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Abstract. We discuss various forms of convergence of the vicinity of a uniformly at random selected vertex in random simply
generated trees, as the size tends to infinity. For the standard case of a critical Galton–Watson tree conditioned to be large the limit
is the invariant random sin-tree constructed by Aldous (1991). In the condensation regime, we describe in complete generality the
asymptotic local behaviour from a random vertex up to its first ancestor with large degree. Beyond this distinguished ancestor,
different behaviour may occur, depending on the branching weights. In a subregime of complete condensation, we obtain conver-
gence toward a novel limit tree, that describes the asymptotic shape of the vicinity of the full path from a random vertex to the root
vertex. This includes the case where the offspring distribution follows a power law up to a factor that varies slowly at infinity.

Résumé. Nous discutons de plusieurs formes de convergence du voisinage d’un sommet aléatoire uniforme dans des arbres aléa-
toires simplement générés, lorsque leur taille tend vers l’infini. Pour le cas standard d’un arbre de Galton–Watson critique condi-
tionné à être grand, la limite est le sin-tree invariant aléatoire construit par Aldous (1991). Dans le régime de condensation, nous
décrivons en toute généralité le comportement asymptotique local depuis un sommet aléatoire jusqu’à son premier ancêtre de grand
degré. Au delà de cet ancêtre distingué, différents comportements peuvent apparaître selon les poids de branchement. Dans un sous-
régime de condensation complète, nous obtenons la convergence vers un nouvel arbre limite, qui décrit la forme asymptotique du
voisinage du chemin complet depuis un sommet aléatoire jusqu’à la racine. Cela inclut le cas où la distribution de la descendance
suit une loi de puissance, à un facteur près qui varie lentement à l’infini.
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1. Introduction

The study of the asymptotic local behaviour of the vicinity of the fixed root vertex of random trees has received consid-
erable attention in recent literature. Jonsson and Stefánsson [15] described a phase transition between an infinite spine
case and a condensation setting for large Galton–Watson trees with a power-law offspring distribution. A third regime
for random simply generated trees with superexponential branching weights was studied by Janson, Jonsson and Ste-
fánsson [14]. The asymptotic shape of large simply generated trees as their size tends to infinity was later described
in complete generality by Janson [13]. Abraham and Delmas [2,3] classified the limits of conditioned Galton–Watson
trees as the total number of vertices with outdegree in a given fixed set tends to infinity. Limits of Galton–Watson trees
having a large number of protected nodes were established by Abraham, Bouaziz, and Delmas [1]. The asymptotic
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shape of conditioned multi-type Galton–Watson trees was studied by Stephenson [18], Abraham, Delmas, and Guo
[4], and Pénisson [17].

Clearly considerable effort and progress is being made in understanding local limits of random trees that describe
the asymptotic behaviour near the fixed root vertex, and for random simply generated trees even a complete clas-
sification is available. As for the question of the asymptotic shape of the vicinity of a random vertex, Aldous [5]
studied in his pioneering work asymptotic fringe distributions for general families of random trees. For the case of
critical Galton–Watson trees, he established, at least when the offspring distribution has finite variance, convergence
of the tree obtained by rerooting at a random vertex. A recent work by Holmgren and Janson [11] studied fringe trees
and extended fringe trees of models of random trees that may be described by the family tree of a Crump–Mode–
Jagers branching process stopped at a suitable time, including random recursive trees, preferential attachment trees,
fragmentation trees and m-ary search trees.

Janson [13] distinguishes three types of simply generated trees, numbered I, II and III, and for each the local limit
exhibits a distinguishing characteristic. We use this terminology in our study of the vicinity of a random vertex. In
the type I setting, the simply generated tree Tn is distributed like a critical Galton–Watson tree conditioned on having
n vertices. Thus the height of a random vertex in Tn is typically large and extended fringe trees are typically small.
In this regime, the limit is given by the random sin-tree constructed by Aldous [5]. Here the word sin refers to the
fact that, like the Kesten tree, this tree has almost surely up to finite initial segments only a single infinite path. When
the offspring distribution has finite variance, we may even verify total variational convergence of the extended fringe
subtree up to o(

√
n)-distant ancestors.

While trees in the type I regime usually have small maximum degree, the types II and III are characterized by the
appearance of vertices with large degree, which may be viewed as a form of condensation. Specifically, type II simply
generated trees correspond to subcritical Galton–Watson trees with a heavy-tailed offspring distribution, and type III
simply generated trees have superexponential branching weights such that no equivalent conditioned Galton–Watson
tree exists. Our main contribution is in this condensation setting, where contrary to the type I regime a random vertex
may be near to the root, and extended fringe trees may have size comparable to the total number of vertices of Tn, as
we are likely to encounter an ancestor with large degree. This is also a major difference to the settings addressed in
the mentioned works by Aldous [5] and Holmgren and Janson [11].

We set up a compact space that encodes rooted plane trees that are centered around a second distinguished vertex,
and establish several limit theorems. For arbitrary weight-sequences having type II or III, we establish a limit that
describes the vicinity of a random vertex up to and including its first ancestor with large degree. Here large means
having outdegree bigger than a deterministic sequence that tends to infinity sufficiently slowly. The asymptotic shape
of what lies beyond this ancestor appears to depend on the branching weights. In a way, the vertex with large degree
obstructs the view to older generations.

We describe a novel limit object T ∗ given by a random pointed plane tree, in which the pointed vertex has random
distance from its first ancestor with infinite degree, and this ancestor again has a random number of ancestors with
finite degree before the construction breaks off. For arbitrary weight-sequences, the asymptotic probability for the
vicinity of a random vertex of Tn to have a specific shape that admits at most one single ancestor of large degree,
but allows ancestors with small degrees afterwards, coincides with the corresponding probability for the tree T ∗. Our
approach is based on a heavily modified depth-first-search to explore the tree Tn. This yields information on how
parts of a limit tree for the complete vicinity, that is not truncated at the first large ancestor, must look, if the simply
generated tree Tn pointed at a random vertex converges weakly (along a subsequence). Note also that the compactness
of the space, in which we formulate our limits, guarantees the existence of such subsequences. Thus the obstruction by
the ancestor with large degree, that prevents us from seeing older generations, is not a complete blockage. However,
this is not yet sufficient to deduce convergence in the space of pointed plane trees. In general, the tip of the backwards
growing spine, where the construction of T ∗ breaks off, may correspond to the root vertex of Tn, but just as well to a
second ancestor with large degree.

If the branching weights belong to a general regime of complete condensation, we manage to surpass the blockage
and deduce weak convergence toward T ∗. There are two main steps involved. First, we show that convergence toward
T ∗ is in fact equivalent to weak convergence of the height of a random vertex in Tn to the height of the pointed vertex
in the tree T ∗, which in the type II regime is distributed like 1 plus the sum of two independent identically distributed
geometric random variables, and in the type III regime equals 1. In this case, the root of T ∗ really corresponds to the
root of Tn. The second step verifies this property in the case of complete condensation, where the maximum degree of
Tn has the correct order.
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In particular, Kortchemski’s central limit theorem for the maximum degree [16, Theorem 1] allows us to deduce
convergence toward T ∗ in the general case of a subcritical Galton–Watson tree conditioned on having n vertices, if
the offspring distribution ξ satisfies

P(ξ = k) = f (k)k−α

for a constant α > 2 and a function f that varies slowly at infinity. In the type III regime where branching weights
grow superexponentially fast, we consider the specific case where

ωk = k!α

for α > 0. It is known that for these weights the maximum degree of Tn has order n + op(n), which may also be
seen as complete condensation, see Janson, Jonsson, and Stefánsson [14] and Janson [13, Example 19.36]. Thus here
the tree T ∗ is also the weak limit of the simply generated tree Tn pointed at a random vertex. There are, however,
also examples of superexponential branching weights that exhibit a more irregular behaviour [13, Example 19.38], in
which we are going to argue that weak convergence toward T ∗ does not hold.

Outline

In Section 2 we fix basic notations, and Section 3 is dedicated to recall necessary background on simply generated
trees. In Section 4 we describe the metric space of rooted plane trees that are centered at a pointed vertex. This will be
the setting in which we formulate our limit theorems. In Section 5 we present our main results, and in Section 6 their
proofs.

2. Notation

We let N denote the set of positive integers and set N0 = N ∪ {0}. The positive real numbers are denoted by R>0.
Throughout, we usually assume that all considered random variables are defined on a common probability space. The
total variation distance between two random variables X and Y with values in a countable state space S is defined by

dTV(X,Y ) = sup
E⊂S

∣∣P(X ∈ E) − P(Y ∈ E)
∣∣.

A sequence of real-valued random variables (Xn)n≥1 is stochastically bounded, if for each ε > 0 there is a constant
M > 0 with

lim sup
n→∞

P
(|Xn| ≥ M

) ≤ ε.

We denote this by Xn = Op(1). Likewise, we write Xn = op(1) if the sequence converges to 0 in probability. We use
d−→ and

p−→ to denote convergence in distribution and probability. A function

h : R>0 →R>0

is termed slowly varying, if for any fixed t > 0 it holds that

lim
x→∞

h(tx)

h(x)
= 1.

Given sets M and N , we let NM denote the set of all maps from M to N . We also let N(N) denote the set of all finite
sequences of elements from N .
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3. Simply generated trees

A plane tree is a rooted tree in which the offspring set of each vertex is endowed with a linear order. (Such trees are
also sometimes referred to as planted plane trees or corner rooted plane trees, in order to distinguish them from related
planar structures [9].) Given a plane tree T and a vertex v ∈ T we let d+

T (v) denote its outdegree, that is, the number
of offspring. Its height hT (v) is its distance from the root-vertex.

We let w = (ωi)i≥0 denote a sequence of non-negative weights satisfying ω0 > 0 and ωk > 0 for at least one k ≥ 2.
The weight of a plane tree T is defined by

ω(T ) =
∏
v∈T

ωd+
T (v).

The simply generated tree Tn with n vertices gets drawn from the set of all n-vertex plane trees with probability
proportional to its weight. Galton–Watson trees conditioned on having a fixed number of vertices are encompassed by
this model of random plane trees. Of course, the tree Tn is only well-defined if there is at least one plane tree with n

vertices that has positive weight. We set

span(w) = gcd{i ≥ 0 | ωi > 0}.
As argued in [13, Corollary 15.6], n-sized trees with positive weight may only exist for n ≡ 1 mod span(w), and
conversely, they always exist if n is large enough and belongs to this congruence class. We tacitly only consider such
n throughout this paper.

3.1. Three types of weight-sequences

Janson [13, Chapter 8] distinguishes three types of weight-sequences. The classification is as follows. Let ρφ denote
the radius of convergence of the generating series

φ(z) =
∑
k≥0

ωkz
k.

As argued in [13, Lemma 3.1], if ρφ > 0 then the function

ψ(t) = φ′(t)t/φ(t)

admits a limit

ν = lim
t↗ρφ

ψ(t) ∈]0,∞]

with the following properties. If ν ≥ 1, then there is a unique number τ with ψ(τ) = 1 and we say the weight sequence
w has type I. If 0 < ν < 1, then we set τ := ρφ < ∞ and say w has type II. If ρφ = 0, we say w has type III and set
ν = 0 and τ = 0.

The constant ν has a natural interpretation as the supremum of the means of all probability weight sequences
equivalent to w. The inclined reader may see [13, Remark 4.3] for details.

3.2. An associated Galton–Watson tree

We define the probability distribution (πk)k on N0 by

πk = τ kωk/φ(τ). (1)

The mean and variance of the distribution (πk)k are given by

μ = min(ν,1) (2)
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and

σ 2 = τψ ′(τ ) ≤ ∞. (3)

We let ξ denote a random non-negative integer with density (πk)k , and T a Galton–Watson tree with offspring dis-
tribution ξ . Note that if w has type III, then ξ = 0 almost surely and the tree T consists of a single deterministic
vertex. As detailed in [13, Section 4], if w has type I or II then the simply generated tree Tn is distributed like the
Galton–Watson tree T conditioned on having n vertices.

4. The space of pointed plane trees

4.1. Centering at a specified vertex

The offspring of each vertex in a plane tree is endowed with a linear order. We usually imagine a planar embedding
where the root is at the top and the offspring of each vertex is ordered from the left to the right below it, ascendingly
according to the corresponding linear order. Thus the “left-most” offspring is the minimum of the order. This is of
course purely a matter of taste. Some prefer their trees to grow upwards, but regardless of the way for visualizing
plane trees, we may use terms like height and depth-first-search in their usual sense without risk of confusion. In the
present work we will also encounter plane trees that have no root, but whose vertex sets are endowed with a partial
order that specifies the ancestry relations, and whose offspring sets are endowed with a linear order that is not required
to have a smallest element.

Traditionally, plane trees are encoded as subtrees of the Ulam–Harris tree. The Ulam–Harris tree U∞ is an infinite
plane tree with vertex set

V∞ =N
(N)

given by the space of finite sequences of non-negative integers. Its root vertex is the unique sequence with length zero,
and the ordered offspring of a vertex v are the concatenations (v, i) for i ≥ 1. Thus a plane tree is a subtree of the
Ulam–Harris tree that contains its root, such that the offspring set of each vertex is an initial segment of the offspring
of the corresponding vertex in U∞. Here we explicitly allow trees with infinitely many vertices, and vertices with
countably infinite outdegree. If all outdegrees of a plane tree are finite, we say that it is locally finite. The tree is finite,
if its total number of vertices is. We will usually let o denote the root-vertex of a plane tree.

Subtrees of the Ulam–Harris tree are however not an adequate form to represent the vicinity of a specified vertex in
a plane tree. If this vertex does not coincide with the root of the tree, then it has an ordered sequence of ancestors and
possibly also siblings that lie to the left and right of it. If we look at a random vertex of the simply generated Tn, then
it may happen that the number of siblings to the left and/or right of it is asymptotically large, or that its distance from
the root vertex is large. A sensible space in which we may describe the limit of the vicinity of the random vertex in
Tn must hence contain trees with a center that may have infinitely many ancestors, such that each may have infinitely
many siblings to the left and/or right of it, including the center vertex itself.

For this reason, we describe the construction of an infinite tree U•∞ that is embedded in the plane and has a spine
(ui)i≥0 that grows “backwards”. That is, we construct the tree U•∞ by starting with an infinite path u0, u1, . . . , ui of
abstract vertices and define ui to be a parent of ui−1 for all i ≥ 1. Additionally, any vertex ui with i ≥ 1 receives
an infinite number of vertices to the left and to the right of its distinguished offspring ui−1, and each of these “non-
centered” offspring vertices is the root of a copy of the Ulam–Harris tree U∞. To conclude the construction, the
start-vertex u0 of the spine also gets identified with the root of a copy of U∞. We let V•∞ denote the vertex-set of the
tree U•∞. The tree U•∞ is illustrated in Figure 1.

Note that the vertex set V•∞ carries a natural partial order (given by the transitive hull of the parent-child relations
specified in the construction of U•∞), and the offspring set of any given vertex carries a natural linear order. This allows
us to continue using the terms ancestor and offspring in this context.

The precise realization of the tree U•∞ will not be relevant for our arguments. One way to make its construction
formal would be to define V•∞ as a subset of N0 × Z × N

(N), with ui corresponding to (i,0,∅) for all i ≥ 0, and ui

having the linearly ordered offspring set {(i, j,∅) | j ∈ Z} for all i ≥ 1. Any point (i, j,∅) with either (i, j) = (0,0),
or i ≥ 1 and j ∈ Z \ {0} is the root of a copy of the Ulam–Harris tree with vertex set {(i, j, v) | v ∈ N

(N)}.
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Fig. 1. Embedding of a pointed plane tree into the tree U•∞ . Each black blob represents a copy of the Ulam–Harris tree.

A plane tree T together with a distinguished vertex v0 is called a pointed plane tree, and may be interpreted in a
canonical way as a subtree of U•∞. To do so, let v0, v1, . . . , vk denote the path from v0 to the root of T . This way,
any vertex vi for i ≥ 1 may have offspring to the left and to the right of vi−1. Thus there is a unique order-preserving
and outdegree preserving embedding of T into U•∞ such that vi corresponds to ui for all 0 ≤ i ≤ k. Compare with
Figure 1.

4.2. Topological properties

Any plane tree T may be identified with its family of outdegrees

(
d+
T (v)

)
v∈V∞ ∈N

V∞
0 ,

where we set N0 = N0 ∪ {∞}. Here we use the convention d+
T (v) = 0 if v ∈ V∞ is not a vertex of the tree T . We

endow N0 with the one-point compactification topology of the discrete space N0. Thus plane trees are elements of the

compact product space N
V∞
0 . It is not hard to see that the subspace

T ⊂ N
V∞
0

of all plane trees is closed.
Similarly, we may identify a pointed plane tree T • = (T , v0) with the corresponding family of outdegrees

(d+
T •(v))v∈V•∞ , such that

d+
T •(v) ∈N0 (4)

for v /∈ {u1, u2, . . .}, and

d+
T •(ui) ∈ {∗} � (N0 ×N0), i ≥ 1. (5)

Here the two numbers represent the number of offspring vertices to the left and right of the distinguished son ui−1,
and the ∗-placeholder represents the fact that the vertex has no offspring.

Since N0 is a compact Polish space, so are the product N0 ×N0 and the disjoint union topology on {∗}� (N0 ×N0).
Hence the space of all families (d+(v))v∈V•∞ satisfying

d+(v) ∈
{
N0, for v /∈ {u1, u2, . . .},
{∗} � (N0 ×N0), for v ∈ {u1, u2, . . .}

is the product of countably many compact Polish spaces, and hence also compact and Polish. The subset T• of all
elements that correspond to trees (that is, connected acyclic graphs) is closed, and hence also a compact Polish space
with respect to the subspace topology.
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Checking that T• is closed is analogous to the arguments for T: We may define the subset T• by certain local
conditions. In order for a family (d+(v))v∈V•∞ in the product space to belong to T•, we require for all i ≥ 1 that

d+(ui) = ∗ implies d+(ui+1) = ∗, and that d+(ui) = (a, b) ∈ N0 × N0 requires that d+(v) = 0 for all siblings v of
ui−1 that lie more than b to the right of ui−1 or more than b to the left of ui−1. We furthermore require that for any
vertex u ∈ V•∞ \ {u1, u2, . . .} with d+(u) = k ∈ N it follows that d+(v) = 0 for all offspring vertices v of u that are
placed more than k to the right in the linear order of the offspring set of u. Now, if τ •

n is a deterministic sequence in
the product space that converges toward a limit τ /∈ T•, then the limit must violate one of these conditions. But this
implies that τ •

n violates this condition as well for all sufficiently large n. So, by contraposition, T• must be closed.

5. The limit theorems

As discussed in Section 3 there is a probability distribution (πk)k associated with the weight sequence w, with density
given in (1). Let ξ be distributed according to (πk)k and let T be a ξ -Galton–Watson tree. By Equation 2 it holds that

μ := E[ξ ] ≤ 1.

We may consider the size-biased random variable ξ̂ with values in N0 and distribution given by

P(ξ̂ = k) = kπk and P(ξ̂ = ∞) = 1 − μ.

For any tree T and any vertex v ∈ T we let f (T , v) denote the fringe-subtree of T at v. That is, the maximal subtree
of T that is rooted at the vertex v.

Throughout the following, we let v0 denote a uniformly at random selected vertex of the simply generated plane
tree Tn, that in the type I and II regime is distributed like the Galton–Watson tree T conditioned on having n vertices.

5.1. The type I regime

If the weight-sequence w has type I, then ξ̂ < ∞ almost surely, and we define the random pointed tree T ∗ as follows.
Let u0 be the root of an independent copy of the Galton–Watson tree T . For each i ≥ 1, we let ui receive offspring
according to an independent copy of ξ̂ . The vertex ui−1 gets identified with an uniformly at random chosen offspring
of ui . All other offspring vertices of ui becomes the root of an independent copy of the Galton–Watson tree T .
Compare with Figure 2.

Theorem 5.1. If the weight-sequence w has type I, then

(Tn, v0)
d−→T ∗

in the space T•.

Fig. 2. The limit tree T ∗ in the type I regime. Each triangle represents an independent copy of the Galton–Watson tree T . For each i ≥ 1 the vertex
ui receives offspring according to an independent copy of ξ̂ , and the location of ui−1 within that offspring set is chosen uniformly at random.
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Let T be a plane tree, v ∈ T a vertex, and k ≥ 0 an integer. If the vertex v has a kth ancestor vk , then we may define the
pointed plane tree Hk(T , v) as the fringe tree f (T , vk) that is rooted at the vertex vk and pointed at the vertex v. Here
we use the term vertex in the graph-theoretic sense, since the coordinates of the vertex v as node of the Ulam–Harris
tree depend on whether we talk about v ∈ T or v ∈ f (T , vk). If the vertex v has height hT (v) < k, we set Hk(T , v) = �
for some placeholder symbol �.

Theorem 5.2. Suppose that weight-sequence has type I and the offspring distribution ξ has finite variance. Let kn be
an arbitrary sequence of non-negative integers that satisfies kn/

√
n → 0. Then

dTV
(
Hkn(Tn, v0),Hkn

(
T ∗, u0

)) → 0

as n becomes large.

Here we use the redundant notation (T ∗, u0) to emphasize that the tree T ∗ is marked at the vertex u0.

5.2. Complete condensation in the type II regime

If the weight-sequence w has type II or III, then we construct T ∗ similarly as in the type I case, letting u0 become
the root of an independent copy of the Galton–Watson tree T , and letting for i = 1,2, . . . the vertex ui receives
offspring according to an independent copy ξ̂i of ξ̂ , where a uniformly at random chosen son gets identified with ui−1
(specifying the number of siblings to the left and right of ui−1) and the rest become roots of independent copies of T .
We proceed in this way for i = 1,2, . . . until it occurs for the first time i1 that ξ̂i1 = ∞. When ξ̂1, . . . , ξ̂i1−1 < ∞ and
ξ̂i1 = ∞, then ui1 receives infinitely many offspring to the left and right of its son ui1−1. Each of these vertices (except
ui1−1 of course) gets identified with an independent copy of the Galton–Watson tree T . We then proceed as before for
i = i1, i1 + 1, . . . , such that ui receives offspring according to an independent copy ξ̂i of ξ̂ , with a random son being
identified with ui−1 and the rest becoming roots of independent copies of T , until it happens for the second time i2
that ξ̂i2 = ∞. When ξ̂i1 = ∞ = ξ̂i2 for i1 < i2 and ξ̂i < ∞ for all i < i2 with i �= i1, then we stop the construction. The
spine of the resulting tree is then given by the ordered path u0, . . . , ui2−1. Compare with Figure 3.

Theorem 5.3. Suppose that the weight-sequence w has type II. If the maximum degree 
(Tn) satisfies


(Tn) = (1 − μ)n + op(n),

then it holds that

(Tn, v0)
d−→T ∗

in the space T•. In particular, this is the case when there is a constant α > 2 and a slowly varying function f such
that for all k

P(ξ = k) = f (k)k−α.

Here we make use of a result by Kortchemski [16, Theorem 1] who established a central limit theorem for the
maximum degree, that ensures that 
(Tn) has the correct order if the offspring distribution ξ has a power law up to a
slowly varying factor. There are also examples of offspring distributions with a more irregular behaviour. Janson [13,
Example 19.37] constructed a weight sequence such that along a subsequence n = nk it holds that 
(Tn) = op(n),
and along another subsequence several vertices with degree comparable to n exist. This may be seen as incomplete
condensation.

The proof idea of Theorem 5.3 is to deduce the asymptotic distribution of the height hTn
(v0) by localizing the vertex

of Tn having maximum degree at a position, that was also given in [16, Theorem 2] using results by Armendáriz and
Loulakis [6] concerning conditioned random walks having a subexponential jump distribution. To do so, we employ
results of Janson [13, Chapter 20] that (partially) use


(Tn) = (1 − μ)n + op(n),

but do not assume the offspring distribution to be subexponential. The following main lemma, which characterizes



Local limits of large Galton–Watson trees rerooted at a random vertex 163

Fig. 3. The limit tree T ∗ in the complete condensation regime. The vertex ui1 is the only one having infinite degree, and each triangle represents
an independent copy of the Galton–Watson tree T .

convergence toward the tree T ∗ in terms of weak convergence of the height hTn
(v0), then finalizes the proof of

Theorem 5.3.

Lemma 5.4. If the weight-sequence w has type II or III, then the following three conditions are equivalent.

1. (Tn, v0)
d−→T ∗ in T•.

2. hTn
(v0)

d−→hT ∗(u0).
3. lim supn→∞ P(hTn

(v0) ≥ k) ≤ μk + k(1 − μ)μk−1 for all k ≥ 1.

Note that hT ∗(u0) is distributed like 1 plus the sum of two independent identically distributed geometric random
variables that assume an integer i with probability μi(1 − μ).

5.3. Complete condensation in the type III regime

If the weight-sequence w has type III, then it holds that μ = 0 and almost surely ξ = 0 and ξ̂ = ∞. Here the Galton–
Watson tree T is always equal to a single point. Hence the tree T ∗ is obtained by letting u1 have infinitely many
offspring to the left and right of u0, all of which (including u0) are leaves.

Proposition 5.5. If the weight-sequence w has type III, then the following claims are equivalent.

1. (Tn, v0)
d−→T ∗ in T•.

2. hTn
(v0)

p−→1.
3. The maximum degree 
(Tn) satisfies 
(Tn) = n + op(n).

A general class of weight-sequences that demonstrate this behaviour is given by

ωk = k!α

with α > 0 a constant.
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Here we have used that if ωk = k!α with α > 0 a constant, then it is known [13, Example 19.36], that the largest
degree in Tn has size n + op(n). But there are also other examples that exhibit a more irregular behaviour. In [13,
Example 19.38] a weight-sequence is constructed such that along a subsequence n = nk , for each j ≥ 1 the j th largest
degree Y(j) in Tnk

satisfies Y(j) = 2−j with high probability. This may be seen as incomplete condensation. It is clear
that in this case the limit of (Tn, v0), if it exists at all, must have a different shape than T ∗.

5.4. Large nodes and truncated limits

Suppose that the weight sequences w has type II or type III. The limit theorems in Sections 5.2 and 5.3 work in settings
of complete condensation, where the maximum degree of the tree Tn satisfies


(Tn) = (1 − μ)n + op(n).

If we content ourselves with the vicinity of the vertex v0 up to and including the first vertex having large degree, we
may obtain a limit theorem in complete generality. We are also going to construct a coupling to demonstrate how the
vertex with infinite degree in the limit corresponds to a vertex with large degree in the simply generated tree Tn.

Janson [13, Lemma 19.32] showed that there is a deterministic sequence �n that tends to infinity sufficiently
slowly, such that for any sequence Kn → ∞ with Kn ≤ �n it holds that the numbers Nk of vertices with outdegree k

in the tree Tn satisfy∑
k≤Kn

kNk = μn + op(n) and
∑

k>Kn

kNk = (1 − μ)n + op(n). (6)

The sequence �n may be replaced by any sequence that tends to infinity more slowly. Hence we may assume without
loss of generality that �n additionally satisfies

�n = o(n). (7)

Let D̃n denote a random positive integer, that is independent from all previously considered random variables, with
distribution given by

D̃n
d= (

d+
Tn

(o) | d+
Tn

(o) > �n

)
. (8)

Here we let o denote the root-vertex of Tn. That is, D̃n is distributed like the root-degree conditioned to be “large”. We
form the random tree T̄ ∗

n in a similar manner as the random tree T ∗. The vertex u0 becomes the root of an independent
copy of the Galton–Watson tree T . For i = 1,2, . . . the vertex ui receives offspring according to independent copy ξ̂i

of ξ̂ , where a randomly chosen son gets identified with ui−1 and the rest become roots of independent copies of T . We
proceed in this way for i = 1,2, . . . until it occurs that ξ̂i = ∞. When ξ̂1, . . . , ξ̂i−1 < ∞ and ξ̂i = ∞, then ui receives
D̃n offspring vertices, such that a uniformly at random chosen one gets identified with ui−1, and the rest get identified
with the roots of independent copies of T . Rather than continuing with the spine as in the construction of the tree T ∗,
we stop at this point, so that ui becomes the root of this tree.

Given a pointed tree T • = (T , v) and an ancestor a of v, we let f •(T •, a) denote the fringe subtree of T at a that
we consider as pointed at the vertex v. We refer to f •(T •, a) as the pointed fringe subtree of the pointed tree T • at
the vertex a.

Let v0 denote a uniformly at random selected vertex of the simply generated tree Tn. Let H(Tn, v0,�n) denote the
pointed fringe subtree of (Tn, v0) at the youngest ancestor of v0 that has outdegree bigger than �n. If no such vertex
exists (which is unlikely to happen, as we are going to verify), set H(Tn, v0,�n) = � for some fixed placeholder
value �.

Theorem 5.6. Suppose that the weight sequence w has type II or III. Let T̄ ∗ denote the pointed fringe subtree of the
tree T ∗ at its unique vertex with infinite degree. Then it holds that

H(Tn, v0,�n)
d−→ T̄ ∗.

in the space T•.
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The strength of this theorem is its generality, as we make no additional assumptions on the weight-sequence at all.
It is suitable for applications where it is not necessary to look behind the large vertex.

We may still improve upon this. For each n, let T ∗
n be constructed from T̄ ∗ by pruning at its root vertex such that

its outdegree becomes D̃n. Of course we have to select one of the D̃n ways of how much we prune from the left and
right so that the total outdegree becomes D̃n, and we choose an option uniformly at random.

For each integer m ≥ 0 we let V̄ [m] ⊂ V•∞ denote the vertex set of the tree obtained from U•∞ by deleting all vertices
with distance larger than m from the center vertex u0 and pruning so that the vertices ui , 1 ≤ i ≤ m have outdegree
(m,m) and the remaining vertices all have outdegree equal to m. The topology on the subspace T•

lf ⊂ T• of locally
finite trees is induced by the metric

dT•
lf

(
T •

1 , T •
2

) = 1/ sup
{
m ≥ 0 | d+

T •
1
(v) = d+

T •
2
(v) for all v ∈ V̄ [m]}.

This can be verified using the fact that a sequence (Tn)n in T• converges towards an element T ∈ T• if and only if
d+
Tn

(v) converges towards d+
T (v) for each v ∈ V•∞.

Theorem 5.7. Suppose that the weight sequence w has type II or III. For any finite set of vertices x1, . . . , xr ∈ V•∞ it
holds that

dTV
((

d+
H(Tn,v0,�n)

(xi)
)

1≤i≤r
,
(
d+
T̄ ∗

n

(xi)
)

1≤i≤r

) → 0.

Equivalently, there is a coupling of (Tn, v0) and T̄ ∗
n such that

dT•
lf

(
H(Tn, v0,�n), T̄ ∗

n

) p−→0.

In Equation (20.4) and the subsequent paragraph of [13], Janson also argues that if


(Tn) = (1 − μ)n + op(n),

then

dTV
(

(Tn), D̃n

) → 0.

Hence in the complete condensation regime, we may choose D̃n in the coupling of Theorem 5.7 such that D̃n = 
(Tn)

with probability tending to 1 as n becomes large. This yields the asymptotic location of the vertex with maximum
degree with respect to the random vertex v0.

In a way, we could say that the ancestor of the random vertex v0 with large degree in Tn blocks the view, if we are
not in the complete condensation regime. As we shall see in Lemma 6.1 and Lemma 6.2 it does not block it completely
though. Roughly said, for each fixed k ≥ 1 we obtain the asymptotic probability for the event, that the pointed fringe
subtree at the kth ancestor of the random vertex v0 has a given shape that involves at most one large vertex on the
spine. This yields more information than Theorem 5.6 on how a limit tree T̄ must look, if (Tn, v0) converges weakly
(along a subsequence). (Note that the compactness of the space T• guarantees the existence of such subsequences.) It
also suggests that if the center vertex of T̄ has almost surely at most one ancestor with infinite degree, then it must

already hold that T̄ d=T ∗, but we leave it to the inclined reader to pursue this line of thought further.

6. Proof of the main results

6.1. Preliminaries

6.1.1. Simply generated trees and balls in boxes
For any integers m, n ≥ 1 we may consider the balls-in-boxed model (Y

(m,n)
i )0≤i<n that randomly draws a vector

vector (y0, . . . , yn−1) of non-negative integers satisfying

n−1∑
i=0

yi = m
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with probability proportional to ωy0 · · ·ωyn−1 . To shorten notation, we set

Yi = Y
(n−1,n)
i

for all i, as this will be the case that we will consider most of the time. This model is related to the outdegree sequence
(d0, . . . , dn−1) of the simply generated tree Tn by

(d0, . . . , dn−1)
d=

(
(Y0, . . . , Yn−1)

∣∣∣ �∑
i=0

(Yi − 1) ≥ 0 for all 0 ≤ � < n − 1

)
. (9)

Here we may form the outdegree sequence according to depth-first-search order, but many other form of vertex
explorations are possible. In general, consider the following family of algorithms, that order the vertices of finite
deterministic plane trees.

1. Take a plane tree T as input.
2. Let P denote the ordered list of visited vertices, that initially is empty. Let Q denote the ordered queue of vertices

that are scheduled to be visited next, that we initialize with the root of T .
3. Move the first vertex v of the ordered queue Q to the end of the list P of visited vertices. We then modify the queue

Q of vertices that are scheduled to be visited next so that it additionally contains all the sons of the vertex v in the
tree T . We do so by a fixed rule, that may take into account the current state of Q and P , and need not respect the
previous order of vertices in Q or the order of the offspring vertices of v.

4. We repeat the third step until the queue Q of scheduled vertices is empty.

If we order the vertices of the random tree Tn according to an algorithm of this form, then the corresponding sequence
of outdegrees satisfies Equation (9). This degree of freedom will be crucial in our analysis of extended fringe subtrees
of Tn in the condensation regime.

A classical combinatorial result (see for example [13, Cor 15.4]) states that for each vector (yi)0≤i≤n−1 of numbers
yi ≥ −1 with

∑n−1
i=0 yi = −1 there is a unique cyclic shift

(z0, . . . , zn−1) = (yj mod n, yj+1 mod n, . . . , yj+n−1 mod n) (10)

by 0 ≤ j ≤ n− 1, such that for all 0 ≤ � < n− 1 it holds that
∑�

i=0(zi − 1) ≥ 0. Thus there is a coupling of the simply
generated tree Tn with the balls-in-boxes model (Y0, . . . , Yn−1) such that the degree sequence (d0, . . . , dn−1) of Tn is
a random cyclic shift of (Y0, . . . , Yn−1).

6.1.2. Large nodes near the root in the condensation regime
Suppose that the weight-sequence w has type II or type III. Let ξ denote the offspring distribution defined in Section 3
and μ = E[ξ ] ∈ [0,1[ its first moment. Let D̃n be the random non-negative integer defined in Equation (8). Consider
the random variable ξ̃ defined by

P(ξ̃ = k) = kP(ξ = k)

for k ∈N, and

P(ξ̃ = �) = 1 − μ

for some placeholder �. Janson [13, Chapter 20] defined the following modified Galton–Watson tree T̂1n. There are
normal and special vertices, and we start with a special root. Each normal vertex receives offspring according to an
independent copy of ξ , all its sons are also normal. For any special vertex we consider an independent copy of ξ̃ . If it
is a finite number, then we add accordingly many offspring and declare a uniformly at random selected son as special.
If it assumes the placeholder value �, then we add offspring according to D̃n, all of which are normal. Thus the tree
T̂1n comes with an almost surely finite spine whose tip v∗ satisfies

P
(
hT̂1n

(
v∗) = k

) = μk(1 − μ)
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for all k ≥ 0. Janson [13, Theorem 20.2] showed that for any finite list of vertices v1, . . . , v� ∈ V∞ it holds that

dTV
((

d+
Tn

(vi)
)

1≤i≤�
,
(
d+
T̂1n

(vi)
)

1≤i≤�

) → 0 (11)

as n becomes large.
For each integer m ≥ 0 we let V [m] ⊂ V∞ denote the vertex set of the tree obtained from U∞ by truncating at

height m and pruned so that all out-degrees are equal to m. That is, V [m] corresponds to all sequences of non-negative
integers with length at most m such that each element of the sequences less than or equal to m. The topology on the
space of locally finite plane trees is induced by the complete metric

δ1
(
T ,T ′) := 1/ sup

{
m ≥ 1 | (d+

T (v)
)
v∈V [m] = (

d+
T ′(v)

)
v∈V [m]

}
.

The convergence (11) is equivalent to the existence of a coupling of the random trees Tn and T̂1n such that

δ1(Tn, T̂1n)
p−→0. (12)

6.2. Convergence in the type I regime

We present a proof of Theorem 5.2, in which we make use of properties that are characteristic of the type I regime,
where extended fringe subtrees are typically small and random vertices have typically large height. Theorem 5.1,
which states convergence of (Tn, v0) toward T ∗ if w has type I, follows directly from a general observation, given in
Lemma 6.1 below, that is valid for weight sequences having arbitrary type.

Proof of Theorem 5.2. Suppose that the weight sequence w has type I, and that the offspring distribution ξ has finite
variance σ 2. By assumption it holds that kn = n1/2tn for some sequence tn → 0. Without loss of generality, we may
assume that kn → ∞.

For any k let Ek,n denote the set of all pairs (T , x) of a plane tree T having at most ntn vertices and a vertex x

having height hT (x) = k, such that P(Hk(Tn, v0) = (T , x)) > 0. We are going to argue that as n ≡ 1 mod span(w)

becomes large

(i) P(Hkn(T ∗, u0) ∈ Ekn,n) → 1,
(ii) P(Hkn(Tn, v0) ∈ Ekn,n) → 1,

(iii) sup(T ,x)∈Ekn,n
|P(Hkn(Tn, v0) = (T , x))/P(Hkn(T ∗, u0) = (T , x)) − 1| → 0.

This suffices, as (i) and (ii) imply that

dTV
(
Hkn(Tn, v0),Hkn

(
T ∗, u0

)) = o(1) + sup
H⊂Ekn,n

∣∣P(
Hkn(Tn, v0) ∈H

) − P
(
Hkn

(
T ∗, u0

) ∈H
)∣∣, (13)

and this expression converges to zero by (iii).
We start with property (i). We have to show that Hkn(T ∗, u0) has with high probability at most ntn vertices. The

size of Hk(T ∗, u0) is given by the sum of |H0(T ∗, u0)| d=|T | and the independent differences

∣∣Hi

(
T ∗, u0

)∣∣ − ∣∣Hi−1
(
T ∗, u0

)∣∣ d=1 + S
ξ̂−1, i = 1, . . . , k,

with ξ̂ the size-biased version of the offspring distribution ξ , and

Sm = X1 + · · · + Xm

a sum of independent copies (Xj )j of |T |. The reason for this is that Hi(T ∗, u0) is given by the root-vertex ui , with

the tree Hi−1(T ∗, u0) and d+
T ∗(ui) − 1

d= ξ̂ − 1 independent copies of T dangling from it. Compare with Figure 2.
Hence∣∣Hk

(
T ∗, u0

)∣∣ d= k + SMk−(k−1)



168 B. Stufler

is stochastically bounded by the sum SMk+1 with

Mi = Z1 + · · · + Zi

the sum of i independent copies of ξ̂ for all i ≥ 1. (Here we have used that ξ̂ ≥ 1 by definition.) By a general result
for the size of Galton–Watson forests, there is a constant C > 0 such that

P(Sm ≥ x) ≤ Cmx−1/2

for all m and x. See Devroye and Janson [8, Lem. 4.3] and Janson [12, Lem. 2.1]. We assumed that σ 2 < ∞, hence ξ̂

has a finite first moment. It follows that

P
(∣∣Hk

(
T ∗, u0

)∣∣ ≥ x
) ≤ P(SMk+1 ≥ x) ≤ CE[Mk+1]x−1/2 = C(k + 1)E[ξ̂ ]x−1/2.

Setting x = ntn and k = kn = n1/2tn, it follows by kn → ∞ and tn → 0 that

P
(∣∣Hkn

(
T ∗, u0

)∣∣ ≥ ntn
) ≤ C

(
n1/2tn + 1

)
E[ξ̂ ](ntn)

−1/2 = o(1).

This verifies (i).
Property (ii) is actually a consequence of properties (i) and (iii). Indeed, (iii) implies that

P
(
Hkn(Tn, v0) ∈ Ekn,n

) − P
(
Hkn

(
T ∗, u0

) ∈ Ekn,n

) → 0,

and by (i) it follows that

P
(
Hkn(Tn, v0) ∈ Ekn,n

) → 1.

It remains to verify (iii). Let (T , x) ∈ Ekn,n. Given Tn, there is a one to one correspondence between the vertices
v ∈ Tn with fringe subtree f (Tn, v) = T , and the vertices v′ with Hkn(Tn, v

′) = (T , x). Thus

P
(
Hkn(Tn, v0) = (T , x)

) = P
(
f (Tn, v0) = T

)
. (14)

The fringe subtree f (T ∗, ukn) is distributed like the modified Galton–Watson tree, in which there are two types
of vertices, normal and special, and we start with a special root. Normal vertices receive offspring according to an
independent copy of ξ and all of those are normal again. Special vertices receive offspring according to an independent
copy of ξ̂ , and one of them is selected uniformly at random and declared its heir. If the heir has height less than kn, then
it is declared special, and otherwise it becomes a normal vertex. Here the unique heir that is not special corresponds
to the vertex u0. The probability for a special vertex to have � offspring such that precisely the ith is selected as heir
is given by

P(ξ̂ = �)/� = P(ξ = �).

Hence

P
(
Hkn

(
T ∗, u0

) = (T , x)
) = P(T = T ). (15)

Combining Equations (14) and (15) yields

P
(
Hkn(Tn, v0) = (T , x)

)
/P

(
Hkn

(
T ∗, u0

) = (T , x)
) = P

(
f (Tn, v0) = T

)
/P(T = T ).

Remark 15.8, Equation (17.1) and subsequent equations in Janson’s survey [13] yield that

P
(
f (Tn, vn) = Tk

)
/P(T = Tk) = P(Sn−|Hk | = 0)/P(Sn = −1)
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with S� denoting the sum of � independent copies of ξ − 1. Since (T , x) ∈ Ekn,n, the tree T has at most ntn ver-
tices. Consequently, the local limit theorem for sums of lattice distributed random variables [10, Ch. 3.5] yields that
uniformly for all (T , x) ∈ Ekn,n as n ≡ 1 mod span(w) becomes large

P(Sn−|T | = 0)/P(Sn = −1) = (
1 + o(1)

) o(1) + span(w)√
2πσ 2

o(1) + span(w)√
2πσ 2

exp( −1
2nσ 2 )

= 1 + o(1).

This verifies (iii) and hence completes the proof. �

6.3. General observations

We state two observations that are valid for weight sequences having arbitrary type. The first describes the asymptotic
probability to encounter small extended fringe subtrees.

Lemma 6.1. Let v0 be a uniformly at random selected vertex of the simply generated plane tree Tn. Let T • be a
pointed plane tree whose pointed vertex has height h ≥ 0. Then the probability, that the pointed fringe subtree at the
hth ancestor vh of the random vertex v0 ∈ Tn is equal to the pointed tree T •, converges to the probability, that the
pointed fringe subtree of T ∗ at the spine vertex uh is equal ot T •. That is, with T •

n = (Tn, v0) it holds that

P
(
f •(T •

n , vh

) = T •) → P
(
f •(T ∗, uh

) = T •).
Here we consider T ∗ as pointed at the center u0. If we let V ⊂ V•∞ denote the subtree of the modified Ulam–Harris
tree U•∞ that corresponds to the pointed tree T •, then this may be expressed by

P
(
d+
T •

n
(v) = d+

T •(v) for all v ∈ V
) → P

(
d+
T ∗(v) = d+

T •(v) for all v ∈ V
)
.

Here f •(·, ·) denotes the pointed fringe subtree as defined in Section 5.4. The following result describes the asymp-
totic probability for extended fringe subtrees containing an ancestor with large degree.

Lemma 6.2. Let v0 be a uniformly at random selected vertex of the simply generated plane tree Tn. Let T • be a
pointed plane tree whose pointed vertex has height h ≥ 0. For all integers 1 ≤ k ≤ h and all sufficiently large � we
may consider the event, that the outdegrees of the pointed fringe subtree of the hth ancestor of the random vertex
v0 ∈ Tn all agree with the outdegrees of T •, except for the kth ancestor of v0, which is required to have at least �

offspring to the left and at least � offspring to the right of its unique son that is also an ancestor of v0. As n becomes
large, this probability converges toward an expression that depends on �. If we let � tend to infinity, then this expression
converges toward the probability, that the outdegrees of the fringe subtree of T ∗ at the spine vertex uh agree with the
outdegrees of T •, except for uk , which must have outdegree (∞,∞). In other words, uk is required to have an infinite
number of offspring vertices to the left and to the right of uk−1. Expressed in more formal words, let V ⊂ V•∞ denote
the subtree of U•∞ that corresponds to the tree T •. Then the event E(�, n) that

d+
T •

n
(v) = d+

T •(v)

for all v ∈ V \ {ui} and

d+
T •

n
(uk) ∈ {�, � + 1, . . .} × {�, � + 1, . . .}

satisfies

lim
�→∞ lim

n→∞P
(
E(�, n)

) = P
(
d+
T ∗(v) = d+

T •(v) for all v ∈ V \ {uk}, d+
T ∗(uk) = (∞,∞)

)
.

These results certainly deserve some explanation. If the weight sequence w has type I, then Lemma 6.1 immediately
yields weak convergence of (Tn, v0) toward T ∗. This proves Theorem 5.1. Aldous [5] showed a similar form of con-
vergence for the case where w has type I and the associated offspring distribution has finite variance, and Janson [13,
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Theorem 7.12] established convergence of the fringe subtree at v0 for arbitrary weights. The proof of Lemma 6.1 uses
this result and various others from [13].

In the type II and III setting, the situation is more complicated and Lemma 6.2 is not sufficient to deduce conver-
gence in T• for arbitrary weight-sequences. It is intuitive, that a random vertex is only likely to be close to the root,
if one of its ancestors has large degree. Lemma 6.2 provides a description of what happens near a random root up to
its first ancestor that has large degree. Beyond that, we only obtain information on what happens in the case that the
ancestors of this ancestor have small degree. Since the space T• is compact, the sequence (Tn, vn) clearly converges
weakly toward a limit along a subsequence, and the distribution of this limit must agree by Lemma 6.2 with T ∗ until
the point where the spine of T ∗ stops. However, at this location, we could encounter the root vertex of the limit, but
just as well a second ancestor with large degree.

Proof of Lemma 6.1. Let v0, v1, . . . be the directed path from v0 to the root of Tn. Let T • = (T , v) be a pointed, finite
plane tree and let h denote the height of the vertex v in T . Consider the event that v0 has height at least h, and that
the pointed fringe subtree f •(T •

n , vh) of T •
n = (Tn, v0) is equal to T •. Given Tn, there is a one to one correspondence

between the vertices v with fringe subtree f (Tn, v) = T and the vertices v′ whose hth ancestor u has pointed fringe
subtree f •((Tn, v

′), u) = T •. Thus,

P
(
f •(T •

n , vh

) = T •) = P
(
f (Tn, v0) = T

)
. (16)

Janson [13, Theorem 7.12] showed that

lim
n→∞P

(
f (Tn, v0) = T

) = P(T = T ). (17)

The probability for the size-biased random variable ξ̂ to assume a value �, and that a uniformly at random choice out
of � options yields a specific value �0, is equal to the probability that ξ equals �. Thus

P(T = T ) = P
(
f •(T ∗, uh

) = T •).
Combined with Equations (16) and (17) this yields that

lim
n→∞P

(
f •(T •

n , vh

) = T •) = P
(
f •(T ∗, uh

) = T •). (18)

This proves the first claim. �

Proof of Lemma 6.2. Let T • = (T , v) denote a finite pointed plane tree, where the pointed vertex is not equal to its
root. Let k1, k2 be arbitrary non-negative integers whose sum is larger than the maximum degree of the tree T . This
assumption will be crucial in the following argument.

Suppose that o is a vertex that lies on the path from the root to the pointed vertex of T •, but is not equal to the
pointed vertex. In order to not confuse the three vertices, let us call the root of T the inner root, the pointed vertex of
T • the outer root, and the vertex o the middle root.

Let Ek1,k2(T
•) denote the set of pointed plane trees obtained by connecting the root vertices of k1 arbitrary plane-

trees from the left to the middle root o of T •, and k2 from the right. We are interested in the event that f •(T •
n , vk) ∈

Ek1,k2(T
•). Let Ek1,k2(T ) denote the corresponding set where we forget about which outer-root (the pointed vertex)

we distinguished. Equation (16) yields

P
(
f •(T •

n , vk

) ∈ Ek1,k2

(
T •)) = P

(
f (Tn, v0) ∈ Ek1,k2(T )

)
. (19)

In order to study this asymptotic probability, we make use of a modified depth-first search of the tree.
Traditional depth-first-search (DFS) lists the vertices of a plane tree by starting with the root, and traverses in each

step along the left-most previously unvisited son. If no such son exists, we go to the parent of the current vertex and try
again. The process terminates with an ordered list of all vertices of the tree. Note that at any time the search maintains
an ordered list of vertices that it already visited, and an ordered list Q of vertices that are scheduled to be visited next.
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Anytime we visit a new vertex that is not a leaf, vertices are added to the front of the queue Q of vertices that are to
be visited next.

Let K be the sum of k1, k2 and the outdegree d+
T (o) of the middle root of T . We may modify the DFS by treating

vertices with out-degree K in a special manner. When we encounter such a vertex, instead of putting all its offspring in
front of the queue Q, we put the (k1 + 1)th to (k1 + d+

T (o))th offspring to the front of the queue Q, and the remaining
offspring to the back. Thus, if none of the fringe subtrees of the vertices we put to the front of the queue has a vertex
with degree K , we traverse next along the (k1 + 1)th son its entire fringe subtree, and so on, until the (k1 + d+

T (o))

son and its entire fringe subtree. After this we proceed with the remaining siblings of o.
As we assumed that K is larger than the maximum degree of T , this means that if we search a tree T ′ from

Ek1,k2(T ), the first |T | vertices in the resulting list of ordered vertices correspond to the vertices of T , and their
outdegrees are equal to those in T , except for the vertex o, which has outdegree d+

T ′(o) = K .
We now proceed similarly as in the proof of Janson’s result [13, Theorem 7.12] where classical DFS was used. Let

d0, . . . , dn−1 denote the list of outdegrees in the simply generated tree Tn according to the modified DFS-order. For
any i ≥ n we set di = di mod n. Let d̂0, . . . , d̂� denote the DFS-ordered list of outdegrees in T , and let i0 denote the
unique index that corresponds to the vertex o. Since K is larger than the maximal outdegree of T , the vertices v of Tn

with fringe-subtree in Ek1,k2(T ) correspond bijectively to the indices 0 ≤ i ≤ n − 1 with

(d̂0, . . . , d̂i0−1,K, d̂i0+1, . . . , d̂�) = (di, di+1, . . . , di+�).

This explicitly includes the case where i is so close to n− 1 such that i + � > n− 1. It is not possible for a tree to have
an ending segment in its list of vertices that is equal to an initial segment of (K, d̂1, . . . , d̂�), because then the search
of the tree would have terminated with a non-empty queue Q of vertices that still need to be visited.

Consider the balls-in-boxes model (Y0, . . . , Yn−1) from Equation (9). We set Yi = Yi mod n for i ≥ n. For all
0 ≤ j ≤ n − 1 let Ij be the indicator for the event

(Yj , . . . , Yj+�) = (d̂0, . . . , d̂i0−1,K, d̂i0+1, . . . , d̂�).

The sum
∑n−1

j=0 Ij is rotational invariant, hence it follows from Equation (10) that

P
(
f (Tn, v0) ∈ Ek1,k2(T )

) = E

[
n−1

n−1∑
j=0

Ij

]

= E[I0]
= P

(
(Y0, . . . , Y�) = (d̂0, . . . , d̂i0−1,K, d̂i0+1, . . . , d̂�)

)
.

For ease of notation, we define

(d̄0, d̄1, . . . , d̄�) := (d̂i0, d̂0, . . . , d̂i0−1, d̂i0+1, . . . , d̂�).

By exchangeability, it follows that

P
(
f (Tn, v0) ∈ Ek1,k2(T )

) = P
(
(Y0, . . . , Y�) = (K, d̄1, . . . , d̄�)

)
.

Combining this with Equation (19) yields

P
(
f •(T •

n , vk

) ∈ Ek1,k2

(
T •)) = P

(
(Y0, . . . , Y�) = (K, d̄1, . . . , d̄�)

)
. (20)

Setting

E≥k1,≥k2 =
⋃

�1≥k1,�2≥k2

E�1,�2 ,
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it follows that

P
(
f •(T •

n , vk

) ∈ E≥k1,≥k2

(
T •)) =

∑
r≥K

∑
�1+�2+d̄0=r
�1≥k1,�2≥k2

P
(
(Y0, . . . , Y�) = (r, d̄1, . . . , d̄�)

)

=
∑
r≥K

(r − K + 1)P
(
(Y0, . . . , Y�) = (r, d̄1, . . . , d̄�)

)
. (21)

For any j ≥ 0, let Nj denote the number of indices 0 ≤ i ≤ n − 1 with Yi = j . Conditioned on the Nj , the numbers
Y0, Y1, . . . are obtained by placing N0 0’s, N1 1’s, . . . , in uniformly random order. So, as stated in [13, Eq. (14.44)]
(with the slight notational difference that Janson labelled the boxes from 1 to n rather than from 0 to n− 1), it follows
that for r ≥ K

P
(
(Y0, . . . , Y�) = (r, d̄1, . . . , d̄�) | N0,N1, . . .

) = Nr

n

�∏
i=1

Nd̄i
− ci

n − i
(22)

with ci denoting the number of 1 ≤ j < i with d̄j = d̄i . (Here we have used the fact that K (and hence also r) is larger
than d̄1, . . . , d̄�.) Hence

P
(
(Y0, . . . , Y�) = (r, d̄1, . . . , d̄�)

) = E

[
Nr

n

�∏
i=1

Nd̄i
− ci

n − i

]

= E

[
Nr

n

�∏
i=1

Nd̄i

n
+ O

(
Nr

n2

)]
, (23)

where the implicit constant in the O term does not depend on n or r . It follows by Equation (21) that

P
(
f •(T •

n , vk

) ∈ E≥k1,≥k2

(
T •))

= E

[∑
r≥K rNr

n

�∏
i=1

Nd̄i

n
+ (1 − K)

∑
r≥K Nr

n

�∏
i=1

Nd̄i

n
+ O

(
K

∑
r≥K rNr

n2

)]
.

It holds that∑
j≥1

jNj = n − 1 and
∑
j≥0

Nj = n.

Hence

P
(
f •(T •

n , vk

) ∈ E≥k1,≥k2

(
T •))

= E

[
n − 1 − ∑

r<K rNr

n

�∏
i=1

Nd̄i

n
+ (1 − K)

n − ∑
r<K Nr

n

�∏
i=1

Nd̄i

n

]
+ O

(
K

n

)
.

By Janson’s result [13, Theorem 11.4] it holds for each fixed j as n becomes large that

Nj/n
p−→P(ξ = j).

Thus, by dominated convergence, it follows that as n becomes large

P
(
f •(T •

n , vk

) ∈ E≥k1,≥k2

(
T •)) → (

P(ξ̂ ≥ K) + (1 − K)P(ξ ≥ K)
) �∏

i=1

P(ξ = d̄i ). (24)
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Recall that the first moment of ξ is given by

μ = min(1, ν) ∈ [0,1].
Clearly it holds that

P(ξ̂ ≥ K) + (1 − K)P(ξ ≥ K) ≤ P(ξ ≥ K) + P(ξ̂ ≥ K) → 1 − μ

as K becomes large. As for a lower bound, we may write for every 0 < ε < 1

P(ξ̂ ≥ K) + (1 − K)P(ξ ≥ K) ≥ P(ξ ≥ K) +
∑
k≥K

(k − K)P(ξ = k)

≥ P(ξ ≥ K) +
∑

k>K/ε

(1 − ε)kP(ξ = k)

→ (1 − ε)(1 − μ)

as K becomes large. As ε > 0 was arbitrary, it follows that

P(ξ̂ ≥ K) + (1 − K)P(ξ ≥ K) → 1 − μ

as K tends to infinity. Hence Equation (24) implies that for any sequences k1(r) and k2(r) with k1(r) + k2(r) → ∞
as r becomes large it holds that

lim
r→∞ lim

n→∞P
(
f •(T •

n , vk

) ∈ E≥k1(r),≥k2(r)

(
T •)) → (1 − μ)

�∏
i=1

P(ξ = d̄i ).

Since

P
(
d+
T ∗(v) = d+

T •(v) for all v ∈ V \ {uk}, d+
T ∗(uk) = (∞,∞)

) = (1 − μ)

�∏
i=1

P(ξ = d̄i ),

this concludes the proof. �

6.4. The limit theorems in the condensation regime

6.4.1. The type II regime

Proof of Lemma 5.4. Suppose that the weight-sequence w has type II or III. We need to show that the following
three statements are equivalent.

1. (Tn, v0)
d−→T ∗.

2. hTn
(v0)

d−→hT ∗(u0).
3. lim supn→∞ P(hTn

(v0) ≥ k) ≤ μk + k(1 − μ)μk−1 for all k ≥ 1.

It is clear that the first claims implies the second, since the height

h : T• →N0, (T , x) �→ hT (x)

is a continuous functional on the space T•. The height hT ∗(u0) of the pointed vertex in T ∗ is distributed like 1 plus
the sum of two independent identically geometric random variables with parameter μ. Thus the second claim implies
the third. The convergence in Lemma 6.2 immediately yields that for all t ≥ 1

lim inf
n→∞ P

(
hTn

(v0) ≥ t
) ≥ P

(
hT ∗(u0) ≥ t

) = μk + k(1 − μ)μk−1.
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Hence the third claim implies the second. It remains to verify that the second claim implies the first. Suppose that

hTn
(v0)

d−→hT ∗(u0). (25)

Since the space T• is compact, any sequence of random pointed plane trees has a convergent subsequence. In par-
ticular, the sequence (Tn, v0) converges toward a limit object T̄ along a subsequence (nk)k . We are going to show
that

T̄ d=T ∗ (26)

regardless of the subsequence. By standard methods [7, Theorem 2.2] this implies

(Tn, v0)
d−→T ∗.

By Equation (25) it holds that

hT̄ (u0)
d=hT ∗(u0). (27)

Lemma 6.1 yields that for any finite tree T • = (T , x) ∈ T• with hT (u0) = k it holds that

P
(
f •(T ∗, uk

) = T •) = P
(
f •(T̄ , uk) = T •). (28)

By Lemma 6.2 we know furthermore that for any index 1 ≤ i ≤ k it holds that

P
(
d+
T ∗(ui) = (∞,∞), d+

T ∗(v) = d+
T •(v) for all v ∈ V \ {ui}

)
= P

(
d+
T̄ (ui) = (∞,∞), d+

T̄ (v) = d+
T •(v) for all v ∈ V \ {ui}

)
(29)

with V ⊂ V•∞ denoting the subset corresponding to the vertices of T •.

We are going to show that Equations (27), (28) and (29) are sufficient to verify that T̄ d=T ∗. The first step is to
verify that

(
d+
T ∗(ui)

)
i≥1

d= (
d+
T̄ (ui)

)
i≥1 (30)

as random elements of the product space({∗} � (N0 ×N0)
)N

.

For this, it is sufficient to verify that for all k ≥ 1

(
d+
T ∗(ui)

)
1≤i≤k

d= (
d+
T̄ (ui)

)
1≤i≤k

.

To this end, let

d1, . . . , dk ∈ {∗} � (N0 ×N0)

be given, such that there exists an index 0 ≤ j ≤ k such that for all i > j it holds that di = ∗. We are going to show
that

P
(
d+
T ∗(ui) = di,1 ≤ i ≤ k

) = P
(
d+
T̄ (ui) = di,1 ≤ i ≤ k

)
. (31)

This suffices, as the set of indices i with d+
T ∗(ui) = ∗ must form a tail-segment of (1, . . . , k), since T ∗ is a tree, and

likewise for T̄ . Moreover, Equation (27) implies that almost surely

d+
T̄ (u1), d

+
T ∗(u1) �= ∗.

Hence we may additionally assume that j ≥ 1.
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First, let us observe that

P
(
d+
T ∗(ui) = di,1 ≤ i ≤ j

) ≤ P
(
d+
T̄ (ui) = di,1 ≤ i ≤ j

)
. (32)

Indeed, the left-hand side is equal to zero unless di ∈ N0 × N0 for all 1 ≤ i ≤ j with the exception of at most one
index i0 for which we allow that di0 = (∞,∞). If the di satisfy this property, we may argue as follows. We constructed
the tree T ∗ in a way such that for all vertices v ∈ V•∞ \ {u1, u2, . . .} the fringe-subtree f (T ∗, v) is finite. Hence the
event d+

T ∗(ui) = di,1 ≤ i ≤ j is a countable disjoint union of events of the form considered in Equations (28) and
(29). That is, if all di ∈ N × N for 1 ≤ i ≤ j , then Inequality (32) follows by applying Equation (28) for countably
many finite pointed trees T • ∈ T•. If di0 = (∞,∞) for an index 1 ≤ i0 ≤ j , then Inequality (32) follows by applying
Equation (29) for countably many finite trees T • ∈ T• with d+

T •(ui0) = (0,0).
Thus Inequality (32) holds. If we sum over all d1, . . . , dj ∈ N0 × N0, then the left-hand side of (32) sums up to

P(hT ∗(u0) ≥ j), and the right-hand side to P(hT̄ (u0) ≥ j). But these two quantities are equal by Equation (27). Thus
it follows that already

P
(
d+
T ∗(ui) = di,1 ≤ i ≤ j

) = P
(
d+
T̄ (ui) = di,1 ≤ i ≤ j

)
(33)

for all d1, . . . , dj ∈ N0 ×N0.
If j = k, then Equation (33) is identical to Equation (31). Otherwise, if 1 ≤ j < k, then Equation (33) implies that

P
(
d+
T ∗(ui) = di,1 ≤ i ≤ k

)
= P

(
d+
T ∗(uj+1) = ∗, d+

T ∗(ui) = di for all 1 ≤ i ≤ j
)

= P
(
d+
T ∗(ui) = di,1 ≤ i ≤ j

) −
∑

d∈N0×N0

P
(
d+
T ∗(uj+1) = d, d+

T ∗(ui) = di,1 ≤ i ≤ j
)
.

Of course, the same holds if we replace T ∗ by T̄ . It follows by Equation (33), that the last expression is equal for T ∗
and T̄ . This verifies Equation (31), and hence also Equation (30).

In order to verify that T ∗ d= T̄ , we may proceed in a similar manner. Letting d1, . . . , dk and 1 ≤ j ≤ k be as before,
Equations (28), (29) and (30) imply that

(
f •(T ∗, uj

) | d+
T ∗(ui) = di,1 ≤ i ≤ j

) d= (
f •(T ∗

n ,uj

) | d+
T̄ (ui) = di,1 ≤ i ≤ j

)
. (34)

Indeed, if d1, . . . , dj are finite, then there are only countably many values that the pointed fringe tree

T1 := (
f •(T ∗, uj

) | d+
T ∗(ui) = di,1 ≤ i ≤ j

)
may assume. By Equation (28) and (30), the tree

T2 := (
f •(T ∗

n ,uj

) | d+
T̄ (ui) = di,1 ≤ i ≤ j

)
assumes each with the same probability as T1, so it follows that the tree T2 is also supported on a countable set and

T1
d=T2. As for the other case, suppose that di0 = (∞,∞) for a unique index 1 ≤ i0 ≤ j . For each � ≥ 0 we may look

at the canonically ordered finite list L�(T1) of fringe subtrees at the sons v �= u1, . . . , uj−1 of the ui for i �= i0 and
at the first � siblings to the left and to the right of uj−1. Again there are only countably many outcomes for L�(T1),
as each of these fringe trees must be finite. By Equations (29) and (30), the list L�(T2) assumes each with the same

probability. Hence L�(T2) is also supported on a countable set and L�(T1)
d=L�(T2). As this holds for arbitrary �, it

follows that T1
d=T2. Hence Equation (34) holds.

Letting d1, . . . , dj range over all allowed values, it follows from Equations (30) and (34) that

(
f •(T ∗, uj

) | hT ∗(u0) ≥ j
) d= (

f •(T ∗
n ,uj

) | hT̄ (u0) ≥ j
)
. (35)
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In order to deduce that T ∗ d= T̄ , we need to show that any Borel-measurable set E ⊂ T• and any h ≥ 1 it holds that

P
(
f •(T ∗, uh

) ∈ E,hT ∗(u0) = h
) = P

(
f •(T ∗

n ,uh

) ∈ E,hT̄ (u0) = h
)
. (36)

Clearly it suffices to show this when E contains only trees T ∈ T• with hT (u0) = h. In this case, it follows by
Equation (35) that

P
(
f •(T ∗, uh

) ∈ E,hT ∗(u0) = h
)

= P
(
f •(T ∗, uh

) ∈ E
) − P

(
f •(T ∗, uh

) ∈ E,hT ∗(u0) ≥ h + 1
)

= P
(
f •(T ∗, uh

) ∈ E,hT ∗(u0) ≥ h
) − P

(
f •(T ∗, uh

) ∈ E,hT ∗(u0) ≥ h + 1
)

= P
(
f •(T̄ , uh) ∈ E,hT̄ (u0) ≥ h

) − P
(
f •(T̄ , uh) ∈ E,hT̄ (u0) ≥ h + 1

)
= P

(
f •(T̄ , uh) ∈ E,hT̄ (u0) = h

)
.

This verifies Equation (36) and hence completes the proof. �

Proof of Theorem 5.3. Suppose that the weight sequence w has type II and that the maximum degree 
(Tn) has
order


(Tn) = (1 − μ)n + op(n). (37)

By Kortchemski’s central limit theorem for 
(Tn) [16, Theorem 1], we know that this holds for example when
ωk = f (k)k−αρ−k

φ for a constant α > 2 and a slowly varying function f . In order to show that

(Tn, v0)
d−→T ∗,

it suffices by Lemma 5.4 to show that

hTn
(v0)

d−→hT ∗(u0).

Let D̃n denote the random integer defined in Equation (8) by

D̃n
d= (

d+
Tn

(o) | d+
Tn

(o) > �n

)
for any fixed deterministic sequence �n that tends to infinity slowly enough such that Equation (6) holds. Here o ∈ Tn

denotes the root-vertex of the tree Tn. Let T̂1n denote the modified Galton–Watson tree constructed in Section 6.1.2.
Janson [13, Equation (20.2)] argued that it follows from the assumption (37) that

P
(
d+
Tn

(o) = 
(Tn)
) = 1 − μ + o(1).

By Equations (6), (9) and (10) it holds that

P
(
d+
Tn

(o) > �n

) = 1 − μ + o(1).

Using Equation (7) it follows that

dTV
(
D̃n,
(Tn)

) → 0

as n becomes large. Thus, we may choose the coupling of Tn and T̂1n in (12) such that

P
(
D̃n = 
(Tn)

) → 1 (38)
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as n becomes large. For each k ≥ 0, let

�k : T → N̄0,

denote the continuous map that sends a tree to its width at height k. It follows by (12) that for each fixed k

∣∣�k(Tn) − �k(T̂1n)
∣∣ p−→0. (39)

The specified vertex v∗ with outdegree D̃n in the tree T̂1n has height h(v∗) given by

P
(
h
(
v∗) = k

) = μk(1 − μ). (40)

If h(v∗) ≥ k, then �k(T̂1n) = Op(1) by the construction of T̂1n. If h(v∗) = k − 1 − i for i ≥ 0, then �k(T̂1n) is given
by the Op(1) number of vertices that do not have v∗ as ancestor, and the sum

�i(T1) + · · · + �i(TD̃n
)

of the D̃n independent ξ -Galton–Watson trees dangling from the vertex v∗. It follows by (39) that

�k(Tn) = op(1) + �k(T̂1n)

= Op(1) +
k−1∑
i=0

1h(v∗)=k−1−i

(
�i(T1) + · · · + �i(TD̃n

)
)
. (41)

It is elementary that for all i

E
[
�i(T1)

] = μi. (42)

Equations (37) and (38) imply that

D̃n = (
1 − μ + op(1)

)
n. (43)

By Equations (41), (42), (43), and the law of large numbers, it follows that �k(Tn)/n converges in distribution.
As �k(Tn)/n ≤ 1 for all n, it follows by dominated convergence and Equation (40) that

P
(
hTn

(v0) = k
) = E

[
�k(Tn)/n

]

= o(1) +
k−1∑
i=0

P
(
h
(
v∗) = k − 1 − i

)
μi(1 − μ)

= o(1) + kμk−1(1 − μ)2. (44)

It holds that

hT ∗(u0)
d=1 + G1 + G2

with G1 and G2 denoting two independent identically distributed geometric random variables with parameter μ, such
that

P(G1 = (i) = (1 − μ)μi.

Hence Equation (44) implies that

hTn
(v0)

d−→hT ∗(u0).
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By Lemma 5.4 it follows that

(Tn, v0)
d−→T ∗

in the space T• of pointed plane trees. �

6.4.2. The type III regime

Proof of Proposition 5.5. We need to show that the following three properties are equivalent.

1. (Tn, v0)
d−→T ∗ in T•.

2. hTn
(v0)

p−→1.
3. The maximum degree 
(Tn) satisfies 
(Tn) = n + op(n).

It is clear that the first claim implies the second, and that the second claim implies the third. If 
(Tn) = n + op(n),
then the vertex with largest degree is with high probability the root [13, Equation (20.2)]. So in this case, it follows that

hTn
(v0)

p−→1. Hence the third claim implies the second. By Lemma 5.4, it also holds that the second claim implies
the first. �

6.5. Truncated limits and large degrees

Proof of Theorem 5.6. Let T •
n denote the tree Tn pointed at the uniformly at random selected vertex v0, and let

v0, v1, . . . denote the path from v0 to the root of Tn. Suppose that the weight sequence w has type II or III. Let
T • = (T , x) denote a finite plane tree that is pointed at vertex different from its root, and let k denote the height of the
pointed vertex in T . The inner root of the tree T • will be denoted by o.

For all k1, k2 ≥ 0 let Ek1,k2(T
•) denote the set of pointed plane trees obtained by connecting the root vertices of k1

arbitrary plane-trees from the left to the vertex o of T •, and k2 from the right. As we argued in Equation (20), there is
an ordering d̄1, . . . , d̄� of the outdegrees of the vertices v �= o of the tree T such that with d̄0 = d+

T (o) it holds that

P
(
f •(T •

n , vk

) ∈ Ek1,k2

(
T •)) = P

(
(Y0, . . . , Y�) = (k1 + k2 + d̄0, d̄1, . . . , d̄�)

)
. (45)

For each n, let

En =
⋃

k1≥0,k2≥0
k1+k2+d̄0≥�n

Ek1,k2 .

Setting d̄0 = d+
T •(o), it follows that

P
(
H(Tn, v0,�n) ∈ En

(
T •)) =

∑
r≥�n

∑
k1+k2+d̄0=r

P
(
(Y0, . . . , Y�) = (r, d̄1, . . . , d̄�)

)

=
∑
r≥�n

(r − d̄0 + 1)P
(
(Y0, . . . , Y�) = (r, d̄1, . . . , d̄�)

)
. (46)

By Equation (23), it follows that

P
(
H(Tn, v0,�n) ∈ En

(
T •))

= E

[∑
r≥�n

rNr

n

�∏
i=1

Nd̄i

n
+ (1 − d̄0)

∑
r≥�n

Nr

n

�∏
i=1

Nd̄i

n
+ O

(
d̄0

∑
r≥�n

rNr

n2

)]
.

By Equation (6) we know that∑
r≥�n

rNr

n
= 1 − μ + op(1).
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Janson’s result [13, Theorem 11.4] implies that for each fixed j

Nj

n

p−→P(ξ = j)

and hence for each fixed K∑
r≥K Nr

n
= 1 −

∑
r<K Nr

n

p−→P(ξ ≥ K).

Consequently,∑
r≥�n

Nr

n
= op(1).

By dominated convergence, it follows that

P
(
H(Tn, v0,�n) ∈ En

(
T •)) → (1 − μ)

�∏
i=1

P(ξ = d̄i ).

Let V ⊂ V•∞ denote the subset corresponding to the vertices of the tree T •. Recall that the pointed vertex in T • has
height k. It holds that

P
(
d+
T̄ ∗(v) = d+

T •(v) for all v ∈ V \ {uk}, d+
T̄ ∗(uk) = (∞,∞)

) = (1 − μ)

�∏
i=1

P(ξ = d̄i ).

It readily follows that

H(Tn, v0,�n)
d−→ T̄ ∗

in the space T•. �

Before proceeding with the proof of the main results, we make the following observation.

Lemma 6.3. It holds that

D̃n ≤ (
1 − ν + o(1)

)
n

with probability tending to 1 as n becomes large.

Proof. For each k ≥ 0, let �k : T → N̄0 denote the continuous map that a sends a tree to the number of its vertices
with distance k from the root. In Equation (41) we considered a coupling of Tn with the tree T1n and its tip of the
spine v∗, and observed that

�k(Tn) = Op(1) +
k−1∑
i=0

1h(v∗)=k−1−i

(
�i(T1) + · · · + �i(TD̃n

)
)

with T1, T2, . . . denoting independent ξ -Galton–Watson trees. As D̃n ≥ �n and �n → ∞, the law of large numbers
yields

�i(T1) + · · · + �i(TD̃n
)

D̃n

p−→μi.
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As n−1D̃n ≤ 1, it follows that for any fixed integer M it holds that

1 ≥ 1

n

M∑
k=1

�k(Tn) = op(1) + D̃n

n

M∑
k=1

k−1∑
i=0

1h(v∗)=k−1−iμ
i . (47)

It is elementary that for each ε > 0 and each δ > 0 there is an integer M0 such that

P

(
1 − δ ≤ (1 − μ)

M0∑
k=1

k−1∑
i=0

1h(v∗)=k−1−iμ
i ≤ 1

)
≥ 1 − ε.

Thus

D̃n

(1 − μ)n
≤ 1 + op(1).

In other words, there is a sequence tn → 0 such that

D̃n ≤ (1 − μ + tn)n

with probability tending to 1 as n becomes large. �

Proof of Theorem 5.7. Let ε > 0 be given, and m ≥ 1 be arbitrarily large but fixed. The height of the pointed vertex
in T̄ ∗

n is stochastically bounded. Hence if M1 ≥ 1 is large enough, the probability for this height to be larger than M1

is less than ε for all n.
The total size of the tree obtained by pruning T̄ ∗

n at its vertex with large degree, such that at most m trees to the left
and right of its spine offspring remain, is also stochastically bounded. Hence if M2 ≥ 1 is large enough the probability
for this size to be larger than M2 is at most ε for all n.

By Lemma 6.3, we know that there is a sequence tn = o(1) such that the probability for the root-degree of T̄ ∗
n to be

larger than (1 − ν + tn)n tends to zero as n becomes large. By modifying tn for finitely many n we may also assume
that additionally this probability is less than ε for all n.

Let x1, . . . , xr ∈ V•∞ be given vertices, and let M3 denote the distance from the center u0 to the youngest common
ancestor of x1, . . . , xr .

Let M > M1,M2,M3 be a fixed constant. Let V ⊂ V•∞ correspond to the vertex set of a pointed tree (T , x) with at
most M vertices such that 1 ≤ hT (x) ≤ M and the root o has at most m offspring vertices to the left and to the right
of its unique son that lies on the spine.

We are going to show that

sup
(k1,k2)

�n≤k1+k2≤(1−ν+tn)n

∣∣∣∣P(d+
T •

n
(v) = d+

T (v) for v ∈ V \ {o}, d+
T •

n
(o) = (k1, k2))

P(d+
T̄ ∗

n

(v) = d+
T (v) for v ∈ V \ {o}, d+

T̄ ∗
n

(o) = (k1, k2))
− 1

∣∣∣∣ → 0. (48)

Note that the nominator and denominator are either both non-zero or both zero, and we will tacitly only consider the
case where this expression is well-defined. In particular, this entails considering only trees T such that

P
(
ξ = d+

T (v)
)
> 0

for all vertex v ∈ V (T ) \ {o}. There are only finitely many choices for T and V . Hence the limit (48) implies that

dTV
((

d+
H(Tn,v0,�n)

(xi)
)

1≤i≤r
,
(
d+
T̄ ∗

n

(xi)
)

1≤i≤r

) ≤ 3ε

for large enough n. As ε > 0 was arbitrary, this suffices to prove the claim.
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It remains to verify the limit in (48). We may assume that n is large enough such that �n > M . By Equation (45),
we may order the outdegrees of T by (d̄0, . . . , d̄�) such that d̄0 = d+

T (o) and for all k1, k2

P
(
d+
T •

n
(v) = d+

T (v) for v ∈ V \ {o}, d+
T •

n
(o) = (k1, k2)

) = P
(
(Y0, . . . , Y�) = (K, d̄1, . . . , d̄�)

)
with

K = k1 + k2 + d̄0.

By the construction of T̄ ∗
n it holds that

P
(
d+
T̄ ∗

n

(v) = d+
T (v) for v ∈ V \ {o}, d+

T̄ ∗
n

(o) = (k1, k2)
) = K−1(1 − μ)P(D̃n = K)

�∏
i=1

P(ξ = �).

Thus

P(d+
T •

n
(v) = d+

T (v) for v ∈ V \ {o}, d+
T •

n
(o) = (k1, k2))

P(d+
T̄ ∗

n

(v) = d+
T (v) for v ∈ V \ {o}, d+

T̄ ∗
n

(o)(k1, k2))

= KP(Y0 = K)

(1 − μ)P(D̃n = K)
P
(
(Y1, . . . , Y�) = (d̄1, . . . , d̄�) | Y0 = K

)( �∏
i=1

P(ξ = �)

)−1

.

By Equation (8) and K ≥ �n it holds that

P(D̃n = K) = P
(
d+
Tn

(o) = K
)
/P

(
d+
Tn

(o) > �n

)
.

For any integer k ≥ 0 it holds by the discussion in Section (6.1.1) and in particular Equation (10) that

P
(
d+
Tn

(o) = k
) = nk

n − 1
P(Y0 = k).

See also [13, Lemma 15.7]. Hence

P(D̃n = K) = KP(Y0 = K)∑
k>�n

kP(Y0 = k)
.

It follows by Equation (6) that the term

KP(Y0 = K)

(1 − μ)P(D̃n = K)
=

∑
k>�n

kP(Y0 = k)

1 − μ

does not depend on K at all and converges toward 1. Thus, in order to verify the limit (48), it remains to show that

P
(
(Y1, . . . , Y�) = (d̄1, . . . , d̄�) | Y0 = K

)( �∏
i=1

P(ξ = �)

)−1

→ 1 (49)

uniformly for all �n ≤ K ≤ (1 − μ + tn)n. Note that

P
(
(Y1, . . . , Y�) = (d̄1, . . . , d̄�) | Y0 = K

) = P
((

Y
(n−1−K,n−1)
1 , . . . , Y

(n−1−K,n−1)
�

) = (d̄1, . . . , d̄�)
)
.

For ease of notation, let us set Y ′
i = Y

(n−1−K,n−1)
i for all i and let N

(n−1−K,n−1)
k = N ′

k denote the number of indices
with i with Y ′

i = k. Similarly as in Equation (22) it holds that

P
((

Y ′
1, . . . , Y

′
�

) = (d̄1, . . . , d̄�) | N ′
0,N

′
1, . . .

) =
�∏

i=1

N ′̄
di

− ci

n − i
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with ci denoting the number of 1 ≤ j < i with d̄j = d̄i . It is elementary that

�∏
i=1

N ′̄
di

− ci

n − i
= (

1 + O
(
n−1)) �∏

i=1

N ′̄
di

n

with the implicit bound in the O(n−1) term not depending on K .
Recall that in Section 3.1 we defined φ(z) = ∑

k≥0 ωkz
k , ψ(z) = zφ′(z)/φ(z), and a parameter τ . As the weight

sequence (ωi)i has type II or III, it holds that τ = ρφ is the radius of convergence of φ(z). In Section 3.2 we defined
furthermore P(ξ = k) = ωkτ

k/φ(τ) for all k. Janson [13, Theorem 11.6] gave the following result. The function

τ : [0,∞[→ [0,∞], x �→ sup
{
t ≤ ρ | ψ(t) ≤ x

}
is continuous. For x ≤ ν = μ it holds that τ(x) is the unique number with ψ(τ(x)) = x, and for x > ν it holds that
τ(x) = ρφ = τ . Furthermore, for each fixed non-negative integer d it holds uniformly for all m ≤ n that

N
(m,n)
d

n
− ωdτ(m/n)d

φ(m/n)

p−→0.

We assumed that K ≤ (1 − μ + tn)n with tn = o(1). In particular,

(n − 1 − K)/(n − 1) ∼ μ

uniformly for all K . Thus

τ
(
(n − 1 − K)/(n − 1)

) ∼ τ

and consequently

N ′̄
di

n
− P(ξ = d̄i )

p−→0

uniformly for all K . As P(ξ = d̄i ) > 0 for all i, it follows by dominated convergence that

P
((

Y ′
1, . . . , Y

′
�

) = (d̄1, . . . , d̄�)
)( �∏

i=1

P(ξ = �)

)−1

→ 1

uniformly for all K . This verifies Equation (49) and hence completes the proof. �

Acknowledgements

I warmly thank the editor and referees for the helpful suggestions and the thorough reading of the manuscript. I warmly
thank Jehanne Dousse for providing the French translation of the abstract.

References

[1] R. Abraham, A. Bouaziz and J.-F. Delmas. Local limits of Galton–Watson trees conditioned on the number of protected nodes. J. Appl.
Probab. 54 (1) (2017) 55–65. MR3632605

[2] R. Abraham and J.-F. Delmas. Local limits of conditioned Galton–Watson trees: The condensation case. Electron. J. Probab. 19 (2014)
Article ID 56. MR3227065

[3] R. Abraham and J.-F. Delmas. Local limits of conditioned Galton–Watson trees: The infinite spine case. Electron. J. Probab. 19 (2014) Article
ID 2. MR3164755

[4] R. Abraham, J.-F. Delmas and H. Guo. Critical multi-type Galton–Watson trees conditioned to be large. ArXiv e-print, 2015. Available at
arXiv:1511.01721.

http://www.ams.org/mathscinet-getitem?mr=3632605
http://www.ams.org/mathscinet-getitem?mr=3227065
http://www.ams.org/mathscinet-getitem?mr=3164755
http://arxiv.org/abs/arXiv:1511.01721


Local limits of large Galton–Watson trees rerooted at a random vertex 183

[5] D. Aldous. Asymptotic fringe distributions for general families of random trees. Ann. Appl. Probab. 1 (2) (1991) 228–266. MR1102319
[6] I. Armendáriz and M. Loulakis. Conditional distribution of heavy tailed random variables on large deviations of their sum. Stochastic Process.

Appl. 121 (5) (2011) 1138–1147.
[7] P. Billingsley. Weak Convergence of Measures: Applications in Probability. Conference Board of the Mathematical Sciences Regional Con-

ference Series in Applied Mathematics 5. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1971. MR0310933
[8] L. Devroye and S. Janson. Distances between pairs of vertices and vertical profile in conditioned Galton–Watson trees. Random Structures

Algorithms 38 (4) (2011) 381–395.
[9] M. Drmota. Random Trees. An Interplay Between Combinatorics and Probability. Springer, New York, 2009. MR2484382

[10] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press, Cambridge, 2010.

[11] C. Holmgren and S. Janson. Fringe trees, Crump–Mode–Jagers branching processes and m-ary search trees. Probab. Surv. 14 (2017) 53–154.
[12] S. Janson. Random cutting and records in deterministic and random trees. Random Structures Algorithms 29 (2) (2006) 139–179. MR2245498
[13] S. Janson. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation. Probab. Surv. 9 (2012) 103–252.

MR2908619
[14] S. Janson, T. Jonsson and S. Ö. Stefánsson. Random trees with superexponential branching weights. J. Phys. A 44(48) (2012) Article ID

485002.
[15] T. Jonsson and S. Ö. Stefánsson. Condensation in nongeneric trees. J. Stat. Phys. 142 (2) (2011) 277–313. MR2764126
[16] I. Kortchemski. Limit theorems for conditioned non-generic Galton–Watson trees. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2) (2015)

489–511. MR3335012
[17] S. Pénisson. Beyond the Q-process: Various ways of conditioning the multitype Galton–Watson process. ALEA Lat. Am. J. Probab. Math.

Stat. 13 (1) (2016) 223–237.
[18] R. Stephenson. Local convergence of large critical multi-type Galton–Watson trees and applications to random maps. J. Theoret. Probab. 29

(2016) 1–47. 10.1007/s10959-016-0707-3.

http://www.ams.org/mathscinet-getitem?mr=1102319
http://www.ams.org/mathscinet-getitem?mr=0310933
http://www.ams.org/mathscinet-getitem?mr=2484382
http://www.ams.org/mathscinet-getitem?mr=2245498
http://www.ams.org/mathscinet-getitem?mr=2908619
http://www.ams.org/mathscinet-getitem?mr=2764126
http://www.ams.org/mathscinet-getitem?mr=3335012
https://doi.org/10.1007/s10959-016-0707-3

	Introduction
	Outline

	Notation
	Simply generated trees
	Three types of weight-sequences
	An associated Galton-Watson tree

	The space of pointed plane trees
	Centering at a speciﬁed vertex
	Topological properties

	The limit theorems
	The type I regime
	Complete condensation in the type II regime
	Complete condensation in the type III regime
	Large nodes and truncated limits

	Proof of the main results
	Preliminaries
	Simply generated trees and balls in boxes
	Large nodes near the root in the condensation regime

	Convergence in the type I regime
	General observations
	The limit theorems in the condensation regime
	The type II regime
	The type III regime

	Truncated limits and large degrees

	Acknowledgements
	References

