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Abstract. Very recently we have shown that the spherical transform is a convenient tool for studying the relation between the
joint density of the singular values and that of the eigenvalues for bi-unitarily invariant random matrices. In the present work we
discuss the implications of these results for products of random matrices. In particular, we derive a transformation formula for the
joint densities of a product of two independent bi-unitarily invariant random matrices, the first from a polynomial ensemble and
the second from a polynomial ensemble of derivative type. This allows us to re-derive and generalize a number of recent results
in random matrix theory, including a transformation formula for the kernels of the corresponding determinantal point processes.
Starting from these results, we construct a continuous family of random matrix ensembles interpolating between the products of
different numbers of Ginibre matrices and inverse Ginibre matrices. Furthermore, we make contact to the asymptotic distribution
of the Lyapunov exponents of the products of a large number of bi-unitarily invariant random matrices of fixed dimension.

Résumé. Très récemment nous avons montré que la transformée sphérique est un outil pratique pour étudier la relation entre
la densité conjointe des valeurs singulières et celle des valeurs propres pour des matrices aléatoires bi-unitairement invariantes.
Dans le travail présent, nous discutons les implications de ces résultats pour les produits de matrices aléatoires. En particulier,
nous dérivons une formule de transformation pour les densités conjointes d’un produit de deux matrices aléatoires bi-unitairement
invariantes indépendantes, la première d’un ensemble polynomial et la seconde d’un ensemble polynomial de type dérivé. Cela
nous permet de redériver et de généraliser certains résultats récents dans la théorie des matrices aléatoires, y compris une formule
de transformation pour les noyaux des processus ponctuels déterminantals associés. A partir de ces résultats, nous construisons une
famille continue d’ensembles de matrices aléatoires interpolant entre les produits de différents nombres de matrices de Ginibre et
de matrices de Ginibre inverses. De plus, nous établissons un lien avec la distribution asymptotique des exposants de Lyapunov des
produits d’un grand nombre de matrices aléatoires bi-unitairement invariantes de dimension fixe.
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1. Introduction

The distributions of the singular values and the eigenvalues of products of independent complex random matrices
have been an intense subject of research in the past few years. Mostly, this was fuelled by two major developments.
On the one hand, the asymptotic global distributions (also known as the macroscopic level densities) of the singular
values and of the eigenvalues could be determined for certain products of random matrices in the limit of large
matrix dimension [2,9,12,17–19,24,29,30,44,50,53], often with the help of free probability. On the other hand, it was
possible to investigate the local correlations of the singular values and of the eigenvalues, both at finite and infinite
matrix dimensions [2,3,7,8,20,24,35,46–48]. See also the surveys [16] and [6] for extended overviews.
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For the investigation of the local spectral statistics, the first step is usually the derivation of the joint probability
density functions (henceforward called joint densities) of the singular values or of the eigenvalues at finite matrix
dimension. As witnessed by many results from the last years, the joint densities of matrix products may still ex-
hibit a determinantal structure when the joint densities of the underlying factors do. Such a structure is more than
advantageous in studying the spectral statistics and their asymptotics. For instance, for a matrix product

X = Z1 · · ·ZpZ−1
p+1 · · ·Z−1

p+q, (1.1)

where p,q ∈N0 are such that p + q ≥ 1 and Z1, . . . ,Zp+q are independent (complex) Ginibre matrices of dimension
n × n, the joint density of the squared singular values is of the form

fSV(a) = Csv�n(a)det
(
wj−1(ak)

)
j,k=1,...,n

, a ∈ (0,∞)n (1.2)

with a constant Csv, see e.g. Refs. [8,24,47,48], while that of the eigenvalues reads

fEV(z) = Cev
∣∣�n(z)

∣∣2
n∏

j=1

w
(|zj |2

)
, z ∈C

n (1.3)

with another but related constant Cev, see e.g. Refs. [2,3,35]. Here, �n(x) := ∏
1≤j<k≤n(xk −xj ) is the Vandermonde

determinant, and w0, . . . ,wn−1 and w are certain weight functions depending on n, p and q , see Section 4 for details.
Similar results were also established for products of rectangular matrices with independent complex Gaussian entries
(induced Laguerre ensemble) [7,24,35] and of truncated unitary ensembles (induced Jacobi ensemble) [5,20,35,43].
In all these cases, the functions w0, . . . ,wn−1 and w admit compact expressions in terms of the Meijer-G function [1],
which is why these ensembles of product matrices are also called Meijer G-ensembles [42].

The joint densities (1.2) and (1.3) are closely related to each other. In the case of Meijer G-ensembles this relation
is given by

(−a∂a)
jw(a) = wj(a), j = 0, . . . , n − 1. (1.4)

In the very recent work [42], we constructed a linear operator mapping the joint density of the (squared) singular values
to that of the eigenvalues, see [42, Section 3] for details. This operator is called SEV (singular value–eigenvalue)
transform, and it provides a bijection between the (squared) singular value and eigenvalue densities induced by general
bi-unitarily invariant matrix densities, i.e. by densities on matrix space which are unchanged when the argument is
multiplied by an arbitrary unitary matrix from the left or from the right. Furthermore, we were able to identify a
subclass of polynomial ensembles [20,43,45,46] called polynomial ensembles of derivative type which admit joint
densities of the form (1.2) and (1.3), with the weight functions related as in Eq. (1.4). This class extends the class of
Meijer G-ensembles and even comprises some examples of Muttalib–Borodin ensembles [13,51], which are generally
no Meijer G-ensembles.

For some types of Meijer G-ensembles, as for induced Laguerre and Jacobi ensembles, see e.g. the review [6]
and references therein, it is well known that the operations of matrix multiplication and inversion do not lead out
of the class of Meijer G-ensembles. It is a natural question whether this statement extends to all polynomial ensem-
bles of derivative type. The main aim of the present work is to answer this question affirmatively. Moreover, we will
derive transformation formulas for the spectral densities for the product of a random matrix from a polynomial en-
semble of derivative type with an independent random matrix from an arbitrary polynomial ensemble, as discussed in
[20,43,45,46].

Let us briefly describe these results in more detail. Let X1 be an n × n random matrix drawn from a polynomial
ensemble of derivative type, i.e. its matrix density is bi-unitarily invariant and the joint density of its squared singular
values is of the form (1.2), with weight functions w0, . . . ,wn−1 satisfying (1.4). Moreover, let X2 be an arbitrary n×n

random matrix for which the joint density of the squared singular values is of the form (1.2), with weight functions
v0, . . . , vn−1. Then, if X1 and X2 are independent, the joint density of the squared singular values of the product X1X2
is also of the form (1.2), with weight functions w� v0, . . . ,w� vn−1, where � denotes the multiplicative convolution
on (0,∞), see Eq. (2.9) below. Moreover, assuming additionally that the weight functions vj for the matrix X2 satisfy
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Eq. (1.4) with w replaced by v, the weight functions w � vj for the product X1X2 satisfy Eq. (1.4) with w replaced
by w � v.

From a technical perspective, our approach differs from the above-mentioned contributions to products of random
matrices in that we use the (multivariate) spherical transform instead of the (univariate) Mellin transform as the main
tool from harmonic analysis. See Section 2 for a short introduction. The spherical transform is a well-established
tool for analysis and probability theory on matrix spaces [22,34,37,38,59], and has been applied, for instance, to the
study of the central limit theorem [14,32,55,56,58], infinitely divisible distributions on matrix space [11,27,31], as
well as problems in multivariate statistics [33]. However, it seems that this tool has not been exploited yet for the non-
asymptotic investigation of the correlations of the singular values and of the eigenvalues of products of independent
random matrices, a topic which has found considerable attention in the field of random matrix theory in the last few
years.

For the derivation of our results, it will be essential that the spherical functions associated with the group GL(n,C)

have the explicit representation (2.14). This representation, which was discovered by Gelfand and Naı̆mark [28], will
serve as a substitute for the famous Harish–Chandra–Itzykson–Zuber integral and related integrals. These integrals
play a key role in the derivation of the squared singular value density (1.2) for products of independent random
matrices from the induced Laguerre and Jacobi ensemble.

As a first application of our approach, we will discuss the question whether it is possible to embed the matrix en-
sembles given by the products of Ginibre matrices and their inverses, see Eq. (1.1), into a “natural” continuous family
of matrix ensembles which is indexed by two positive parameters p and q and which is closed under multiplicative
convolution on matrix space; see Eq. (2.18) below. We call the resulting ensembles interpolating ensembles. In Sec-
tion 4, we will construct the interpolating densities and show that the corresponding joint densities of the squared
singular values and eigenvalues are still of the form (1.2) and (1.3), respectively, for appropriate choices of the weight
functions w0, . . . ,wn−1 and w. Unfortunately, it turns out that the interpolating matrix densities are positive only
under certain restrictions on the parameters n, p and q . The same holds for the interpolating squared singular value
densities, whereas the interpolating eigenvalue densities are always positive.

In addition to that, we will make contact with results about Lyapunov exponents and stability exponents for products
of independent random matrices. The investigation of limit theorems for Lyapunov exponents has a long history, see
e.g. [15,56] and the references therein. Interest in this area has resurged more recently due to explicit results for
finite products [4,23,25,36,39,54]. In particular, in [54] it is shown that, under certain conditions, for products of
independently and identically distributed, bi-unitarily invariant random matrices of fixed dimension, the logarithms
of the singular values and the complex eigenvalues are asymptotically Gaussian distributed as the number of factors
tends to infinity. We provide a sketch of an alternative proof which is based on the spherical transform and which is
reminiscent of the standard Fourier analytical proof of the central limit theorem for sums of random vectors. Our main
motivation for including this sketch is that it provides some new insights about the class of polynomial ensembles of
derivative type. For instance, it becomes clear that the Lyapunov exponents are asymptotically independent when the
underlying random matrices are from this class. Moreover, we will obtain a more probabilistic characterization of the
class of polynomial ensembles of derivative type.

The present work is organized as follows. In Section 2, we introduce our notation and recall the definition and
the basic properties of the Mellin transform and the spherical transform. Also, we introduce the class of polynomial
ensembles of derivative type and summarize some results from Ref. [42]. Section 3 is devoted to the statements and
the proofs of our main results on products of random matrices from polynomial ensembles. For illustration, we also
provide some examples. Section 4 contains the construction and the investigation of the interpolating ensembles, and
Section 5 deals with the recent results about Lyapunov exponents. Finally, we will summarize our results in Section 6
and give an outlook to some open questions.

2. Preliminaries

In this section, we introduce our notation and recall a number of known results from random matrix theory and
harmonic analysis which will be used later.

We mainly use the notation of our work [42]. For example, we write �n(x) := ∏
1≤j<k≤n(xk − xj ) for the Van-

dermonde determinant of a vector x = (x1, . . . , xn) in Rn or Cn, which we often identify with the diagonal matrix
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x = diag(x1, . . . , xn). Additionally, for abbreviation, we introduce the constant

C∗
n := πn(n+1)/2∏n−1

j=0 j ! , (2.1)

which appears in several integration formulas.

2.1. Matrix spaces, densities and operators

Throughout the present work, we denote the general linear group of complex n × n matrices by G = GL(n,C), the
group of n × n unitary matrices by K = U(n), and the group of complex (upper) unitriangular matrices by T . We
endow the matrix spaces G and T with the respective Lebesgue measures

dg =
∏

j,k=1,...,n

dgjk and dt =
∏

1≤j<k≤n

dtjk, (2.2)

where g ∈ G and t ∈ T . Here the measure dz denotes the Lebesgue measure on R if z is a real variable and the
Lebesgue measure dz = d Re z d Im z on C if z is a complex variable. Let us emphasize that dg does not denote
integration with respect to the Haar measure on G, which is given by

d∗g = dg

|detg|2n
. (2.3)

For the unitary group K , we always employ the normalized Haar measure on K denoted by d∗k, so that
∫
K

d∗k = 1.
Finally, given a matrix g ∈ GL(n,C), we write g∗ for the Hermitian adjoint.

By a density on a matrix space, we understand a Borel measurable function which is Lebesgue integrable with
respect to the corresponding reference measure. Note that, unless otherwise indicated, we do not assume a density to
be non-negative. Sometimes, but not always, we write signed density to emphasize this. When it is important that a
density is non-negative, we call it a non-negative density, or a probability density if it is additionally normalized. In
contrast to that, when we speak about random matrices or about ensembles, we always mean that the matrix space
under consideration is endowed with a probability density. Independence of random matrices always means statistical
independence.

Given a density fG on GL(n,C), we will frequently consider the induced joint densities of the squared singular
values and of the eigenvalues, which are defined on the sets A := R

n+ and Z := C
n∗ , respectively, where R+ := (0,∞)

and C∗ = C \ {0}. The arguments of these densities are denoted by a = (a1, . . . , an) ∈ A and z = (z1, . . . , zn) ∈ Z,
respectively, and they are identified with diagonal n × n matrices when convenient. The reference measure on A and
Z will always be given by the Lebesgue measure on R

n restricted to A and on C
n restricted to Z, respectively. Finally,

we always consider versions of the joint densities which are invariant with respect to permutations of their arguments,
so that the ordering of the squared singular values and the eigenvalues is irrelevant.

For some of our results, it will be useful to specify the sets of densities and the linear operators describing the
induced densities explicitly; see also Ref. [42] for more information. The set of bi-unitarily invariant densities on the
matrix space G is denoted by

L1,K(G) := {
fG ∈ L1(G) | fG(k1gk2) = fG(g) ∀k1, k2 ∈ K and g ∈ G

}
. (2.4)

On this space, we consider two operators I and T defined by

IfG(a) := (C∗
n)2

πnn!
∣∣�n(a)

∣∣2
fG(

√
a) (2.5)

and

T fG(z) := C∗
n

∣∣�n(z)
∣∣2

(
n∏

j=1

|zj |2(n−j)

)∫
T

fG(zt) dt, (2.6)
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where the integration domain T and the measure dt are as in Eq. (2.2). The images of these operators are denoted by

L1,SV(A) := IL1,K(G) and L1,EV(Z) := T L1,K(G), (2.7)

respectively. The notation of these sets are due to the fact that if we start from a density fG ∈ L1,K(G), IfG and T fG

are the induced joint densities of the squared singular values and of the eigenvalues, respectively. For this reason, we
frequently write fSV instead of IfG and fEV instead of T fG. In Ref. [42] it was shown that the operators I and T are
invertible. For the reader familiar with [42], let us mention that the operator I defined here is the composition IAI�

of the operators IA and I� in [42]. In particular, the map R := T I−1 is a bijection called the SEV transform in Ref.
[42] and this bijection may be written quite explicitly. Also, let us mention that the operators I and T map probability
densities to probability densities. The same property holds for the inverse operator I−1, whereas it may fail for the
inverse operator T −1; see [42, Section 3] or Section 4 below for details.

2.2. Definition of some transforms

Next, let us recall the definition and the basic properties of the Mellin transform and of the spherical transform.
For a function f ∈ L1(R+), the Mellin transform is defined by

Mf (s) :=
∫ ∞

0
f (x)xs−1 dx. (2.8)

It is defined for all those s ∈ C such that the integral exists (in the Lebesgue sense). In particular, if f ∈ L1(R+), the
Mellin transform is defined at least on the line 1 + ıR, and it has the following well-known properties:

(i) Uniqueness theorem. If f1 and f2 are in L1(R+) and their Mellin transforms coincide on the set 1 + ıR, we have
f1 = f2 almost everywhere. Indeed, there exist explicit Mellin inversion formulas by which one can recover the
original function from its Mellin transform, see e.g. [60] or [42].

(ii) Multiplication theorem. If f1 and f2 are in L1(R+) and

(f1 � f2)(x) :=
∫ ∞

0
f1

(
xy−1)f2(y)

dy

y
(2.9)

denotes their multiplicative convolution, then

M(f1 � f2)(s) =Mf1(s)Mf2(s) (2.10)

for all s ∈ C such that the Mellin transforms on the right are defined. This multiplication theorem follows from a
simple calculation.

(iii) Composition with derivatives. For f ∈ L
1,k
I

(R+), we have

M
([(

−x
d

dx

)k

f (x)

]
; s

)
= skMf (s). (2.11)

In part (iii), we have used the notation M([f (x)]; s) instead of Mf (s) in order to indicate the argument of the
underlying function. The set L

1,k
I

(R+) is defined by

L
1,k
I

(R+) :=
{
f ∈ L1(R+)

∣∣∣ f is k-times differentiable and

for all κ ∈ I and j = 0, . . . , k :
∫ ∞

0

∣∣∣∣yκ−1
(

−y
∂

∂y

)j

f (y)

∣∣∣∣dy < ∞
}

(2.12)

with I ⊂ R an interval containing the number 1. Here, “k-times differentiable” means (k − 1)-times continuously
differentiable with an absolutely continuous (k − 1)st derivative. As is well known, this implies that the kth derivative
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exists almost everywhere. The set L
1,k
I

(R+) will also play a role in the definition of the polynomial ensembles of
derivative type, see Section 2.3 below.

We now introduce the spherical transform. In doing so, we confine ourselves to a direct definition which is sufficient
for our purposes and refer to the literature [22,34,37,38,59] for background information. Also, let us emphasize that we
define the spherical transform for bi-unitarily invariant densities on the group GL(n,C) in the present work, whereas
it was defined for unitarily invariant densities on the cone Pos(n,C) of positive-definite Hermitian matrices in Ref.
[42, Section 2.4]. For a function fG ∈ L1,K(G), the spherical transform is

SfG(s) :=
∫

G

fG(g)ϕs(g)
dg

|detg|2n
, (2.13)

where

ϕs(g) = �n(�
′)

�n(s)

det[(λj (g
∗g))sk+(n−1)/2]j,k=1,...,n

�n(λ(g∗g))
, s ∈C

n, g ∈ G, (2.14)

denotes the spherical function [34, Theorem IV.5.7] for the group G. In this definition, we introduced the vector

�′ := (
�′

1, . . . , �
′
n

)
with �′

j = (2j + n − 1)/2, j = 1, . . . , n, (2.15)

and λ(g∗g) = (λj (g
∗g))j=1,...,n is the vector of the eigenvalues of g∗g or, equivalently, the squared singular values

of g. The spherical functions ϕs in Eq. (2.14) are bi-unitarily invariant and satisfy the equation∫
K

ϕs(gkh)d∗k = ϕs(g)ϕs(h) for all g,h ∈ G, (2.16)

see e.g. [34, Proposition IV.2.2]. The representation (2.14) goes back to Gelfand and Naı̆mark [28]. The spherical
transform SfG(s) is defined for all those s ∈ C

n such that the integral exists (in the Lebesgue sense). Note that, by
the definitions, we have

SfG

(
�′) =

∫
G

fG(g)dg (2.17)

for �′ as in Eq. (2.15). In particular, SfG(�′) = 1 if fG is a probability density. Also, if f ∈ L1,K(G), the spherical
transform is defined at least on the set �′ + ıRn, and it satisfies the following well-known properties:

(i) Uniqueness theorem. If f1 and f2 are in L1,K(G) and their spherical transforms coincide on the set �′ + ıRn,
we have f1 = f2 almost everywhere, see e.g. Ref. [34, Chapters IV.3 and IV.8]. Furthermore, there exist explicit
spherical inversion formulas by which one can recover a function f ∈ L1,K(G) from its spherical transform, see
e.g. [42, Lemma 2.9] for a version which does not require any smoothness conditions.

(ii) Multiplication theorem. Let fG,1 and fG,2 be functions in L1,K(G), and let their multiplicative convolution be
defined by

(fG,1 � fG,2)(g) :=
∫

G

fG,1
(
gg̃−1)fG,2(g̃)

dg̃

|det g̃|2n
. (2.18)

It is straightforward to see that this is well-defined for almost all g ∈ G and that fG,1 � fG,2 is again an element
of L1,K(G). Then we have

S(fG,1 � fG,2)(s) = SfG,1(s)SfG,2(s) (2.19)

for all s ∈ C
n such that the spherical transforms on the right are defined. This follows from a simple calculation

using Eq. (2.16) and bi-unitary invariance, compare e.g. [37, Theorem IV.6.3].
Equation (2.19) has the following probabilistic reformulation, which will be convenient in the next section. If

X1 and X2 are independent random matrices with densities fG,1 and fG,2 in L1,K(G), respectively, fG1 � fG2 is
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simply the density of the matrix product X1X2. Thus, writing SX instead of SfG for a random matrix X with a
density fG ∈ L1,K(G), we may rewrite Eq. (2.19) in the form

SX1X2(s) = SX1(s)SX2(s). (2.20)

We also call SX the spherical transform of the random matrix X.

2.3. Polynomial ensembles

Polynomial ensembles [43,45,46] play a prominent role in the investigation of singular value statistics, as their subclass
of the polynomial ensembles of derivative type [42]. Therefore, let us recall their definitions.

Definition 2.1 (Polynomial ensembles). Fix n ∈N, and let w0, . . . ,wn−1 ∈ L
1,0
[1,n](R+) and ω ∈ L

1,n−1
[1,n] (R+).

(a) A probability density f
(n)
SV [w] ∈ L1,SV(A) defines a polynomial ensemble if it is of the form

f
(n)
SV

([w];a) = C(n)
sv [w]�n(a)det

[
wj−1(ak)

]
j,k=1,...,n

(2.21)

with the normalizing constant

C(n)
sv [w] :=

(
n!det

[∫ ∞

0
ak−1wj−1(a) da

]
j,k=1,...,n

)−1

. (2.22)

It corresponds to a polynomial random matrix ensemble f
(n)
G [w] = I−1f

(n)
SV [w] on G. These ensembles are also

called the polynomial ensembles associated with the weight functions {wj }j=0,...,n−1.
(b) Suppose additionally that

wk(a) =
(

−a
d

da

)k

ω(a), k = 0, . . . , n − 1, (2.23)

i.e. we have

f
(n)
SV

([ω];a) = C(n)
sv [ω]�n(a)det

[(
−ak

d

dak

)j−1

ω(ak)

]
j,k=1,...,n

(2.24)

with the normalizing constant

C(n)
sv [ω] := 1∏n

j=0 j !
1∏n

j=1 Mω(j)
. (2.25)

Then we say that the probability density given by Eq. (2.24) defines a polynomial ensemble of derivative type.
The associated density f

(n)
G [ω] = I−1f

(n)
SV [ω] on G is called a polynomial random matrix ensemble of derivative

type. These ensembles are also called the polynomial ensembles (of derivative type) associated with the weight
function ω. For brevity, we often omit the attribute “of derivative type” here, as this is unlikely to cause misun-
derstandings.

Let us note that the integrability conditions in the Definition 2.1 ensure that the functions w0, . . . ,wn−1 and ω as
well as the densities (2.21) and (2.24) are integrable. Furthermore, the Mellin transforms Mwk , k = 0, . . . , n− 1, and
Mω exist (at least) in the complex strip [1, n]+ ıR. Also, it is part of the definition that the functions on the right hand
side of Eqs. (2.21) and (2.24) are non-negative and normalizable. It can be checked that the normalizing constants are
indeed given by Eqs. (2.22) and (2.25), respectively, see [42] or Section 3 below. Moreover, let us emphasize that
polynomial random matrix ensembles are bi-unitarily invariant by definition.

Occasionally, similarly as in [42], we will need the extension of the previous definitions to signed densities. By
slight abuse of notation, we call the resulting signed measures on A and on G signed polynomial ensembles.
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Moreover, similarly as in the definition above, we often make explicit the underlying weight functions w =
{wj }j=0,...,n−1 or ω in square brackets when specifying normalization constants, spectral densities, correlation kernels
and functions, bi-orthogonal kernels and functions etc.

Finally, let us quote some results from Ref. [42] for polynomial random matrix ensembles of derivative type. The
first result provides the joint density (2.24) of the eigenvalues.

Theorem 2.2 ([42, Theorem 3.5]). Let X be a random matrix drawn from the polynomial random matrix ensemble
of derivative type associated with the weight function ω ∈ L

1,n−1
[1,n] (R+). Then the joint density of the eigenvalues of X

is given by

f
(n)
EV

([ω]; z) =Rf
(n)
SV

([ω];a) = C(n)
ev [ω]∣∣�n(z)

∣∣2
n∏

j=1

ω
(|zj |2

)
, (2.26)

where

C(n)
ev [ω] := C

(n)
sv [ω]∏n−1

j=0 j !
πn

(2.27)

and C
(n)
sv [ω] is as in Eq. (2.25).

The second result shows that the joint densities of the squared singular values and of the eigenvalues give rise to
determinantal point processes.

Lemma 2.3 ([42, Lemmas 4.1 and 4.2]). Let X be a random matrix as in Theorem 2.2 with the additional condition
that ω ∈ L

1,n
]smin,smax[(R+) and [1, n+ 1] ⊂ ]smin, smax[ ⊂R. Then the joint densities of the squared singular values and

eigenvalues of X give rise to the determinantal point processes

f
(n)
SV

([ω];a) = 1

n! det
[
K(n)

sv

([ω];ab, ac

)]
b,c=1,...,n

, (2.28)

and

f
(n)
EV

([ω]; z) = 1

n! det
[
K(n)

ev

([ω]; zb, z̄c

)]
b,c=1,...,n

, (2.29)

respectively. The kernels are given by

K(n)
sv

([ω];ab, ac

) =
n−1∑
j=0

pj

([ω];ab

)
qj

([ω];ac

)
= −n

Mω(n + 1)

Mω(n)

∫ 1

0
pn−1

([ω];xab

)
qn

([ω];xac

)
dx (2.30)

and

K(n)
ev

([ω]; zb, z̄c

) =
√

ω
(|zb|2

)
ω

(|zc|2
) n−1∑

j=0

(zbz̄c)
j

πMω(j + 1)
. (2.31)

For the kernel of the squared singular values of X we have the polynomials in monic normalization

pl

([ω];a) =
l∑

j=0

(−1)l−j l!Mω(l + 1)

j !(l − j)!Mω(j + 1)
aj

= l!Mω(l + 1)

∮
C

�(t − l − 1)

�(t)Mω(t)
at−1 dt

2πı
, (2.32)
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l = 0, . . . , n − 1. The closed contour C encircles the interval [1, n] and satisfies ReC ⊂ ]smin, smax[. Moreover it
excludes any poles of 1/Mω(t + 1). The functions

ql

([ω];a) = 1

l!Mω(l + 1)
∂l
a

[
(−a)lω(a)

]
= 1

l!Mω(l + 1)
lim
ε→0

∫ ∞

−∞
π2 cos(εs)

π2 − 4ε2s2

�(s0 + ıs)Mω(s0 + ıs)

�(s0 + ıs − l)
a−s0−ıs ds

2π
(2.33)

are bi-orthogonal to the polynomials (2.32) such that
∫ ∞

0 pl([ω];a)qm([ω];a)da = δlm for l,m = 0, . . . , n and δlm

the Kronecker symbol. The auxiliary real shift s0 is chosen such that s0 ∈ ]smin,1[ and s0 < Re t for all t ∈ C.

After these preparations, we are ready to formulate our main results.

3. Main results

To shorten the notation, let us convene that in the proofs in this section, matrices inside determinants are indexed by
j, k = 1, . . . , n. Also, recall the notation SX introduced above Eq. (2.20).

The derivation of the joint densities of the eigenvalues and the singular values of a product of independent random
matrices from polynomial ensembles works via the spherical transform (2.13) and the multiplication and uniqueness
theorems from Section 2.2. To this end, we first need to know the spherical transform of a polynomial ensemble.

Proposition 3.1 (Spherical transform of a polynomial ensemble). Let X be a random matrix from the polynomial
random matrix ensemble associated with the weight functions {wj }j=0,...,n−1. Then the spherical transform of X is
given by

SX(s) = C(n)
sv [w]

(
n∏

j=0

j !
)

det[Mwj−1(sk − (n − 1)/2)]j,k=1,...,n

�n(s)
. (3.1)

Note that for s = �′ as in (2.15), we have SX(�′) = 1 and �n(�
′) = ∏n−1

j=0 j !, so that we recover Eq. (2.22) for the

normalizing constant C
(n)
sv [w].

Proof. Let fSV be the density of the squared singular values of X, see Eq. (2.21), and let fG := I−1fSV with I as in
Eq. (2.5) be the corresponding matrix density. Then, using Eqs. (2.13), (2.21) and (2.14), we have

SX(s) =
∫

G

fG(g)ϕs(g)
dg

|detg|2n
=

∫
A

fSV(a)ϕs(
√

a)
da

(deta)n

= C(n)
sv [w]

(
n−1∏
j=0

j !
)∫

A

�n(a)det
[
wj−1(ak)

]det[asj −(n−1)/2
k ]

�n(s)�n(a)

da

deta
. (3.2)

The Vandermonde determinant �n(a) cancels with the one in the numerator and the factor 1/�n(s) can be pulled out
of the integral. For the remaining integral, we apply Andréief’s identity [10] and end up with

SX(s) = C
(n)
sv [w]∏n

j=0 j !
�n(s)

det

[∫ ∞

0
ask−(n−1)/2wj−1(a)

da

a

]
. (3.3)

The integral in the determinant is the Mellin transform (2.8), which completes the proof. �
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Corollary 3.2 (Spherical transform of a polynomial ensemble of derivative type). Let X be a random matrix
drawn from the polynomial random matrix ensemble associated with the weight function ω ∈ L

1,n−1
[1,n] (R+). Then

SX(s) =
n∏

k=1

Mω(sk − (n − 1)/2)

Mω(k)
. (3.4)

Proof. By Assumption (2.23) and Eq. (2.11), we have Mwj−1(s) = sj−1Mω(s), j = 1, . . . , n. It therefore follows
from Proposition 3.1 via elementary column transformations that

SX(s) = C(n)
sv [ω]

(
n∏

j=0

j !
)

det((sk − (n − 1)/2)j−1)j,k=1,...,n

�n(s)

n∏
k=1

Mω

(
sk − n − 1

2

)
. (3.5)

Here the fraction cancels out by the translation-invariance �n(x1 + x, . . . , xn + x) = �n(x1, . . . , xn) of the Van-
dermonde determinant. After that, setting s = �′ and using that SX(�′) = 1, we see that the normalization constant
C

(n)
sv [ω] is given by Eq. (2.25). Inserting this into Eq. (3.5) completes the proof. �

With the help of Proposition 3.1 and Corollary 3.2, we can now readily derive the following transfer formula for the
joint density of the singular values when a random matrix from a polynomial ensemble is multiplied by an independent
random matrix from a polynomial ensemble of derivative type. This generalizes recent results by Kuijlaars et al. [20,
43,45,46], where only products with induced Laguerre (chiral Gaussian) ensembles or induced Jacobi (truncated
unitary) ensembles were considered.

Theorem 3.3 (Transfer for polynomial ensembles). Let X1 and X2 be independent random matrices from poly-
nomial random matrix ensembles associated with the weight functions ω ∈ L

1,n−1
[1,n] (R+) and w := {wj }j=0,...,n−1,

respectively. Then the matrix product X1X2 belongs to the polynomial random matrix ensemble associated with the
functions ω �w := {ω �wj }j=0,...,n−1, where we employ the multiplicative convolution (2.9). In particular, the joint
density of the squared singular values of X1X2 is given by

f
(n)
SV

([ω �w];a) = C(n)
sv [ω �w]�n(a)det

[
(ω �wj−1)(ak)

]
j,k=1,...,n

. (3.6)

Proof. By Proposition 3.1, Corollary 3.2 and the multiplication theorem (2.20) for the spherical transform, we have

SX1X2(s) = SX1(s)SX2(s)

= C
(n)
sv [w]∏n

j=0 j !∏n
k=1 Mω(k)

det[Mwj−1(sk − (n − 1)/2)]
�n(s)

n∏
k=1

Mω

(
sk − n − 1

2

)
. (3.7)

Here we may absorb the product over Mω(sk − (n − 1)/2) into the determinant. Similarly, the product in the de-
nominator can be absorbed into the normalization constant C

(n)
sv [w], see its definition (2.22). Using the multiplication

theorem (2.10) for the Mellin transform, it then follows that

SX1X2(s) = C(n)
sv [ω �w]

(
n∏

j=0

j !
)

det[M(ω �wj−1)(sk − (n − 1)/2)]
�n(s)

. (3.8)

By construction, this is the spherical transform of a probability density on G, and by the uniqueness theorem for the
spherical transform and Proposition 3.1, this density can only be that of the polynomial ensemble associated with the
weight functions {ω �wj }j=0,...,n−1. �

Theorem 3.3 simplifies drastically when the second matrix is also from a polynomial ensemble of derivative type.
In particular, in this case, we also obtain a transfer formula for the joint density of the eigenvalues under multiplication.
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Corollary 3.4 (Transfer for polynomial ensembles of derivative type). Let X1 and X2 be independent random
matrices from polynomial random matrix ensembles associated with the weight functions ω1 ∈ L

1,n−1
[1,n] (R+) and

ω2 ∈ L
1,n−1
[1,n] (R+), respectively. Then the matrix product X1X2 belongs to the polynomial random matrix ensemble

associated with the function ω1 �ω2 ∈ L
1,n−1
[1,n] (R+). In particular,

(a) the joint density of the squared singular values of X1X2 is given by

f
(n)
SV

([ω1 � ω2];a
) = C(n)

sv [ω1 �ω2]�n(a)det

[(
−ak

d

dak

)j−1

(ω1 �ω2)(ak)

]
j,k=1,...,n

, (3.9)

(b) the joint density of the eigenvalues of X1X2 is given by

f
(n)
EV

([ω1 � ω2]; z
) = C

(n)
sv [ω1 �ω2]∏n−1

j=0 j !
πn

∣∣�n(z)
∣∣2

n∏
j=1

(ω1 �ω2)
(|zj |2

)
. (3.10)

Proof. It is straightforward to check that ω1 � ω2 ∈ L
1,n−1
[1,n] (R+) and that (−x(d/dx))k(ω1 � ω2)(x) coincides with

the multiplicative convolution of the functions ω1(x) and (−x(d/dx))kω2(x), k = 0, . . . , n − 1. It therefore follows
from Theorem 3.3 that X1X2 belongs to the polynomial matrix ensemble associated with the function (ω1 � ω2)(x).
Thus, part (a) holds by definition, while part (b) follows from Theorem 2.2. �

Let us recall that the multiplicative convolution on L1,K(G) is commutative due to the bi-unitary invariance. This
consequence of the bi-unitary invariance has even a counterpart for rectangular matrices and is reflected in the weak
commutation relation shown in Ref. [35]. This permutation symmetry was also observed for products of Meijer G-
ensembles, see the reviews [3,16]. In the particular case of polynomial ensembles of derivative type, this commutative
behavior also follows from the preceding result and the commutativity of the multiplicative convolution on L1(R+).

Remark 3.5 (Spherical transform of an inverse random matrix). Let X be a bi-unitarily invariant random matrix
on G with the probability density fG(g). Then the inverse random matrix X−1 is also a bi-unitarily invariant random
matrix on G, with the probability density fG(g−1)|detg|−4n, as follows by the change of variables g → g−1 because
dg−1 = dg/|detg|4n.

In the special case where X is a random matrix drawn from the polynomial matrix ensemble associated with the
weight function ω, it can be shown that

SX−1(s) = SX(2n − s) =
n∏

j=1

Mω(1 + n − sj + (n − 1)/2)

Mω(1 + n − j)
, (3.11)

where we used the relation ϕs(x
−1) = ϕ−s(x), see e.g. [34, Eq. (IV.4.7)], in the first step and Corollary 3.2 in the

second step. Thus, arguing similarly as in the proof of Theorem 3.3, we may conclude that X−1 is a random matrix
from the polynomial matrix ensemble associated with the weight function ω̃(a) := ω(a−1)a−n−1.

Clearly, using the preceding results, it is fairly easy to derive the distributions of products of independent random
matrices from polynomial matrix ensembles of derivative type and/or their inverses. Furthermore, similarly as in
Corollary 3.4, we also obtain the joint densities of the squared singular values and of the eigenvalues for such products.

Let us give a few examples of polynomial matrix ensembles of derivative type to which these results may be
applied, see also [42, Example 3.4] and the references therein:

Examples 3.6.

(a) For ν > −1, let X be a random matrix from the polynomial random matrix ensemble associated with the weight
function ωLag(a) = aν exp(−a). This is known [42] to be the induced Laguerre ensemble. In particular, when
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ν = 0, this reduces to the Ginibre ensemble. The spherical transform of X is explicitly given by

SX(s) =
n∏

j=1

�(ν + sj − (n − 1)/2)

�(ν + j)
, (3.12)

which is essentially the multivariate Gamma function, see e.g. [22, Theorem VII.1.1]. The spherical transform of
the inverse random matrix X−1 can be derived by Remark 3.5 and reads

SX−1(s) =
n∏

j=1

�(ν − sj + (3n + 1)/2)

�(ν + n + 1 − j)
. (3.13)

(b) For μ > n − 1 and ν > −1, let X be a random matrix from the polynomial random matrix ensemble associated
with the weight function ωJac(a) = aν(1 − a)μ−11(0,1)(y), where 1(0,1) denotes the indicator function of the
interval (0,1). This is known [42] to be the induced Jacobi ensemble, which can be identified with an ensemble
of truncated unitary matrices when μ and ν are integers. The spherical transform of X is given by

SX(s) =
n∏

j=1

�(ν + μ + j)�(ν + sj − (n − 1)/2)

�(ν + j)�(ν + μ + sj − (n − 1)/2)
, (3.14)

which is related to the multivariate Beta function, see e.g. [22, Theorem VII.1.7], and that of the inverse random
matrix X−1 is

SX−1(s) =
n∏

j=1

�(ν + μ + n + 1 − j)�(ν − sj + (3n + 1)/2)

�(ν + n + 1 − j)�(ν + μ − sj + (3n + 1)/2)
. (3.15)

(c) For μ > n − 1 and ν > −1, let X be a random matrix from the polynomial random matrix ensemble associ-
ated with the weight function ωCL(x) = xν(1 + x)−μ−ν−1. This ensemble is also known as the Cauchy–Lorentz
ensemble. Then, the spherical transform of X is given by

SX(s) =
n∏

j=1

�(ν + sj − (n − 1)/2)�(μ − sj + (n + 1)/2)

�(ν + j)�(μ + 1 − j)
, (3.16)

and that of X−1 is

SX−1(s) =
n∏

j=1

�(ν − sj + (3n + 1)/2)�(μ + sj − (3n − 1)/2)

�(ν + n + 1 − j)�(μ − n + j)
. (3.17)

(d) The first three ensembles were more or less classical random matrix ensembles. In particular they are all Meijer
G-ensembles, which is reflected by the fact that their spherical transforms are products of Gamma functions. In
Ref. [42] we have shown that the Muttalib–Borodin ensemble [13,51] is in general not a Meijer G-ensemble (as
is also visible from Eq. (3.18) below), but it is still a polynomial random matrix ensemble of derivative type. Note
that we consider the bi-unitarily invariant matrix version of this ensemble, and not the one proposed in Ref. [26].

Let X be a random matrix drawn from the bi-unitarily invariant Muttalib–Borodin ensemble of Laguerre-
type. This is the polynomial random matrix ensemble associated with the weight function ωMB(a) = aνe−αaθ

with ν > −1 and α, θ > 0. This weight generates a second Vandermonde determinant in the joint density of the
squared singular values, namely �n(a

θ ). The spherical transform of X is

SX(s) =
n∏

j=1

α(2j−2sj +n−1)/(2θ)�((2ν + 2sj − n + 1)/(2θ))

�((ν + j)/θ)
(3.18)
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and that of X−1 is

SX−1(s) =
n∏

j=1

α(2sj −2j−n+1)/(2θ)�((2ν − 2sj + 3n + 1)/(2θ))

�((ν + n + 1 − j)/θ)
. (3.19)

(e) In the limit as θ → 0, the Muttalib–Borodin ensemble can be approximated by another ensemble which is not
a Meijer G-ensemble. The weight function becomes ωθ→0(a) = aν′

e−α′(lna)2
with α′ = θ2α/2 > 0 and ν′ =

ν − αθ ∈ R fixed. This weight generates a second Vandermonde determinant �n(lna) in the joint density of the
squared singular values. Here, the spherical transforms of X and X−1 turn out to be

SX(s) =
n∏

j=1

exp

(
(ν′ + sj − (n − 1)/2)2 − (ν′ + j)2

4α′

)
(3.20)

and

SX−1(s) =
n∏

j=1

exp

(
(ν′ − sj + (3n + 1)/2)2 − (ν′ + n + 1 − j)2

4α′

)
, (3.21)

respectively, i.e. they are of Gaussian form. As a consequence, the family of these polynomial random matrix
ensembles is “stable” under multiplicative convolution. More precisely, when X1 and X2 are independent ran-
dom matrices drawn from the polynomial ensembles associated with weight functions ω1(a) = aν1e−α1(lna)2

and
ω2(a) = aν2e−α2(lna)2

, respectively, the product X1X2 belongs to the polynomial random matrix ensemble associ-
ated with the weight function ω12(a) = aν12e−α12(lna)2

, where 1/α12 = 1/α1 +1/α2 and ν12/α12 = ν1/α1 +ν2/α2.
Hence this distribution plays a similar role for random matrices as the log-normal distribution for scalar random
variables, to which it reduces for n = 1. In fact, it is also known as the Gaussian measure on GL(n,C), see e.g.
[32]. Also, this distribution is infinitely divisible with respect to multiplicative convolution on GL(n,C).

All of these ensembles give rise to relatively simple joint densities for the squared singular values and eigenvalues
of their products, where the weight function ω is either a Meijer G-function [1] or some generalization of this function.
For example, let us consider the product X1X2X3 where X1 is drawn from an induced Laguerre ensemble, X2 is drawn
from a Muttalib–Borodin ensemble of the type when θ → 0, and X3 is the inverse of an induced Jacobi random matrix,
and all matrices are independent. Then the product X1X2X3 belongs to the polynomial random matrix ensemble
associated with the weight function

ωX1X2X3(a) ∝ 1

2πı

∫ +ı∞

−ı∞
�(ν1 + s)�(ν3 − s + n + 1)

�(ν3 + μ3 − s + n + 1)
e(ν2+s)2/(4α2)a−s ds. (3.22)

Note that some of these ensembles like the Laguerre and Jacobi ensembles were already studied in the literature, see
the review [6] and references therein. But some of them were not studied yet, possibly because the group integrals
involved seemed very complicated. With the help of our approach, all these products can now be treated in a unified
and simple way.

In particular, when multiplying independent random matrices from polynomial ensembles of derivative type, the
changes of eigenvalue and singular value statistics in terms of the kernels and their bi-orthogonal polynomials become
very simple due to Lemma 2.3. However, what happens with the statistics when we multiply a random matrix from a
polynomial random matrix ensemble of derivative type by an independent random matrix from a general polynomial
random matrix ensemble? All we have to do is to combine Theorem 3.3 with Ref. [20, Lemma 2.14] by Claeys et al.
This leads to the following corollary.

Corollary 3.7 (Transformation of the kernel for squared singular values). Let X1, X2 be the random matrices
considered in Theorem 3.3. Suppose that the bi-orthogonal system corresponding to X2 consists of the polynomials
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(in monic normalization)

pk

([w];x) =
k∑

j=0

ajk[w]xj with k = 0, . . . , n − 1, ajk[w] ∈R and akk[w] = 1 (3.23)

and the weight functions {qk([w])}k=0,...,n−1 ⊂ span(w0, . . . ,wn−1) bi-orthogonal to the polynomials (3.23). Also,
suppose that this bi-orthogonal system satisfies the normalization

∫ ∞
0 pk([w];a)qk([w];a)da = 1 for all k =

0, . . . , n − 1, so that the kernel of the determinantal point process of the squared singular values of X2 has the
form

K(n)
sv

([w];a1, a2
) =

n−1∑
k=0

pk

([w];a1
)
qk

([w];a2
)
. (3.24)

Moreover we define the function

χ(n)
([ω];x) =

n−1∑
j=0

xj

Mω(j + 1)
. (3.25)

Then, the joint density of the squared singular values of the product X1X2 gives rise to a determinantal point process,
too. The corresponding bi-orthogonal system consists of the polynomials (in monic normalization)

pk

([ω �w];x) =
k∑

j=0

ajk[ω �w]xj

=
k∑

j=0

Mω(k + 1)ajk[w]
Mω(j + 1)

xj

= Mω(k + 1)

2πı

∮
χ(n)

([ω]; s)pk

(
[w]; x

s

)
ds

s
, k = 0, . . . , n − 1, (3.26)

where the contour encircles the origin, and the weights

qk

([ω �w];x) = (ω � qk[w])(x)

Mω(k + 1)

= 1

Mω(k + 1)

∫ ∞

0
ω(t)qk

(
[w]; x

t

)
dt

t
, k = 0, . . . , n − 1. (3.27)

This bi-orthogonal system satisfies the normalization
∫ ∞

0 pk([ω � w];a)qk([ω � w];a)da = 1, so that the corre-
sponding kernel has the form

K(n)
sv

([ω �w];a1, a2
) = 1

2πı

∫ ∞

0
ω(t)

(∮
χ(n)

([ω]; s)K(n)
sv

(
[w]; a1

s
,
a2

t

)
ds

s

)
dt

t
. (3.28)

Note that the function χ(n)([ω];x) is essentially the kernel K
(n)
ev ([ω]; zb, z̄c), see Eq. (2.31), at zb = zc = √

x

divided by ω(x). However, for this identification we need the assumption that ω(x) > 0 for x > 0.
Indeed these transformation identities immediately reduce to the replacement ω → ω1 � ω2 for the quantities in

Lemma 2.3 when considering a product of two independent random matrices X1 and X2 from polynomial ensembles
of derivative type, associated with the weight functions ω1 and ω2. Even more, in this special case, the kernel of the
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eigenvalues for the product X1X2 is given by

K(n)
ev

([ω1 �ω2]; zb, z̄c

)
=

√
(ω1 �ω2)

(|zb|2
)
(ω1 �ω2)

(|zc|2
) n−1∑

j=0

(zbz̄c)
j

πMω1(j + 1)Mω2(j + 1)
. (3.29)

It is not clear whether there exists an analogue of such a formula when X2 is drawn from a general polynomial
random matrix ensemble. The reason is that an explicit expression, where all integrals are performed exactly, for the
joint density f

(n)
EV [w] = T f

(n)
G [w] =Rf

(n)
SV [w] is not known in the general case.

Proof of Corollary 3.7. Most parts of the corollary follow from the proof of [20, Lemma 2.14], since the func-
tions involved here satisfy the properties required like integrability and positivity of ω. The only difference to [20,
Lemma 2.14] is the function χ(n)([ω];x), but it is clear that this may be used in the same way as the Laurent series in
[20, Lemma 2.14]. It is even simpler to prove the corollary with the finite sum (3.25) because we do need not to care
about the convergence of the series. �

As a final remark, let us point out that in all our results concerning products of random matrices, one can replace
one of the bi-unitarily invariant random matrices by a positive diagonal random matrix, or in fact any other random
matrix, with the same squared singular value density. Nothing in the results will change.

4. Interpolating densities

Let us return to the spectral densities of the product (1.1) of p Ginibre matrices and q inverse Ginibre matrices, all of
them independent, and to the question of whether it is possible to interpolate between these densities.

Exponential distribution. For later reference, we recall some basic facts about the exponential distribution, i.e. the
probability distribution on (0,∞) with density h(x) = e−x . This distribution is additively and multiplicatively in-
finitely divisible. For the latter property, note that if X has the density h(x) = e−x on R+, then Y = − lnX has the
density g(y) = exp[−y − e−y] on R. This is the density of the Gumbel distribution, which is known to be additively
infinitely divisible, see e.g. [57, Example 11.1].

In the sequel, for any q > 0, we write hq(x) for the qth multiplicative convolution power of the exponential density
and, analogously, gq(y) for the qth additive convolution power of the Gumbel density. By infinite divisibility, hq(x)

and gq(y) are again probability densities. Since Mh(s) = �(s) and Lg(s) = �(1 + s), where L denotes the Laplace
transform, we have the representations

hq(x) = 1

2πı

∫ c+ı∞

c−ı∞
�q(s)x−s ds

(
x ∈ (0,∞), c > 0

)
(4.1)

and

gq(y) = 1

2πı

∫ c+ı∞

c−ı∞
�q(1 + s)eys ds (y ∈R, c > −1). (4.2)

To define fractional powers of �(z), we always take the analytic branch of the logarithm of �(z) on C \ (−∞,0]
which is positive on (0,∞). The integrals in (4.1) and (4.2) are absolutely convergent for q > 0, because, by Stirling’s
formula for �(z), we have∣∣�(c + it)

∣∣ =O
(|t |c−1/2e−π |t |/2) (4.3)

as |t | → ∞, t ∈ R, uniformly in c for any compact interval I ⊂ R. Furthermore, it follows from Eq. (4.3) that hq(x)

and gq(y) are infinitely often differentiable. Finally, let us recall that the densities gq(y) and hq(x) satisfy the relation

gq(y) = hq

(
e−y

)
e−y. (4.4)
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Thus, it follows by induction that

dk

dyk
gq(y) = e−y

(
−x

d

dx
− 1

)k

hq(x)

∣∣∣∣
x=e−y

(4.5)

for all k ∈N0.

Interpolating densities. Consider the random matrix X from Eq. (1.1). It follows from Example 3.6(a), Corollary 3.4
and the basic properties of the Mellin transform that this matrix belongs to the polynomial matrix ensemble of deriva-
tive type associated with the weight function

w(p,q)(x) := 1

2πı

∫ c+ı∞

c−ı∞
�p(s)�q(1 + n − s)x−s ds, x > 0 and c ∈ (0, n + 1). (4.6)

In particular, the joint density of the eigenvalues of X is given by

f
(p,q)
EV (z) = C(n)

ev

[
w(p,q)

]∣∣�n(z)
∣∣2

n∏
j=1

w(p,q)
(|zj |2

)
, z ∈ C

n, (4.7)

and that of the squared singular values of X reads

f
(p,q)

SV (a) = C(n)
sv

[
w(p,q)

]
�n(a)det

(
w

(p,q)

j−1 (ak)
)
j,k=1,...,n

, a ∈ (0,∞)n, (4.8)

where w
(p,q)

0 (x), . . . ,w
(p,q)

n−1 (x) are obtained from w(p,q)(x) as in Eq. (1.4) and the normalizing constants C
(n)
ev [w(p,q)]

and C
(n)
sv [w(p,q)] are given by Eqs. (2.27) and (2.25). These results were originally derived in [2,3] and [8,24], respec-

tively. For the sake of clarity, let us mention that the weight functions are partly different in these references, but the
resulting determinants are the same.

Thus far, p and q are non-negative integers with p + q > 0. By means of interpolation, it seems natural to consider
the function w(p,q)(x) for any non-negative reals p and q such that p + q > 0. However, then the question arises
whether the corresponding densities (4.7) and (4.8) are non-negative, and hence probability densities. We will call
these densities interpolating eigenvalue densities and interpolating squared singular value densities, respectively.

It follows from the analyticity of s → �p(s)�q(1 + n − s) in the strip (0, n + 1) + ıR and the asymptotic relation
(4.3) that the function w(p,q)(x) is well-defined and independent from the choice of c ∈ (0, n + 1). Additionally, it is
clear that w(p,q)(x) ∈ L

1,n−1
(0,n+1)(R+). In particular, this implies that the functions (4.7) and (4.8) are in fact integrable.

Finally, employing the basic properties of the Mellin transform, we find that

w(p,q)(x) =

⎧⎪⎨⎪⎩
hp(x), for p > 0, q = 0,

hq(x−1)x−(n+1), for p = 0, q > 0,∫ ∞
0 hp(xy−1)hq(y−1)y−(n+1) dy/y, for p > 0, q > 0.

(4.9)

In particular, this representation shows that the functions w(p,q) are positive, so that the constants C
(n)
ev [w(p,q)] and

C
(n)
sv [w(p,q)] may always be defined by Eqs. (2.27) and (2.25). Even more, Eq. (4.9) implies that the interpolating

eigenvalue densities are always non-negative.

Proposition 4.1 (Interpolating eigenvalue density). For any p ≥ 0 and q ≥ 0 with p + q > 0, let f
(p,q)
EV (z) be

defined by the right-hand side in Eq. (4.7). Then f
(p,q)
EV is non-negative, and hence a probability density on C

n.

Proof. By the preceding comments, it remains to show non-negativity. But this is immediate from the representation
(4.9) and the fact that the densities hr(x) (r > 0) are non-negative. �

In contrast to this result, the interpolating singular value densities are non-negative only within certain regions for
the parameters.
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Proposition 4.2 (Interpolating squared singular value density). For any p ≥ 0 and q ≥ 0 with p + q > 0, let
f

(p,q)

SV (λ) be defined by the right-hand side in Eq. (4.8).

(i) If (p ∈ N0 or p > n − 1) and (q ∈ N0 or q > n − 1), f
(p,q)

SV is non-negative, and hence a probability density.
(ii) Otherwise, f

(p,q)

SV is not a non-negative function.

Proposition 4.2 should be compared to Gindikin’s theorem (see e.g. [22, Theorem VII.3.1]), which states that
the pth additive convolution power of the Wishart distribution is a probability distribution if and only if p ∈ N0 or
p > n − 1.

Since the proof of Proposition 4.2 is a bit longer, it is postponed to the end of this section.

Interpolating matrix densities. In any case, regardless of whether the density f
(p,q)

SV (λ) in Proposition 4.2 is non-
negative or not, we may consider the (possibly signed) bi-unitarily invariant matrix density

f
(p,q)
G := I−1f

(p,q)

SV (4.10)

on GL(n,C) with I as in Eq. (2.5). Then, by construction, the induced squared singular value density is given by Eq.
(4.8). This density is non-negative only under the conditions set out in Proposition 4.2(i). Furthermore, by Theorem 2.2
extended to signed densities, the induced eigenvalue density is given by Eq. (4.7), which is always a non-negative
density by Proposition 4.1. Thus, we obtain a large family of examples of probability densities on eigenvalues for
which the corresponding densities on squared singular values (given by the SEV-transform R described in Section 2.1)
are not probability densities. In particular, this means that these probability densities on eigenvalues cannot result from
random matrices with bi-unitary invariance.

When the density (4.10) is non-negative, i.e. when

(p, q) ∈ W := {
(p, q) ∈ R

2 : p ≥ 0, q ≥ 0,p + q > 0 and

(p ∈N0 or p > n − 1) and (q ∈N0 or q > n − 1)
}
, (4.11)

we call the resulting probability density interpolating matrix ensemble. Then we can prove the following result.

Proposition 4.3 (Transfer for interpolating matrix ensembles). Let X1 and X2 be independent random matrices
from the polynomial matrix ensembles of derivative type associated with the weight functions w(p1,q1) and w(p2,q2),
respectively, where (p1, q1), (p2, q2) ∈ W . Then the product X1X2 is a random matrix from the polynomial matrix
ensemble of derivative type associated with the weight function w(p1+p2,q1+q2).

Proof. This is an immediate consequence of Corollary 3.4, since w(p1,q1) � w(p2,q2) = w(p1+p2,q1+q2) by Eq. (4.6)
and the basic properties of the Mellin transform. �

Proposition 4.3 extends to the situation where the densities are not necessarily non-negative: If f
(p1,q1)
G (x) and

f
(p2,q2)
G (x) are (possibly signed) bi-unitarily invariant matrix densities as in Eq. (4.10), the multiplicative convolution(

f
(p1,q1)
G � f

(p2,q2)
G

)
(x) :=

∫
G

f
(p1,q1)
G

(
xy−1)f (p2,q2)

G (y)
dy

|dety|2n
(4.12)

is equal to the (possibly signed) bi-unitarily invariant matrix density f
(p1+p2,q1+q2)
G (x). This can be proved in the

same way as Proposition 4.3, using the extension of Corollary 3.4 to signed densities.
Also, by Proposition 4.3, we get a two-parameter family {f (p,q)

G : p,q ∈ W } of probability densities on matrix space
which is closed under multiplicative convolution. Clearly, this family could be extended to a convolution semigroup
by adjoining the Dirac measure δ1 at the n × n identity matrix 1 and by convolving probability measures instead of
probability densities.

We now turn to the proof of Proposition 4.2. To this end, we need some preparations. Let m ∈ N. A function
f : R→R is called a Pólya frequency function of order m (or PFm for short) if it satisfies [40]

det
(
f (xj − yk)

)
j,k=1,...,ν

≥ 0 (4.13)
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for any ν = 1, . . . ,m and any x1 < · · · < xν , y1 < · · · < yν . For example, it is well-known that for any p > 0, l > 0,
the Gamma density

fp,l(x) := lp

�(p)
xp−1e−lx1(0,∞)(x), (4.14)

is PF�p+1�, where �·� is the floor function, meaning that �p + 1� is the largest integer smaller than or equal to p + 1.
A rather elementary proof for this can be found in [40, Chapter 3.2]. Alternatively, this follows from the relation

det
[
(xa − yb)

p−11(0,∞)(xa − yb)
]
a,b=1,...,ν

=
ν−1∏
j=0

�(p)

j !�(p − j)
�ν(x)�ν(y)

∫
K

[
det

(
x − kyk∗)]p−ν1Herm+

(
x − kyk∗)d∗k > 0, (4.15)

where 1Herm+ is the indicator function on the set of positive definite Hermitian ν × ν matrices. This relation was
proven in Ref. [43] for any integer p ≥ ν. However, it is easy to see using Carlson’s theorem [49, page 226] that it can
be continued analytically up to the first non-integrable singularity, which means to any real p > ν − 1. For this goal
we underline that the determinant is enforced to be positive by the indicator function. Additionally, we point out that
fp,l may fail to be a Pólya frequency function of order higher than �p + 1�. To see this, one can consider the limit

lim
y→0

det[(xa − yb)
p−11(0,∞)(xa − yb)]a,b=1,...,ν

�ν(y)
= �ν(x)

ν−1∏
j=0

�(p)x
p−ν

j+1 1(0,∞)(xj+1)

j !�(p − j)
(4.16)

which is not always positive for ν > p + 1 due to the fact that the Gamma function can take also negative values on
the negative half-line. Indeed, this idea is very close to the proof of Proposition 4.2(ii) below.

Finally, we will need the facts that, for any m ∈ N, the class PFm is obviously closed under translations of arguments
of the functions and even under additive convolutions, see also [40, Proposition 7.1.5]. The latter property follows at
once from the identity∫

a1≤···≤aν

det
(
f1(aj − yk)

)
j,k=1,...,ν

det
(
f2(aj − xk)

)
j,k=1,...,ν

da1 · · · daν

= det

(∫
f1(a − yj )f2(a − xk) da

)
j,k=1,...,ν

(4.17)

for two functions f1, f2 ∈ PFm.

Proof of Proposition 4.2. By the comments above Propositions 4.1 and 4.2, it remains to address the issue of posi-
tivity.

To begin with, similarly as in Remark 3.5, if fSV(λ) is the signed density associated with a function w0(x), then the
induced density under the inversion mapping (λ1, . . . , λn) → (λ−1

1 , . . . , λ−1
n ) is the signed density associated with the

function w̃0(x) := x−(n+1)w0(x
−1). Moreover, for the weight function in Eq. (4.6) we have w̃

(p,q)

0 (x) = w
(q,p)

0 (x).
Thus, it is possible to prove the assertions for certain restricted combinations of the parameters and to extend the result
“by inversion”.

Part (i). We prove the first statement that for p,q ∈ N0 ∪ [n − 1,∞) the function f
(p,q)

SV is non-negative. It is
sufficient to prove this claim for p > 0, q = 0, since the claim for p > 0, q > 0 then follows via the preceding
comment and Proposition 4.3. Furthermore, in the case p > 0, q = 0 the claim is clear when p ∈ N, q = 0, since
the function fSV(λ) then becomes the squared singular value density of the product of p Ginibre matrices, which is
necessarily non-negative. Thus, it remains to consider the case p /∈N, p > n − 1, q = 0.

For n = 1, we have w(p,0)(x) = hp(x), which is positive. Hence, it remains to consider the case where n ≥ 2 and
p > n − 1 ≥ 1. Moreover, for symmetry reasons, it suffices to show that

det

[(
−xk

d

dxk

)j−1

hp(xk)

]
j,k=1,...,n

≥ 0 for x1 < · · · < xn in (0,∞), (4.18)
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or, equivalently,

(−1)n(n−1)/2 det

[(
d

dyk

)j−1

gp(yk)

]
j,k=1,...,n

≥ 0 for y1 < · · · < yn in R. (4.19)

The equivalence of Eqs. (4.18) and (4.19) follows from Eq. (4.5) as well as some straightforward row and column
transformations. The prefactor (−1)n(n−1)/2 arises because the change of variables from x to y = − lnx is decreasing,
and hence must be compensated by inverting the order of the columns.

To prove Eq. (4.19), we use a variation of an argument from [40, page 388]. By Eq. (4.2) as well as the functional
equation and the product representation for the Gamma function, the Laplace transform of the density gp(x) is given
by

Lgp(s) = �p(1 + s) = e−γps
∞∏
l=1

eps/l

(1 + s/ l)p
, (4.20)

where γ = 0.577 . . . denotes the Euler constant.
We now start from the fact that, for any l ∈N, the function (1+ s/ l)−p is the Laplace transform of the Gamma den-

sity fp,l(x), see Eq. (4.14), which is PF�p+1�. Thus, it follows that for any m ∈ N, the density gp,m(x) corresponding
to the Laplace transform

Lgp,m(s) = e−γps
m∏

l=1

eps/l

(1 + s/ l)p
(4.21)

is also PF�p+1�, being a finite additive convolution of PF�p+1� functions.
Next, as m → ∞, we clearly have Lgp,m(ıt) → Lgp(ıt) pointwise in t ∈ R as well as

∣∣Lgp,m(ıt)
∣∣ =

m∏
l=1

1

|1 + ıt/ l|p ≤ 1

(1 + t2)p/2
(4.22)

for all t ∈ R. Therefore, as p > 1, it follows from the Laplace inversion formula and the dominated convergence
theorem that gp,m(x) → gp(x) pointwise in x ∈ R. Thus, the limit function gp(x) is also PF�p+1�, i.e. for any ν =
1, . . . , �p + 1� and any x1 < · · · < xν , y1 < · · · < yν , we have

det
(
gp(xj − yk)

)
j,k=1,...,ν

≥ 0. (4.23)

Finally, letting yk → 0, see e.g. [41, page 7] for the details of the argument, we find that, for any ν = 1, . . . , �p + 1�
and any x1 < · · · < xν ,

(−1)ν(ν−1)/2 det

(
dk−1

dxk−1
j

gp(xj )

)
j,k=1,...,ν

≥ 0. (4.24)

Since �p + 1� ≥ n, this proves Eq. (4.19).
Part (ii). Now we turn to the proof of the second claim of Proposition 4.2 that whenever p or q is not in N0 ∪ [n −

1,∞) the function f
(p,q)

SV is not non-negative. As explained at the beginning of the proof, it suffices to consider the
case where p ∈ [0, n − 1] is not an integer and q ≥ 0. We will show that there exists a point x = (x1, . . . , xn) with
0 < x1 < · · · < xn < ∞ and most coordinates xk very close to zero such that f

(p,q)

SV (x) < 0. Observe that for a point
x of this form, the sign of f

(p,q)

SV (x) is equal to that of det(w(p,q)

j−1 (xk))j,k=1,...,n. To obtain the asymptotic behavior of

w
(p,q)

j−1 (x) as x → 0 or x → ∞, we will use the following fact.

Theorem (Special case of [21, Theorem 7.3.1]). For a, b ∈R with a < b, let F(s) be an analytic function on the set
([a, b] + ıR) \ {a, b} ⊂C which satisfies the following assumptions:



Products of random matrices from polynomial ensembles 117

(a) there exists a representation F(s) = ∑K
k=0 ck(s − a)α+k + G(s) with α ∈ R, G(s) ∈ C L([a, b[+ ıR) (the space

of functions on [a, b[+ ıR which are L-times continuously differentiable), and K,L ∈ N0,
(b) F(x + ıy) → 0 as |y| → ∞, uniformly in a ≤ x ≤ b,
(c) for each l = 0, . . . ,L − 1, F (l)(a + ıy) → 0 as |y| → ∞,
(d) the integrals

∫ +∞
+1 eıtyF (L)(a + ıy) dy and

∫ −1
−∞ eıtyF (L)(a + ıy) dy (viewed as improper Riemann integrals) are

uniformly convergent for t ≥ 1.

Then, for any c ∈ (a, b), we have

f (t) := 1

2πı

∫ c+ı∞

c−ı∞
F(s)ets ds = eat

K∑
k=0

ckt
−α−k−1

�(−α − k)
+ o

(
t−Leat

)
(4.25)

as t → ∞, where 1/�(−α − k) := 0 when α + k ∈ N0.

Let us emphasize that due to the last convention, this result is true for all values α ∈ R. Indeed, in the representation
for F(s) in part (a), the summands with α + k ∈ N0 may be absorbed into the function G(s). In particular, when
α ∈N0, the conclusion (4.25) reduces to the statement that f (t) = o(t−Leat ) as t → ∞.

Moreover, let us mention that by applying the preceding theorem to F(−s), we may also obtain, under the appro-
priate assumptions, the asymptotic behavior of f (t) as t → −∞. Finally, let us recall that �(z) has a simple pole with
residue 1 at the origin.

It follows from our definitions that, for each j = 1, . . . , n,

w
(p,q)

j−1 (x) =
(

−x
d

dx

)j−1

w(p,q)(x)

= 1

2πı

∫ c+ı∞

c−ı∞
sj−1�p(s)�q(1 + n − s)x−s ds, x > 0, (4.26)

where 0 < c < n + 1.
To obtain the asymptotics of w

(p,q)

j−1 (x) as x → 0, we set x = e−t and consider w
(p,q)

j−1 (e−t ) as t → ∞. Using the
above result with a := 0, b := 1 + n, α := j − 1 − p, F(s) := sα(sp�p(s)�q(1 + n − s)) and K,L ∈ N0 such that
max{α + 1,0} ≤ α + K ≤ L < α + K + 1, we obtain

w
(p,q)

j−1

(
e−t

) =
K∑

k=0

ckt
p−j−k

�(p − j − k + 1)
+ o

(
t−L

)
(4.27)

as t → ∞, where

ck = 1

k!
dk

dsk

(
sp�p(s)�q(1 + n − s)

)∣∣∣∣
s=0

, k = 0, . . . ,K. (4.28)

Therefore, we have

w
(p,q)

j−1 (x) = �q(1 + n)(− lnx)p−j

�(p − j + 1)
+ o

(
(− lnx)p−j

)
(4.29)

as x → 0.
For the asymptotics of w

(p,q)

j−1 (x) as x → ∞, we set x = et and change the integration variable s → 1 + n − s such
that the function reads

w
(p,q)

j−1

(
et

) = e−(n+1)t 1

2πı

∫ c+ı∞

c−ı∞
(1 + n − s)j−1�p(1 + n − s)�q(s)ets ds (4.30)
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as t → ∞. Again we can apply the above theorem, but now with the identification a := 0, b := 1 + n, α := −q ,
F(s) := sα(sq�q(s)(1 +n− s)j−1�p(1 +n− s)) and K,L ∈N0 such that max{α + 1,0} ≤ α +K ≤ L < α +K + 1.
Thus, we obtain the expansion

w
(p,q)

j−1

(
et

) = e−(n+1)t
K∑

k=0

c′
kt

q−k−1

�(q − k)
+ o

(
t−Le−(n+1)t

)
(4.31)

as t → ∞, with the coefficients

c′
k = 1

k!
dk

dsk

(
sq�q(s)(1 + n − s)j−1�p(1 + n − s)

)∣∣∣∣
s=0

, k = 0, . . . ,K. (4.32)

This yields

w
(p,q)

j−1 (x) = (1 + n)j−1�p(1 + n)(lnx)q−1

�(q)xn+1
+ o

(
(lnx)q−1

xn+1

)
(4.33)

as x → ∞.
In the next step we consider the vector x = (x1, . . . , xn) with a fixed xn > 0 such that w

(p,q)

n−1 (xn) �= 0 and xk :=
e−α/k , k = 1, . . . , n − 1, for α > 0 sufficiently large. The precise choice of xn will be specified later. Then, we make
use of the asymptotics (4.29) and plug it into the determinant

det
(
w

(p,q)

j−1 (xk)
)
j,k=1,...,n

= w
(p,q)

n−1 (xn)
Cακ∏n−1

j=1 �(p − j + 1)
+ o

(
ακ

)
(4.34)

as α → ∞. The exponent is κ := (n − 1)p − (n − 1)(n − 2)/2, C is a positive constant not depending on α or xn, and
the implicit constant in the o-bound may depend on xn.

In Eq. (4.34), the numerator of the fraction is positive, whereas the denominator of the fraction may be positive or
negative, depending on the number of negative Gamma factors. Moreover, since p < n − 1, the asymptotics (4.29)
and (4.33) for j = n − 1 show that

w
(p,q)

n−2 (x) = C1(− lnx)p−n+1 + o
(
(− lnx)p−n+1) x→0−−→ 0 (4.35)

and

w
(p,q)

n−2 (x) = C2(lnx)q−1/xn+1 + o
(
(lnx)q−1/xn+1) x→∞−−−→ 0. (4.36)

Here, C1 and C2 are real constants with C1 �= 0. These asymptotics in combination with the continuity of w
(p,q)

n−2 (x)

for all x > 0 imply that w
(p,q)

n−1 (x) = (−x d
dx

)w
(p,q)

n−2 (x) must change its sign on the interval (0,∞), since w
(p,q)

n−2 is not

equal to zero. Thus, we may choose xn > 0 in such a way that w
(p,q)

n−1 (xn) is of sign opposite to that of the fraction in
Eq. (4.34). Therefore Eq. (4.34) gets negative as α → ∞, which is what we needed to show. �

5. Central limit theorem for Lyapunov exponents

Finally we want to make contact to the limiting distribution of the singular values of the product X(M) = X1 · · ·XM of
independently and identically distributed (i.i.d.), bi-unitarily invariant n × n random matrices Xj when M → ∞ and
the dimension n is fixed. Let σM,1 ≥ · · · ≥ σM,n and |λM,1| ≥ · · · ≥ |λM,n| denote the ordered singular values and the
radii of the eigenvalues of X(M). Then the quantities 1

M
lnσM,k and 1

M
ln |λM,k| are also called the (finite) Lyapunov

exponents and the (finite) stability exponents of the matrix X(M). Strictly speaking, the names Lyapunov exponents
and stability exponents refer to the limits of the quantities above as M → ∞, but we will use these names exclusively
for the non-asymptotic quantities here.
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The investigation of limit theorems for Lyapunov exponents has a long history, see e.g. [15,56] and the references
therein. In particular, for the Gaussian matrix ensemble, Newman [52] provided a simple argument that the Lyapunov
exponents converge almost surely to deterministic values which are equal to the expected values of the logarithms of∑n−k+1

j=1 |X(1)
j1 |2, k = 1, . . . , n. In the past few years, new interest has arisen in this limit due to explicit results for the

joint densities of the singular value and the eigenvalues at finite n and M , see [4,23,25,36,39,54]. In particular, the
very recent work [54] contains a general result on the Lyapunov and stability exponents which we cite here.

Proposition 5.1 (Central limit theorem for Lyapunov and stability exponents [54, Theorem 11]). Let (Xj )j∈N
be a sequence of independently and identically distributed, bi-unitarily invariant n × n random matrices such that,
with positive probability, X1 is not a scalar multiple of the identity matrix. Moreover, suppose that the first and
second moments of the logarithms of the singular values of X1 are finite, and let the vector m = (mk)k=1,...,n and the
matrix � = (�jk)j,k=1,...,n be the mean and the covariance matrix of the random vector (lnR11, . . . , lnRnn), where
(R11, . . . ,Rnn) is the diagonal of the matrix R in the QR-decomposition X1 = QR of the random matrix X1. Then, as
M → ∞ with n fixed, the random vectors{√

M

(
1

M
lnσM,k − mk

)}
k=1,...,n

and

{√
M

(
1

M
ln |λM,k| − mk

)}
k=1,...,n

(5.1)

converge in distribution to a Gaussian random vector with mean 0 and covariance matrix �.

For completeness, we emphasize that Proposition 5.1 is stated and proved not only for products of bi-unitarily
invariant (complex) matrices, but also for products of bi-orthogonally invariant (real) matrices in [54]. Moreover,
one can also randomize the order of the singular values and of the eigenvalues of X(M), which naturally arises in
the alternative derivation of Proposition 5.1 we present below. This symmetrized version was also derived in Refs.
[4,36] for the induced Laguerre ensemble. Since the components of the vector m are pairwise different [54], both
representations, ordered or not, are equivalent and only a matter of taste.

As pointed out in [54], in the complex case, it turns out that for products of Ginibre or truncated unitary matrices,
the (ordered) Lyapunov exponents and the (ordered) stability exponents are asymptotically independent. Our aim is to
show that this result remains true for any polynomial ensemble of derivative type.

Proposition 5.2. Suppose that, in the situation of Proposition 5.1, the random matrices Xj are taken from a polyno-
mial ensemble of derivative type. Then the covariance matrix � is diagonal, i.e. the Lyapunov and stability exponents
are asymptotically independent.

To obtain this result, we will use another way of deriving Proposition 5.1 in the complex case, viz. by means of the
spherical transform. The interest in this approach is due to the fact that, at least in principle, it should be able to yield
much more precise information about the convergence in distribution, similarly to the Fourier transform in classical
probability theory. In fact, the spherical transform has been used to derive a variety of central limit theorems on matrix
spaces, with different assumptions and different scalings, see e.g. [14,32,55,56,58,59,61] and the references therein.
Although this approach seems to be well known, we include a sketch of a proof for didactic purposes and for the sake
of completeness. In addition to that, our discussion will also lead to some new observations which shed some light
into the recent developments in the field of random matrix theory, see Proposition 5.2 above and Corollary 5.4 below.

To keep the presentation short, we will restrict ourselves to a particularly simple situation. However, let us mention
that it is possible to adapt the proof to the more general situation of Proposition 5.1 by using a few additional argu-
ments. We assume that the random matrix X1 has a bi-unitarily invariant density fG with respect to Lebesgue measure.
Also, we assume that the spherical transform SX1(z) decays sufficiently fast as z → ∞ in conv(Sn(�

′)) + ıRn, where
conv(Sn(�

′)) denotes the convex hull of the orbit of the vector �′ from Eq. (2.15) under the natural action of the
symmetric group Sn. In particular, this implies that the function SM

X1
(�′ + ıs)�n(�

′ + ıs) is integrable in s ∈ R
n for

all M ∈ N large enough.
We start with the multiplication theorem (2.20) for the spherical transform, which implies that SX(M) = SM

X1
. Let

f
(M)
SV := I(f

�M
G ) be the joint density of the squared singular values of X(M), where f

�m
G denotes the m-fold con-

volution power of fG and I denotes the operator defined in Eq. (2.5). Then, by spherical inversion, see e.g. [42,
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Lemma 2.10] and note that the regularization there may be omitted by our previous assumptions, we have

f
(M)
SV (λ) = 1

(n!)2
∏n−1

j=0 j !�n(λ)

∫
Rn

(
SX1

(
�′ + ıs

))M

× �n

(
�′ + ıs

)
det

[
λ

−c−ısc
b

]
b,c=1,...,n

n∏
j=1

dsj

2π
. (5.2)

To prepare for the limit M → ∞, we substitute λ = λ̃M , which yields the density

f
(M)
SV

(
λ̃M

)
Mn det λ̃M−1 = Mn det λ̃M−1

(n!)2
∏n−1

j=0 j !�n

(
λ̃M

)∫
Rn

(
SX1

(
�′ + ıs

))M

× �n

(
�′ + ıs

)
det

[
λ̃

−M(c+ısc)
b

]
b,c=1,...,n

n∏
j=1

dsj

2π
. (5.3)

The prefactor Mn det λ̃M−1 is the Jacobian of the substitution. Expanding the two determinants �n(λ̃
M) =

det[λ̃M(c−1)
b ] and det[λ̃−M(c+ısc)

b ], we find that

f
(M)
SV

(
λ̃M

)
Mn det λ̃M−1 = Mn det λ̃−1

(n!)2
∏n−1

j=0 j !
∑

σ1,σ2∈Sn

signσ1σ2

×
∫
Rn

(
SX1

(
�′ + ıs

))M
�n

(
�′ + ıs

) n∏
j=1

λ̃
−M(j+ısj −σ1σ

−1
2 (j))

σ−1
2 (j)

dsj

2π
, (5.4)

where Sn is the symmetric group of n elements and “sign” is +1 for even permutations and −1 for odd ones. Now,
by our simplifying assumptions, we can make the substitution ıs → ıs/M − �′ + σ1σ

−1
2 (�′), where (σ1σ

−1
2 (�′))j =

�′
σ1σ

−1
2 (j)

, and pull the domain of integration back to R
n. This is possible because, for fG ∈ L1,K(G), the spherical

transform SfG(s) is analytic in the interior of the set conv(Sn(�
′)) + ıRn when regarded as a function of n − 1 of the

variables sj , with the sum
∑n

j=1 sj held fixed; compare [34, Theorem IV.8.1 and Corollary IV.8.2]. Thus, we obtain

f
(M)
SV

(
λ̃M

)
Mn det λ̃M−1 = det λ̃−1

(n!)2
∏n−1

j=0 j !
∑

σ1,σ2∈Sn

signσ1σ2

×
∫
Rn

[
SX1

(
σ1σ

−1
2

(
�′) + ı

s

M

)]M

�n

(
σ1σ

−1
2

(
�′) + ı

s

M

) n∏
j=1

λ̃
−ısj

σ−1
2 (j)

dsj

2π
. (5.5)

In the next step, we expand the logarithm of the spherical transform in a Taylor series up to the second order in 1/M ,
which requires certain assumptions. Since the spherical transform is symmetric in its arguments, it is sufficient to
specify the expansion around the point σ ′(�′) = {�′

σ ′(j)
}j=1,...,n, where the permutation σ ′ ∈ Sn is given by σ ′(j) =

n − j + 1, j = 1, . . . , n. Then the first derivatives may be expressed in terms of the vector

m = − ı

2

{
∂

∂sa
lnSX1

(
ıs + σ ′(�′))∣∣∣∣

s=0

}
a=1,...,n

, (5.6)

and the second derivatives in terms of the matrix

� = −1

4

{
∂2

∂sa∂sb
lnSX1

(
ıs + σ ′(�′))∣∣∣∣

s=0

}
a,b=1,...,n

, (5.7)
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where all derivatives are real derivatives. It will eventually turn out that only this particular definition with σ ′(�′)
instead with �′ is consistent with that in Proposition 5.1. Moreover, it will follow from this connection that m and
� have real components only, the components of the vector m are in strictly decreasing order, and the matrix � is
positive-definite. Thus the Taylor approximation reads[

SX1

(
σ ′(�′) + ı

s

M

)]M

= exp

(
2ısT m − 2

M
sT �s + |s|2o(1/M)

)
= exp

(
2ısT m − 2

M
sT �s

)(
1 + |s|2o(1/M)

)
(5.8)

as M → ∞, where the symbol ( · )T denotes transposition and the o-bound holds uniformly in s in any ball of radius
O(

√
M) around the origin. Also the Vandermonde determinant in Eq. (5.5) can be expanded in 1/M .

Then, as M → ∞, by our simplifying assumptions, we are left with a Gaussian integral in s which can be performed
explicitly,

f
(M)
SV

(
λ̃M

)
Mn det λ̃M−1 = Mn/2 det λ̃−1

(n!)2
∏n−1

j=0 j !
∑

σ1,σ2∈Sn

signσ1σ2
�n(σ1σ

−1
2 (�′))

(2π)n/2
√

det(4�)

× exp

(
−M

8

(
2m − lnσ−1

1 σ ′(λ̃)
)T

�−1(2m − lnσ−1
1 σ ′(λ̃)

)) + o
(
Mn/2), (5.9)

where lnσ(λ̃) is a short-hand notation for {ln λ̃σ (a)}a=1,...,n and the o-bound holds locally uniformly in λ̃.
Since �n(σ1σ

−1
2 (�′)) = signσ1σ

−1
2

∏n−1
j=0 j ! and the permutation σ ′ may be absorbed into σ := σ−1

1 σ ′ due to the
summation over σ1, the result simplifies to

f
(M)
SV

(
λ̃M

)
Mn det λ̃M−1 = Mn/2

(2π)n/2n!
1√

det(4�)det λ̃

×
∑
σ∈Sn

exp

(
−M

8

(
2m − lnσ(λ̃)

)T
�−1(2m − lnσ(λ̃)

)) + o
(
Mn/2). (5.10)

When substituting y := ln(λ̃)/2, we can identify m and �/M as the mean and the covariance matrix of the asymptotic
Gaussian distribution of the Lyapunov exponents of X(M). Thus, we arrive at the unordered version of the first part of
Proposition 5.1.

For polynomial ensembles of derivative type, the spherical transform factorizes by Eq. (3.4), from which it follows
that the matrix � is diagonal, and the previous result simplifies further to a permanent

f
(M)
SV

(
λ̃M

)
Mn det λ̃M−1

= 1

n! perm

[√
M

8π�aa

1

λ̃b

exp

(
− M

8�aa

(2ma − ln λ̃b)
2
)]

a,b=1,...,n

+ o
(
Mn/2), (5.11)

which is the first part of Proposition 5.2. This result was already derived for particular Meijer G-ensembles, especially
the induced Wishart-Laguerre ensemble, see [4,36].

It remains to justify the Taylor expansion (5.8) and to clarify the relationship between Eqs. (5.6) and (5.7) and the
moments in Proposition 5.1. This will follow from the following lemma, which will also be useful for the discussion
of the stability exponents as well as for Corollary 5.4.

Lemma 5.3. Let X be a bi-unitarily invariant random matrix with a density fG ∈ L1,K(G), let X = QR be its QR-
decomposition, and let (R11, . . . ,Rnn) be the diagonal of the matrix R. Then

SX(s) =M(R2
11,...,R

2
nn)

(
s − σ ′(�′) + 1n

)
, (5.12)
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where 1n := (1, . . . ,1), σ ′(�′) = (�′
n−j+1)j=1,...,n with �′

j as in Eq. (2.15), and M(R2
11,...,R

2
nn)(s1, . . . , sn) :=

E(
∏n

j=1 R
2(sj −1)

jj ) is the multivariate Mellin transform of the random vector (R2
11, . . . ,R

2
nn).

Proof. We use another well-known representation of the spherical transform,

SfG(s) = 2nC∗
n

∫
A

∫
T

fG(at) dt

(
n∏

j=1

a
2sj +2�′

j −4n

j

)(
n∏

j=1

a
4(n−j)+1
j

)
da, (5.13)

for fG ∈ L1,K(G); compare e.g. [34, Eq. (IV.2.7)]. This is based on the QR-decomposition (or Iwasawa decomposi-
tion) of an element g ∈ G in the form g = kat with k ∈ K , a ∈ A and t ∈ T ; see Section 2.1 for the definitions of these
spaces and their reference measures.

Note that the random vector (R11, . . . ,Rnn) corresponds to the main diagonal of the diagonal matrix a. Thus, its
density can be obtained by setting sj := −�′

j + 2n and integrating over t ∈ T , which yields

h(a) := 2nC∗
n

(
n∏

j=1

a
4(n−j)+1
j

)∫
T

fG(at) dt, a ∈ A. (5.14)

We therefore obtain

SfG(s) =
∫

A

h(a)

n∏
j=1

a
2sj +2�′

j −4n

j da = E

(
n∏

j=1

R
2sj +2�′

j −4n

jj

)
=M(R2

11,...,R
2
nn)

(
s − σ ′(�′) + 1n

)
, (5.15)

and the proof is complete. �

It follows from the preceding lemma that

d

dsj
SfG

(
ıs + σ ′(�′))∣∣∣∣

s=0
= d

dsj
M(R2

11,...,R
2
nn)(ıs + 1n)

∣∣∣∣
s=0

= 2ıE(lnRjj ), (5.16)

which shows that our definition of the vector m in Eq. (5.6) is consistent with that in Proposition 5.1, and a similar
comment applies to the matrix � in Eq. (5.7). Furthermore, using the well-known properties of the Fourier transform,
we now see that our differentiability assumptions on the spherical transform needed for Eq. (5.12) are equivalent to
the existence of the first and second moments of the random variables lnRii , i = 1, . . . , n, and it is easy to see that this
is equivalent to the existence of the first and second moments of the random variables lnσ1,i , i = 1, . . . , n, as required
in Theorem 5.1. This concludes our discussion of the Lyapunov exponents.

As regards the stability exponents, we start from the observation that the joint density fEVM(a) of the radii of the
eigenvalues of a random matrix X with a bi-unitarily invariant matrix density fG is given by

fEVM(a) = (2π)n(deta)

∫
(U(1))n

fEV(a�)d∗�

=
(

2nC∗
n

∫
T

fG(at) dt

n∏
j=1

a
n−2j+1
j

)
(deta)n

1

n! perm
(
a

2(k−1)
j

)
j,k=1,...,n

, (5.17)

where a = diag(a1, . . . , an) ∈ A, (U(1))n is the n-fold direct product of the unitary group U(1), � = diag(eıϕ1, . . . ,

eıϕn), d∗� denotes integration by the normalized Haar measure on (U(1))n, “perm” denotes the permanent, and the
equality of the first and second line follows by combining Eq. (2.19) and Lemma 2.7 in [42]. The expression in the
large round brackets is essentially the Harish transform [37] of the function fG, which is known to be symmetric in
a1, . . . , an. Thus, comparing (5.14) and (5.17) and noting that

perm
(
a

2(k−1)
j

)
j,k=1,...,n

= perm
(
a

2(n−k)
j

)
j,k=1,...,n

=
∑
σ∈Sn

n∏
j=1

a
2(n−σ(j))
j (5.18)
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is the symmetrization of
∏n

j=1 a
2(n−j)
j , we find that the joint distribution of the radii of the eigenvalues is the sym-

metrization of that of the vector (R11, . . . ,Rnn) in Lemma 5.3.
Thus, it remains to obtain the limiting distribution of the vector (R11, . . . ,Rnn). Here we may use that, by multi-

variate Mellin inversion,

f(R2
11,...,R

2
nn)(x1, . . . , xn) =

∫
Rn

M(R2
11,...,R

2
nn)(1n + ıs)

n∏
j=1

x
−(1+ısj )

j

dsj

2π
, (5.19)

where the first factor inside the integral is equal to S(σ ′(�′) + ıs) by Lemma 5.3. Thus, the expansion of the Mellin
transform at the point 1n is the same as that of the spherical transform at the point σ ′(�′). After replacing x with x̃M

and repeating the argument leading to Eq. (5.10), we arrive at the second part of Proposition 5.1.
Finally, for the special case of a polynomial ensemble of derivative type, the matrix � is again diagonal, which

obviously yields the second part of Proposition 5.2.
The circumstance that the spherical transform of a polynomial ensemble of derivative type factorizes also has

consequences in the non-asymptotic context. In particular, we can use it to characterize the polynomial ensembles of
derivative type:

Corollary 5.4 (Characterization of polynomial ensembles of derivative type). A bi-unitarily invariant random
matrix X on GL(n,C) with a density f ∈ L1,K(G) is from a polynomial ensemble of derivative type if and only if the
diagonal elements R11, . . . ,Rnn of the upper triangular matrix R in the corresponding QR-decomposition X = QR
are independent and R2

nn has a density in L
1,n−1
[1,n] (R+).

Proof. Let X be a random matrix from the polynomial ensemble of derivative type associated with the weight function
ω ∈ L

1,n−1
[1,n] (R+). Then the spherical transform SX factorizes by Corollary 3.2. By Lemma 5.3, this implies that the

Mellin transform of the vector (R2
11, . . . ,R

2
nn) factorizes, which means that the diagonal elements of R are independent

random variables. Moreover, the densities of the random variables R2
kk are given by the family {xn−kω(x)/Mω(n −

k + 1)}k=1,...,n. In particular, that of R2
nn is in L

1,n−1
[1,n] (R+) because ω is.

Conversely, suppose that the diagonal elements of R are independent random variables. Let h1, . . . , hn denote the
densities of their squares. Then

M(R2
11,...,R

2
nn)(s) =

n∏
j=1

Mhj (sj ). (5.20)

By Lemma 5.3, it follows that for any s ∈ conv(S(�′)) + ıRn we have

SX(s) =
n∏

j=1

Mhj

(
sj − �′

n−j+1 + 1
)
. (5.21)

The product of these functions must be symmetric in s = (s1, . . . , sn) by the basic properties of the spherical transform.
But a product of functions which are not identically zero is symmetric only if all the functions are proportional to one
another. We therefore obtain

Mhj

(
sj − �′

n−j+1 + 1
) = Mhn(sj − �′

1 + 1)

Mhn(�
′
n−j+1 − �′

1 + 1)
= Mhn(sj − (n − 1)/2)

Mhn(n − j + 1)
(5.22)

for all sj ∈ [(n + 1)/2, (3n − 1)/2] and j = 1, . . . , n, because Mhj (1) = 1. Setting ω := hn ∈ L
1,n−1
[1,n] (R+), the

Mellin-transform Mω is defined on the set [1, n] + ıR and

SX(s) =
n∏

j=1

Mω(sj − (n − 1)/2)

Mω(n − j + 1)
. (5.23)
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Hence, in view of the uniqueness theorem for the spherical transform and Corollary 3.2, we may draw the conclusion
that X belongs to the polynomial ensemble of derivative type associated with the function ω. �

As a byproduct of the proof we have found a simple relation between the densities of the diagonal elements
R11, . . . ,Rnn in the QR-decomposition and the density ω. The density of R2

jj is given by hj (r) = rn−jω(r)/Mω(n−
j + 1), j = 1, . . . , n.

6. Conclusion

With the help of the spherical transform we have investigated the distributions of products of independent bi-unitarily
invariant random matrices. In particular, we have derived transformation formulas for the joint probability densities of
the squared singular values of a polynomial ensemble as well as the associated kernels and bi-orthogonal functions.
These transformation formulas refer to the situation where a random matrix from the corresponding random matrix
ensemble is multiplied by an independent random matrix from a polynomial ensemble of derivative type. These results
generalize existing counterparts for the case that the polynomial ensemble of derivative type is an induced Laguerre
(Ginibre / Gaussian) ensemble or an induced Jacobi (truncated unitary) ensemble, see Ref. [20,45,46].

Furthermore, for the densities on the matrix space G = GL(n,C) arising from the independent products of p

Ginibre matrices and q inverse Ginibre matrices, we were able to construct an analytic continuation in p and q .
However, the resulting density is a probability density only under certain restrictions on the parameters p and q ,
see Eq. (4.11). Otherwise, the resulting matrix density and, hence, the induced joint density of the singular values are
signed, which is very similar to Gindikin’s theorem [22] about interpolations of sums of Wishart matrices. In particular
our observation implies that the Ginibre ensemble is not infinitely divisible with respect to multiplication. In contrast
to the behavior of the singular values, the induced joint density of the complex eigenvalues is always positive, for
any positive values of p and q , and even a probability density. This intriguing behavior underlines our claim in Ref.
[42] that not every isotropic eigenvalue density corresponds to a bi-unitarily invariant random matrix ensemble. The
question how rich the subset of those eigenvalue densities corresponding to a bi-unitarily invariant random matrix
ensemble really is remains open.

As a third example of our approach we have shown how the results in Ref. [54] about the Lyapunov exponents
(logarithms of the singular values) are related to the spherical transform. In particular, we have sketched an alternative
way to show that the Lyapunov exponents are asymptotically Gaussian distributed when the number of factors in a
product of independently and identically distributed, bi-unitarily invariant random matrices becomes large. In other
words, the singular values are asymptotically log-normally distributed. This derivation is reminiscent of the standard
proof of the central limit theorem for random vectors, and might open a way to extend the central limit theorem for
Lyapunov exponents to the situation where the limiting distributions are not Gaussian but heavy-tailed. In addition to
that, our discussion has revealed that the Lyapunov exponents are asymptotically independent when the underlying
random matrices belong to a polynomial ensemble of derivative type.
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