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Abstract. We present large deviations principles for the moments of the empirical spectral measure of Wigner matrices and
empirical measure of β-ensembles in three cases: the case of β-ensembles associated with a convex potential with polynomial
growth, the case of Gaussian Wigner matrices, and the case of Wigner matrices without Gaussian tails, that is Wigner matrices
whose entries have tail distributions decreasing as e−ctα , for some constant c > 0 and with α ∈ (0,2).

Résumé. Nous proposons des principes de grandes déviations pour les moments de la mesure spectrale empirique de matrices
de Wigner et de la mesure empirique de β-ensembles dans trois cas : celui des β-ensembles associés à un potentiel convexe à
croissance polynomiale, le cas des matrices de Wigner Gaussiennes, et le cas des matrices de Wigner sans queues Gaussiennes,
c’est-à-dire dont les entrées ont une queue de distribution ayant le même comportement que e−ctα , pour une certaine constante
c > 0 et α ∈ (0,2).
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1. Introduction and main results

The study of the traces of random matrices is now a classical tool to understand the behavior of their spectrum. From
the original proof of Wigner’s theorem by the moments method (see [30]), to the universality results at the edge of
Hermitian or covariance random matrices (see for example [15,29]), ‘Wigner traces method’ has proven extremely
effective in the macroscopic, as well as the microscopic study of the spectrum of random matrices.

Starting from Wigner’s theorem, which asserts that for a Wigner matrix whose entries are centered and have finite
moments, the moments of the empirical spectral measure, or equivalently the normalized traces, converge almost
surely to 0, for odd moments, and to the Catalan numbers, for even moments, one can ask about the deviations of
these moments around their respective limit value.

The fluctuations of the traces of random matrices have been extensively studied, usually as a first step to get the
fluctuations of the linear statistics of the eigenvalues. Originally proven in the context of Wishart matrices in [19], a
central limit theorem for the moments of the empirical spectral measure of standard Wigner matrices can be found in
[1, Theorem 2.1.31], following Jonsson’s strategy of using the moments method and combinatorial techniques. Due
to the repulsion of the eigenvalues, one has to multiply by a factor N – instead of

√
N in the case of independent vari-

ables – to see the fluctuations of the centered moments. The development of the combinatorial approach culminated
in [27,28], in which the authors show a CLT for the pth moment with p growing with N , p � N2/3, as well as mul-
tivariate version of the CLT for moments, in the case of standard Wigner matrices with symmetric and sub-Gaussian
entries.

Regarding the deviations of the moments of the empirical spectral measure, we know from [23, Section 3.1], that
the p-Schatten norm of Gaussian Hermitian or symmetric matrices is sub-Gaussian. Still in the Gaussian case, the
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estimates of moments of Gaussian chaos of [20] can also provide some concentration inequalities for the moments
of the empirical spectral measure. Concentration inequalities for truncated traces of convex perturbation of the GUE
multi-matrix model can be found in [18]. More generally, we know by [25], that if the entries of X are bounded or
satisfies some logarithmic Sobolev inequalities, then the normalized traces of powers of X/

√
N , say N−1 tr(X/

√
N)p ,

satisfies a concentration inequality with speed N1+2/p . This gives an indication, at least in this case, of the speed of
the large deviations of the moments of the empirical spectral measure around the Catalan numbers.

Note that since the map which associates to a probability measure on R, its pth moment is not continuous for the
weak topology, one cannot derive, by a contraction principle, large deviations principles for the pth moment of the
empirical spectral measure, from the already known large deviations principles for the empirical spectral measure,
like in the case of the GUE or GOE due to [4], or in the case of Wigner matrices without Gaussian tails due to [7].

Moderate deviations of certain traces of convex perturbation of the GUE multi-matrix model have been investigated
in [14]. In the case where the entries are not centered, some results of large deviations for the moments of the empirical
spectral measure are known. In the case of symmetric Bernoulli matrices, we know by [13, Theorem 1.5] that the
centered traces satisfy moderate deviations principles with an explicit rate function. A large deviations principle for
the traces of Bernoulli matrices is derived in [9, Theorem 4.1], as a consequence of the large deviations principle of
Erdös–Renyi graphs with parameter p independent of N , with respect to the cut metric.

1.1. Main results

The aim of this paper is to derive large deviations principles for the moments of the empirical (spectral) measure in
three cases: the case of β-ensembles for convex potential with polynomial growth in Section 3, the case of Gaussian
Wigner matrices in Section 2, and the case of Wigner matrices without Gaussian tails in Section 4.

We recall that a sequence of random variables (Zn)n∈N taking value in some topological space X equipped with the
Borel σ -field B, follows a large deviations principle (LDP) with speed υ :N→ N, and rate function J :X → [0,+∞],
if J is lower semicontinuous and υ increases to infinity and for all B ∈ B,

− inf
B◦ J ≤ lim inf

n→+∞
1

υ(n)
logP(Zn ∈ B)

≤ lim sup
n→+∞

1

υ(n)
logP(Zn ∈ B)

≤ − inf
B

J,

where B◦ denotes the interior of B and B the closure of B . We recall that J is lower semicontinuous if its t -level sets
{x ∈ X : J (x) ≤ t} are closed, for any t ∈ [0,+∞). Furthermore, if all the level sets are compact, then we say that J

is a good rate function.
We define the β-ensemble associated with the potential V as the following probability measure on R

N ,

dPN
V,β = 1

ZN
V

∏
i<j

|λi − λj |βe−N
∑N

i=1 V (λi )
N∏

i=1

dλi, (1)

where ZN
V,β is the partition function, that is,

ZN
V,β =

∫ ∏
i<j

|λi − λj |βe−N
∑N

i=1 V (λi )

N∏
i=1

dλi. (2)

To make sense of PN
V,β , it is usually assumed that V is a continuous function such that there is some β ′ > 1, β ′ ≥ β ,

such that

lim inf|x|→+∞
V (x)

β ′ log |x| > 1. (3)
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It is known (see [1, Theorem 2.6.1] or [4]), that the empirical measure

LN = 1

N

N∑
i=1

δλi
,

follows, under PN
V,β , a LDP with respect to the weak topology, with speed N2, and good rate function IV

β . Furthermore,

IV
β achieves its minimum at a unique probability measure σV

β , called the equilibrium measure, which is compactly
supported (see [1, Lemma 2.6.2]).

In the case of β-ensembles associated with a convex potential with polynomial growth, the following holds.

Theorem 1.1. Let α ≥ 2 and β > 0. Let

∀y ∈R, V (x) = b|x|α + w(x), (4)

where w is a continuous convex function such that w(x) = o±∞(|x|α). Let p ∈N, p > α. For any λ1, . . . , λN ∈R, we
denote by mp,N ,

mp,N = 1

N

N∑
i=1

λ
p
i .

Under PN
V,β , the sequence (mp,N)N≥1 satisfies a large deviations principle with speed N

1+ α
p and good rate function

Jp , where P
N
V,β is defined in (1). If p is even,

Jp(x) =
{

b(x − 〈σV
β , xp〉) α

p if x ≥ 〈σV
β , xp〉,

+∞ otherwise,

where 〈σV
β , xp〉 denotes the pth moment of the equilibrium measure of PN

V,β , and if p is odd, Jp is defined by,

∀x ∈R, Jp(x) = b
∣∣x − 〈

σV
β , xp

〉∣∣ α
p .

Remarks 1.2. (a) If (X1, . . . ,XN) are independent and identically distributed with no exponential moments, it is
known by the work of Nagaev [26] (see also [16]), that the large deviations of the empirical mean of such a sample,
are essentially due to the deviations of order N of one variable, and that the speed of deviations depend on the tail
distribution of the sample. This can be considered as a instance of some kind of “heavy-tail phenomenon”.

Theorem 1.1 deals with the large deviations of the moments in a regime where this “heavy-tail phenomenon” arises.
The assumption that the potential V is of polynomial growth is made so as to identify the speed of deviations and the
rate function.

Indeed, under our assumptions on the potential V and p, one can see that the variables λ
p
i ’s do not have any

exponential moments under PN
V,β . Thus, one can still expect some kind of “heavy-tail phenomenon” to hold despite

the strong correlation; so that only a small fraction of the particles λi participate to the deviations of the moment
mp,N . As we will show in Proposition 3.5, the deviations of mp,N are due to the deviations of the logN largest in
absolute value λi ’s, meaning that mp,N is exponentially equivalent to

〈
σV

β , xp
〉+ 1

N

logN∑
i=1

λ∗
i
p
,

where λ∗
1, . . . , λ

∗
N is the rearrangement of the λi ’s in decreasing absolute values. To prove this, we will combine a

deviation inequality stated in Proposition 3.1, estimating the probability of seeing a given number of particles outside
an interval with a concentration inequality of Bobkov and Ledoux [6, Corollary 4.1] (see Proposition 3.7), together
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with truncations arguments. This is in view of using this concentration inequality that we made the assumption that V

can be written as in (4), with w a convex function.
Analyzing the deviations of this truncated moment where only the logN largest in absolute value λi ’s remain, one

can show (see Proposition 3.9) that the logarithmic interaction is negligible, so that the rate function of mp,N can be
realized as the rate function of the LDP of

〈
σV

β , xp
〉+ 1

N

logN∑
i=1

Xi
p,

where (Xi)i≥1 are i.i.d. random variables with law e−NV (x) dx/ZV , where we denote by ZV = ∫
e−NV (x) dx.

(b) The fact that the rate function obtained here in the case p is even, is infinite on the set (−∞, 〈σV
β , xp〉) is

not surprising. Indeed, the map which associates to a probability measure μ its pth-moment 〈μ,xp〉, is lower semi-
continuous for the weak topology when p is even. Therefore, the deviations of mp,N under its limiting value 〈σV

β , xp〉
can be reformulated as deviations of the empirical mean in a closed set which does not contain the equilibrium measure
σV

β . In particular, these deviations have a infinite cost at the scale N1+α/p (since it is strictly inferior by assumption

to N2). This remark will be relevant for the all subsequent LDPs we will present.
(c) Although it is not in the scope of this article, it should also be possible to derive a large deviations principle for

the even moments of the empirical measure, say m2p,N with speed N2. Firstly, the LDP result of Theorem 1.1 indicates
that the rate function at speed N2 must be 0 on [〈σV

β , x2p〉,+∞). Secondly, the proof of the large deviations of the

empirical measure (see [1, Theorem 2.6.1]) yields the asymptotics of the partition function ZN
V,β at the exponential

scale N2,

1

N2
logZN

V,β −→
N→+∞ inf

μ

{∫
V dμ(x) − β

2

∫
log |x − y|dμ(x)dμ(y)

}
,

where the supremum is over all the probability measures μ on R satisfying
∫

V dμ < +∞.

But the logarithmic moment generating function of m2p,N at some tN2 with t < 0, can be written as a ratio of
partition functions, that is

E
N
V,βetN2mp,N =

ZN
V −tx2p,β

ZN
V,β

,

so that the one can identify the limit of the logarithmic moment generating function at the exponential scale N2.
Gärtner–Ellis theorem (see [11, Theorem 2.3.6]) would thus yield a large deviations principle with speed N2, after
checking the regularity of the limit of the logarithmic moment generating function.

Let us introduce now the model of Wigner matrices. The Wigner matrices and the β-ensembles are linked through
the GOE, GUE and GSE, which form β-ensembles for a quadratic potential and β = 1,2,4 respectively. More
generally, let (Xi,j )i<j be independent and identically distributed (i.i.d) complex-valued random variables, and let
(Xi,i)i≥1 be i.i.d. real-valued random variables. Let X(N) be the N × N Hermitian matrix with up-diagonal entries
(Xi,j )1≤i≤j≤N . We call such a sequence (X(N))N∈N, a Wigner matrix. In the following, we will drop the N and write
X instead of X(N).

Assume further that X is centered, for any k ∈ N,

max
(
E|X1,1|k,E|X1,2|k

)
< +∞,

and E|X1,2|2 = 1. Consider now the normalized random matrix XN = X/
√

N . Let λi denote the eigenvalues of XN ,
with λ1 ≤ λ2 ≤ · · · ≤ λN . We define LN the empirical spectral measure of XN by,

LN = 1

N

N∑
i=1

δλi
.
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Wigner’s theorem (see [30], [1, Theorem 2.1.1, Exercice 2.1.16], [3, Theorem 2.5]) states that,

LN �
N→+∞ σsc a.s.,

where σsc denotes the semicircular law, that is,

σsc = 1

2π
1|x|≤2

√
4 − x2 dx,

and for any p ∈ N, almost surely, it holds

〈
LN,xp

〉= 1

N
trXp

N −→
N→+∞

{
Cp/2 if p is even,

0 if p is odd,

and in the case p is even, Cp/2 denotes the (
p
2 )th Catalan number, which is also the pth moment of the semicircular

law.
In the following we will denote by MN the set of matrices of size N × N with complex coefficients, and the

normalized trace 1
N

tr by trN A. We will also let β ∈ {1,2} and define H(β)
N the set of real symmetric matrices of size

N if β = 1, and complex Hermitian matrices if β = 2. In the case of Gaussian Wigner matrices, we have the following
result.

Theorem 1.3. Let p ∈ N, p ≥ 3. Let X be a centered Wigner matrix with Gaussian entries. We assume that X1,1 has
positive variance and X1,2 is a centered Gaussian variable, possibly complex, such that E|X1,2|2 = 1. The sequence

(trN X
p
N)N∈N, follows a LDP with speed N

1+ 2
p , and good rate function Jp . If p is even, Jp is given by,

∀x ∈R, Jp(x) =
{

c(x − Cp/2)
2
p if x ≥ Cp/2,

+∞ if x < Cp/2,

where Cp/2 is the (p/2)th Catalan number, whereas if p is odd,

Jp(x) = c|x| 2
p ,

where

c = inf

{
q(H) : trHp = 1,H ∈

⋃
N

H(β)
N

}
, (5)

with q the quadratic form such that Z−1e−q d	
(β)
N is the law of X, where 	

(β)
N is the Lebesgue measure on H(β)

N , and
Z the normalizing constant.

Moreover, in the case where the entries of X are real or (�X1,2,�X1,2) are independent with the same variance,
we can compute explicitly the constant c appearing in the above theorem by the following lemma.

Lemma 1.4. Let X be a Gaussian Wigner satisfying the assumptions of Theorem 1.3. If X has real entries or if
(�X1,2,�X1,2) are independent with the same variance, then the constant c defined in (5) is,

c = 1

2
min

(
1

σ 2
,

1

2β

)
,

where σ 2 = EX2
1,1, and β = 1 if X is a real symmetric matrix and β = 2 if it is a complex Hermitian matrix.
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Remarks 1.5. (a) In this case of Gaussian Wigner matrices, we will revisit the proof of the LDP of Wiener chaoses
partially due to Borell [8] and then Ledoux [21]. Indeed, this problem of large deviations of the traces of such matrices
can be reformulated as a large deviations’ problem of Gaussian chaoses defined on a space of growing dimension.
Even though it seems not possible to deduce directly such a LDP from the known LDP of the Wiener chaoses, we will
show that the same outline of proof still work in our context, and that in particular, the deviations are also in a certain
sense due to translations.

(b) The rate function of Theorem 1.3 actually arises under the following variational form,

∀x ∈ R, Jp(x) = inf

{
q(H) : x = 〈

σsc, x
p
〉+ trHp,H ∈

⋃
m

H(β)
m

}
, (6)

where q is the quadratic form such that Z−1e−q d	
(β)
N is the law of X. One way to interpret this formula, is to say

that in order to make a deviation of trN X
p
N around some x ∈ R, it is sufficient for X to make a translation by some

N1/2+1/pH with H such that x = 〈σsc, x
p〉 + trHp , which one pays at the exponential scale N1+2/p by q(H).

We consider now the so-called model of Wigner matrices without Gaussian tails investigated in [7]. We recall in
the following definition this model.

Definition 1.6. We say that X is a Wigner matrix without Gaussian tails, if X is a Wigner matrix such that there exist
α ∈ (0,2) and a, b ∈ (0,+∞) such that,

lim
t→+∞−t−α logP

(|X1,1| > t
)= b,

lim
t→+∞−t−α logP

(|X1,2| > t
)= a.

(7)

Moreover, we assume that there are two probability measures on S
1, υ1 and υ2, and t0 > 0, such that for all t ≥ t0 and

any measurable subset U of S1,

P
(
X1,1/|X1,1| ∈ U, |X1,1| ≥ t

)= υ1(U)P
(|X1,1| ≥ t

)
,

P
(
X1,2/|X1,2| ∈ U, |X1,2| ≥ t

)= υ2(U)P
(|X1,2| ≥ t

)
.

We again denote the normalized matrix XN = X/
√

N .

With this definition, we can now state the following result.

Theorem 1.7. Let p ∈ N, p ≥ 3. Let X be a Wigner matrix without Gaussian tail. The sequence (trN X
p
N)N≥1 satisfies

a large deviations principle with speed N
α( 1

2 + 1
p

) and good rate function Jp . If p is even, Jp is given by

∀y ∈ R, Jp(x) =
{

cp(x − Cp/2)
α
p if x ≥ Cp/2,

+∞ if x < Cp/2,

where Cp/2 denotes the (
p
2 )th Catalan number, and if p is odd, the rate function Jp is given by

∀x ∈ R, Jp(x) = cp|x| α
p ,

where cp is a constant depending on p, α, a and b.
Furthermore, if α ∈ (0,1] and p is even, then cp = min(b,2−α/pa).

Remarks 1.8. (a) Note that for p = 2, the trace of X2 is a sum of i.i.d. random variables, so that one can apply
Cramer’s theorem (see [11, Theorem 2.2.3]) in the case where |Xi,j |2 have finite Laplace transform, or Nagaev’s
results [26].
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(b) One can notice that the rate function consists essentially in the cost of deviation of one entry Xi,j of order

N
1
2 + 1

p . Indeed, such a deviation create a deviation of the spectral radius of XN of order N1/p , and therefore a deviation
of the normalized trace trN X

p
N of order 1. In a similar fashion as for the LDP of the empirical spectral measure or

the largest eigenvalue, the deviations are explained by large deviations of a small proportion of the entries which will
here create large deviations of the edges of the spectrum.

(c) As for the Gaussian case, the rate function Jp arises in a variational form, since it is obtained by a contraction
principle. One can write

∀s ∈ R, Jp(s) = inf
{
I (A) : s = 〈

σsc, x
p
〉+ trAp,A ∈ D

}
,

where I is defined for any A ∈⋃
n≥1 H

(β)
n , by

I (A) = b

+∞∑
i=1

|Ai,i |α + a
∑
i<j

|Ai,j |α,

and D = {A ∈⋃
n∈NH(β)

n : ∀i ≤ j,Ai,j = 0 or Ai,j /|Ai,j | ∈ supp(νi,j )}, with νi,j = ν1 if i = j , and νi,j = ν2 if i < j ,
where ν1 and ν2 are defined in Definition 1.6.

Thus, the constant cp is the solution of an optimization problem which is,

cp = inf
{
I (A) : 1 = trAp,A ∈D

}
.

We solve this optimization problem in Section 4.7, in the easiest case when α ∈ (0,1] and p is even, and we give a
lower and upper bound in the case p is even and α ∈ (0,2).

We conclude this presentation of the results by a comment comparing the three theorems. The similarity of the
rate functions of these three LDP comes from the fact that the deviations in these three cases are governed by the
same “heavy-tail phenomenon”. We observe in these three cases that the deviations of the traces are created by large
deviations of the edges of the spectrum. For Wigner matrices without Gaussian tails, we are able to show that these de-
viations are actually explained by a small proportion of the entries. This picture somewhat contrasts with the Gaussian
case, where the analysis of the minimizers of (6) (carried out in the proof of Lemma 1.4) reveals that the deviations
can actually be due to deviations of all the off-diagonal entries, which is why the strategy of proof adopted for the
Wigner matrices without Gaussian tails turn out to be ineffective when α = 2.

2. The Gaussian case

We study in this section the question of the large deviations of the traces of a Wigner matrix with Gaussian entries. We
will use an approach which is greatly inspired from Ledoux’s proof of the LDP of Wiener chaoses [12,21], building
on the work of Borell [8].

As we will see in the proof, the deviations of the trace are created by translations of X of the form N
1
2 + 1

p H , where
H is a Hermitian matrix with bounded Hilbert–Schmidt norm. One of the central argument relies on the following
lemma.

Lemma 2.1. Let ‖ · ‖2 denote the Hilbert–Schmidt norm on the set MN of matrices of size N × N with complex
coefficients. Let X be a Wigner matrix whose entries are centered and have finite (p + 1)th moment. For any r > 0,

sup
‖H‖2≤r

∣∣∣∣trN( X√
N

+ N1/pH

)p

− 〈
σsc, x

p
〉− trHp

∣∣∣∣ −→
N→+∞ 0, (8)

in probability, where 〈σsc, x
p〉 denotes the pth moment of the semicircular law, and trN the normalized trace 1

N
tr

on MN .
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Proof. By Wigner’s theorem (see [1, Lemmas 2.1.6, 2.1.7]) and Jensen’s inequality, we only have to prove that for
any Y,H ∈ MN ,∣∣tr(Y + H)p − trYp − trHp

∣∣≤ 2p max
1≤k≤p−1

{(
tr |Y |p+1) k

p+1
(
tr |H |2) p−k

2
}
. (9)

Let Y,H ∈ MN . Expanding the trace, and using the cyclicity of the trace, it suffices to prove that for any
s ∈ {1, . . . , p}, n1, . . . , ns ∈N, m1, . . . ,ms ∈N, such that

∑s
i=1 ni +∑s

j=1 mj = p, we have

∣∣tr(Yn1Hm1 · · ·Yns Hms
)∣∣≤ (

tr |Y |p+1) k
p+1

(
tr |H |2) p−k

2 ,

with k = ∑s
i=1 ni . Applying Hölder’s inequality (see [5, Corollary IV.2.6]) with the exponents p+1

n1
, α,

p+1
n2

, . . . , α,
p+1
ns

, with α such that

s

α
= 1 −

s∑
i=1

ni

p + 1
, (10)

we get,

∣∣tr(Yn1Hm1 · · ·Yns Hms
)∣∣≤ (

tr |Y |p+1) 1
p+1

∑s
i=1 ni

s∏
j=1

(
tr |H |αmi

) 1
α .

Note that when s ≥ 2, we have from (10), α ≥ 2. If s = 1 and m1 = 1, then as p ≥ 3, (10) yields αm1 ≥ 2. In any
cases, αmi ≥ 2 for any i ∈ {1, . . . , s}. Therefore, for all i ∈ {1, . . . , s},

tr |H |αmi ≤ (
tr |H |2) αmi

2 .

Thus, ∣∣tr(Yn1Hm1 · · ·Yns Hms
)∣∣≤ (

tr |Y |p+1) 1
p+1

∑s
i=1 ni

(
tr |H |2) 1

2

∑s
i=1 mi ,

which gives the claim. �

We are now ready to give a proof of Theorem 1.3. As in the proof of the LDP of Wiener chaoses, the upper bound
will rely on a reformulation of the deviations of the trace in terms of an enlargement of a properly chosen event, which
the Gaussian isoperimetric inequality will allow us to estimate the probability. Similarly as for the Wiener chaoses,
the lower bound will make use of the translation formula for the Gaussian measure.

Proof of Theorem 1.3. We closely follow the outline of proof of the large deviations of Weiner chaoses in [12,

Section 5, Theorem 5.1]. We will prove that trN X
p
N follows a LDP with speed N

1+ 2
p and rate function

∀s ∈R, Jp(s) = inf

{
q(H) : s = 〈

σsc, x
p
〉+ trHp,H ∈

⋃
n∈N

H(β)
n

}
,

where q is the quadratic form such that Z−1e−q d	
(β)
N is the law of X. By homogeneity of q and of the trace, we see

that this definition coincides with the rate function given in Theorem 1.3.
Upper bound. Let A be a closed subset of R. We can assume without loss of generality that infA Jp > 0, otherwise

there is nothing to prove.
Let 0 < r < infA Jp . We define for any N ∈ N,

KN = {
H ∈H(β)

N : q(H) ≤ 1
}
, K =

{
H ∈

⋃
n≥1

H(β)
n : q(H) ≤ 1

}
,
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and

∀H ∈
⋃
n∈N

H(β)
n , ϕ(H) = 〈

σsc, x
p
〉+ trHp.

We claim that,

ϕ(
√

rK) ∩ A =∅. (11)

Indeed, since infA Jp > r ,

{Jp ≤ r} ∩ A =∅.

By definition of Jp , we have

ϕ(
√

rK) ⊂ {Jp ≤ r}.
As Jp is lower semi continuous, we deduce

ϕ(
√

rK) ⊂ {Jp ≤ r},
which gives the claim.

Because p ≥ 2, we have for any H ∈H(β)
N ,

(
tr |H |p)2/p ≤ trH 2 ≤ 1

s1
q(H), (12)

where s1 is the smallest eigenvalue of q . As the covariance matrix of X is diagonal (if β = 1) or bloc diagonal with
2 × 2 blocs (if β = 2), this smallest eigenvalue of q does not depend on N .

We deduce that ϕ(
√

rK) is bounded. Thus it is a compact subset. From (11) we deduce that there is some η > 0
such that(

ϕ(
√

rK) + B(0, η)
)∩ A =∅.

As KN ⊂K, we have for any N ∈ N,(
ϕ(

√
rKN) + B(0, η)

)∩ A =∅.

Observe here that η does not depend on N . We deduce that

P

(
trN

(
X√
N

)p

∈ A

)
≤ P

(
trN

(
X√
N

)p

/∈ ϕ(
√

rKN) + B(0, η)

)
.

Let

V =
{
Y ∈H(β)

N : sup
H∈KN

∣∣∣∣trN( Y√
N

+ N1/pH

)p

− ϕ(H)

∣∣∣∣< η

}
.

Then,

P

(
trN

(
X√
N

)p

/∈ ϕ(
√

rKN) + B(0, η)

)
≤ P

(
X /∈ V + √

rN
1
2 + 1

p KN

)
.

By Lemma 2.1, we know that for N large enough, P(X ∈ V ) ≥ 1/2. The Gaussian isoperimetric inequality (see
[12, Theorem 4.3]) yields

P
(
X /∈ V + √

rN
1
2 + 1

p KN

)≤ e−rN1+2/p

.
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Therefore,

P

(
trN

(
X√
N

)p

∈ A

)
≤ e−rN1+2/p

.

Thus,

lim sup
N→+∞

1

N1+2/p
logP

(
trN

(
X√
N

)p

∈ A

)
≤ −r.

Since the previous inequality is valid for any 0 < r < infA Jp , this yields the upper bound of the LDP.
Lower bound. Let A be an open subset of R. Let s ∈ A. There is some η > 0 such that B(s, η) ⊂ A. We can assume

without loss of generality that Jp(s) < +∞. Define for any N ∈ N,

∀t ∈ R, Jp,N(t) = inf
H∈H(β)

N

{
q(H) : t = 〈

σsc, x
p
〉+ trHp

}
.

Note that

Jp = lim
N→+∞Jp,N . (13)

Indeed, if H ∈H(β)
n , one can construct a sequence HN = H ⊕ 0N ∈H(β)

N+n, where 0N denotes the zero matrix of size
N × N , which satisfies,

q(HN) = q(H) and trHp
N = trHp,

so that for any t ∈R, Jp,N(t) is decreasing in N .
As Jp(s) < +∞, we deduce from (13) that we can find some r > 0 such that for N large enough Jp,N(s) ≤ r2. We

can then write,

Jp,N(s) = inf
H∈rKN

{
q(H) : s = 〈

σsc, x
p
〉+ trHp

}
.

Let H ∈ rKN be such that s = 〈σsc, x
p〉 + trHp . Then,

P

(
trN

(
X√
N

)p

∈ A

)
≥ P

(
trN

(
X√
N

)p

∈ B(s, η)

)
= P

(
X ∈ V + N

1
2 + 1

p H
)
,

where

V =
{
Y ∈H(β)

N :
∣∣∣∣trN( Y√

N
+ N

1
p H

)p

− 〈
σsc, x

p
〉− trHp

∣∣∣∣< η

}
.

But,

P
(
X ∈ V + N

1
2 + 1

p H
)= 1

Z

∫
V

e−q(Y+N
1
2 + 1

p H) d	
(β)
N (Y ),

where d	
(β)
N denotes the Lebesgue measure on H(β)

N . We re-write this probability as,

P
(
X ∈ V + N

1
2 + 1

p H
)= e−q(H)N

1+ 2
p
E
(
1{X∈V }e−2N

1
2 + 1

p �ψ(H,X)
)
,



On the large deviations of traces of random matrices 2249

where ψ is the bilinear (or sesquilinear form if β = 2) form associated to the quadratic form q . Using Jensen’s
inequality, we get

P
(
X ∈ V + N

1
2 + 1

p H
)≥ e−q(H)N

1+ 2
p
P(X ∈ V ) exp

(
−2N

1
2 + 1

p E

(
�ψ(H,X)

1{X∈V }
P(X ∈ V )

))
.

Using Cauchy–Schwarz inequality yields,

E

(
−�ψ(H,X)

1{X∈V }
P(X ∈ V )

)
≥ − 1

P(X ∈ V )

(
E
(�ψ(X,H)

)2)1/2
.

But, as X is a Gaussian matrix with density Z−1e−q with respect to the Lebesgue measure, we have

E
(�ψ(X,H)

)2 = 1

2
q(H).

Besides, note that by the second inequality of (12),

KN ⊂ 1√
s1

B2,

where B2 denotes the unit ball of H(β)
N for the Hilbert–Schmidt norm. As H ∈ rKN , we deduce by Lemma 2.1 that

for N large enough, P(X ∈ V ) ≥ 1/2. Thus, we have

P
(
X ∈ V + N

1
2 + 1

p H
)≥ 1

2
exp

(−q(H)N
1+ 2

p − 2
√

2q(H)1/2N
1
2 + 1

p
)
.

Since H ∈ rKN , we get

P
(
X ∈ V + N

1
2 + 1

p H
)≥ 1

2
exp

(−q(H)N
1+ 2

p − 2
√

2rN
1
2 + 1

p
)
.

As the above inequality is true for any H ∈ rKN such that s = 〈σsc, x
p〉 + trHp , we have

P
(
X ∈ V + N

1
2 + 1

p H
)≥ 1

2
exp

(−Jp,N(s)N
1+ 2

p − 2
√

2rN
1
2 + 1

p
)
.

We deduce from (13) that

lim inf
N→+∞

1

N1+2/p
logP

(
trN

(
X√
N

)p

∈ A

)
≥ −Jp(s),

which gives the lower bound. �

We end this section with a proof of Lemma 1.4.

Proof of Lemma 1.4. Let X be a Gaussian Wigner matrix satisfying the assumptions of Theorem 1.3. Assume further
that X has real entries or (�X1,2,�X1,2) are independent with variance 1/2. Then we can write,

∀H ∈H(β)
N , q(H) = 1

2σ 2

∑
i

H 2
i,i + β

2

∑
i<j

|Hi,j |2,

with σ 2 = EX2
1,1. Then, for any H ∈H(β)

N , we have

q(H) ≥ min

(
1

2σ 2
,
β

4

)
trH 2.
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As p ≥ 2, we get

q(H) ≥ min

(
1

2σ 2
,
β

4

)∣∣trHp
∣∣2/p

, (14)

which yields,

c ≥ min

(
1

2σ 2
,
β

4

)
,

where c is defined in (5). Observe that we always have c ≤ 1/(2σ 2) by taking a size one matrix. Now define

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ λ

λ

λ

λ λ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ H(1)

N ,

with λ = ( 1
(N−1)p+(N−1)

)1/p . We have trHp = 1, and

q(H) = N(N − 1)β

4

(
1

(N − 1)p + (N − 1)

)2/p

−→
N→+∞

β

4
.

This yields c = min( 1
2σ 2 ,

β
4 ), which ends the proof. �

3. Large deviations of moments of the empirical measure of β-ensembles

We now give a proof of Theorem 1.1. In order to ease the notation, we will write P
N
V for PN

V,β , as well as ZN
V instead

of ZN
V,β .

3.1. Deviations inequalities and convergence of the moments

The first step of the proof of Theorem 1.1 will be to show, under the mild assumption (3), the convergence in expec-
tation, of the moments of the empirical measure towards the moments of the equilibrium measure σV

β . To do so, we
will need a control on the tail probability of

max
1≤i≤N

|λi |,

under PN
V . To this end we prove a more general deviations inequality, which will be crucial later.

Proposition 3.1. Let N ∈ N, N ≥ 2. Under assumption (3), there is a constant M0 > 0, depending only on V and β ,
such that for any M ≥ M0 and 1 ≤ k ≤ N ,

P
N
V

(
LN

(
I c
M

)≥ k

N

)
≤ exp(−CkNVM),

where IM = [−M,M], C is a positive constant depending on V and β , and where VM = inf|λ|≥M V (λ).
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Remark 3.2. The proof of this proposition looks like the one of the LDP for the largest particle of the β-ensembles
(see [1, Theorem 2.6.6]), but note that this inequality is not a consequence of this LDP, as we allow k to take all the
range of integers from 1 to n. One can consider this deviation inequality as interpolating deviations inequalities of the
largest particle (k = 1) and the empirical measure of β-ensembles (k = n). Later we will use this inequality with k

and M depending on n, this is why we take some care to prove here a non-asymptotic deviation inequality.

In order to prove this deviation inequality, we will need a rough control on the ratio of the partition functions ZN
V

and ZN−k
NV
N−k

. This is the object of the following lemma.

Lemma 3.3. There are some constants c1, c2 depending on V and β , such that for any N ∈N, and k ≤ N ,

c1Nk ≤ log
ZN

V

ZN−k
NV
N−k

≤ c2Nk,

where ZN
V , and ZN−k

NV
N−k

are defined in (2).

Proof. From the invariance under permutation of the coordinates of the measures PN
V we have

ZN
V

ZN−k
NV
N−k

= N !
ZN−k

NV
N−k

∫
|λ1|≥···≥|λN |

e−N
∑N

i=1 V (λi )
∏

1≤i<j≤N

|λi − λj |β
N∏

i=1

dλi.

Splitting the λi ’s between the k first largest in absolute value and the rest, and using again the invariance under
permutation of the coordinates, we can bring out the measure P

N−k
NV
N−k

, which gives

ZN
V

ZN−k
NV
N−k

= N !
(N − k)!E

N−k
NV
N−k

(∫
|λ1|≥···≥|λk |

e−N
∑k

i=1 V (λi )
∏

1≤i<j≤k

|λi − λj |β

× eβ(N−k)
∑k

i=1〈LN−k,log |λi−·|〉1supp(LN−k)⊂[−λk,λk]
k∏

i=1

dλi

)
,

where LN−k = 1
N−k

∑N
i=k+1 δλi

. We re-write this equality as the following,

ZN
V

ZN−k
NV
N−k

= N !
(N − k)!E

N−k
NV
N−k

(∫
|λ1|≥···≥|λk |

e
−k2

∫
x �=y f (x,y) dLk(x) dLk(y)

× e−(N−k)
∑k

i=1(V (λi )−β〈LN−k,log |λi−·|〉)1supp(LN−k)⊂[−λk,λk]
k∏

i=1

e−V (λi ) dλi

)
,

with Lk = 1
k

∑k
i=1 δλi

, and f (x, y) = 1
2V (x) + 1

2V (y) − β
2 log |x − y|. Note that from the assumption (3) on V , we

have

c := inf
{
f (x, y) : x �= y

}
> −∞,

c′ := inf
{
V (x) − β log |x − y| : |y| ≤ |x|}> −∞.

Thus,

ZN
V

ZN−k
NV
N−k

≤
(

N

k

)
e−k2ce−(N−k)kc′

(∫
e−V (x) dx

)k

.
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As
(
N
k

)≤ Nk , we get

ZN
V

ZN−k
NV
N−k

≤ ec2Nk,

with c2 some constant depending on V and β .
For the lower bound, we write similarly as for the upper bound,

log
ZN

V

ZN−k
NV
N−k

= logEN−k
NV
N−k

(∫
e−(N−1)

∑k
i=1 V (λi )

∏
1≤i<j≤k

|λi − λj |β

× eβ(N−k)
∑k

i=1〈LN−k,log |λi−·|〉
k∏

i=1

e−V (λi ) dλi

)
.

Using twice Jensen’s inequality, we get

log
ZN

V

ZN−k
NV
N−k

≥ E
N−k
NV
N−k

(
log

∫
e−(N−1)

∑k
i=1 V (λi )

∏
1≤i<j≤k

|λi − λj |β

× eβ(N−k)
∑k

i=1〈LN−k,log |λi−·|〉
k∏

i=1

e−V (λi )∫
e−V (x) dx

dλi

)
+ k log

(∫
e−V (x) dx

)

≥ −(N − 1)k

(∫
V (λ)

e−V (λ) dλ∫
e−V (x) dx

)
+ k(k − 1)β

2

(∫
log |λ − μ|e

−V (λ)−V (μ) dλdμ

(
∫

e−V (x) dx)2

)

+ βk(N − k)EN−k
NV
N−k

(∫ 〈
LN−k, log |λ − ·|〉 e−V (λ) dλ∫

e−V (x) dx

)
+ k log

(∫
e−V (x) dx

)
.

But for any μ ∈R,∫
log |λ − μ|e−V (λ) dλ =

∫ +∞

0
logx

(
e−V (μ+x) + e−V (μ−x)

)
dx

≥
∫ 1

0
logx

(
e−V (μ+x) + e−V (μ−x)

)
dx.

As infV < −∞, we have∫
log |λ − μ|e−V (λ) dλ ≥ 2e− infV

∫ 1

0
log(x) dx = −2e− infV .

Thus,

E
N−k
NV
N−k

(∫ 〈
LN−k, log |λ − ·|〉 e−V (λ) dλ∫

e−V (x) dx

)
≥ − 2e− infV∫

e−V (x) dx
.

We can conclude that

log
ZN

V

ZN−k
NV
N−k

≥ c1Nk,

with c1 a constant depending on V and β . �
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We are now ready to give a proof of Proposition 3.1.

Proof of Proposition 3.1. We can write as in the proof of Lemma 3.3,

P
N
V

(
LN

(
I c
M

)≥ k

N

)
≤ N !

(N − k)!
ZN−k

NV
N−k

ZN
V

×E
N−k
NV
N−k

(∫
|λ1|≥···≥|λk |≥M

e−N
∑k

i=1 V (λi )
∏

1≤i<j≤k

|λi − λj |β

× eβ(N−k)
∑k

i=1〈LN−k,log |λi−·|〉1supp(LN−k)⊂[−λk,λk]
k∏

i=1

dλi

)
,

with LN−k = 1
N−k

∑N
i=k+1 δλi

.
As for all x, y ∈ R, log |x −y| ≤ log(1+|x|)+ log(1+|y|), and for any |x| ≤ |y|, log |x −y| ≤ log 2+ log(1+|x|),

we get

P
N
V

(
LN

(
I c
M

)≥ k

N

)
≤ N !

(N − k)!
ZN−k

NV
N−k

ZN
V

ek(N−k) log 2

×E
N−k
NV
N−k

(∫
|λ1|≥···≥|λk |≥M

e−N
∑k

i=1 V (λi )eβk
∑k

i=1 log(1+|λi |)

× eβ(N−k)
∑k

i=1 log(1+|λi |)1supp(LN−k)⊂[−λk,λk]
k∏

i=1

dλi

)
.

From (3), we deduce that there is some c0 > 0, such that for |y| large enough,

V (y) − β log
(
1 + |y|)≥ c0V (y).

Thus, for M large enough,

P
N
V

(
LN

(
I c
M

)≥ k

N

)
≤ N !

(N − k)!
ZN−k

NV
N−k

ZN
V

∫
|λ1|≥···≥|λk |≥M

e−c0N
∑k

i=1 V (λi )

k∏
i=1

dλi

=
(

N

k

)ZN−k
NV
N−k

ZN
V

(∫
|λ|≥M

e−c0NV (λ) dλ

)k

.

But, ∫
|λ|≥M

e−c0NV (λ) dλ ≤ e−c0(N−1)VM

∫
e−V (λ) dλ ≤ c3e

− c0
2 NVM ,

with some constant c3 > 0, and where we used in the last inequality the fact that N ≥ 2. We deduce from Proposi-
tion 3.3 that for M large enough,

P
N
V

(
LN

(
I c
M

)≥ k

N

)
≤ (c3N)kekNc2e− c0

2 kNVM .



2254 F. Augeri

As limM→+∞ VM = +∞, we can find some constants M0 > 0, and C > 0, depending on V and β , such that for any
M > M0,

P
N
V

(
LN

(
I c
M

)≥ k

N

)
≤ e−CkNVM . �

As a consequence of the previous Proposition 3.1, we have the convergence of the expectation under PN
V , of the

moments of the empirical measure, as stated in the next corollary.

Corollary 3.4. Under assumption (3), we have for any p ∈ N,

E
N
V

〈
LN,xp

〉 −→
N→+∞

〈
σV

β , xp
〉
,

where E
N
V denotes the expectation with respect to P

N
V .

Proof. Since (LN)N≥1 follows a LDP with speed N2 (see [1, Theorem 2.6.1]), and rate function whose minimum
is achieved at σV

β , we deduce that (LN)N∈N converges weakly in probability to σV
β under PN

V . Thus, it is enough to
show that for any k ∈ N,

sup
N≥N0

E
N
V

〈
LN, |x|k 〉< +∞,

for some N0 ≥ 1.
Let k ∈ N. We have 〈LN, |x|k〉 ≤ max1≤i≤N |λi |k . Besides, we know by Proposition 3.1 that

P
N
V

(
max

1≤i≤N
|λi | > M

)
≤ e−CNVM ,

for any M > M0, where C and M0 are some positive constants. Thus,

E
N
V max

1≤i≤N
|λi |k ≤ Mk

0 +
∫ +∞

M0

kxk−1e−CNVx dx.

By assumption we know that for |x| large enough, Vx ≥ β ′ log |x|, with β ′ > 1, so that for M0 large enough,

E
N
V max

1≤i≤N
|λi |k ≤ Mk

0 +
∫ +∞

M0

kxk−1x−Cβ ′N dx.

We deduce that for N ≥ (k + 1)/Cβ ′, and M0 large enough,

E
N
V max

1≤i≤N
|λi |k ≤ Mk

0 +
∫ +∞

M0

kx−2 dx = Mk
0 + k

M0
, (15)

which yields the claim. �

3.2. An exponential equivalence

The goal of this section is to prove that the large deviations of mp,N are due to the deviations of the logN largest in
absolute value λi ’s. More precisely, we will prove the following proposition.

Proposition 3.5. For any p ∈N, p > α, and λ1, . . . , λN ∈R, we denote by Tp,N the truncated moment

Tp,N = 1

N

logN∑
i=1

λ∗
i
p
,
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where λ∗
1, . . . , λ

∗
N is the rearrangement of the λi ’s by decreasing absolute values. Under the notation and assumption

of Theorem 1.1, we have for any t > 0,

lim
N→+∞

1

N1+α/p
logPN

V

(∣∣mp,N − 〈
σV

β , xp
〉− Tp,N

∣∣> t
)= −∞.

As a consequence of Proposition 3.1 and Corollary 3.4, we have the following result.

Proposition 3.6. Under assumption (3), we have

1

N
E

N
V

(
N∑

i=logN+1

λ∗
i
p

)
−→

N→+∞
〈
σV

β , xp
〉
.

Proof. Due to Corollary 3.4, we only need to prove

1

N

logN∑
i=1

E
N
V λ∗

i
p −→

N→+∞ 0.

From (15) we have

sup
N≥N0

E
N
V

∣∣λ∗
1

∣∣p < +∞, (16)

with N0 ∈ N. Thus for any N ≥ N0,∣∣∣∣∣ 1

N

logN∑
i=1

E
N
V λ∗

i
p

∣∣∣∣∣≤ logN

N
sup

N≥N0

E
N
V

∣∣λ∗
1

∣∣p −→
N→+∞ 0.

�

Due to the previous proposition, in order to prove Proposition 3.5, it suffices to show that

1

N

N∑
i=logN+1

λ∗
i
p

concentrates at the exponential scale, at a speed higher than N1+α/p . To this end, we will use concentration inequalities
for measures with α-convex potential from [6]. This is the object of the following proposition.

Proposition 3.7. Let α ≥ 2. Let g : RN → R be a 1-Lipschitz function with respect to ‖ · ‖α . Under the notation and
assumption of Theorem 1.1, we have for every t > 0,

P
N
V

(
g −E

N
V g > t

)≤ exp

(
− bNtα

2α−1α(α − 1)α−1

)
.

In particular, if f :R→ R is a 1-Lipschitz function, and l,m ∈ {1, . . . ,N}, l ≤ m, then for any t > 0,

P
N
V

(
1

N

m∑
i=l

f (λi) − 1

N
E

N
V

m∑
i=l

f (λi) > t

)
≤ exp

(
− bN2tα

2α−1α(α − 1)α−1

)
,

where λ1, . . . , λN is the rearrangement of the λi ’s in ascending order.

Proof. Let

∀λ ∈ R
N, �(λ) = N

N∑
i=1

V (λi) − β

2

∑
i �=j

log |λi − λj |.
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We claim that � is α-convex with respect to the norm ‖·‖α on RN , more precisely we will show that for all λ,μ ∈ RN ,

�(λ) + �(μ) − 2�

(
λ + μ

2

)
≥ bN

2α−1
‖λ − μ‖α

α. (17)

Note that for any k, l ∈ {1, . . . ,N},

Hess

(
−β

∑
i �=j

log |λi − λj |
)

k,l

=
{

−(λk − λl)
−2 if k �= l,∑

j �=k(λj − λk)
−2 if k = l,

which defines a non-negative matrix since for any x ∈R
N ,∑

k �=l

(λk − λl)
−2x2

k −
∑
k �=l

(λk − λl)
−2xkxl =

∑
k<l

(λk − λl)
−2(xk − xl)

2 ≥ 0.

As by assumption

∀x ∈ R, V (x) = b|x|α + w(x),

with w a convex function, we deduce together with the above observation, for any λ,μ ∈R
N ,

�(λ) + �(μ) − 2�

(
λ + μ

2

)
≥ bN

(
N∑

i=1

λα
i +

N∑
i=1

μα
i − 2

N∑
i=1

(
λi + μi

2

)α
)

.

Since α ≥ 2, we have for any x, y ∈ R,

1

2
xα + 1

2
yα ≥

(
x + y

2

)α

+
(

x − y

2

)α

.

This yields the desired inequality (17).
We know, by [6, Corollary 4.1], that (17) entails that for any 1-Lipschitz function with respect to ‖·‖α , g :RN →R,

and every t > 0,

P
N
V

(
g −E

N
V g > t

)≤ exp

(
− bNtα

2α−1α(α − 1)α−1

)
. (18)

Let now f :R→ R be a 1-Lipschitz function, and k, l ∈ {1, . . . ,N}, k ≤ l. We set

∀λ ∈ R
N, g(λ) = 1

N

m∑
i=l

f (λi).

For any λ,μ ∈R
N , we have by Cauchy–Schwarz inequality

g(λ) − g(μ) ≤ 1

N

m∑
i=l

|λi − μi | ≤ 1

N1/2

(
m∑

i=l

|λi − μi |2
)1/2

≤ 1

N1/2

(
N∑

i=1

|λi − μi |2
)1/2

,

where we used in the last inequality Hardy–Littlewood–Polyá rearrangement inequality. Thus, by Hölder inequality

g(λ) − g(μ) ≤ N− 1
α ‖λ − μ‖α.

This shows that g is N− 1
α -Lipschitz with respect to the norm ‖ · ‖α . Applying (18) to g gives the second inequality in

the statement. �
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In the following proposition, we use the concentration inequalities of Proposition 3.7, together with a truncation
procedure and the deviations estimate of Proposition 3.1, to prove that

1

N

N∑
i=logN+1

λ∗
i
p
,

is exponentially equivalent to its expectation with respect to P
N
V . Combining this with the result of Proposition 3.6,

1

N

N∑
i=logN+1

E
N
V λ∗

i
p −→

N→+∞
〈
σsc, x

p
〉
,

we will get Proposition 3.5.

Proposition 3.8. For any t > 0,

lim sup
N→+∞

1

N1+α/p
logPN

V

(∣∣∣∣∣
N∑

i=logN+1

λ∗
i
p −

N∑
i=logN+1

E
N
V λ∗

i
p

∣∣∣∣∣≥ tN

)
= −∞,

where λ∗
1, . . . , λ

∗
N denotes the rearrangement of the λi ’s by decreasing absolute values.

Proof. To ease the notation, we set k = logN . The first part of the argument consists in choosing the proper truncation
level with respect to our exponential scale N1+α/p . For any M0 > 0, we denote by FM0 the function

∀x ∈R, FM0(x) =
{

sg(x)(|x| ∧ M0)
p if p is odd,

(|x| ∧ M0)
p if p is even.

Let

M0 = N
1

α(p−1)
(1− α

p
)

k
1

2α

.

Note that,∣∣∣∣∣ 1

N

N∑
i=k+1

E
N
V

(
λ∗

i
p − FM0

(
λ∗

i

))∣∣∣∣∣≤ 1

N

N∑
i=k+1

E
N
V

∣∣λ∗
i

∣∣p1|λ∗
i |≥M0

≤ 1

NM0

N∑
i=k+1

E
N
V

∣∣λ∗
i

∣∣p+1

≤ N − k

NM0
E

N
V

∣∣λ∗
1

∣∣p+1 −→
N→+∞ 0,

using (16), and the fact that as p > α, M0 → +∞. Thus, it suffices to prove that for any t > 0,

lim sup
N→+∞

1

N1+α/p
logPN

V

(∣∣∣∣∣
N∑

i=k+1

λ∗
i
p −

N∑
i=k+1

E
N
V FM0

(
λ∗

i

)∣∣∣∣∣≥ tN

)
= −∞.

Note that,

N∑
i=k+1

FM0

(
λ∗

i

)=
N−l∑

j=(k−l)+1

FM0(λi),
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where l = Card{i ∈ {1, . . . , k} : λ∗
i > 0}. Since the function FM0 is pM

p−1
0 -Lipschitz, we have using a union bound

and Proposition 3.7, for any t > 0,

P
N
V

(∣∣∣∣∣
N∑

i=k+1

FM0

(
λ∗

i

)−
N∑

i=k+1

E
N
V FM0

(
λ∗

i

)∣∣∣∣∣> tN

)
≤ 2k exp

(
− 1

cαpα
tαN

1+ α
p k

p−1
2

)
,

where cα is some constant depending on α. We can write,

P
N
V

(∣∣∣∣∣
N∑

i=k+1

λ∗
i
p −

N∑
i=k+1

E
N
V FM0

(
λ∗

i

)∣∣∣∣∣> Nt

)

≤ P
N
V

(∣∣∣∣∣
N∑

i=k+1

FM0

(
λ∗

i

)−
N∑

i=k+1

E
N
V FM0

(
λ∗

i

)∣∣∣∣∣> tN/2

)
+ P

N
V

(
N∑

i=k+1

∣∣λ∗
i

∣∣p1M0≤|λ∗
i | > tN/2

)
.

We saw by the concentration inequality above, that the deviations of the truncated moment at the level M0 around its
mean are exponentially negligible at the scale N1+α/p . We need now to prove that the contributions in the deviations
of the truncated moments of the λi ’s above the level M0 are also negligible. To do so, we will truncate one more time
at a level R, chosen so that the deviation bound of Proposition 3.1 gives the right exponential estimate.

From (4), we have for M large enough,

inf|x|≥M
V (x) ≥ b

2
Mα.

Proposition 3.1 yields that there are some constants M0 > 0, and C > 0, depending on V and β , such that for any
M > M0, and k ∈ {1, . . . ,N},

P
N
V

(
LN

(
I c
M

)≥ k

N

)
≤ exp

(−CkNMα
)
. (19)

Let R = e−1 N1/p

k1/2α . We have, with the inequality above, for N large enough,

P
N
V

(
N∑

i=k+1

∣∣λ∗
i

∣∣p1M0≤|λ∗
i | > tN/2

)
≤ P

N
V

(
N∑

i=k+1

∣∣λ∗
i

∣∣p1M0≤|λ∗
i |≤R > tN/2

)
+ P

N
V

(
LN

(
I c
R

)≥ k

N

)
, (20)

where LN denotes the empirical measure of the λi ’s, and where IR = [−R,R]. From (19), we deduce that,

P
N
V

(
L
(
I c
R

)≥ k

N

)
≤ exp

(−Ce−αk
1
2 N

1+ α
p
)
.

We are reduced to show that the event {∑N
i=k+1 |λ∗

i |p1M0≤|λ∗
i |≤R > tN/2} is exponentially negligible at the scale

N1+α/p . To this end, we will slice up the set {λ ∈R : M0 ≤ |λ| ≤ R} into log logN small intervals {λ ∈R : Ml ≤ |λ| ≤
Ml+1} for which we will use the deviation bound (19). At each step, we choose the largest bound so that the event
{∑N

i=k+1 |λ∗
i |p1Ml≤|λ∗

i |≤Ml+1 > tN
2 } is exponentially negligible by (19). For any n ≥ 1, we set

qn =
(

1 − α

p

)(
1

p
+ α

p2
+ · · · + αn−1

pn
+ αn−1

pn(p − 1)

)
,

and

Mn = Nqn

k1/2α
.
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Observe that qn −→
n→+∞

1
p

, and

1

p
− qn = O

((
α

p

)p)
.

Let n = �c log logN� with c such that qn ≥ 1
p

− 1
logN

. With this choice, we have

Mn ≥ R.

Thus, slicing up the set {λ ∈R : M0 ≤ |λ| ≤ R}, we get

P
N
V

(
N∑

i=k+1

∣∣λ∗
i

∣∣p1M0≤|λ∗
i |≤R >

tN

2

)
≤ P

N
V

(
N∑

i=k+1

∣∣λ∗
i

∣∣p1M0≤|λ∗
i |≤Mn

>
tN

2

)

≤ P
N
V

(
n−1∑
l=0

N∑
i=k+1

∣∣λ∗
i

∣∣p1Ml≤|λ∗
i |≤Ml+1 >

tN

2

)

≤ P
N
V

(
n−1∑
l=0

M
p

l+1LN

(
I c
Ml

)
>

t

2

)
.

Finally, a union bound gives

P
N
V

(
N∑

i=k+1

∣∣λ∗
i

∣∣p1M0≤|λ∗
i |≤RN

>
tN

2

)
≤

n−1∑
l=0

P
N
V

(
LN

(
I c
Ml

)
>

t

2nM
p

l+1

)
.

Using (19), we get N large enough, and for all 0 ≤ l ≤ n,

P
N
V

(
LN

(
I c
Ml

)
>

t

2nM
p

l+1

)
≤ exp

(
−CtN2Mα

l

2nM
p

l+1

)
≤ exp

(
−CtN2+αql−pql+1k

1
2 (

p
α
−1)

2c log logN

)
.

But

αql − pql+1 =
(

1 − α

p

)(
α

p
+ α2

p2
+ · · · + αl

pl
+ αl

pl(p − 1)

)

−
(

1 − α

p

)(
1 + α

p
+ α2

p2
+ · · · + αl

pl
+ αl

pl(p − 1)

)
= −

(
1 − α

p

)
.

Therefore,

P
N
V

(
L
(
I c
Ml

)
>

t

2nM
p

l+1

)
≤ exp

(
−CtN

1+ α
p (logN)κ

2c log logN

)
,

where κ > 0 as p > α. We can conclude that,

P
N
V

(
N∑

i=k+1

∣∣λ∗
i

∣∣p1M0≤|λ∗
i |≤RN

> tN/2

)
≤ c log logN exp

(
−CtN

1+ α
p (logN)κ

2c log logN

)
,

which ends the proof. �
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3.3. Large deviations principle for the truncated moments

Since we know from Proposition 3.5, that (mp,N )N∈N is exponentially equivalent to(〈
σV

β , xp
〉+ Tp,N

)
N∈N,

we only need to derive a large deviations principle for (Tp,N )N∈N, in order to get the large deviations principle of
(mp,N)N∈N (see [11, Theorem 4.2.13]).

Proposition 3.9. Under the assumption of Theorem 1.1 and the notation of Proposition 3.5, the sequence (Tp,N )N∈N
follows a LDP under the law P

N
V , with speed N

1+ α
p , and good rate function Ip . If p is odd, Ip is defined by

∀x ∈ R, Ip(x) = b|x|α/p,

and if p is even,

∀x ∈ R, Ip(x) =
{

bxα/p if x ≥ 0,

+∞ otherwise.

Proof. Once again, to ease the notation, we set in the following k = logN .
Exponential tightness. Let

∀λ ∈ R
N, g(λ) =

(
k∑

i=1

∣∣λ∗
i

∣∣p)1/p

.

For λ ∈R
N , we set l = Card{i ∈ {1, . . . , k} : λ∗

i > 0}. We can write

g(λ) =
(

k−l∑
i=1

|λi |p +
N∑

i=N−l+1

λi
p

)1/p

,

where λ1, . . . , λN is the rearrangement of the λi ’s in ascending order. When l is fixed, as p ≥ α, we see that g is 1-
Lipschitz with the same argument as in the proof of Proposition 3.7. Using a union bound, we get by Proposition 3.7,
for any t > 0,

P
N
V

(
g −E

N
V g > tN

1
p
)≤ k exp

(
− btαN

1+ α
p

2α−1α(α − 1)α−1

)
.

Besides, by Jensen’s inequality

E
N
V

(
1

N

k∑
i=1

∣∣λ∗
i

∣∣p)1/p

≤
(
E

N
V

1

N

k∑
i=1

∣∣λ∗
i

∣∣p)1/p

≤
(

k

N
E

N
V

∣∣λ∗
1

∣∣p)1/p

.

From (16), we deduce

E
N
V

(
k

N

k∑
i=1

∣∣λ∗
i

∣∣p)1/p

−→
N→+∞ 0.

From the above concentration inequality, we see that (Tp,N )N∈N is exponentially tight.
Upper bound. Observe that we only have to show that for any x > 0,

lim sup
N→+∞

1

N1+α/p
logPN

V (Tp,N ≥ x) ≤ −Ip(x). (21)
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In the case where p is even, it is clear that (21), is sufficient. In the case p is odd, observe that Ṽ (x) = V (−x) satisfies
the assumptions of Theorem 1.1. Note also that for any x > 0,

P
N
V (Tp,N ≤ −x) = P

N

Ṽ
(Tp,N ≥ x).

Therefore, if (21) is proven, and if p odd, then we have also for any x > 0,

lim sup
N→+∞

1

N1+α/p
logPN

V (Tp,N ≤ −x) ≤ −Ip(−x).

We now prove (21). Since ( 1
N

∑k
i=1 |λ∗

i |p)N∈N is exponentially tight, we only need to show that for any M > x > 0,
we have

lim sup
N→+∞

1

N1+α/p
logPN

V

(
Tp,N ≥ x,

∣∣λ∗
1

∣∣p ≤ MN
)≤ −Ip(x).

Let M > x > 0. Since the event {Tp,N ≥ x, |λ∗
1|p ≤ MN} is invariant under permutation of the λi ’s, we have

P
N
V

(
Tp,N ≥ x,

∣∣λ∗
1

∣∣p ≤ MN
)= N !

ZN
V

∫
∑k

i=1 λ
p
i ≥Nx

|λN |≤···≤|λ1|≤(MN)1/p

e−N
∑N

i=1 V (λi )
∏
i<j

|λi − λj |β
N∏

i=1

dλi.

Bounding the interaction term involving the k largest in absolute value λi ’s, we get

P
N
V

(
Tp,N ≥ x,

∣∣λ∗
1

∣∣p ≤ MN
)

≤ N !
(N − k)!

ZN−k
NV
N−k

ZN
V

(
2(NM)1/p

)βNk
∫
∑k

i=1 λ
p
i ≥Nx

|λk |≤···≤|λ1|

e−N
∑k

i=1 V (λi )

k∏
i=1

dλi

≤
(

N

k

)ZN−k
NV
N−k

ZN
V

(
2(NM)1/p

)βNk
∫
∑k

i=1 λ
p
i ≥Nx

e−N
∑k

i=1 V (λi )

k∏
i=1

dλi

=
(

N

k

)ZN−k
NV
N−k

ZN
V

(
2(NM)1/p

)βNk
(∫

e−NV (λ) dλ

)k

P

(
1

N

k∑
i=1

X
p
i ≥ x

)
,

where X1, . . . ,Xk are independent and identically distributed random variables with law dμV = e−NV (x) dx
ZN

, where

ZN = ∫
e−NV (x) dx. As

∫
e−NV (x) dx = eO(N) and log

ZN−k
NV
N−k

ZN
V

= O(N logN),

from Lemma 3.3 (recall that k = logN ), it only remains to show that

lim sup
N→+∞

1

N1+α/p
logP

(
1

N

logN∑
i=1

X
p
i ≥ x

)
≤ −Ip(x).

This is the object of the following lemma.

Lemma 3.10. Let (Xj )j≥1 be a sequence of independent and identically distributed random variables with law
dμV = e−NV (x) dx

ZN
, where ZN = ∫

e−NV (x) dx, with V as in (4). Let p ∈N, p > α.
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For any x > 0,

lim sup
N→+∞

1

N1+α/p
logP

(
1

N

logN∑
i=1

X
p
i ≥ x

)
≤ −Ip(x),

with Ip as in Proposition 3.9.

Proof. Set k = logN . Let x > 0. Set Yi = N1/αXi for all i ∈ {1, . . . , logN}. We have

P

(
1

N

k∑
i=1

X
p
i ≥ x

)
≤ P

(
k∑

i=1

Y
p
i ≥ xN1+ p

α

)
≤ P

(
k∑

i=1

|Yi |p ≥ xN1+ p
α

)
.

Let 0 < t < 1. As α ≤ p, we have αt/p < 1. Using the fact that for any s ∈ (0,1), x, y ∈ R
+, (x + y)s ≤ xs + ys ,

P

(
1

N

k∑
i=1

X
p
i ≥ x

)
≤ P

((
k∑

i=1

|Yi |p
) αt

p

≥ x
αt
p N

t(1+ α
p

)

)

≤ P

(
k∑

i=1

|Yi |αt ≥ x
αt
p N

t(1+ α
p

)

)
.

By Chernoff’s inequality we get,

P

(
1

N

k∑
i=1

X
p
i ≥ x

)
≤ e−bx

αt
p N

t(1+ α
p )(

E
(
eb|Y1|αt ))k

. (22)

As for any x ∈ R, V (x) = b|x|α + w(x),

E
(
eb|Y1|αt )= 1

Z′
N

∫
e
−b(|x|α−|x|αt )−Nw( x

N1/α
)
dx,

with

Z′
N =

∫
e
−NV ( x

N1/α
)
dx.

On one hand,∫
e
−b(|x|α−|x|αt )−Nw( x

N1/α
)
dx ≤ 2eN infw

∫ +∞

0
e−b(xα−xαt ) dx.

Note that as w is convex, infw > −∞. On the other hand, Z′
N = eO(N). Therefore,

E
(
eb|Y1|αt )≤ eo( N1+α/p

k
)

∫ +∞

0
e−b(xα−xαt ) dx.

As x �→ xα−1 − txαt−1 is non-decreasing on [1,+∞), we have,∫ +∞

0
e−b(xα−xαt ) dx ≤ eb + 1

α(1 − t)

∫ +∞

1

(
αxα−1 − αtxαt−1)e−b(xα−xαt ) dx

= eb + 1

bα(1 − t)
.
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Take t = tN = 1 − 1/(logN)2. Then,

E
(
eb|Y1|αtN

)= eo( N1+α/p

k
).

Together with the bound (22), we get

1

N1+α/p
logP

(
1

N

k∑
i=1

X
p
i ≥ x

)
≤ −bx

αtN
p N

−(1−tN )(1+ α
p

) + o(1). (23)

Taking the limsup as N goes to +∞ we get the claim. �

Lower bound. Let x ∈R. We want to show that

lim inf
δ→0

lim inf
N→+∞

1

N1+α/p
logPN

V

(
Tp,N ∈ (x − δ, x + δ)

)≥ −Ip(x). (24)

As Tp,N converges to 0 in almost surely, it is enough to prove this bound for x �= 0. With the same argument as for
the upper bound, it suffices actually prove to the bound above only for x > 0.

Let x > 0 and δ > 0. We have for N large enough,

P
N
V

(
Tp,N ∈ (x − δ, x + δ)

)≥ P
N
V,β

(
1

N
λ∗

1
p ∈ (x − δ/2, x + δ/2),∀i > 1,

∣∣λ∗
i

∣∣≤ M

)
,

with M > 0. By continuity, there is some ε > 0 such that

P
N
V

(
Tp,N ∈ (x − δ, x + δ)

)≥ P
N
V

(
1

N1/p
λ∗

1 ∈ (
x1/p − ε, x1/p + ε

)
,∀i > 1,

∣∣λ∗
i

∣∣≤ M

)
.

We have

P
N
V

(
Tp,N ∈ (x − δ, x + δ)

)
≥ N !

ZN−1
NV
N−1

ZN
V

∫
| λ1
N1/p

−x1/p |<ε

dλ1e
−NV (λ1)E

N−1
NV
N−1

(
1LN−1∈EM

eβ(N−1)〈log(λ1−·),LN−1〉),
where LN−1 = 1

N−1

∑N
i=2 δλi

, and EM = {μ ∈ P(R) : supp(μ) ⊂ [−M,M]}, with P(R) the set of probability mea-
sures on R. Thus,

P
N
V

(
Tp,N ∈ (x − δ, x + δ)

)
≥ N !

ZN−1
NV
N−1

ZN
V

∫
| λ

N1/p
−x

1
p |<ε

e−NV (λ) dλeβ(N−1) log(N
1
p x

1
p −M−ε)

P
N−1
NV
N−1

(LN−1 ∈ EM).

As w(y) = o±∞(|y|α), we have∫
| λ

N1/p
−x

1
p |<ε

e−NV (λ) dλ ≥
∫

| λ

N1/p
−x

1
p |<ε

e−(b+o(1))Nλα

dy = e−(b−o(ε))N
1+ α

p x
α
p
eo(N

1+ α
p ).

Thus,

P
N
V

(
Tp,N ∈ (x − δ, x + δ)

)≥
ZN−1

NV
N−1

ZN
V

P
N−1
NV
N−1

(LN−1 ∈ EM)e−(b−o(ε))N
1+ α

p x
α
p
eo(N

1+ α
p ).
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But from Lemma 3.3 we know that log
ZN−1

NV
N−1

ZN
V

= O(N). Besides, by Proposition 3.1 (with k = 1), we have for M large

enough,

P
N−1
NV
N−1

(LN−1 ∈ EM) −→
N→+∞ 1.

This concludes the proof of the lower bound (24). �

4. The case of Wigner matrices without Gaussian tails

We will give in this section a proof of Theorem 1.7. The strategy we will follow is in the same spirit as the ones
developed in [7,17] and [2] for this model of Wigner matrices without Gaussian tails. We start by a heuristic argument
to give a idea of the nature of the deviations of the moments, and of the speed of the deviations.

4.1. Heuristics

We show here how one can get the lower bound of the LDP without much effort. A key argument of the proof consists
in finding how the trace of a given power behaves under additive perturbations by finite rank matrices. It turns out that
if we add to a given Hermitian matrix a low rank Hermitian matrix with not too large operator norm, then the map
A �→ trN Ap is almost linear. More precisely, we have the following lemma, whose proof is postpone at Section 4.5.3.

Lemma 4.1. Let p ≥ 2. Let A and C be two Hermitian matrices of size N . Assume that C is of rank at most r . We
have ∣∣tr(A + C)p − trAp − trCp

∣∣≤ 2pr max
1≤k≤p−1

‖A‖k‖C‖p−k,

where ‖ · ‖ denotes the operator norm.

To make the argument clearer, let us assume X has entries X1,1 and X1,2 distributed according to symmetric
exponential laws with parameters b and a respectively. Let s �= 0. Let A be a Hermitian matrix of finite size, say
n > 0, such that trAp = s. With an abuse of notation, we will continue to denote A the Hermitian matrix of size N ,
A ⊕ 0N−n, where 0N−n is the null matrix of size N − n. Let X

(n)
N denote the matrix obtained from XN by setting all

the elements which are not in the principal submatrix of order n to 0, and let X
(\n)
N = XN − X

(n)
N . We can informally

write,

P
(
trN X

p
N � 〈

σsc, x
p
〉+ s

)
� P

(
trN

(
X

(\n)
N + N1/pA

)p � 〈
σsc, x

p
〉+ s,X

(n)
N � N1/pA

)
� P

(
trN

(
X

(\n)
N + N1/pA

)p � 〈
σsc, x

p
〉+ s,

∥∥X(\n)
N

∥∥≤ c
)
P
(
X

(n)
N � N1/pA

)
,

with some c > 2. As ‖X(\n)
N − XN‖2 → 0 in probability, and

‖XN‖ −→
N→+∞ 2,

in probability by [3, Theorem 5.1] (or [1, Theorem 2.1.22, Exercise 2.1.27]), we have

P
(∥∥X(\n)

N

∥∥≤ c
) −→

N→+∞ 1.

By Lemma 4.1, we deduce, as trAp = s,

P
(
trN X

p
N � 〈

σsc, x
p
〉+ s

)
� P

(
trN

(
X

(\n)
N

)p � 〈
σsc, x

p
〉+ s,

∥∥X(\n)
N

∥∥≤ c
)
P
(
X

(n)
N � N1/pA

)
.
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Since X1,1 and X1,2 follow the symmetric exponential laws with parameters b and a respectively, we have

P
(
X

(r)
N � N1/pA

)� exp
(−N

1
2 + 1

p I (A)
)
,

where I (A) = b
∑

i |Ai,i | + a
∑

i<j |Ai,j |. But (trN(X
(\r)
N )p)N∈N converges to 〈σsc, x

p〉 in probability, by Wigner’s
theorem (see [1, Lemmas 2.1.6, 2.1.7]). Therefore,

P
(
trN X

p
N � 〈

σsc, x
p
〉+ s

)
� exp

(−N
1
2 + 1

p I (A)
)
.

As this lower bound is true for any Hermitian matrix A such that trAp = s, we deduce that the lower bound holds
with rate function

∀y ∈R, Jp(y) = inf

{
I (A) : trAp = 〈

σsc, x
p
〉+ y,A ∈

⋃
n∈N

H(β)
n

}
,

which is precisely the rate function we will give in this case of entries with symmetric exponential laws (see Re-
mark 1.8(c)).

4.2. Outline of proof

As suggested by the heuristic argument above, the deviations of trN X
p
N are due to a small proportion of the entries of

XN making deviations of order N1/p . Accordingly, we decompose XN in the following way

XN = A + Bε + Cε + Dε, (25)

with

Ai,j = Xi,j√
N

1|Xi,j |≤(logN)d , Bε
i,j = Xi,j√

N
1

(logN)d<|Xi,j |<εN
1
2 + 1

p
,

Cε
i,j = Xi,j√

N
1

εN
1
2 + 1

p ≤|Xi,j |≤ε−1N
1
2 + 1

p
, Dε

i,j = Xi,j√
N

1
ε−1N

1
2 + 1

p <|Xi,j |,

where where d is taken such that αd > 1.
In a first phase, we will show that one can neglect in the deviations of trN X

p
N the contributions of the interme-

diate entries, that is Bε , and the large entries, that is Dε , so that (trN(A + Cε)p)N∈N,ε>0 are exponentially good
approximations for (trN X

p
N)N∈N.

Then, due to concentration inequalities, we show that the conditional expectation given Cε , ECε trN(H + Cε)p ,
where H is a copy of A independent of X, are exponentially good approximations of (trN X

p
N)N∈N. From the choice

of the decomposition (25), we deduce that Cε has only a finite number of non-zero entries at the exponential scale
N1+α/p . Thus, Lemma 4.1 and Wigner’s Theorem allow us to conclude that (ECε trN(H +Cε)p)N∈N is exponentially
equivalent to (〈σsc, x

p〉 + trN(Cε)p)N∈N. It only remains to show a large deviations principle Cε , and conclude by
contraction principle, with an argument similar as in [2]. The use of the contraction principle is made possible by the
fact that Cε has a finite number of non-zero entries except on an event of exponentially small probability.

4.3. Concentration inequalities

In this section, we revisit a concentration inequality from [25] for the trace of powers of sum of a Hermitian matrix
with bounded entries with a deterministic Hermitian matrix. This inequality will be crucial to get the exponential
tightness and an exponential approximation of (trN X

p
N)N∈N.

Unfortunately, we cannot directly use the concentration inequality of [25, Proposition 4], because of the assumption
made on the expectation of the entries. To make the strategy sketched in Section 4.2 work, we need to prove a
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concentration inequality for

trN

(
H√
N

+ C√
N

)p

,

where H is a centered matrix with bounded entries, and where C is a deterministic matrix whose entries are of order
N1/p+1/2. But then,

tr

(
C√
N

)2(p−1)

≤ r2(p−1)N
2(p−1)

p , (26)

where r is the number of non-zero entries of C, which is a bound too loose to use the concentration inequality of [25,
Proposition 4].

However, since we are considering normalized traces, we are looking at deviations of order N of the traces, whereas
in [25] the deviations considered were of order 1. Thus, one can expect that there is some room left in the approach
of Meckes and Szarek, to get a concentration inequality for trN(H + C)p , with the bound (26).

Proposition 4.2. Let p ∈ N, p ≥ 3. Let H be a centered random Hermitian matrix such that (Hi,j )i≤j are independent

and bounded by some κ ≥ 1, and let C be a deterministic Hermitian matrix such that tr( C√
N

)2(p−1) ≤ mN
2− 2

p , where

m ≥ 1. Write X = H + C. There are some universal constants c, c′ > 0, such that for all t ≥ c′(pmp−1)pN
− 1

2 (1+ 2
p

),

P
(∣∣trN Xp −E trN Xp

∣∣> tNp/2)≤ 8 exp

(
−N

1+ 2
p

cκ2
min

{(
t

p

)2/p

,
t2

p2m2(d−1)

})
.

Moreover,

P
(∣∣trN |X|p −E trN |X|p∣∣> tNp/2)≤ 8 exp

(
−N

1+ 2
p

cκ2
min

{(
t

p

)2/p

,
t2

p2m2(d−1)

})
.

Proof. We follow the same approach as in [25, Proposition 4], with some slight variations at times, but considering
deviations of order N1+p/2 of the trace of (H + C)p . We will prove only the first inequality, the proof of the second
inequality being exactly the same.

Without loss of generality, we can assume κ = 1. For β ∈ {1,2}, we denote by H(β)
N the set of symmetric matrices

of size N , when β = 1, and Hermitian matrices when β = 2. Note that as H has entries bounded by 1, we know by
[22, Corollary 4.10], that for any convex and 1-Lipschitz function f : H(β)

N → R with respect to the Hilbert–Schmidt
norm, and all t > 0,

P
(∣∣f (X) −Mf (X)

∣∣> t
)≤ 4e− t2

4 ,

where Mf (X) denotes the median of f (X). Let a > 0. Define

Ka = {
Y ∈H(β)

n : ‖Y‖2(p−1) ≤ a
}
,

where ‖Y‖q = (tr |Y |q)1/q for any matrix Y and q > 0. Note that we can write

F = F+ − F−,

with F+(Y ) = trYp
+ , and F−(Y ) = trYp

− for any Y ∈ H(β)
N , where for every x ∈ R, x+ and x− denote the positive

and negative parts of x. The functions F+ and F− are convex and pap−1-Lipschitz on Ka . Let F+
a , F−

a denote the

convex extensions of F+
|Ka

and F−
|Ka

to H(β)
N , which are pap−1-Lipschitz, as explained in [25, Lemma 5]. Then, for

all t > 0, we have

P
(∣∣Fσ

a (X) −MFσ
a (X)

∣∣> tN1+p/2)≤ 4 exp

(
− t2Np+2

4p2a2(d−1)

)
,
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with σ ∈ {+,−}.
Besides Y �→ ‖Y‖2(d−1) is convex and 1-Lipschitz with respect to the Hilbert–Schmidt norm. From [24, Theo-

rem 8.6], we deduce that for any t > 0,

P
(‖X‖2(p−1) −E‖X‖2(p−1) > t

)≤ e− t2
32 .

But,

E‖X‖2(p−1) ≤ E‖H‖2(p−1) + ‖C‖2(p−1) ≤ N
1

2(p−1)E‖H‖ + mN
1
2 + 1

p ,

where ‖ · ‖ denotes the operator norm, and where we used the fact that m ≥ 1. But we know, by [1, Exercice 2.1.29,
30], that there is some universal constant c1 ≥ 1, such that

E‖H‖ ≤ c1
√

N.

Thus, E‖X‖2(p−1) ≤ 2mc1N
1
2 + 1

p .

Let now b > 0, and a = bN
1
2 + 1

p . We have, for b ≥ 4mc1,

P
(‖X‖2(p−1) ≥ a

)≤ P

(
‖X‖2(p−1) −E‖X‖2(p−1) ≥ a

2

)
≤ exp

(
−b2N

1+ 2
p

128

)
.

Besides, with this choice of a, we have for all t > 0, and all σ ∈ {+,−},

P

(∣∣Fσ
a (X) −MFσ

a (X)
∣∣> t

2
N1+p/2

)
≤ 4 exp

(
− t2N1+2/p

16p2b2(p−1)

)
.

Thus,

P

(∣∣Fσ (X) −MFσ
a (X)

∣∣> t

2
N1+p/2

)
≤ P

(∣∣Fσ
a (X) −MFσ

a (X)
∣∣> t

2
N1+p/2

)
+ P

(‖X‖2(p−1) ≥ a
)

≤ 4 exp

(
−N1+2/p

128
min

{
b2,

t2

p2b2(p−1)

})
.

As a consequence, for b = 4mc1, we can find a numerical constant c2 ≥ 1, such that for t = c2pN
− 1

2 (1+ 2
p

), we have

P
(
Fσ (X) −MFσ

a (X) > tN1+p/2)<
1

2
.

We deduce that

MFσ (X) ≤ MFσ
a (X) + c2pN

1
2 + p

2 − 1
p .

As Fσ
a is non-decreasing with a, and Fσ

a ≤ Fσ for any a > 0, we have for all b ≥ 4mc1,

MFσ (X) − c2pN
1
2 + p

2 − 1
p ≤MFσ

a (X) ≤MFσ (X).

Thus, for t ≥ 2c2pN
− 1

2 (1+ 2
p

), and any b ≥ 4mc1, we deduce that

P
(∣∣Fσ (X) −MFσ (X)

∣∣> tN1+p/2)≤ P

(∣∣Fσ (X) −MFσ
a (X)

∣∣> t

2
N1+p/2

)

≤ 4 exp

(
−N1+2/p

128
min

{
b2,

t2

p2b2(p−1)

})
.
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But one can check that,

max
b≥4mc1

min

{
b2,

t2

p2b2(p−1)

}
= min

{(
t

p

)2/p

,
t2

p2(mc1)2(p−1)

}
.

Optimizing in b in the previous inequality, and setting c3 = 128c
2(p−1)

1 , we get

P
(∣∣Fσ (X) −MFσ (X)

∣∣> tN1+p/2)≤ 4 exp

(
−N

1+ 2
p

c3
min

{(
t

p

)2/p

,
t2

p2m2(p−1)

})
.

To get the same inequality but with EFσ (X) instead of MFσ (X), we integrate by parts the inequality above, and we
find that there is some constant c4 > 0, such that∣∣EFσ (X) −MFσ (X)

∣∣≤ c4m
p−1pN

− 1
2 (1+ 2

p
)
.

At the price of taking c4 larger, we can assume that c4 ≥ c2. Then, for every t ≥ 2c4m
p−1pN

− 1
2 (1+ 2

p
),

P
(∣∣Fσ (X) −EFσ (X)

∣∣> tN1+p/2)≤ P

(∣∣Fσ (X) −MFσ (X)
∣∣> t

2
N1+p/2

)

≤ 4 exp

(
−N

1+ 2
p

4c3
min

{(
t

p

)2/p

,
t2

p2m2(d−1)

})
.

As F = F+ − F−, we have for any t ≥ 2c4m
p−1pN

− 1
2 (1+ 2

p
),

P
(∣∣F(X) −EF(X)

∣∣> tN1+p/2)≤ 8 exp

(
−N

1+ 2
p

16c3
min

{(
t

p

)2/p

,
t2

m2(d−1)

})
.

Setting c = 16c3, and c′ = 2c4, we get the claim. �

4.4. Exponential tightness

Throughout the rest of this section, we fix a constant γ > 0, such that for t large enough,

P
(|X1,1| > t

)∨ P
(|X1,2| > t

)≤ e−γ tα . (27)

In this section, we will show that the sequence (trN X
p
N)N∈N is exponentially tight, namely, we have the following

proposition.

Proposition 4.3 (Exponential tightness).

lim
t→+∞ lim sup

N→+∞
N

−α( 1
2 + 1

p
) logP

(
trN |XN |p > t

)= −∞.

Proof of Proposition 4.3. Using the triangular inequality for the p-Schatten norm, we get for any t > 0,

P
(
trN |XN |p > (4t)p

)≤ P
(
trN |A|p > tp

)+ P
(
trN

∣∣Bε
∣∣p > tp

)+ P
(
trN

∣∣Cε
∣∣p > tp

)+ P
(
trN

∣∣Dε
∣∣p > tp

)
. (28)

This shows that it suffices to estimate at the exponential scale, the probability of each event {trN |A|p > tp},
{trN |Bε|p > tp}, {trN |Cε|p > tp}, and finally {trN |Dε|p > tp}. As a consequence of the concentration inequality
of Proposition 4.2, we have the following lemma.
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Lemma 4.4.

lim
t→+∞ lim sup

N→+∞
1

N1+2/p
logP

(
trN |A|p > t

)= −∞,

where A is as in (25).

Proof. Note that as p ≥ 2,

tr(EA)2(p−1) ≤ (
tr(EA)2)p−1

.

Since the entries of X are centered, we get

tr(EA)2 = 1

N

∑
1≤i,j≤N

E|Xi,j |21|Xi,j |>(logN)d .

Integrating by parts, we have

tr(EA)2 = O
(
N2e− γ

2 (logN)αd )
,

where γ is as in (27). As αd > 1,

tr(EA)2(p−1) = o(1). (29)

We see that A satisfies the assumptions of Proposition 4.2 with some m ≥ 1 and κ = (logN)d . We get for any t > 0,
and N large enough,

P
(∣∣trN |A|p −E trN |A|p∣∣> t

)≤ 8 exp

(
− N

1+ 2
p

cp2(logN)2d
min

{
t2/p,

t2

m2(p−1)

})
,

which yields, as α < 2,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣trN |A|p −E trN |A|p∣∣> t
)= −∞. (30)

We know from [1, Theorem 2.1.1, Lemma 2.1.6], that

E trN |XN |p −→
N→+∞

〈
σsc, |x|p〉. (31)

Denoting μXN
and μA the empirical spectral measures of XN and A respectively, we have using the decreasing

coupling and [5, Theorem III 4.4],

Wp(EμXN
,EμA) ≤ (

E trN |XN − A|p)1/p
, (32)

where Wp denotes the p-Wasserstein distance. As a consequence of the polar decomposition, we can write |XN −
A|p = (XN − A)pU , where U is a unitary matrix, so that

E tr |XN − A|p ≤ 1

Np/2

∑
i1,...,ip+1

E

p∏
j=1

|Xij ,ij+1 |1|Xij ,ij+1 |≤(logN)d , (33)

Hölder’s inequality yields,

E tr |XN − A|p ≤ Np/2+1 max
(
E|X1,1|p1|X1,1|>(logN)p ,E|X1,2|p1|X1,2|>(logN)p

)
,
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where we used the fact that the entries of X are centered. Integrating by parts, we get

E tr |XN − A|p = O
(
Np/2+1e− γ

2 (logN)αd )
, (34)

where γ is as in (27). As αd > 1, we deduce by (32), Wp(EμXN
,EμA) = o(1), which yields

|E trN |XN

∣∣p−E trN
∣∣A∣∣p∣∣= o(1).

We can conclude with (30) and (31) that (trN |A|p)N∈N is exponentially tight. �

For the second event {trN |Bε|p > tp}, we have the following lemma.

Lemma 4.5. For any ε > 0, we have

lim
t→+∞ lim sup

N→+∞
N

−α( 1
2 + 1

p
) logP

(
trN

∣∣Bε
∣∣p > t

)= −∞.

Proof. Since p ≥ 2, we have(
tr
∣∣Bε

∣∣p)2/p ≤ tr
(
Bε

)2
.

Thus,

P
(
tr
∣∣Bε

∣∣p ≥ tN
)≤ P

(
tr
(
Bε

)2 ≥ t2/pN2/p
)
.

Chernoff’s inequality yields for any λ > 0,

P

( ∑
1≤i≤j≤N

∣∣Bε
i,j

∣∣2 ≥ t2/p

2
N2/p

)
≤ e− λ

2 t
2
p N

2
p +1 ∏

1≤i≤j≤N

E
(
e

λ|Xi,j |21
(logN)d<|Xi,j |<εN

1
2 + 1

p )
.

Let 1 ≤ i ≤ j ≤ N . Recall that for μ a probability measure on R and g ∈ C1, we have the following integration by
parts formula:∫ b

a

g(x) dμ(x) = g(a)μ[a,+∞) − g(b)μ(b,+∞) +
∫ b

a

g′(x)μ[x,+∞) dx.

Thus, we get for N large enough,

E
(
e

λ|Xi,j |21
(logN)d<|Xi,j |<εN

1
2 + 1

p )≤ 1 +
∫ εN

1
2 + 1

p

(logN)d
2λxef (x) dx,

with f (x) = λx2 − γ xα , and γ is as in (27). Let

λ = αγ

2
εα−2N

−(2−α)( 1
2 + 1

p
)
.

With this choice of λ, one can easily check that f is non-increasing on [(logN)d, εN
1
2 + 1

p ]. Thus,

E
(
e

λ|Xi,j |21
(logN)d<|Xi,j |<εN

1
2 + 1

p )≤ 1 + 2λε2N
1+ 2

p ef ((logN)d)

≤ 1 + αγ εαN
α( 1

2 + 1
p

)
ef ((logN)d).
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But for N large enough,

f
(
(logN)d

)= αγ

2
εα−2N

−(2−α)( 1
2 + 1

p
)
(logN)2d − γ (logN)αd ≤ −γ

2
(logN)αd .

As αd > 1, we get for N large enough,

E
(
e

λ|Xi,j |21
(logN)d<|Xi,j |<εN

1
2 + 1

p )≤ 1 + e− γ
4 (logN)αd ≤ exp

(
e− γ

4 (logN)αd )
.

Then,

P
(
tr
∣∣Bε

∣∣p ≥ tN
)≤ exp

(
−αγ

4
εα−2N

α( 1
2 + 1

p
)
t

2
p

)
exp

(
N2e− γ

2 (logN)αd )
. (35)

Since αd > 1, we get

lim
t→+∞ lim sup

N→+∞
N

−α( 1
2 + 1

p
) logP

(
tr
∣∣Bε

∣∣p ≥ tN
)= −∞. �

We now turn to the event {trN |Cε|p > t}. As a consequence of Bennett’s inequality, we have the following lemma.

Lemma 4.6. For any ε > 0,

lim
t→+∞ lim

N→+∞N
−α( 1

2 + 1
p

) logP
(
trN

∣∣Cε
∣∣p > t

)= −∞.

To prove this lemma, we will first show that at the exponential scale Cε has a finite number of non-zero entries.

Proposition 4.7. For all ε > 0,

lim
r→+∞ lim sup

N→+∞
N

−α( 1
2 + 1

p
) logP

(
Card

{
(i, j) : Cε

i,j �= 0
}≥ r

)= −∞,

where Cε is as in (25).

Proof. Let ε > 0. Note that

P
(
Card

{
(i, j) : Cε

i,j �= 0
}≥ r

)≤ P

( ∑
1≤i≤j≤N

1|Xi,j |≥εN
1
2 + 1

p
≥ r

2

)
.

Let pi,j = P(|Xi,j | ≥ εN
1
2 + 1

p ), for i, j ∈ {1,2}. From (27), we have

p1,1 ∨ p1,2 = o

(
1

N2

)
.

Therefore, it is enough to show that

lim
r→+∞ lim sup

N→+∞
N

−α( 1
2 + 1

p
) logP

( ∑
1≤i≤j≤N

(1|Xi,j |≥εN
1
2 + 1

p
− pi,j ) ≥ r

)
= −∞.

By Bennett’s inequality (see [24, Theorem 2.9]) we have,

P

( ∑
1≤i≤j≤N

(1|Xi,j |≥εN
1
2 + 1

p
− pi,j ) ≥ r

)
≤ exp

(
−vh

(
r

v

))
,
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with h(x) = (x + 1) log(x + 1) − x, and v =∑
i≤j pi,j . From (27), we have for N large enough,

v ≤ N2e−γ εαN
α( 1

2 + 1
p )

.

As h(x) ∼+∞ x log(x), we get for N large enough,

P

( ∑
1≤i,j≤N

(1|Xi,j |≥εN
1
2 + 1

p
− pi,j ) ≥ r

)
≤ exp

(−rγ εαN
α( 1

2 + 1
p

)) exp

(
r log

(
r

N2

))
,

which gives the claim. �

With this result on the number of non-zero entries of Cε , we can bound the trace of |Cε|p by the polar decomposi-
tion, which yields the exponential estimate claimed in Lemma 4.6.

Proof of Lemma 4.6. Using the polar decomposition as in (33), and bounding each coefficient of Cε by ε−1N1/p ,
we get,

tr
∣∣Cε

∣∣p ≤ ∣∣Iε
∣∣pNε−p,

where |Iε| denotes the number of non-zero entries in Cε . Due to Lemma 4.7, we get,

lim
t→+∞ lim sup

N→+∞
N

−α( 1
2 + 1

p
) logP

(
trN

∣∣Cε
∣∣p > t

)= −∞. �

At last, we prove the following exponential tightness for trN |Dε|p .

Lemma 4.8. It holds

lim
ε→0

lim sup
t→+∞

lim sup
N→+∞

N
−α( 1

2 + 1
p

) logP
(
trN

∣∣Dε
∣∣p > t

)= −∞,

with Dε as in (25).

Proof. A union bound gives for N large enough,

P
(
Dε �= 0

)≤ N2 exp
(−γ ε−αN

α( 1
2 + 1

p
))

, (36)

with γ as in (27). �

From (28), Lemmas 4.4, 4.5, and 4.6, we get for any ε > 0,

lim sup
t→+∞

lim sup
N→+∞

N
−α( 1

2 + 1
p

) logP
(
trN |XN |p > t

)
≤ lim sup

t→+∞
lim sup
N→+∞

N
−α( 1

2 + 1
p

) logP
(
trN

∣∣Dε
∣∣p > t

)
.

Taking the limsup as ε goes to 0, we see that Lemma 4.8 yields the exponential tightness claimed in Proposition 4.3. �

4.5. Exponential equivalences

4.5.1. First step
We will prove in this section that we can ignore in the deviations of trN X

p
N the contributions of the large entries, that

is such that |Xi,j | > ε−1N
1
2 + 1

p , and the contributions of the intermediate entries, that is Xi,j ∈ ((logN)d, εN
1
2 + 1

p ).
More precisely, we will prove the following exponential approximation.
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Proposition 4.9. For any t > 0,

lim
ε→0

lim sup
N→+∞

N
−α( 1

2 + 1
p

) logP
(∣∣trN X

p
N − trN

(
A + Cε

)p∣∣> t
)= −∞,

with A and Cε are as in (25). In other words, (trN(A + Cε)p)N∈N are exponentially good approximations of
(trN X

p
N)N∈N.

Proof. We will first prove that for any X,Y ∈ MN ,∣∣trXp − trYp
∣∣≤ p2p−2((tr |X|p) p−1

p
(
tr |X − Y |p) 1

p + tr |X − Y |p). (37)

Let X,Y ∈MN . By the mean value theorem we have,∣∣trXp − trYp
∣∣≤ p sup

0≤θ≤1

∣∣tr(X + θ(Y − X)
)p−1

(Y − X)
∣∣.

By Hölder’s inequality (see [5, Corollary IV.2.6]), we deduce,∣∣trXp − trYp
∣∣≤ p sup

0≤θ≤1

(
tr
∣∣X + θ(Y − X)

∣∣p) p−1
p
(
tr |Y − X|p) 1

p .

Using the triangular inequality for the p-Schatten norm and the convexity of the power function x �→ |x|p−1, we get∣∣trXp − trYp
∣∣≤ p2p−2 sup

0≤θ≤1

((
tr |X|p) p−1

p + (
θ tr |Y − X|p) p−1

p
)(

tr |Y − X|p) 1
p ,

which yields the claim (37).
Let now τ > 0. From (37), we deduce that there exists a non-negative function h depending on τ , satisfying

h(t) → 0 as t → 0, such that for any X,Y ∈ H(β)
N , if

trN |X|p ≤ τ and
∣∣trN Xp − trN Yp

∣∣> t,

for some t > 0, then,

trN |X − Y |p > h(t).

But, from Proposition 4.3, we know that (trN |XN |p)N∈N is exponentially tight, therefore, it is enough to show that
for any τ > 0,

lim
ε→0

lim sup
N→+∞

N
−α( 1

2 + 1
p

) logP
(∣∣trN X

p
N − trN

(
A + Cε

)p∣∣> t, trN |XN |p ≤ τ
)= −∞.

Let τ > 0. With the previous observation, we get for any t > 0,

P
(∣∣trN X

p
N − trN

(
A + Cε

)p∣∣> t, trN |XN |p ≤ τ
)≤ P

(
trN

∣∣Bε + Dε
∣∣p > h(t)

)
.

By the triangular inequality for the p-Schatten norm, we get

P
(∣∣trN X

p
N− trN

(
A + Cε

)p∣∣> t, trN |XN |p ≤ τ
)≤ P

(
trN

∣∣Bε
∣∣p >

h(t)

2p

)
+ P

(
trN

∣∣Dε
∣∣p >

h(t)

2p

)
. (38)

But, on one hand (35) yields

lim
ε→0

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(
trN

∣∣Bε
∣∣p >

h(t)

2p

)
= −∞,
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and on the other hand, (36) gives

lim
ε→0

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(
trN

∣∣Dε
∣∣p >

h(t)

2p

)
= −∞.

This concludes the proof of Proposition 4.9, taking the limsup as N goes to +∞ at the exponential scale, and then the
limsup as ε goes to 0 in (38). �

4.5.2. Second step
We show here that in the study of the deviations of trN(A + Cε)p , we can replace A by a matrix H independent of X,
and that trN(H + Cε)p is exponentially equivalent to its conditional expectation given the σ -algebra F , generated by
the Xi,j such that |Xi,j | > (logN)d . More precisely, we will prove the following result.

Proposition 4.10. Let F be the σ -algebra generated by the variables Xi,j1|Xi,j |>(logN)d . Let H be a random Hermi-
tian matrix independent of X, such that (Hi,j )i≤j are independent, and for all 1 ≤ i ≤ N , Hi,i has the same law as
X1,1/

√
N conditioned on {|X1,1| ≤ (logN)d}, and for all i < j , Hi,j has the same law as X1,2/

√
N conditioned on

{|X1,2| ≤ (logN)d}.
For any t > 0,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣trN X
p
N −EF trN

(
H + Cε

)p∣∣> t
)= −∞,

where EF denotes the conditional expectation given F .

Proof. By Proposition 4.9, we know that (trN(A + Cε)p)N∈N,ε>0 are exponentially good approximations of
(trN X

p
N)N∈N, therefore it is enough to show that for all ε > 0, and t > 0,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣trN (A + Cε
)p −EF trN

(
H + Cε

)p∣∣> t
)= −∞.

From Proposition 4.6, we see that is actually sufficient to show that for any r ∈N,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣trN (A + Cε
)p −EF trN

(
H + Cε

)p∣∣> t, |Iε| ≤ r
)= −∞,

where

Iε = {
(i, j) ∈ {1, . . . ,N} × {1, . . . ,N} : Cε

i,j �= 0
}
.

Note that Cε is F -measurable, and given F , A has independent up-diagonal entries bounded by (logN)d/
√

N . More-
over, using the triangle inequality for the 2(p − 1)-Schatten norm, we get

tr
(
EA + Cε

)2(p−1) ≤ 22(p−1) max
(
tr(EA)2(p−1), tr

(
Cε

)2(p−1))
.

On one hand, we have, expanding the trace and bounding each entry of Cε by ε−1N1/p ,

tr
(
Cε

)2(p−1) ≤ |Iε|2(p−1)ε−2(p−1)N
2− 2

p ,

and on the other hand we have from (29) that tr(EA)2(p−1) = o(1). Therefore, we can apply the result of Proposi-
tion 4.2 for the trace of (A+Cε)p under the conditional probability given F . As α < 2, we get that for any t > 0, and
r ∈N,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣trN (A + Cε
)p −EF trN

(
A + Cε

)p∣∣> t, |Iε| ≤ r
)= −∞.
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We will use the same decoupling argument as in [7], to remove the dependency between A and Cε . Let I = {(i, j) :
|Xi,j | > (logN)d}. Define A′ the N × N matrix with (i, j)-entry

A′
i,j = Ai,j1(i,j)/∈I + Hi,j1(i,j)∈I . (39)

Note that A′ and H are both independent of F and have the same law. Therefore,

EF trN
(
A′ + Cε

)p = EF trN
(
H + Cε

)p
.

Due to the triangular inequality and Lemma 4.6, it only remains to prove that for any t > 0, and any τ > 0,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣EF trN Yp −EF trN Y ′p∣∣> t, trN
∣∣Cε

∣∣p ≤ τ
)= −∞,

where Y = A + Cε and Y ′ = A′ + Cε . Note that using (37) and Hölder’s inequality we have,∣∣EF trY ′p −EF trYp
∣∣≤ p2p−2((

EF tr
∣∣Y ′∣∣p) p−1

p
(
EF tr

∣∣A − A′∣∣p) 1
p +EF tr

∣∣A − A′∣∣p).
Besides, using again the triangular inequality for the p-Schatten norm, we get

EF trN
∣∣A′ + Cε

∣∣p ≤ 2p max
(
E trN |H |p, trN

∣∣Cε
∣∣p).

With the same argument as in the proof of Lemma 4.4 we have

E trN |H |p −→
N→+∞

〈
σsc, |x|p〉.

Thus, we see that it is sufficient to show that for any t > 0,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(
EF trN

∣∣A − A′∣∣p > t
)= −∞.

Expanding the trace using the polar decomposition, we get

EF trN
∣∣A − A′∣∣p ≤ c0

|I |p
N1+p/2

, (40)

where c0 is constant independent of N such that,

max
(
E|√NH1,1|p,E|√NH1,2|p

)≤ c0.

Thus, in order to control EF trN |A − A′|p , we need to make sure that I contains no more than tN1+p/2 indices, for

any t > 0, at the exponential scale N
α( 1

2 + 1
p

). By a argument similar as in the proof of Proposition 4.7, we get the
following lemma.

Lemma 4.11. Let I = {(i, j) : |Xi,j | > (logN)d}. For δ > 0, we define the event,

Fδ =
{
|I | ≤ δ

c0
N1+2/p

}
.

It holds that

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(
Fc

δ

)= −∞.

Using (40), and Lemma (4.11), we get the claim. �
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4.5.3. Third step
We showed in Proposition 4.10 that (EF trN(H + Cε)p)N∈N,ε>0 are exponentially good approximations of

(trN X
p
N)N∈N. We will prove now that we can approximate EF trN(H + Cε)p at the exponential scale N

α( 1
2 + 1

p
),

by E trN Hp + trN(Cε)p , and then by 〈σsc, x
p〉 + trN(Cε)p . This will give good exponential approximations of

(trN X
p
N)N∈N, as stated in the following proposition.

Proposition 4.12. For any t > 0,

lim
ε→0

lim sup
N→+∞

N
−α( 1

2 + 1
p

) logP
(∣∣trN X

p
N − 〈

σsc, x
p
〉− trN

(
Cε

)p∣∣> t
)= −∞,

where A and Cε are as in (25).

In order to prove that E trN Hp + trN(Cε)p is an exponential equivalent of EF trN(H + Cε)p , we will need the
following deterministic lemma.

Lemma 4.13. Let p ≥ 2. Let H and C be two Hermitian matrices of size N . Assume that C is of rank at most r . We
have ∣∣tr(H + C)p − trHp − trCp

∣∣≤ 2pr max
1≤k≤p−1

‖H‖k‖C‖p−k,

where ‖ · ‖ denotes the operator norm.

Proof. Expanding the sum we get

tr(H + C)p =
p∑

k=0

∑
M(i)∈{H,C}
|{i:M(i)=H }|=k

tr
(
M(1) · · ·M(p)

)
.

Fix k ∈ {1, . . . , p − 1}, and M(1), . . . ,M(p) matrices such that M(i) ∈ {H,C}, and Card{i : M(i) = H } = k. Let
(ηj )1≤j≤N be an orthonormal basis of eigenvectors for C such that ηr+1, . . . , ηN are in the kernel of C. Using the
cyclicity of the trace, we can assume M(p) = C. Assuming M(p) = C, we get

∣∣tr(M(1) · · ·M(p)
)∣∣= ∣∣∣∣∣

N∑
j=1

〈
M(1) · · ·M(p)ηj , ηj

〉∣∣∣∣∣
=
∣∣∣∣∣

r∑
j=1

〈
M(1) · · ·M(p)ηj , ηj

〉∣∣∣∣∣
≤ r‖H‖k‖C‖p−k,

which ends the proof of the claim. �

Proof. Note that the same argument as in the proof of Lemma 4.4 yields

E trN Hp −→
N→+∞

〈
σsc, x

p
〉
.

Therefore, due to Proposition 4.10, we only need to prove that for any ε > 0,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣EF trN
(
H + Cε

)p −E trN Hp − trN
(
Cε

)p∣∣> t
)= −∞.
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Using Lemma 4.1 and the fact that the rank of a matrix is bounded by the number of its non-zero entries, we have

∣∣EF trN
(
H + Cε

)p −E trN Hp − trN
(
Cε

)p∣∣≤ 2p

N
|Iε| max

1≤k≤p−1

{∥∥Cε
∥∥p−k

E
∥∥H∥∥k}

,

where Iε denotes the set of indices (i, j) such that Cε
i,j �= 0. But,∥∥Cε

∥∥≤ |Iε| sup
i,j

|Ci,j | ≤ |Iε|ε−1N1/p.

Thus,

∣∣EF trN
(
H + Cε

)p −E trN Hp − trN
(
Cε

)p∣∣≤ 2pε−p+1

N1/p
|Iε|p max

1≤k≤p−1
E‖H‖k.

But we know from [1, Theorem 2.1.22, Exercice 2.1.27] that ‖X‖ converges in all Lp spaces to 2, and we have

E‖X − H‖p = E
∥∥X − A′∥∥p ≤ E tr

∣∣X − A′∣∣p,

where A′ is as in (39). With the same argument as in Lemma 4.4, we get

E tr
∣∣X − A′∣∣p = o(1).

Thus, for any k ∈ {1, . . . , p}, E‖H‖k is bounded. We can find a constant Mp > 0 such that,∣∣EF trN
(
A + Cε

)p −E trN Ap − trN
(
Cε

)p∣∣≤ Mp|Iε|pN
− 1

p .

Thus, for any t > 0, and r ∈N,

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣EF trN
(
A + Cε

)p −E trN Ap − trN
(
Cε

)p∣∣> t, |Iε| ≤ r
)= −∞.

Invoking Lemma 4.7, we get the claim. �

4.6. A large deviations principle for trN X
p
N

We proved in the previous section that (〈σsc, x
p〉 + trN(Cε)p)ε>0,N∈N are exponentially good approximations of

(trN X
p
N)N∈N at the exponential scale considered. The aim of this section is to show that we can derive for each ε > 0

a LDP for (trN(Cε)p)N∈N, using the contraction principle, and deduce a LDP for (trN X
p
N)N∈N.

In the view of applying a contraction principle for the sequence (trN(Cε)p)N∈N, we need to find a good space to
embed Cε so that we can define a trace which will be continuous. For every r ∈N, we define

Er =
{
A ∈

⋃
n≥1

H(β)
n : Card

{
(i, j) : Ai,j �= 0

}≤ r

}
.

For any n ∈ N, let Sn be the symmetric group on the set {1, . . . , n}. Let S denote the group
⋃

n∈N Sn. We denote Ẽr

the set of equivalence classes of Er under the action of S , which is defined by

∀σ ∈ S,∀A ∈ Er , σ · A = M−1
σ AMσ = (Aσ(i),σ (j))i,j ,

where Mσ denotes the permutation matrix associated with the permutation σ i.e. Mσ = (δi,σ (j))i,j .

Let H(β)
r /Sr be the set of equivalence classes of H(β)

r under the action of the symmetric group Sr . Note that any
equivalence class of the action of S on Er has a representative in H(β)

r . This defines an injective map from Ẽr into
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H(β)
r /Sr . Identifying Ẽr to a subset of H(β)

r /Sr , we equip Ẽr of the quotient topology of H(β)
r /Sr . This topology is

metrizable by the distance d̃ given by

∀Ã, B̃ ∈ Ẽr , d̃(Ã, B̃) = min
σ,σ ′∈S

max
i,j

|Bσ(i),σ (j) − Aσ ′(i),σ ′(j)|, (41)

where A and B are two representatives of Ã and B̃ respectively.
Since the trace is continuous and invariant by conjugation, we can define the trace on H(β)

r /Sr and it will be still
continuous. Therefore, the trace on Ẽr is continuous for the topology we defined above.

Let ε > 0 and r > N. Let Pε
N,r denote the law of Cε/N1/p conditioned on the event {Cε ∈ Er }, and P̃

ε
N,r the push-

forward of Pε
N,r by the projection π : Er → Ẽr . With these preliminary definitions, we can now state the LDP result

for (̃Pε
N,r )N∈N. The result is almost identical as [2, Proposition 7.1], the only difference being the choice of truncation

of the entries. Thus, the rate function is identical, and only the speed is different. We refer the reader to [2] for the
proof of the following proposition.

Proposition 4.14. Let r ∈ N and ε > 0. Then (̃Pε
N,r )N∈N satisfies a large deviations principle with speed N

α( 1
2 + 1

p
),

and good rate function Iε,r defined for all Ã ∈ Ẽr by

Iε,r (Ã) =
{

b
∑

i≥1 |Ai,i |α + a
2

∑
i �=j |Ai,j |α if A ∈ Dε,r ,

+∞ otherwise,
(42)

where A is a representative of the equivalence class Ã and

Dε,r = {
A ∈ Er : ∀i ≤ j,Ai,j = 0 or ε ≤ |Ai,j | ≤ ε−1, and Ai,j /|Ai,j | ∈ supp(νi,j )

}
,

with νi,j = ν1 if i = j , and νi,j = ν2 if i < j , where ν1 and ν2 are defined in Definition 1.6.

We are now ready to use a contraction principle to prove that (trN(Cε)p)N∈N follows a LDP for any ε > 0. The
use of the contraction principle is made possible by the fact that the push-forward of P̃ε

N,r by the map A �→ trAp on⋃
n∈NH(β)

n , are exponentially good approximations of (trN(Cε)p)N∈N.

Proposition 4.15. Let ε > 0. The sequence (trN(Cε)p)N∈N satisfies a large deviations principle of speed N
α( 1

2 + 1
p
),

and good rate function Jε defined for all x ∈R by,

Jε(x) = inf

{
Iε(A) : x = trAp,A ∈

⋃
n∈N

H(β)
n

}
,

where for any A ∈⋃
n∈NH(β)

n ,

Iε(A) =
{

b
∑

i≥1 |Ai,i |α + a
2

∑
i �=j |Ai,j |α if A ∈ Dε,

+∞ otherwise,
(43)

where Dε =⋃
r∈NDε,r , with Dε,r as in Proposition 4.14.

Proof. Let r ∈ N. We denote by f the function Ã ∈ Ẽr �→ trAp , with A a representative of Ã. As the trace is invariant
by conjugation, f is well defined. We define the push-forward of P̃ ε

N,r by the map f ,

νN,r = P̃ ε
N,r ◦ f −1.

Note that νN,r is the law of trN(Cε)p conditioned on the event {Cε ∈ Er}. We will show that (νN,r )N,r∈N are expo-
nentially good approximations of (trN(Cε)p)N∈N. Let YN,r be random variable independent of Cε , and distributed
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according to νN,r . Let

ZN,r = trN
(
Cε

)p1Cε∈Er
+ YN,r1Cε /∈Er

.

Thus, ZN,r and YN,r have the same law νN,r . Furthermore, for any t > 0,

P
(∣∣ZN,r − trN

(
Cε

)p∣∣> t
)≤ P

(
Cε /∈ Er

)
.

By Proposition 4.7, we get

lim
N→+∞N

−α( 1
2 + 1

p
) logP

(∣∣ZN,r − trN
(
Cε

)p∣∣> t
)= −∞,

which shows that (νN,r )N,r∈N are exponentially good approximations of (trN(Cε)p)N∈N.
For each r ∈ N, the function f restricted to Ẽr is continuous for the topology we equipped Ẽr . Note that as Cε has

entries bounded by ε−1N1/p , νN,r is compactly supported uniformly in N . Thus, (νN,r )N≥1 is exponentially tight, the

contraction principle (see [11, Theorem 4.2.1]) yields that (νN,r )N∈N follows a LDP principle with speed N
α( 1

2 + 1
p

)

and good rate function Jε,r given by

Jε,r (x) = inf
{
Iε,r (Ã) : Ã ∈ Ẽr , x = f (Ã)

}
,

where Iε,r is defined in Proposition 4.14. We can re-write this rate function as

Jε,r (x) = inf
{
Iε(A) : A ∈ Er , x = f (A)

}
,

where f denotes as well the function A �→ tr(A)p on
⋃

n∈NH(β)
n , and where Iε is defined in (43). By [11, Theo-

rem 4.2.16], we deduce that (trN(Cε)p)N∈N satisfies a weak LDP with speed N
α( 1

2 + 1
p

), and rate function Jε defined
by

∀x ∈R, Jε(x) = sup
δ>0

lim inf
r→+∞ inf|y−x|<δ

Jε,r (y).

As Jε,r is non-increasing in r , we have

Jε(x) = sup
δ>0

inf
r∈N inf|y−x|<δ

Jε,r (y) = sup
δ>0

inf|y−x|<δ
inf
r∈NJε,r (y).

Let � be the function defined by

∀x ∈R, �(x) = inf
r∈NJε,r (x).

Thus,

Jε(x) = sup
δ>0

inf|y−x|<δ
�(y).

We see that it suffices to show that � is lower semi-continuous to conclude that Jε = �. We will prove in fact that �

has compact level sets.
Let τ > 0. Let x ∈ R, such that �(x) ≤ τ . Then

�(x) = {
Iε(A) : x = f (A), Iε(A) ≤ 2τ

}
.

But for any A ∈⋃
n∈N Hn(C) such that Iε(A) < +∞, we have(

b ∧ a

2

)
εα Card

{
(i, j) : Ai,j �= 0

}≤ Iε(A).
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Thus taking r such that (b ∧ a
2 )εα ≤ τ , we get

�(x) = {
Iε(A) : x = f (A), Iε(A) ≤ 2τ,A ∈ Er

}
= {

Iε,r (Ã) : x = f (A), Ã ∈ Ẽr

}
.

Since f is continuous on Ẽr and Iε,r is a good rate function, we have{
x ∈ R : �(x) ≤ τ

}= {
f (Ã) : Iε,r (Ã) ≤ τ, Ã ∈ Ẽr

}
.

As f is continuous on Er , and Iε,r is a good rate function, we deduce that the τ -level sets of � are compact. Therefore
Jε = �. �

We are now ready to conclude the proof of Theorem 1.7.

Proof of Theorem 1.7 . By Proposition 4.12, (〈σsc, x
p〉 + trN(Cε)p)N∈N,ε>0 are exponentially good approximations

of (trN X
p
N)N∈N. We deduce from Proposition 4.15 that for each ε > 0, the sequence (〈σsc, x

p〉 + trN(Cε)p)N∈N
satisfies a LDP with speed N

α( 1
2 + 1

p
), and with good rate function ψε defined by

ψε(x) =
{

Jε(x − Cp/2) if p is even,

Jε(x) if p is odd,

where Jε is as in Proposition 4.15. Since (trN X
p
N)N≥1 is exponentially tight by Proposition 4.3, we deduce from [11,

Theorem 4.2.16] that (trN X
p
N)N∈N satisfies a LDP with speed N

α( 1
2 + 1

p
) and rate function Jp defined by

∀x ∈ R, Jp(x) = sup
δ>0

lim sup
ε→0

inf|y−x|<δ
ψε(y).

Observe that for any A ∈⋃
n∈NH(β)

n , Iε(A) is non-decreasing in ε. Therefore, ψε is non-decreasing in ε. Thus,

∀x ∈ R, Jp(x) = sup
δ>0

inf
ε>0

inf|y−x|<δ
ψε(y). (44)

Let

∀y ∈ R, �p(x) =
{

ϕp(x − Cp/2) if p is even,

ϕp(x) if p is odd,

with

ϕp(x) = inf
{
I (A) : x = trAp,A ∈D

}
,

where I is defined for any A ∈⋃
n≥1 H

(β)
n , by

I (A) = b

+∞∑
i=1

|Ai,i |α + a
∑
i<j

|Ai,j |α,

and D = {A ∈⋃
n∈NH(β)

n : ∀i ≤ j,Ai,j = 0 or Ai,j /|Ai,j | ∈ supp(νi,j )}. With these notations we have,

Jp(x) = sup
δ>0

inf|x−y|<δ
�p(y). (45)
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As for any t > 0, and A ∈⋃
n∈NH(β)

n , I (tA) = tαI (A), and tr(tA)p = tp trAp , we have for p even,

∀y ∈R, ϕp(y) =
{

ϕp(1)yα/p if y ≥ 0,

+∞ otherwise,

and for p odd

∀y ∈R, ϕp(y) = ϕp(1)|y|α/p.

Therefore,

∀y ∈R, �p(x) =
{

ϕp(1)(x − Cp/2)
α/p if p is even,

+∞ otherwise,

and if p is odd

∀y ∈R, �p(x) = ϕp(1)|x|α/p.

This shows in particular that �p is lower semi-continuous. From (45), we get finally Jp = �p . �

4.7. Computation of Jp(1)

We show here that we can compute the constant cp appearing in Theorem 1.7 when α ∈ (0,1] and p is even, and we
give a lower bound and upper bound in the case where α ∈ (1,2) and p is even.

Theorem 4.16. With the notations of Theorem 1.7, we have the following:

(a) If p is even,

min

(
b,

a

2

)
≤ cp ≤ min

(
b,2−α/pa

)
.

(b) If α ∈ (0,1] and p is even,

cp = min
(
b,2−α/pa

)
.

Proof. From the proof of Theorem 1.7, we know that

cp = inf
{
I (A) : 1 = trAp,A ∈D

}
, (46)

where I is defined for any A ∈⋃
n≥1 H

(β)
n , by

I (A) = b

+∞∑
i=1

|Ai,i |α + a
∑
i<j

|Ai,j |α,

and D = {⋃n∈NH(β)
n : ∀i ≤ j,Ai,j = 0 or Ai,j /|Ai,j | ∈ supp(νi,j )}, with νi,j = ν1 if i = j , and νi,j = ν2 if i < j ,

where ν1 and ν2 are defined in Definition 1.6.
Note that

cp ≤ min

(
I (s), I

(
0 2−1/peiθ

2−1/pe−iθ 0

))
,

where s ∈ supp(ν1), and θ ∈ supp(ν2). Thus,

cp ≤ min
(
b,2−α/pa

)
,
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which proves the upper bound in cases (a) and (b).
On the other hand, we have

cp ≥ inf

{
b

+∞∑
i=1

|Ai,i |α + a

2

∑
i �=j

|Ai,j |α : A ∈
⋃
n∈N

H(β)
n ,1 = trAp

}

≥ min

(
b,

a

2

)
inf

{∑
i,j

|Ai,j |α : A ∈
⋃
n∈N

H(β)
n : trAp = 1

}
.

Since α ∈ (0,2), we know from [31, Theorem 3.32] that for any A ∈H(β)
n ,

∑
i,j

|Ai,j |α ≥
n∑

i=1

|λi |α, (47)

where λ1, . . . , λn are the eigenvalues of A. As α/p ≤ 1, we have

n∑
i=1

|λi |α ≥
(

n∑
i=1

|λi |p
)α/p

= (
tr |A|p)α/p ≥ ∣∣trAp

∣∣α/p
.

Thus, if trAp = 1, we have∑
i,j

|Ai,j |α ≥ 1.

We can deduce that

cp ≥ min

(
b,

a

2

)
,

which proves the lower bound of case (b).
Assume now α ∈ (0,1) and p is even. If A ∈H(β)

n is such that trAp = 1, then

sup
tr |B|q=1

trAB = 1,

with q ≥ 1 such that 1
p

+ 1
q

= 1. Thus, we can deduce that

∀i ∈ {1, . . . , n}, |Ai,i | ≤ 1, ∀i, j ∈ {1, . . . , n}, i �= j, |Ai,j | ≤ 2−1/p.

Then,

cp ≥ inf

{
b

+∞∑
i=1

|Ai,i |α + a

2

∑
i �=j

|Ai,j |α : A ∈
⋃
n∈N

H(β)
n ,1 = trAp

}

≥ min
(
b,2− α

p a
)

inf

{+∞∑
i=1

|Ai,i |α + 1

2

∑
i �=j

∣∣2 1
p Ai,j

∣∣α : A ∈
⋃
n∈N

H(β)
n ,1 = trAp

}

≥ min
(
b,2− α

p a
)

inf

{+∞∑
i=1

|Ai,i | + 1

2

∑
i �=j

∣∣2 1
p Ai,j

∣∣ : A ∈
⋃
n∈N

H(β)
n ,1 = trAp

}
, (48)
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where we used in the last inequality the fact the |Ai,i | ≤ 1, and |Ai,j | ≤ 2−1/p for any i �= j . Thus,

cp ≥ min
(
b,2− α

p a
)

inf

{(
1 − 2

1
p

−1)+∞∑
i=1

|Ai,i | + 2
1
p

−1
∑
i,j

|Ai,j | : A ∈
⋃
n∈N

H(β)
n ,1 = trAp

}
.

Using again [31, Theorem 3.36], and the triangular inequality, we get

cp ≥ min
(
b,2− α

p a
)

inf
n≥1

inf

{(
1 − 2

1
p

−1)∣∣∣∣∣
n∑

i=1

λi

∣∣∣∣∣+ 2
1
p

−1
n∑

i=1

|λi | : A ∈H(β)
n ,

n∑
i=1

λ
p
i = 1

}
.

Let n ≥ 1. We consider the optimization problem

inf

{(
1 − 2

1
p

−1)∣∣∣∣∣
n∑

i=1

λi

∣∣∣∣∣+ 2
1
p
−1

n∑
i=1

|λi | : A ∈ H(β)
n ,

n∑
i=1

λ
p
i = 1

}
.

Denote for all λ ∈ R
n,

ϕ(λ) = (
1 − 2

1
p

−1)∣∣∣∣∣
n∑

i=1

λi

∣∣∣∣∣+ 2
1
p

−1
n∑

i=1

|λi |.

Compactness and continuity arguments show that the infimum is achieved at some λ ∈ R
n. At the price of permuting

the coordinates of λ, and taking the opposite of λ, which does not change the value of ϕ(λ), we can assume that
λ = (λ1, . . . , λm,0, . . . ,0), with λ1 �= 0, . . . , λm �= 0 such that

∑m
i=1 λi ≥ 0. Assume first that

∑m
i=1 λi > 0. The

multipliers rule (see [10, Theorem 9.1]) yields that there is some γ > 0, such that for any i ∈ {1, . . . ,m},(
1 − 2

1
p

−1)+ 2
1
p

−1 sg(λi) = γ λ
p−1
i . (49)

Multiplying the above inequality by λi , and summing over all i ∈ {1, . . . ,m}, we get

γ = ϕ(λ). (50)

From (49), we have for all ∈ {1, . . . ,m},

λi =
{

γ
− 1

p−1 if λi > 0,

−γ
− 1

p−1 (2
1
p − 1)

1
p−1 if λi < 0.

Let k denote the number of positive λi ’s, and l the number of negative λi ’s. As
∑m

i=1 λi > 0, we have k ≥ 1. Since∑m
i=1 λ

p
i = 1, we have

γ
p

p−1 = k + l
(
2

1
p − 1

) p
p−1 ≥ 1,

as k ≥ 1. Thus, ϕ(λ) ≥ 1.
Assume now that

∑m
i=1 λi = 0. Then the multipliers rule asserts that there are some t ∈ [−1,1] and γ , such that

(t, γ ) �= (0,0), and for all i ∈ {1, . . . ,m},(
1 − 2

1
p

−1)
t + 2

1
p

−1 sg(λi) = γ λ
p−1
i .

At the price of changing λ to −λ, we can assume t ≥ 0. As in the previous case, multiplying by λi in the above
equation and summing over i, yields ϕ(λ) = γ . Note that since ϕ(1,0, . . . ,0) = 1, we can assume γ ≤ 1. We can
write for any i ∈ {1, . . . ,m},

λi =
{

−γ
− 1

p−1 (2
1
p

−1 − (1 − 2
1
p

−1
)t)

1
p−1 if λi < 0,

γ
− 1

p−1 (2
1
p

−1 + (1 − 2
1
p

−1
)t)

1
p−1 if λi > 0.
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Let k denotes the number of positive coordinates of λ, and by l the number of negative coordinates. As
∑m

i=1 λi = 0,
we have k, l ≥ 1, and

k
(
2

1
p

−1 + (
1 − 2

1
p
−1)

t
) 1

p−1 = l
(
2

1
p
−1 − (

1 − 2
1
p

−1)
t
) 1

p−1 .

But then,

ϕ(λ) = 2
1
p kγ

− 1
p−1

(
2

1
p

−1 + (
1 − 2

1
p

−1)
t
) 1

p−1 ≥ 2
1
p 2− 1

p = 1,

as γ ≤ 1. As ϕ(1,0, . . . ,0) = 1, we can conclude

inf
{
ϕ(λ) : ‖λ‖p = 1

}= 1.

This yields,

cp ≥ min
(
b,2− α

p a
)
,

in the case where p is even. �
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