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Abstract. In this paper we consider the distribution of the location of the path supremum in a fixed interval for self-similar
processes with stationary increments. A point process is constructed and its relation to the distribution of the location of the path
supremum is studied. Using this framework, we show that the distribution has a spectral-type representation, in the sense that it
is always a mixture of a special group of absolutely continuous distributions, plus point masses on the two boundaries. An upper
bound for the value of the density function is established. We further discuss self-similar Lévy processes as an example. Most of
the results in this paper can be generalized to a group of random locations, including the location of the largest jump, etc.

Résumé. Dans cet article, nous considérons la distribution de la position du supremum de la trajectoire d’un processus auto-
similaire à accroissements stationnaires dans un intervalle fixé. Un processus ponctuel est construit et sa relation avec la distri-
bution de la position du supremum est étudiée. Dans ce cadre, nous montrons que cette distribution a une représentation de type
spectral, dans le sens où il s’agit toujours d’un mélange d’un groupe particulier de distributions absolument continues et de masses
ponctuelles aux bords de l’intervalle. Une borne supérieure pour la valeur de la fonction de densité est obtenue. De plus, à titre
d’exemple, nous discutons des processus de Lévy auto-similaires. La plupart des résultats de cet article peuvent être généralisés à
un groupe de positions aléatoires, y compris la position du plus grand saut, etc.
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1. Introduction

Self-similar processes are stochastic processes whose distributions do not change under proper rescaling in time
and space. The study of self-similar processes as a unified concept dates back to [6], and this class of processes
have attracted attention of researchers from various fields since then, due to their theoretical tractability and broad
applications. The book [5], the lecture note [1], and the review papers [4] and [8] are all excellent sources for general
introduction and existing results. A special subclass of self-similar processes, self-similar processes with stationary
increments, or ss,si processes in short, are of particular interest. They combine the two probabilistic symmetries given
by the self-similarity and the stationary increments, and include famous examples such as fractional Brownian motions
and self-similar Lévy processes.

In this paper, we consider the distributional properties of the location of the path supremum over a fixed interval
for self-similar processes with stationary increments. Compared to the values of the extremes, their locations received
relatively less attention. On one hand, there exist results for some special cases. For instance, the distribution of the
location of path supremum for a Brownian motion is well-known as the (third) arcsin law. More generally, the result
for self-similar Lévy processes was given in [2]. While the exact result for fractional Brownian motions remains
unclear, approximate distributions were studied in [3] using perturbation theory. On the other hand, there has not been
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any structural study of the distribution of the location of path supremum for general self-similar processes. Our goal
in this paper is to establish a framework which works for general self-similar processes, and to derive properties for
the distribution of the location of path supremum.

2. Basic settings

Let X = {X(t)}t∈R be a stochastic process defined on some probability space (�,F ,P ) and taking values in R, whose
path is almost surely càdlàg. {X(t)}t∈R is said to be self-similar, if {X(at)} and {aH X(t)} have the same distribution,
for some H ≥ 0. The constant H is called the exponent of the self-similar process. In this work, {X(t)}t∈R is always
assumed self-similar. We further assume that {X(t)}t∈R has stationary increments. Such a self-similar process with
stationary increments is often referred as a H -ss,si process, or a ss,si process when it is not necessary to specify H .

We are interested in the distribution of the location of the path supremum for the ss,si process {X(t)}t∈R over an
interval with a fixed length, say, T > 0. By the stationarity of the increments, the distribution will be the same for any
interval with length T , and consequently, the interval can be chosen as [0, T ]. In this case, we denote the location of
the path supremum of {X(t)}t∈R over [0, T ] by

τX,T := inf
{
t ∈ [0, T ] : lim sup

s→t
X(s) = sup

s∈[0,T ]
X(s)

}
,

where the infimum means that in case where the supremum is achieved at multiple locations, the leftmost point among
them is taken.

Alternatively, one can first define

τX,T := inf
{
t ∈ [0, T ] : X(t) = sup

s∈[0,T ]
X(s)

}

for stochastic processes with upper semicontinuous paths, in which case the supremum can be indeed achieved at
some point. Then for a càdlàg process X, define its location of path supremum over [0, T ] as that of the modified
process

X′(t) = X(t−) ∨ X(t),

which is now upper semicontinuous.

Proposition 2.1. X′ is a modification of X.

Proof. Since X has stationary increments, for any t ∈R and ε > 0, X(t)−X(t − ε)
d= X(ε)−X(0). As X has càdlàg

sample paths, we have X(ε) → X(0) almost surely, hence X(t − ε) → X(t) in probability, as ε ↓ 0. On the other
hand, by definition, we have X(t − ε) → X(t−) almost surely as ε ↓ 0. Hence X(t) = X(t−) almost surely for any
t ∈ R. Since X′ and X only differ when X(t−) �= X(t), we conclude that X(t) = X′(t) almost surely for any t ∈R. �

The sample path of X′ has the property that the left limit and right limit X′(t−) and X′(t+) exists for all t ∈ R,
and X′(t) = X′(t−) ∨ X′(t+). Denote by D′ the collection of all such functions on R. Note that if X is ss,si, so is X′.
Therefore, in the rest of the paper, we can always assume that the process X has paths in D′, thus in particular, is
upper semicontinuous.

It is not difficult to check that τX,T is a well-defined random variable. Moreover, since the process is self-similar,
the distributions of τX,T and τX,1 are the same up to a scaling. Therefore we focus on the case where T = 1, and use
the simplified notation τX = τX,1.

Additionally, define set

M =
{
ω ∈ � : X(ti) = sup

s∈[0,1]
X(s) for at least two different t1, t2 ∈ [0,1]

}
,

and assume that the process {X(t)}t∈R satisfies
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Assumption U. P(M) = 0.

Most processes that we encounter do satisfy Assumption U. A necessary and sufficient condition for this assump-
tion for processes with continuous paths can be found in [9]. Under Assumption U, the supremum in [0,1] is attained
at a unique point, and the infimum in the definition of τX can be removed. Notice that Assumption U also excludes
the case where H = 0 provided that the process is stochastically continuous at t = 0, since in that case X(t) must be
a constant, which is trivial anyway. Hence we always assume H > 0 for the rest of the paper.

In [12], the author showed that for a stochastic process {X(t)}t∈R with stationary increments, the distribution of τX
can have point masses on the two boundaries 0 and 1, but must be absolutely continuous in the interior of the interval
[0,1], and its density function, denoted as f (t), can be taken as the right derivative of the cumulated distribution
function of τX. Moreover, this version of the density function is càdlàg everywhere.

In the presence of self-similarity, it turns out that the distribution of τX is closely related to a point process, con-
structed as below.

For t ∈ R, define l(t) = inf{s > 0 : X(t − s) ≥ X(t)} and r(t) = inf{s > 0 : X(t + s) ≥ X(t)}, with the tradition
that inf(φ) = +∞. Intuitively, l(t) and r(t) are the distances by which the process will return to the level X(t) or
higher at the left and the right of the point t . It is clear that t is a (strict) local maximum if and only if both l(t) and
r(t) are strictly positive.

Let S = {s ∈ R : l(s) > 0, r(s) > 0} be the set of all the local maxima of X. Notice that since |s1 − s2| ≥
min{l(s1), r(s1), l(s2), r(s2)} for any s1, s2 ∈ S, S is at most countable. For each si ∈ S ∩ [0,1], define point

εi = (l(si), r(si)), then εi is a point in the first quadrant of R
2
, where R = [−∞,∞]. The collection of these points,

denoted as E , or more precisely, the (random) counting measure determined by it, denoted as ξ := ∑
εi∈E δεi

, forms a

point process in (R
+
)2, where R

+ = (0,∞].
Let ν be the mean measure of the point process ξ :

ν(A) = E
(
ξ(A)

)
for every A ∈ B

((
R

+)2)
, (1)

where B((R
+
)2) is the Borel σ -algebra on (R

+
)2, with +∞ treated as a separate point in R

+
. Again, since the points

in E have the property that |s1 − s2| ≥ min{l(s1), r(s1), l(s2), r(s2)}, ν(A) is finite whenever the set A is bounded
away from the axes.

3. Location of the supremum for ss,si processes

We start by exploring the structure of the measure ν. Firstly, the following result shows that ν has mass 0 on the
boundaries at +∞. As a result, we can effectively remove infinity from the definition of ξ when only ν is considered.

Proposition 3.1. Let X be a ss,si process satisfying Assumption U, and ν be defined as at the end of Section 2. Then

ν
(
R+ × {+∞}) = ν

({+∞} ×R+) = ν
({+∞} × {+∞}) = 0.

Proof. First, notice that the set S∞ := {t ∈ R : l(t) = r(t) = +∞} contains at most one single point, which is the
location of the strict global maximum of the process X over the whole real line. Denote by τ ∗

X this location if it exists.
Since it is compatible with horizontal translation and invariant under vertical shift of the path, we have for any s ∈R,
τ ∗

Ys
= τ ∗

X + s, where the process Ys is defined by Ys(t) = X(t − s) − X(−s), and τ ∗
Ys

is the location of the global

maximum of Ys . On the other hand, by the stationarity of the increments, {Ys(t)}t∈R d= {X(t) − X(0)}t∈R, hence we
have

P
(
τ ∗

X ∈ [0,1]) = P
(
τ ∗

Ys
∈ [s, s + 1]) = P

(
τ ∗

X ∈ [s, s + 1])
for all s ∈ R. However,∑

s∈Z
P

(
τ ∗

X ∈ [s, s + 1]) = P
(
τ ∗

X exists
) ≤ 1,



2352 Y. Shen

implying that P(τ ∗
X ∈ [0,1]) must be 0. Consequently, we conclude that

ν
({+∞} × {+∞}) = P

(
S∞ ∩ [0,1] �= φ

) = P
(
τ ∗

X ∈ [0,1]) = 0.

Note that the above reasoning actually shows that for a process with stationary increments, the global (strict) maximum
almost surely does not exist.

For the proof of the rest part of the proposition and future use, we introduce the notion of “compatible set”.
Denote by (D′,C) the collection of all modified càdlàg paths equipped with the cylindrical σ -field, and (MP ,MP )

the standard measurable space for point processes on the real line.

Definition 3.2. A compatible set I is a measurable mapping from (D′,C) to (MP ,MP ), satisfying

1. (Shift compatibility) I (θc ◦ (g + d)) = θc ◦ I (g) for all g ∈ D′ and c, d ∈ R, where θc is the shift operator: θc ◦
g(t) := g(t + c), t ∈ R; θc ◦  :=  − c, ∈ MP , and (g + d)(t) := g(t) + d .

2. (Scaling compatibility) I (d · g(c·)) = c−1I (g(·)) for all g ∈ D′ and c, d ∈R+.

By the above definition and the corresponding probabilistic symmetries possessed by ss,si processes, it is clear that
the distribution of the point process I (X) will be both stationary and scaling invariant if the underlying process X is
ss,si and I is a compatible set. Then we have

Lemma 3.3. Let X be a ss,si process with paths in D′, and I be a compatible set. Then P(I (X) is dense in R) +
P(I (X) = φ) = 1.

That is, a compatible set of a ss,si process is either empty or dense. The proof of this lemma is very simple.

Proof of Lemma 3.3. Assume that P(I (X) is neither dense nor empty) > 0. By stationarity of I (X), this implies that

P
(
I (X) �= φ,d

(
0, I (X)

)
> 0

)
> 0,

where d denotes the Euclidean distance between points or sets. Indeed, assume that P(I (X) �= φ,d(0, I (X)) > 0) = 0,
then since I (X) is stationary, P(I (X) �= φ,d(a, I (X)) > 0) = 0 for all a ∈ Q, hence given I (X) �= φ, I (X) is dense
almost surely, contradicting our assumption.

However, since the distribution of I (X) is invariant under rescaling, so is the distribution of d(0, I (X)), which
implies that d(0, I (X)) ∈ {0,+∞} almost surely, contradicting the above result. Thus we conclude that

P
(
I (X) is dense in R

) + P
(
I (X) = φ

) = 1. �

Now consider the set Sr := {s ∈ S : r(s) = +∞}. Note that Sr is a compatible set. Therefore, by Lemma 3.3,
P(Sr is dense in R) + P(Sr = φ) = 1. Assume Sr is dense for some path of X. Then for any fixed t2 ∈ R and s ∈ Sr

such that s < t2, X(s) > X(t2). Recall that the paths of X are in D′ and therefore, upper semicontinuous. Conse-
quently, for any t1 < t2, taking a sequence of such s converging to t1 leads to the result that X(t1) ≥ X(t2). Moreover,
since Sr is dense, there exists s0 ∈ Sr ∩ (t1, t2). For such s0 we must have X(t1) ≥ X(s0) > X(t2) based on the above
argument. Consequently, the whole path is strictly decreasing. However, the definition of Sr requires that both l(s)

and r(s) be strictly positive for s ∈ Sr , thus Sr should be empty if the path is strictly monotonic, contradicting the
assumption that Sr is dense. Therefore we conclude that the set Sr can never be dense for any realization, in other
words, Sr is empty almost surely.

Symmetrically, Sl := {s ∈ S : l(s) = +∞} is empty almost surely. As a result,

ν
(
R+ × {+∞}) = ν

({+∞} ×R+) = 0. �

Note that if s is the location of a local maximum of X, then for any a > 0, s′ = as is the location of a local
maximum of Y defined by Y(at) = X(t), t ∈ R. Moreover, lY(s′) = al(s) and rY(s′) = ar(s), where lY and rY are
defined for Y in the same way as l and r for X. Therefore by self-similarity, for any A ∈ B, we have

ν(aA) = a−1ν(A), (2)
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where aA := {(al, ar) : (l, r) ∈ A}, and the factor a−1 on the right hand side comes from the fact that the measure ν

still counts the expected number of qualified points in an interval with length 1 rather than length a.
Define bijection � : (l, r) → (u, v) by

u := l, v := l

l + r
,

and ν′ = ν ◦ �−1. We have the following factorization result.

Lemma 3.4.

ν′ = η × μ, (3)

where μ is a measure on ((0,1),B(0,1)), η is an absolutely continuous measure with density

g(u) = cu−2, u > 0

for some positive constant c.

Proof. After the change of variable � , the relation (2) becomes

ν′(ϕu
a

(
A′)) = a−1ν′(A′), A′ ∈ B,

where ϕu
a (A′) = {(au, v) : (u, v) ∈ A′}.

Let μ be a measure determined by μ([v1, v2]) = ν′([c,∞) × [v1, v2]),0 < v1 < v2 < 1. Note that since
�−1([c,∞) × [v1, v2]) is bounded away from the axes, μ([v1, v2]) is always finite. For any 0 < u1 < u2,

ν′([u1, u2) × [v1, v2]
) = ν′([u1,∞) × [v1, v2]

) − ν′([u2,∞) × [v1, v2]
)

= c
(
u−1

1 − u−1
2

)
ν′([c,∞) × [v1, v2]

)
= c

(
u−1

1 − u−1
2

)
μ

([v1, v2]
)

= η
([u1, u2)

)
μ

([v1, v2]
)
,

hence the desired factorization. �

The following theorem reveals a key relation between f (t), the density of the location of the path supremum, and
the mean measure ν of the point process that we introduced.

Theorem 3.5. Let {X(t)}t∈R be H -ss,si for H > 0, satisfying Assumption U. f (t) is the density in (0,1) of τX, and ν

is defined as in (1). Then

f (t) = ν
([t,∞) × [1 − t,∞)

)
, t ∈ (0,1). (4)

Proof. We first show

ν
(
(t,∞) × (1 − t,∞)

) ≤ f (t) ≤ ν
([t,∞) × [1 − t,∞)

)
, (5)

and then

ν
({t} × [1 − t,∞) ∪ [t,∞) × {1 − t}) = 0. (6)

Once we have these two results, their combination clearly gives (4).
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In order to show (5), let 0 < ε < min{t, 1−t
2 }. Note that if there exists a point s ∈ S located in [t, t + ε], such

that l(s) > t + ε, r(s) > 1 − t , then X(s) is the supremum of the process over the interval [s − (t + ε), s + 1 − t].
Since [0,1] ⊆ [s − (t + ε), s + (1 − t)], τX = s ∈ [t, t + ε]. On the other hand, if τX ∈ [t, t + ε], then by definition,
l(τX) ≥ τX ≥ t , and r(τX) ≥ 1 − τX ≥ 1 − t − ε, hence there exists s ∈ S located in [t, t + ε], such that l(s) ≥ t, r(s) ≥
1 − t − ε. Therefore,{

there exists s ∈ S ∩ [t, t + ε] satisfying l(s) > t + ε, r(s) > 1 − t
}

⊆ {
τX ∈ [t, t + ε]}

⊆ {
there exists s ∈ S ∩ [t, t + ε] satisfying l(s) ≥ t, r(s) ≥ 1 − t − ε

}
.

Since for any point s in the set in the first or the third line, min{l(s), r(s)} ≥ min{t,1 − t − ε} > ε, there can only be
at most one such point in the interval [t, t + ε]. Thus by the stationarity of the increments,

P
({

there exists s ∈ S ∩ [t, t + ε] satisfying l(s) > t + ε, r(s) > 1 − t
})

= E
(∣∣si ∈ S ∩ [t, t + ε] : εi ∈ (t + ε,∞) × (1 − t,∞)

∣∣)
= εE

(∣∣si ∈ S ∩ [0,1] : εi ∈ (t + ε,∞) × (1 − t,∞)
∣∣)

= εE

(∑
εi∈E

δεi

(
(t + ε,∞) × (1 − t,∞)

))

= εν
(
(t + ε,∞) × (1 − t,∞)

)
,

where | · | for a set gives the number of the elements in the set. Similarly,

P
({

there exists s ∈ S ∩ [t, t + ε] satisfying l(s) ≥ t, r(s) ≥ 1 − t − ε
})

= E
(∣∣si ∈ S ∩ [t, t + ε] : εi ∈ [t,∞) × [1 − t − ε,∞)

∣∣)
= εE

(∣∣si ∈ S ∩ [0,1] : εi ∈ [t,∞) × [1 − t − ε,∞)
∣∣)

= εE

(∑
εi∈E

δεi

([t,∞) × [1 − t − ε,∞)
))

= εν
([t,∞) × [1 − t − ε,∞)

)
.

Thus

εν
(
(t + ε,∞) × (1 − t,∞)

)
≤ P

(
τX ∈ [t, t + ε])

≤ εν
([t,∞) × [1 − t − ε,∞)

)
.

Recall that f (t) is right continuous with left limits, and equals to the right derivative of the cumulative distribution
function of τX everywhere in (0,1). Therefore by dividing all the expressions by ε and taking limit ε ↓ 0, we have

ν
(
(t,∞) × (1 − t,∞)

) = lim
ε↓0

ν
(
(t + ε,∞) × (1 − t,∞)

) ≤ f (t)

≤ lim
ε↓0

ν
([t,∞) × [1 − t − ε,∞)

) = ν
([t,∞) × [1 − t,∞)

)
.

The second step is to establish (6). By symmetry, it suffices to prove that ν({t} × [1 − t,∞)) = 0. To this end, we
use the change of variables � and apply Lemma 3.4. More precisely, note that

�
({t} × [1 − t,∞)

) = {
(u, v) : u = t,0 < v ≤ t

}
.
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Hence by Lemma 3.4,

ν
({t} × [1 − t,∞)

)
= ν′({(u, v) : u = t,0 < v ≤ t

})
=

∞∑
i=1

ν′({(u, v) : u = t, v ∈ (
2−i t,2−i+1t

]})

=
∞∑
i=1

η
({t})μ((

2−i t,2−i+1t
])

.

Since η is absolutely continuous, η({t}) = 0. Moreover, as discussed in the proof of Lemma 3.4, μ([v1, v2]) < ∞
for any 0 < v1 < v2 < 1. Hence μ((2−i t,2−i+1t]) < ∞ for all i ∈ N. As a result, η({t})μ((2−i t,2−i+1t]) = 0, i =
1,2, . . . , so is ν({t} × [1 − t,∞)). Thus, we have shown (6), which completes the proof. �

It is now straightforward to derive the following spectral-type result.

Theorem 3.6. Let {X(t)}t∈R and f (t) be defined as in Theorem 3.5. Then

f (t) =
∫ 1

0
fv(t)μ1(dv), 0 < t < 1, (7)

where

fv(t) =
{

1−v
−v ln(v)−(1−v) ln(1−v)

(1 − t)−1, t ≤ v,
v

−v ln(v)−(1−v) ln(1−v)
t−1, t > v,

and μ1 is a sub-probability measure on (0,1) (i.e., μ1(0,1) ≤ 1).

Proof. It is not difficult to see that

�
([t,∞) × [1 − t,∞)

) = {
(u, v) : u ≥ h(v, t)

}
,

where

h(v, t) =
{

t, 0 < v < t,
v

1−v
(1 − t), t ≤ v < 1.

Hence by Lemma 3.4 and Theorem 3.5,

f (t) = ν
([t,∞) × [1 − t,∞)

)
=

∫ 1

v=0

(∫ ∞

u=h(v,t)

cu−2 du

)
μ(dv)

=
∫ 1

v=0
ch(v, t)−1μ(dv)

=
∫ 1

v=0
fv(t)c(v)μ(dv),

where

c(v) = c(−v ln(v) − (1 − v) ln(1 − v))

v
.
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Defining measure μ1 by dμ1
dμ

(v) = c(v) leads to the desired expression. Finally, since
∫ 1

0 fv(t) dt = 1 for any v ∈ (0,1)

and
∫ 1

0 f (t)dt ≤ 1, μ1 is a sub-probability measure. Note that μ1 is not necessarily a probability measure due to the
potential mass of the distribution on the boundaries 0 and 1. �

The next result gives a universal entropy-type upper bound for the density function f (t). It can be obtained using
only the basic properties of self-similarity, but here we are going to prove it using the result of Theorem 3.6.

Corollary 3.7. For any given t ∈ (0,1),

f (t) ≤ (−t ln(t) − (1 − t) ln(1 − t)
)−1

. (8)

Proof. By Theorem 3.6, it suffices to check (8) for fv(t) for all 0 < v < 1, which can be done using fundamental
calculus. �

Corollary 3.7 is a significant improvement of the corresponding result derived in [12] for general processes with
stationary increments but not necessarily with self-similarity. More precisely, the upper bound of f (t) is improved
from max{t−1, (1 − t)−1} to the current form. The factor of improvement varies from − ln(t) when t → 0 and
− ln(1 − t) when t → 1 to 2

ln(2)
when t = 1

2 .

Remark 3.8. In the excellent work of [7] the authors proved that

f (t) ≤ f (s)max

(
s

t
,

1 − s

1 − t

)

for any s, t ∈ (0,1). In particular, f is always continuous. Moreover, assuming the existence of the left and the right
derivatives, denoted as f ′(t−) and f ′(t+) respectively, the above result easily leads to the following bounds:

f ′(t−) ≤ f (t)

1 − t
, (9)

f ′(t+) ≥ −f (t)

t
. (10)

Our framework provides an alternative way to derive these bounds: similar as in Corollary 3.7, one can directly
check that the above bounds are satisfied by all the basis functions fv(t),0 < v < 1, hence they must hold for all
density functions f . This method also guarantees the existence of the left and the right derivatives.

The following immediate corollary of Theorem 3.6 gives bounds for the expectation of any function of the location
of the path supremum. The proof is omitted.

Corollary 3.9. Let {X(t)}t∈R be H -ss,si for H > 0, satisfying Assumption U, and τX be the location of its path
supremum over [0,1]. Let g be a bounded, or non-negative, measurable function on [0,1]. Then

min

{
g(0), g(1), inf

v∈(0,1)

∫ 1

0
g(t)fv(t) dt

}

≤ E
(
g(τX)

)
≤ max

{
g(0), g(1), sup

v∈(0,1)

∫ 1

0
g(t)fv(t) dt

}
.

Corollary 3.9 can be used to derive, for example, the upper bound for the probability that the path supremum falls
into an interval [c, d]: P(τX ∈ [c, d]).
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In many cases the process X is time-reversible, i.e., {Xt }t∈R d= {X(−t)}t∈R. For instance, all fractional Brownian
motions are time-reversible. This property further improves the spectral-type representation result and the related
bound.

Proposition 3.10. Let {X(t)}t∈R be a time-reversible, ss,si process, and f (t) be the density in (0,1) of the location
of the path supremum for {X(t)}t∈R. Then

f (t) =
∫ 1/2

0
f̃v(t)μ̃1(dv),

where

f̃v(t) =

⎧⎪⎨
⎪⎩

1
2(−v ln(v)−(1−v) ln(1−v))

(1 − t)−1, 0 < t < v,
v

2(−v ln(v)−(1−v) ln(1−v))
(t−1 + (1 − t)−1), v ≤ t < 1 − v,

1
2(−v ln(v)−(1−v) ln(1−v))

t−1, 1 − v ≤ t < 1,

and μ̃1 is a sub-probability measure on (0, 1
2 ].

To see this result, simply use the fact that μ1 in Theorem 3.6 now needs to be symmetric due to the time-
reversibility, then define f̃v(t) = 1

2 (fv(t) + f1−v(t)). We omit the details. The corresponding upper bound for f (t)

becomes

f (t) ≤
{

1
2(1−t)

(−t ln(t) − (1 − t) ln(1 − t))−1, 0 < t < 1
2 ,

1
2t

(−t ln(t) − (1 − t) ln(1 − t))−1, 1
2 ≤ t < 1.

We end this section by generalizing the results to other random locations such as the location of the largest jump
in a fixed interval.

In [11] the authors introduced the notion of intrinsic location functional, which is a large family of random loca-
tions including the location of the path supremum, the first hitting time to a fixed level, among many others. It was
later shown in [12] that there exists an equivalent characterization of the intrinsic location functionals using partially
ordered random sets, which we take here as the definition.

Let H be a space of real valued functions on R, closed under translation. That is, for any f ∈ H and c ∈ R,
θcf ∈ H . Let I be the set of all compact, non-degenerate intervals in R.

Definition 3.11 ([12]). A mapping L = L(f, I ) from H × I to R∪ {∞} is called an intrinsic location functional, if

1. L(·, I ) is measurable for I ∈ I .
2. For each function f ∈ H , there exists a subset S(f ) of R, equipped with a partial order �, satisfying:

(a) For any c ∈R, S(f ) = S(θcf ) + c.
(b) For any c ∈R and any t1, t2 ∈ S(f ), t1 � t2 implies t1 − c � t2 − c in S(θcf ),
such that for any I ∈ I , either S(f ) ∩ I = φ, in which case L(f, I ) = ∞, or L(f, I ) is the maximal element in
S(f ) ∩ I according to �.

Briefly, an intrinsic location functional always takes the maximal element in a random set in the interval of interest,
according to some partial order. Infinity was added as a possible value to deal with the case where some random
location may not be well-defined for certain path and interval.

For the case of the location of the path supremum over an interval, the set S(f ) is the set of all the points t ∈ R

such that f (t) is the supremum of f in either [t − s, t] or [t, t + s] (or both) for some s > 0, and the order � is the
natural order of the value f (t). A review of the proofs in this section shows that they did not use any specific property
of the location of the path supremum, but rather two general properties that this location possesses, in terms of its
partially ordered random set representation:
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1. The set S is a compatible set, as defined in Definition 3.2, with space D′ replaced by H ;
2. The partial order � is also compatible with rescaling. That is, t1 � t2 in S(f (·)) implies c−1t1 � c−1t2 in S(d ·

f (c·)) for c, d ∈ R+.

Consequently, all the results in Section 3 can be generalized to any intrinsic location functional satisfying the two
properties above. In particular, the spectral-type result, Theorem 3.6, and its two corollaries, also apply to the location
of the largest jump in [0,1], defined as

δX := inf
{
t ∈ [0,1] : ∣∣X(t) − X(t−)

∣∣ = sup
s∈[0,1]

∣∣X(s) − X(s−)
∣∣}, (11)

provided that it is unique, or the location of the largest drawdown by considering only the downward jumps.

4. Supremum location of self-similar Lévy processes

In this section we consider the special case of self-similar Lévy processes, which are ss,si processes with independent
increments. Various results are already known for this family of processes. Most importantly, a non-constant Lévy
process is self-similar with exponent H if and only if it is α-stable for index α = 1/H , and the exponent H must be
greater than or equal to 1/2. Intuitively, this means that a non-constant self-similar Lévy process has no Brownian
motion part unless H = 1/2, and that its Lévy measure must have power densities on (0,∞) and on (−∞,0) with the
same power −1 − α. Moreover, when H = 1/2 the process is necessarily a Brownian motion (with no drift); when
H ∈ (1/2,1) the process has zero mean; when H ∈ (1,∞) the process has zero drift; when H = 1, the process either
has a symmetric Lévy measure or is a deterministic linear function with non-zero slope. See Chapter 3 of [10] for
details.

Recall that in order to make the location of the path supremum well-defined, we are using the upper semicontinuous
modification of the Lévy process in this section.

Applying the general results derived in the previous section would require Assumption U. To this end, we first
show that a non-constant, self-similar Lévy process satisfies Assumption U automatically. Note that such a result is
a consequence of self-similarity and does not hold for Lévy processes in general, for which one should consider the
compound Poisson processes separately, as in [2].

Lemma 4.1. Let X = {X(t)}t∈R be a non-constant, self-similar Lévy process, then X satisfies Assumption U.

Proof. Define M1 := sups∈[0,1] X(s), M2 := sups∈[0,1](X(s) − X(1)), and d := inf{s > 0 : X(s) > X(0) = 0}. By
Blumenthal’s 0–1 law (see, for example, Proposition 40.4 in [10]), P(d > 0) = 1 or P(d = 0) = 1. We discuss these
two cases separately.

Case 1: P(d > 0) = 1. Since the distribution of d is invariant under rescaling due to self-similarity, in this case
we must have P(d = ∞) = 1, which means that the set {s > 0 : X(s) > X(0) = 0} is empty. As a result, X is (non-
strictly) decreasing due to the stationarity of the increments. Since X is non-constant, Lévy-Itô decomposition implies
that X is spectrally negative, with no diffusion component. Moreover, as discussed at the beginning of this section,
the Lévy measure of X must have power densities, hence the intensity of jumps with size a or larger tends to infinity
as a decreases to 0, making X strictly decreasing. Thus in this case, Assumption U is satisfied, with the unique path
supremum on [0,1] achieved at t = 0.

Case 2: P(d = 0) = 1. In this case P(M1 > 0) = 1. Let A1 = {x : P(M1 = x) > 0} and A2 = {x : P(M2 = x) > 0}
be the set of atoms of M1 and M2, respectively, then 0 /∈ M1. Since X is self-similar and has independent and stationary
increments, for t ∈ (0,1), we have

P
(

sup
s∈[0,t]

X(s) = sup
s∈[t,1]

X(s)
)

= P
(

sup
s∈[0,t]

(
X(s) − X(t)

) = sup
s∈[t,1]

(
X(s) − X(t)

))

= P
(
tH M ′

2 = (1 − t)H M ′
1

)
= E

(
P

(
(t/1 − t)H M ′

2 = M ′
1|M ′

1

))
,
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where M ′
1 and M ′

2 are independent random variables having the same distributions as M1 and M2, respectively. For
any x /∈ (t/1 − t)H A2, P((t/1 − t)H M ′

2 = M ′
1|M ′

1 = x) = 0. Thus, P(sups∈[0,t] X(s) = sups∈[t,1] X(s)) > 0 only if
P(M ′

1 ∈ (t/1 − t)H A2) > 0, or in other words, A1 ∩ (t/1 − t)H A2 �= φ. Since A1,A2 are at most countable, and
0 /∈ A1, such a condition can only hold for at most countably many t . On the other hand, suppose Assumption U is not
satisfied, then with positive probability there exist at least two locations in [0,1] at which sups∈[0,1] X(s) is achieved.
Let τ1 < τ2 be two such points (e.g., the infimum and the supermum of these points, which also achieve the path
supremum by the upper semicontinuity). Then there exists ε > 0, such that P(τ2 − τ1 ≥ ε) > 0. For such ε, there
exists n ∈N satisfying

P

(
τ1 ∈

[
(n − 1)ε

2
,
nε

2

]
, τ2 − τ1 ≥ ε

)
> 0.

Note that τ1 ∈ [ (n−1)ε
2 , nε

2 ] and τ2 − τ1 ≥ ε imply that [nε
2 ,

(n+1)ε
2 ] ⊆ [τ1, τ2]. Hence for any t ∈ [nε

2 ,
(n+1)ε

2 ],

P
(

sup
s∈[0,t]

X(s) = sup
s∈[t,1]

X(s)
)

> P

([
nε

2
,
(n + 1)ε

2

]
⊆ [τ1, τ2]

)
> 0.

However, we just shown that P(sups∈[0,t] X(s) = sups∈[t,1] X(s)) > 0 can only hold for at most countably many t ,
which can not cover any interval. Thus we conclude that Assumption U is satisfied in the case where P(d = 0) = 1.
Combining the two cases completes the proof. �

Proposition 4.2. Let {X(t)}t∈R be a non-constant, self-similar Lévy process with exponent H > 0, and ν be the same
as previously defined. Then

ν = ν1 × ν2,

where ν1 and ν2 are measures on (0,∞) with survival functions F 1(l) := ν1(l,∞) = l−c1 and F 2(r) := ν2(r,∞) =
c0r

−c2 , respectively. The constants c0, c1, c2 > 0 and c1 + c2 = 1.

Proof. Consider ν((l,∞)× (r,∞)) for l, r satisfying l > 1, r > 1. Notice that by the construction of the set of points
E , there is at most one point in (1,∞) × (1,∞). Thus

ν
(
(l,∞) × (r,∞)

)
= P

(
there exists s ∈ [0,1], such that l(s) > l, r(s) > r

)
= P

(
l(s) > l, r(s) > r|E)

P(E),

where the event E := {there exists a unique s ∈ [0,1], such that l(s) > 1, r(s) > 1}. By the independence of incre-
ments, we further have

P
(
l(s) > l, r(s) > r|E)

P(E)

= P
(
l(s) > l|l(s) > 1

)
P

(
r(s) > r|r(s) > 1

)
P(E)

=: F ′
1(l)F

′
2(r)P (E), l > 1, r > 1.

The condition l > 1 and r > 1 is not essential due to the self-similarity. Thus

ν
(
(l,∞) × (r,∞)

) ∝ F 1(l)F 2(r)

for some functions F 1 and F 2. Taking A = (l,∞) × (r,∞) in (2), we have

F 1(al)F 2(ar) = a−1F 1(l)F 2(r)

for any a > 0.
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Standard procedure leads to the conclusion that the only solutions of this functional equation, which make both F 1
and F 2 non-increasing, are of the form

F 1(l) = c′l−c1,

F 2(r) = c′′r−c2 ,

where c1, c2 > 0 and c1 + c2 = 1. Finally c′ and c′′ can obviously be combined as c0, and put only in front of F 2. �

With the help of Lemma 4.1, Proposition 4.2 immediatly leads to a new way to prove the following result regarding
the distribution of τX, the supremum location for the self-similar Lévy process X over [0,1]. This result was first
established in [2] by considering the joint distribution of the location and the value of the path supremum for stable
Lévy processes. The special case of Brownian motion is well known and can be found in, for instance, [13].

Theorem 4.3. Let X = {X(t)}t∈R be a non-constant, self-similar Lévy process, then one of the three following sce-
narios is true:

1. X is almost surely strictly decreasing, hence P(τX = 0) = 1.
2. X is almost surely strictly increasing, hence P(τX = 1) = 1.
3. X is not monotone, τX ∼ Beta(1 − c1,1 − c2), where c1, c2 > 0 and c1 + c2 = 1.

Proof. The first two cases are trivial. Now let us consider the case where X is not strictly monotone. It is clear by
Proposition 4.2 that the density function of τX in (0,1), f (t), satisfies

f (t) ∝ t−c1(1 − t)−c2 , 0 < t < 1.

Therefore it suffices to prove that when X is not strictly monotone, P(τX = 0) = P(τX = 1) = 0. Indeed, suppose
P(τX = 0) > 0. Let d = inf{s > 0 : X(s) > X(0) = 0} as defined in the proof of Lemma 4.1. Since τX = 0 implies that
d > 1, P(d > 0) > 0. A same reasoning as in the proof of Lemma 4.1 then leads to the result that P(d = ∞) = 1, and
that X is strictly decreasing, which contradicts the assumption in this case that X is not strictly monotone. Therefore
we conclude that P(τX = 0) = 0. Symmetrically, P(τX = 1) = 0. �
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