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Abstract. We investigate the question of the rate of mixing for observables of a Zd -extension of a probability preserving dynamical
system with good spectral properties. We state general mixing results, including expansions of every order. The main motivation
of this article is the study of mixing rates for smooth observables of the Z2-periodic Sinai billiard, with different kinds of results
depending on whether the horizon is finite or infinite. We establish a first order mixing result when the horizon is infinite. In the
finite horizon case, we establish an asymptotic expansion of every order, enabling the study of the mixing rate even for observables
with null integrals. This result is related to an Edgeworth expansion in the local limit theorem.

Résumé. Cet article est une contribution à l’étude du mélange d’observables de systèmes dynamiques préservant une mesure
infinie. Nous étudions le cas de Zd -extensions de systèmes dynamiques probabilisés ayant de bonnes propriétés spectrales. Nous
établissons des résultats généraux et les illustrons par plusieurs exemples. Notre motivation principale est l’étude de la vitesse
de mélange pour des observables régulières du billard de Sinai Z2-périodique, pour lequel nous obtenons des résultats de types
différents selon que l’horizon soit fini ou infini. Nous établissons un résultat de mélange du premier ordre lorsque l’horizon est
infini. Dans le cas où l’horizon est fini, nous établissons un développement asymptotique de tout ordre, permettant l’étude de la
vitesse de mélange pour des observables d’intégrale nulle. Ce dernier résultat est relié à un développement de Edgeworth dans le
théorème limite local.
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Introduction

Let (M,ν,T ) be a dynamical system, that is a measure space (M,ν) endowed with a measurable transformation
T : M → M which preserves the measure ν. The mixing properties deal with the asymptotic behaviour, as n goes to
infinity, of integrals of the following form

Cn(f,g) :=
∫

M

f.g ◦ T n dν,

for suitable observables f,g : M → C.
Mixing properties of probability preserving dynamical systems have been studied by many authors. It is a way

to measure how chaotic the dynamical system is. A probability preserving dynamical system is said to be mixing if
Cn(f,g) converges to

∫
M

f dν
∫
M

g dν for every pair of square integrable observables f , g. When a probability pre-
serving system is mixing, a natural question is to study the decorrelation rate, i.e. the rate at which Cn(f,g) converges

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/18-AIHP885
mailto:francoise.pene@univ-brest.fr


Decorrelation in infinite measure 379

to zero when f or g have null expectation. This crucial question is often a first step before proving probabilistic limit
theorems (such as central limit theorem and its variants). The study of this question has a long history. Such decays
of covariance have been studied for wide classes of smooth observables f,g and for many probability preserving
dynamical systems. In the case of the Sinai billiard, such results and further properties have been established in [5–10,
33–35,37].

We are interested here in the study of mixing properties when the invariant measure ν is σ -finite. In this context, as
noticed in [20], there is no satisfactory notion of mixing. Nevertheless the question of the rate of mixing for smooth
observables is natural. A first step in this direction is to establish results of the following form:

lim
n→+∞αnCn(f,g) =

∫
M

f dν

∫
M

g dν. (1)

Such results have been proved in [4,16,21,22,36] for a wide class of models and for smooth functions f,g, using
induction on a finite measure subset of M . We emphasize on the fact that these works, done in other contexts, provided
just an estimate of the form (1), with possibly an expansion of 1/αn and an estimate of the rate of convergence, but
not an expansion of the form of the one we obtain here in our particular context.

An alternative approach, specific to the case of Zd -extensions of probability preserving dynamical system, has been
pointed out in [28]. The idea therein is that, in this particular context, (1) is related to an accurate local limit theorem.
In the particular case of the Z2-periodic Sinai billiard with finite horizon, it has been proved in [28] that

Cn(f,g) = c0

n

∫
M

f dν

∫
M

g dν + o
(
n−1),

for some explicit constant c0, for some dynamically Lipschitz functions, including functions with full support in M .
This paper is motivated by the question of high order expansions of mixing and by the study of the mixing rate for

observables with null integrals. This last question can be seen as decorrelation rate in infinite measure. Let us mention
the fact that it has been proved in [30], for the billiard in finite horizon, that sums

∑
k∈Z

∫
M

f.f ◦ T k dν are well
defined for some observables f with null expectation. In the present paper, we use the approach of [28] to establish,
in the context of the Z2-periodic Sinai billiard with finite horizon, a high order mixing result of the following form:

Cn(f,g) =
K−1∑
m=0

cm(f,g)

n1+m
+ o

(
n−K

)
. (2)

Our estimates are linked with Edgeworth expansions in the local limit theorem (see for example [3,14,15] for such
results in a probabilistic context and also [11] for such a result in a dynamical context).

The classical probabilistic context of Zd -random walks, that is of partial sums S′
n := ∑n

k=1 Xk of a sequence
(Xn)n≥1 of independent identically distributed (iid for short) Zd -valued random variables corresponds, in terms of
dynamical systems, to a Zd -extension of the full shift, by considering M = (Zd)N

∗ ×Zd , T ((xn)n, �) = ((xn+1)n, �+
x1) and ν = (PX1)

⊗N∗ ⊗ md with PX1 the distribution of X1 and md the counting measure on Zd . In this context, if
f (x, �) = F(�), then the quantity Cn(f,g) for n ≥ 1 can be rewritten∑

�∈Zd

E
[
F(�)g

(
(Xn+k)k, � + S′

n

)] =
∑

�,�′∈Zd

F (�)G
(
�′)P(

S′
n = �′ − �

)
, with G(�) := E

[
g
(
(Xk)k, �

)]
(3)

and thus its expansion is directly related to expansions of P(S′
n = �). As for the Green-Kubo formula, the expressions

we obtain for the coefficients cm(f,g) for m ≥ 1 in the general case (general dynamical systems, or even in the iid
case when f (x, �) depends on an infinite number of coordinates of x) are complicated by the presence of sums of
covariances that vanish in (3) (see namely Section 3.2 for the case of Zd -extensions of subshifts of finite type).

An important fact, that motivates our study, is that estimate (2) enables the study of the rate of convergence of
nCn(f,g) to c0

∫
M

f dν
∫
M

g dν and, most importantly, it enables the study of the rate of decay of Cn(f,g) for
functions f or g with integral 0. In general, if f or g have zero integral we have

Cn(f,g) ∼ c1(f, g)

n2
,
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but it may happen that

Cn(f,g) ∼ c2(f, g)

n3
,

and even that Cn(f,g) = o(n−3). For example, (2) gives immediately that, if
∫
M

f dν
∫
M

g dν �= 0, then

Cn(f − f ◦ T ,g) = Cn(f,g) − Cn−1(f, g)

∼ −c0

∫
M

f dν.
∫
M

g dν

n2
= c1(f − f ◦ T ,g)

n2
(4)

and

Cn

(
2f − f ◦ T − f ◦ T −1, g

) = Cn(f − f ◦ T ,g − g ◦ T )

= 2Cn(f,g) − Cn−1(f, g) − Cn+1(f, g)

∼ −2c0

n3

∫
M

f dν

∫
M

g dν = c2(f − f ◦ T ,g − g ◦ T )

n3
.

General formulas for the coefficients will be given in Theorems 3.2, 3.7. In particular c1(f, g) and c2(f, g) will be
made precise in Theorem 1.3 and Remark 4.5 (see also Propositions A.3 and A.4).

We point out the fact that the method we use is rather general in the context of Zd -extensions over dynamical
systems with good spectral properties, and that, to our knowledge, these are the first results of this kind for dynamical
systems preserving an infinite measure.

We establish moreover an estimate of the following form for smooth observables of the Z2-periodic Sinai billiard
with infinite horizon:

Cn(f,g) = c0

n logn

∫
M

f dν

∫
M

g dν + o
(
(n logn)−1).

The paper is organized as follows. In Section 1, we present the model of the Z2-periodic Sinai billiard and we
state our main results for this model (finite/infinite horizon). In Sections 2 and 3, we state our general mixing results
for Zd -extensions of probability preserving dynamical systems for which the Nagaev–Guivarc’h perturbation method
can be implemented, with applications to Zd -extensions of Gibbs–Markov maps and of two-sided subshifts of finite
type. Whereas, in Section 2, we state a first order result, we establish, in Section 3, higher order expansions, which
are particularly useful in particular when at least one of the observables has null integral. In Section 4, we prove our
results for the Sinai billiard with finite or with infinite horizon. We complete our study with a computation of the first
coefficients in the case of the billiard with finite horizon (see also Appendix A).

1. Main results for Z2-periodic Sinai billiards

Let us introduce the Z2-periodic Sinai billiard (M,ν,T ).
Billiards systems model the behaviour of a point particle moving at unit speed in a domain Q and bouncing

off ∂Q with respect to the Descartes reflection law (incident angle = reflected angle). We assume here that Q :=
R2 \ ⋃

�∈Z2
⋃I

i=1(Oi + �), with I ≥ 1 and where O1, . . . ,OI are convex bounded open sets (the boundaries of which
are C3-smooth and have non null curvature). We assume that the closures of the obstacles Oi +� are pairwise disjoint.
The billiard is said to have finite horizon if every line in R2 meets ∂Q. Otherwise it is said to have infinite horizon.

We consider the dynamical system (M,ν,T ) corresponding to the dynamics at reflection times which is defined as
follows. Let M be the set of reflected vectors off ∂Q, i.e.

M := {
(q, �v) ∈ ∂Q × S1 : 〈�n(q), �v〉 ≥ 0

}
,
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where �n(q) stands for the unit normal vector to ∂Q at q directed inward Q. We decompose this set into M :=⋃
�∈Z2 C�, with

C� :=
{

(q, �v) ∈ M : q ∈
I⋃

i=1

(∂Oi + �)

}
.

The set C� is called the �-cell. We define T : M → M as the transformation mapping a reflected vector at a reflection
time to the reflected vector at the next reflection time. We consider the measure ν absolutely continuous with respect
to the Lebesgue measure on M , with density proportional to (q, �v) 
→ 〈�n(q), �v〉 and such that ν(C0) = 1. We recall
that ν is T -invariant.

Because of the Z2-periodicity of the model, there exists a transformation T̄ : C0 → C0 and a function κ : C0 → Z2

such that

∀(
(q, �v), �

) ∈ C0 ×Z2, T (q + �, �v) = (
q ′ + � + κ(q, �v), �v′), if T̄ (q, �v) = (

q ′, �v′). (5)

This allows us to define a probability preserving dynamical (M̄, ν̄, T̄ ) (the Sinai billiard) by setting M̄ := C0 and
ν̄ = ν|C0 . Note that (5) means that (M,ν,T ) can be represented by the Z2-extension of (M̄, ν̄, T̄ ) by κ . In particular,
iterating (5) leads to

∀n ∈ N,∀(
(q, �v), �

) ∈ C0 ×Z2, T n(q + �, �v) = (
q ′
n + � + Sn(q, �v), �v′

n

)
, (6)

if T̄ n(q, �v) = (q ′
n, �v′

n) and with the notation

Sn :=
n−1∑
k=0

κ ◦ T̄ k.

The set of tangent vectors S0 given by

S0 := {
(q, �v) ∈ M : 〈�v, �n(q)

〉 = 0
}

plays a special role in the study of T . Note that T defines a C1-diffeomorphism from M \ (S0 ∪ T −1(S0)) to M \
(S0 ∪ T (S0)). Statistical properties of (M̄, ν̄, T̄ ) have been studied by many authors since the seminal article [33] by
Sinai.

In the finite horizon case, limit theorems have been established in [6,8,10,37], including the convergence in distri-
bution of (Sn/

√
n)n to a centered gaussian random variable B with nondegenerate variance matrix �2 given by:

�2 :=
∑
k∈Z

Eν̄

[
κ ⊗ κ ◦ T̄ k

]
, (7)

where we used the notation X ⊗ Y for the matrix ((xiyj + xjyi)/2)i,j , for X = (xi)i , Y = (yj )j ∈ C2. Moreover
a local limit theorem for Sn has been established in [34] and some of its refinements have been stated and used in
[13,26,27,29] for various purposes. Recurrence and ergodicity of this model follow from [12,25,31,32,34].

Concerning the infinite horizon case, to simplify the exposure of the results, we restrict ourself to the case where the
horizon is infinite in two directions (i.e. there exist two non parallel lines in R2 meeting no obstacle). In the infinite
horizon case, results of exponential decay of correlation have been proved in [9,10]. A nonstandard central limit
theorem (with normalization

√
n logn) and a corresponding local limit theorem have been established in [35], ensuring

recurrence and ergodicity of the infinite measure system (M,ν,T ). This result states in particular that (Sn/
√

n logn)n
converges in distribution to a centered Gaussian distribution with variance �2∞ given by

�2∞ :=
∑

x∈S0∩M̄|T̄ x=x

d2
x

2|κ(x)|∑I
i=1 |∂Oi |

(
κ(x)

)⊗2
, (8)
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where dx is the width of the corridor corresponding to x (where x = (q, �v) ∈ M̄ ∩ S0 is such that the line q + �v is
contained in M), with the notation (κ(x))⊗2 := (κi(x)κj (x))i,j=1,2.

Our main results provide mixing estimates for dynamically Lipschitz observables. Let us introduce this class of
observables. Let ξ ∈ (0,1). We consider the metric dξ on M given by

∀x, y ∈ M, dξ (x, y) := ξ s(x,y),

where s is the separation time defined as follows: s(x, y) is the maximum of the integers k ≥ 0 such that x and y lie
in the same connected component of M \ ⋃k

j=−k T −jS0. For every f : M → C, we write Lξ (f ) for the Lipschitz
constant with respect to dξ :

Lξ (f ) := sup
x �=y

|f (x) − f (y)|
dξ (x, y)

.

We then set

‖f ‖(ξ) := ‖f ‖∞ + Lξ (f ).

Before stating our main result, let us introduce some additional notations.
We will work with symmetric multilinear forms. For any A = (Ai1,...,im)(i1,...,im)∈{1,...,d}m and B =

(Bi1,...,ik )(i1,...,ik)∈{1,...,d}k with complex entries (A and B are identified respectively with a m-multilinear form on

Cd and with a k-multilinear form on Cd ), we define A ⊗ B as the element C of C{1,...,d}m+k
(identified with a sym-

metric (m + k)-multilinear form on Cd ) such that

∀i1, . . . , im+k ∈ {1, . . . , d}, Ci1,...,im+k
= 1

(m + k)!
∑

s∈Sm+k

Ais(1),...,is(m)
Bis(m+1),...,is(m+k)

,

with Sm+k the set of permutations of {1, . . . ,m + k}. Note that ⊗ is associative and commutative. For any A =
(Ai1,...,im)(i1,...,im)∈{1,...,d}m and B = (Bi1,...,ik )(i1,...,ik)∈{1,...,d}k symmetric with complex entries with k ≤ m, we define

A ∗ B as the element C of C{1,...,d}m−k
(identified with a (m − k)-multilinear form on Cd ) such that

∀i1, . . . , im−k ∈ {1, . . . , d}, Ci1,...,im−k
=

∑
im−k+1,...,im∈{1,...,d}

Ai1,...,imBim−k+1,...,im .

Note that when k = m = 1, A ∗ B is simply the scalar product A.B . We identify naturally vectors in Cd with 1-linear
functions and symmetric matrices with symmetric bilinear functions. For any Cm-smooth function F : Cd → C, we
write F (m) for its mth differential, which is identified with a m-linear function on Cd . We write A⊗k for the product
A ⊗ · · · ⊗ A. Observe that, with these notations, Taylor expansions of F at 0 are simply written

m∑
k=0

1

k!F
(k)(0) ∗ x⊗k.

It is also worth noting that A ∗ (B ⊗ C) = (A ∗ B) ∗ C, for every A,B,C corresponding to symmetric multilinear
forms with respective ranks m,k, � with m ≥ k + �.

We extend the definition of κ to M by setting κ((q + �, �v)) = κ(q, �v) for every (q, �v) ∈ M̄ and every � ∈ Z2. For
every k ∈ Z and every x ∈ M , we write Ik(x) for the label in Z2 of the cell containing T kx, i.e. Ik is the label of the
cell in which the particle is at the kth reflection time. It is worth noting that, for n ≥ 0, we have In −I0 = ∑n−1

k=0 κ ◦T k

and I−n − I0 = −∑−1
k=−n κ ◦ T k .

Now let us state our main results, the proofs of which are postponed to Section 4.3. We start by stating our result
in the infinite horizon case, and then we will present sharper results in the finite horizon case.
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1.1. Z2-periodic Sinai billiard with infinite horizon

Theorem 1.1. Let (M,ν,T ) be the Z2-periodic Sinai billiard with infinite horizon. Suppose that the set of corridor
free flights {κ(x), x ∈ S0,∃n �= 0, T̄ nx = x} spans R2. Let f,g : M → C be two dynamically Lipschitz continuous
functions (with respect to dξ ) such that∑

�∈Z2

(‖f 1C�
‖∞ + ‖g1C�

‖∞
)
< ∞. (9)

Then ∫
M

f.g ◦ T n dν = 1

2π
√

det�2∞n logn

(∫
M

f dν

∫
M

g dν + o(1)

)
.

1.2. Z2-periodic Sinai billiard with finite horizon

We consider now the finite horizon case. We recall that a first order expansion has already been stated in [28]. We
state here a result providing an expansion of every order for the mixing (see Proposition 4.4 and Theorem 3.7 for more
details).

Theorem 1.2. Let K be a positive integer. Let f,g : M → C be two dynamically Lipschitz continuous observables
such that∑

�∈Z2

|�|2K−2(‖f 1C�
‖(ξ) + ‖g1C�

‖(ξ)

)
< ∞, (10)

then there exist c0(f, g), . . . , cK−1(f, g) such that

∫
M

f.g ◦ T n dν =
K−1∑
m=0

cm(f,g)

n1+m
+ o

(
n−K

)
.

Observe that Assumption (10) is a reinforcement of (9) (which is also the assumption appearing in [28]): first there
is an additional multiplicative factor |�|2K−2 linked to the order of the expansion we obtain, second the Lipschitz
constant appears in (10) (we use this fact to ensure existence and summability of some terms, called Am, appearing in
the cm’s). We specify in the following theorem the expansion of order 2.

Theorem 1.3. Let f,g : M →R be two bounded observables such that∑
�∈Z2

|�|2(‖f 1C�
‖(ξ) + ‖g1C�

‖(ξ)

)
< ∞.

Then ∫
M

f.g ◦ T n dν = 1

2π
√

det�2

{
1

n

∫
M

f dν

∫
M

g dν + 1

2n2
�−2 ∗ Ã2(f, g)

+ 3

4!n2

∫
M

f dν

∫
M

g dν
(
�−2)⊗2 ∗ �4

}
+ o

(
n−2), (11)

with �−2 = (�2)−1 and

Ã2(f, g) := −
∫

M

f dνB−
2 (g) −

∫
M

g dνB+
2 (f ) −

∫
M

f dν

∫
M

g dνB0 + 2B+
1 (f ) ⊗B

−
1 (g),
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B
+
2 (f ) := lim

m→+∞

∫
M

f.
(
I⊗2

m − m�2)dν,

B
−
2 (g) := lim

m→−∞

∫
M

g.
(
I⊗2

m − |m|�2)dν,

B
+
1 (f ) := lim

m→+∞

∫
M

f.Im dν, B
−
1 (g) := lim

m→−∞

∫
M

g.Im dν,

B0 = lim
m→+∞

(
m�2 −Eν̄

[
S⊗2

m

])
, �4 := λ

(4)
0 − 3

(
�2)⊗2

,

with λ
(4)
0 given in Proposition A.4.

Observe that we recover (4) since �2 ∗�−2 = 2 (since �2 is symmetric), B+
1 (f −f ◦T ) = 0 and B

+
2 (f −f ◦T ) =

�2
∫
M

f dν. Indeed, on the one hand, by T -invariance of ν,

B
+
1 (f − f ◦ T ) = lim

m→+∞

∫
M

(f − f ◦ T ).Im dν = lim
m→+∞

∫
M

f.(Im − Im−1) dν

= lim
m→+∞

∫
M

f.κ ◦ T m dν = lim
m→+∞

∫
M̄

F.κ ◦ T̄ m dν̄

=
∫

M̄

F dν̄.

∫
M̄

κ dν̄ = 0,

with F(q, �v) := ∑
�∈Z2 f (q + �, �v) and where we used exponential mixing (recalled in Proposition A.2). On the other

hand

B
+
2 (f − f ◦ T ) = lim

m→+∞

∫
M

f.
(
I⊗2

m − I⊗2
m−1

)
= lim

m→+∞

∫
M

f.

(
κ⊗2 ◦ T m−1 + 2

m−2∑
k=0

(
κ ◦ T k

) ⊗ (
κ ◦ T m−1))dν

= lim
m→+∞

∫
M̄

F.

(
κ⊗2 ◦ T̄ m−1 + 2

m−2∑
k=0

(
κ ◦ T̄ k

) ⊗ (
κ ◦ T̄ m−1))dν̄

= lim
m→+∞

∫
M

f dνEν̄

[
κ⊗2 + 2

m−1∑
k=1

κ ⊗ κ ◦ T̄ k

]
= �2

∫
M

f dν. (12)

Indeed, using again exponential mixing (Proposition A.2), for 0 ≤ k ≤ m − 1 and the remark thereafter,∫
M̄

(
F −

∫
M̄

F dν̄

)
.κ ◦ T̄ k ⊗ κ ◦ T̄ m−1 dν̄ = O

((
L+

F + ‖F‖∞
)
ϑk

0

)
and ∫

M̄

(
F −

∫
M̄

F dν̄

)
.κ ◦ T̄ k ⊗ κ ◦ T̄ m−1 dν̄

=
∫

M̄

(
F −

∫
M̄

F dν̄

)
◦ T̄ −k−1.κ ◦ T̄ −1 ⊗ κ ◦ T̄ m−k−2 dν̄

= O
((

L+
F◦T −k−1.κ◦T −1 + ‖F‖∞

)
ϑm−k−2

0

)
= O

((
L+

F + ‖F‖∞
)
ϑm−k−2

0

)
,
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and so∫
M̄

(
F −

∫
M̄

F dν̄

)
.κ ◦ T̄ k ⊗ κ ◦ T̄ m−1 dν̄ = O

((
L+

F + ‖F‖∞
)
ϑ

max(m−k−2,k)
0

) = (
ϑ

m
2

0

)
,

which, combined with (7), gives (12).

Remark 1.4. Note that

B
+
2 (f ) =

∑
j,m≥0

∫
M

f.
(
κ ◦ T j ⊗ κ ◦ T m −Eν̄

[
κ ◦ T̄ j ⊗ κ ◦ T̄ m

])
dν

+
∫

M

f I⊗2
0 dν + 2

∑
m≥0

∫
M

f.I0 ⊗ κ ◦ T m dν −B0

∫
M

f dν,

B
−
2 (g) =

∑
j,m≤−1

∫
M

g.
(
κ ◦ T j ⊗ κ ◦ T m −Eν̄

[
κ ◦ T̄ j ⊗ κ ◦ T̄ m

])
dν

+
∫

M

g.I⊗2
0 dν − 2

∑
m≤−1

∫
M

g.I0 ⊗ κ ◦ T m dν −B0

∫
M

g dν,

B
+
1 (f ) =

∑
m≥0

∫
M

f.κ ◦ T m dν +
∫

M

f.I0 dν,

B
−
1 (g) = −

∑
m≤−1

∫
M

g.κ ◦ T m dν +
∫

M

g.I0 dν,

B0 =
∑
m∈Z

|m|Eν̄

[
κ ⊗ κ ◦ T̄ m

]
.

Corollary 1.5. Under the assumptions of Theorem 1.3, if
∫
M

f dν = 0 and
∫
M

g dν = 0, then∫
M

f.g ◦ T n dν = �−2 ∗ (B+
1 (f ) ⊗B

−
1 (g))

n22π
√

det�2
+ o

(
n−2).

Two natural examples of zero integral functions are 1C0 − 1Ce1
with e1 = (1,0) or f 1C0 with

∫
C0

f dν = 0. Note
that ∫

M

(
(1C0 − 1Ce1

).(1C0 − 1Ce1
) ◦ T n

)
dν ∼ σ 2

2,2

n22π(det�2)3/2
,

with �2 = (σ 2
i,j )i,j=1,2 and that∫

M

(
f 1C0 .(1C0 − 1Ce1

) ◦ T n
)
dν ∼ − 1

n22π(det�2)3/2

∑
m≥0

Eν̄

[
f.

(
σ 2

2,2κ1 − σ 2
1,2κ2

) ◦ T m
]
,

with κ = (κ1, κ2), provided the sum appearing in the last formula is non null. As noticed in introduction, it may
happen that (11) provides only

∫
M

f.g ◦ T n = o(n−2). This is the case for example if
∫
M

g dν = 0 and if f has the
form f (q + �, �v) = f0(q, �v).h� with Eν̄[f0] = 0 and

∑
� h� = 0. Hence it can be useful to go further in the asymptotic

expansion, which is possible thanks to Theorem 3.7. A formula for the term of order n−3 when
∫
M

f dν = ∫
M

g dν =
Ã2(f, g) = 0 is stated in Remark 4.5 and provides the following estimate, showing that, for some observables, Cn(f,g)

has order n−3.
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Proposition 1.6. If f and g can be decomposed in f (q + �, �v) = f̃0(q, �v).h� and g(q + �, �v) = g̃0(q, �v).q� with
Eν̄[f̃0] = Eν̄[g̃0] = 0 and

∑
� q� = ∑

� h� = 0 such that
∑

�∈Z2 |�|4(‖f 1C�
‖(ξ) + ‖g1C�

‖(ξ)) < ∞. Then∫
M

f.g ◦ T n dν = 3(�−2)⊗2

2π
√

det�2n3
∗ B

+
2 (f ) ⊗B

−
2 (g)

4
+ o

(
n−3),

with here

B
+
2 (f ) ⊗B

−
2 (g)

4
= −

(∑
�∈Z2

h�.�

)
⊗

(∑
j≥0

Eν̄

[
f̃0.κ ◦ T j

]) ⊗
(∑

�∈Z2

q�.�

)
⊗

( ∑
m≤−1

Eν̄

[
g̃0.κ ◦ T m

])
.

2. First order expansions: General results and first examples

In this section, as in the next one, we state general results in the general context of Zd -extensions over dynamical
systems satisfying good spectral properties. We consider a dynamical system (M,ν,T ) which is the Zd -extension of
a probability preserving dynamical system (M̄, ν̄, T̄ ) by κ : M̄ → Zd . This means that M = M̄ × Zd , ν = ν̄ ⊗ md

where md is the counting measure on Zd and that T is given by

∀(x, �) ∈ M̄ ×Zd , T (x, �) = (
T̄ (x), � + κ(x)

)
,

so that

∀(x, �) ∈ M̄ ×Zd ,∀n ≥ 1, T n(x, �) = (
T̄ n(x), � + Sn(x)

)
,

with Sn := ∑n−1
k=0 κ ◦ T̄ k . Let P be the transfer operator associated to (M̄, ν̄, T̄ ), i.e. the dual operator of f 
→ f ◦ T̄

with respect to L2(ν̄). Our method is based on the following key formulas:∫
M

f.g ◦ T n dν =
∑

�,�′∈Z2

Eν̄

[
f (·, �).1{Sn=�′−�}.g

(
T̄ n(·), �′)] (13)

=
∑

�,�′∈Zd

Eν̄

[
P n

(
1{Sn=�′−�}f (·, �))g(·, �′)], (14)

P n(1{Sn=�}f ) = 1

(2π)d

∫
[−π,π]d

e−it.�P n
(
eit.Snf

)
dt = 1

(2π)d

∫
[−π,π]d

e−it.�P n
t f dt, (15)

with Ptf := P(eit.κf ). Note that (14) makes a link between the mixing properties of (M,ν,T ) and the local limit
theorem for (Sn)n and that (15) shows the importance of the study of the family of perturbed operators (Pt )t in this
study.

2.1. General results

We will make the following general spectral assumptions about the family (Pt )t (or about other analogous families of
operators).

Definition 2.1. Let B,B0 be two complex Banach spaces, let (�n)n be a sequence of GL(d,R) and � a probability
density function on Rd .

We say that a family (Qs)s satisfies Condition (H1) with respect to (B,B0, (�n)n,�) if (Qs)s∈[−π,π]d is a family
of linear continous operators on B and if there exists b ∈ [0,π] such that

(i) B ↪→ B0,
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(ii) there exist two constants C > 0 and ϑ ∈ (0,1) and three functions λ· : [−b, b]d → C and �·,R· : [−b, b]d →
L(B,B) such that limt→0 λt = 1 and lims→0 ‖�s −Eν̄[·]1M̄‖L(B,B0) = 0 and such that, in L(B,B),

∀s ∈ [−b, b]d, Qs = λs�s + Rs, �sRs = Rs�s = 0, �2
s = �s, (16)

sup
s∈[−b,b]d

∥∥Rk
s

∥∥
L(B,B0)

≤ Cϑk, sup
s∈[−π,π]d\[−b,b]d

∥∥Qk
s

∥∥
L(B,B0)

≤ Cϑk, (17)

(iii) limn→+∞ |�−1
n | = 0, ϑn = o(det�−1

n ), and the characteristic function of the distribution of density � is inte-
grable and has the form a. := e−ψ(·) and

∀s, λn
t�−1

n s
∼ e−ψ(s) = as, as n → +∞ (18)

(where t�−1
n stands for the transpose matrix of �−1

n ) and, for every n large enough, ∀s ∈ [−b, b]d , |λn
s | ≤

|e−ψ̃(t�ns)|, with e−ψ̃ integrable on R.

Note that (16) ensures that

∀s ∈ [−b, b]d, Qn
s = λn

s �s + Rn
s . (19)

Note also that, if (Pt )t satisfies Condition (H1) with respect to (B,B0, (�n)n,�) with B0 ↪→ L1(M̄, ν̄) and 1M̄ ∈ B,
then

∀s ∈ Rd, e−ψ(s) = lim
n→+∞λn

t�−1
n s

= lim
n→+∞Eν̄

[
P n

t�−1
n s

1
] = lim

n→+∞Eν̄

[
eis.(�−1

n Sn)
]
,

and so (�−1
n Sn)n converges in distribution to a random variable Y of density �. If Y has a non degenerate stable

distribution of index α ∈ (0,2] \ {1}, then ψ has the following form

ψ(s) =
∫
S1

|s.t |α
(

1 + tan
π

α
sign(s.t)

)
d�(t) ≥ c|s|α, (20)

where � is a Borel measure on the unit sphere Sd−1 = {x ∈ Rd : x.x = 1}. If

λs = e−ψ(s)L(|s|−1) + o
(|s|αL

(|s|−1)), as s → 0,

with L slowly varying at infinity and ψ as in (20), then Item (iii) of Condition (H1) holds true with �n := an Id with

an := inf{x > 0 : n|x|−αL(x) ≥ 1} which is 1/α-regularly varying and with ψ̃(s) := exp

(
− c

4 max
(|s|α+ε, |s|α−ε

))
(for any ε ∈ (0, α)). Indeed, there exists n0 and b > 0 such that for every n ≥ n0 and for every s ∈ [−anb, anb]d ,∣∣∣∣λn

a−1
n s

∣∣∣∣ ≤ exp

(
−n

c

2
|s|αa−α

n L
(|s|−1an

)) ≤ exp

(
− c

2
|s|α L

(|s|−1an

)
L

(
an

) )

≤ exp

(
− c

4
max

(|s|α+ε, |s|α−ε
))

,

using Karamata’s characterization of slowly varying functions.
Note that Condition (H1) allows also the study of situations with anisotropic scaling. We start with a simple

statement, the proof of which is short and contains the main ideas.

Theorem 2.2. Let B,B0 be two complex Banach spaces of functions f : M̄ → C. Let (�n)n be a sequence of
GL(d,R) and � a density function on Rd . Assume (Ps)s satisfies Condition (H1) with respect to (B,B0, (�n)n,�)

with B0 ↪→ L1(M̄, ν̄) and 1M̄ ∈ B. Let f,g : M → C be such that

‖f ‖+ :=
∑
�∈Zd

∥∥f (·, �)∥∥ < ∞ and ‖g‖+,B′
0
:=

∑
�∈Zd

∥∥g(·, �)∥∥B′
0
< ∞,
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where ‖ · ‖ is the norm of B and with the notation ‖u‖B′
0
:= suph∈B0:‖h‖B0 =1 |Eν̄[u.h]|. Then

∫
M

f.g ◦ T n dν = �(0)

det�n

(∫
M

f dν

∫
M

g dν + o(1)

)
, as n → +∞.

Proof. For every positive integer n and every � ∈ Zd , due to (15) and to Condition (H1), for every f ∈ B, the following
equalities hold in B0:

P n(1{Sn=�}f ) = 1

(2π)d

∫
[−b,b]d

e−it.�λn
t �tf dt + O

(
ϑn‖f ‖)

= 1

(2π)d det�n

∫
t�n[−b,b]d

e−is.(�−1
n �)λn

t�−1
n s

�t�−1
n s

f ds + O
(
ϑn‖f ‖)

= 1

(2π)d det�n

∫
Rd

e−is.(�−1
n �)e−ψ(s)�0f ds + εn,�f

= �(�−1
n �)

det�n

�0f + εn,�f, (21)

with sup� ‖εn,�‖L(B,B0) = o(det�−1
n ) due to the dominated convergence theorem applied to ‖λn

t�−1
n s

�t�−1
n s

−
e−ψ(s)�0‖L(B,B0)1t�n[−b,b]d (s). Setting u� := f (·, �) and v� := g(·, �) and using (14), we obtain∫

M

f.g ◦ T n dν =
∑

�,�′∈Zd

(
�(�−1

n (�′ − �))

det�n

Eν̄[u�]Eν̄[v�′ ] +Eν̄

[
v�′εn,�′−�(u�)

])

=
∑

�,�′∈Zd

(
�(�−1

n (�′ − �))

det�n

Eν̄[u�]Eν̄[v�′ ]
)

+ O

( ∑
�,�′∈Zd

‖v�′‖B′
0
‖εn,�′−�‖L(B,B0)‖u�‖

)

=
∑

�,�′∈Zd

�(�−1
n (�′ − �))

det�n

Eν̄[u�]Eν̄[v�′ ] + ε̃n(f, g), (22)

with limn→+∞ supf,g
det�nε̃n(f,g)
‖g‖+,B′

0
‖f ‖+ = 0. Now, due to the dominated convergence theorem and since � is continuous

and bounded (this classical fact comes from the fact that the characteristic function of Y is integrable combined with
the Lebesgue dominated convergence theorem), we obtain

lim
n→+∞

∑
�,�′∈Zd

�
(
�−1

n

(
�′ − �

))
Eν̄[u�]Eν̄[v�′ ] = �(0)

∑
�,�′∈Z2

Eν̄[u�]Eν̄[v�′ ] = �(0)

∫
M

f dν

∫
M

g dν,

which ends the proof. �

We now state a more elaborate result.

Definition 2.3. Let p0, q0 ∈ [1,+∞]. Let V,W,V0,W0 be four complex Banach spaces of functions f : M̄ → C.
Let (�n)n be a sequence of GL(d,R) and � be a probability density function on Rd .

We say that (M,ν,T ) satisfies Condition (H1 bis) with respect to (p0, q0,V,W,V0,W0, (�n)n,�) if V ↪→ V0 ↪→
Lp0(ν̄) and W ↪→ W0 ↪→ Lq0(ν̄), if (M̄, ν̄, T̄ ) is an extension of a dynamical system (�̂, μ̂, τ̂ ) by p : M̄ → �̂ and
if there exist two complex Banach spaces B,B0 of functions f : �̂ → C such that B0 ↪→ L1(�̂, μ̂) and 1

�̂
∈ B and

such that:

• there exists an integer m0 and a function κ̂ : �̂ → Zd such that κ̂ ◦ p = κ ◦ T̄ m0 ,
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• the family of operators (P̂s : f̂ 
→ P̂ (eis.κ̂ f̂ ))s (with P̂ the transfer operator of (�̂, μ̂, τ̂ )) satisfies Condition (H1)

with respect to (B,B0, (�n)n,�),
• the sequence (det�n)n is α-regularly varying at infinity for some α > 0,
• there exist C0 > 0 and β > α such that, for every couple (f, g) ∈ V × W and every integer n ≥ m0, there exists a

couple (fn, gn) ∈ B ×B′
0 satisfying the following properties:∥∥f ◦ T̄ n − fn ◦ p∥∥

Lp0 (ν̄)
≤ C0‖f ‖Vn−β,

∥∥g ◦ T̄ n − gn ◦ p∥∥
Lq0 (ν̄)

≤ C0‖g‖Wn−β,

‖fn ◦ p‖Lp0 (ν̄) ≤ C0‖f ‖V0,

∀t ∈ R,
∥∥P 2n

t

(
e−it Ŝn−m0 fn

)∥∥
B ≤ C0‖f ‖V0 and

∥∥gne
itŜn−m0

∥∥
B′

0
≤ C0‖g‖W0,

(23)

where Ŝn := ∑n−1
k=0 κ̂ ◦ τ̂ k .

Theorem 2.4. Let V,W,V0,W0 be four complex Banach spaces of functions f : M̄ →C and p0, q0 ∈ [1,+∞] such
that 1

p0
+ 1

q0
≤ 1 and p0 > 1. Let (�n)n be a sequence of GL(d,R) and � a probability density function on Rd .

Assume (M̄, ν̄, T̄ ) satisfies Condition (H1 bis) with respect to (p0, q0,V,W,V0,W0, (�n)n,�). Let f,g : M →C be
such that

sup
�∈Zd

(∥∥f (·, �)∥∥V + ∥∥g(·, �)∥∥W)
< ∞ and

∑
�∈Zd

(∥∥f (·, �)∥∥V0
+ ∥∥g(·, �)∥∥W0

)
< ∞.

Then ∫
M

f.g ◦ T n dν = �(0)

det�n

(∫
M

f dν

∫
M

g dν + o(1)

)
, as n → +∞.

Proof. Fix some b ∈ ( α
β
,1). Let kn := �nb�. Let f̂n(·, �) and ĝn(·, �) correspond to the functions (f (·, �))kn and

(g(·, �))kn given by (23). First note that, for n large enough, kn ≥ m0 and∫
M

f.g ◦ T n dν −
∑

�,�′∈Zd

Eμ̂

[
f̂n(·, �)1{Ŝn◦τ̂ kn−m0=�′−�}ĝn

(
τ̂ n(·), �′)]

=
∑

�,�′∈Zd

(
Eν̄

[
f (·, �)1{Sn=�′−�}g

(
T̄ n(·), �′)] −Eμ̂

[
f̂n(·, �)1{Ŝn◦τ̂ kn−m0=�′−�}ĝn

(
τ̂ n(·), �′)])

=
∑

�,�′∈Zd

Eν̄

[[
f

(
T̄ kn ·, �)g(

T̄ n+kn(·), �′) − f̂n

(
p(·), �)ĝn

(
p
(
T̄ n(·)), �′)]1{Sn◦T̄ kn=�′−�}

]
=

∑
�,�′∈Zd

Eν̄

[([
f

(
T̄ kn ·, �) − f̂n

(
p(·), �)]g(

T̄ n+kn(·), �′) + f̂n

(
p(·), �)[g(

T̄ n+kn(·), �′) − ĝn

(
p
(
T̄ n(·)), �′)])

× 1{Sn◦T̄ kn=�′−�}
]
.

Therefore∣∣∣∣∫
M

f.g ◦ T n dν −
∑

�,�′∈Zd

Eμ̂

[
f̂n(·, �)1{Ŝn◦τkn−m0=�′−�}ĝn

(
τ̂ n(·), �′)]∣∣∣∣

≤ sup
�∈Zd

∥∥f
(
T̄ kn ·, �) − f̂n

(
p(·), �)∥∥

p0

∑
�,�′∈Zd

∥∥g
(
T̄ n+kn(·), �′)1{Sn◦T̄ kn=�′−�}

∥∥
q0

+
∑

�,�′∈Zd

∥∥1{Sn◦T̄ kn=�′−�}f̂n

(
p(·), �)∥∥

p0
sup

�′∈Zd

∥∥g
(
T̄ kn(·), �′) − ĝn

(
p(·), �′)∥∥

q0
(24)



390 F. Pène

= O

((
sup
�∈Zd

∥∥f (·, �)∥∥V ∑
�′∈Zd

∥∥g
(·, �′)∥∥

W0
+ sup

�′∈Zd

∥∥g
(·, �′)∥∥

W
∑
�∈Zd

∥∥f (·, �)∥∥V0

)
n−bβ

)
(25)

= o
(
det�−1

n

)
. (26)

Moreover,

Eμ̂

[
f̂n(·, �)1{Ŝn◦τ̂ kn−m0 =�′−�}ĝn

(
τ̂ n(·), �′)]

= 1

(2π)d

∫
[−π,π]d

e−it (�′−�)Eμ̂

[
f̂n(·, �)eit.Ŝn◦τ̂ kn−m0

ĝn

(
τ̂ n(·), �′)]dt

= 1

(2π)d

∫
[−π,π]d

e−it (�′−�)Eμ̂

[
F̂n,t (·, �)eitŜnĜn,t

(
τ̂ n(·), �′)]dt

= 1

(2π)d

∫
[−π,π]d

e−it (�′−�)Eμ̂

[
P̂ n

t

(
F̂n,t (·, �)

)
Ĝn,t

(·, �′)]dt,

where we used the fact that Ŝn ◦ τ̂ kn−m0 = Ŝn − Ŝkn−m0 + Ŝkn−m0 ◦ τ̂ n and the notations F̂n,t (x, �) := f̂n(x, �) ×
e−it Ŝkn−m0 (x) and Ĝn,t (x, �′) := ĝn(x, �′)eitŜkn−m0 (x).

Moreover supn,t ‖P̂ 2kn
t F̂n,t (·, �)‖B ≤ C0‖f (·, �)‖V0 . Hence, due to Condition (H1 bis),

Eμ̂

[
f̂n(·, �)1{Ŝn◦τ̂ kn−m0 =�′−�}ĝn

(
τ̂ n(·), �′)]

= 1

(2π)d

∫
[−b,b]d

e−it (�′−�)Eμ̂

[
P̂

n−2kn
t

(
P̂

2kn
t F̂n,t (·, �)

)
Ĝn,t

(·, �′)]dt (27)

+ O
(∥∥f (·, �)∥∥V0

∥∥g
(·, �′)∥∥

W0
ϑn−2kn

)
= 1

(2π)d

∫
[−b,b]d

e−it (�′−�)Eμ̂

[
Ĝn,t

(·, �′)λn−2kn
t �t P̂

2kn
t

(
F̂n,t (·, �)

)]
dt

+ O
(∥∥f (·, �)∥∥V0

∥∥g
(·, �′)∥∥

W0
ϑn−2kn

)
. (28)

Moreover∑
�,�′∈Zd

1

(2π)d

∫
[−b,b]d

e−it (�′−�)Eμ̂

[
Ĝn,t

(·, �′)λn−2kn
t �t P̂

2kn
t

(
F̂n,t (·, �)

)]
dt

=
∑

�,�′∈Zd

1

det�n−2kn(2π)d

∫
t�n−2kn [−b,b]d

e
−is.(�−1

n−2kn
(�′−�))

×Eμ̂

[
Ĝ

n,t�−1
n−2kn

s

(·, �′)λn−2kn

t�−1
n−2kn

s
�t�−1

n−2kn
s
P̂

2kn

t�−1
n−2kn

s

(
F̂

n,t�−1
n−2kn

s
(·, �))]ds

= o(det�−1
n−2kn

) +
∑

�,�′∈Zd

1

det�n−2kn(2π)d

∫
t�n−2kn [−b,b]d

Eμ̂

[
Ĝn,0

(·, �′)e−ψ(s)

× �0P̂
2kn

t�−1
n−2kn

s

(
F̂

n,t�−1
n−2kn

s
(·, �))]ds

= o
(
det�−1

n−2kn

) +
∑

�,�′∈Zd

1

det�n−2kn(2π)d

∫
�n−2kn [−b,b]d

Eμ̂

[
ĝn

(·, �′)]e−ψ(s)Eμ̂

[
f̂n(·, �)

]
ds

= o
(
det�−1

n−2kn

) +
∑

�,�′∈Zd

1

det�n−2kn(2π)d

∫
Rd

Eν̄

[
g
(·, �′)]e−ψ(s)Eν̄

[
f (·, �)]ds
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= o
(
det�−1

n

) + �(0)

det�n

∫
M

f dν

∫
M

g dν, (29)

where we used the change of variable s = t�n−2kn t , and three times the dominated convergence theorem together
with the fact that �(0) = 1

(2π)d

∫
R

e−ψ(t) dt , the fact that det�n−2kn ∼ det�n as n → +∞ and the fact that

�0P̂
2kn

t�−1
n−2kn

s

(
F̂

n,t�−1
n−2kn

s
(·, �)) −Eμ̂

[
f̂n(·, �)

] = Eμ̂

[(
e
is.�−1

n−2kn
(Ŝ2kn−Ŝkn−m0 ) − 1

)
f̂n(·, �)

] → 0

as n → +∞ (the facts that (�−1
n Ŝn)n converges in distribution and that ‖�−1

n ‖ → 0 imply that �−1
n−2kn

(Ŝ2kn − Ŝkn−m0)

converges in probability to 0; moreover ‖f̂n(·, �)‖p0 ≤ C0‖f (·, �)‖V0 ).
We conclude by combining (26), (28) and (29). �

2.2. Application to Zd -extensions of Gibbs–Markov maps

For Gibbs–Markov maps with respect to some partition π , given θ ∈ (0,1), we consider the metric dθ on M̄ defined
by:

dθ (x, y) := θ inf{k≥0:π(T̄ k(x))�=π(T̄ k(y))},

where π(z) denotes the atom of π containing z.

Corollary 2.5. Let θ ∈ (0,1). Assume that (M̄, ν̄, T̄ ) is a mixing Gibbs–Markov dynamical system with respect to
some partition π and that κ : M̄ → Zd is ν̄-centered, aperiodic and uniformly Lipschitz continuous (with respect to
dθ ) on each atom of partition π . Assume that the distortion of the jacobian is Lipschitz continuous with respect to
dθ0 for some θ0 ∈ (0,1). Assume moreover that the distribution of κ (with respect to ν̄) belongs to the domain of
attraction of a nondegenerate symmetric stable distribution S of index belonging to (0;2], with the normalization
�n ∈ GL(Rd). Let f,g : M →C be such that

sup
�∈Zd

∥∥f (·, �)∥∥ < ∞ and
∑
�∈Zd

∥∥f (·, �)∥∥∞ +
∫

M

|g|dν < ∞,

where ‖h‖ := ‖h‖∞ + Lh, with Lh the Lipschitz constant of h (with respect to dθ ). Then we have∫
M

f.g ◦ T n dν = �(0)

det�n

(∫
M

f dν

∫
M

g dν + o(1)

)
, as n → +∞, (30)

where � is the density function of S .

Observe that, if we apply Theorem 2.2, we obtain (30) under the stronger condition on f that
∑

�∈Zd ‖f (·, �)‖ <

∞.

Proof. The fact that (M̄, ν̄, T̄ ) satisfies Condition (H1) with respect to (B,B, (�n)n,�) where B is the set of Lip-
schitz continuous functions with respect to dmax(θ,θ0) is proved in [1,2]. We apply Theorem 2.4 with (�̂, μ̂, τ̂ ) =
(M̄, ν̄, T̄ ), p= id, m0 = 0, with V = B, with V0 = L∞(ν̄) and with W =W0 = L1(ν̄), p0 = ∞ and q0 = 1. For every
couple (f, g) ∈ V ×W for every n ∈N and every x ∈ M̄ , we take fn(x) as the conditional expectation of f ◦ T̄ n given
the 2n-cylinder C2n(x) containing x, that is :

C2n(x) := {y ∈ M̄ : ∀k = 0, . . . ,2n,yk = xk}
and gn(x) := g ◦ T̄ n(x). So that,∥∥f ◦ T̄ n − fn

∥∥
L∞(μ̄)

≤ ‖f ‖θn,
∥∥g ◦ T̄ n − gn

∥∥
L1(μ̄)

= 0, ‖fn‖∞ ≤ ‖f ‖∞,∥∥gne
itŜn−m0

∥∥
B′ ≤ ∥∥gn

∥∥
L1(μ̂)

≤ ‖g‖W0 .
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The fact that ‖P̂ 2n
t (e−it Ŝn−m0 fn)‖B ≤ C0‖f ‖∞ follows from the next lemma applied with θ0 instead of θ . �

Lemma 2.6. Let m0,N ∈ N with N ≥ 1 and θ ∈ (0,1). Let (�̂, μ̂, τ̂ ) be a probability preserving dynamical system en-
dowed with some metric dθ : (x, y) 
→ θs(x,y) (with s(τ̂ (x), τ̂ (y)) = s(x, y) − 1 if s(x, y) ≥ 1). Let φ : �̂ → (0,+∞)

and κ̂ : �̂ → Zd be two measurable functions, Lipschitz continuous on every closed ball of radius θ . Assume that the
transfer operator of (�̂, μ̂, τ̂ ) has the following form:

P̂ g(x) =
∑

z∈τ̂−1({x})
e−φ(z)g(z).

Assume also that, for every x, y ∈ �̂ satisfying s(x, y) ≥ 1 there exists a bijection χx,y : τ̂−1({x}) → τ̂−1({y}) such
that, for every z ∈ τ̂−1({x}), s(z,χx,y(z)) = 1 + s(x, y). Then there exists C0 > 0 such that, for every n, for every
function f : �̂ → C constant on closed balls of radius θ2n+1, for every t ∈ (−π,π), then

∥∥P̂ 2n
t

(
e−it Ŝn−m0 f

)∥∥ ≤ C0‖f ‖∞, with Ŝn :=
n−1∑
k=0

κ̂ ◦ τ̂ k and P̂th := P̂
(
eitκ̂h

)
,

where ‖ · ‖ stands for the Lipschitz norm. If moreover κ̂ is uniformly bounded then, for every j = 1, . . . ,N , for every
function f : �̂ → C constant on balls of radius θ2n+1 and for every t ∈ (−π,π),∥∥∥∥ ∂j

∂tj

(
P̂ 2n

t

(
e−it Ŝn−m0 f

))∥∥∥∥ ≤ C0n
j‖f ‖∞.

Proof. Note that

P̂ 2ng(x) =
∑

z∈τ̂−2n({x})
e−φ(z)+···+φ(τ̂ 2n−1(z))g(z).

Moreover, for every x, y ∈ �̂ such that s(x, y) ≥ 1, and every n ≥ 0, there exists a bijection χx,y,2n : τ̂−2n({x}) →
τ̂−2n({y}) such that ∀z ∈ τ̂−2n({x}), s(z,χx,y,2n(z)) = s(x, y) + 2n. Note that ‖P̂ 2n

t (e−it Ŝnf )‖∞ ≤ ‖f ‖∞. Let n be
fixed and let f : �̂ → C be a function constant on balls of radius θ2n+1. Let x, y ∈ �̂ such that s(x, y) ≥ 1, we have∣∣∣∣ ∂j

∂tj

(
P̂ 2n

t

(
e−it Ŝn−m0 f

)
(x)

) − ∂j

∂tj

(
P̂ 2n

t

(
e−it Ŝn−m0 f

)
(y)

)∣∣∣∣ ≤
∣∣∣∣ ∑
z∈τ̂−2n({x})

Ft,j (z) − Ft,j

(
χx,y,2n(z)

)∣∣∣∣,
with Ft,j (z) := e−∑2n−1

k=0 φ(τ̂ kz)(i
∑2n−1

�=n−m0
κ̂ ◦ τ̂ �z)⊗j e

it
∑2n−1

�=n−m0
κ̂◦τ̂ �z

f (z). By definition, f (z) = f (χx,y,2n(z)) and
so ∣∣Ft,j (z) − Ft,j

(
χx,y,2n(z)

)∣∣
≤

(
2n−1∑
k=0

L̃φθ2n−k+s(x,y) +
2n−1∑

�=n−m0

(
1 + |t |)L̃κ̂ θ2n−�+s(x,y)

)(
1 + (n + m0)‖κ̂‖∞

)j‖f ‖∞

≤ θs(x,y)+1

1 − θ
(L̃φ + L̃κ )

(
1 + (n + m0)‖κ̂‖∞

)j (1 + |t |)‖f ‖∞,

with L̃h := supx �=y:s(x,y)≥1
|h(x)−h(y)|

θs(x,y) (and with convention ∞0 = 1), and so∥∥∥∥ ∂j

∂tj

(
P̂ 2n

t

(
e−it Ŝn−m0 f

))∥∥∥∥ ≤ ‖f ‖∞
(

2 + θ
L̃φ + L̃κ̂

1 − θ

)(
1 + (n + m0)‖κ̂‖∞

)j (1 + |t |). �
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3. Higher expansion: General results and first examples

We keep the context and notations (M,ν,T ), κ , (M̄, ν̄, T̄ ), md , P , Pt of the previous section. We are now interested
in higher order expansions. We will consider situations in which the asymptotic variance �2

0 of (n−1/2 ∑n−1
k=0 κ ◦T k)n

exists and in which (Sn/
√

n)n converges in distribution to a centered Gaussian random variable with variance �2
0 .

3.1. General results

We will reinforce Condition (H1) as follows. Notations λ
(k)
0 , a

(k)
0 , �

(k)
0 stand for the kth derivatives of λ, a and �

at 0.

Definition 3.1. Let �2
0 be a d-dimensional positive symmetric matrix. We say that a family (Qs)s satisfies Condition

(H2) with respect to (B,K,L,J,�2
0) if it satisfies Condition (H1) with respect to (B,B, (

√
n Id)n,�) with � the

density function of the centered Gaussian distribution with variance �2
0 , with � and R both CK -smooth, with λ

CL-smooth and such that

λs − 1 ∼ −ψ(s) := 1

2
�2

0 ∗ s⊗2, as s → 0, (31)

and ∀k < J , λ
(k)
0 = a

(k)
0 with at = e−ψ(t).

Theorem 3.2. Let �2
0 be a d-dimensional positive symmetric matrix. Let K,L,J be three integers such that K ≥ d ,

3 ≤ J ≤ L + 1 and L
2 − L

J
≥ K

2 . Assume (Ps)s satisfies Condition (H2) with respect to (B,K,L + 1, J,�2
0) with

B ↪→ L1(M̄, ν̄) and 1M̄ ∈ B. Let f,g : M →C be such that∑
�∈Zd

(∥∥f (·, �)∥∥B + ∥∥g(·, �)∥∥B′
)
< ∞. (32)

Then ∫
M

f.g ◦ T n dν =
∑

�,�′∈Zd

K∑
m=0

1

m!
L∑

j=0

im+j

(j)!
�(m+j)( �′−�√

n
)

n
d+m+j

2

∗ (
Eν̄

[
g
(·, �′)�(m)

0

(
f (·, �))] ⊗ (

λn/an
)(j)

0

)
+ o

(
n− K+d

2
)
, (33)

with � the density function of the centered Gaussian distribution with variance �2
0 . If moreover

∑
�∈Zd |�|K(‖f (·,

�)‖B + ‖g(·, �)‖B′) < ∞, then∫
M

f.g ◦ T n dν =
∑
m,j,r

ij+m

m!r!j !
(

�(j+m+r)(0)

n
j+d+m+r

2

∗ (
λn/an

)(j)

0

)

∗
∑

�,�′∈Zd

(
�′ − �

)⊗r ⊗Eν̄

[
g
(·, �′)�(m)

0

(
f (·, �))] + o

(
n− K+d

2
)
, (34)

where the sum is taken over the (m, j, r) with m,j, r non negative integers such that j + m + r ∈ 2Z and such that
r+m+j

2 − � j
J
� ≤ K/2 (so m,j, r ≤ L).

Observe that(
λn/an

)(j)

0 =
∑

k1m1+···+krmr=j

n!
m1! · · ·mr !(n − m1 − · · · − mr)!

(
(λ/a)

(k1)
0

)m1 · · · ((λ/a)
(kr )
0

)mr , (35)

where the sum is taken over r ≥ 1, m1, . . . ,mr ≥ 1, kr > · · · > k1 ≥ J (this implies that m1 +· · ·+mr ≤ j/J ). Hence
(λn/an)

(j)

0 is polynomial in n with degree at most �j/J �.
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Remark 3.3. Note that, since � is even, (34) provides an expansion of the following form:∫
M

f.g ◦ T n dν =
�K/2�∑
m=0

cm(f,g)

n
d
2 +m

+ o
(
n− K+d

2
)
.

Observe that

iN

N !
∂N

∂tN

[
e−it.(�−�′)λn

t e
n
2 �2

0∗t⊗2
�t

] = iN
∑

m+j+r=N

(−i)r

m!j !r!e
−it.(�−�′)[(�′ − �

)⊗r ⊗ �
(m)
t ⊗ (

λn/an
)(j)

t

]
=

∑
m+j+r=N

ij+m

m!j !r!e
−it.(�−�′)[(�′ − �

)⊗r ⊗ �
(m)
t ⊗ (

λn/an
)(j)

t

]
.

Therefore, we obtain the following.

Remark 3.4. If � is CL-smooth, the right hand side of (34) can be rewritten

1

n
d
2

∑
�,�′∈Zd

L∑
N=0

1

nN/2
iN

�(N)(0)

N ! ∗ ∂N

∂tN

(
Eν̄

[
g
(·, �′).e−it.(�′−�).λn

t �tf (·, �)]e n
2 �2

0∗t⊗2)
|t=0 + o

(
n− K+d

2
)
.

If moreover supm=0,...,L supu∈[−b,b]d ‖(Rn
u)(m)‖(B,B) = O(ϑn), due to (19), it can also be rewritten

1

n
d
2

∑
�,�′∈Zd

L∑
N=0

iN�(N)(0)

N ! ∗ ∂N

∂tN

(
Eν̄

[
f (·, �)eit.

Sn−(�′−�)√
n g

(
T̄ n(·), �′)]e 1

2 �2
0∗t⊗2)

|t=0 + o
(
n− K+d

2
)
.

Proof of Theorem 3.2. Up to reduce the value of b, we can assume that, for every t ∈ [−b, b]d , λt ≤ a
t/

√
2. Due to

(15) and to (19), in L(B,B), we have

P n(1{Sn=�}·) = 1

(2π)d

∫
[−π,π]d

e−it.�P n
t (·) dt

= 1

(2π)d

∫
[−b,b]d

e−it.�λn
t �t (·) dt + O

(
ϑn

)
= 1

(2π)dn
d
2

∫
[−b

√
n,b

√
n]d

e
−it. �√

n λn
t/

√
n
�t/

√
n(·) dt + O

(
ϑn

)
= 1

(2π)dn
d
2

∫
[−b

√
n,b

√
n]d

e
−it. �√

n λn
t/

√
n

K∑
m=0

1

m!�
(m)
0 (·) ∗ t⊗m

n
m
2

dt + o
(
n− K+d

2
)
,

due to the dominated convergence theorem since there exists xt/
√

n ∈ (0, t/
√

n) such that �t/
√

n(·) = ∑K−1
m=0

1
m! ×

�
(m)
0 (·) ∗ t⊗m

n
m
2

+ 1
K!�

(K)
xt/

√
n
(·) ∗ t⊗K

nK/2 and since

lim
n→+∞

∫
[−b

√
n,b

√
n]d

∣∣λn
t/

√
n

∣∣∥∥�(K)
xt/

√
n
− �

(K)
0

∥∥|t |K dt = 0,

due to the Lebesgue dominated convergence theorem. Since n(λ/a)
(k)
t ≤ O(nk/J |t |J−k) if k < J , there exists L0 > 0

such that∣∣∣∣∣λn
t/

√
n
− at

L∑
j=0

1

j !
(
λn/an

)(j)

0 ∗ t⊗j

n
j
2

∣∣∣∣∣ ≤ C1n
L+1
J

|t |L+1

n
L+1

2

at/2.
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Due to the conditions on L, J , K , we obtain

P n(1Sn=�·) = 1

(2π)dn
d
2

∫
[−b

√
n,b

√
n]d

e
−it. �√

n e− 1
2 �2

0∗t⊗2
K∑

m=0

1

m!�
(m)
0 (·) ∗ t⊗m

n
m
2

×
(

1 +
L∑

j=J

1

j !
(
λn/an

)(j)

0 ∗ t⊗j

n
j
2

)
dt + o

(
n− K+d

2
)

=
K∑

m=0

L∑
j=0

im+j

n
m+j+d

2 m!j !
�(m+j)

(
�√
n

)
∗ (

�
(m)
0 (·) ⊗ (

λn/an
)(j)

0

) + o
(
n− K+d

2
)
.

This combined with (14) and (32) gives (33). We assume from now on that
∑

�∈Zd |�|K(‖f (·, �)‖+‖g(·, �)‖B′) < ∞.

Recall that (λn/an)
(j)

0 is polynomial in n of degree at most �j/J �. Hence, due to the dominated convergence theorem,

we can replace �(m+j)( �′−�√
n

) in (33) by

K−m−j+2� j
J

�∑
r=0

1

r!n r
2
�(m+j+r)(0) ∗ (

�′ − �
)⊗r

.

Hence we have proved (34). �

Corollary 3.5. Let θ ∈ (0,1). Assume that (M̄, ν̄, T̄ ) is a mixing Gibbs–Markov dynamical system with respect to
some partition π and that κ : M̄ → Zd is ν̄-centered, aperiodic, bounded and uniformly Lipschitz continuous (with
respect to dθ ) on each atom of partition π . Let f,g : M →C such that∑

�∈Zd

|�|K(∥∥f (·, �)∥∥ + ∥∥g(·, �)∥∥
L1(M̄,ν̄)

)
< ∞

with ‖ · ‖ the Lipschitz norm associated to dθ , then there exist c0(f, g), . . . , c�K/2�(f, g) such that

∫
M

f.g ◦ T n dν =
�K/2�∑
k=0

n−k− d
2 ck(f, g) + o

(
n− K+d

2
)

=
∑

�,�′∈Zd

3K∑
N=0

iNn− N+d
2 �(N)

(
�′ − �√

n

)
∗ ∂N

∂tN

(
Eν̄

[
f (·, �)eitSng

(·, �′)]e n
2 �2

0∗t⊗2)
|t=0

+ o
(
n− K+d

2
)
,

where �2
0 is the asymptotic variance matrix of (Sn/

√
n)n.

Proof. This is a direct application of Theorem 3.2 with L = 3K combined with the Nagaev–Guivarc’h’s method [1,
2,17,18]. �

For further applications, it may be useful to consider the case of extensions of systems, the transfer operator of
which has good spectral properties. We will make the following assumption.

Definition 3.6. Let �2
0 be a d-dimensional positive symmetric matrix. Let L, J be two positive integers and let V be

a complex Banach space of functions f : M̄ → C. We say that the dynamical system (M,ν,T ) satisfies Condition
(H2 bis) with respect to (V,L,J,�2

0) if (M̄, ν̄, T̄ ) is an extension, by p : M̄ → �̂, of a dynamical system (�̂, μ̂, τ̂ )

with transfer operator P̂ and if the following conditions hold true:
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• there exist a positive integer m0 and a μ̂-centered bounded function κ̂ : �̂ → Zd such that κ̂ ◦ p = κ ◦ T̄ m0 ,
• the family of operators (P̂s : f̂ 
→ P̂ (eisκ̂ f̂ ))s satisfies Condition (H2) with respect to (B,L,L,J,�2

0) with B ↪→
L1(�̂, μ̂), with 1

�̂
∈ B, and with

∀m = 0, . . . ,L, sup
u∈[−b,b]d

∥∥(
Rn

u

)(m)∥∥
(B,B)

= O
(
ϑn

)
,

• there exist C0 > 0 and θ ∈ (0,1) such that, for every f ∈ V and every integer n ≥ m0, there exists fn ∈ B satisfying
the following properties:∥∥f ◦ T̄ n − fn ◦ p∥∥∞ ≤ C0‖f ‖Vθn, ∀t ∈R,∀j = 0, . . . ,L,∥∥∥∥ ∂j

∂tj

(
P̂ 2n

t

(
e−it Ŝn−m0 fn

))∥∥∥∥
B

≤ C0n
j‖f ‖V , ∀t ∈R,∀j = 0, . . . ,L,∥∥∥∥ ∂j

∂tj

(
fne

itŜn−m0
)∥∥∥∥

B′
≤ C0n

j‖g‖V ,

(36)

with Ŝn := ∑n−1
k=0 κ̂ ◦ τ̂ k .

Theorem 3.7. Let �2
0 be a d-dimensional positive symmetric matrix. Let K,L,J be three integers such that K ≥ d ,

3 ≤ J ≤ L + 1 and L
2 − L

J
≥ K

2 . Let (V,‖ · ‖V ) be a complex Banach space of functions f : M̄ → C such that
V ↪→ L∞(ν̄). Assume (M̄, ν̄, T̄ ) satisfies Condition (H2 bis) with respect to (V,L+ 1, J,�2

0). Let f,g : M → C such
that

∑
�∈Zd (‖f (·, �)‖V + ‖g(·, �)‖V ) < ∞. Then, for every �, �′ ∈ Zd and every N = 0, . . . ,L, the following quantity

is well defined

AN

(
f (·, �), g(·, �′)) := lim

n→+∞
∂N

∂tN

(
Eν̄

[
f (·, �).eit.Sn .g

(
T̄ n(·), �′)]λ−n

t

)
|t=0 (37)

and ∫
M

f.g ◦ T n dν (38)

=
∑

�,�′∈Zd

L∑
N=0

iN
�(N)( �′−�√

n
)

n
N+d

2

N∑
j=0

N !
j !(N − j)!Aj

(
f (·, �), g(·, �′))(λn

t e
n
2 �2

0∗t⊗2)(N−j)

|t=0 + o
(
n− K+d

2
)

(39)

=
∑

�,�′∈Zd

L∑
N=0

iNn− N+d
2 �(N)

(
�′ − �√

n

)
∗ (

Eν̄

[
f (·, �)eitSng

(
T̄ n(·), �′)]e n

2 �2
0∗t⊗2)(N)

|t=0 + o
(
n− K+d

2
)
, (40)

where � is the density of a Gaussian distribution N (0,�2
0).

If moreover
∑

�∈Zd |�|K(‖f (·, �)‖V + ‖g(·, �)‖V ) < ∞, then there exists c0(f, g), . . . , c�K/2�(f, g) such that∫
M

f.g ◦ T n dν =
∑
m,j,r

ij+m

m!r!j !
(

�(j+m+r)(0)

n
j+d+m+r

2

∗ (
λn

t e
n
2 �2

0∗t⊗2)(j)

|t=0

)

∗
∑

�,�′∈Zd

(
�′ − �

)⊗r ⊗ Am

(
f (·, �), g(·, �′)) + o

(
n− K+d

2
)

(41)

=
�K/2�∑
k=0

n−k− d
2 ck(f, g) + o

(
n− K+d

2
)
, (42)
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where the sum over (m, j, r) is taken over the (m, j, r) with m,j, r non negative integers such that j + m + r ∈ 2Z
and r+m+j

2 − � j
J
� ≤ K/2 (and j = 0 or j ≥ J ).

Proof. Up to reduce the value of b, we assume that, for every t ∈ [−b, b]d , λt ≤ a
t/

√
2. Let kn := �(L +

L+1+d
2 ) logn/| log θ |�. We consider f̂n, ĝn : �̂ × Zd → C such that, for every � ∈ Zd , f̂n(·, �) and ĝn(·, �) corre-

spond to the functions (f (·, �))kn and (g(·, �))kn given by (36). Set also φn(·, �) := f̂n(p(T̄
−kn(·)), �) and ψn(·, �) :=

ĝn(p(T̄
−kn(·)), �). Recall that, due to (25) and (27), we know that∫
M

f.g ◦ T n dν =
∑

�,�′∈Zd

1

(2π)d

∫
[−b,b]d

e−it (�′−�)Eμ̂

[
P̂

n−2kn
t

(
P̂

2kn
t F̂n,t (·, �)

)
Ĝn,t

(·, �′)]dt

+ O
(
θkn + ϑn−2kn

)
, (43)

with F̂n,t (x, �) := f̂n(x, �)e−it Ŝkn−m0 (x) and Ĝn,t (x, �) := ĝn(x, �′)eitŜkn−m0 (x). Moreover, for every t ∈ [−b, b]d ,

Eμ̂

[
P̂

n−2kn
t

(
P̂

2kn
t F̂n,t (·, �)

)
Ĝn,t

(·, �′)]e n
2 �2

0∗t⊗2

=
L∑

N=0

(
Eμ̂

[
P̂ n

t

(
F̂n,t (·, �)

)
Ĝn,t

(·, �′)]e n
2 �2

0∗t⊗2)(N)

|t=0 ∗ t⊗N

+ O
((

n(L+1)/J + ϑn−2knnL+1)|t |L+1e
n
3 �2

0∗t⊗2∥∥f (·, �)∥∥V∥∥g
(·, �′)∥∥

V
)

=
L∑

N=0

(
Eν̄

[
φn(·, �)eitSnψn

(
T̄ n(·), �′)]e n

2 �2
0∗t⊗2)(N)

|t=0 ∗ t⊗N

+ O
((

n(L+1)/J + ϑn−2knnL+1)|t |L+1e
n
3 �2

0∗t⊗2∥∥f (·, �)∥∥V∥∥g
(·, �′)∥∥

V
)
,

since P̂ n
t = λn

t �t + Rn
t with (Rn

t )(j) = O(ϑn) and (λn· e
n
2 �2

0∗·⊗2
)
(j)
t is in O(nj/J e

n
3 �2

0∗·⊗2
). Using the fact that∫

Rd

|t |L+1e− n
6 �2

0∗t⊗2
dt = n− L+1+d

2

∫
Rd

|t |L+1e− 1
6 �2

0∗t⊗2
dt = O

(
n− L+1+d

2
)
,

and that∫
[−b,b]d

e−it.(�′−�)e− n
2 �2

0∗t⊗2
t⊗N dt

= n− N+d
2

∫
[−b

√
n,b

√
n]d

e
− i√

n
t.(�′−�)

t⊗Ne− 1
2 �2

0∗t⊗2
dt

= n− N+d
2

∫
Rd

e
− i√

n
t.(�′−�)

t⊗Ne− 1
2 �2

0∗t⊗2
dt + O

(
n− L+1+d

2
)

= n− N+d
2 iN�(N)

(
�′ − �√

n

)
+ O

(
n− L+1+d

2
)
,

we obtain∫
M

f.g ◦ T n dν −
∑

�,�′∈Zd

L∑
N=0

n− N+d
2 iN�(N)

(
�′ − �√

n

)
∗ (

Eν̄

[
φn

(·, �)eitSnψn

(
T̄ n(·), �′)]e n

2 �2
0∗t⊗2)(N)

|t=0

= O
(
n− L+1+d

2 +� L+1
J

�kL+1−J � L+1
J

�
n

) = o
(
n− K+d

2
)
.
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But, for every N = 0, . . . ,L,∣∣(Eν̄

[
φn(·, �)eitSnψn

(
T̄ n(·), �′)]e n

2 �2
0∗t⊗2)(N)

|t=0 − (
Eν̄

[
f (·, �)eitSng

(
T̄ n(·), �′)]e n

2 �2
0∗t⊗2)(N)

|t=0

∣∣
≤ 2

∥∥f (·, �)∥∥V .
∥∥g

(·, �′)∥∥
Vθkn

∥∥(
eit.Sne

n
2 �2

0∗t⊗2)(N)

|t=0

∥∥
L∞(ν̄)

≤ 2
∥∥f (·, �)∥∥V .

∥∥g
(·, �′)∥∥

VθknnN ≤ 2
∥∥f (·, �)∥∥V .

∥∥g
(·, �′)∥∥

Vn− L+1+d
2 ,

due to the definition of kn and so we obtain (40). Let us prove that, for every N ,(
AN,n

(
f (·, �), g(·, �′)) := (

Eν̄

[
f (·, �)eitSng

(
T̄ n(·), �′)]λ−n

t

)(N)

|t=0

)
n

is a Cauchy sequence. For N = 0, . . . ,L and 2kn ≤ n ≤ n + m ≤ 2n, we have∣∣AN,n

(
f (·, �), g(·, �′)) − AN,n+m

(
f (·, �), g(·, �′))∣∣

≤ ∣∣AN,n

(
φn(·, �),ψn

(·, �′)) − AN,n+m

(
φn(·, �),ψn

(·, �′))∣∣ + O
(
nN

∥∥f (·, �)∥∥V∥∥g
(·, �′)∥∥

Vθkn
)

≤ ∣∣Eμ̂

[((
λ−n

t P̂
n−2kn
t − λ−n−m

t P̂
n+m−2kn
t

)(
P̂

2kn
t

(
e−it Ŝkn−m0 f̂n(·, �)

)
eitŜkn−m0 ĝn

(·, �′)))(N)

|t=0

]∣∣
+ O

(
nN

∥∥f (·, �)∥∥V∥∥g
(·, �′)∥∥

Vθkn
)

≤ O
((

nNθkn + ϑn/2)∥∥f (·, �)∥∥V∥∥g
(·, �′)∥∥

V
) = O

(
n− L+1+d

2
∥∥f (·, �)∥∥V∥∥g

(·, �′)∥∥
V
)
,

since λ−n
t P̂

n−2kn
t = λ

−2kn
t �t + λ−n

t R
n−2kn
t and (Rn

t )
(j)

|t=0 = O(ϑn). Therefore, for every N = 0, . . . ,L and kn ≤ n ≤
n + m, we obtain

sup
m≥0

∣∣AN,n

(
f (·, �), g(·, �′)) − AN,n+m

(
f (·, �), g(·, �′))∣∣

≤
∑
p≥0

sup
m=0,...,2pn

∣∣AN,2pn

(
f (·, �), g(·, �′)) − AN,2pn+m

(
f (·, �), g(·, �′))∣∣

≤ O

(∑
p≥0

(
2pn

)− L+1+d
2

∥∥f (·, �)∥∥V∥∥g
(·, �′)∥∥

V

)
= O

(∥∥f (·, �)∥∥V∥∥g
(·, �′)∥∥

Vn− L+d+1
2

)
.

Hence AN(f (·, �), g(·, �′)) is well defined and∣∣AN,n

(
f (·, �), g(·, �′)) − AN

(
f (·, �), g(·, �′))∣∣ = O

(∥∥f (·, �)∥∥V∥∥g
(·, �′)∥∥

Vn− L+d+1
2

)
.

Hence we have proved (39) since (λn/an)
(j)

0 is polynomial in n of degree at most �j/J � (due to (35)). Moreover, fix
some n0 such that n0 ≥ 2kn0 , then∣∣AN,n0

(
f (·, �), g(·, �′))∣∣ ≤ ∣∣AN,n0

(
φn0(·, �),ψn0

(·, �′))∣∣ + O
(∥∥f (·, �)∥∥V∥∥g(·, �′)

∥∥
V
)

≤ ∣∣(λ−n0
t P̂

n0−2kn0
t

(
P̂

2kn0
t

(
F̂n0,t (·, �)

))
Ĝn0,t

(·, �′))(N)

|t=0

∣∣ + O
(∥∥f (·, �)∥∥V∥∥g(·, �′)

∥∥
V
)

≤ O
(∥∥f (·, �)∥∥V∥∥g(·, �′)

∥∥
V
)
.

Thus, for every N = 0, . . . ,L, |AN(f (·, �), g(·, �′))| ≤ O(‖f (·, �)‖V‖g(·, �′)‖V ).
Assume now

∑
�∈Zd |�|K(‖f (·, �)‖V + ‖g(·, �)‖V ) < ∞. The proof of (42) follows exactly the same scheme as

the proof of (34) with Eν̄[v�′�(m)
0 (u�)] being replaced by Am(f (·, �), g(·, �′)). �
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3.2. Application to Zd -extensions of mixing subshifts of finite type

In this subsection, we consider the case of a subshift of finite type on a finite alphabet A. Given a matrix B indexed
by A × A with 0–1 entries (such that there exists n0 such that Bn0 has positive entries), we consider M̄ as the set of
allowed sequences, i.e.

M̄ := {
x := (xn)n∈Z ∈ AZ : ∀n ∈ Z,B(xn, xn+1) = 1

}
.

Given θ ∈ (0,1), we consider the metric δθ defined on M̄ by:

δθ (x, y) := θmin{k≥1:xk �=yk or x−k �=y−k}.

We define the shift T̄ : M̄ → M̄ by T̄ ((xn)n∈Z) = (xn+1)n∈Z. Let ν̄ be the Gibbs measure associated to some Lips-
chitz continuous potential h. Assume moreover that κ : M̄ → Zd is Lipschitz continuous with respect to δθ (so κ is
uniformly bounded) and is non-arithmetic.

Theorem 3.8. Let f,g : M →C be a couple of functions such that∑
�∈Zd

|�|K(∥∥f (·, �)∥∥ + ∥∥g(·, �)∥∥)
< ∞

with ‖ · ‖ the Lipschitz norm associated to δθ . Then there exist c0(f, g), . . . , cK(f, g) such that∫
M

f.g ◦ T n dν =
∑
m,j,r

ij+m

m!r!j !
(

�(j+m+r)(0)

n
j+d+m+r

2

∗ (
λn

t e
n
2 �2

0∗t⊗2)(j)

|t=0

)

∗
∑

�,�′∈Zd

(
�′ − �

)⊗r ⊗ Am

(
f (·, �), g(·, �′)) + o

(
n− K+d

2
)

=
�K/2�∑
k=0

n−k− d
2 ck(f, g) + o

(
n− K+d

2
)
,

with Am(·) given by (37), with λt defined for t small enough by

∃ct �= 0, Eν̄

[
eit.Sn

] ∼ ctλ
n
t , as n → +∞,

and where the sum over (m, j, r) is taken over the (m, j, r) with m,j, r non negative integers such that j +m+ r ∈ 2Z
and r+m+j

2 − � j
3 � ≤ K/2 (and j = 0 or j ≥ J ) and where � is the density of the Gaussian distribution N (0,�2

0),

and where �2
0 is the asymptotic variance of (n−1/2 ∑n−1

k=0 κ ◦ T̄ k)n.

Proof. We apply Theorem 3.7. We consider (�̂, μ̂, τ̂ ) the one-sided subshift of finite type:

�̂ := {
(xn)n≥0 : ∀n ≥ 0,B(xn, xn+1) = 1

}
and p((xn)n∈Z) := (xn)n≥0, τ̂ ((xn)n≥0) = (xn+1)n≥0 and μ̂ the image measure of ν̄ by p. We endow �̂ with the metric
δ
(+)
θ defined by δ

(+)
θ (x, y) := θmin{k≥1:xk �=yk}.

We take B = B0 for the set of functions f̂ : �̂ → C, Lipschitz continuous with respect to δ
(+)
θ . Observe that there

exists m0 such that κ((xn)n∈Z) depends only on x−m0, . . . , xm0 and so κ ◦ T̄ m0(x) only depends on coordinates of x

with non-negative indices. Therefore, there exists κ̂ : �̂ → Zd such that κ̂ ◦ p = κ ◦ T̄ m0 with κ̂((xk)k≥0) depending
only on x0, . . . , x2m0 .

Let f : M̄ → C be a Lipschitz continuous function (with respect to δθ ). For every x ∈ M̄ and every n ≥ 1, we
set f̃n(x) for the minimum of f over Cn(x) := {y ∈ M̄ : ∀|k| ≤ n,yk = xk}. Observe that ‖f − f̃n‖∞ ≤ ‖f ‖θn.
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Since f̃n ◦ T̄ n(x) depends only on x0, . . . , x2n, there exists fn : �̂ → C such that fn ◦ p = f̃n ◦ T̄ n, with fn((xk)k)

depending only on x0, . . . , x2n. Let P̂ be the transfer operator associated to (�̂, μ̂, τ̂ ) and P̂t : f 
→ P̂ (eit ·κ̂ f ). The

fact that ‖(P̂ 2n
t (e−it.Ŝn−m0 fn))

(N)‖B ≤ C0n
N‖f ‖∞ comes from Lemma 2.6. Moreover∥∥∥∥ ∂j

∂tj

(
fne

itSn−m0
)∥∥∥∥

B′
0

≤
∥∥∥∥ ∂j

∂tj

(
fne

itSn−m0
)∥∥∥∥

L1(μ̂)

≤ nj‖κ‖j∞‖f ‖∞.

Due to [17] and [18], (P̂t )t satisfies (H2) with respect to (B,L+1,L+1,3,�2
0), with L = 3K and with s 
→ �s , s 
→

Rs and s 
→ λs C∞, (31) and supu∈[−b,b]d ‖(Rn
u)(m)‖(B,B) = O(ϑn) for every m ≥ 0. Hence, Theorem 3.7 applies.

Finally λs satisfies Eν̄[eis.Sn] = Eμ̂[eis.Ŝn] = Eμ̂[P̂ n
t 1] = Eμ̂[λn

s �s1 + Rn
s 1] ∼ λn

sEμ̂[�s1] for every s small enough,
moreover lims→0 Eμ̂[�s1] = Eμ̂[�01] = 1 �= 0. �

4. Sinai billiards with finite or infinite horizon

4.1. Some facts about young towers for billiards

Now, we come back to the case of Z2-periodic Sinai billiards, with the notations of Section 1. We use the dynamical
systems constructed by Young in [37] (Young towers). We won’t remind all the construction. We recall just the
properties we need. In [37], Young constructed two probability preserving dynamical systems (�̂, μ̂, τ̂ ) and (�,μ, τ)

such that (�,μ, τ) is an extension of both (M̄, ν̄, T ) and (�̂, μ̂, τ̂ ) by, respectively, q : � → M̄ and p : � → �̂. Given
(any) p > 1, Young constructs a Banach space (B,‖ · ‖B) of functions f : �̂ → C such that there exist c0 ∈ (0,1) and
β ∈ (0,1) such that

c0‖f ‖Lq(μ̂) ≤ ‖f ‖B ≤ ‖f ‖∞ + sup
x,y∈�̂:s0(x,y)≥0

|f (x) − f (y)|
βs0(x,y)

, (44)

with q such that 1
p

+ 1
q

= 1 and with s0(x, y) some dynamical separation time on �̂ satisfying the following property:

for every x, y ∈ �̂ (x �= y), s0(x, y) + 1 is smaller that the minimal integer k ≥ 0 such that the sets q(p−1({x})) and
q(p−1({y})) do not lie in same connected component of M̄ \ ⋃k

m=0 T̄ −mS0. While the right hand side of (44) may
be +∞ in general on B, its upperbound is not useful for every f ∈ B, but only for bounded functions f , that are
Lipschitz continuous with respect to the metric βs0(·,·).

We recall also that q(p−1({x})) is a piece of a stable manifold. Hence, for every measurable function f : M̄ → C

constant on every stable manifold, there exists f̂ : �̂ →C such that f̂ ◦p= f ◦q. In particular, there exists κ̂ : �̂ → Zd

such that κ ◦ q= κ̂ ◦ p.
We set Ŝn := ∑n−1

k=0 κ̂ ◦ τ̂ k . We recall that the transfer operator P̂ of (�̂, μ̂, τ̂ ) has the following form P̂ g(x) =∑
z∈τ̂−1({x}) e−φ(z)g(z) with |φ(z)−φ(y)| ≤ Cβs0(τ̂ (z),τ̂ (y)). Moreover, for every x, y ∈ �̂ such that s0(x, y) ≥ 0, there

exists a bijection χx,y : τ̂−1({x}) → τ̂−1({y}) such that

∀z ∈ τ̂−1({x}), s0
(
z,χx,y(z)

) = 1 + s0(x, y).

We recall that, up to an adaptation of the construction of the tower, the dominating eigenvalue of P̂ on B is 1 and is
simple. For any u ∈R2 and f̂ ∈ B, we set P̂u(f̂ ) := P̂ (eiu.κ̂ f̂ ). For the billiard in infinite horizon we take B0 := L1(μ̂)

and for the billiard with finite horizon, we take B0 := B. For every couple of integers k ≤ �, we define Z�
k as the

partition of M̄ \ ⋃�
j=k T −jS0. For every couple of dynamically Lipschitz functions (f, g) (with respect to dξ ) and

every positive integer n, we set

f̃n := Eν̄

[
f |σ (

Zn−n

)] ◦ T̄ n and g̃n := Eν̄

[
g|σ (

Zn−n

)] ◦ T̄ n .

It comes that∥∥f ◦ T̄ n − f̃n

∥∥∞ ≤ Lξ (f )ξn and
∥∥g ◦ T̄ n − g̃n

∥∥∞ ≤ Lξ (g)ξn. (45)
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Lemma 4.1. There exists C1 > 0 such that, for every bounded Zn−n-measurable function f : M̄ → C, there exists

f̂ ∈ B such that f̂ ◦ p = f ◦ T̄ n ◦ q. Moreover,∥∥(
P̂ 2n

t

(
e−it Ŝn−m0 f̂

))(j)∥∥
B + ∥∥(

f̂ eit Ŝn−m0
)(j)∥∥

B′
0
≤ C0n

j‖f ‖∞

hold for j = 0 in any case (finite or infinite horizon) and for every positive integer j in the finite horizon case.

Proof. Observe that the function f ◦ T̄ n is Z2n
0 -measurable. First, this implies that f ◦ T̄ n is constant on stable

manifolds and so that there exists f̂ : �̂ →C such that f̂ ◦p= f ◦ T̄ n ◦q. Second, if x, y ∈ � are such that s0(x, y) ≥
2n, then f ◦ T̄ n is equal to the same constant on q(p−1({x})) and on q(p−1({y})). Therefore the function f̂ is in B
and ‖f̂ ‖B ≤ (1 + 2β−2n)‖f ‖∞. Due to (44),

∥∥f̂ eit Ŝn−m0
∥∥
B′

0
≤ 1

c0

∥∥f̂ eit Ŝn−m0
∥∥

L∞(μ̂)
≤ 1

c0
‖f ‖∞.

Moreover, if κ is bounded (finite horizon case), then, for every positive integer j , we have:∥∥(
f̂ eit Ŝn−m0

)(j)∥∥
B′ ≤ ∥∥(Ŝn−m0)

⊗j f̂ eitŜn−m0
∥∥

Lp(μ̂)
≤ (

n‖κ‖∞
)j‖f ‖∞.

The first point comes from Lemma 2.6. �

4.2. Proof of the mixing result in the infinite horizon case

Proof of Theorem 1.1. In [35], Szász and Varjú implemented the Nagaev–Guivarc’h perturbation method via the
Keller–Liverani theorem [19] to prove that (P̂s)s satisfies Condition (H1) (see Definition 2.1) with respect to (B,B0 :=
L1(μ̂), (

√
n logn Id)n,�) with � the density function of the centered normal distribution of variance �2∞ (defined

in (8)) and with λ having the following expansion λt − 1 ∼ �2∞ ∗ (t⊗2) log |t |. We will apply Theorem 2.4 with the
previous notations, with V =W the set of functions F : � → C of the form F = f ◦ q, with f : M̄ →C dynamically
Lipschitz continuous (wrt. dξ ), with B the Young Banach space, with B0 := L1(μ̂), with V0 = W0 = L∞(μ), p0 =
q0 = ∞. Let (f, g) ∈ V × W and n ≥ m0. We take fn(x) and gn(x) as the conditional expectation of respectively
f ◦ T̄ n and g ◦ T̄ n given the atom of Z2n

0 containing x. Due to (45) and to Lemma 4.1, we obtain (23). Theorem 2.4
applies.

�

4.3. Proofs of our main results in the finite horizon case

We assume throughout this section that the billiard has finite horizon. The Nagaev–Guivarc’h method [17,23,24] has
been applied in this context by Szász and Varjú [34] (see also [26]) to prove that (P̂t )t satisfies Condition (H2) with
respect to (B,L + 1,L + 1,4,�2) (with �2 defined in (7)) for every L. More precisely, we have the following.

Proposition 4.2 ([26,34]). There exist b ∈ (0,π) and three C∞ functions t 
→ λt , t 
→ �t and t 
→ Nt defined on
[−b, b]2 and with values in C, L(B,B) and L(B,B) respectively such that

(i) for every t ∈ [−b, b]2, P̂ n
t = λn

t �t + Rn
t and �0 = Eμ̂[·], �tP̂t = P̂t�t = λt�t , �2

t = �t ;
(ii) there exists ϑ ∈ (0,1) such that, for every positive integer m,

sup
t∈[−b,b]2

∥∥(
Rn

)(m)

t

∥∥
L(B,B)

= O
(
ϑn

)
and sup

t∈[−π,π]2\[−b,b]2

∥∥P̂ n
t

∥∥
L(B,B)

= O
(
ϑn

);
(iii) we have λt = 1 − 1

2�2 ∗ t⊗2 = O(|t |3), with �2 given by (7);

(iv) there exists σ > 0 such that, for any t ∈ [−b, b]2, |λt | ≤ e−σ |t |2 and e− 1
2 �2∗t⊗2 ≤ e−σ |t |2 .
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Lemma 4.3. The sequence (κ ◦ T̄ k)k has same distribution as (−κ ◦ T̄ −k)k .
The function t 
→ λt is even in a neighbourhood of 0. In particular λt = 1 − 1

2�2 ∗ t⊗2 + O(|t |4).

Proof. Let � : M̄ → M̄ be the map which sends (q, �v) ∈ M̄ to (q, �v′) ∈ M̄ such that the following angular equality

holds true: ̂(�n(q), �v′) = − ̂(�n(q), �v). Then κ ◦ T̄ k ◦� = −κ ◦ T̄ −k−1. Hence, Sn has the same distribution (with respect
to ν̄) as −Sn and so, for every t small enough,

Eν̄

[
e−it.Sn

] = Eν̄

[
eit.Sn

] ∼ λn
t Eμ̂[�t1] ∼ λn−tEμ̂[�−t1]

as n goes to infinity, and so λ is even. �

Let � be the density function of B , which is given by �(x) = e
− (�2)−1∗x⊗2

2

2π
√

det�2
. We set at := e− 1

2 �2∗t⊗2
. Note that the

uneven derivatives of λ/a at 0 are null as well as its three first derivatives. This gives the following result ensuring
Theorem 1.2.

Proposition 4.4. The conclusions of Theorem 3.7 hold true provided (f, g) satisfies the hypotheses stated therein with
V the set of dynamically Lipschitz continuous functions, with J = 4, for every K,L such that K ≥ 4 and L = 2K .

Proof. We apply Theorem 3.7 to the dynamical system (�,ν, τ ) with the Banach space Ṽ of functions of the form
f ◦ q, with f : M̄ → C dynamically Lipschitz continuous. The fact that this dynamical system satisfies Condition
(H2 bis) with respect to (Ṽ,2K + 1,4,�2) for every integer K such that K ≥ 4 comes from the facts contained in
Section 4.1 (in particular from (45) and Lemma 4.1) and from Proposition 4.2 and from Lemma 4.3. Theorem 3.7
applies. �

In particular, the following quantity is well defined for every couple (u, v) of observables in V :

Am(u, v) := lim
n→+∞

∂m

∂tm

(
Eν̄

[
u.eit.Sn .v ◦ T̄ n

]
λ−n

t

)
|t=0, (46)

with λt being defined in Proposition 4.2.

Proof of Theorem 1.3. Due to Proposition 4.4 and to (41), we obtain (11) with

Ã2(f, g) = a2,0,0(f, g) + a0,2,0(f, g) + a1,1,0(f, g),

where am,r,j (f, g) corresponds to the contribution of the (m, r, j)-term in the sum of the right hand side of (41).
Moreover, using the notations f�(q, �v) := f ((q, �v), �) and g�(q, �v) := g((q, �v), �), due to Proposition A.3,

a2,0,0(f, g) =
∑

�,�′∈Z2

A2(f�, g�′)

= − lim
n→+∞

{∫
M

f dν

−1∑
j,m=−n

∫
M

g.
(
κ ◦ T j ⊗ κ ◦ T m −Eν̄

[
κ ◦ T̄ j ⊗ κ ◦ T̄ m

])
dν

+
∫

M

g dν

n−1∑
j,m=0

∫
M

f.
[
κ ◦ T j ⊗ κ ◦ T m −Eν̄

[
κ ◦ T̄ j ⊗ κ ◦ T̄ m

]]
dν

+ 2
n−1∑
r=0

∫
M

f.κ ◦ T r dν ⊗
−1∑

m=−n

∫
M

g.κ ◦ T m dν +
∫

M

f dν

∫
M

g dν
(
Eν̄

[
S⊗2

n

] − n�2)},

a0,2,0(f, g) = −
∑

�,�′∈Z2

A0(f�, g�′).
(
�′ − �

)⊗2 = −
∑

�,�′∈Z2

(
�′ − �

)⊗2
∫
C�

f dν

∫
C�′

g dν,
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a1,1,0(f, g) = −2i
∑

�,�′∈Z2

A1(f�, g�′) ⊗ (
�′ − �

)

= 2 lim
n→+∞

{ ∑
�,�′∈Z2

∫
C�′

g dν

n−1∑
r=0

∫
C�

f.
((

�′ − �
) ⊗ κ ◦ T r

)
dν

+
∑

�,�′∈Z2

∫
C�

f dν

−1∑
m=−n

∫
C�′

g.
((

�′ − �
) ⊗ κ ◦ T m

)
dν

}
.

For the contribution of the term with (m, r, j) = (0,0,4), note that(
λn/an

)(4)

0 = n(λ/a)
(4)
0 = n

(
λ

(4)
0 − 3

(
�2)⊗2)

and apply Proposition A.4. Note that

a2,0,0(f, g) = − lim
n→+∞

{∫
M

f dν

∫
M

g
(
(I0 − I−n)

⊗2 −Eν̄

[
S⊗2

n

])
dν

+
∫

M

g dν

∫
M

f
(
(In − I0)

⊗2 −Eν̄

[
S⊗2

n

])
dν

+ 2
∫

M

f (In − I0) dν ⊗
∫

M

g(I0 − I−n) dν −
∫

M

f dν

∫
M

g dνB0

}
,

a0,2,0(f, g) = −
∫

M

f.I⊗2
0 dν

∫
M

g dν −
∫

M

f dν

∫
M

g.I⊗2
0 dν + 2

∫
M

f I0 dν ⊗
∫

M

gI0 dν

and

a1,1,0(f, g) = lim
n→+∞

{
2
∫

M

gI0 dν ⊗
∫

M

f (In − I0) dν − 2
∫

M

g dν

∫
M

f.I0 ⊗ (In − I0) dν

+ 2
∫

M

f dν

∫
M

g.I0 ⊗ (I0 − I−n) dν − 2
∫

M

f I0 dν ⊗
∫

M

g(I0 − I−n) dν

}
.

This ends the proof of the theorem. �

Remark 4.5. Let f,g : M → R be two bounded observables such that∑
�∈Z2

|�|4(‖f 1C�
‖(ξ) + ‖g1C�

‖(ξ)

)
< ∞. (47)

Assume moreover that
∫
M

f dν
∫
M

g dν = 0 and that Ã2(f, g) = 0. Due to Proposition 4.4 and (41),∫
M

f.g ◦ T n dν

= 3(�−2)⊗2

2π
√

det�2n3
∗

∑
�,�′∈Z2

(
A4(f�, g�′)

24
+ A0(f�, g�′)

24

(
�′ − �

)⊗4 + iA1(f�, g�′)

6
⊗ (

�′ − �
)⊗3

− 1

4
A2(f�, g�′) ⊗ (

�′ − �
)⊗2 − i

6
A3(f�, g�′) ⊗ (

�′ − �
)) + o

(
n−3),

where f�(q, �v) := f (q + �, �v) and g�(q, �v) := g(q + �, �v), with Am(u, v) defined by (46).
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Proof of Proposition 1.6. We apply Remark 4.5. Due to Proposition A.3, for every �, �′ ∈ Z2, A0(f�, g�′) =
A1(f�, g�′) = 0 (since Eν̄[f�] = Eν̄[g�′ ] = 0) and∑

�,�′∈Z2

A4(f�, g�′) =
∑

�,�′∈Z2

h�.q�′A4(f̃0, g̃0) = 0.

Moreover∑
�,�′∈Z2

A3(f�, g�′) ⊗ (
�′ − �

) =
∑

�,�′∈Z2

h�q�′A3(f̃0, g̃0) ⊗ (
�′ − �

) = 0

since
∑

�∈Z2 h� = ∑
� q� = 0. Therefore∫

M

f.g ◦ T n dν = −3

4

(�−2)⊗2

2π
√

det�2n3
∗

∑
�,�′∈Z2

A2(f�, g�′) ⊗ (
�′ − �

)⊗2 + o
(
n−3)

= 3

2

(�−2)⊗2

2π
√

det�2n3
∗

∑
�,�′∈Z2

h�q�′A2(f̃0, g̃0) ⊗ � ⊗ �′ + o
(
n−3)

= 3

2

(�−2)⊗2

2π
√

det�2n3
A2(f̃0, g̃0) ⊗

∑
�∈Z2

h�.� ⊗
∑
�′∈Z2

q�′ .�′ + o
(
n−3)

= − 3(�−2)⊗2

2π
√

det�2n3
∗

(∑
j≥0

Eν̄

[
f̃0.κ ◦ T̄ j

] ⊗
∑

m≤−1

Eν̄

[
g̃0.κ ◦ T̄ m

] ⊗
∑
�∈Z2

h�.� ⊗
∑
�′∈Z2

q�′ .�′
)

+ o
(
n−3). �

Appendix A: Billiard with finite horizon: About the coefficients Am

Let us recall some facts on the Sinai billiard with finite horizon. Let k0 ∈ N be some large enough fixed integer. Let us
write (̂·, ·) for the angular measure in (−π,π] between two vectors.

Definition A.1. A stable (resp. unstable) H -manifold (or homogeneous manifold) is a C1 connected curve which
contains no point of

⋃
k≥0 T̄ −k(S0 ∪H) (resp.

⋃
k≥0 T̄ k(S0 ∪H)), with

H :=
{
x = (q, �v) ∈ M̄ : ∃k ∈ N, |k| ≥ k0,

∣∣ ̂(�n(q), �v)∣∣ = π

2
− 1

k2

}
.

Let Ws (resp. Wu) be the set of stable (resp. unstable) H -manifolds. In [10], Chernov defines two separation times
s+ and s− which are dominated by s and are such that, for every positive integer k,

∀Wu ∈Wu,∀x, y ∈ Wu, s+
(
T̄ −kx, T̄ −ky

) = s+(x, y) + k,

∀Ws ∈Ws ,∀x, y ∈ Ws, s−
(
T̄ kx, T̄ ky

) = s−(x, y) + k.

More precisely

∀Wu ∈Wu,∀x, y ∈ Wu, s+(x, y) := inf
{
n ≥ 0 : T̄ n

((
Wu

)
x,y

)
is an unstable H -manifold

}
,

∀Ws ∈Ws ,∀x, y ∈ Ws, s−(x, y) := inf
{
n ≥ 0 : T̄ −n

((
Ws

)
x,y

)
is a stable H -manifold

}
,

where (Wu)x,y (resp. (Ws)x,y ) is the connected part of Wu (resp. Ws ) with extremities x and y.
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Proposition A.2 ([10], Theorem 4.3 and remark thereafter). There exist C0 > 0 and ϑ0 ∈ (0,1) such that, for every
positive integer n, for every bounded measurable functions u,v : M̄ →R,

|Eν̄

[
u.v ◦ T̄ n

] −Eν̄[u]Eν̄[v]| ≤ C0
(
L+

u ‖v‖∞ + L−
v ‖u‖∞ + ‖u‖∞‖v‖∞

)
ϑn

0 ,

with

L+
u := sup

Wu∈Wu

sup
x,y∈Wu,x �=y

(∣∣u(x) − u(y)
∣∣ξ−s+(x,y)

)
,

and

L−
v := sup

Ws∈Ws

sup
x,y∈Ws,x �=y

(∣∣v(x) − v(y)
∣∣ξ−s−(x,y)

)
.

Note that

L+
u ≤ Lξ (u1M̄ ), L−

u ≤ Lξ (u1M̄ ), L+
u◦T̄ −k ≤ L+

u ξk and L−
v◦T̄ k ≤ L−

v ξk.

We will set ũ := u−Eν̄[u] and ṽ := v −Eν̄[v]. We will express the terms Am(u, v) for m ∈ {1,2,3,4} in terms of the
following quantities:

B+
1 (u) :=

∑
j≥0

Eν̄

[
u.κ ◦ T̄ j

]
, B−

1 (v) :=
∑

m≤−1

Eν̄

[
v.κ ◦ T̄ m

]
,

B+
2 (u) :=

∑
j,m≥0

Eν̄

[
ũ.κ ◦ T̄ j ⊗ κ ◦ T̄ m

]
, B−

2 (v) :=
∑

j,m≤−1

Eν̄

[
ṽ.κ ◦ T̄ j ⊗ κ ◦ T̄ m

]
,

B+
0 (u) =

∑
k≥0

(k + 1)Eν̄

[
u.κ ◦ T̄ k

]
, B−

0 (v) :=
∑

k≤−1

|k|Eν̄

[
v.κ ◦ T̄ k

]
,

B0 :=
∑
m∈Z

|m|Eν̄

[
κ ⊗ κ ◦ T̄ m

] = lim
n→+∞

(
n�2 −Eν̄

[
S⊗2

n

])
,

B+
3 (u) :=

∑
k≥0

Eν̄

[
u.κ⊗3 ◦ T̄ k

] + 3
∑

r>k≥0

Eν̄

[
ũ.κ⊗2 ◦ T̄ k ⊗ κ ◦ T̄ r

]
+ 3

∑
0≤k<m,r

Eν̄

[(
ũ.κ ◦ T̄ k −Eν̄

[
ũ.κ ◦ T̄ k

]) ⊗ κ ◦ T̄ m ⊗ κ ◦ T̄ r
]
,

B−
3 (v) :=

∑
k≥1

Eν̄

[
v.κ⊗3 ◦ T̄ −k

] + 3
∑

r>k≥1

Eν̄

[
ṽ.κ⊗2 ◦ T̄ −k ⊗ κ ◦ T̄ −r

]
+ 3

∑
1≤k<m,r

Eν̄

[(
ṽ.κ ◦ T̄ −k −Eν̄

[
ṽ.κ ◦ T̄ −k

]) ⊗ κ ◦ T̄ −m ⊗ κ ◦ T̄ −r
]
.

Proposition A.3. Let u,v : M̄ → C be two dynamically Lipschitz continuous functions, with respect to dξ with ξ ∈
(0,1). Then,

A0(u, v) = Eν̄[u].Eν̄[v], (49)

A1(u, v) = i lim
n→+∞Eν̄

[
u.Sn.v ◦ T̄ n

] = iB+
1 (u)Eν̄[v] + iB−

1 (v)Eν̄[u], (50)

A2(u, v) = lim
n→+∞

(
nEν̄[u]Eν̄[v]�2 −Eν̄

[
u.S⊗2

n .v ◦ T̄ n
])

(51)

= Eν̄[u]Eν̄[v]B0 − 2B+
1 (u) ⊗ B−

1 (v) −Eν̄[v]B+
2 (u) −Eν̄[u]B−

2 (v), (52)
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A3(u, v) = lim
n→+∞

(
3in�2 ⊗Eν̄

[
u.Sn.v ◦ T̄ n

] − iEν̄

[
u.S⊗3

n .v ◦ T̄ n
])

(53)

= 3A1(u, v) ⊗ B0 + 3i�2 ⊗ (
Eν̄[u]B−

0 (v) +Eν̄[v]B+
0 (u)

) − i
(
Eν̄[v]B+

3 (u) +Eν̄[u]B−
3 (v)

)
− 3iB−

2 (v) ⊗ B+
1 (u) − 3iB+

2 (u) ⊗ B−
1 (v). (54)

Proof. As in the proof of Theorem 3.7, we set Am,n(u, v) := (Eν̄[u.eit.Sn .v◦ T̄ n]/λn
t )

(m)
|t=0. We will use Proposition A.2

and the fact that λt = 1 − 1
2�2 ∗ t⊗2 + 1

4!λ
(4)
0 ∗ t⊗4 + o(|t |4) to compute Am(u, v) = limn→+∞ Am,n(u, v).

• First we observe that A0,n(u, v) = Eν̄[u.v ◦ T̄ n] and we apply Proposition A.2.
• Second,

A1,n(u, v) = iEν̄

[
u.Sn.v ◦ T̄ n

] = i

n−1∑
k=0

Eν̄

[
u.κ ◦ T̄ k.v ◦ T̄ n

]

= i

�n/2�∑
k=0

Eν̄

[
u.κ ◦ T̄ k

]
Eν̄[v] + i

n−1∑
k=�n/2�+1

Eν̄[u]Eν̄

[
v.κ ◦ T̄ −(n−k)

] + O
(
nϑ

n/2
0 ‖u‖(ξ)‖u‖(ξ)

)
= iEν̄[v]

∑
k≥0

Eν̄

[
u.κ ◦ T̄ k

] + iEν̄[u]
∑

m≤−1

Eν̄

[
v.κ ◦ T̄ m

] + O
(
nϑ

n/2
0 ‖u‖(ξ)‖u‖(ξ)

)
, (55)

where we used several times Proposition A.2, combined with the fact that Eν̄[κ] = 0.
• Third,

A2,n(u, v) = −Eν̄

[
u.S⊗2

n .v ◦ T̄ n
] + n�2Eν̄[u.v ◦ T̄ n] (56)

= −
n−1∑

k,m=0

Eν̄

[
u.

(
κ ◦ T̄ k ⊗ κ ◦ T̄ m

)
.v ◦ T̄ n

] + n�2Eν̄[u]Eν̄[v] + O
(
nϑn

0 ‖u‖(ξ)‖u‖(ξ)

)

= −
n−1∑

k,m=0

Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m.ṽ ◦ T̄ n

]

−
n−1∑

k,m=0

(
Eν̄[u]Eν̄

[
κ ◦ T̄ k ⊗ κ ◦ T̄ mṽ ◦ T̄ n

] +Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m

]
Eν̄[v])

+
(

n�2 −
n−1∑

k,m=0

Eν̄

[
κ ◦ T̄ k ⊗ κ ◦ T̄ m

])
Eν̄[u]Eν̄[v] + O

(
nϑn

0 ‖u‖(ξ)‖u‖(ξ)

)
. (57)

– On the first hand

n�2 −
n−1∑

k,m=0

Eν̄

[
κ ◦ T̄ k ⊗ κ ◦ T̄ m

] = n
∑
k∈Z

Eν̄

[
κ ⊗ κ ◦ T̄ k

] −
n∑

k=−n

(
n − |k|)Eν̄

[
κ ⊗ κ ◦ T̄ k

]
=

∑
k∈Z

min
(
n, |k|)Eν̄

[
κ ⊗ κ ◦ T̄ k

]
,

which converges to
∑

k∈Z |k|Eν̄[κ ⊗ κ ◦ T̄ k].
– On the second hand, for 0 ≤ k ≤ m ≤ n, due to Proposition A.2 (treating separately the cases k ≥ n/3, m − k ≥

n/3 et n − m ≥ n/3),

Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m.ṽ ◦ T̄ n

] = Eν̄

[
ũ.κ ◦ T̄ k

] ⊗Eν̄

[
ṽ.κ ◦ T̄ n−m

] + O
(‖u‖(ξ)‖v‖(ξ)ϑ

n/3
0

)
. (58)
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Analogously, for 0 ≤ k ≤ m ≤ n,

Eν̄

[
κ ◦ T̄ k ⊗ κ ◦ T̄ mṽ ◦ T̄ n

] = O
(‖v‖(ξ)ϑ

(n−k)/2
0

)
, (59)

Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m

] = O
(‖u‖(ξ)ϑ

m/2
0

)
. (60)

Hence
∑n−1

k,m=0 Eν̄[ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m] = B+
2 (u) + O(ϑ

n/3
0 ‖u‖(ξ)),

n−1∑
k,m=0

Eν̄

[
κ ◦ T̄ k ⊗ κ ◦ T̄ mṽ ◦ T̄ n

] = B−
2 (v) + O

(
ϑ

n/3
0 ‖v‖(ξ)

)
, (61)

and

n−1∑
k,m=0

Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m.ṽ ◦ T̄ n

]

=
(

n−1∑
k=0

Eν̄

[
ũ.κ⊗2 ◦ T̄ k.ṽ ◦ T̄ n

] + 2
∑

0≤k<m<n

Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m.ṽ ◦ T̄ n

])

= 2
∑

0≤k<m<n

Eν̄

[
ũ.

(
κ ◦ T̄ k

)] ⊗Eμ̂

[
ṽ.κ ◦ T̄ n−m

] + O
(
ϑ

n/3
0 ‖u‖(ξ)‖v‖(ξ)

)
= 2B+

1 (u) ⊗ B−
1 (v) + O

(
ϑ

n/3
0 ‖u‖(ξ)‖v‖(ξ)

)
,

where we used the fact that Eν̄[ũ.κ⊗2 ◦ T̄ k.ṽ ◦ T̄ n] = O(‖u‖(ξ)‖v‖(ξ)ϑ
n/2
0 ).

Therefore we have proved (52).
• Let us prove (54). By bilinearity, we have

A3,n(u, v) = A3,n(ũ, ṽ) +Eν̄[u]A3,n(1, ṽ) +Eν̄[v]A3,n(ũ,1) +Eν̄[u]Eν̄[v]A3,n(1,1). (62)

Note that A3,n(1,1) = −iEν̄[S⊗3
n ] = 0 since (Sn)n has the same distribution as (−Sn)n (due to Lemma 4.3). We

will write
︷̃︸︸︷
F for F −Eν̄[F ] when F is given by a long formula.

– We start with the study of A3,n(ũ,1).

A3,n(ũ,1) = − iEν̄

[
ũ.S⊗3

n

] + 3in�2 ⊗Eν̄[ũ.Sn]

= − i

n−1∑
k=0

Eν̄

[
ũ.κ⊗3 ◦ T̄ k

] − 3i
∑

0≤k<r≤n−1

Eν̄

[
ũ.κ⊗2 ◦ T̄ k ⊗ κ ◦ T̄ r

]

− 3i
∑

0≤k<m,r≤n−1

Eν̄

[ ˜︷ ︸︸ ︷
ũ.κ ◦ T̄ k ⊗

˜︷ ︸︸ ︷
κ ◦ T̄ m ⊗ κ ◦ T̄ r

] + 3in�2 ⊗Eν̄[ũ.Sn]

− 3i
∑
k≥0

∑
m∈Z

max
(
0, n − |m| − 1 − k

)
Eν̄

[
ũ.κ ◦ T̄ k

] ⊗Eν̄

[
κ ⊗ κ ◦ T̄ m

]
,
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A3,n(ũ,1) = − i

n−1∑
k=0

Eν̄

[
ũ.κ⊗3 ◦ T̄ k

] − 3i
∑

0≤k<r

Eν̄

[
ũ.κ⊗2 ◦ T̄ k ⊗ κ ◦ T̄ r

]

− 3i
∑

0≤k<m,r

Eν̄

[ ˜︷ ︸︸ ︷
ũ.κ ◦ T̄ k ⊗

˜︷ ︸︸ ︷
κ ◦ T̄ m ⊗ κ ◦ T̄ r

]
+ 3i

∑
k≥0

∑
m∈Z

(|m| + 1 + k
)
Eν̄

[
ũ.κ ◦ T̄ k

] ⊗Eν̄

[
κ ⊗ κ ◦ T̄ m

]
+ O

(‖u‖(ξ)ϑ
n/4),

A3,n(ũ,1) = −i
∑
k≥0

Eν̄

[
ũ.κ⊗3 ◦ T̄ k

] − 3i
∑

0≤k<r

Eν̄

[
ũ.κ⊗2 ◦ T̄ k ⊗ κ ◦ T̄ r

]
+ 3i�2 ⊗

∑
k≥0

(k + 1)Eν̄

[
ũ.κ ◦ T̄ k

] + 3iB+
1 (ũ) ⊗ B0

− 3i
∑

0≤k<m,r

Eν̄

[ ˜︷ ︸︸ ︷
ũ.κ ◦ T̄ k ⊗

˜︷ ︸︸ ︷
κ ◦ T̄ m ⊗ κ ◦ T̄ r

] + O
(‖u‖(ξ)ϑ

n/4). (63)

So

A3(ũ,1) = −iB+
3 (u) + 3i�2 ⊗ B+

0 (u) + 3iB+
1 (u) ⊗ B0. (64)

– Analogously

A3(1, ṽ) = −iB−
3 (v) + 3i�2 ⊗ B−

0 (v) + 3iB−
1 (v) ⊗ B0. (65)

– Finally

A3,n(ũ, ṽ) = −iEν̄

[
ũ.S⊗3

n .ṽ ◦ T̄ n
] + 3in�2 ⊗Eν̄

[
ũ.Sn.ṽ ◦ T̄ n

]
= −i

n−1∑
k,m,r=0

Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m ⊗ κ ◦ T̄ r .ṽ ◦ T̄ n

] + 3n�2 ⊗ A1,n(ũ, ṽ)

= −i

n−1∑
k,m,r=0

Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m ⊗ κ ◦ T̄ r .ṽ ◦ T̄ n

] + O
(
n2ϑ

n/2
0 ‖u‖(ξ)‖v‖(ξ)

)
.

Assume 0 ≤ k ≤ m ≤ r ≤ n − 1. Considering separately the cases k ≥ n/4, m − k ≥ n/4, r − m ≥ n/4 and
n − r ≥ n/4, we observe that

Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m ⊗ κ ◦ T̄ r .ṽ ◦ T̄ n

]
= Eν̄

[
ũ.κ ◦ T̄ k

] ⊗Eν̄

[
ṽ.κ ◦ T̄ −(n−r) ⊗ κ ◦ T̄ −(n−m)

]
+Eν̄

[
ṽ.κ ◦ T̄ −(n−r)

] ⊗Eν̄

[
ũ.κ ◦ T̄ k ⊗ κ ◦ T̄ m

] + O
(
ϑ

n/4
0 ‖v‖(ξ)‖u‖(ξ)

)
. (66)

And so

A3,n(ũ, ṽ) = −3iB+
1 (ũ)B−

2 (ṽ) − 3iB−
1 (ṽ)B+

2 (ũ). (67)

This combined with (62), (64) and (65) leads to (54). �
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Proposition A.4. The fourth derivatives of λ at 0 are given by:

λ
(4)
0 = Eν̄

[
κ⊗4] + 8

∑
n≥1

Eν̄

[
κ ⊗ (

κ⊗3 ◦ T̄ n
)]

+ 6
∑
n≥1

Eν̄

[(
κ⊗2 −Eν̂

[
κ⊗2]) ⊗ (

κ⊗2 ◦ T̄ n
)]

+ 24
∑

1≤n<m

Eν̄

[(
κ⊗2 −Eν̄

[
κ⊗2]) ⊗ (

κ ◦ T̄ n
) ⊗ (

κ ◦ T̄ m
)]

+ 12
∑

1≤n<m

Eν̄

[
κ ⊗ ((

κ⊗2 −Eν̄

[
κ⊗2]) ◦ T̄ n

) ⊗ κ ◦ T̄ m
]

+ 24
∑

1≤n<m<�

Eν̄

[(
κ ⊗ (

κ ◦ T̄ n
) −Eν̄

[
κ ⊗ (

κ ◦ T̄ n
)]) ⊗ (

κ ◦ T̄ m
) ⊗ (

κ ◦ T̄ �
)]

− 24
∑
n≥1

Eμ̄

[
κ ⊗ (

κ ◦ T̄ n
)] ∑

m≥1

mEμ̄

[
κ ⊗ (

κ ◦ T̄ m
)]

.

Proof. Let ht ∈ B be the eigenvector of P̂t associated to the eigenvalue λt such that Eμ̂[ht ] = 1. Note that h0 = 1
�̂

.

Recall that λ0 = 1, λ′
0 = 0, λ

(2)
0 = −�2, λ

(3)
0 = 0. Since λt = Eμ̂[P̂t .ht ], it comes

λ
(4)
0 =

4∑
k=0

4!
k!(4 − k)!Eμ̂

[
P̂

(k)
0 h

(4−k)
0

]
. (68)

Derivating four times the equalities: P̂tht = λt .ht and Eμ̂[ht ] = 1 and taking t = 0 leads to

Eμ̂

[
h′

0

] = Eμ̂

[
h

′(2)
0

] = Eμ̂

[
h

(3)
0

] = Eμ̂

[
h

(4)
0

] = 0,

(I − P̂ )h′
0 = P̂ ′

01
�̂
, (I − P̂ )h

(2)
0 = P̂

(2)
0 1

�̂
+ 2P ′

0h
′
0 + �2,

(I − P̂ )h
(3)
0 = P̂

(3)
0 1

�̂
+ 3P̂

(2)
0 h′

0 + 3P̂ ′
0h

(2)
0 + 3�2 ⊗ h′

0.

Therefore

h′
0 =

∑
n≥0

P̂ n
(
P̂ ′

01
�̂

) = i
∑
n≥1

P̂ nκ̂,

h
(2)
0 =

∑
n≥0

P̂ n
(
P̂

(−κ⊗2) + 2P̂
(
iκ̂ ⊗ h′

0

) + �2)
=

∑
n≥1

P̂ n

((−κ̂⊗2 +Eμ̂

[
κ̂⊗2]) − 2

(∑
m≥1

(
κ̂ ⊗ P̂ mκ̂ −Eμ̂

[
κ̂ ⊗ P̂ mκ̂

])))
,

and, since Eμ̂[P̂ (−iκ̂⊗3) + 3P̂ (−κ̂⊗2 ⊗ h′
0) + 3P̂ (iκ̂ ⊗ h

(2)
0 ) + 3�2 ⊗ h′

0] = 0,

h
(3)
0 =

∑
n≥0

P̂ n
(
P̂

(−iκ̂⊗3) + 3P̂
(−κ̂⊗2 ⊗ h′

0

) + 3P̂
(
iκ̂ ⊗ h

(2)
0

) + 3�2 ⊗ h′
0

)
=

∑
n≥0

P̂ n

(
P̂

(−iκ̂⊗3) + 3iP̂

(
−(

κ̂⊗2 −Eμ̂

[
κ̂⊗2]) ⊗

∑
m≥1

P̂ mκ̂

)

+ 3P̂
(
iκ̂ ⊗ h

(2)
0

) + 6i
∑
k≥1

Eμ̂

[
κ̂ ⊗ P̂ kκ̂

] ⊗
∑
m≥1

P̂ mκ̂

)
.
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Combining this with (68) and with Eμ̂[h(4)
0 ] = 0, we obtain

λ
(4)
0 =

4∑
k=1

4!
k!(4 − k)!Eμ̂

[
(iκ̂)⊗k ⊗ h

(4−k)
0

]
.

We conclude by computing the four terms of this sum as follows:

Eμ̂

[
κ̂⊗4.h0

] = Eμ̂

[
κ̂⊗4],

4Eμ̂

[−iκ̂⊗3 ⊗ h′
0

] = 4
∑
n≥1

Eμ̂

[
κ̂⊗3 ⊗ P̂ nκ̂

] = 4
∑
n≥1

Eμ̂

[
κ̂ ⊗ (

κ̂ ◦ τ̂ n
)⊗3]

,

6Eμ̂

[−κ̂⊗2 ⊗ h
(2)
0

] = 6
∑
n≥1

Eμ̂

[
κ̂⊗2 ⊗ P̂ n

(
κ̂⊗2 −Eμ̂

[
κ̂⊗2])]

+ 12
∑
n≥1

Eμ̂

[
κ̂⊗2 ⊗ P̂ n

(∑
m≥1

(
κ̂ ⊗ P̂ mκ̂ −Eμ̂

[
κ̂ ⊗ P̂ mκ̂

]))]
,

4Eμ̂

[
iκ̂ ⊗ h

(3)
0

] = 4
∑
n≥1

Eμ̂

[
κ̂ ⊗ P̂ nκ̂⊗3]

+ 12
∑

n,m≥1

Eμ̂

[
κ̂ ⊗ P̂ n

((
κ̂⊗2 −Eμ̂

[
κ̂⊗2]) ⊗ P̂ mκ̂

)]
+ 12

∑
n,m≥1

Eμ̂

[
κ̂ ⊗ P̂ n

(
κ̂ ⊗ P̂ m

(
κ̂⊗2 −Eμ̂

[
κ̂⊗2]))]

+ 24
∑

n,m,�≥1

Eμ̂

[
κ̂ ⊗ P̂ n

(
κ̂ ⊗ P̂ m

(
κ̂ ⊗ P̂ �κ̂ −Eμ̂

[
κ̂ ⊗ P̂ �κ̂

]))]
− 24

∑
n≥0,�≥1

Eμ̂

[
κ̂ ⊗

∑
m≥1

Eμ̂

[
κ̂ ⊗ P̂ mκ̂

] ⊗ P̂ n+�κ̂

]
,

where we used several times the fact that Eμ̂[κ̂] = 0. We conclude by using the fact that (κ ◦ T̄ k)k (wrt ν̄) has the
same distribution as (κ̂ ◦ τ̂ k)k (wrt μ̂) and (−κ ◦ T̄ −k)k (wrt ν̄) (see Lemma 4.3). �

Remark A.5. The method of the proof of Proposition A.4 can be implemented to compute λ
(m)
0 for every m.
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