
δlyj )

]N
j,l=1

× det

[
1, qi, . . . , q

ν−1
i ,

(
qi

αy1

) κ
2

Kκ(2
√

αqiy1), . . . ,

(
qi

αyN

) κ
2

Kκ(2
√

αqiyN)

]M

i=1
, (2.38)

after using (2.30) and properties of the determinant. This is the statement (1.9) in Corollary 1.2, together with the
identification (1.10) that we repeat here:

ψi(y) = y
κ
2 Iκ(2

√
δiy), ϕi(y) =

(
qi

αy

) κ
2

Kκ(2
√

αqiy). (2.39)

For the determination of Z given by the second intergration of (2.37), this time over the yj , we have

Z = (N !)22N det
[
1, qi, . . . , q

ν−1
i , Ii,1, . . . , Ii,N

]M
i=1. (2.40)

We are left with the following integral

Ii,j =
∫ ∞

0
dy

(
qi

αy

) κ
2

Kκ(2
√

αqiy)y
κ
2 Iκ(2

√
δj y) = δ

κ
2
j

2ακ

1

(αqi − δj )
, (2.41)

for i = 1, . . . ,M , and j = 1, . . . ,N , which is obtained using [22], Eq. 6.576.7. Its convergence follows from (1.3).
Moreover, the determinant resulting from (2.40) can be identified with the degenerate Cauchy determinant from [9],
cf. (2.16) where it was applied before. It reads

det

[
1, qi, . . . , q

ν−1
i ,

1

αqi − δ1
, . . . ,

1

αqi − δN

]M

i=1

= (−α)MN− 1
2 N(N+1) �M(q1, . . . , qM)�N(δ1, . . . , δN )∏M

i=1
∏N

j=1(αqi − δj )
. (2.42)

The last three equations together yield the normalisation constant Z in (1.8). �

3. Determinantal point process, correlation kernel and its contour integral representation

In this section we will proceed in two steps. First, we will show that all our three ensembles are indeed represent-
ing determinantal point processes. Second, we use the inverse Gram matrix to explicitly construct complex contour
integral representations for all three kernels in separate subsections.

We begin by recalling that the joint probability densities of all our ensembles (1.9), (2.3) and (2.28) are of the form

P(y1, . . . , yN) = 1

N !det[Ai,j ]Mi,j=1

det
[
ψi(yj )

]N
i,j=1 det

[
1, qi, . . . , q

ν−1
i , ϕi(y1), . . . , ϕi(yN)

]M
i=1. (3.1)
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Here, the Gram type matrix A of size M × M is defined as

A =

⎛⎜⎜⎜⎝
1 q1 . . . qν−1

1 I1,1 . . . I1,N

1 q2 . . . qν−1
2 I2,1 . . . I2,N

...
...

...
...

...

1 qM . . . qν−1
M IM,1 . . . IM,N

⎞⎟⎟⎟⎠ , (3.2)

with

Ii,j =
∫ ∞

0
dyϕi(y)ψj (y) for i = 1, . . . ,M, j = 1, . . . ,N. (3.3)

Part of showing that the class of joint densities (3.1) is determinantal includes to determine the k-point correlation
functions, defined as

ρk(y1, . . . , yk) = N !
(N − k)!

∫ ∞

0
dyk+1 · · ·dyNP (y1, . . . , yN), (3.4)

in terms of the kernel of the point process. Note that for k = N there is no integral and the N -point function is just
N ! times the joint probability density (3.1) itself, cf. (1.11). Our strategy is to first map the joint probability density
(3.1) to the standard form of a biorthogonal ensemble of Borodin [12], having two determinants of equal size instead
of (3.1), which shows that this density is indeed determinantal. In a second step we rewrite the resulting kernel in an
alternative form, involving directly (part of) the inverse of the Gram type matrix (3.2), that will be more convenient
for later use. This is stated by the following

Proposition 3.1. Provided that the integrals in (3.3) of the two sets of functions ϕi and ψj from the joint probability
density (3.1) exist, the k-point correlation functions are given by

ρk(y1, . . . , yk) = det
[
KN(yi, yj )

]k
i,j=1. (3.5)

The corresponding correlation kernel can be written as

KN(x, y) =
N∑

i=1

M∑
j=1

ψi(x)Ci+ν,j ϕj (y), (3.6)

where we denote the inverse Gram type matrix with C = A−1. In particular the joint probability density (3.1) itself is
determinantal, with k = N in (3.5).

Proof. It is well known that for a block matrix D = ( a c
b d

)
with square blocks a and d the determinant of D can be

reduced to determinants of smaller size as follows,

det[D] = det[a]det
[
d − ba−1c

]
, (3.7)

provided that matrix a is invertible. A similar formula exists for matrix d being invertible. The matrix d − ba−1c is
called the Schur complement of matrix a in D. Choosing (a)i,j = q

j−1
i as the ν × ν matrix from the upper left block

of the last determinant in (3.1) we obtain

det
[
1, qi, . . . , q

ν−1
i , ϕi(y1), . . . , ϕi(yN)

]M
i=1 = det[a]det

[
ϕ̃i (yj )

]N
i,j=1. (3.8)

For the Schur complement we obtain

ϕ̃i (y) = ϕi+ν(y) −
ν∑

k,l=1

bi,k

(
a−1)

k,l
ϕl(y) for i = 1, . . . ,N, (3.9)
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with bi,k = qk−1
i+ν . Clearly, for all qi=1,...,ν being mutually distinct, matrix a is invertible and in fact det[a] =

�ν(q1, . . . , qν). We can thus apply the result of Borodin [12] for the biorthogonal ensemble obtained from (3.1),

P(y1, . . . , yN) = �ν(q1, . . . , qν)

N !det[Ai,j ]Mi,j=1

det
[
ψi(yj )

]N
i,j=1 det

[
ϕ̃i (yj )

]N
i,j=1, (3.10)

and conclude that it is indeed a determinantal point process, with its correlation kernel given by

KN(x, y) =
N∑

i,j=1

ψi(x)
(
g−1)

i,j
ϕ̃j (y) with gi,j =

∫ ∞

0
dyϕ̃i(y)ψj (y). (3.11)

It remains to show (3.6). For that we insert (3.9) into our kernel (3.11) to obtain

KN(x, y) =
N∑

i=1

ψi(x)

[
N∑

j=1

(
g−1)

i,j
ϕj+ν(y) −

ν∑
l=1

(
N∑

j=1

ν∑
k=1

(
g−1)

i,j
bj,k

(
a−1)

k,l

)
ϕl(y)

]
. (3.12)

Considering now matrix A from (3.2) as a block matrix, A = (
a J
b I

)
, with matrices a and b as defined before, we

immediately realise that

det[A] = det[a]det
[
Ii+ν,j − (b(a−1)J )

i,j

]= det[a]det[gi,j ]Ni,j=1 (3.13)

holds for the corresponding Schur complement. By making use of this block decomposition of A, it is well known
that its inverse, C = A−1, can be written in the following block form, cf. [37], Section 3.1:

C =
(

a−1 + a−1Jg−1ba−1 −a−1Jg−1

−g−1ba−1 g−1

)
. (3.14)

In particular its two lower blocks are given by

Ci+ν,j =
{

−∑N
l=1
∑ν

k=1(g
−1)i,lbl,k(a

−1)k,j for j = 1, . . . , ν,

(g−1)i,j−ν for j = 1 + ν, . . . ,N + ν,
(3.15)

where i = 1, . . . ,N . Together with (3.12) this yields (3.6). �

Remark 3.2. As an alternative to the formulation of the kernel (3.11) in terms of the inverse Gram matrix, in [12]
the two sets of functions constituing the joint density (3.10) can also be orthogonalised. For the example from the last
subsection, (2.39), this seems to be challenging, as (for ν = 0) in each determinant these functions differ only by the
parameters in the arguments. A biorthogonalisation can still be performed, see [1] for a similar example.

Remark 3.3. There exist alternative proofs of Proposition 3.1 without applying [12]. While in Appendix B we use
simple ideas from functional analysis, we present here a short calculation applying the extended Andréief formula
(2.12) [28]. Choosing l = k + ν and N → (N − k) in (2.12), we can directly perform the integration of (3.1) over
(N − k) variables as prescribed in (3.4):

ρk(y1, . . . , yk) = (−1)k(k+ν)

det[A] det

[
Ok×ν Ok×k ψi(yj )|i=1,...,N

j=1,...,k

qi−1
j |i=1,...,ν

j=1,...,M ϕj (yi)|i=1,...,k
j=1,...,M

∫∞
0 dyϕj (y)ψi(y)|i=1,...,N

j=1,...,M

]

= (−1)k
2

det[A] det

[
Ok×k Ok×ν ψi(yj )|i=1,...,N

j=1,...,k

ϕj (yi)|i=1,...,k
j=1,...,M qi−1

j |i=1,...,ν
j=1,...,M Ij,i |i=1,...,N

j=1,...,M

]
. (3.16)

Here, the functions ψi(y) and ϕj (y) of unintegrated variables y1, . . . , yk are corresponding to the matrices R and
S in (2.12), respectively. In the second step we have simply interchanged columns, such that the matrix A from
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(3.2) is formed by the two lower right blocks. Using the equivalent formula to (3.7) for invertible d = A this time,
det[D] = det[d]det[a − cd−1b], we can choose a = Ok×k here. After taking out all minus signs of the determinant
and using that part of matrix c is Ok×ν , we arrive at the statement of Proposition 3.1:

ρk(y1, . . . , yk) = det

[
M∑

i=1+ν

M∑
j=1

ψi−ν(yn)Ci,j ϕj (ym)

]k

n,m=1

. (3.17)

3.1. Kernel of the generalised Wishart ensemble

We begin by deriving an explicit form of the kernel of the generalised Wishart ensemble with joint probability density
(2.3). In the simplest case, when M = N (ν = 0), its Gram type matrix (3.2) reads Ai,j = I

(1)
i,j = (qi + σj )

−1, from
(2.15). For its inversion we use the following result of [12], Lemma 3.1 (cf. [38] for an earlier work)

Lemma 3.4 (Borodin). The inverse Ci,j of matrix Ai,j = (qi + σj )
−1 is given by

Ci,j = 1

(qj + σi)

∏N
l=1(ql + σi)(qj + σl)∏N

k=1;k �=i (σi − σk)
∏N

l=1;l �=j (qj − ql)
. (3.18)

From (3.6) together with (2.14) this explicitly determines the kernel of the generalised Wishart ensemble for ν = 0:

K
(1)
N (x, y) =

N∑
i,j=1

e−σix−qj y

(qj + σi)

∏N
l=1(ql + σi)(qj + σl)∏N

k=1;k �=i (σi − σk)
∏N

l=1;l �=j (qj − ql)

=
∮

γσ

dη

2πi

∮
γq

dζ

2πi

exη−yζ

η − ζ

N∏
l=1

ζ + σl

η + σl

N∏
l=1

η − ql

ζ − ql

. (3.19)

In the second step we have used the Residue Theorem to express the double sum as a double contour integral. The
contours are defined such that the closed contour γσ includes the poles at −σl , l = 1, . . . ,N , running in counter-
clockwise direction, and likewise γq includes the poles at ql , l = 1, . . . ,N in counter-clockwise direction, such that
the two contours do not intersect. Because of qi + σj > 0, ∀i, j , this is always possible. For different choices of
integration contours see Figure 1. Note that the form of the kernel (3.19) valid for M = N can be found already in
[13], see also [15] for the Multiple Laguerre kernel. It is very suggestive to expect that a similar form holds also for
M > N , which is our main result of this subsection as stated below.

Theorem 3.5. The correlation kernel K
(1)
N (x, y) of the generalised Wishart ensemble (1.6) permits the following

double contour integral representation

K
(1)
N (x, y) =

∮
γσ

dη

2πi

∮
γq

dζ

2πi

exη−yζ

η − ζ

N∏
l=1

ζ + σl

η + σl

M∏
k=1

η − qk

ζ − qk

, (3.20)

where γσ is a closed contour encircling −σ1, . . . ,−σN counter-clockwise, and γq is a closed contour encircling
q1, . . . , qM counter-clockwise, without intersecting γσ , see Figure 1.

Proof. The idea of the proof is to obtain the double contour integral representation (3.20) without explicitly computing
the inverse matrix C as we did for M = N . For that purpose we restate the orthogonality relation AC = 1M for the
Gram type matrix (3.2), with I

(1)
i,j = (qj + σi)

−1 for our ensemble from (2.15):

ν∑
k=1

qk−1
j Ck,l +

N∑
k=1

1

qj + σk

Ck+ν,l = δj,l for 1 ≤ j, l ≤ M. (3.21)
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Fig. 1. Possible choices for the integration contours in Theorem 3.5: Independent non-intersecting coutours (top) and nested non-intersecting
coutours (bottom). For simplicity we have ordered the parameters σi and qj according to their index. We do not display a third possible choice that
is also nested, where the inner contour encircles the −σj and not the qj .

This leads us to define the following set of l = 1, . . . ,M meromorphic functions

fl(z) =
ν∑

k=1

zk−1Ck,l +
N∑

k=1

1

z + σk

Ck+ν,l . (3.22)

They are uniquely determined in the complex plane by specifying all their zeros, poles, and by providing the value
of the function at one further point. Namely, without specifying the constant matrix C on the right hand side, the
functions fl(z) satisfy:

(1) due to (3.21) each function fl has M − 1 zeros, fl(qi) = 0 for i = 1, . . . , l − 1, l + 1, . . . ,M ,
(2) because of definition (3.22), each function fl has N poles at z = −σk for k = 1, . . . ,N ,
(3) the condition fl(ql) = 1 from (3.21) uniquely fixes the remaining constant coefficient,

leading to

fl(z) =
M∏

i=1,i �=l

z − qi

ql − qi

N∏
k=1

ql + σk

z + σk

. (3.23)

The fact that these are all poles and zeros follows from the behaviour at infinity, lim|z|→∞ fl(z) = O(zν−1), as
required from the definition (3.22). The next step is to bring the kernel (3.6) to a form containing (3.22), such that we
can apply (3.23), without determining C explicitly. From (2.14) we can rewrite for ensemble (1.6)

ψ
(1)
j (x) = e−σj x =

∮
γσ

dη

2πi

exη

η + σj

, j = 1, . . . ,N. (3.24)

Here, γσ denotes a closed contour encircling −σj in counter-clockwise direction. For later we choose γσ to contain
already all σl , l = 1, . . . ,N . Likewise, we may write zero in the form

0 =
∮

γσ

dη

2πi
ηj−1exη, j = 1,2, . . . , (3.25)
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which holds trivially for any closed contour, due to the analyticity of the integrand. With these preparations, using the
definitions (2.14) we can rewrite the kernel (3.6) for our ensemble as

K
(1)
N (x, y) =

N∑
i=1

M∑
j=1

ψ
(1)
i (x)Ci+ν,j ϕ

(1)
j (y)

=
M∑

j=1

[
N∑

i=1

Ci+ν,j

∮
γσ

dη

2πi

exη

η + σi

+
ν∑

i=1

Ci,j

∮
γσ

dη

2πi
ηi−1exη

]
ϕ

(1)
j (y)

=
∮

γσ

dη

2πi

M∑
j=1

exη

[
ν∑

i=1

ηi−1Ci,j +
N∑

i=1

1

η + σi

Ci+ν,j

]
ϕ

(1)
j (y)

=
∮

γσ

dη

2πi

M∑
j=1

exηe−qj y

[
M∏

m=1,m �=j

η − qm

qj − qm

N∏
k=1

qj + σk

η + σk

]
. (3.26)

In the second step we have taken out the contour integrals, and in the third step we have inserted (3.23) and
the explicit representation ϕ

(1)
j (y) = e−qj y from (2.14). Finally a simple application of the Residue Theorem leads

to (3.20), when choosing γq as a closed contour that encircles all poles at ql , l = 1, . . . ,M in counter-clockwise
direction, and that does not intersect γσ . In view of the condition (2.2), qj + σi > 0 ∀i, j , this is always possible. Two
possible choices of such contours are depicted in Figure 1. �

At first sight the second, nested choice in Figure 1 bottom may not seem to be useful: It forces us to do the integral
over the inner contour γq first, before performing the second integral over γσ . However, when taking the large-N limit
in Section 4 later, we will encounter the situation that two or more parameters −σi and qj coalesce. In the case of
non-nested contours the contours would touch then, which is not allowed. In the nested case there is no such problem,
as all −σi and qj remain enclosed by γσ , and none of the −σi is a pole of the integral over γq . Of course there is a
third choice, by letting γq enclose the contour γσ . Then the integral over the inner contour γσ has to be done first.

The double contour integral in (3.20) can be factorised, at the expense of a further real integral. For this to be
possible we have to choose the contours to be non-nested as in Figure 1 top, and thus the order of integration to be
independent. In that case the non-intersection condition of the contours γq and γσ and the fact that qj + σi > 0, ∀i, j ,
implies that �(ζ − η) > 0. Therefore, we can rewrite the term coupling the two contour integrals as

1

η − ζ
= −

∫ 1

0
duuζ−η−1 for �(ζ − η) > 0. (3.27)

This immediately leads to the following

Corollary 3.6. The kernel K
(1)
N (x, y) given by (3.20), with integration contours chosen as in Figure 1 top, can be

written as

K
(1)
N (x, y) = −

∫ 1

0

du

u
F

(1)
1 (x;u)F

(1)
2 (y;u), (3.28)

where the functions F
(1)
1 (x;u) and F

(1)
2 (y;u) are defined by the formulae

F
(1)
1 (x;u) =

∮
γσ

dη

2πi
u−ηexη

∏M
l=1(η − ql)∏N
l=1(η + σl)

, F
(1)
2 (y;u) =

∮
γq

dζ

2πi
uζ e−yζ

∏N
l=1(ζ + σl)∏M
l=1(ζ − ql)

. (3.29)

3.2. Kernel of the product of two correlated coupled matrices

Next we immediately turn to the ensemble (1.2) of two correlated coupled random matrices. The reason is that the

Gram type matrix is very similar to the previous subsection, Ii,j = δ
κ
2
j (2ακ(αqi − δj ))

−1 from (2.41), making it
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straightforward to generalise the results from the previous subsection. For N = M we can apply Lemma 3.4, replacing
qj → αqj and σi → −δi , and, apart from a trivial factor, directly read off the inverse matrix Ci,j of Ai,j = Ii,j :

Ci,j = 2ακ

δ
κ
2
j

1

(αqj − δi)

∏N
l=1(αql − δi)(αqj − δl)∏N

k=1;k �=i (δk − δi)
∏N

l=1;l �=j (αqj − αql)
. (3.30)

Consequently, inserting this expression together with (1.10) into (3.6) we obtain the following explicit expression for
the kernel at ν = 0:

KN(x, y) =
(

x

y

) κ
2

N∑
i=1

M∑
j=1

Iκ(2
√

δix)Kκ(2
√

αqjy)
2(

αqj

δj
)

κ
2

(αqj − δi)

∏N
l=1(αql − δi)(αqj − δl)∏N

k=1;k �=i (δk − δi)
∏N

l=1;l �=j (αqj − αql)

=
(

x

y

) κ
2

2
∮

γδ

dη

2πi

∮
γq

dζ

2πi

(
ζ

η

) κ
2 Iκ(2

√
ηx)Kκ(2

√
ζy)

η − ζ

∏N
l=1(ζ − δl)(η − αql)∏N
l=1(η − δl)(ζ − αql)

. (3.31)

Here, the contours are defined analogously to Theorem 3.5, with the difference that only the two choices are possible
that are depicted in Figure 1. After the replacement −σl → δl and ql → αql , the closed contour γδ is encircling
δ1, . . . , δN ≥ 0 counter-clockwise, including or excluding all ql . Note that η− κ

2 Iκ(2
√

ηx) does not have a branch cut
in η, cf. (A.4). The closed contour γq is encircling αq1, . . . , αqN > 0 counter-clockwise and, in contrast, excludes the
origin, because Kκ(2

√
ζy) has a logarithmic singularity there. Thus the contour γq may not include all δl ≥ 0. The

requirement of non-intersecting contours is always possible, due to the condition (1.3) that αqi − δj > 0 ∀i, j . The
last equality in (3.31) is easy to see with the help of the Residue Theorem, where the order of integration may depend
on the nesting of the contours. The prefactor (x/y)

κ
2 before the two integrals can be dropped as it cancels out in the

determinant (3.5), leading to an equivalent kernel (see also the remark after Theorem 1.3). Let us present the proof of
this theorem now for general M ≥ N .

Proof of Theorem 1.3. In view of the Gram matrix Ii,j (2.41), it is advantageous for ν > 0 to slightly modify the
Gram type matrix (3.2) by including the appropriate powers of α:

Ã =

⎛⎜⎜⎜⎝
1 αq1 . . . (αq1)

ν−1 I1,1 . . . I1,N

1 αq2 . . . (αq2)
ν−1 I2,1 . . . I2,N

...
...

...
...

...

1 αqM . . . (αqM)ν−1 IM,1 . . . IM,N

⎞⎟⎟⎟⎠ . (3.32)

This can be trivially achieved by multiplying numerator and denominator of (3.1) by αν(ν−1)/2. Its inverse is now
denoted by C̃, with ÃC̃ = 1M . Following the ideas of the proof of Theorem 3.5 from the previous subsection, it is
then not difficult to relate the inversion of the corresponding full Gram type matrix (3.32),

ν∑
k=1

(αqj )
k−1C̃k,l +

N∑
k=1

δ
κ
2
j

2ακ

1

(αqj − δk)
C̃k+ν,l = δj,l for 1 ≤ j, l ≤ M, (3.33)

to a set of l = 1, . . . ,M meromorphic functions

fl(z) =
ν∑

k=1

zk−1C̃k,l +
N∑

k=1

δ
κ
2
j

2ακ

1

(z − δk)
C̃k+ν,l =

M∏
i=1,i �=l

z − αqi

αql − αqi

N∏
k=1

αql − δk

z − δk

. (3.34)

Its zeros at z = αqi �=l , poles at z = δj , the condition fl(αql) = 1 and checking its correct behaviour at infinity com-
pletely fixes the right hand side. With only little more thought we can also write the analogue of the conditions (3.24)
and (3.25) for the respective function ψi from (1.10):

ψi(x) = x
κ
2 Iκ(2

√
δix) = 2

∮
γδ

dη

2πi

1

η − δi

(
δix

η

) κ
2 1

2
Iκ(2

√
ηx), i = 1, . . . ,N, (3.35)
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and, due to (A.4)

0 = 2
∮

γδ

dη

2πi
ηj−1ακ

(
x

η

) κ
2

Iκ(2
√

ηx), j = 1,2, . . . . (3.36)

We can then rewrite the kernel (3.6) as in the previous subsection:

KN(x, y) =
M∑

j=1

[
N∑

i=1

C̃i+ν,j 2
∮

γδ

dη

2πi

1

η − δi

(
δix

η

) κ
2 1

2
Iκ(2

√
ηx)

+
ν∑

i=1

C̃i,j 2
∮

γδ

dη

2πi
ηi−1ακ

(
x

η

) κ
2

Iκ(2
√

ηx)

]
ϕj (y)

=
∮

γδ

dη

2πi
2ακ

(
x

η

) κ
2

M∑
j=1

Iκ(2
√

ηx)

[
ν∑

i=1

ηi−1C̃i,j +
N∑

i=1

δ
κ
2
j

2ακ

1

(η − δi)
C̃i+ν,j

]
ϕj (y)

=
(

x

y

) κ
2

2
∮

γδ

dη

2πi

M∑
j=1

Iκ(2
√

ηx)

[
M∏

m=1,m �=j

η − αqm

αqj − αqm

N∏
k=1

αqj − δk

η − δk

](
αqj

η

) κ
2

× Kκ(2
√

αqjy). (3.37)

We have inserted ϕj (y) from (1.10) and in the last step used the Residue Theorem, leading to a kernel equivalent to
(1.12). As discussed previously we have two choices for the contours not to intersect, being either nested or separated.
In case they are nested the inner integration has to be done first. �

Along the same lines as in the previous subsection we can derive the following equivalent factorised form of the
kernel, using the identity (3.27). For this factorised form we have to choose again the contours to be non-nested (cf.
Figure 1 top), for the integrals to factorise and become independent. Here we also removed the prefactor (x/y)

κ
2

in (3.37).

Corollary 3.7. The kernel KN(x, y) given by Theorem 1.3 is equal to the following kernel

KN(x, y) = −
∫ 1

0

du

u
F1(x;u)F2(y;u). (3.38)

The functions F1(x;u) and F2(y;u) are defined by the formulae

F1(x;u) =
∮

γδ

dη

2πi
u−ηη− κ

2 Iκ(2
√

ηx)

∏M
l=1(η − αql)∏N
l=1(η − δl)

, (3.39)

where γδ encloses all δl in a counter-clockwise way, and

F2(y;u) = 2
∮

γq

dζ

2πi
uζ ζ

κ
2 Kκ(2

√
ζy)

∏N
l=1(ζ − δl)∏M

l=1(ζ − αql)
. (3.40)

The contour γq encloses all αql in a counter-clockwise way, excludes the origin and all δl .

3.3. Kernel of the product of two independent correlated matrices

We turn to the kernel of the ensemble (1.5) of two independent matrices, one of which has correlated entries. Rather
than trying to first invert the Gram matrix for N = M , we immediately turn to the procedure from the previous two
subsections, that directly leads to the following double contour integral representation.
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Theorem 3.8. The correlation kernel K
(2)
N (x, y) of the ensemble (1.5) permits the following double contour integral

representation

K
(2)
N (x, y) =

(
x

y

) κ
2

2
∮

γ0

dη

2πi

∮
γq

dζ

2πi

(
ζ

η

)N+ κ
2 Iκ(2

√
ηx)Kκ(2

√
ζy)

η − ζ

M∏
l=1

η − αql

ζ − αql

, (3.41)

where γ0 is a closed contour encircling the origin in counter-clockwise direction, and γq is a closed contour encircling
αq1, . . . , αqM > 0 counter-clockwise, excluding the origin and not intersecting γ0.

Proof. In view of the Gram matrix (2.32), I (2)
i,j = �(κ +j)�(j)/(2ακ+j q

j
i ), it is again useful to start with the modified

Gram type matrix (3.32) as in the previous subsection. The corresponding equation ÃC̃ = 1M thus reads:

ν∑
k=1

(αqj )
k−1C̃k,l +

N∑
m=1

�(κ + m)�(m)

2ακ+mqm
j

C̃m+ν,l = δj,l for 1 ≤ j, l ≤ M. (3.42)

Once again this can be used to define the following set of l = 1, . . . ,M meromorphic functions

fl(z) =
ν∑

k=1

zk−1C̃k,l +
N∑

m=1

�(κ + m)�(m)

2ακ
z−mC̃m+ν,l =

(
αql

z

)N M∏
i=1,i �=l

z − αqi

αql − αqi

. (3.43)

These functions are determined by their M − 1 zeros at z = αqi �=l , the poles of up to order N at z = 0, the condition
fl(αql) = 1, and by checking its behaviour at infinity. Given that in this ensemble we have (2.31), we can rewrite (cf.
(A.4))

ψ
(2)
i (x) = xκ+i−1 = 1

(2πi)2

∮
γ0

dηη−i

(
x

η

) κ
2

Iκ(2
√

ηx)�(κ + i)�(i), i = 1,2, . . . , (3.44)

where γ0 is a closed contour encircling the origin counter-clockwise. For the additional condition we can reuse (3.36)
which is true also for γ0, due to the analyticity of the integrand. We thus obtain from (3.6) in our case

K
(2)
N (x, y) =

M∑
j=1

[
N∑

i=1

C̃i+ν,j

∮
γ0

dη

2πi
η−i

(
x

η

) κ
2

Iκ(2
√

ηx)�(κ + i)�(i)

+
ν∑

i=1

C̃i,j

∮
γ0

dη

2πi
ηi−12ακ

(
x

η

) κ
2

Iκ(2
√

ηx)

]
ϕ

(2)
j (y)

=
∮

γ0

dη

2πi
2ακ

(
x

η

) κ
2

M∑
j=1

Iκ(2
√

ηx)

[
ν∑

i=1

ηi−1C̃i,j +
N∑

i=1

�(κ + i)�(i)

2ακ
η−i C̃i+ν,j

]
ϕ

(2)
j (y)

=
(

x

y

) κ
2

2
∮

γ0

dη

2πi

M∑
j=1

Iκ(2
√

ηx)

[
(αqj )

N

ηN

M∏
m=1,m �=j

η − αqm

αqj − αqm

](
αqj

η

) κ
2

Kκ(2
√

αqjy). (3.45)

Here, we have inserted ϕ
(2)
j (y) from (2.29) and used the Residue Theorem, with two possible choices of contours, cf.

Figure 2. �

Note that as a check (3.41) agrees with the kernel of the coupled ensemble (1.12), when setting all δk=1,...,N = 0
there.

Using again the identity (3.27), from (3.41) together with the choice of non-nested contours we obtain the following
factorised integral representation of a kernel equivalent to that in Theorem 3.8.
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�
0 αq1

�
αq2

� � � � αqM

�
γq

γ0 �
�

�
�

�

�

�

�

�
�

�
�

Fig. 2. Nested choice of the contours γ0 and γq . For the second choice of non-intersecting contours that is non-nested γ0 is including only the
origin, but none of the αql . Because γq is excluding the origin we don’t have a third choice here, where γ0 is lying inside γq .

Corollary 3.9. The kernel K
(2)
N (x, y) given by Theorem 3.8 is equivalent to the following kernel

K
(2)
N (x, y) = −

∫ 1

0

du

u
F

(2)
1 (x;u)F

(2)
2 (y;u). (3.46)

The functions F
(2)
1 (x;u) and F

(2)
2 (y;u) are defined by the formulae

F
(2)
1 (x;u) =

∮
γ0

dη

2πi
u−ηη− κ

2 −NIκ(2
√

ηx)

M∏
l=1

(η − αql), (3.47)

with γ0 encircling the origin counter-clockwise, and

F
(2)
2 (y;u) = 2

∮
γq

dζ

2πi
uζ ζ

κ
2 +NKκ(2

√
ζy)

M∏
l=1

1

ζ − αql

, (3.48)

with γq including all αql counter-clockwise and excluding the origin.

This corollary agrees with Corollary 3.7 of the coupled ensemble, after setting all δk=1,...,N = 0 therein.

4. Large-N limit at the origin and integrability

In this section we will study the limit of large matrix size N → ∞ at the origin of the spectrum, in all three ensembles
separately. It turns out that the kernel of the generalised Wishart ensemble (1.6) will lead to the generalised Bessel
kernel KIII (1.30) in the large-N limit. This will be shown in the first Section 4.1. The kernel of the second ensemble
(1.5) of independent matrices with correlated entries leads to the limiting kernel KI (1.26). It generalises the limiting
Meijer G-kernel [34] obtained for the product of two independent random matrices by adding finite rank perturbations,
as will be shown in Section 4.2. In the last Section 4.3 we will show that the kernel of the product of two correlated
coupled random matrices leads to three different limiting kernels, depending on the coupling parameter μ = μ(N) as
a function of N : The kernel KIII follows in limit (III) μ(N)N → 0, and kernel KI in limit (I) μ(N)N → ∞. A third
kernel KII given in (1.28) follows in limit (II) when μ(N)N → τ/4, with τ > 0, and interpolates between the kernels
obtained in limits (I) and (III). It generalises the interpolating kernel of [6] and of [35], by adding further finite rank
perturbations. In that sense all three limiting kernels KI,II,III are universal as they follow from different ensembles.
For all three kernels we provide their corresponding integrable form, in the sense of [25].

4.1. Bessel kernel with finite rank perturbations from the generalised Wishart ensemble

We begin by recalling the generalised Wishart ensemble (1.6)

P1(X) = c1 exp
[−Tr

(
X�X∗)− Tr

(
QXX∗)],
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�
θm

� � � � 0 θ1

�
πn

� � � � 1 π1

��θ

�π�
�

�
�

�

�

�

�

�
�

�
�

Fig. 3. The contours �θ and �π resulting from the substitution (4.3) are shown. From (4.4) the poles θk are centred around the degenerate value σ

that has been mapped to the origin, and likewise the poles πj are centred around the degenerate value q mapped to unity.

with eigenvalues σ1, . . . , σN of � and q1, . . . , qM of Q, respectively. In the following we will consider finite rank
perturbations of the fully degenerate case, � = σ1N and Q = q1M , by setting

σn+1 = · · · = σN = σ and qm+1 = · · · = qM = q, (4.1)

with n and m independent of N . Thus we consider a perturbation around the standard Wishart–Laguerre ensemble
P1(X) = c1 exp[−(q + σ)Tr(XX∗)], with q + σ > 0.

If we want to compare to our most general ensemble (1.2) later, e.g. by integrating out random matrix G there, we
would have to identify −� = ��∗/α, or −σj = δj /α for j = 1, . . . ,N . In Section 4.3 we will make the parameters α

and δj there μ- and thus N -dependent, which would lead to identify q + σ = 2/(1 + μ). In this subsection, however,
there is no need to introduce such an extra parameter μ = μ(N), as the large-N limit at the origin that we will take
here does not depend on it.

Inserting the degeneracy (4.1) into the kernel at finite-N (3.20) from Theorem 3.5, we obtain

K
(1)
N (x, y) =

∮
γσ

dη

2πi

∮
γq

dζ

2πi

exη−yζ

η − ζ

(
ζ + σ

η + σ

)N−n(
η − q

ζ − q

)M−m n∏
l=1

ζ + σl

η + σl

m∏
k=1

η − qk

ζ − qk

.

= eq(x−y)(q + σ)

∮
�π

dv

2πi

∮
�θ

du

2πi

e(q+σ)(yu−xv)

u − v

(
1 − 1

u

1 − 1
v

)N−n(
v

u

)ν−m+n

×
n∏

l=1

u − q+σl

q+σ

v − q+σl

q+σ

m∏
k=1

v − q−qk

q+σ

u − q−qk

q+σ

. (4.2)

In the second line we have made the following substitution:

ζ = q − (q + σ)u and η = q − (q + σ)v. (4.3)

Starting from the nested contours as in Figure 1 bottom, the integration contours resulting from this substitution are
given in Figure 3. Due to q + σ > 0 the substitution is non-singular.

In order to take the large-N limit let us introduce the following notation for the locations of the nontrivial poles of
the integrand (4.2):

πl = q + σl

q + σ
, l = 1, . . . , n and θk = q − qk

q + σ
, k = 1, . . . ,m. (4.4)

These will be rescaled as

π̂l = lim
N→∞

πl

N
, θ̂k = lim

N→∞
θk

N
, π̂l − θ̂k ≥ 0, π̂l ≥ 0, ∀k, l, (4.5)

as well as the integration variables

v = Nv̂, u = Nû, (4.6)



466 G. Akemann et al.

and the arguments of the kernel

x = x̂

(q + σ)N
, y = ŷ

(q + σ)N
. (4.7)

Note that after this rescaling in Figure 3 unity is mapped to 1/N that moves to the origin when N → ∞. Consequently,
the limiting variables π̂j and θ̂k may no longer be separated in the large-N limit. Because of the choice of nested
contour integrals this is not a problem. This leads to the following result for the limiting kernel at the hard edge.

Theorem 4.1. Consider the finite rank perturbations (4.1) and define the parameters π̂l , l = 1, . . . , n and θ̂k , k =
1, . . . ,m as in (4.4) and (4.5). Then the following limit of the kernel (3.20) leads to a kernel equivalent to

K
(n,m)
III (x̂, ŷ) = lim

N→∞
1

(q + σ)N
K

(1)
N

(
x̂

(q + σ)N
,

ŷ

(q + σ)N

)
e
− q

(q+σ)N
(x̂−ŷ)

=
∮

�out

dv̂

2πi

∮
�in

dû

2πi

exp[−x̂v̂ + ŷû]
û − v̂

e− 1
û
+ 1

v̂

(
v̂

û

)ν+n−m n∏
l=1

û − π̂l

v̂ − π̂l

m∏
k=1

v̂ − θ̂k

û − θ̂k

, (4.8)

which is a Bessel kernel with finite rank perturbations. The closed integration contour �in encircles the θ̂j=1,...,m

including the origin counter-clockwise, and the closed contour �out contains the π̂l=1,...,n and encircles them counter-
clockwise. It also contains the contour �in without intersecting it.

Proof. We take (4.2) as starting point, being equal to (3.20), and insert the finite rank conditions (4.1). The prefactor
exp[q(x − y)] can be removed, as it leads to an equivalent kernel. The scaling variables are defined in (4.6) and (4.7).
Clearly the N -dependence drops out everywhere, except in the factor

(
1 − 1

ûN

1 − 1
v̂N

)N−n

∼ exp

[
− 1

û
+ 1

v̂

]
as N → ∞. (4.9)

Due to Lebesgue’s Dominated Convergence Theorem we can interchange the limit N → ∞ and the double contour
integral to apply this limit. Recalling that n,m and ν = M − N are fixed in this limit we arrive at (4.8). �

Note that in this ensemble the domains of the parameters θ̂k=1,...,m ≤ π̂l=1,...,n are not restricted and can be the entire
real line. As mentioned already, without parameters θ̂k the kernel (4.8) at m = 0 was found in [35] for the ensemble
(1.2) with Q ∼ 1M . The very same kernel was found previously in [15], Theorem 15, for the Wishart ensemble with
an external field. There, it was also shown that without any finite rank perturbations, that is when n = 0 (and m = 0
here), it agrees with the Bessel kernel

K
(0,0)
III (x, y) =KBessel(x, y) =

∮
�out

dv̂

2πi

∮
�in

dû

2πi

exp[−xv̂ + yû]
û − v̂

e− 1
û
+ 1

v̂

(
v̂

û

)ν

, (4.10)

with �out and �in two nested, non-intersecting contours that both enclose the origin in counter-clockwise direction.
The relation to the Bessel kernel can be spelled out more explicitly by bringing the kernel (4.8) to a form that is called
integrable. Namely, a kernel is called integrable in the sense of [25], if it can be written as

K(x,y) =
L∑

l=1

Fl(x)Gl(y)

x − y
with

L∑
l=1

Fl(x)Gl(x) = 0, (4.11)

holding for some given functions Fl(x) and Gl(x) and fixed value of L.
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Corollary 4.2. The Bessel kernel with finite rank perturbations (4.8) is integrable and can be written in the following
form:

K
(n,m)
III (x, y) =KBessel(x, y)|ν→ν+n−m −

m∑
i=1

�̃
(i)
III (x)�̃

(i)
III (y) +

n∑
j=1

�
(j)
III (x)�

(j)
III (y), (4.12)

where we introduce four functions

�̃
(i)
III (x) =

∮
�π̂

dv̂

2πi
exp

[
−xv̂ + 1

v̂

]
v̂ν+n−m

i−1∏
k=1

(v̂ − θ̂k),

�
(j)
III (x) =

∮
�π̂

dv̂

2πi
exp

[
−xv̂ + 1

v̂

]
v̂ν+n−m

∏m
k=1(v̂ − θ̂k)∏j

l=1(v̂ − π̂l)
,

(4.13)

�̃
(i)
III (y) =

∮
�

θ̂

dû

2πi
exp

[
yû − 1

û

]
û−ν−n+m

i∏
k=1

1

û − θ̂k

,

�
(j)
III (y) =

∮
�

θ̂

dû

2πi
exp

[
yû − 1

û

]
û−ν−n+m

∏j−1
l=1 (û − π̂l)∏m
k=1(û − θ̂k)

.

Here the closed contour �
θ̂

contains the poles at θ̂k=1,...,m and the origin, encircling them counter-clockwise, and the
closed contour �π̂ contains the poles at π̂l=1,...,n and the origin, encircling them counter-clockwise.

This corollary solves an open problem stated in [15], Section 7.2, to find such an integrable representation. Note that
as mentioned in the Introduction the generalised Bessel kernel (4.8) enjoys a formal duality relation, interchanging
the parameters π̂l ↔ −θ̂l and ν → −ν, which ultimately amounts to interchange matrices � and Q, and N and M in
(1.6). Thus this duality holds already for the kernel at finite-N , see (3.20).

Proof. The crucial step for the integrability is the following identity [15], Eq. (5.12),

1

û − v̂

n∏
l=1

û − π̂l

v̂ − π̂l

= 1

û − v̂
+

n∑
k=1

1

v̂ − π̂k

k−1∏
l=1

û − π̂l

v̂ − π̂l

, (4.14)

which we have to apply twice, in view of the two products in (4.8):

1

û − v̂

n∏
l=1

û − π̂l

v̂ − π̂l

m∏
k=1

v̂ − θ̂k

û − θ̂k

= 1

û − v̂
−

m∑
i=1

∏i−1
k=1(v̂ − θ̂k)∏i
k=1(û − θ̂k)

+
n∑

j=1

∏j−1
l=1 (û − π̂l)∏m
k=1(û − θ̂k)

∏m
k=1(v̂ − θ̂k)∏j

l=1(v̂ − π̂l)
. (4.15)

Inserting this identity into (4.8) the right-hand sides of Equations (4.10) and (4.13) can be read off. Regarding contours,
only in the integral (4.10), where the pole 1

û−v̂
remains present, the condition of non-intersection contours remains.

In all other integrals the contour �out can be deformed to �
θ̂

to contain the poles at θ̂k=1,...,m and the origin, and the
contour �in to �π̂ to contain the poles at π̂l=1,...,n and the origin.

The kernel is integrable due to two observations. First, as shown in [15] the contour integral (4.10) is equivalent to
the more common representation of the Bessel kernel, see e.g. [18]

KBessel(x, y) = −√
xJν+1(

√
x)Jν(

√
y) + √

yJν+1(
√

y)Jν(
√

x)

2(x − y)
, (4.16)
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making the first term in (4.12) integrable. The simple observation in [35] states that any factorising sum, such as the
two sums on the right-hand side of (4.12), can be brought to an integrable form,

L∑
l=1

fl(x)gl(y) = 1

x − y

L∑
l=1

(
xfl(x)gl(y) − fl(x)ygl(y)

)
. (4.17)

Finally we remark that an alternative representation to (4.12) could be obtained, by applying the identity (4.14) first
to the product containing θ̂k’s, and then to the product containing π̂l’s. This leads to an alternative identity to (4.15)
and different functions in (4.13) that we do not display. �

It is well known that the Bessel kernel (4.16) is universal for various deformations of the Wishart–Laguerre en-
semble, see e.g. [33] for invariant ensembles and [15] for external fields. Theorem 4.1 adds a further ensemble (1.6)
to this list, namely when the finite rank perturbations are chosen such that their values vanish, θ̂k, π̂l → 0 ∀k, l. This
leads from (4.8) to (4.10).

4.2. Meijer G-kernel with finite rank perturbations from two independent correlated matrices

The ensemble (1.5) of two independent random matrices where one has correlated entries reads

P2(G,X) = c2 exp
[−α Tr

(
GG∗)− Tr

(
QXX∗)].

The Hermitian matrix Q has positive eigenvalues q1, . . . , qM > 0, and α > 0 is a constant (that does not depend on μ

here). We will consider finite rank perturbations of Q = q1M by setting

qm+1 = · · · = qM = q > 0, (4.18)

with m independent of N .
Putting the degeneracy (4.18) inside the kernel (3.41) for finite-N from Theorem 3.8, we obtain

K
(2)
N (x, y) =

(
x

y

) κ
2

2
∮

γ0

dη

2πi

∮
γq

dζ

2πi

(
ζ

η

)N+ κ
2 Iκ(2

√
ηx)Kκ(2

√
ζy)

η − ζ

(
η − αq

ζ − αq

)M−m m∏
l=1

η − αql

ζ − αql

=
(

x

y

) κ
2

2αq

∮
�1

dv

2πi

∮
�θ

du

2πi

Iκ(2
√

αq(1 − v)x)Kκ(2
√

αq(1 − u)y)

u − v

×
(

1 − 1
u

1 − 1
v

)N+ κ
2
(

v

u

)ν−m− κ
2

m∏
k=1

v − (1 − qk

q
)

u − (1 − qk

q
)
, (4.19)

with the following substitution

ζ = αq(1 − u) and η = αq(1 − v). (4.20)

It is nonsingular due to αq > 0, and we define for later the poles in the new integration variables

θk = 1 − qk

q
, k = 1, . . . ,m. (4.21)

The integration contours in the new variables obtained from Figure 2 that we take to be nested here are given in
Figure 4.

The integration variables will be rescaled, and the poles take the following limiting values:

v = Nv̂, u = Nû, θ̂k = lim
N→∞

1

N
θk, k = 1, . . . ,m, (4.22)
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Fig. 4. The contours �θ and �1 resulting from the substitution (4.20), the θk are now centred around the origin and the origin has been mapped to
unity.

mapping the identity in Figure 4 to 1/N , and thus to the origin in the limit N → ∞. This is not a problem, due to the
nesting of the contours. Consequently, the θ̂k=1,...,m become non-positive in the limit N → ∞. The arguments of the
kernel will be rescaled as

x = x̂

αqN
, y = ŷ

αqN
. (4.23)

Putting all together yields the following result for the limiting kernel at the hard edge.

Theorem 4.3. Define the finite rank perturbations (4.18) and the parameters θ̂k , k = 1, . . . ,m, as in (4.21) and (4.22).
The following limit of the kernel (3.41) leads to a kernel equivalent to

K
(m)
I (x̂, ŷ) = lim

N→∞
1

αqN
K

(2)
N

(
x̂

αqN
,

ŷ

αqN

)(
x̂

ŷ

)−κ

=
∮

γ0

ds

2πi

∫ ∞

0
dts−κ−1tκ−1es−t

K
(n=0,m)
III

(
x̂

s
,
ŷ

t

)
. (4.24)

The limiting kernel is a Meijer G-kernel with finite rank perturbations.

Proof. In order to take the large-N limit we use the following integral representations of the modified Bessel functions
of the second kind in (4.19):

Iκ(z) =
(

z

2

)κ ∮
γ0

ds

2πi
s−κ−1 exp

[
s + z2

4s

]
,

Kκ(z) = K−κ(z) = z−κ

2−κ+1

∫ ∞

0
dttκ−1 exp

[
−t − z2

4t

]
.

(4.25)

Here, γ0 is a closed contour encircling the origin in counter-clockwise way. We use Fubini’s Theorem to rewrite the
rescaled kernel from (4.19) as

1

αqN
K

(2)
N

(
x̂

αqN
,

ŷ

αqN

)(
x̂

ŷ

)−κ

=
∮

γ0

ds

2πi

∫ ∞

0
dt

tκ−1

sκ+1

∮
�1

dv̂

2πi

∮
�θ

dû

2πi

es+ 1
s
( 1

N
−v̂)x̂−t− 1

t
( 1

N
−û)ŷ

û − v̂

×
( 1

N
− v̂

1
N

− û

) κ
2
(

1 − 1
Nû

1 − 1
Nv̂

)N+ κ
2
(

v̂

û

)ν−m− κ
2

m∏
k=1

v̂ − θk

N

û − θk

N

. (4.26)

The application of Lebesgue’s Dominated Convergence Theorem together with the limits of each individual factor
inside the integrand (such as (4.9)) leads to (4.24), after comparing with (4.8) at n = 0. We recall here that κ = L− N

is kept fixed in the large-N limit.
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Notice that in this ensemble the domain of the paramters θ̂k=1,...,m is non-positive. Furthermore, in [35], Prop. 5.1,
it was shown that the kernel (4.24) at m = 0 equals the Meijer G-kernel [34] for two independent matrices,

K
(m=0)
I (x, y) =KMeijer(x, y) =

∫ 1

0
duG

1,0
0,3

( −
0,−ν,−κ

∣∣∣uy

)
G

2,0
0,3

( −
ν, κ,0

∣∣∣ux

)
. (4.27)

Therefore, the kernel (4.24) represents a finite rank perturbation of the Meijer G-kernel. In the absence of finite rank
perturbations the kernel was also shown to agree with (4.27) in [6]. �

We note that using Fubini’s Theorem and (4.25) the integrals over s and t in (4.24) can be done. Using the relations
[22], Eqs. 8.406-7,

Iκ(iz) = iκJκ(z) and K−κ(iz) = −π

2
iκ+1H(2)

κ (z) (4.28)

in terms of the Bessel functions of first and third kind (also called Hankel functions), we obtain

K
(m)
I (x̂, ŷ) = (−1)κ+1iπ

(
ŷ

x̂

) κ
2
∮

�out

dv̂

2πi

∮
�in

dû

2πi

Jκ(2
√

v̂x̂)H
(2)
κ (2

√
ûŷ)

u − v
e− 1

û
+ 1

v̂

(
v̂

û

)ν−m− κ
2

×
m∏

k=1

v̂ − θ̂k

û − θ̂k

. (4.29)

It remains to show that the kernel (4.24) is integrable.

Corollary 4.4. The Meijer G-kernel with finite rank perturbations (4.24) is integrable and can be written as follows

K
(m)
I (x, y) =KMeijer(x, y)|ν→ν−m −

m∑
i=1

�̃
(i)
I (x)�̃

(i)
I (y), (4.30)

where the remaining functions read

�̃
(i)
I (x) =

∮
γ0

dŝ

2πi
s−κ−1es�̃

(i)
III

(
x

s

)∣∣∣
n=0

,

(4.31)

�̃
(i)
I (y) =

∫ ∞

0
dttκ−1e−t �̃

(i)
III

(
y

t

)∣∣∣
n=0

,

together with (4.13) at n = 0.

Proof. Equation (4.30) together with (4.31) immediately follow from Corollary 4.2, by inserting (4.12) at n = 0 into
(4.24). While the integrability of the Meijer G-kernel (4.27) was shown in [34], the integrability of the sum in (4.30)
follows as in the proof of Corollary 4.2, using (4.17). The integrals over s and t in (4.31) can be done in analogy to
(4.29) but will not be displayed here. �

As mentioned already in the Introduction relatively little was known so far about the universality of the Meijer G-
kernel. In the case when the finite rank perturbations are such that their limiting values vanish, θ̂k → 0 ∀k, this
leads from (4.24) to (4.27). Thus in this particular case the ensemble of two independent random matrices where one
has correlated entries (1.5) leads to the same Meijer G-kernel as the product of two independent matrices without
correlations, showing its universality.
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4.3. Universal limiting kernels from two correlated coupled matrices

Our most general ensemble of two coupled matrices where one has correlated entries (1.2) is given by

P(G,X) = c exp
[−α Tr

(
GG∗)+ Tr

(
�GX + X∗G∗�∗)− Tr

(
QXX∗)].

Here α > 0, the matrix � has squared singular values δ1, . . . , δN , and the Hermitian matrix Q has positive eigenvalues
q1, . . . , qM > 0. In this subsection we will consider the following parameter dependent finite rank perturbations around

��∗ = (1−μ)2

4μ2 1N and Q = 1+μ
2μ

1M , by setting

δn+1 = · · · = δN = (1 − μ)2

4μ2
, qm+1 = · · · = qM = 1 + μ

2μ
, (4.32)

together with

α = 1 + μ

2μ
, (4.33)

with n,m independent of N . The ensemble with m = n = 0 of two coupled random matrices was studied in [5,6].
In contrast to the previous two subsections we have the parameter μ = μ(N) ∈ (0,1] here, that can vary with N .
As it was already found in [5,6], depending on the scaling of μ(N) we will obtain three different limits N → ∞:
(I) μ(N)N → ∞, (II) μ(N)N → τ/4 and (III) μ(N)N → 0.

Because it was already discussed in detail in the Introduction after (1.16), what is the range that the various param-
eters take due to the condition (1.3), in particular after setting some of these equal as in (4.32), we only summarise the
findings that we need below. Let us recall the following quantities:

πl = (1 + μ)2

4μ

(
1 − 4μ2δl

(1 + μ)2

)
, l = 1, . . . , n, (4.34)

θj = (1 + μ)2

4μ

(
1 − 2μqj

1 + μ

)
, j = 1, . . . ,m, (4.35)

which were shown to satisfy

0 < πl, θj < πl and θj < 1, for j = 1, . . . ,m, l = 1, . . . n. (4.36)

Compared to Section 4.1, the natural scale is here (1+μ)2

4μ2 − (1−μ)2

4μ2 = 1
μ

. We therefore make the following substitutions
in the integrals in the kernel at finite-N for this ensemble (1.12), which are non-singular:

ζ = (1 + μ)2

4μ2
− 1

μ
u, η = (1 + μ)2

4μ2
− 1

μ
v. (4.37)

Together with equations (4.32), (4.33), (4.34), and (4.35), the kernel (1.12) results into

KN(x, y) = 2

μ

∮
�π

dv

2πi

∮
�θ

du

2πi

Iκ(2
√

((1 + μ)2 − 4μv) x

4μ2 )Kκ(2
√

((1 + μ)2 − 4μu)
y

4μ2 )

u − v

×
(

x

y

) κ
2
(

u − (1+μ)2

4μ

v − (1+μ)2

4μ

) κ
2
(

1 − 1
u

1 − 1
v

)N−n(
v

u

)ν−m+n n∏
l=1

u − πl

v − πl

m∏
k=1

v − θk

u − θk

. (4.38)

For simplicity here and from now on we will suppress the N -dependence of all parameters. Taking (4.38) as a starting
point, together with the scaling

u = Nû, v = Nv̂ (4.39)
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and

π̂l = lim
N→∞

1

N
πl, θ̂j = lim

N→∞
1

N
θj , π̂l − θ̂j ≥ 0, π̂l ≥ 0, ∀j, l, (4.40)

we are in the position to present the proof of Theorem 1.4.

Proof of Theorem 1.4 (I). In limit (I) leading to the Meijer G-kernel with finite rank perturbations we will let
μN → ∞, and rescale the arguments of the kernel as

x = μx̂

N
, y = μŷ

N
. (4.41)

From the definition (4.34) and the bounds (4.36) we have that in the limit (4.40) the following parameters vanish,
π̂l = 0, for all l = 1, . . . , n. Furthermore, from (4.35) we have that the parameters θ̂k ≤ 0, for all k = 1, . . . ,m, will
become negative (or zero) in the large-N limit. The contours in the integral (4.38) are thus as in Figure 4, with all
θk=1,...,m to the left of the origin.

Following the previous Section 4.2, we apply the integral representations of the modified Bessel functions (4.25),
use Fubini’s Theorem to interchange integrals and Lebesgue’s Dominated Convergence Theorem to exchange the limit
with the integrations. We obtain the following for the kernel in terms of rescaled variables:

μ

N
KN

(
μx̂

N
,
μŷ

N

)
ŷκ

x̂κ

=
∮

γ0

ds

2πi

∫ ∞

0
dt

∮
�1

dv̂

2πi

∮
�θ

dû

2πi

tκ−1

sκ+1

1

û − v̂

(
v̂

û

)ν−m+n m∏
k=1

v̂ − θk

N

û − θk

N

n∏
l=1

û − πk

N

v̂ − πk

N

× (((1 + μ)2 − 4μNv̂) 1
4μN

)
κ
2

(((1 + μ)2 − 4μNû) 1
4μN

)
κ
2
e
s+ 1

s
((1+μ)2−4μNv̂) x̂

4μN
−t− 1

t
((1+μ)2−4μNû)

ŷ
4μN

×
(

û − (1+μ)2

4μN

v̂ − (1+μ)2

4μN

) κ
2
(

1 − 1
ûN

1 − 1
v̂N

)N−n

. (4.42)

The large-N limit μN → ∞ of the third and fourth line are easily taken, and after cancelling several factors we arrive
at

lim
N→∞

μ

N
KN

(
μx̂

N
,
μŷ

N

)
ŷκ

x̂κ
=
∮

γ0

dŝ

2πi

∫ ∞

0
dts−κ−1tκ−1es−t

K
(n=0,m)
III

(
x̂

s
,
ŷ

t

)
, (4.43)

the right hand side of (4.24). This is the limiting kernel as stated in the theorem. Obviously, it is true uniformly for
any x̂, ŷ in a compact subset of (0,∞). �

The fact that this kernel is integrable has already been stated in Corollary 4.4.

Proof of Theorem 1.4 (III). In limit (III) leading to the Bessel kernel with finite rank perturbations we will let
μN → 0 and rescale the arguments of the kernel as

x = x̂

4N2
, y = ŷ

4N2
. (4.44)

Following (4.34), the positivity of the parameters π̂l=1,...,n (4.36) leads to their limiting domain to be [0,∞). The do-
main of the limiting parameters θ̂k=1,...,m becomes

⋂n
l=1(−∞, π̂l]. In the scaling limit the arguments of the modified
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Bessel functions in (4.38) become large,

2

√(
(1 + μ)2 − 4μNv̂

) x̂

(4μN)2
= (1 + μ)

√
x̂

2μN

(
1 − 4μN

(1 + μ)2
v̂

) 1
2 =

√
x̂

2μN

(
1 − 2μNv̂ +O

(
(μN)2)),

and likewise for the other argument with û and ŷ. For that reason we need to make use of asymptotic formulas of
modified Bessel functions as z → ∞

Iκ(z) ∼ ez

√
2πz

for
∣∣arg(z)

∣∣≤ 1

2
π − β and Kκ(z) ∼

√
π

2z
e−z for

∣∣arg(z)
∣∣≤ 3

2
π − β, (4.45)

uniformly for arbitrary 0 < β < π/2, from which simple calculations give us

Iκ

(
2

√(
(1 + μ)2 − 4μNv̂

) x̂

(4μN)2

)
∼

√
μN√
π

x̂− 1
4 e

1
2μN

√
x̂−v̂

√
x̂
, as μN → 0 (4.46)

and

Kκ

(
2

√(
(1 + μ)2 − 4μNû

) ŷ

(4μN)2

)
∼√μNπŷ− 1

4 e
− 1

2μN

√
ŷ+û

√
ŷ
, as μN → 0. (4.47)

Apart from the asymptotic result (4.9) we also need that(
4μNû − (1 + μ)2

4μNv̂ − (1 + μ)2

) κ
2 ∼ 1 as N → ∞. (4.48)

Finally, we use Lebesgue’s Dominated Convergence Theorem to exchange the limit with the integrations in (4.38).
Collecting all the above expansions results into the following limit

lim
N→∞

1

4N2
KN

(
x̂

4N2
,

ŷ

4N2

)
ŷ

κ
2

x̂
κ
2
e

1
2μN

(
√

ŷ−√
x̂) = 1

2
(x̂ŷ)−

1
4 K

(n,m)
III (

√
x̂,
√

ŷ), (4.49)

as stated in the theorem. �

Corollary 4.2 implies that this kernel is integrable.

Proof of Theorem 1.4 (II). In limit (II) leading to an interpolating kernel we will let μN → τ/4 with fixed τ > 0
of O(1). The scaling of the arguments of the kernel is given as in (4.44). In this limit, due to (4.36) the domain of
π̂l=1,...,n (4.40) becomes [0,1/τ), while the limiting θ̂k=1,...,m remain in the interval

⋂n
l=1(−∞, π̂l]. Let us write the

kernel (4.38) in terms of these scaling variables:

1

4N2
KN

(
x̂

4N2
,

ŷ

4N2

)
ŷ

κ
2

x̂
κ
2

= 2

4μN

∮
�1

dv̂

2πi

∮
�θ

dû

2πi

1

û − v̂

(
v̂

û

)ν−m+n n∏
l=1

û − πl

N

v̂ − πl

N

m∏
k=1

v̂ − θk

N

û − θk

N

× Iκ

(
2

√(
(1 + μ)2 − 4μNv̂

) x̂

(4μN)2

)(
4μNû − (1 + μ)2

4μNv̂ − (1 + μ)2

) κ
2

× Kκ

(
2

√(
(1 + μ)2 − 4μNû

) ŷ

(4μN)2

)(
1 − 1

ûN

1 − 1
v̂N

)N−n

. (4.50)
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Using once again Lebesgue’s Dominated Convergence Theorem, the limit of the two last lines is easily taken, and we
obtain

lim
N→∞

1

4N2
KN

(
x̂

4N2
,

ŷ

4N2

)
ŷ

κ
2

x̂
κ
2

= 2

τ

∮
�out

dv̂

2πi

∮
�in

dû

2πi

1

û − v̂

(
v̂

û

)ν−m+n n∏
l=1

û − π̂l

v̂ − π̂l

m∏
k=1

v̂ − θ̂k

û − θ̂k

× Iκ

(
2

√
x̂

τ 2
(1 − τ v̂)

)
Kκ

(
2

√
ŷ

τ 2
(1 − τ û)

)(
1 − τ û

1 − τ v̂

) κ
2

e− 1
û
+ 1

v̂

=K
(n,m)
II (x̂, ŷ; τ). (4.51)

�

We note that the interpolating kernel can also be written as a double integral of the generalised Bessel kernel with
finite rank perturbations. Using Fubini’s Therorem and the integral representations (4.25) we obtain

K
(n,m)
II (x̂, ŷ; τ) = 1

τ

(
x̂

ŷ

) κ
2
∮

γ0

dŝ

2πi

∫ ∞

0
dts−κ−1tκ−1es−t e

x̂

sτ2 − ŷ

tτ2 K
(n,m)
III

(
x̂

sτ
,

ŷ

tτ

)
. (4.52)

We use a different definition here for the interpolating kernel, compared to [35] where m = 0. There, the scaling (4.44)
was made μ-dependent, leading to K

(n,0)
II (x̂, ŷ; τ) → 1

τ 2 K
(n,0)
II ( x̂

τ 2 ,
ŷ

τ 2 ; τ). When the finite rank parameters θ̂k → 0,
for all k = 1, . . . ,m, we obtain the same kernel as in [35] (up to rescaling), which is thus universal. The question of
universality under further deformations is open.

In analogy to the previous two subsections we can show that the interpolating kernel is integrable.

Corollary 4.5. The family of limiting kernels with finite rank perturbations (4.51) is integrable and can be written in
the following form:

K
(n,m)
II (x, y) =K

(0,0)
II (x, y)|ν→ν+n−m −

m∑
i=1

�̃
(i)
II (x)�̃

(i)
II (y) +

n∑
j=1

�
(j)
II (x)�

(j)
II (y), (4.53)

where

�̃
(i)
II (x) =

∮
�π̂

dv̂

2πi
Iκ

(
2

√
x

τ 2
(1 − τ v̂)

)
exp

[
1

v̂

]
(1 − τ v̂)−

κ
2 v̂ν+n−m

i−1∏
k=1

(v̂ − θ̂k),

�
(j)
II (x) =

∮
�π̂

dv̂

2πi
Iκ

(
2

√
x

τ 2
(1 − τ v̂)

)
exp

[
1

v̂

]
(1 − τ v̂)−

κ
2 v̂ν+n−m

∏m
k=1(v̂ − θ̂k)∏j

l=1(v̂ − π̂l)
,

(4.54)

�̃
(i)
II (y) = 2

τ

∮
�

θ̂

dû

2πi
Kκ

(
2

√
y

τ 2
(1 − τ û)

)
exp

[
− 1

û

]
(1 − τ û)

κ
2 û−ν−n+m

i∏
k=1

1

û − θ̂k

,

�
(j)
II (y) = 2

τ

∮
�

θ̂

dû

2πi
Kκ

(
2

√
y

τ 2
(1 − τ û)

)
exp

[
− 1

û

]
(1 − τ û)

κ
2 û−ν−n+m

∏j−1
l=1 (û − π̂l)∏m
k=1(û − θ̂k)

.

Here, the closed contour �
θ̂

contains the poles at θ̂l=1,...,m and the origin, encircling them counter-clockwise, and the
closed contour �π̂ contains the poles at π̂k=1,...,n and the origin, encircling them counter-clockwise.

Proof. The fact that the kernel without finite rank perturbations, K(0,0)
II (x, y), is integrable was already shown in [35],

Proposition 5.3. We thus can use the identity (4.15) to split off the remaining parts as written in (4.53) and arrive at
(4.54). The integrability of these additional terms follows immediately from (4.17). �
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We move to the interpolating property of the kernel as stated in Theorem 1.5.

Proof of Theorem 1.5. Part (a) In this limit τ → ∞ the τ -dependent domain [0,1/τ) of the finite rank perturbation
parameters π̂l=1,...,n shrinks to the origin, while the θ̂k=1,...,m remain non-positive. This explains why in this limit we
obtain a kernel that contains only the second set of parameters, setting all π̂l = 0 (or n = 0). In order to show that the
limit of the kernel K(n,m)

II (x̂, ŷ; τ) is interpolating to the Meijer G-kernel with finite rank perturbations, K(m)
I (x̂, ŷ),

when τ → ∞, we need again the integral representations of the modified Bessel functions (4.25), yielding

Iκ

(
2

√
x̂

τ
(1 − τ v̂)

)
=
(

x̂

τ
(1 − τ v̂)

) κ
2
∮

γ0

ds

2πi
s−κ−1 exp

[
s + 1

s

(
x̂

τ
− x̂v̂

)]
,

(4.55)

K−κ

(
2

√
ŷ

τ
(1 − τ û)

)
= 1

2

(
ŷ

τ
(1 − τ û)

)− κ
2
∫ ∞

0
dttκ−1 exp

[
−t − 1

t

(
ŷ

τ
− ŷû

)]
.

Note that compared to (4.51) we have already used the rescaled arguments τ x̂ and τ ŷ of the kernel as in Theorem 1.5
Part (a). With the same arguments as before we exchange integrals and limits to obtain

lim
τ→∞ τK

(n,m)
II (τ x̂, τ ŷ; τ)

ŷ
κ
2

x̂
κ
2

=
∮
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ds

2πi

∫ ∞

0
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tκ−1

sκ+1
es−t

∮
�out

dv̂

2πi

∮
�in

dû

2πi

exp[− 1
s
x̂v̂ + 1

t
ŷû]

û − v̂
e− 1

û
+ 1

v̂

(
v̂

û

)ν−m m∏
k=1

v̂ − θ̂k

û − θ̂k

, (4.56)

which is the statement to be proven.
Part (b) In order to show that the kernel K(n,m)

II (x̂, ŷ; τ) given in (4.51) is interpolating to the Bessel kernel with

finite rank perturbations, K(n,m)
III (x̂, ŷ), when τ → 0+, we need to expand the Bessel functions in the integrand, due

to their argument becoming large. Using (4.45) we obtain in this limit

Iκ

(
2

√
x̂

τ 2
(1 − τ v̂)

)
∼

√
τ√

4πx̂
1
4

e2
√
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x̂ as τ → 0+,

(4.57)

Kκ
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√
ŷ

τ 2
(1 − τ û)

)
∼
√

π

4

√
τ

ŷ
1
4

e−2
√

ŷ 1
τ
+û

√
ŷ as τ → 0+.

Evoking Lebesgue’s Dominated Convergence Theorem and removing the divergent prefactors by mapping to an equiv-
alent kernel we obtain

lim
τ→0

K
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II (x̂, ŷ; τ)e2(
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= 1
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exp[û
√

ŷ − v̂
√

x̂]e− 1
û
+ 1

v̂ , (4.58)

which is the statement of the theorem. Note that in this limit τ → 0+ the limiting domains of the π̂l become [0,∞),
and of the θ̂k become

⋂n
l=1(−∞, π̂l]. �

Appendix A

In this appendix we offer alternative derivations of Proposition 2.1 and Theorem 2.2 as a check. They will be shown
to follow directly from Theorem 1.1 as well. Note that our proof of Theorem 1.1 in Section 2.3 neither uses Proposi-
tion 2.1 nor Theorem 2.2, but merely utilises the same matrix parametrisations, Jacobians and group integrals as they
already occur in the proofs of Proposition 2.1 and Theorem 2.2.
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A.1. Alternative derivation of Proposition 2.1

As it was mentioned in the Introduction, the generalised Wishart ensemble (1.6) can be obtained from our most general
ensemble of correlated coupled matrices (1.2) by integrating out the random matrix G and identifying � = −��∗/α.
For the ensemble (1.2) Theorem 1.1 states the joint probability density of squared singular values of the product
matrix Y = GX and of matrix X. Consequently, when integrating out the squared singular values y1, . . . , yN of Y in
Theorem 1.1, we obtain the joint probability density of squared singular values x1, . . . , xN of matrix X distributed
according to (1.6), upon identification of the eigenvalues σi = −δi/α of � for i = 1, . . . ,N . The explicit integration
of (1.7) leads to the following:

N∏
j=1

∫ ∞

0
dyjP (x1, . . . , xN ;y1, . . . , yN) = N !

Z
det

[
x−κ−1
j

∫ ∞

0
dyy

κ
2 e−αy/xj (−1)

κ
2 Jκ(2

√
ασly)

]N

j,l=1

× det
[
1, qi, . . . , q

ν−1
i , e−qix1 , . . . , e−qixN

]M
i=1

= N !
Z

α−N(1+ κ
2 )(−1)N

κ
2

N∏
i=1

σ
κ
2

i det
[
e−xj σl

]N
j,l=1

× det
[
1, qi, . . . , q

ν−1
i , e−qix1 , . . . , e−qixN

]M
i=1. (A.1)

In the first step we replaced the δi by −σiα, for all i = 1, . . . ,N , which turns the modified into an ordinary Bessel
function of the first kind, and applied the standard Andréief formula, (2.13) at ν = 0. In the second step, after changing
variables, we have used the following integral [22], Eq. 6.631.4

2
∫ ∞

0
dttκ+1e−t2

Jκ(2
√

xjσlt) = (xjσl)
κ
2 e−xj σl , (A.2)

and taken out common factors of the determinant. A comparison of the prefactors of the two determinants in (A.1) to-
gether with (1.8) for Z yields the joint probability density (2.3) of Proposition 2.1, with the correct normalisation (2.4).

A.2. Alternative derivation of Theorem 2.2

In this subsection we rederive Theorem 2.2 by taking the limit δj → 0 for all j = 1, . . . ,N in Theorem 1.1, providing
an independent derivation. For this purpose we make use of the rule of l’Hôpital which can be formulated for our
purposes as

lim
δ1,...,δN→0

det[f (δkλl)]Nk,l=1

�N(δ1, . . . , δN)
=

N−1∏
n=0

cn�N(λ1, . . . , λN) for f (x) =
∞∑

n=0

cnx
n. (A.3)

With the series representation for the modified Bessel function of the first kind,

x− κ
2 Iκ(2

√
x) =

∞∑
n=0

1

�(n + κ + 1)�(n + 1)
xn, (A.4)

it is not difficult to see that combining the δk-dependent parts of (1.7) and (1.8), the rule of l’Hôpital (A.3) can be
applied,

lim
δ1,...,δN→0

∏N
j=1 yκ

j∏M
i=1
∏N

j=1(αqi − δj )−1

det[(δlyj )
− κ

2 Iκ(2
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�N(δ1, . . . , δN )

=
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j=1 yκ
j

α−NM
∏M

i=1 q−N
i

N−1∏
l=0

1

�(l + 1)�(κ + l + 1)
�N(y1, . . . , yN), (A.5)
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yielding the joint probability density function of the squared singular values of product of two independent correlated
matrices stated in (2.18).

Appendix B: Alternative derivation of Proposition 3.1

In this appendix we give yet another derivation of Proposition 3.1, following the idea of Tracy and Widom [41] that is
independent of the map to a standard biorthogonal ensemble. We define for (3.1)

Z[f ] =
∫ ∞

0
· · ·
∫ ∞

0
dy1 · · ·dyN

N∏
j=1

(
1 + f (yj )

)
× det

[
ψi(yj )

]N
i,j=1 det

[
1, qi, . . . , q

ν−1
i , ϕi(y1), . . . , ϕi(yN)

]M
i=1, (B.1)

where f is a test function. It follows from a generalisation of Andréief’s integration formula derived in [28] that Z[f ]
can be written as a determinant,

Z[f ] = N !det
[
A + Bf

]
, (B.2)

where the matrix A is defined by equation (3.2) and the matrix Bf is given by

Bf =

⎛⎜⎜⎝
0 . . . 0 I

f

1,1 . . . I
f

1,N
...

...
...

...

0 . . . 0 I
f

M,1 . . . I
f
M,N

⎞⎟⎟⎠ , I
f
i,j =

∫ ∞

0
dtϕi(t)ψj (t)f (t). (B.3)

The quotient of Z[f ] and Z[0] can thus be expressed through the inverse matrix C = A−1 as

Z[f ]
Z[0] = det

[
δi,j +

M∑
k=1

Ci,kB
f
k,j

]M

i,j=1

. (B.4)

Note that the matrix Bf is zero in the first columns. By indicating these zero entries we extend the definition of ψj to

�(j, t) =
{

0 for 1 ≤ j ≤ M − N,

ψj−M+N(t) for M − N + 1 ≤ j ≤ M,
(B.5)

which yields immediately an integral expression for all entries of Bf as

B
f
i,j =

∫ ∞

0
dtϕi(t)�(j, t)f (t). (B.6)

The above definition of Bf allows to express the matrix multiplication of C and B as

(
CBf

)
i,j

=
∫ ∞

0
dt�(i, t)�(j, t) with �(i, t) =

M∑
k=1

Ci,kϕk(t)f (t). (B.7)

We now make use of the notion of � and � to rewrite the quotient of Z[f ] and Z[0] as

Z[f ]
Z[0] = det[1M + ��] where (��)i,j =

∫ ∞

0
�(i, t)�(j, t) dt,1 ≤ i, j ≤ M. (B.8)
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Now use the fact that for arbitrary Hilbert–Schmidt operators A and B the following general relation holds true:
det[1 +AB] = det[1 +BA]. This gives

Z[f ]
Z[0] = det[1M + ��], (B.9)

where �� is an operator on L2(0,∞) with the kernel

KN(x, y)f (y) =
M∑
i=1

�(i, x)�(i, y), (B.10)

proving our Proposition 3.1.
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