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Abstract. We study the isoperimetric subgraphs of the infinite cluster C∞ for supercritical bond percolation on Z
d with d ≥ 3.

Specifically, we consider subgraphs of C∞ ∩ [−n,n]d having minimal open edge boundary to volume ratio. We prove a shape
theorem for these subgraphs: when suitably rescaled, they converge almost surely to a translate of a deterministic shape. This
deterministic shape is itself an isoperimetric set for a norm we construct. As a corollary, we obtain sharp asymptotics on a natural
modification of the Cheeger constant for C∞ ∩[−n,n]d , settling a conjecture of Benjamini for the version of the Cheeger constant
defined here.

Résumé. Nous étudions les sous-graphes isopérimétriques du cluster infini C∞ pour la percolation par arêtes surcritique sur Zd

avec d ≥ 3. Plus précisément, nous considérons les sous-graphes de C∞ ∩[−n,n]d qui ont une frontière ouverte minimale par rap-
port au volume. Nous prouvons un théorème de forme pour ces sous-graphes: convenablement normalisés, ils convergent presque
surement vers une translation d’une forme limite déterministe. Cette forme déterministe est elle aussi un ensemble isopérimétrique
pour une norme que nous définissons. Comme corollaire, nous obtenons une estimée précise sur une modification naturelle de
la constante de Cheeger pour C∞ ∩ [−n,n]d , résolvant ainsi une conjecture de Benjamini pour cette version de la constante de
Cheeger.
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1. Introduction and results

1.1. Motivation

Isoperimetric problems, namely the problem of finding a set of given size and minimal boundary measure, have been
studied for millennia. In the continuum, such problems are the subject of geometric measure theory and the calculus
of variations. Isoperimetric inequalities give a lower bound on the boundary measure of a set in terms of the volume
measure of the set. Their applications in mathematics range from concentration of measure to PDE theory.

Isoperimetric problems are also well-studied in the discrete setting. One can encode isoperimetric inequalities for
graphs in the Cheeger constant, or modifications thereof. Define the Cheeger constant of a graph G to be

�G := min

{ |∂GH |
|H | : H ⊂ G,0 < |H | ≤ |G|/2

}
, (1.1)

where ∂GH is the edge boundary of H in the graph G and where |H | and |G| respectively denote cardinalities of
the vertex sets of H and G. Introduced in the context of manifolds in Cheeger’s thesis [20], the Cheeger constant
was used to give a lower bound on the smallest positive eigenvalue of the negative Laplacian. Its discrete analogue,
introduced by Alon [3], plays a similar role in spectral graph theory (see for instance Chapter 2 of [21]). Indeed,
Cheeger’s inequality and its variants are used to study mixing times of random walks and Markov chains. Ultimately,
the Cheeger constant provides one of many ways to study the geometry of a graph.

The goal of this paper is to explore the geometry of random graphs arising from bond percolation on Z
d . We

view Z
d as a graph, with edge set E(Zd) determined by nearest-neighbor pairs, and we form the probability space

({0,1}E(Zd ),F ,Pp), where F denotes the product σ -algebra on {0,1}E(Zd ) and where Pp is the product Bernoulli
measure associated to the percolation parameter p ∈ [0,1]. Elements ω = (ωe)e∈E(Zd ) of the probability space are
percolation configurations. An edge e ∈ E(Zd) is open in the configuration ω if ωe = 1 and is closed otherwise.
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The open edges determine a random subgraph of Zd whose connected components are called open clusters. It is
well-known (see Grimmett [32] for details) that when d ≥ 2, bond percolation exhibits a phase transition: there is a
pc(d) ∈ (0,1) so that whenever p > pc(d), there exists a unique infinite open cluster Pp-almost surely, and whenever
p < pc(d), there is no infinite open cluster Pp-almost surely. We work in the supercritical (p > pc(d)) regime, and
denote the unique infinite open cluster by C∞.

We may now be more specific: our goal is to explore the geometry of C∞. There are many ways to do this, for
example, one can study the asymptotic graph distance in C∞ (e.g. Antal and Pisztora [4]), the asymptotic shapes of
balls in the graph distance metric of C∞ (e.g. Cox and Durrett [22]), or the effective resistance of C∞ within a large
box (e.g. Grimmett and Kesten [33]). Our aim is to study the isoperimetry of C∞ through the Cheeger constant.

By definition, �G = 0 for any amenable graph, and one can show that �C∞ = 0 almost surely. We instead study the
Cheeger constant of Cn := C∞ ∩ [−n,n]d . Let C̃n be the largest connected component of Cn. It is known (Benjamini
and Mossel [5], Mathieu and Remy [38], Rau [46], Berger, Biskup, Hoffman and Kozma [6] and Pete [41]) that
�C̃n

� n−1 as n → ∞, prompting the following conjecture of Benjamini.

Conjecture 1.1. For p > pc(d) and d ≥ 2, the limit

lim
n→∞n�C̃n

(1.2)

exists Pp-almost surely and is a positive deterministic constant.

Procaccia and Rosenthal [45] made progress towards resolving this conjecture: they proved upper bounds on the
variance of the Cheeger constant, showing Var(n�C̃n

) ≤ cn2−d for some positive c = c(p, d). Recently, Biskup,
Louidor, Procaccia and Rosenthal [7] settled this conjecture positively for a natural modification of �C̃n

in dimension
two. Define the modified Cheeger constant �̂n of Cn in dimensions d ≥ 2:

�̂n := min

{ |∂C∞H |
|H | : H ⊂ Cn,0 < |H | ≤ |Cn|/d!

}
, (1.3)

where ∂C∞H denotes the open edge boundary of H within all of C∞ as opposed to Cn. This modification is natural
in the sense that subgraphs H are treated as living within C∞, and the d! in the volume upper bound ensures that
H need not touch the boundary of the box. Thanks to Proposition 1.2 of [5], the asymptotics of �̂n are unchanged
whether we use Cn or C̃n in (1.3).

Both �C̃n
and �̂n are closely related to the so-called anchored isoperimetric profile, defined in the context of the

infinite cluster as

�C∞,0(n) := inf

{ |∂C∞H |
|H | : 0 ∈ H ⊂ C∞,H connected,0 < |H | ≤ n

}
, (1.4)

where of course we must condition on the positive probability event {0 ∈ C∞}. In [7], the analogue of Benjamini’s
conjecture for the anchored isoperimetric profile was also established in dimension two. Moreover, the subgraphs
of Cn and C∞ achieving each minimum were studied in both cases, and in fact were shown to scale uniformly to
the same deterministic limit shape. This shape theorem implies the existence of the limit in Conjecture 1.1 for (1.3).
Indeed, the perimeter of this limit shape appears in the limiting value of the modified Cheeger constant.

1.2. Results

We extend the work of [7] to the setting d ≥ 3 by settling Benjamini’s conjecture for the modified Cheeger constant
and by proving a shape theorem for isoperimetric subgraphs of Cn. As the arguments in [7] rely heavily on planar
geometry and graph duality, a much different approach is needed. Nevertheless, we share a common starting point in
the Wulff construction, described below, and there are structural similarities between both arguments.

We state the main theorem of the paper first. For each n, let Gn be the (random) collection of subgraphs of Cn

realizing the minimum in (1.3). For A ⊂R
d , r > 0 and x ∈ R

d the sets rA and x + A are defined as usual by

rA := {ra : a ∈ A}, x + A := {x + a : a ∈ A}, (1.5)
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and we write ‖ · ‖�1 to denote the �1-norm on Zd . Here is our main result:

Theorem 1.2. Let d ≥ 3 and p > pc(d). There is a deterministic, convex set Wp,d ⊂ [−1,1]d so that

max
Gn∈Gn

inf
x∈Rd

n−d‖1Gn − 1Cn∩(x+nWp,d )‖�1 −−−→
n→∞ 0 (1.6)

holds Pp-almost surely.

Following [7], we build the limit shape Wp,d through what is known as the Wulff construction, a method for solving
anisotropic isoperimetric problems first introduced by Wulff [57] in 1901. Given a norm τ on R

d , one can form an
associated isoperimetric problem:

minimize
Iτ (E)

Ld(E)
subject to Ld(E) ≤ 1, (1.7)

ranging over E ⊂R
d with Lipschitz boundary, where Ld denotes d-dimensional Lebesgue measure, and where Iτ (E)

is defined as

Iτ (E) :=
∫

∂E

τ
(
vE(x)

)
Hd−1(dx). (1.8)

Here Hd−1 is the (d − 1)-dimensional Hausdorff measure on ∂E and vE(x) the unit exterior normal to E at the point
x ∈ ∂E, which is defined for Hd−1-almost every point of ∂E. Wulff’s isoperimetric set is the following intersection
of half-spaces:

Ŵτ :=
⋂

v∈Sd−1

{
x ∈ R

d : x · v ≤ τ(v)
}
, (1.9)

where · denotes the standard dot product in R
d , and where S

d−1 is the unit sphere in R
d . We call Ŵτ the unit Wulff

crystal associated to τ ; this object is the unit ball in the norm τ ′ dual to τ (recall that τ ′ is defined on y ∈ R
d by

τ ′(y) = sup{x · y : x ∈ R
d , τ (x) ≤ 1}). When Ŵτ is scaled to have unit volume, it becomes a candidate minimizer for

(1.7). Taylor [51] ultimately proved this rescaled shape is optimal within a wide class of Borel sets, and moreover (in
[52]) that this rescaled shape is the unique optimizer up to translations and modifications on a null set.

The Wulff construction is relevant because a norm emerges naturally when our problem is viewed correctly. De-
noted βp,d , this norm is first defined on S

d−1: in a given direction v ∈ S
d−1, first rotate a large cube so that its top and

bottom faces are normal to v, then consider the restriction of percolation to this rotated cube. The minimum size of
a cutset separating the faces of the cube in this percolated graph functions as a discrete surface energy. By requiring
these cutsets to be anchored near the middle of the cube, we may employ a subadditivity argument and extract a limit
as the diameter of the cube tends to infinity. This homogenized surface energy is βp,d(v).

We build βp,d in Section 3, and we define the Wulff crystal Wp,d to be the dilate of the unit Wulff crystal Ŵp,d

associated via (1.9) to βp,d so that Ld(Wp,d) = 2d/d!. The Wulff crystal is then the limit shape from Theorem 1.2, and
we note that the norm βp,d gives rise to a surface energy functional of the form (1.8) denoted Ip,d . As in [7], the shape
theorem we present is intimately linked with the limiting value of the Cheeger constant. Let θp(d) := Pp(0 ∈ C∞) be
the density of the infinite cluster within Z

d .

Theorem 1.3. Let d ≥ 3, p > pc(d) and let βp,d be the norm to be constructed in Proposition 3.4. Let Wp,d be the
Wulff crystal for this norm, that is, the ball in the dual norm β ′

p,d such that Ld(Wp,d) = 2d/d!. Then,

lim
n→∞n�̂n = Ip,d(Wp,d)

θp(d)Ld(Wp,d)
(1.10)

holds Pp-almost surely.
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Fig. 1. In d = 3, filaments added to the optimal shape for the Euclidean isoperimetric problem produce a set which is almost optimal and and yet
has large uniform distance to the sphere.

1.3. History and discussion

Within the last thirty years, the Wulff construction has grown into an important tool in the rigorous analysis of equi-
librium crystal shapes. Such problems are concerned with understanding the macroscopic behavior of one phase of
matter immersed within another.

The present work fits into this paradigm in that we may regard each Cheeger optimizer Gn as a large droplet of
a crystalline phase within C∞ \ Gn, regarded as the ambient phase. The value of the norm βp,d in a given direction
represents the energy required to form a flat interface between the two phases in this direction, and gives rise to a
surface energy functional of the form (1.8). It was Gibbs [30] who postulated that, in general, the asymptotic shape of
the crystalline phase should minimize this surface energy. The Wulff construction furnishes this minimal shape.

The spirit of Theorem 1.2 can be traced back to the work of Minlos and Sinai [39,40] from the 1960s, in which
the geometric properties of phase separation in a material are rigorously studied. The first rigorous characterizations
of phase separation via the Wulff construction are due independently to Dobrushin, Kotecký and Shlosman [24] in
the context of the two-dimensional Ising model and to Alexander, Chayes and Chayes [2] in the context of two-
dimensional bond percolation. The results of [24], valid in the low-temperature regime, were extended up to the
critical temperature thanks to the work of Ioffe [35] and Ioffe and Schonmann [36].

The first rigorous derivation of the Wulff construction for a genuine short-range model in three dimensions was
achieved by Cerf in the context of bond percolation [14]. Analogous results for the Ising model and in higher dimen-
sions were achieved in several substantial works of Bodineau [8,9] and Cerf and Pisztora [16,17]. The coarse graining
results of Pisztora [44] played an integral role in this study of the Ising model, FK percolation and bond percolation
in higher dimensions. A comprehensive survey of these results and of others can be found in Section 5.5 of Cerf’s
monograph [15] and in the review article of Bodineau, Ioffe and Velenik [10].

In all cases, the jump to dimensions strictly larger than two has, at least so far, necessitated a shift from the uniform
topology to the �1-topology on the space of shapes (we are intentionally vague about which space we consider).
Indeed, the variational problem (1.7) is not stable in d ≥ 3 when the space of shapes is equipped with the uniform
topology: it is possible to construct a sequence of shapes bounded away from the optimal shape in the uniform
topology, but whose surface energies tend to the optimal surface energy. This has implications at the microscopic
level; to prove a uniform shape theorem in d ≥ 3 for the Cheeger optimizers, one would first have to rule out the
existence of long thin filaments (as in Figure 1) in these discrete objects with high probability.

This lack of regularity at the microscopic level requires that we consider the variational problem over a wider
class of shapes, and it is here that geometric measure theory emerges as a valuable tool, as first realized by Alberti,
Bellettini, Cassandro and Presutti [1].

1.4. Outline

Our goals may be summarized as follows: we wish to show that the sequence of discrete, random isoperimetric
problems (1.3) scale to a continuous, deterministic isoperimetric problem (1.7) corresponding to some norm βp,d on
R

d . We do not use the language of 
-convergence, though this has been used in recent related work of Braides and
Piatnitski [12,13].
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The first task is to construct a suitable norm βp,d on Rd , done in Section 3 after introducing some definitions and
notation in Section 2. The key to the existence of βp,d is a spatial subadditivity argument applied to the geometric
setting described briefly before Theorem 1.3.

The resulting norm βp,d gives rise to a surface energy Ip,d , and the remainder of the paper is concerned with
demonstrating that the unique optimizer of the isoperimetric problem associated to Ip,d faithfully describes the macro-
scopic shape of each large Gn ∈ Gn. We must show a correspondence between discrete objects (the various subgraphs
of Cn) and continuous objects (Borel subsets of [−1,1]d for which isoperimetric problems can be defined). This
correspondence should be strong enough to link the isoperimetric ratio of subgraphs of Cn to the ratio for continuous
objects, as in the limiting value of Theorem 1.3.

Concentration estimates proved in Section 4 allow us to pass from continuous objects to discrete objects in Sec-
tion 5, yielding high probability upper bounds on �̂n. This is in line with the strategy of [7], and is in contrast to
large deviation methods used in some of the work referenced in Section 1.3, where the nature of these earlier prob-
lems requires working within events of small probability. All arguments presented up to this point work in the setting
d ≥ 2.

Passing from discrete objects to continuous objects is more delicate, and requires a renormalization argument given
in Section 6. We base our argument on a construction from an unpublished note of Zhang [58], but we must improve
this construction and study it carefully in order to apply it to our situation. It is here that, for reasons which will be
made clear in Section 7, we must restrict ourselves to the setting d ≥ 3. This is no loss as the case d = 2 is covered by
results in [7].

In Section 8, we reap the efforts of Section 7, passing from Gn ∈ Gn to sets of finite perimeter (defined in Section 2).
Such sets have just enough regularity that we may work locally on their boundaries. We exploit this in Section 9 to
show whenever a Gn is close to a set of finite perimeter, the surface energy of this set is roughly a lower bound on
the open edge boundary of Gn. Our notion of closeness allows us to relate the volumes of these objects; we may
then deduce that whenever Gn is close to a set of finite perimeter, the isoperimetric ratio of Gn (hence the Cheeger
constant) is controlled from below by the isoperimetric ratio of the given continuum set.

Invoking the results of Section 5 and the work of Taylor [51,52], we find that with high probability, each Gn must
be close to the Wulff crystal, giving Theorem 1.2 and Theorem 1.3 in quick succession.

1.5. Open problems

We pose several open questions, some of which were stated in [7].
(1) Boundary conditions and more general domains: Conjecture 1.1 was recently settled for the unmodified

Cheeger constant in dimension two [31], though it remains to link the set of limit shapes in this case with the Wulff
shape. Motivated by the Winterbottom construction (see [11,42,43,56]), we conjecture the limit shapes in this case are
rescaled quarter-Wulff crystals.

One can generalize Benajmini’s conjecture in the two-dimensional setting to domains other than boxes: given a
nice bounded open set � ⊂ R

2, one can study the asymptotics of the unmodified Cheeger constant as well as the
shapes of the Cheeger optimizers for the largest connected component of C∞ ∩ n�.

(2) More information on the Wulff crystal: Little is known about the geometric properties of the Wulff crystal.
One recent result of Garet, Marchand, Procaccia and Théret [29] is that, in two dimensions, the Wulff crystal varies
continuously with respect to the uniform metric on compact sets as a function of the percolation parameter p ∈
(pc(2),1]. It was conjectured in [7] that the two-dimensional Wulff crystal tends to a Euclidean ball as p ↓ pc(2); this
is still widely open. It is natural to ask whether the Wulff crystal has facets (open portions of the boundary with zero
curvature) or corners, and how such questions depend on the percolation parameter.

(3) Uniform convergence for d ≥ 3: An interesting and challenging question is whether a form of Theorem 1.2
holds in d ≥ 3 when we replace �1-convergence by uniform convergence. Such a result would have to overcome the
challenges outlined in Section 1.3.
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2. Definitions and notation

2.1. Paths, boundaries, cutsets

We work almost entirely within the graph Z
d , whose vertex set consists of all integer d-tuples, and where there is an

edge between two vertices if their Euclidean distance is one. Edges have no orientation, and if vertices x and y are
adjacent, we write x ∼ y.

A path between vertices x and y in Z
d is a finite, alternating sequence of vertices and edges γ = (x ≡

x0, e1, x1, . . . , em, xm ≡ y) such that ei joins xi−1 and xi for i = 1, . . . ,m. The path γ joins x and y, and the length
of γ is m. A subgraph G = (V(G),E(G)) of Zd is connected if for any vertices x, y ∈ G, there is a path using only
vertices and edges of G joining x and y. For a vertex x ∈ Z

d , a path from x to ∞ is an infinite alternating sequence
of vertices and edges γ = (x ≡ x0, e1, x1, . . . ) where no finite box contains all ei . In both the finite and infinite cases,
a path is simple if it uses each vertex no more than once, and paths are often regarded as sequences of edges out of
convenience.

For the rest of this subsection, let G be a finite subgraph of Zd . The edge boundary and outer edge boundary of G

are respectively the following sets of edges:

∂G := {
e ∈ E

(
Z

d
) : exactly one endpoint of e lies in G

}
, (2.1)

∂oG :=
{
e ∈ ∂G : the endpoint of e in G is connected to ∞

via a path using no other vertices of G

}
. (2.2)

The vertex boundary of G is the following set of vertices:

∂∗G := {
v ∈ V(G) : v is an endpoint of an edge in ∂oG

}
. (2.3)

A cutset separating G from ∞ is a finite collection of edges S ⊂ E(Zd) where any path from G to ∞ uses an
edge of S. If A,B ⊂ V(G) are disjoint vertex sets, a cutset separating A and B in G is a finite collection of edges
S ⊂ E(G) where any path in G from A to B uses an edge of S. A cutset is minimal if it is no longer a cutset upon
removing an edge.

We occasionally work with the graph L
d , which has the same vertex set as Zd , but where vertices x and y are now

adjacent if their �∞-distance is one. When x and y are adjacent in L
d , write x ∼∗ y and say they are ∗-adjacent. Paths

in Ld are ∗-paths, and G ⊂ Zd is ∗-connected if any two vertices of G are joined by a ∗-path whose vertices all lie
in G. Proposition 2.1 is standard in the literature and is useful for Peierls estimates appearing frequently in the study
of lattice models.

Proposition 2.1 (Deuschel-Pisztora [23], Timár [55]). Let G ⊂ Z
d be a finite, connected subgraph of Zd . Then ∂∗G

is ∗-connected, as is the set of vertices which are endpoints of edges in ∂oG.

For K ⊂ R
d compact, write G ∩ K for the graph obtained by restricting G to the vertex set V(G) ∩ K in the

natural way. Write |G| for the cardinality of the vertex set of G, and in general if F is any finite set, let |F | denote the
cardinality of F .

Bond percolation gives rise to another notion of graph boundary: if G is a finite subgraph of C∞, the open edge
boundary of G is

∂ωG := {
e ∈ ∂G : ω(e) = 1

}
, (2.4)

and the conductance of G, written ϕG, is the ratio |∂ωG|/|G|. A subgraph G of Cn = C∞ ∩ [−n,n]d is valid if it
satisfies 0 < |G| ≤ |Cn|/d!, and a valid subgraph G ⊂ Cn is optimal if ϕG = �̂n.

Remark 2.2. Each Gn ∈ Gn is determined by its vertex set, else we could strictly reduce |∂ωGn|.
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2.2. A metric on measures

To prove Theorem 1.2, we first encode each optimizer Gn as a measure and prove closeness to a set of limiting
measures. Given Gn ∈ Gn, the empirical measure of Gn is the following non-negative Borel measure on [−1,1]d :

μn := 1

nd

∑
x∈V(Gn)

δx/n. (2.5)

Given a Borel set E ⊂ [−1,1]d , define νE as the measure on [−1,1]d having density θp(d)1E with respect to
Lebesgue measure, and say that νE represents E. The collection of finite signed Borel measures on [−1,1]d is de-
noted M([−1,1]d), and the closed ball (with respect to the total variation norm) of radius 3d about the zero measure
in this space is written Bd . For every percolation configuration ω, the empirical measures μn lie within Bd , as does
every νE for E ⊂ [−1,1]d Borel.

We now equip Bd with a metric. For k ∈ {0,1,2, . . . }, the dyadic cubes at scale k are all sets of the form
2−k([−1,1]d + x) for x ∈ Z

d . Let �k ≡ �k,d denote the dyadic cubes at scale k contained in [−1,1]d . Given
μ,ν ∈ Bd , define

d(μ, ν) :=
∞∑

k=0

1

2k

∑
Q∈�k

1

|�k|
∣∣μ(Q) − ν(Q)

∣∣. (2.6)

The metric d is useful for comparing discrete and continuous objects when both are encoded as measures. It figures
prominently in the final section of the paper.

2.3. Geometric measure theory, miscellaneous notation

We introduce sets of finite perimeter; the following definitions are taken from Sections 13.3 and 14.1 of [15]. Write
Ld for d-dimensional Lebesgue measure and Hd for d-dimensional Hausdorff measure. Given a norm τ on Rd and a
Borel subset E of Rd , define the surface energy of E with respect to τ as

Iτ (E) := sup

{∫
E

divf (x)Ld(dx) : f ∈ C∞
c

(
R

d , Ŵτ

)}
, (2.7)

where Ŵτ is the unit Wulff crystal defined in (1.9). Here div(f ) denotes the divergence of the function f , which is
a smooth compactly supported function on R

d taking values in Ŵτ . By the divergence theorem, (2.7) extends (1.8)
to Borel sets. When τ is the Euclidean norm, call Iτ (E) the perimeter of E, writing per(E). Naturally, E has finite
perimeter if per(E) < ∞.

The following theorem is vital to the proof of Theorem 1.2.

Theorem 2.3 (Taylor [51–53]). Let τ be a norm on R
d and consider the variational problem for Borel sets E ⊂R

d :

minimize Iτ (E) subject to Ld(E) ≤ Ld(Ŵτ ), (2.8)

A set E is a minimizer of this variational problem if and only if there is x ∈ R
d such that the symmetric difference of

Ŵτ and E + x has Lebesgue measure zero.

We close the section by collecting some notation. For p ∈ [1,∞], use | · |p to denote the �p-norm on R
d . For

x ∈ R
d and r > 0, let B(x, r) denote the closed r-ball centered at x in the �2-norm. For E ⊂R

d and a > 0, let Na(E)

denote the closed Euclidean a-neighborhood of E: Na(E) := E + B(0, a), and define the closed a-neighborhood of
E in the �1-norm analogously, writing this as N (1)

a (E). Lastly, the Hausdorff metric on compact subsets of R
d is

defined via

dH (A,B) := max
(

sup
x∈A

inf
y∈B

|x − y|∞, sup
y∈B

inf
x∈A

|x − y|∞
)
. (2.9)
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Fig. 2. A small box B placed on the boundary of Gn.

3. The norm βp,d and the Wulff crystal

To motivate the construction of the norm, we regard an optimizer Gn ∈ Gn as a droplet in C∞, and look at a small but
macroscopic (diameter on the order of n) box intersecting the boundary of Gn, as in Figure 2.

The small box B captures a piece of ∂Gn, which we imagine separates the top and bottom faces of B . The position
of this cutset does not greatly affect the enclosed volume |Gn| as B is so small relative to Gn, so minimizing the
number of open edges used by this cutset is most important to minimizing the conductance of Gn. This minimal
number of open edges in a cutset separating the faces of B is a microscopic surface energy in the direction normal to
these faces. This energy grows like O(nd−1) regardless of the normal direction. We then construct βp,d as a limit of
these microscopic surface energies, properly normalized.

Minimal randomly weighted cutsets in boxes (d ≥ 2) well-studied. In d = 2, such cutsets are dual to paths and fall
within the realm of first-passage percolation. In higher dimensions, they were first examined by Kesten [37]. Variants
of these objects have been studied by Théret [54], Rossignol and Théret [47,48], Zhang [58] and Garet [28]. For a
detailed list of these results, see Section 3.1 of [19].

Most of the work above constructs and uses the norm we are about to build. We emphasize that results presented
in this section and in Section 4 are neither new nor optimal. Nevertheless, we find it important to present a relatively
self-contained argument, and the notation introduced here will be used heavily throughout the paper.

3.1. Discrete cylinders

We set up objects and notation needed to define βp,d . We use notation from Cerf and Théret [15,19] to build cylinders
over (d − 1)-dimensional objects; among other things these will function as boxes as in Figure 2.

Let F ⊂R
d be the isometric image (see Remark A.13) of either a non-degenerate polytope in R

d−1 or a Euclidean
ball in R

d−1. Polytopes are defined at the beginning of Section 5.2; in the present section we only ever need F to be
a square.

Write hyp(F ) to denote the hyperplane spanned by F , and let v(F ) denote one of the two unit vectors normal to
hyp(F ); the choice does not matter for our definitions. For ρ > 0, define cyl(F,ρ) to be the closed cylinder in R

d whose
top and bottom faces are respectively F+

ρ := F +ρv(F ) and F−
ρ := F −ρv(F ). The choice of v(F ) creates ambiguity

over which face of the cylinder is the top, but this ambiguity is unimportant and plays no role in the definition of the
norm. Define

slab(F,ρ) := hyp(F ) + B(0, ρ). (3.1)

Figure 3 depicts the geometric objects introduced so far.
For r > 0, which we think of as large, define the discrete cylinder d-cyl(F,ρ, r) as

d-cyl(F,ρ, r) := {
x ∈ Z

d : x/r ∈ cyl(F,ρ)
}
, (3.2)

and note that cyl(F,ρ) \ hyp(F ) consists of two connected components. The top component, which contains F+
ρ , is

denoted cyl+(F,ρ), while the bottom is denoted cyl−(F,ρ). The following sets are the top (corresponding to “+”)
and bottom (“−”) hemispheres of d-cyl(F,ρ, r):

d-hemi±(F,ρ, r) := {
x ∈ ∂∗ d-cyl(F,ρ, r) : x/r ∈ cyl±(F,ρ)

}
. (3.3)
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Fig. 3. In both graphics, the bold line is F . The set cyl(F,ρ) is depicted as a box on the left. The top and bottom faces of this box are F+
ρ and F−

ρ

respectively. The set slab(F,ρ) is on the right, and the pale line running through the center is hyp(F ).

Fig. 4. On the left, the vertex set d-hemi+(F,ρ, r) (respectively d-hemi−(F,ρ, r)) is the shaded region above (respectively below) the bold line.
On the right, the vertex sets d-face±(F,ρ, r) are the shaded regions above (+) and below (−) the bold line.

Define the top and bottom faces of d-cyl(F,ρ, r):

d-face±(F,ρ, r) := {
x ∈ ∂∗

[(
r · slab(F,ρ)

)∩Z
d
] : x/r ∈ cyl±(F,ρ)

}
. (3.4)

This definition of d-face looks complicated, but is conceptually even simpler than d-hemi, it is depicted on the right
side of Figure 4.

3.2. Cutsets in discrete cylinders

The vertex sets d-hemi±(F,ρ, r) and d-face±(F,ρ, r) are contained in d-cyl(F,ρ, r), which inherits a graph structure
from Z

d . We may then consider cutsets within d-cyl(F,ρ, r) separating opposite hemispheres or faces. Bond perco-
lation on Z

d induces bond percolation within d-cyl(F,ρ, r), yielding a relevant weight to assign to these cutsets. For
any cutset S, let |S|ω denote the number of open edges in S, so that |S|ω is a random variable. Define

�hemi(F,ρ, r) := min
(|S|ω : S separates d-hemi±(F,ρ, r) within d-cyl(F,ρ, r)

)
, (3.5)

and likewise define

�face(F,ρ, r) := min
(|S|ω : S separates d-face±(F,ρ, r) within d-cyl(F,ρ, r)

)
. (3.6)

The cutsets in the definition of �hemi(F,ρ, r) are anchored at the equator of the cylinder cyl(F,ρ, r), whereas the
cutsets in the definition of �face(F,ρ, r) are allowed to meet the sides of cyl(F,ρ, r) at any height relative to the
equator.

Remark 3.1. Whenever r or ρ are too small relative to F , �hemi(F,ρ, r) and �face(F,ρ, r) may not be well-defined.
Say the parameters r and ρ are suitable for F if the vertex sets d-hemi±(F,ρ, r) and d-face±(F,ρ, r) are non-empty,
and if the vertex sets d-face±(F,ρ, r) are a Euclidean distance of at least 100d . When ρ and r are suitable for F ,
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define �hemi(F,ρ, r) and �face(F,ρ, r) as in (3.5) and (3.6) respectively. Otherwise define these random variables to
be zero.

To study cutsets within large discrete boxes, we specialize the above construction to cylinders based at squares.
A square in R

d is the isometric image of [−1,1]d−1 ×{0}. For v ∈ S
d−1, consider a square in R

d centered at 0 whose
spanning hyperplane is normal to v. In dimensions at least three, this constraint does not uniquely determine the
square, so we must assign each direction v ∈ S

d−1 a unique square to define the norm. Let S be such an assignment;
that is for each v ∈ S

d−1, S(v) is a square in R
d centered at 0 with hyp(S(v)) normal to v. Refer to S as the chosen

orientation.
The value of βp,d in a given direction will not depend on S (as we show in Proposition 3.4). However, later proofs

are simplified by building βp,d from a chosen orientation varying nicely over the sphere. Throughout this subsection
and the next, treat S as given. The random variables used to define βp,d are

X(x, v, r) := �hemi
(
S(v) + x,1, r

)
. (3.7)

The final observation of this subsection is that the expected value of these random variables is not too sensitive to
where the cylinder is centered.

Lemma 3.2. Let d ≥ 2. There is a positive constant c(d) so that for all p ∈ [0,1], x ∈ R
d , v ∈ S

d−1 and r > 0,

EpX
(
x, v, r + d1/2)≤ EpX(0, v, r) + c(d)rd−2. (3.8)

Proof. The idea of this proof is captured in Figure 5. It is intuitive that by starting with an anchored cutset for the
smaller box and adding a microscopic ring of edges around the equator of this box, we produce an anchored cutset
in a slightly larger box. This is indeed the case, though we are careful to show in the next lemma that patching these
edge sets together truly is a cutset in the larger box.

Let x ∈ R
d and v ∈ S

d−1. Choose x′ ∈ Z
d so that |x − x′|∞ ≤ 1. For notational ease, make the following abbrevi-

ations within this proof and the next.

cyl
(
x′) := r cyl

(
S(v) + x′,1

)
, cyl(x) := (

r + d1/2) cyl
(
S(v) + x,1

)
, (3.9)

hyp(x) := hyp
((

r + d1/2)(S(v) + x
))

. (3.10)

Thus, cyl(x′) is the slightly larger box with integer center containing cyl(x′). Let A be the microscopic ring of edges,
formally the collection of edges in Z

d having non-empty intersection with the neighborhood

N5d

((
cyl(x) \ cyl

(
x′))∩ hyp(x)

)
. (3.11)

Fig. 5. The inner box is cyl(x′), the outer box is cyl(x), and the darker shaded region is the neighborhood (3.11) used to define A. The thin discrete
interface is the cutset E.
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From the construction of A, there is c(d) > 0 with |A| ≤ c(d)rd−2. This is because (3.11) is a microscopic thick-
ening of a (d − 2)-dimensional set. We now choose a cutset in the smaller cylinder. For notational clarity, make the
following abbreviations.

d-cyl
(
x′) := d-cyl

(
S(v) + x′,1, r

)
, (3.12)

d-hemi±
(
x′) := d-hemi±

(
S(v) + x′,1, r

)
, (3.13)

d-cyl(x) := d-cyl
(
S(v) + x,1, r + d1/2), (3.14)

d-hemi±(x) := d-hemi±
(
S(v) + x,1, r + d1/2). (3.15)

Let E = E(ω) be a minimal cutset separating d-hemi±(x′) within d-cyl(x′). We claim the edges in A ∪ E which lie
in d-cyl(x) separate d-hemi±(x) in d-cyl(x). Assuming this, we have

X
(
x, v, r + d1/2)≤X

(
x′, v, r

)+ c(d)rd−2, (3.16)

and the lemma is proved upon taking expectations as x′ ∈ Z
d . �

We now carefully show that the patching of edge sets produces a cutset in the larger box. We appeal to the following
argument at several points in the future without repeating details.

Lemma 3.3. In the proof of the preceding lemma, the edges of A ∪ E contained in d-cyl(x) separate d-hemi±(x) in
d-cyl(x).

Proof. Adopt the notation from the proof of Lemma 3.2. It suffices to show that any Z
d -path joining d-hemi±(x)

within d-cyl(x) uses an edge of A ∪ E(ω). Let y± ∈ d-hemi±(x), and let γ be a simple path from y− to y+ using only
edges of d-cyl(x). If γ does not pass through a vertex of ∂∗ d-cyl(x′), γ lies entirely within cyl(x) \ cyl(x′), in which
case γ must use an edge of A. We may then suppose that γ passes through a vertex of ∂∗ d-cyl(x′) and consider several
cases.

Case (i): Suppose that the last vertex z+ of d-cyl(x′) used by γ lies within d-hemi−(x′). Let γ ′ denote the subpath
of γ connecting z+ to y+, and observe that γ ′ is contained within cyl(x) \ cyl(x′). As γ ′ starts either in the bottom
half of cyl(x) or in the neighborhood defined in (3.11), γ ′ must use an edge in A.

Case (ii): Suppose that the first vertex z− of d-cyl(x′) used by γ lies in d-hemi+(x′). Using the same reasoning as
in Case (i), we see that γ must use an edge in A between y− and z−.

Case (iii): We may now suppose z± ∈ d-hemi±(x′). Let z be the vertex of d-hemi−(x′) used last by γ , and consider
the subpath γ ′ of γ joining z to z+. If γ ′ is contained completely within d-cyl(x′), then γ ′ uses an edge of E(ω). On
the other hand, if γ ′ is not contained in d-cyl(x′), we may assume the vertex following z in the path γ ′ lies outside of
d-cyl(x′), else γ ′ would either use an edge of E(ω), or would not use z last among all vertices of d-hemi−(x′). Under
this assumption, γ ′ leaves d-cyl(x′) at the vertex z, and only returns to d-cyl(x′) at some vertex z′ ∈ d-hemi+(x′). Along
the subpath γ ′′ of γ ′ joining z with z′, all intermediate vertices lie in cyl(x) \ cyl(x′), and γ ′′ uses an edge of A. �

3.3. Defining the norm

To define βp,d as quickly as possible, we use a subadditivity argument taken from Rossignol and Théret (see Sec-
tion 4.3 of [48]).

Proposition 3.4. Let d ≥ 2. For all v ∈ S
d−1, the limit

βp,d(v) := lim
n→∞

EpX(0, v, n)

(2n)d−1
(3.17)

exists and is finite. Moreover, this limit is independent of the chosen orientation S.
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Fig. 6. The small white squares are the collection {S̃i }�i=1, which are disjoint and nearly exhaust the large square nS(v). In this diagram, we draw
squares as two-dimensional objects, whereas in all previous diagrams they were drawn as one-dimensional objects.

Proof. Let n,m ∈ N with n much larger than m and both numbers larger than d . Write n = km + r for k, r ∈N∪ {0}
and r < m. Let S be the chosen orientation, and let S̃ be another assignment of unit vectors v ∈ S

d−1 to squares S̃(v)

so that v is normal to hyp(̃S(v)). Define X̃(x, v, r) using S̃ in place of S:

X̃(x, v, r) := �hemi
(̃
S(v) + x,1, r

)
. (3.18)

Choose a finite collection {S̃i}�i=1 of translates of (m + d1/2)̃S(v), each contained in nS(v), so that:
(i) The translates {S̃i}�i=1 are disjoint.

(ii) There is a positive constant c(d) so that Hd−1(nS(v) \⋃�
i=1 S̃i ) ≤ c(d)mnd−2.

(iii) � ≤ (k + 1)d−1.
Make the abbreviations

d-cyl(i) := d-cyl
(
S̃i ,m + d1/2,1

)
, (3.19)

d-hemi±(i) := d-hemi±
(
S̃i ,m + d1/2,1

)
, (3.20)

d-cyl := d-cyl
(
S(v),1, n

)
, (3.21)

d-hemi± := d-hemi±
(
S(v),1, n

)
. (3.22)

For each S̃i , let Ei be a minimal cutset in separating d-hemi±(i) within d-cyl(i). Let A be the collection of edges in
Z

d having non-empty intersection with

N5d

(
nS(v)

∖ �⋃
i=1

S̃i

)
. (3.23)

By (ii) above, there is c(d) > 0 so that |A| ≤ c(d)mnd−2. We soon take n to infinity, thus we lose no generality
supposing n is large enough so that each d-cyl(i) is contained in d-cyl, and in particular, that each Ei is contained in
the edge set of d-cyl across all configurations ω.

The argument of Lemma 3.3 shows that the edges A ∪ (
⋃�

i=1 Ei) lying in d-cyl separate d-hemi± in d-cyl. Though
there are more boxes in this case, the complexity of the argument does not go up: we can always reduce to the case
that our simple path γ last uses any vertex of d-hemi−(i) for all i, and we may also assume γ uses a vertex within
some d-hemi+(j) at a later point. Between these two points, we find that we must either use an edge in A, or an edge
in one of the Ei . Thus,

X(0, v, n) ≤
�∑

i=1

�hemi
(
S̃i ,m + d1/2,1

)+ c(d)mnd−2. (3.24)
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The chosen orientation thus far has been arbitrary, so the preceding lemma also applies to X̃(0, v, n). Take expectations
of both sides in (3.24) and apply Lemma 3.2 to each term in the sum of (3.24), using the bound � ≤ (k + 1)d−1 from
(iii).

EpX(0, v, n) ≤ �EpX̃(0, v,m) + �c(d)md−2 + c(d)mnd−2 (3.25)

≤ (k + 1)d−1
EpX̃(0, v,m) + (k + 1)d−1c(d)md−2 + c(d)mnd−2. (3.26)

Divide through by nd−1:

EpX(0, v, n)

nd−1
≤ (k + 1)d−1EpX̃(0, v,m)

nd−1
+ (k + 1)d−1md−2c(d)

nd−1
+ c(d)m

n
(3.27)

≤
(

k + 1

k

)d−1

kd−1 · EpX̃(0, v,m)

nd−1
+
(

k + 1

k

)d−1(
k

n

)d−1

md−2c(d) + c(d)m

n
(3.28)

≤
(

k + 1

k

)d−1
EpX̃(0, v,m)

md−1
+
(

k + 1

k

)d−1
c(d)

m
+ c(d)m

n
. (3.29)

First take the lim sup of both sides in n,

lim sup
n→∞

EpX(0, v, n)

nd−1
≤ EpX̃(0, v,m)

md−1
+ c(d)

m
, (3.30)

and then the lim inf of both sides in m:

lim sup
n→∞

EpX(0, v, n)

nd−1
≤ lim inf

m→∞
EpX̃(0, v,m)

md−1
, (3.31)

and the proof is complete upon dividing both sides by 2d−1: setting S̃ ≡ S gives us the existence of the limit in
question, and interchanging S̃ and S in the above argument tells us this limit does not depend on the chosen orientation.
The finiteness of this limit can be seen as follows: given a direction v ∈ S

d−1, the collection of edges intersecting
the neighborhood N5d(nS(v)) forms a cutset in d-cyl(S(v),1, n) separating d-hemi±(S(v),1, n) and this cutset has
cardinality bounded above by c(d)nd−1 for some positive constant c(d) not depending on the direction. �

We immediately deduce that βp,d inherits the symmetries of Zd .

Corollary 3.5. Let d ≥ 2. For all v ∈ S
d−1 and for all linear transformations L : Rd → R

d such that L(Zd) = Z
d ,

we have βp,d(Lv) = βp,d(v).

Proof. Let v ∈ S
d−1, and let S be the chosen orientation. Then

S̃(v) := L−1S(Lv) (3.32)

is a rotation of S(v) contained in hyp(S(v)). From the preceding Proposition 3.4, we know

lim
n→∞

Ep�hemi(̃S(v),1, n)

(2n)d−1
= lim

n→∞
EpX(0, v, n)

(2n)d−1
. (3.33)

Moreover, because L induces a graph automorphism of Zd , we know Ep�hemi(̃S(v),1, n) = EpX(0,Lv,n), so that

lim
n→∞

EpX(0,Lv,n)

(2n)d−1
= lim

n→∞
EpX(0, v, n)

(2n)d−1
, (3.34)

as desired. �
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3.4. The chosen orientation and properties of βp,d

Defining βp,d using cylinders based at squares (instead of discs, for instance) allows us to execute subadditivity
arguments with ease. There is a tradeoff between the tidiness of these arguments and the artificial nature of the chosen
orientation; we feel we have taken the route which is ultimately cleanest. Part of this tradeoff is that S must vary over
most of the sphere in a Lipschitz way. Given an S and A ⊂ S

d−1, say S is nicely varying over A if there is M(d) > 0
so that S satisfies

dH

(
S(v),S(w)

)≤ Mε (3.35)

whenever |v − w|2 < ε and v,w ∈ A. Here dH is defined in (2.9). For S nicely varying on S
d−1, one can show the

functions v �→ EpX(0, v, n)/(2n)d−1 converge uniformly to βp,d , allowing us to prove concentration estimates in
Section 4.

For topological reasons (the hairy ball theorem) it is not in general possible to have S vary nicely over the entire
sphere. However, it will suffice to work with S varying nicely over the upper and lower hemispheres of Sd−1. Introduce
the closed upper hemisphere S

d−1+ := S
d−1 ∩ {x ∈ R

d : xd ≥ 0}. A corollary of Proposition A.16 is that we may first
define S over Sd−1+ so that S is nicely varying over Sd−1+ . With such S defined on the upper hemisphere, extend the
definition of S to the rest of Sd−1 in a natural way by reflection. This yields S which varies nicely over Sd−1+ and
S

d−1 \ Sd−1+ . Henceforth we suppose S has these two properties.

Proposition 3.6. Let d ≥ 2, p > pc(d) and suppose S varies nicely over Sd−1+ and S
d−1 \ Sd−1+ . Then the functions

v �→ EpX(0, v, n)/(2n)d−1 converge uniformly to βp,d .

Proof. Let ε > 0, Let v,w ∈ S
d−1+ be such that |v − w|2 < ε. Let us fix some notation:

cyl(v) := n cyl
(
S(v),1

)
, (3.36)

d-cyl(v) := d-cyl
(
S(v),1, n

)
, (3.37)

d-hemi±(v) := d-hemi±
(
S(v),1, n

)
, (3.38)

cyl(w) := ⌈
n(1 + Mε)

⌉
cyl
(
S(w),1

)
, (3.39)

d-cyl(w) := d-cyl
(
S(w),1,

⌈
n(1 + Mε)

⌉)
, (3.40)

d-hemi±(w) := d-hemi±
(
S(w),1,

⌈
n(1 + Mε)

⌉)
. (3.41)

Let E be a minimal cutset separating d-hemi±(v) in d-cyl(v). By the hypothesis on S, cyl(v) ⊂ cyl(w), and E is
contained in the edge set of d-cyl(w). As before, we use E in conjunction with a small collection of edges to produce
a cut separating the hemispheres of d-cyl(w). We actually use two other collections of edges to do this.

Writing hyp(w) for hyp(�n(1 + Mε)�S(w)), we define the edge set A as in Lemma 3.2 to be the edges of Z
d

intersecting the neighborhood

N5d

((
cyl(w) \ cyl(v)

)∩ hyp(w)
)
. (3.42)

Likewise, let B be the collection of edges having non-empty intersection with

N5d

(
∂ cyl(v) ∩ slab

(
S(v), nMε

))
. (3.43)

Here we suppose that ε is small enough so that slab(S(v), nMε) does not contain the top and bottom faces of the
cube cyl(v). The neighborhood (3.43) is thus slight thickening of an equatorial band of height nMε in ∂ cyl(v), and it
follows that |B| ≤ c(d)Mεnd−1 for some c(d) > 0.

The neighborhood (3.42) forms a bridge between the neighborhood (3.43) defining B and the equator of the larger
cube cyl(w). By construction, we also have |A| ≤ c(d)Mεnd−1 for some c(d) > 0. Figure 7 illustrates the cutset E

with the edge sets A and B .
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Fig. 7. The cutset E in the smaller cube cyl(v) is central. At the equator of cyl(v), this cutset meets with the edge set B , the lightly shaded regions.
B is joined to the equator of the larger cube cyl(w) by A, the darker shaded regions.

The edges of the union E ∪ A∪ B contained in d-cyl(w) form a cutset separating the hemispheres d-hemi±(w). The
argument for this is nearly identical to the proof of Lemma 3.3. Indeed, we are looking at nested cubes, with the only
difference that one is tilted slightly relative to the other. This tilt is why B is introduced. Thus,

X
(
0,w,

⌈
n(1 + Mε)

⌉)≤ X(0, v, n) + c(d)Mεnd−1, (3.44)

so that by taking expectations,

EpX(0,w, �n(1 + Mε)�)
(2�n(1 + Mε)�)d−1

≤ EpX(0, v, n)

(2n)d−1
+ c(d)Mε. (3.45)

Taking n → ∞, we have shown when v,w ∈ S
d−1+ satisfy |v − w|2 < ε,∣∣βp,d(v) − βp,d(w)

∣∣< c(d)Mε. (3.46)

A symmetric argument shows the same bounds hold when v,w ∈ S
d−1 \ Sd−1+ and |v − w|2 < ε.

Choose a finite collection of unit vectors {vi}mi=1 (with m = m(ε)), so that for any v ∈ S
d−1+ , there is vi ∈ S

d−1+
with |v − vi |2 < ε, and if v ∈ S

d−1 \ Sd−1+ , there is vi ∈ S
d−1 \ Sd−1+ with |v − vi |2 < ε. Take N large enough so that

whenever n ≥ N , for each i,∣∣∣∣EpX(0, vi, n)

(2n)d−1
− βp,d(vi)

∣∣∣∣< ε. (3.47)

Let v ∈ S
d−1 and take vi in the same hemisphere so that |v − vi |2 < ε. Apply (3.45) twice:

EpX(0, vi, ��n(1 + Mε)�(1 + Mε)�)
(2��n(1 + Mε)�(1 + Mε)�)d−1

− c(d)Mε ≤ EpX(0, v, �n(1 + Mε)�)
(2�n(1 + Mε)�)d−1

(3.48)

≤ EpX(0, vi, n)

(2n)d−1
+ c(d)Mε. (3.49)

By (3.46), we have

βp(v) − ε − 2c(d)Mε ≤ EpX(0, v, �n(1 + Mε)�)
(2�n(1 + Mε)�)d−1

≤ βp(v) + ε + 2c(d)Mε, (3.50)

which establishes the desired uniform convergence. �
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Extend βp,d to a function on all of Rd via homogeneity; for x ∈ Rd define

βp,d(x) :=
{

|x|2βp,d(x/|x|2), |x|2 > 0,

0, |x|2 = 0.
(3.51)

Proposition 3.7. For d ≥ 2 and p > pc(d), the function βp,d : Rd → [0,∞) defines a norm on R
d .

Proof. The proof of Proposition 11.6 in [15] (or Proposition 4.5 of [48]) tells us that βp,d satisfies the weak triangle
inequality. By Corollary 11.7 of [15], βp,d is a convex function on R

d . To show non-degeneracy of βp,d , it suffices
to show non-degeneracy in the cardinal directions. By Corollary 3.5, it suffices to show non-degeneracy in a single
cardinal direction.

This non-degeneracy is a consequence of Theorem 7.68 in [32], for instance: within a large axis-parallel cube,
with high probability, there are at least cnd−1 edge-disjoint open paths between the top and bottom faces, for some
c(p, d) > 0. Menger’s theorem converts this fact into a high probability lower bound on the size of a minimal cut
separating opposing faces of this cube. �

Remark 3.8. That βp,d is a norm allows us to define the associated surface energy Ip,d , as in Section 2, as well as
the unit Wulff crystal Ŵp,d , which is the unit ball in the norm dual to βp,d . Define the Wulff crystal Wp,d to be the
dilate of Ŵp,d about the origin so that Ld(Wp,d) = 2d/d!. The Wulff crystal Wp,d is the limit shape appearing in
Theorem 1.2. So that this theorem makes sense, we must know that Wp,d is contained in [−1,1]d .

Lemma 3.9. For d ≥ 2 and p > pc(d), the Wulff crystal Wp,d is contained in [−1,1]d .

Proof. By Corollary 3.5, the unit Wulff crystal Ŵp,d satisfies

cB1 ⊂ Ŵp,d ⊂ cB∞ (3.52)

for some c > 0, where B1 and B∞ respectively denote unit �1- and unit �∞-balls in R
d centered at the origin. The

claim follows from the fact that Ld(B1) = 2d/d!. �

Remark 3.10. We may use Ip,d to define an analogous notion of conductance in the continuum: for E ⊂R
d a set of

finite perimeter, we define the conductance of E as Ip,d(E)/θp(d)Ld(E).

4. Concentration estimates for βp,d

We now derive concentration estimates for the random variables used to define βp,d , following an argument of Zhang
in Section 9 of [58]. We use results from his paper in conjunction with the following concentration estimate due to
Talagrand.

Theorem 4.1 (Talagrand [50], Section 8.3). Let (V,E) be a finite graph with {Xe}e∈E a collection of iid Bernoulli(p)
random variables. Let S denote a family of sets of edges and for S ∈ S , let XS := ∑

e∈S Xe. Let ZS := infS∈S XS ,
and let MS be a median of ZS . There is c(p) > 0 so that for all u > 0,

Pp

(|ZS − MS | ≥ u
)≤ 4 exp

(
−c min

(
u2

α
,u

))
, (4.1)

where α = supS∈S |S|.

Remark 4.2. The random variables �hemi and �face are easily expressed as ZS for some family of edge sets S , but
use of Theorem 4.1 requires control over the size of the largest edge set in S through the term α. We must then control
the size of the largest minimal cut separating opposing hemispheres (or faces) of a cube.
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Remark 4.3. The chosen orientation S, introduced in the previous section, has been fixed since the beginning of
Section 3.4. Following Zhang in [58], we use Theorem 4.1 to prove concentration for a variant of the X(0, v, n).

Let γ > 0, and let Sn,v(γ ) be the family of cutsets in d-cyl(S(v),1, n) satisfying |S| ≤ γ (2n)d−1, and which

separate d-hemi±(S(v),1, n). Define Z
(γ )
n,v (ω) := infS∈Sn(γ ) |S|ω , and apply Theorem 4.1 to Z

(γ )
n,v , using the bound

α ≤ γ (2n)d−1.

Proposition 4.4. Let ε, γ > 0. There are c1(p, γ, ε), c2(p, γ, ε) > 0 so that for all v ∈ S
d−1 and n ≥ 1

Pp

( |Z(γ )
n,v −EpZ

(γ )
n,v |

(2n)d−1
≥ ε

)
≤ c1 exp

(−c2n
(d−1)/3). (4.2)

Proof. We follow the argument at the beginning of Section 9 in [58]. Write A = A(n) := (2n)d−1 for the Hd−1-
measure (or “area”) of the square nS(v). Let M

(γ )
n,v be a median of Z

(γ )
n,v . Then,∣∣EpZ

(γ )
n,v − M

(γ )
n,v

∣∣≤ Ep

∣∣Z(γ )
n,v − M

(γ )
n,v

∣∣ (4.3)

≤
�A2/3�∑
j=1

Pp

(∣∣Z(γ )
n,v − M

(γ )
n,v

∣∣≥ j
)+

∞∑
j=�A2/3�

Pp

(∣∣Z(γ )
n,v − M

(γ )
n,v

∣∣≥ j
)
. (4.4)

Apply Theorem 4.1 with α ≤ γA to the right-most sum above:

∣∣EpZ
(γ )
n,v − M

(γ )
n,v

∣∣≤ A2/3 + 4

( ∞∑
j=�A4/3�

exp

(
−c

j

γA

)
+

∞∑
j=�A2/3�

exp(−cj)

)
(4.5)

≤ A2/3 + 4

1 − exp(−c/γA)
exp

(−cA1/3/γ
)+ 4

1 − exp(−c)
exp

(−cA2/3). (4.6)

For n large depending on p and γ , |EpZ
(γ )
n,v − M

(γ )
n,v | ≤ (3/2)A2/3. Use the triangle inequality to conclude that,

Pp

(∣∣Z(γ )
n,v −EpZ

(γ )
n,v

∣∣≥ 4A2/3)≤ Pp

(∣∣Z(γ )
n,v − M

(γ )
n,v

∣∣+ ∣∣M(γ )
n,v −EpZ

(γ )
n,v

∣∣≥ 4A2/3) (4.7)

≤ Pp

(∣∣Z(γ )
n,v − M

(γ )
n,v

∣∣≥ 2A2/3) (4.8)

Use Theorem 4.1 again to complete the proof:

Pp

(∣∣Z(γ )
n,v −EpZ

(γ )
n,v

∣∣≥ 4A2/3)≤ 4 exp

(
−c min

(
4

γ
A1/3,2A2/3

))
. (4.9)

�

To use Proposition 4.4 on the X(0, v, n), we need the following input. For a percolation configuration ω, let Nn,v(ω)

denote the minimum cardinality |S| over all cutsets S in d-cyl(S(v),1, n) separating d-hemi±(S(v),1, n) such that
|S|ω = [X(0, v, n)](ω).

Proposition 4.5 (Rossignol-Théret [48], Proposition 4.2). Let d ≥ 2 and let p > pc(d). There are positive constants
γ (p,d), c1(p, d) and c2(p, d) so that for all u > 0, all v ∈ S

d−1 and all n ≥ 1,

Pp

(
Nn,v ≥ γ u and X(0, v, n) ≤ u

)≤ c1 exp(−c2u). (4.10)

Using Proposition 4.5 with Proposition 4.4, we deduce the following.



2110 J. Gold

Corollary 4.6. Let d ≥ 2, p > pc(d), v ∈ Sd−1 and let ε > 0. There are positive constants c1(p, d, ε) and c2(p, d, ε)

so that for all n ≥ 1,

Pp

( |X(0, v, n) −EpX(0, v, n)|
(2n)d−1

≥ ε

)
≤ c1 exp

(−c2n
(d−1)/3). (4.11)

Proof. As remarked at the end of the proof of Proposition 3.4, uniformly in v ∈ S
d−1 and all configurations ω,

[X(0, v, n)](ω) ≤ c(d)nd−1 for some c(d) > 0. Apply Proposition 4.5 with u = c(d)nd−1 to obtain γ (p,d) so that

Pp

(
Nn,v ≥ γ c(d)nd−1)≤ c1 exp

(−c2c(d)nd−1). (4.12)

We use this bound shortly. For this γ and for ε > 0, use Proposition 4.4 to obtain c1(p, γ, ε), c2(p, γ, ε) > 0 so that

Pp

( |X(0, v, n) −EpX(0, v, n)|
(2n)d−1

≥ ε

)
≤ Pp

(
Z

(γ )
n,v �=X(0, v, n)

)+ Pp

( |Z(γ )
n,v −EpZ

(γ )
n,v |

(2n)d−1
≥ ε

)
(4.13)

≤ Pp

(
Z

(γ )
n,v �=X(0, v, n)

)+ c1 exp
(−c2n

(d−1)/3). (4.14)

As{Z(γ )
n,v �=X(0, v, n)} ⊂ {Nn,v ≥ γ c(d)nd−1}, (4.12) implies

Pp

( |X(0, v, n) −EpX(0, v, n)|
(2n)d−1

≥ ε

)
≤ Pp

(
Nn,v ≥ γ c(d)nd−1)+ c1 exp

(−c2n
(d−1)/3) (4.15)

≤ c1 exp
(−c2c(d)nd−1)+ c1 exp

(−c2n
(d−1)/3). (4.16)

The proof is complete. �

We obtain the desired concentration estimates by combining Corollary 4.6 with Proposition 3.6. The following is
the main result of the section.

Theorem 4.7. Let d ≥ 2, p > pc(d), and let ε > 0. There are positive constants c1(p, d, ε), c2(p, d, ε) so that for all
x ∈ R

d, v ∈ S
d−1, and all r > 0,

Pp

(∣∣∣∣X(x, v, r)

(2n)d−1
− βp,d(v)

∣∣∣∣≥ ε

)
≤ c1 exp

(−c2r
(d−1)/3). (4.17)

Proof. We first prove (4.17) in the case that x = 0 and r = n ∈ N. Use Proposition 3.6 to choose n0(ε) large so that
for all v ∈ S

d−1, n ≥ n0 implies∣∣∣∣EpX(0, v, n)

(2n)d−1
− βp,d(v)

∣∣∣∣< ε/2. (4.18)

For n ≥ n0,

Pp

(∣∣∣∣X(0, v, n)

(2n)d−1
− βp,d(v)

∣∣∣∣≥ ε

)
≤ Pp

( |X(0, v, n) −EpX(0, v, n)|
(2n)d−1

+
∣∣∣∣EpX(0, v, n)

(2n)d−1
− βp,d(v)

∣∣∣∣≥ ε

)
(4.19)

≤ Pp

( |X(0, v, n) −EpX(0, v, n)|
(2n)d−1

≥ ε/2

)
, (4.20)

and (4.17) is shown to hold by applying Corollary 4.6 to the right-hand side.
Now consider general x and r ; we claim that for any r > 0 and x ∈ R

d , there is c(d) > 0 so that

X
(
x, v, �r�)− c(d)rd−2 ≤ X(x, v, r) ≤X

(
x, v, �r�)+ c(d)rd−2. (4.21)
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To see this, let A be the collection of edges having non-empty intersection with

N5d

(
rS(v) \ �r�S(v)

)
, (4.22)

and let E be a minimal cutset in d-cyl(S(v),1, �r�) separating d-hemi±(S(v),1, �r�). The now standard argument from
Lemma 3.3 tells us the edges of E ∪A contained in d-cyl(S(v),1, r) separate d-hemi±(S(v),1, r). That |A| ≤ c(d)rd−2

establishes the upper bound on X(0, v, r) in (4.21), and we obtain the lower bound through a similar procedure.
The proof of Lemma 3.2 tells us that for x ∈R

d and r > 0, there exists x′ ∈ Zd so that

X
(
x′, v, r + d1/2)− c(d)rd−2 ≤ X(x, v, r) ≤X

(
x′, v, r − d1/2)+ c(d)rd−2. (4.23)

Apply (4.21) to conclude

X
(
x′, v,

⌈
r + d1/2⌉)− c(d)rd−2 ≤ X(x, v, r) ≤X

(
x′, v,

⌊
r − d1/2⌋)+ c(d)rd−2. (4.24)

As x′ ∈ Z
d , the variables X(x′, v, �r + d1/2�) and X(x′, v, �r − d1/2�) have the same law as X(0, v, �r + d1/2�) and

X(0, v, �r − d1/2�) respectively, so concentration estimates (4.17) established in the case x = 0 and r = n ∈ N hold
for these variables as well. Within the high probability event{∣∣∣∣X(x′, v, �r + d1/2�)

(2�r + d1/2�)d−1
− βp,d(v)

∣∣∣∣< ε

}
∩
{∣∣∣∣X(x′, v, �r − d1/2�)

(2�r − d1/2�)d−1
− βp,d(v)

∣∣∣∣< ε

}
, (4.25)

and for r taken large depending on ε and d , we obtain

βp,d(v) − 3ε ≤ X(x, v, r)

(2r)d−1
≤ βp,d(v) + 3ε, (4.26)

completing the proof. �

5. Consequences of concentration estimates

We now derive important consequences of Theorem 4.7. In Section 5.1, we obtain information about the random
variables �hemi and �face for cylinders with small height, a crucial input for Section 9. In Section 5.2, we show
any polytope P ⊂ [−1,1]d satisfying Ld(P ) ≤ 2d/d! gives an upper bound on �̂n. Specializing these results to a
sequence of polytopes which are progressively better approximates of the Wulff crystal, we obtain the easier half of
Theorem 1.3.

5.1. Lower bounds for cuts in thin cylinders

We apply our concentration estimates to random variables �face for cylinders of small height. It is important to recall
the convention established in Remark 3.1. Throughout this section, adopt the notation S(x, v) := S(v) + x.

Lemma 5.1. Let d ≥ 2, p > pc(d) and let ε > 0. There exists η(p,d, ε) > 0 small and positive constants c1(p, d, ε),
c2(p, d, ε) so that for all x ∈R

d , all v ∈ S
d−1, h ∈ (0, η), and r > 0 taken sufficiently large depending on h, we have

Pp

(
�face

(
S(x, v),h, r

)≤ (1 − ε)Hd−1(rS(x, v)
)
βp,d(v)

)≤ c1 exp
(−c2r

(d−1)/3). (5.1)

Proof. Write S for S(x, v) and consider a minimal cutset E in d-cyl(S,h, r) separating d-face±(S,h, r). Recall that
S+

h and S−
h are the top and bottom faces of the cylinder cyl(S,h), and consider the collection of edges A which

intersect

N5d

(
r
(
∂ cyl(S,h) \ (S+

h ∪ S−
h

)))
. (5.2)
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The edges of E ∪ A contained in d-cyl(S,h, r) separate d-hemi±(S,h, r) within d-cyl(S,h, r), and hence also
d-hemi±(S,1, r) in the larger cylinder d-cyl(S,1, r), provided that h and r are suitable for S in the sense of Re-
mark 3.1. It is for this reason we must take r large depending on h. By construction, the cardinality of A is at most
c(d)hrd−1 for some c(d) > 0, and

X(x, v, r) ≤ �face(S,h, r) + c(d)hrd−1. (5.3)

Thus, {
�face(S,h, r) ≤ (1 − ε)Hd−1(rS)βp,d(v)

}⊂ {
X(x, v, r) ≤ (1 − ε)Hd−1(rS)βp,d(v) + c(d)hrd−1} (5.4)

⊂ {
X(x, v, r) ≤ (1 − ε/2)Hd−1(rS)βp,d(v)

}
, (5.5)

where h is chosen small depending on p,d, ε to obtain the second line directly above. We complete the proof by
applying Theorem 4.7 to the event on the second line. �

We now prove the analogue of Lemma 5.1 for cylinders of small height based at discs.

Proposition 5.2. Let d ≥ 2, p > pc(d) and let ε > 0. Given x ∈ R
d and v ∈ S

d−1, let D(x,v) be the isometric
image of the unit Euclidean ball in R

d−1 centered at x and oriented so that hyp(D(x, v)) is orthogonal to v. There is
η(p,d, ε) > 0 small and positive constants c1(p, d, ε) and c2(p, d, ε) so that for all x ∈R

d, v ∈ S
d−1, h ∈ (0, η) and

r > 0 sufficiently large depending on h, we have

Pp

(
�face

(
D(x, v),h, r

)≤ (1 − ε)Hd−1(rD(x, v)
)
βp,d(v)

)≤ c1 exp
(−c2r

(d−1)/3). (5.6)

Proof. Figure 6 captures the idea of this proof: we tile the disc with a collection of small, nearly exhaustive squares.
Let ε′ > 0, write D = D(x,v) and let D′ := {x ∈ R

d−1 : |x|2 ≤ 1}. Let ϕ : D′ → R
d be an isometry taking D′ to D

and let �k ≡ �k,d−1 be the dyadic squares in [−1,1]d−1 at scale k. Choose k ∈N large enough (depending on ε′ and
d) so that

Ld−1
(

D′ ∖ ⋃
S′∈�k,S′⊂D′

S′
)

≤ ε′Ld−1(D′), (5.7)

and enumerate the squares S′ ∈ �k with S′ ⊂ D′ as S′
1, . . . , S

′
m. The number m of these squares depends on ε′ and d .

Shrink each square slightly to form a new disjoint collection {S′′
i }mi=1 of closed squares. Specifically, S′′

i shall be the
(1 − δ)-dilate of S′

i about its center for some δ ∈ (0,1). For each i, define Si := ϕ(S′′
i ) and choose δ small enough

(also depending on ε′ and d) so that

Hd−1

(
D
∖ m⋃

i=1

Si

)
≤ 2ε′Hd−1(D). (5.8)

We arrange that the isometry ϕ is compatible with the chosen orientation, in that for each i, Si = αS(yi, v)

for some yi ∈ R
d , where α := (1 − δ)2−k . Let ε > 0, choose η = η(p,d, ε/2) as in Lemma 5.1 and let h ∈

(0, αη).
Let E be a minimal cutset separating d-face±(D,h, r) within d-cyl(D,h, r). Let Ei denote the edges of E lying

in edge set of d-cyl(Si, h, r). Each Ei separates d-face±(Si, h, r) within d-cyl(Si, h, r), so by the disjointness of the
{Si}mi=1, we have

m∑
i=1

�face(Si, h, r) ≤ �face(D,h, r), (5.9)
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and thus,

Pp

(
�face(D,h, r) ≤ (1 − ε)Hd−1(rD)βp,d(v)

)
(5.10)

≤ Pp

(
m∑

i=1

�face(Si, h, r) ≤ (1 − ε)Hd−1(rD)βp,d(v)

)
(5.11)

≤ Pp

(
m∑

i=1

�face(Si, h, r) ≤ (1 − ε)

1 − 2ε′
m∑

i=1

Hd−1(rSi)βp,d(v)

)
, (5.12)

with (5.12) following from our choice of δ and the squares S′
i . As Hd−1(rSi) is the same for each i, a union bound

gives

Pp

(
�face(D,h, r) ≤ (1 − ε)Hd−1(rD)βp,d(v)

)
(5.13)

≤
m∑

i=1

Pp

(
�face(Si, h, r) ≤

(
1 − ε

1 − 2ε′

)
βp,d(v)Hd−1(rSi)

)
(5.14)

≤
m∑

i=1

Pp

(
�face(Si, h, r) ≤ (1 − ε/2)βp,d(v)Hd−1(rSi)

)
. (5.15)

To obtain (5.15), we have taken ε′ small enough so that 1 − ε/2 > 1−ε
1−2ε′ . Thus, m and α now depend on ε and d . Use

that ϕ was chosen to be compatible with the chosen orientation S, writing each Si as αS(yi, v) for some yi . Making
this switch in (5.15), we find

Pp

(
�face(D,h, r) ≤ (1 − ε)Hd−1(rD)βp,d(v)

)
(5.16)

≤
m∑

i=1

Pp

(
�face

(
S(yi, v), h/α,αr

)≤ (1 − ε/2)βp,d(v)Hd−1(αrS(yi, v)
))

. (5.17)

Having chosen h so that h/α ≤ η, we apply Lemma 5.1 to each summand directly above, using αr in place of r and
ε/2 in place of ε in the statement of this lemma:

Pp

(
�face(D,h, r) ≤ (1 − ε)Hd−1(rD)β(v)

)≤ mc1 exp
(−c2(αr)(d−1)/3). (5.18)

To apply Lemma 5.1, r is taken large depending on h. We take αη to be the η in the statement of this proposition and
complete the proof by renaming constants and noting their dependencies. �

Until this point, we have only used the concentration estimates from Section 4 to show the random variables �face

cannot be too small. In the next subsection, we put the complementary estimates to use.

5.2. Upper bounds on �̂n, or efficient carvings of ice

A convex polytope is a compact subset of R
d which can be written as a finite intersection of closed half-spaces.

A polytope is a compact subset of Rd which may be written as finite union of convex polytopes. We do not require
polytopes to be connected subsets of Rd , but say a polytope is connected if its interior is a connected subset of Rd .
A polytope P ⊂R

d is a d-polytope if it is non-degenerate (Ld(P ) > 0).
To obtain upper bounds on �̂n, we use a polytope P to obtain a valid subgraph of Cn, controlling both the volume

and open edge boundary of this subgraph. Equivalently, we view Cn as a block of ice, and we use the dilate nP as a
blueprint for carving this block.

Our first task is to perform an efficient carving at the boundary of nP , and this is where the other side of our
concentration estimates are used. The next result allows us to work on each face of the polytope P individually. We
think of a (d − 1)-polytope σ ⊂ R

d as a face of a d-polytope P . For such σ , let vσ denote one of the unit vectors
orthogonal to hyp(σ ).
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Proposition 5.3. Let d ≥ 2, p > pc(d) and ε > 0. Let σ ⊂ Rd be a connected (d − 1)-polytope. There is a positive
constant η(p,d, ε, σ ) and another connected (d − 1)-polytope σ̃ depending on p,d, ε and σ so that:

(i) σ̃ ⊂ σ , σ̃ ∩Nη(∂σ ) =∅ and Hd−1(σ \ σ̃ ) ≤ εHd−1(σ ).
(ii) There are positive constants c1(p, d, ε, σ ) and c2(p, d, ε, σ ) so that when h ∈ (0, η) and for all r > 0 sufficiently

large depending on h,

Pp

(
�hemi(̃σ , h, r) ≥ (1 + ε)Hd−1(rσ )βp,d(vσ )

)≤ c1 exp
(−c2r

(d−1)/3). (5.19)

Proof. Let ε′ > 0, and for the parameter η > 0, define σ̃ to be the closure of σ \ N (1)
2η (∂σ ), where we recall from

Section 2.3 the notation for the �1-neighborhood of a set. Then σ̃ is a (d − 1) polytope, and because σ is connected,
we may choose η sufficiently small depending on σ and ε so that σ̃ is also connected, and so that

Hd−1(σ \ σ̃ ) ≤ ε′Hd−1(σ ). (5.20)

For such σ̃ , property (i) is already satisfied after requiring ε′ ≤ ε.
To show (ii) holds, we employ the strategy used in the proof of Proposition 5.2. Let h ≤ η, and let σ̃ ′ ⊂ R

d−1 be
a (d − 1)-polytope with an isometry ϕ : σ̃ ′ → σ̃ . Choose k ∈ N to be smallest such that 2−k < h, but large enough so
that

Ld−1
(

σ̃ ′ ∖ ⋃
S′∈�k,S′⊂σ̃ ′

S′
)

≤ ε′Ld−1(σ̃ ′), (5.21)

where, as before, �k ≡ �k,d−1 denotes the dyadic squares in [−1,1]d−1 at scale k. Enumerate such squares contained
in σ̃ ′ as S′

1, . . . , S
′
m. Let δ > 0 and dilate each S′

i about its center by a factor of (1 − δ) to produce a new, disjoint
collection {S ′′

i }mi=1 of closed squares contained in σ̃ ′. Let Si = ϕ(S′′
i ), and choose δ small enough so that

Hd−1

(
σ̃
∖ m⋃

i=1

Si

)
< 2ε′Hd−1(σ ). (5.22)

As before, write α := (1 − δ)2−k ; we lose no generality assuming σ̃ ′ and ϕ are compatible with S, so that each Si is
αS(yi, vσ ) for some yi ∈ R

d . For each i, let Ei denote a cutset in d-cyl(Si, α, r) separating d-hemi±(Si, α, r). Let A

denote the edges intersecting

N5d

(
r

(
σ̃
∖ m⋃

i=1

Si

))
(5.23)

so that |A| ≤ c(d)ε′Hd−1(rσ ) for some c(d) > 0. The now standard argument from Lemma 3.3 tells us the edges of
A ∪⋃m

i=1 Ei contained in d-cyl(̃σ , h, r) separate d-hemi±(̃σ , h, r). Here r is taken sufficiently large depending on h to
ensure this argument goes through. It is here we use that k satisfies α ≤ 2−k ≤ h. Under these conditions, we conclude

�hemi(̃σ , h, r) ≤ c(d)ε′Hd−1(rσ ) +
m∑

i=1

�hemi(Si, α, r), (5.24)

and thus,

Pp

(
�hemi(̃σ , h, r) ≥ (1 + ε)Hd−1(rσ )βp,d(vσ )

)
(5.25)

≤ Pp

(
m∑

i=1

�hemi(Si, α, r) ≥ (
1 + ε − c(p, d)ε′)Hd−1(rσ )βp,d(vσ )

)
. (5.26)
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Now choose ε′ small enough depending on p,d, ε so that 1 + ε − c(p, d)ε′ ≥ 1 + ε/2:

Pp

(
�hemi(̃σ , h, r) ≥ (1 + ε)Hd−1(rσ )βp,d(vσ )

)
(5.27)

≤ Pp

(
m∑

i=1

�hemi(Si, α, r) ≥ (1 + ε/2)

m∑
i=1

Hd−1(rSi)βp,d(vσ )

)
(5.28)

≤
m∑

i=1

Pp

(
�hemi(Si, α, r) ≥ (1 + ε/2)Hd−1(rSi)βp,d(vσ )

)
(5.29)

≤
m∑

i=1

Pp

(
X(yi, vσ ,αr) ≥ (1 + ε/2)Hd−1(αrS(yi, vσ )

)
βp,d(vσ )

)
. (5.30)

Here we have used a union bound and that each Si = αS(yi, vσ ) for some yi ∈ R
d . Applying Theorem 4.7 to each

summand on the right, we obtain

Pp

(
�hemi(̃σ , h, r) ≥ (1 + ε)Hd−1(rσ )βp(vσ )

)≤ mc1 exp
(−c2(αr)(d−1)/3), (5.31)

completing the proof. �

We now use a d-polytope P to obtain a high probability upper bound on �̂n in terms of the conductance of P .

Theorem 5.4. Let d ≥ 2 and let p > pc(d). Let P ⊂ [−1,1]d be a polytope such that Ld(P ) ≤ 2d/d!, and let ε > 0.
There exist positive constants c1(p, d, ε,P ) and c2(p, d, ε,P ) so that

Pp

(
�̂n ≥ (1 + ε)

( Ip,d(nP )

θp(d)Ld(nP )

))
≤ c1 exp

(−c2n
(d−1)/3). (5.32)

Proof. Begin by working with Pδ := (1 − δ)P for δ ∈ (0,1), so that the Euclidean distance from Pδ to ∂[−1,1]d is
positive. We choose δ carefully at the end of the argument. Let ε, ε′ > 0 and enumerate the faces of Pδ as σ1, . . . , σm,
suppressing the dependence of these faces on δ. Use Proposition 5.3, picking η depending on ε′ and on each face σi ;
for each i, we produce σ̃i so that

(1) Hd−1(σi \ σ̃i ) ≤ ε′Hd−1(σi)

(2) σ̃i ⊂ σi , σ̃i ∩Nη(∂σi) =∅ and Hd−1(σi \ σ̃i ) ≤ ε′Hd−1(σi).
(3) There are positive constants c1(p, d, ε′,P , δ) and c2(p, d, ε′,P , δ) so that if h ∈ (0, η), and if r > 0 is sufficiently

large depending on h,

Pp

(
�hemi(̃σi , h, r) ≥ (

1 + ε′)Hd−1(rσi)βp,d(vσ )
)≤ c1 exp

(−c2r
(d−1)/3). (5.33)

Assume η is small enough so that Nη(Pδ) is contained in [−1,1]d , and choose h ∈ (0, η), henceforth fixed, so that
the cylinders {cyl(̃σi , h,n)}mi=1 are disjoint. We will use Proposition 5.3 in each cylinder cyl(̃σi , h,n) to control the
open edge boundary of a subgraph of Cn, to be constructed momentarily. Before doing so, we position ourselves to
control the volume of this subgraph.

Let Q1, . . . ,Q� enumerate the dyadic cubes at scale k within [−1,1]d . Suppose these cubes are ordered so that
for �1 ≤ �2 ∈ {1, . . . , �}, the collection Q1, . . . ,Q�2 enumerates all cubes intersecting Nη(Pδ), and that Q1, . . . ,Q�1

enumerates all cubes contained in Pδ \Nη(Pδ). Take k sufficiently large and take η smaller if necessary so that

Ld

(
�2⋃

j=�1+1

Qj

)
< ε′Ld(Pδ), (5.34)
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Fig. 8. The polytope nP has six faces. Each of the boxes at the boundary of nP is one of the cyl(̃σi , h,n), and within each is the corresponding

cutset E
(i)
n . The set An is the grey outline of each corner.

and for each j ∈ {1, . . . , �}, let E (j)
n be the event that{ |C∞ ∩ nQj |

Ld(nQj )
∈ (θp(d) − ε′, θp(d) + ε′)}. (5.35)

We now construct a subgraph of Cn from P , as in Figure 8. Fix a percolation configuration ω, and for each face
σi , let E

(i)
n (ω) denote a cutset within d-cyl(̃σi , h,n) separating d-hemi±(̃σi , h,n), with |E(i)

n (ω)|ω = �hemi(̃σi , h,n) in
the configuration ω. Let An be the edges intersecting

N5d

(
n

(
∂Pδ

∖ m⋃
i=1

σ̃i

))
. (5.36)

We chose σ̃i to satisfy (2), thus |An| ≤ c(d)ε′Hd−1(∂Pδ)n
d−1 for some c(d) > 0. Define


n :=
(

m⋃
i=1

E(i)
n (ω)

)
∪ An. (5.37)

Define the vertex set Hn(ω) to be all x ∈ Cn separated from ∞ by 
n(ω). The proof of Lemma 3.3 tells us Hn(ω)

is non-empty and in fact contains every vertex x ∈ C∞ ∩ Qj for j ∈ {1, . . . , �1}. For this proof to go through, we
ensure n is large enough depending on h so that the cylinders cyl(̃σi , h,n) are suitable in the sense of Remark 3.1.
As h has been fixed and depends only on ε′ and P , this is no issue, and Hn(ω) is well-defined for all n sufficiently
large. Though Hn(ω) was defined as a collection of vertices, we now view it as a graph whose structure comes from
restricting Cn and suppress the dependence of Hn and 
n on the percolation configuration.

We now exhibit control on the volume and open edge boundary of Hn, first working within the intersection E of
the high probability events E (j)

n defined in (5.35) to control |Hn|. For all ω ∈ E ,

(
θp(d) − ε′)( �1∑

j=1

Ld(nQj )

)
− �c(d)

(
2−kn

)d−1 ≤ |Hn| ≤
(
θp(d) + ε′) �2∑

j=1

Ld(nQj ), (5.38)
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where the term subtracted on the left arises because the Qj only have disjoint interiors. For n sufficiently large
(depending on p,d, ε′,P ), we have

(
θp(d) − 2ε′) �1∑

j=1

Ld(nQj ) ≤ |Hn| ≤
(
θp(d) + ε′) �2∑

j=1

Ld(nQj ), (5.39)

and hence that(
θp(d) − 2ε′)(1 − ε′)Ld(nPδ) ≤ |Hn| ≤

(
θp(d) + ε′)(1 + ε′)Ld(nPδ), (5.40)(

θp(d) − 2ε′)(1 − ε′)(1 − δ)dLd(nP ) ≤ |Hn| ≤
(
θp(d) + ε′)(1 + ε′)(1 − δ)dLd(nP ). (5.41)

We now show that Hn is a valid subgraph of Cn when δ is chosen appropriately. On E ,

|Cn| ≥
(
θp(d) − ε′)(2n)d − �c(d)

(
2−kn

)d−1 (5.42)

≥ (
θp(d) − 2ε′)(2n)d . (5.43)

for n sufficiently large. As Ld(P ) ≤ 2d/d!, choosing δ in accordance with (5.41) so that(
θp(d) + ε′)(1 + ε′)(1 − δ)d = (

θp(d) − 2ε′), (5.44)

ensuring Hn is a valid subgraph of Cn within E . Defining δ this way implies δ → 0 as ε′ → 0.
Not only have we shown Hn is valid within a high probability event, we also have exhibited a lower bound on |Hn|.

To bound �̂n, it then suffices to bound |∂ωHn| from above. The construction of Hn, guarantees ∂ωHn ⊂ 
n. Using
the disjointness of the cylinders cyl(̃σi , h,n),

∣∣∂ωHn

∣∣≤ m∑
i=1

∣∣E(i)
n (ω)

∣∣
ω

+ c(d)Hd−1(∂Pδ)ε
′nd−1. (5.45)

For i ∈ {1, . . . ,m}, let F (i)
n be the event in (5.33). On the intersection F of all F (i)

n ,∣∣∂ωHn

∣∣≤ (
1 + ε′)Ip,d(nP ) + c(d)Hd−1(∂P )ε′nd−1 (5.46)

≤ (
1 + ε′ + c(p, d)ε′)Ip,d(nP ). (5.47)

Thus, on the intersection of E and F , we have

�̂n ≤
(

1 + ε′ + c(p, d)ε′

(θp(d) − 2ε′)(1 − ε′)(1 − δ)d

)Ip,d(nP )

Ld(nP )
, (5.48)

and we take ε′ small enough (recall δ = δ(ε′) goes to zero as ε′ does) so that

�̂n ≤ (1 + ε)
Ip,d(nP )

θp(d)Ld(nP )
. (5.49)

Use the bounds in Corollary A.4 on E and in Proposition 5.3 on F to conclude

Pp

(
(E ∩F)c

)≤ mc1 exp
(−c2n

(d−1)/3)+ �c1 exp
(−c2

(
2−kn

)d−1)
, (5.50)

which completes the proof, upon tracking the dependencies of � and k. �

Using Proposition A.15, Theorem 5.4 and Borel–Cantelli we deduce the following.
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Corollary 5.5. Let d ≥ 2 and let p > pc(d). Consider the Wulff crystal Wp,d corresponding βp,d , and let ε > 0. The
event below occurs Pp-almost surely:{

lim sup
n→∞

n�̂n ≤ (1 + ε)
Ip,d(Wp,d)

θp(d)Ld(Wp,d)

}
. (5.51)

Proof. Recall Ld(Wp,d) = 2d/d!. Let ε, ε′ > 0 and apply Proposition A.15 to obtain a polytope Pε′ ⊂ Wp,d with
|Ip,d(Pε′) − Ip,d(Wp,d)| < ε′ and with Ld(Wp,d \ Pε′) < ε′. Apply Theorem 5.4 to Pε′ to obtain positive constants
c1(p, d, ε,Pε′) and c2(p, d, ε,Pε′) so that

Pp

(
n�̂n ≥ (1 + ε/2)

(
1 + ε′

1 − ε′

)( Ip,d(Wp,d)

θp(d)Ld(Wp,d)

))
≤ Pp

(
n�̂n ≥ (1 + ε/2)

( Ip,d(Pε′)

θp(d)Ld(Pε′)

))
(5.52)

≤ c1 exp
(−c2n

(d−1)/3). (5.53)

Choosing ε′ sufficiently small depending on ε and applying Borel–Cantelli completes the proof. �

Corollary 5.5 is the easier half of Theorem 1.3. Before moving to the next section, we make an observation to aid in
the proof of Theorem 1.2. For K ⊂ [−1,1]d convex with non-empty interior, define the empirical measure associated
to K as

νK(n) := 1

nd

∑
x∈Cn∩nK

δx/n. (5.54)

Following the proof of Theorem 5.4, it is not difficult to deduce the following result (recall that the metric d introduced
in (2.6)).

Corollary 5.6. Let d ≥ 2, p > pc(d) and let W ⊂ [−1,1]d be a translate of Wp,d . For ε > 0, there are positive
constants c1(p, d, ε) and c2(p, d, ε) so that

Pp

(
d
(
νW (n), νW

)
> ε

)≤ c1 exp
(−c2n

d−1). (5.55)

Remark 5.7. Corollary 5.6 follows from the approximation result Proposition A.15, from the density result Corol-
lary A.4 (used as in the proof of Theorem 5.4) applied to a fine mesh of dyadic cubes and finally from the definition
of the metric d. No concentration estimates for βp,d are needed, so the proof of Corollary 5.6 is less involved than that
of Theorem 5.4, and we choose to omit it.

6. Coarse graining

Having spent the last section passing from continuous objects to discrete objects, we now move in the more diffi-
cult direction. To each Gn ∈ Gn, we associate a set of finite perimeter Pn ⊂ [−1,1]d with comparable conductance.
A natural candidate for Pn is

1

n

( ⋃
x∈V(Gn)

Q(x)

)
, (6.1)

where Q(x) is the unit dual cube correspinding to x ∈ Zd . However, the perimeter of the set in (6.1) is directly related
to n−(d−1)|∂Gn| instead of n−(d−1)|∂ωGn| and may grow with n due to vacant percolation, unless p is taken close to
one. This suggests a renormalization argument, and indeed, in the present section we clarify and modify a procedure
due to Zhang [58]. Because of the intricacy of the coarse graining is, we do not build the Pn until Section 8.

The construction works only in dimensions strictly larger than two. We comment on this in Section 7.2, and for
now we simply assume d ≥ 3 for the remainder of the paper.
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6.1. Preliminary notation

Let k be a natural number called the renormalization parameter. Given x ∈ Z
d , define the k-cube centered at x as:

B(x) := (2k)x + [−k, k]d, (6.2)

suppressing the dependence of B(x) on k to avoid cumbersome notation. Underscores are used to denote sets of k-
cubes. If G is a set of k-cubes and x ∈ V(Zd), write x ∈ G if x is contained in one of the k-cubes of G. Likewise, if
e ∈ E(Zd) is an edge, we write e ∈ G if both endpoint vertices of e lie in G.

A 3k-cube centered at x is defined as follows:

B3(x) := (2k)x + [−3k,3k]d . (6.3)

We emphasize that x lies in Z
d , thus each 3k-cube contains exactly 3d k-cubes. Two cubes B(x) and B(x′) are

adjacent if x ∼ x′, or equivalently if they share a face. Two cubes B(x) and B(x′) are ∗-adjacent if x ∼∗ x′, or
equivalently if either B(x′) ⊂ B3(x) or B(x) ⊂ B3(x

′).

6.2. Discovering a cutset

We describe Zhang’s method in general, then apply it to the Cheeger optimizers in the next section. The idea is to
form a collection of k-cubes containing ∂oGn, and then to discover within these cubes a more tame cutset separating
Gn from ∞.

Let G = G(ω) ⊂ C∞ be a finite connected graph and from G, define several sets of k-cubes:

G := {
B(x) : B(x) ∩ (G ∪ ∂oG) �=∅

}
, A := {

B(x) : B(x) ∩ ∂oG �=∅
}
. (6.4)

Figure 9 depicts a possible G and A. As G is finite, so too is G, thus the cubes B(x) not in G split into a sin-
gle infinite ∗-connected component called the ocean, labeled Q, and finitely many finite ∗-connected components
Q′(1), . . . ,Q′(u′), called ponds.

Let �Q denote the k-cubes ∗-adjacent to a cube in the ocean Q but not contained in Q. Likewise, for each pond
Q′(i), let �Q′(i) denote the k-cubes ∗-adjacent to Q′(i) but not contained in Q′(i).

Remark 6.1. The next step in Zhang’s construction is to pass to the unique configuration ω′ obtained by closing
each open edge in ∂oG. This is done while preserving both G and C∞, so that we still work with the graphs G(ω)

and C∞(ω), now with each modified by closing each open edge of ∂oG. Counterintuitively, C∞ is then a discon-
nected graph after passing to the configuration ω′. This is only a formal procedure as we eventually pass back to the
configuration ω.

Fig. 9. The black contour and its interior are ∂oG and G respectively. Notice that A, depicted by the squares covering ∂oG, is not necessarily the
boundary of G.
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Fig. 10. The graph G is the shaded region between closed curves. The connected components of cubes in the diagram are ponds or the ocean. The
left-most pond is dead, the right-most pond is live and the middle pond is almost-live. The portions of the thin curves which do not intersect any
cube represent the set bridge.

Pass to the configuration ω′. Each pond may intersect an open cluster connected to the ocean, and we emphasize
these open clusters need not be contained in C∞. A pond is live if it intersects an open cluster also intersecting the
ocean. If Q′(i) intersects an open cluster also intersecting a distinct live pond, say it is almost-live. If Q′(i) intersects
an open cluster also intersecting a distinct pond labeled as almost-live, call Q′(i) almost-live also. Thus, the label
almost-live propagates through the Q′(i) via open clusters, starting with the live ponds.

A pond is dead if it is neither live nor almost-live. Refine the collection of ponds {Q′(i)}u′
i=1 to the live and almost-

live ponds Q(1), . . . ,Q(u); Figure 10 depicts a possible configuration of ponds.
Now construct a graph called bridge which joins the live and almost-live ponds. Let C be the union of all open

clusters intersecting Q, and let Ci be the union of all open clusters intersecting the live or almost-live pond Q(i).
The components of C and Ci are not necessarily in C∞. To specify the vertices of Ci contained in Q(i) only, define
Qi := Ci ∩ Q(i), and likewise define Q := C ∩ Q. Let bridge be the remainder of these components in G:

bridge :=
[( ⋃

B(x)∈G

B(x)

)
∩
(

C ∪
(

u⋃
i=1

Ci

))]∖(
Q ∪

(
u⋃

i=1

Qi

))
. (6.5)

The set bridge inherits a graph structure from C and the Ci . Let us make an observation.

Lemma 6.2. In the configuration ω′, the vertex sets of bridge and G are disjoint, and all edges of ∂ bridge are closed,
except those joining a vertex of bridge and a vertex in some Qi or those joining a vertex of bridge with a vertex in Q.

Proof. To show bridge and G are disjoint, it suffices to show Ci ∩ G = ∅ for each i and that C ∩ G = ∅. If the
intersection of C and G were non-empty, there would then be an open path beginning from a vertex of G and ending
at a vertex contained in Q, which is impossible in the configuration ω′, as it would imply ∂G is not a cutset separating
the vertices of G from ∞. The same reasoning shows that Ci ∩ G =∅ for each i.

As C and the Ci are unions of open clusters, it is impossible that ∂C or any ∂Ci contain open edges. Due to the
construction of bridge, the only open edges present in ∂ bridge either join bridge with some vertex in the ocean Q, or
they join bridge with a vertex in Q(i) for some i. �

The coarse-grained image of bridge is the last ingredient in a cube set which will nearly contain a closed cutset.
Define

bridge := {
B(x) : B(x) contains a vertex of bridge

}
, (6.6)
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Fig. 11. This image is built from Figure 10. We have removed ∂oG and bridge from the diagram for clarity. The light-grey cubes depict �Q, the
dark-grey cubes depict the two �Q(i) and the black cubes depict bridge. The cubes adjacent to the black cubes are also in bridge, so bridge is
not necessarily disjoint from the boundary of the ponds and ocean.

and then define the cube set 
:


 := �Q ∪ bridge ∪
(

u⋃
i=1

�Q(i)

)
. (6.7)

Remark 6.3. The cube set 
 insulates G from ∞, and is depicted in Figure 11. The boundaries of the ocean and live /
almost-live ponds cover the relevant parts of ∂oG, and bridge connects these boundaries, allowing 
 to be ∗-connected.

We introduce one more piece of notation to state the central result of this section. For a k-cube B(x), define the
corresponding augmented cube as follows:

B+(x) := 2kx + [−2k − 1,2k + 1]d . (6.8)

Proposition 6.4. In the configuration ω′, the augmented cube set


+ := {
B+(x) : B(x) ∈ 


}
(6.9)

contains a closed cutset 
 which separates G from ∞.

Proof. Let γ ′ be a path from G to ∞. We show γ ′ uses a closed edge contained in 
+. We lose no generality
supposing γ ′ is simple. As G and each pond are finite sets, there is a first vertex v0 ∈ Q used by γ ′. Consider the
subpath of γ ′ starting at the beginning of γ ′ and ending at v0. Name the reversal of this subpath γ , so that γ is a path
from v0 to G. It will suffice to show γ uses a closed edge which is contained in 
+.

If the edge following v0 in γ is closed, we are happy, as this edge lies in �Q. Thus we may suppose that the edge
following v0 in γ is open, so that γ joins bridge. The path γ must connect with G. As bridge and G are disjoint (by
Lemma 6.2), and because γ eventually uses a vertex of G, γ eventually leaves bridge. If γ leaves bridge through a
closed edge, this edge lies in one of the augmented cubes corresponding to the set bridge, and the proposition holds.

We may then suppose γ first leaves bridge through an open edge. By Lemma 6.2, and because γ cannot return to
Q, γ must pass into some Qi . As γ is simple and the Qi are disjoint from G, there is a vertex v1, last among all Qi

used by γ . Let γ1 denote the subpath of γ obtained by starting from v1. If the first edge of γ1 is closed, our claim
holds as this edge lies in �Q(i) for some i. Thus we may suppose the first edge of γ1 is open, so that γ1 rejoins bridge.
However, γ1 can no longer exit bridge through a pond or through the ocean, and thus γ1 must exit bridge through a
closed edge.

This establishes that 
+ contains a closed cutset separating G from ∞. Via some deterministic method, choose a
minimal cutset within 
+ and label it 
. �
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6.3. Properties of the discovered cutset

We now derive properties of the cutset 
 and the cube set 
. We begin by showing 
 is contained in the coarse grained
image of ∂oG.

Lemma 6.5. The k-cube set 
 is contained in A.

Proof. Suppose B(x) ∈ bridge. We claim B(x) either contains a vertex of G or the endpoint vertex of an edge in ∂oG,
that is, B(x) ∈ G. If not, either B(x) ∈ Q′(i) or B(x) ∈ Q. As B(x) ∈ bridge, there is y ∈ B(x) lying in an open cluster
connected to a live or almost-live pond. Thus, if B(x) is a member of a pond, this pond is live or almost-live. Then
either y ∈ Qi for some i or y ∈ Q. Both are impossible, as we cut out such vertices in the construction of bridge, and
we conclude bridge ⊂ G.

Continue to suppose B(x) ∈ bridge. As B(x) contains y ∈ bridge ⊂ C ∪⋃i Ci , and as this union is disjoint from G,
any path γ from y to G within B(x) uses an edge in ∂G. But any y ∈ C ∪⋃i Ci is connected to ∞ via a path disjoint
from G. Thus the path γ from y to G in B(x) must actually use an edge of ∂oG, and bridge ⊂ A.

We now show �Q(i) ⊂ A for each i. Let B(x) ∈ �Q(i), so that B(x) is ∗-adjacent to a cube B(x′) ∈ Q(i). Then
B(x) either contains a vertex of G or an endpoint vertex of an edge in ∂oG, otherwise B(x) would be a member of
Q(i). If B(x) contains an endpoint vertex of an edge in ∂0G, we are done, thus we suppose B(x) contains a vertex y

of G.
Note that B(x) and B(x′) have at least one vertex z in common, and z (by virtue of lying within some Q(i)) is

connected to ∞ in via a Z
d -path disjoint from G. Any path joining y and z in B(x) then intersects ∂oG, showing

�Q(i) ⊂ A. An identical argument shows �Q ⊂ A. �

We now apply analogues of Proposition 2.1 to �Q(i) and �Q to establish the following essential result.

Lemma 6.6. The k-cube set 
 is ∗-connected.

Proof. It follows directly from Lemma 2 of Timár [55] that �Q and each �Q(i) are ∗-connected cube sets. Let D be
a connected component of bridge, and let D be the collection of k-cubes containing a vertex of D, so that D ⊂ bridge.
It follows from the construction of bridge that D either intersects �Q(i) for some i, or D intersects Q. As D is
connected in Z

d , it is immediate that coarse grained image D is ∗-connected. The set bridge is itself the union of all
such cube sets D, and it follows from the defining properties of live and almost-live ponds that 
 is ∗-connected. �

We finish the section by showing that, in the configuration ω′, each cube in 
 has one of two rare geometric
properties, defined below. Each k-cube B(x) has 2d faces σ1(x), . . . , σ2d(x), each of which is a (d − 1)-dimensional
square of side-length 2k. A surface of B(x) is a vertex set of the form σi(x) ∩ Z

d ; each k-cube B(x) possesses 2d

distinct surfaces. In the context of a 3k-cube B3(x), a surface is any surface of any of the k-cubes B(x′) ⊂ B3(x).

Definition 6.7. A k-cube B(x) is Type-I if there is an open path γ and a surface σ ∩ Z
d in B3(x) so that γ joins

a vertex in B+(x) to a vertex of ∂B3(x) ∩ Z
d , with no vertex along γ joined via another open path to σ ∩ Z

d . We
require all paths in this definition to use only edges which are internal to B3(x), that is, no edge in any path has both
endpoints in ∂B3(x).

Definition 6.8. A k-cube B(x) is Type-II if there are disjoint open paths γ1 and γ2, each joining vertices of B+(x) to
vertices in ∂B3(x), with no open path in B3(x) from any vertex in γ1 to a vertex in γ2. All paths in this definition are
required to use only edges internal to B3(x).

Figure 12 illustrates these geometric properties. Because of the requirement that all paths in the above definitions
are internal, the event that a k-cube B(x) is Type-I or Type-II does not depend on the state of any edge contained in
∂B3(x).
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Fig. 12. On the left is an illustration of what cannot happen in a Type-I cube. The dotted line is an open path joining the solid line (also an open
path) to one of the surfaces of the 3k-cube. Likewise, on the right is an illustration of what cannot happen in a Type-II cube.

Proposition 6.9. Suppose G is not contained within any 3k-cube. Then, in the configuration ω′, each k-cube of 
 is
either Type-I or Type-II.

Proof. Following Zhang, consider two cases. First suppose B(x) ∈ 
 is a member of

�Q ∪
(

u⋃
i=1

�Q(i)

)
. (6.10)

Such a B(x) is ∗-adjacent to a cube B(x′) which neither intersects G nor an endpoint vertex of ∂oG. By Lemma 6.5,
B(x) ∈ A, so that B(x) contains an endpoint vertex of ∂oG. Thus, B+(x) contains a vertex y ∈ G. There can be no
open path from any surface of B(x′) to y: such a path could not use an edge of ∂oG but could be extended to a path
from y to ∞ using no other vertices of G. On the other hand, as G is not contained in any 3k-cube, there must be an
open path from y to a vertex of ∂B3(x). We may arrange this open path uses edges internal to B3(x) by stopping it at
the first vertex of ∂B3(x) it meets. Thus in the first case, B(x) is Type-I.

In the second case, suppose B(x) is a member of

bridge
∖(

�Q ∪
(

u⋃
i=1

�Q(i)

))
, (6.11)

and let y ∈ B(x) ∩ bridge. Then y lies in some connected component D of either C or one of the Ci . The component
D cannot be contained in B3(x), otherwise one of the k-cubes ∗-adjacent to B(x) would be a member of either Q or
some Q(i). This is impossible as it would imply B(x) ∈ �Q or B(x) ∈ �Q(i) for some i. It follows that y is joined
to the the boundary of B3(x) by an open internal path (contained in D).

On the other hand, thanks to Lemma 6.5, the cube B(x) contains an endpoint vertex of an edge in ∂oG, and B+(x)

contains a vertex z ∈ G. As G is not contained in any 3k-cube, the vertex z is connected to the boundary of B3(x) by
an open internal path (in G). But D and G are disjoint, thus the corresponding paths from y and z to the boundary of
B3(x) cannot lie in the same open cluster. We conclude that in this second case, B(x) is Type-II. �

We close the section by citing that it is rare for a cube to be Type-I or Type-II when k is large.

Proposition 6.10 (Grimmet [32], Lemma 7.89 and Zhang [58], Section 3). Let d ≥ 2 and let p > pc(d). There are
positive constants c1(p, d) and c2(p, d) so that for each k-cube B(x),

Pp

(
B(x) is Type-I or Type-II

)≤ c1 exp(−c2k). (6.12)

7. Coarse graining applied

The point of applying Zhang’s construction to the Gn is that, as we will see, the associated cutset 
n has cardinality
on the order of nd−1 with high probability. The cutset 
n may be thought of as a deformation of the contour ∂oGn, and
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Fig. 13. The black contour is a close-up of the boundary of some G
(q)
n . The thicker grey contour is the associated cutset 


(q)
n . It is possible that

connected components of C∞ are bounded between these two contours (see Remark 6.1).

the vertices enclosed by this deformation form a subgraph of Fn ⊂ Cn which we flatten into a continuum set whose
perimeter is bounded by |
n|. The rescaled continuum set then has a bounded perimeter (not depending on n). This is
how we pass from Cheeger optimizers to sets of finite perimeter.

Our notion of closeness in Theorem 1.2 comes from the �1-metric, thus |Gn � Fn| must be small. Figures 9 and
13 suggests the extra volume enclosed by 
n may be substantial, for instance due to ponds trapped by 
n. These large
enclosed components are surgically removed using another application of Zhang’s construction. The boundary of Fn

is then more complicated than we first asserted: it is made of all contours created through Zhang’s construction. We
tie these contours together via an auxiliary edge set called the webbing and execute a Peierls argument to bound their
total size.

7.1. Contours

We formalize the argument sketched above. Given Gn = Gn(ω) ∈ Gn, list the connected components of Gn as
G

(1)
n , . . . ,G

(M)
n . For each G

(q)
n , let ω′

q be the unique configuration obtained from ω by closing each open edge in

∂ωG
(q)
n . Within ω′

q , apply Zhang’s construction, producing a closed cutset 

(q)
n and k-cube set 


(q)
n having the prop-

erties discussed in Section 6.3.

Remark 7.1. In light of our notation for 3k-cubes, we emphasize that each 

(q)
n is a set of k-cubes.

Let ω′ be the configuration built from ω in which all edges of ∂ωGn are closed. Given a collection of edges S, a
connected component of � of C∞ (in ω′, see Remark 6.1) is surrounded by S if every path from � to ∞ uses an edge
of S. Only the connected components of C∞ surrounded by S matter, not other open clusters. Define

ε(d) := 1 − d

(d − 1)2
, (7.1)

and observe ε(d) is positive when d ≥ 3. Within ω′, the cutsets 

(q)
n may surround other connected components of

C∞ aside from the G
(q)
n . If � is such a component, say � is large if |�| ≥ n1−ε(d), and say � is small otherwise.

Enumerate the large components L1, . . . ,Lm of C∞ surrounded by any of the cutsets 

(q)
n , but do not include any

of the G
(q)
n in this list. Likewise enumerate the small components S1, . . . , St of C∞ surrounded by any of the cutsets



(q)
n . Our notation suppresses the dependence of the Li and the Sj on n,ω and Gn. Figure 13 depicts how large and

small components may arise.
Define Fn ⊂ C∞ from Gn by filling in the small components.

Fn := Gn ∪
(

t⋃
j=1

Sj

)
. (7.2)
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Fig. 14. On the left is Gn ∈ Gn . On the right, the thick grey contours together form the edge set 
n . The inner contours arise from large components

and are of the form 
̂
(i)
n . The outer contour corresponds to Gn itself. It is natural to wonder how these contours interact; we address this question

at the start of Section 8.

We build cutsets surrounding the large components to fashion the boundary of Fn. Given a large component Li ,
let ω′

i denote the configuration in which all open edges of ∂ωLi are closed. Within ω′
i , apply Zhang’s construction,

producing a closed cutset 
̂
(i)
n separating Li from ∞, and a corresponding k-cube set 
̂

(i)
n . The edge sets 


(q)
n and


̂
(i)
n together represent the boundary of Fn, and we define:


n :=
(

M⋃
q=1



(q)
n

)
∪
(

m⋃
i=1


̂(i)
n

)
, 
n :=

(
M⋃

q=1



(q)
n

)
∪
(

m⋃
i=1


̂
(i)
n

)
. (7.3)

7.2. Webbing

We now tie the contours together using an edge set called the webbing. We think of the webbing as a one-
dimensional object because it is made up of paths; as the number of large components grows with n, the size of
the webbing becomes too large in dimension two, which is why our argument works only in dimensions three and
higher.

By, for instance, fixing an ordering of finite subsets of Zd , choose in a unique way an endpoint vertex ζq of

an edge in 

(q)
n . Do the same for each 
̂

(i)
n , calling these vertices zi . These are the endpoints of paths making up

the webbing. Let α > 0 be a parameter to be chosen later. Consider all cubes of the form �nα�x + [−�nα�, �nα�]d
intersecting [−2n,2n]d , where x ∈ Z

d . List these cubes as {Bj }�j=1, ordered so that consecutive cubes share a face.

For n sufficiently large (depending on the renormalization parameter k), all ζq and zi lie in the union of the Bj . For
each j ∈ {1, . . . , �}, let mj be the number of zi contained in the cube Bj .

In each Bj , do the following: begin with zi ∈ Bj least in our ordering of finite subsets of Zd . Pick (in some unique
way) a not necessarily open Z

d -path in Bj joining this “smallest” vertex to the next smallest zk , arranging for the
path to use the fewest edges possible. Continue building paths between the current vertex in Bj and the next smallest
within Bj until all zi in Bj are used. The union of all paths created this way is a graph Tj called a tangle. Define Tj

to be empty if mj = 0.
We link each tangle using a single long path. Begin with B1 and select zi ∈ B1 minimal in our ordering, then select

a minimal vertex from B2 and connect the two vertices by a uniquely chosen shortest path in Z
d . Do nothing when

these vertices are identical, and if at any point a cube Bj contains no zi , take instead the vertex of Zd ∩ Bj minimal
in our ordering. Continue joining consecutive vertices until the minimal vertex in the last �nα�-cube has been used.
Link this last vertex to ζ1, and then to successive ζq ’s by uniquely chosen shortest paths until we reach ζM . The union
of all paths created here is denoted string. We have suppressed the n, ω and Gn dependence of both string and the Tj .
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The webbing is

webn := string∪
(

�⋃
j=1

Tj

)
. (7.4)

To bound the size of webn, we first bound the number of large components associated to each Gn.

Lemma 7.2. Let d ≥ 3 and p > pc(d). For each Gn ∈ Gn, let m(Gn,n,ω) be the number of large components
surrounded by the 


(q)
n . Let Mn(ω) be the maximum of m(Gn) over all Gn ∈ Gn. There are positive constants

c1(p, d, k), c2(p, d, k) and c3(p, d) so that

Pp

(
Mn > c3n

d−1−1/(d−1)
)≤ c1 exp

(−c2n
1/(d−1)

)
. (7.5)

Proof. Fix Gn ∈ Gn and specialize Corollary A.2 to the setting d ≥ 3, α = 1 − ε(d): work within the high probability
event {R ≤ n}. By Lemma 6.5, all large components Li corresponding to Gn are contained in C2n. On {R ≤ n},∣∣∂ωLi

∣∣≥ cn1/(d−1), (7.6)

for each i ∈ {1, . . . ,m}. Also work in the high probability event (from Lemma A.10) that there is η3(p, d) > 0 so that
for all Gn ∈ Gn, we have |∂ωGn| ≤ η3n

d−1. Use this upper bound with (7.6) and the fact that distinct large components
have disjoint open edge boundaries to obtain

m ≤ η3

c
nd−1−1/(d−1). (7.7)

We use the estimates from Lemma A.10 and Corollary A.2 to complete the proof. �

We now deduce bounds on the number of edges in the webn.

Remark 7.3. In the following proof, we fix the parameter α (controlling the side-length of the cubes Bj ) to be 1
(d−1)

.

Proposition 7.4. Let d ≥ 3 and p > pc(d). Let Wn = Wn(ω) be the maximum of |E(webn)| taken over all Gn ∈ Gn.
There are positive constants c1(p, d, k), c2(p, d, k) and c3(p, d) so that

Pp

(
Wn > c3n

d−1)≤ c1 exp
(−c2n

1/(d−1)
)
. (7.8)

Proof. Work in the high probability event from Lemma 7.2 that the maximum number M of large components Li

across all Gn ∈ Gn is at most cnd−1−1/(d−1). Also work in the high probability event from Corollary A.9 that the
number of connected components of any Gn ∈ Gn is at most η4 > 0.

Fix Gn ∈ Gn for the rest of the proof. Consider the tangle Tj for Gn associated to the �nα�-cube Bj . Based on
our construction of each tangle, the number of edges |E(Tj )| is at most the �1-diameter of Bj times the number of zi

within Bj . Choosing constants below appropriately,

�∑
j=1

∣∣E(Tj )
∣∣≤ 8dnα

�∑
j=1

mj (7.9)

≤ c(d)mnα (7.10)

≤ c(p, d)nα+n−1−1/(d−1), (7.11)

where to obtain second line directly above, we use that each vertex zi lies in at most 2d distinct �nα�-cubes, and to
obtain the third line we used Lemma 7.2. It remains to bound |E(string)|. A shortest Zd -path between the vertices of
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two adjacent �nα�-cubes uses at most 16nα edges, and there are at most c(d)nd(1−α) cubes in total. The final paths in
the construction of string which join the vertices ζq each use at most c(d)n edges. Thus,∣∣E(string)

∣∣≤ c(d)nαnd(1−α) + η4c(d)n, (7.12)

so that upon choosing α := 1/(d − 1),∣∣E(webn)
∣∣≤ c(p, d)

[
nα+(d−1)−1/(d−1) + nα+d(1−α) + n

]
(7.13)

≤ c(p, d)nd−1. (7.14)

Use the estimates from Lemma 7.2 and from Corollary A.9 to complete the proof. �

We are finished working with �nα�-cubes. Define the coarse-grained image of each webn as

webn := {
B(x) : B(x) ∩ webn �=∅

}
(7.15)

so that each webn is a collection of k-cubes depending on n,ω and Gn. The last lemma of this subsection follows
directly from the construction of webn and from Lemma 6.6:

Lemma 7.5. For each Gn ∈ Gn, the k-cube set 
n ∪ webn corresponding to Gn is ∗-connected.

7.3. A Peierls argument

We use a Peierls argument to show that when the renormalization parameter k is taken large, each |
n| is with high
probability on the order of nd−1. We make a small observation first.

Lemma 7.6. For each Gn ∈ Gn, any edge of Zd is contained in at most (11k)d distinct edge sets among the 

(q)
n and

the 
̂
(i)
n corresponding to Gn.

Proof. Fix Gn ∈ Gn. If 

(q)
n uses e ∈ E(Zd), there is B(x) ∈ 


(q)
n so that e ∈ B+(x). By Lemma 6.5, B+ also contains

a vertex y ∈ G
(q)
n . Suppose another cutset, say 
̂

(i)
n , also uses e. Identical reasoning tells us the five-fold dilate of

B(x),

B5(x) := 2kx + [−5k,5k]d (7.16)

contains both y and a vertex z ∈ Li . If cutsets corresponding to other connected components of Gn or other Li also
use e, at least one vertex in each of these graphs must also lie in B5(x). As the components of Gn and the Li are all
disjoint, and because B5(x) contains at most (11k)d vertices, the claim holds. �

In the Peierls argument below, the renormalization parameter k is fixed once and for all.

Proposition 7.7. Let d ≥ 3 and p > pc(d). There is γ = γ (p,d) > 0 and positive constants c1(p, d) and c2(p, d) so
that

Pp

(
max

Gn∈Gn

|
n| ≥ γ nd−1
)

≤ c1 exp
(−c2n

1/(d−1)
)
. (7.17)

Proof. Let Eweb be the event from Proposition 7.4 that for all Gn ∈ Gn, the corresponding graphs webn satisfy
|E(webn)| ≤ c(p, d)nd−1. We work with a fixed Gn ∈ Gn and corresponding 
n throughout the proof, and begin
by using the bounds in Proposition 7.4 and in Lemma A.10:

Pp

(|
n| ≥ γ nd−1)≤ c1 exp
(−c2n

1/(d−1)
)+ Pp

({|
n| ≥ γ nd−1}∩ {∣∣∂ωGn

∣∣≤ η3n
d−1}∩ Eweb

)
(7.18)

≤ c1 exp
(−c2n

1/(d−1)
)+

∞∑
j=γ nd−1

Pp

({|
n| = j
}∩ {∣∣∂ωGn

∣∣≤ (η3/γ )j
}∩ Eweb

)
. (7.19)
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Take γ large depending on k,p and d so that η3/γ < [2 · 4d(11k)d(4k)d+1]−1:

Pp

(|
n| ≥ γ nd−1)≤ c1 exp
(−c2n

1/(d−1)
)

(7.20)

+
∞∑

j=γ nd−1

Pp

({|
n| = j
}∩ {∣∣∂ωGn

∣∣< [
2 · 4d(11k)d(4k)d+1]−1

j
}∩ Eweb

)
. (7.21)

Equip 
n with a graph structure: the vertices are the k-cubes in 
n, and an edge exists between two vertices B(x) and
B(y) if x ∼∗ y. The maximum degree of any vertex in this graph is 3d , so by Theorem A.11, there is a subcollection
of cubes 
′

n ⊂ 
n so that |
′
n| ≥ |
n|/4d , and whenever B(x),B(y) ∈ 
′

n, the corresponding 3k-cubes B3(x) and
B3(y) have disjoint interiors. Thus,∣∣
′

n

∣∣≥ |
n|
4d

≥ |
n|
4d(11k)d(4k)d+1

, (7.22)

as when k ≥ d , there are at most (4k)d+1 edges of Zd having an endpoint in a given augmented k-cube, and Lemma 7.6
implies each such edge lies in at most (11k)d distinct cutsets among the 


(q)
n and 
̂

(i)
n . Consider the following event:{|
n| = j

}∩ {∣∣∂ωGn

∣∣< [
2 · 4d(11k)d(4k)d+1]−1

j
}∩ Eweb. (7.23)

Within (7.23), we know from (7.22) that at most half of the cubes in 
′
n may contain an edge of ∂ωGn. Thus there is

a further subcollection 
′′
n ⊂ 
′

n so that∣∣
′′
n

∣∣≥ |
n|
2 · 4d(11k)d(4k)d+1

, (7.24)

such that each cube of 
′′
n is either Type-I or Type-II by Proposition 6.9.

Of course, 
′′
n inherits from 
′

n the property that any two B(x),B(y) ∈ 
′′
n are such that B3(x) and B3(y) have

disjoint interiors. Thus, for distinct B(x) and B(y) in 
′′
n, the event that B(x) is Type-I or Type-II is independent from

the event that B(y) is Type-I or Type-II.
Continue to work within (7.23). Write s := |
n|; on Eweb, we have |webn| ≤ c(p, d)nd−1. By Proposition 7.5,


n ∪ webn is ∗-connected, so Proposition A.12 implies there are at most

(3n)d
[
c(d)

]s+cnd−1
(7.25)

distinct possibilities for the k-cube set 
n ∪webn. The factor of (3n)d is a crude upper bound on the number of vertices

in Z
d ∩ [−n,n]d . There are at most 2s+cnd−1

ways to choose 
n from 
n ∪ webn, at most the same number of ways to
choose 
′

n from 
n and likewise for 
′′ from 
′
n. We use a union bound and aforementioned independence to obtain

Pp

({|
n| = j
}∩ {∣∣∂ωGn

∣∣< [
2 · 4d(11k)d(4k)d+1]−1

j
}∩ Eweb

)
(7.26)

≤ (3n)d
[
c(d)

]s+cnd−1[
c1 exp(−c2k)

]s/(2·4d )
. (7.27)

Above, we’ve used the lower bound on |
′′
n| in terms of s following from (7.22) and Proposition 6.10. From (7.22) we

have s ≥ j/(11k)d(4k)d+1, and as j ≥ γ nd−1, we may take γ larger if necessary, again in a way depending on k,p

and d , so that s ≥ cnd−1, giving

Pp

({|
n| = j
}∩ {∣∣∂ωGn

∣∣< [
2 · 4d(11k)d(4k)d+1]−1

j
}∩ Eweb

)
(7.28)

≤ (3n)d
[
c(d)

]2s[
c1 exp(−c2k)

]s/(2·4d ) (7.29)

Choose k large enough depending on p and d so that [c(d)]2[c1 exp(−c2k)]1/2·4d
< e−1, at which point k is fixed.

For this k,

Pp

({|
n| = j
}∩ {∣∣∂ωGn

∣∣< [
2 · 4dη4(4k)d+1]−1

j
}∩ Eweb

)≤ (3n)d exp(−s), (7.30)
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and we combine this bound with (7.20) and ( 7.22) to obtain

Pp

(|
n| ≥ γ nd−1)≤ c1 exp
(−c2n

1/(d−1)
)+

∞∑
j=γ nd−1

(3n)d exp(−s) (7.31)

≤ c1 exp
(−c2n

1/(d−1)
)+

∞∑
j=γ nd−1

(3n)d exp
(−j/

[
(11k)d(4k)d+1]). (7.32)

We choose γ sufficiently large depending on p,d and k = k(p, d) to complete the proof. �

Remark 7.8. In the proof of Proposition 7.7, the renormalization parameter k = k(p, d) has been fixed. All construc-
tions given in Sections 6 and 7 depended implicitly on this parameter.

7.4. Properties of Fn

Having exhibited control on |
n|, we now return to the Fn defined in (7.2). We asserted that 
n could be thought of as
the boundary of Fn; the next proposition justifies this. By Lemma 6.5, we can only conclude Fn ⊂ [−n− 2k,n+ 2k]d
instead of Fn ⊂ [−n,n]d . Recall the convention that for E ⊂ R

d and S ⊂ E(Zd), we say E ∩ S �= ∅ if E contains an
endpoint vertex of an edge in S.

Proposition 7.9. Let d ≥ 3 and p > pc(d). Define �(n) := �n(1−ε(d))/2d�. There are positive constants c1(p, d) and
c2(p, d) so that with probability at least

1 − c1 exp
(−c2n

(1−ε(d))/2d
)
, (7.33)

whenever Fn corresponds to Gn ∈ Gn, and whenever B = [−�(n), �(n)]d + x, for some x ∈ Z
d satisfies B ∩ Fn �= ∅

and B ∩ Fn �= B ∩ C∞, then either B ∩ 
n �= ∅, or else the three-fold dilate of B around its center intersects ∂ωGn

non-trivially.

Proof. Fix Gn ∈ Gn, and consider Fn corresponding to Gn. Let B be as in the statement of the proposition, so that
B ∩ Fn �=∅ and B ∩ Fn �= B ∩ C∞. Write B = [−�(n), �(n)]d + x for x ∈ Z

d , and define

B3 := [−3�(n),3�(n)
]d + x. (7.34)

Suppose B contains y ∈ C∞ \Fn connected to ∞ by a (not necessarily open) Zd -path γ ′ using no edges of 
n. As
B ∩ Fn �=∅, B contains some vertex z which is either a member of some G

(q)
n or some small component Sj . If γ is a

path from z to y in B , γ must use an edge of 
n, otherwise 
n would not surround some G
(q)
n or some Sj .

Thus we may suppose every vertex y ∈ (C∞ \Fn)∩B is surrounded by one of the cutsets 

(q)
n or 
̂

(i)
n . Any y with

this property lies in some large component Li . Choose z ∈ Fn ∩ B , and suppose B3 ∩ ∂ωGn = ∅, so there is no open
path from z to y in B3.

Work within the high probability event from Lemma A.8 that for each Gn ∈ Gn, every connected component of
Gn satisfies |G(q)

n | ≥ η1n
d . For all n sufficiently large, the connected component of Fn containing z is not contained

within B3. Likewise, by the largeness of each Li , and due to our choice of �(n), no Li is contained in B3.
Thus there is an open path from z to ∂∗(B3 ∩ Z

d) and an open path from y to ∂∗(B3 ∩ Z
d), and these paths are

not joined by any open path in B3. We have shown that, if B does not contain an edge of 
n, and if B3 ∩ ∂ωGn = ∅,
then B3 has the Type-II property (see Definition 6.8). Use Proposition 6.10 with a union bound (taken over all such B

centered at x ∈ Z
d ∩ [−n − 2k,n + 2k]d ) to see that with probability at most

(3n)dc1 exp
(−c2n

(1−ε(n))/2d
)
, (7.35)

there is a cube B of this form with the Type-II property. Combine this with the bounds of Lemma A.8 to complete the
proof. �
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To prepare for the contiguity argument in the next section, we demonstrate that when Fn and Gn are encoded
as measures, they roughly agree on Borel sets. In Section 2, from each Gn ∈ Gn we built the empirical measure
μn ∈ M([−1,1]d) defined in (2.5). For each Fn associated to Gn ∈ Gn, define the empirical measure μ̃n associated
to Fn similarly:

μ̃n := 1

nd

∑
x∈V(Fn)

δx/n. (7.36)

Note that μ̃n is a signed Borel measure on [−1 − 2k/n,1 + 2k/n]d .

Lemma 7.10. Let d ≥ 3 and let p > pc(d). There are positive constants c1(p, d), c2(p, d) and η3(p, d) so that for
each Borel K ⊂ [−1 − 2k/n,1 + 2k/n]d ,

P

(
max

Gn∈Gn

∣∣μn(K) − μ̃n(K)
∣∣> η3n

−ε(d)
)

≤ c1 exp
(−c2n

(d−1)/2d
)
. (7.37)

Proof. Work within the high probability event from Lemma A.10 |∂ωGn| ≤ η3n
d−1 for all Gn ∈ Gn. For each small

component Sj , the edge set ∂ωSj intersects ∂ωGn. The ∂ωSj are pairwise disjoint, thus the number t of small com-
ponents Sj is at most η3n

d−1. From the definition of a small component,

|Fn \ Gn| =
t∑

j=1

|Sj | ≤ η3n
d−ε(d). (7.38)

The lemma follows from the definitions of empirical measures for Gn (2.5) and Fn (7.36). �

8. Contiguity

We now pass from each Fn (7.2) to a continuum object through another coarse graining procedure. The emperical
measures μ̃n (7.36) associated to each Fn become flattened or homogenized into measures representing sets of finite
perimeter.

Remark 8.1. We rely heavily on the notation introduced in the previous section, in particular, we reference the large
components {Li}mi=1 defined in Section 7.1 for a given Gn ∈ Gn. We no longer use k-cubes, and the renormalization
parameter k of the last section will not come up except to say that the empirical measures μ̃n are elements of M([−1−
2k/n,1 + 2k/n]d). The parameter k has itself been fixed since the proof of Proposition 7.7.

Let us build the relevant continuum objects. Given a finite collection of edges S, define

hull(S) := {
x ∈ Z

d : any Z
d -path from x to ∞ must use an edge of S

}
, (8.1)

and recall that for x ∈ Z
d , the unit dual cube Q(x) is defined as [−1/2,1/2]d + x. For fixed Gn ∈ Gn, enumerate the

connected components of Gn as {G(q)
n }Mq=1 and for each q ∈ {1, . . . ,M}, define

Aq := {
i ∈ {1, . . . ,m} : Li is surrounded by 


(q)
n

}
. (8.2)

For each q ∈ {1, . . . ,M}, define H
(q)
n as the following collection of vertices

H
(q)
n := hull

(



(q)
n

) ∖ (⋃
i∈Aq

hull
(

̂(i)

n

))
, (8.3)
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and let Hn =⋃M
q=1 H

(q)
n . Define the polytope Pn from Hn via

Pn =
( ⋃

x∈Hn

n−1Q(x)

)
∩ [−1,1]d . (8.4)

Finally, form the measure νn = νn(ω,Gn) ∈ M([−1,1]d) representing Pn in the sense of Section 2.2: for E ⊂
[−1,1]d Borel,

νn(E) := θp(d)Ld(E ∩ Pn), (8.5)

The goal of this section is to show for each Gn, the measures μn, μ̃n and νn are all close in the metric d defined in
(2.6).

8.1. Contour and perimeter control

We thought of the edge sets 
n, defined in (7.3), as collections of contours, as in Figure 14. To prove d-closeness of
μ̃n and νn, we first examine how such contours interact with one another and rule out pathological configurations.

For a fixed Gn, consider the large components Li : each is surrounded by some cutset 

(q)
n . A large component Li

is bad if it is surrounded by 

(q)
n , with the corresponding connected component G

(q)
n of Gn surrounded by 
̂

(i)
n . If Li

is bad, subtracting the hull of 
̂
(i)
n in (8.3) from the hull of 


(q)
n removes G

(q)
n itself, and we cannot expect νn and μ̃n

to be close.

Lemma 8.2. For each Gn ∈ Gn, it is impossible for any associated large component to be bad, in the sense just
defined.

Proof. Fix Gn ∈ Gn, and suppose Li is a bad large component associated to Gn. Recall that ω′
q is the configuration

obtained from ω by closing each open edge in ∂ωG
(q)
n . As Li is surrounded by 


(q)
n , it follows that ∂oLi is a closed

cutset separating Li from ∞ in ω′
q (one must remember that the large components were defined as the connected

components of the infinite cluster after passing to ω′
q ). Back in ω, it follows that

∂oLi ∩ ∂ωLi ⊂ ∂ωG
(q)
n . (8.6)

Let us see how this gives rise to a contradiction: let y ∈ G
(q)
n . Working in the original configuration ω, consider a

simple path γ from y to ∞ within C∞, so that γ uses only open edges. We may assume that y is the only vertex of
G

(q)
n used by γ , as γ must eventually leave G

(q)
n and not return. Because G

(q)
n is surrounded by 
̂

(i)
n , γ must use an

open edge e in 
̂
(i)
n . As 
̂

(i)
n is a closed cutset in the configuration ω′

i , this open edge e must lie in ∂ωLi . We have

shown γ uses a vertex of Li , and thus γ contains an open path from Li to ∞ using no vertices of G
(q)
n , contradicting

(8.6). �

We extract another useful observation from the proof of Lemma 8.2.

Lemma 8.3. Let Gn ∈ Gn. Each large component Li corresponding to Gn is surrounded by exactly one cutset 

(q)
n

associated to a connected component G
(q)
n of Gn.

Proof. Fix Gn ∈ Gn. Each large component Li associated to Gn is surrounded by at least one of the cutsets 

(q)
n .

Suppose Li is surrounded by 

(q)
n and by 


(q ′)
n for q �= q ′. Appealing to (8.6) in the proof of Lemma 8.2, we find

∂oLi ∩ ∂ωLi ⊂ ∂ωG
(q)
n and ∂oLi ∩ ∂ωLi ⊂ ∂ωG

(q ′)
n . As Li ⊂ C∞, the edge set ∂oLi ∩ ∂ωLi is non-empty, thus

∂ωG
(q)
n ∩ ∂ωG

(q ′)
n is non-empty. But this is impossible, as distinct connected components of Gn must have disjoint

open edge boundary. �

We use Lemma 8.2 to relate Fn and Hn.
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Lemma 8.4. For each Gn ∈ Gn, the vertices of Fn are contained in Hn. Moreover, the vertex set of Fn is identically
Hn ∩ C∞.

Proof. Fix Gn ∈ Gn. We begin with Claim (1): if y ∈ Fn and y /∈ Hn, there are Li and G
(q)
n so that y is surrounded by



(q)
n and 
̂

(i)
n , with Li itself surrounded by 


(q)
n . Claim (1) follows directly from the definition of Hn: as y ∈ Fn, we

have y ∈ hull(

(q)
n ) for some q . From the definition of Hn, y /∈ Hn implies y is surrounded by some 
̂

(i)
n for i ∈ Aq ,

where we recall that Aq indexes the large components Li which are surrounded by 

(q)
n .

Suppose for the sake of contradiction there is y ∈ Fn \ Hn, and consider Li and G
(q)
n given by Claim (1). Pass to

the configuration ω′
i in which each edge of ∂ωLi is closed. In this configuration, 
̂

(i)
n consists only of closed edges.

Let � be the open cluster containing y in the configuration ω′
i , so that � is surrounded by 
̂

(i)
n .

Claim (2) is that � contains F
(q)
n , defined to be the connected component of Fn containing G

(q)
n . Let z ∈ F

(q)
n and

suppose for the sake of contradiction that z /∈ �. Let γ be a path from y to z within F
(q)
n , so that in ω, the path γ uses

only open edges. From the assumption z /∈ �, if we pass to ω′
i , we see γ uses a closed edge e, which is necessarily an

element of ∂ωLi back in ω.
As γ is a path in F

(q)
n , it joins two vertices which are either in Gn or in one of the small components Sj . But

e ∈ ∂ωLi , so an endpoint of e must also lie in Li . It is impossible for e to satisfy all these requirements. Thus, Claim
(2) holds, and consequently G

(q)
n ⊂ �. In particular, G

(q)
n is surrounded by 
̂

(i)
n , which implies through Claim (1) that

Li is bad. We apply Lemma 8.2 to conclude the vertex set of Fn is contained in Hn.
Thus, Fn ⊂ Hn ∩ C∞, and to complete the proof it remains to show the opposite containment. This is immediate

from the construction of Hn. Indeed, suppose x ∈ Hn ∩ C∞. Then x is surrounded by some 

(q)
n , and hence x is either

in G
(q)
n for some q , or x is an element of one of the large or small components (Li or Sj ) associated to Gn. It is

impossible for x to lie in any Li , as these components were excised in the construction (8.3) of Hn. �

In the last result of this subsection, we use Proposition 7.7 to bound the perimeter of each Pn.

Corollary 8.5. Let d ≥ 3 and p > pc(d). There are positive constants c1(p, d), c2(p, d) and γ (p,d) so that

Pp

(
max

Gn∈Gn

per(nPn) ≥ γ nd−1
)

≤ c1 exp
(−c2n

1/(d−1)
)
. (8.7)

Proof. Work in the event E corresponding to Proposition 7.7 that for each Gn ∈ Gn, the corresponding cutset 
n

satisfies |
n| < γnd−1. Define the polytope nP̃n as

nP̃n :=
⋃

x∈Hn

Q(x). (8.8)

Every boundary face of nP̃n has Hd−1-measure one, and these boundary faces are in one-to-one correspondence with

n. Thus, in E , the polytope nP̃n has perimeter at most γ nd−1. As nPn = nP̃n ∩ [−n,n]d , the perimeter of nPn is at
most γ nd−1 + 2d(2n)d−1, completing the proof. �

8.2. A contiguity argument

Recall the metric d introduced in (2.6) We adapt the argument of Section 16.2 of [15] to our situation to show μn and
νn are d-close with high probability.

Remark 8.6. We use another renormalization argument, now at a different scale. It is convenient to reuse notation
from Section 6. Define �(n) := �n(1−ε(d))/2d�, and suppress the dependence of on n by writing �(n) as �. Redefine
B(x) to be the �-cube (2�)x + [−�, �]d . We also work with 3�-cubes, defined as in (6.3), insofar as they are present
in the statement of Proposition 7.9.
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For δ > 0, introduce the Z
d -process {Z(δ)

x }x∈Zd , with each Z
(δ)
x the indicator function of{ |C∞ ∩ B(x)|

Ld(B(x))
∈ (θp(d) − δ, θp(d) + δ

)}
. (8.9)

Using Corollary A.4 and a careful examination of the contours defining Fn and nPn, we show μ̃n and νn are close.
Recall that ε(d) was defined in (7.1).

Proposition 8.7. Let d ≥ 3 and let p > pc(d). Let Q ⊂ [−1,1]d be an axis-parallel cube. For all δ > 0, there are
positive constants c1(p, d, δ) and c2(p, d, δ) so that

Pp

(
max

Gn∈Gn

∣∣μ̃n(Q) − νn(Q)
∣∣≥ δ

)
≤ c1 exp

(−c2n
(1−ε(d))/2d

)
. (8.10)

Proof. Fix Gn ∈ Gn, and let Fn, μ̃n, Pn and νn be the objects constructed above for this Gn. Throughout the proof,
we use bounds involving positive constants c(d), c(p, d) and so on, which may change from line to line. Let L denote
the following collection of �-cubes:

L := {
B(x) : B(x) ∩ [−n − 2k,n + 2k]d �=∅

}
, (8.11)

For each �-cube B(x), we have the bounds

μ̃n

(
n−1B(x)

)≤ c(d)

(
�

n

)d

, νn

(
n−1B(x)

)≤ c(d)

(
�

n

)d

. (8.12)

The boundary ∂Q intersects at most c(d)nd−1 cubes B(x), thus by (8.12), we have

∣∣μ̃n(Q) − νn(Q)
∣∣≤ c(d)

(
�d

n

)
+

∑
B(x)∈L

∣∣μ̃n

(
n−1B(x)

)− νn

(
n−1B(x)

)∣∣. (8.13)

Define

E1 :=
{

max
Gn∈Gn

per(nPn) < γnd−1
}
, E2 :=

{
max

Gn∈Gn

|
n| < γnd−1
}
, (8.14)

E3 :=
{

max
Gn∈Gn

∣∣∂ωGn

∣∣≤ η3n
d−1

}
, (8.15)

so that E1, E2 and E3 are respectively high probability events from Corollary 8.5, Proposition 7.7 and Lemma A.10.
Finally, let E4 be the high probability event in the statement of Proposition 7.9. Work within the intersection of E1

through E4. This allows us to think of nPn and Fn as objects with perimeters on the order of nd−1.
Motivated by E4, define L′ ⊂ L as

L′ :=
⎧⎨⎩B(x) ∈ L :

B(x) ∩ nPn =∅ or B(x) ∩ nPn = B(x)

and
B(x) ∩ Fn =∅ or B(x) ∩ Fn = B(x) ∩ C∞

⎫⎬⎭ . (8.16)

From working in E1 through E4, there are at most c(p, d)nd−1 �-cubes B(x) in L \ L′. This is especially due to the
event E4 from Proposition 7.9, which was designed for use here. Thus,

∣∣μ̃n(Q) − νn(Q)
∣∣≤ c(p, d)

(
�d

n

)
+

∑
B(x)∈L′

∣∣μ̃n

(
n−1B(x)

)− νn

(
n−1B(x)

)∣∣. (8.17)
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Define a further subcollection of boxes, L′′ ⊂ L′:

L′′ :=
⎧⎨⎩B(x) ∈ L′ :

B(x) ∩ nPn =∅ and B(x) ∩ Fn =∅

or
B(x) ∩ nPn = B(x) and B(x) ∩ Fn = B(x) ∩ C∞

⎫⎬⎭ . (8.18)

We claim L′′ = L′. To prove this, we show two of the four cases defining L′ are impossible.
Case (i): Suppose B(x) ∩ Fn = B(x) ∩ C∞ and B(x) ∩ nPn = ∅. Appealing to Lemma 8.4, as Fn ⊂ Hn, this is

impossible unless C∞ ∩ B(x) =∅, one of the two allowed options.
Case (ii): Suppose B(x) ∩ Fn = ∅ and B(x) ∩ nPn = B(x). If B(x) ∩ C∞ = ∅, we are in one of the two allowed

options, so we may assume there is y ∈ B(x) ∩ C∞. As B(x) ∩ nPn = B(x), it follows that y ∈ Hn. Thus y is
surrounded by some 


(q)
n , and either y ∈ Fn or y ∈ Li for some i. The former option is impossible by hypothesis, and

y ∈ Li for some i. By Lemma 8.3, Li is surrounded by exactly one of the 

(q)
n , and y ∈ Hn implies y ∈ H

(q)
n and

y /∈ H
(q ′)
n whenever q ′ �= q . But in the construction of H

(q)
n , the hull of 
̂

(i)
n is removed from the hull of 


(q)
n . As the

hull of 
̂
(i)
n contains Li and hence y, it is impossible that y ∈ H

(q)
n , a contradiction.

We thus conclude L′′ = L′. Replace L′ by L′′ in (8.17) and use the defining properties of L′′ with the definitions
of μ̃n and νn:

∣∣μ̃n(Q) − νn(Q)
∣∣≤ c(p, d)

(
�d

n

)
+

∑
B(x)∈L′′

∣∣μ̃n

(
n−1B(x)

)− νn

(
n−1B(x)

)∣∣ (8.19)

≤ c(p, d)

(
�d

n

)
+

∑
B(x)∈L′′

(∣∣∣∣ |C∞ ∩ B(x)|
nd

− θp(d)Ld(B(x))

nd

∣∣∣∣). (8.20)

Form one last high probability event E5 using the Z
d -process {Z(δ)

x }x∈Zd : let E5 be the event that Z
(δ)
x = 1 for all x

with B(x) ∈ L′′. By Corollary A.4, there are c1(p, d, δ), c2(p, d, δ) > 0 so that

P
(
Ec

5

)≤ c(d)ndc1 exp
(−c2n

(1−ε(d))/2d
)
. (8.21)

Working now in the intersection of E1 through E5, bound |μ̃n(Q) − νn(Q)|, continuing from (8.20):

∣∣μ̃n(Q) − νn(Q)
∣∣≤ c(p, d)

(
�d

n

)
+ ∣∣L′′∣∣ max

B(x)∈L′′

(∣∣∣∣ |C∞ ∩ B(x)|
nd

− θp(d)Ld(B(x))

nd

∣∣∣∣) (8.22)

≤ c(p, d)

(
�d

n

)
+ |L′′|

nd

(
2Ld

(
B(x)

)
δ
)

(8.23)

≤ c(p, d)

(
�d

n

)
+ c(d)δ, (8.24)

where we have used the bound |L′′| ≤ |L| ≤ c(d)(n/�)d in going from the second line to the third line directly
above. Take n sufficiently large to get |μ̃n(Q) − νn(Q)| ≤ c(p, d)δ. The proof is completed by using bounds for the
probabilities of E1, . . . ,E5. �

We combine the preceding result with Lemma 7.10 to establish d-closeness of μn and νn. The following is the
central theorem of this section.

Theorem 8.8. Let d ≥ 3, p > pc(d) and let δ > 0. There are positive constants c1(p, d, δ), c1(p, d, δ) so that

Pp

(
max

Gn∈Gn

d(μn, νn) ≥ δ
)

≤ c1 exp
(−c2n

(1−ε(d))/2d
)
. (8.25)
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Proof. Let δ > 0 and let �k ≡ �k,d denote the dyadic cubes in [−1,1]d at scale k, introduced in Section 2.2. There
is no confusion between the integer k used for dyadic scales and the renormalization parameter from Sections 6 and
7, as the latter is fixed (see Remark 8.1). For Q ∈ �k , use Lemma 7.10 and Proposition 8.7 to find positive constants
c1(p, d, δ), c2(p, d, δ) so that

Pp

(
max

Gn∈Gn

∣∣μn(Q) − νn(Q)
∣∣< δ

)
≥ 1 − c1 exp

(−c2n
(1−ε(d))/2d

)
. (8.26)

Choose j large enough so that 2−j < δ, and let Q1, . . . ,Qm enumerate all dyadic cubes at scales between 0 and
j − 1 contained in [−1,1]d . The number m of these cubes depends only on δ and d . Let Ei be the high probability
event corresponding to (8.26) for Qi , and work in E :=⋂m

i=1 Ei , so that by definition (2.6) of the metric d,

d(μn, νn) ≤
j−1∑
k=0

1

2k

∑
Q∈�k

1

|�k|
∣∣μn(Q) − νn(Q)

∣∣+ ∞∑
k=j

1

2k

∑
Q∈�k

1

|�k|
∣∣μn(Q) − νn(Q)

∣∣ (8.27)

≤ 2δ +
∞∑

k=j

1

2k

∑
Q∈�k

1

|�k|
∣∣μn(Q) − νn(Q)

∣∣. (8.28)

We control the sum directly above via crude bounds: there is c(d) > 0 so that for each dyadic cube Q, we have
μn(Q) ≤ c(d) and νn(Q) ≤ c(d). Through our choice of j , the sum in (8.28) is then bounded by c(d)δ. Thus, in E ,
we have d(μn, νn) ≤ c(d)δ. As m depends only on ε and d , the proof is completed using (8.26) with a union bound
to control the probability of Ec. �

8.3. Closeness to sets of finite perimeter

We explore consequences of Theorem 8.8 before moving to the final section. Recall from Section 2.2 that Bd is the
ball about the zero measure of radius 3d in the total variation norm. For γ, ξ > 0, define the following collection of
measures in Bd .

Pγ,ξ := {
νF : F ⊂ [−1,1]d ,per(F ) ≤ γ,Ld(F ) ≤ Ld

(
(1 + ξ)Wp,d

)}
, (8.29)

where given F ⊂ [−1,1]d Borel, the measure νF representing F is defined as in Section 2.2.

Corollary 8.9. Let d ≥ 3, p > pc(d) and let δ > 0. There are positive constants c1(p, d, δ, ξ), c2(p, d, δ, ξ) and
γ (p,d) so that

Pp

(
max

Gn∈Gn

d(μn,Pγ,ξ ) ≥ δ
)

≤ c1 exp
(−c2n

(1−ε(d))/2d
)
. (8.30)

Proof. Let δ, δ′, ξ > 0 and let γ (p,d) be as in Corollary 8.5. We first show with high probability, the measures νn lie
in Pγ,ξ , and then we apply Theorem 8.8. Work in the intersection of

E1 :=
{

max
Gn∈Gn

per(nPn) < γnd−1
}
, E2 :=

{
max

Gn∈Gn

d(μn, νn) < min
(
δ, δ′)}, (8.31)

E3 :=
{ |Cn|

(2n)d
∈ (θp(d) − δ′, θp(d) + δ′)}, (8.32)

respectively from Corollary 8.5, Theorem 8.8 and Corollary A.4. As we are in E2, for each nPn corresponding to
Gn ∈ Gn we have

θp(d)Ld(nPn) < δ′nd + |Gn| (8.33)

< δ′nd + |Cn|/d!. (8.34)
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From working in E3, we further conclude

Ld(nPn) < nd

(
δ′

θp(d)
+ 2d

d!
(

1 + δ′

θp(d)

))
(8.35)

< nd
(
Ld
(
(1 + ξ)Wp,d

))
, (8.36)

where we have taken δ′ small according to p,d and ξ . As we are in E1, we conclude νn ∈Pγ,ξ for each Gn ∈ Gn. �

The next result links d to the notion of weak convergence.

Lemma 8.10. For ζ, ζn ∈Pγ,ξ , d(ζn, ζ ) → 0 if and only if ζn converges to ζ weakly.

Proof. Let ζ, ζn ∈ Pγ,ξ ; if d(ζn, ζ ) → 0, it follows from (2.6) that ζn(Q) → ζ(Q) for each dyadic cube Q. As any
open subset U ⊂ [−1,1]d may be decomposed into a countable union of almost disjoint dyadic cubes, and as each
measure in Pγ,ξ is absolutely continuous with respect to Lebesgue measure, we conclude lim infn→∞ ζn(U) ≥ ζ(U).
By the Portmanteau theorem, ζn converges to ζ weakly.

Conversely, if ζ, ζn ∈ Pγ,ξ are such that ζn → ζ weakly, the Portmanteau theorem also tells us ζn(A) → ζ(A) for
all continuity sets A ⊂ [−1,1]d of ζ , in particular whenever A is a dyadic cube (using the absolute continuity of ζ ).
Thus d(ζn, ζ ) → 0. �

We use Lemma 8.10 to establish compactness of Pγ,ξ .

Lemma 8.11. The collection of measures Pγ,ξ is compact subset of the metric space (Bd,d).

Proof. By Banach-Alaoglu, the set Bd is compact when equipped with the topology of weak convergence. The contin-
uous functions on [−1,1]d (equipped with the supremum norm topology) form a separable space, so Bd is sequentially
compact in the topology of weak convergence. By Lemma 8.10, it suffices to show Pγ,ξ is sequentially closed.

Let {νFn}∞n=1 be a sequence of measures in Pγ,ξ converging with respect to d. Using the definition (2.6) of d, one
can show (first by approximating open sets by finite unions of dyadic cubes, and then approximating Borel sets by
open sets) that for any E ⊂ [−1,1]d Borel, the sequence Ld(E ∩ Fn) is Cauchy. Thus the indicator functions 1Fn

converge pointwise a.e. to some 1F , and the bounded convergence theorem converts this into L1-convergence.
As 1Fn → 1F in L1-sense, (2.6) implies d(νFn, νF ) → 0 as n → ∞, and it remains to check that νF ∈ Pγ,ξ . By

Fatou’s lemma and Lemma A.14,

Ld(F ) ≤ lim inf
n→∞ Ld(Fn), per(F ) ≤ lim inf

n→∞ per(Fn), (8.37)

and hence νF ∈ Pγ,ξ . �

We work with d extensively in the next section. In fact most of our effort will go towards proving the following
precursor to Theorem 1.2.

Theorem 8.12. For d ≥ 3 and p > pc(d), let Wp,d be the Wulff crystal from Theorem 1.2. Define the following subset
of M([−1,1]d):

W := {
νE : E = Wp,d + x, with Wp,d + x ⊂ [−1,1]d}. (8.38)

Pp-almost surely,

max
Gn∈Gn

d(μn,W) −−−→
n→∞ 0. (8.39)
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9. Lower bounds and main results

We prove the main theorems of the paper in this section, throughout which we assume d ≥ 3 and p > pc(d). The
strategy is as follows: first use Corollary 8.9 to anchor the empirical measures μn near (in the sense of d) measures
representing sets of finite perimeter. Whenever an empirical measure μn is close to such a measure νF , we relate the
conductance of the corresponding Gn to the conductance of the continuum set F .

The challenge is to show that when d(μn, νF ) is small, |∂ωGn| and Ip,d(nF ) are close. This is done using a
covering lemma, working locally near the boundary of F . This local perspective guides a surgery performed on ∂ωGn

to invoke concentration estimates from Section 5.1. This strategy shares much with the argument in Section 6 of [18].
In particular, we rely on the compactness of Pγ,ξ established in Lemma 8.11.

9.1. Setup, the reduced boundary and a covering lemma

Let αd denote the volume of the d-dimensional Euclidean unit ball. Given a closed Euclidean ball B(x, r) centered at
x ∈ Rd of radius r > 0 and a unit vector v ∈ Sd−1, define the lower half-ball of B(x, r) in the direction v:

B−(x, r, v) := {
y ∈ B(x, r) : (y − x) · v ≤ 0

}
. (9.1)

Definition 9.1. For F ⊂ R
d Borel, let ∇1F be the distributional derivative of the indicator function 1F . This is a

vector-valued measure whose total variation ‖∇1F ‖(Rd) is the perimeter of F . For F ⊂ R
d a set of finite perimeter,

the reduced boundary ∂∗F of F is the set of points x ∈ R
d such that (i) and (ii) hold:

(i) ‖∇1F ‖(B(x, r)) > 0 for any r > 0.
(ii) If we define

vr(x) := − ∇1F (B(x, r))

‖∇1F ‖(B(x, r))
, (9.2)

then vr(x) tends to a unit vector vF (x), called the exterior normal to F at x as r → 0.

The following covering lemma is specialized to Ip,d .

Lemma 9.2 ([15], Section 14.3). Let F ⊂ Rd be a set of finite perimeter, and let Ip,d be the surface energy defined
in (2.7) for βp,d . For δ > 0 and s ∈ (0,1/2), there is a finite collection of disjoint balls {B(xi, ri)}mi=1 with xi ∈ ∂∗F
and ri ∈ (0,1) for all i ∈ {1, . . . ,m}, each satisfying

Ld
(
F ∩ B(xi, ri) � B−

(
xi, ri , vF (xi)

))≤ δαdrd
i , (9.3)∣∣∣∣∣Ip,d(F ) −

m∑
i=1

αd−1r
d−1
i βp,d

(
vF (xi)

)∣∣∣∣∣≤ δ̃F (s), (9.4)

where δ̃F (s) := s
4Ip,d(F ).

Remark 9.3. Given a set F ⊂ [−1,1]d of finite perimeter and a ball B(x, r) with x ∈ ∂∗F arising from Lemma 9.2,
we abbreviate B−(x, r, vF (x)) as B−(x, r).

We define two global parameters appearing throughout this section. Given a collection of balls {B(xi, ri)}mi=1 as in
Lemma 9.2, define

εF := δ
m

min
i=1

αd(ri)
d , (9.5)

so that εF depends on F, δ and s. Also define

λF (s) := (1 − 2s)Ip,d(F ). (9.6)
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Remark 9.4. Given Gn ∈ Gn and a ball B(xi, ri) as in Lemma 9.2 for δ > 0 and s ∈ (0,1/2), let

E(Gn, i) := {∣∣∂ωGn ∩ nB(xi, ri)
∣∣≤ (1 − s)nd−1αd−1(ri)

d−1βp,d(vi)
}
. (9.7)

The next lemma controls the event that |∂ωGn| is too small using the events E(Gn, i).

Lemma 9.5. Suppose F ⊂ [−1,1]d is a set of finite perimeter. Let {B(xi, ri)}mi=1 be a collection of balls as in
Lemma 9.2 for δ > 0 and s ∈ (0,1/2). For each Gn ∈ Gn,

{∣∣∂ωGn

∣∣≤ λF (s)nd−1}⊂
m⋃

i=1

E(Gn, i), (9.8)

where λF (s) is defined in (9.6).

Proof. Because the balls {B(xi, ri)}mi=1 were chosen in accordance with Lemma 9.2, we combine (9.4) with the
defintion of δ̃F (s) to obtain∣∣∣∣∣Ip,d(F ) −

m∑
i=1

αd−1(ri)
d−1βp,d(vi)

∣∣∣∣∣≤ s

2

(
m∑

i=1

αd−1(ri)
d−1βp,d(vi)

)
, (9.9)

so that

λF (s) ≤ (1 − s)

(
m∑

i=1

αd−1(ri)
d−1βp,d(vi)

)
. (9.10)

Use the disjointness of the balls in {B(xi, ri)}mi=1, (9.10) and the definition (9.7) of E(Gn, i).

{∣∣∂ωGn

∣∣≤ λF (s)nd−1}⊂
{

m∑
i=1

∣∣∂ωGn ∩ nB(xi, ri)
∣∣≤ (1 − s)nd−1

m∑
i=1

αd−1(ri)
d−1βp,d(vi)

}
(9.11)

⊂
m⋃

i=1

E(Gn, i) (9.12)

We complete the proof using the definition (9.5) of εF . �

9.2. Local surgery on each ∂ωGn

In this subsection, we think of F ⊂ [−1,1]d as a fixed polytope and work with a fixed Gn ∈ Gn. Let {B(xi, ri)}mi=1 be
a collection of balls as in Lemma 9.2 for F . Also fix B(xi, ri) ∈ {B(xi, ri)}mi=1, and denote this ball as B(x, r), with
v := vF (x) ∈ S

d−1 be the exterior normal vector associated to x ∈ ∂∗F .
Let B−(x, r) be the lower half-ball associated to B(x, r) and v. Let D(x, r) be the closed equatorial disc of this

ball, so that hyp(D(x, r)) is orthogonal to v. For h > 0 small, define r ′ := (1 − h2)1/2r , and let D(x, r ′) ⊂ D(x, r)

be the closed disc of radius r ′ centered at x. Note that D(x, r ′) is built so that cyl(D(x, r ′), hr ′) ⊂ B(x, r). These
geometric objects guide a surgery we perform on ∂ωGn.

Let Jn = Jn(ω) be the open edges intersecting N5d(nD(x, r)). Closing each edge in Jn and each edge in ∂ωGn

breaks C∞ ∩ nB(x, r) into a finite number of connected components. A component � is outward if it is contained in
Gn ∩ (nB(x, r) \ nB−(x, r)) and is inward if it lies in nB−(x, r) \ Gn.

We are only interested in � containing vertices incident to edges in Jn. Enumerate all such outward components
as �+

1 , . . . ,�+
�+ , and all such inward components as �−

1 , . . . ,�−
�− . A component (outward or inward) is good if it is

contained in n cyl(D(x, r), hr ′) and is bad otherwise. Our notation suppresses the dependence of these components
on Gn, B(x, r) and F .
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Fig. 15. The thin cylinder ncyl(D(x, r ′), hr ′) is drawn as a rectangle, the central disc nD(x, r) is the bold line. On the left is Gn viewed up close.
On the right, inward and outward components are in grey (outward components point up and to the left). There are three good components and
three bad components.

Remark 9.6. Every outward component is a subgraph of Gn. Thus, outward is understood as relative to the bottom
half-ball nB−(x, r). Figure 15 illustrates the objects introduced so far. We regard outward and inward components
�±

j as subgraphs of C∞ ∩ nB(x, r), so that the edge sets E(�±
j ) are collections of open edges.

The next lemma efficiently truncates bad components. Let α ∈ [0, h/2], and given �+
j , define

slice+
j (α) := {

e ∈ E
(
�+

j

) : e ∩ [
nD(x, r) + nαr ′v

] �=∅
}
, (9.13)

where in the above intersection, the edge e is regarded as a line-segment in R
d . Thus slice+

j (α) is the set of edges in

�+
j touching a prescribed translate of nD(x, r). For an inward component �−

j , likewise define

slice−
j (α) := {

e ∈ E
(
�−

j

) : e ∩ [
nD(x, r) − nαr ′v

] �=∅
}
. (9.14)

Lemma 9.7. Let Gn ∈ Gn and B(x, r) with r ∈ (0,1) be fixed, and let �±
j denote the outward and inward components

constructed above from Gn, B(x, r) and F . Let h > 0. There is a positive constant c(d) so that for each outward
component �+

j , there is h+
j ∈ [0, h/2] so that

∣∣slice+
j

(
h+

j

)∣∣≤ c(d)
|�+

j |
nhr

, (9.15)

and for each inward component �−
j , there is h−

j ∈ [0, h/2] so that

∣∣slice−
j

(
h−

j

)∣∣≤ c(d)
|�+

j |
nhr

. (9.16)

Proof. Let �+
j be an outward component. For k ∈ {1, . . . , �nh�/2}, define αk := k/2n. We have

�nh�/2⋃
k=1

slice+
j (αk) ⊂ E

(
�+

j

)
. (9.17)

When k and k′ satisfy |k − k′|2 ≥ 10d , the edge sets slice+
j (αk) and slice+

j (αk′) are disjoint. Thus,

�nh�/2∑
k=1

∣∣slice+
j (αk)

∣∣≤ (10d)
∣∣E(�+

j

)∣∣. (9.18)
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Fig. 16. The short, bold curves are the efficiently chosen sets of open edges slice±
j

from Lemma 9.7. We have faded the portions of the bad

components which are cut off by the slice±
j

.

For at least one k ∈ {1, . . . , �nh�/2}, we must have

∣∣slice+
j (αk)

∣∣≤ c(d)
|�+

j |
nhr

, (9.19)

for some c(d) > 0, and where we have slipped r into the denominator because r ∈ (0,1).
Any αk satisfying (9.19) is at most h/2. Pick one such αk and relabel it h+

j . Analogous reasoning for inward

components gives h−
j ∈ [0, h/2] for each inward �−

j so that

∣∣slice−
j

(
h−

j

)∣∣≤ c(d)
|�−

j |
nhr

, (9.20)

completing the proof. �

Remark 9.8. We continue to use the edge sets given by Lemma 9.7 throughout this subsection, but only when working
with bad components. When �±

j is bad, define

slice±
j := slice±

j

(
h±

j

)
, (9.21)

and if �±
j is good, define slice±

j to be empty. Figure 16 depicts the edge sets slice±
j . As with the �±

j , we suppress the

dependence of the slice±
j on Gn, h > 0, B(x, r) and F .

The following is an immediate consequence of Lemma 9.7.

Corollary 9.9. Let Gn ∈ Gn, h > 0 and B(x, r) be fixed. Let slice±
j be the edge sets constructed from Gn, h > 0 and

B(x, r). There is c(d) > 0 so that

�+∑
j=1

∣∣slice+
j

∣∣+ �−∑
j=1

∣∣slice−
j

∣∣≤ c(d)

nhr

(
�+∑

j=1

∣∣�+
j

∣∣+ �−∑
j=1

∣∣�−
j

∣∣). (9.22)

Remark 9.10. Corollary 9.9 tells us that to control the total size of the slice±
j , it suffices to control the total volume

of the �±
j . At the beginning of Section 8, we built a polytope Pn whose perimeter we could bound, and whose

representative measure νn was d-close to μn. Proposition 9.11 shows the �1-distance of 1C∞∩nPn
and 1C∞∩nF is small

when d(νn, νF ) is. Proposition 9.12 controls the total volume of the �±
j when these indicator functions are close.
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Proposition 9.11. Let F ⊂ [−1,1]d be a polytope. Recall the metric d defined in (2.6) and the constant γ from
Corollary 8.5. Given Gn ∈ Gn, let Pn ⊂ [−1,1]d be the polytope defined from Gn in (8.4) with representative measure
νn. For δ > 0, there is ε(d, δ,F ) > 0 and an event E0 so that for all Gn ∈ Gn,{

d(νn, νF ) < ε
}∩

{
max

Gn∈Gn

per(Pn) ≤ γ
}

∩ E0 (9.23)

⊂ {‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤ δnd

}∩
{

max
Gn∈Gn

per(Pn) ≤ γ
}

∩ E0. (9.24)

Moreover, there are positive constants c1(p, d, δ,F ), c1(p, d, δ,F ) so that

Pp

(
Ec

0

)≤ c1 exp
(−c2n

d−1). (9.25)

Proof. Fix Gn ∈ Gn and hence Pn and νn. Let �k ≡ �k,d be the dyadic cubes in [−1,1]d at scale k ∈N. Define:

Q0 := {
Q ∈ �k : Q ∩ (∂F ∪ ∂Pn) �=∅

}
, (9.26)

and observe

‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤

∑
Q∈�k

‖1C∞∩nPn∩nQ − 1C∞∩nF∩nQ‖�1 (9.27)

≤
∑

Q∈�k\Q0

‖1C∞∩nPn∩nQ − 1C∞∩nF∩nQ‖�1

+
∑

Q∈Q0

‖1C∞∩nPn∩nQ − 1C∞∩nF∩nQ‖�1 . (9.28)

For n sufficiently large depending on k, there is c(d) > 0 so that

‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤

∑
Q∈�k\Q0

‖1C∞∩nPn∩nQ − 1C∞∩nF∩nQ‖�1 + c(d)
(
γ + per(F )

)
nd2−dk. (9.29)

Define the following collections of dyadic cubes:

Q1 := {
Q ∈ �k : Pn ∩ Q = Q

}
, (9.30)

Q2 := {
Q ∈ �k : F ∩ Q = Q

}
, (9.31)

For each Q ∈ Q1, we have C∞ ∩ nPn ∩ nQ = C∞ ∩ nQ. Likewise, for each Q ∈ Q2, we have C∞ ∩ nF ∩ nQ =
C∞ ∩ nQ. Using these observations, we conclude

‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤

∑
Q∈Q1�Q2

‖1C∞∩nPn∩nQ − 1C∞∩nF∩nQ‖�1 + c(d)
(
γ + per(F )

)
nd2−dk. (9.32)

For ε > 0 and for each Q ∈ �k , introduce the event

EQ :=
{

C∞ ∩ nQ

Ld(nQ)
∈ (θp(d)(1 − ε), θp(d)(1 + ε)

)}
, (9.33)

and let E0 be the intersection
⋂

Q∈�k EQ. Within E0,

‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤ nd2k

∣∣�k
∣∣(1 + ε)d(νn, νF ) + c(d)

(
γ + per(F )

)
nd2−dk. (9.34)
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The term 2k|�k| above comes from the definition of d. Choose k sufficiently large depending on d, δ and F so that
δ/4 ≤ c(d)(γ + per(F ))2−dk ≤ δ/2. When d(νn, νF ) < ε,

‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤ nd2k

∣∣�k
∣∣(1 + ε)d(νn, νF ) + δ

2
nd (9.35)

≤ c(d)δ−(d+1)/d
(
γ + per(F )

)(d+1)/d
(1 + ε)εnd + δ

2
nd (9.36)

≤ δnd, (9.37)

where to obtain the last line, we choose ε small depending on d, δ and F . We complete the proof by a union bound
and Corollary A.4 applied to each EQ. �

As outlined in Remark 9.10, Proposition 9.12 below will be used with Proposition 9.11 and Corollary 9.9 to control
the total size of all slice±

j constructed.

Proposition 9.12. Let Gn ∈ Gn, let F ⊂ [−1,1]d be a polytope and let B(x, r) be a ball with r ∈ (0,1) and

Ld
((

B(x, r) ∩ F
)
� B−(x, r)

)≤ δαdrd . (9.38)

Within the event{‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤ δndαdrd

}∩
{

max
Gn∈Gn

∣∣∂ωGn

∣∣≤ η3n
d−1

}
, (9.39)

there is c(d) > 0 so that for n sufficiently large depending on d, δ,F and r ,

�+∑
j=1

∣∣�+
j

∣∣+ �−∑
j=1

∣∣�−
j

∣∣≤ c(d)δndαdrd, (9.40)

where the �±
j are the outward and inward components associated to Gn and B(x, r).

Proof. Write B(x, r) as B and B−(x, r) as B− for brevity. We first handle the outward components. If �+
j is outward,

it is contained in Gn ∩ n(B \ B−). These components are pairwise disjoint, and hence by Lemma 8.4,

�+∑
j=1

∣∣�+
j

∣∣≤ ∣∣Gn ∩ n(B \ B−)
∣∣ (9.41)

≤ ∣∣C∞ ∩ nPn ∩ n(B \ B−)
∣∣ (9.42)

≤ ‖1C∞∩nPn
− 1C∞∩nF ‖�1 + ∣∣C∞ ∩ nF ∩ n(B \ B−)

∣∣. (9.43)

Take n sufficiently large depending on d,F and r , to obtain

�+∑
j=1

∣∣�+
j

∣∣≤ ‖1C∞∩nPn
− 1C∞∩nF ‖�1 + c(d)ndLd

(
(B ∩ F) � B−

)
. (9.44)

Within the event (9.39) and using the bound (9.38), we find

�+∑
j=1

∣∣�+
j

∣∣≤ δndαdrd + c(d)δndαdrd . (9.45)
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The inward components are also pairwise disjoint, and each is contained within (C∞ \ Gn) ∩ nB−:

�−∑
j=1

∣∣�−
j

∣∣≤ ∣∣(C∞ \ Gn) ∩ nB−
∣∣ (9.46)

≤ ∣∣(C∞ ∩ nPn) \ Gn

∣∣+ ∣∣(C∞ \ nPn) ∩ nB−
∣∣ (9.47)

≤ ∣∣(C∞ ∩ nPn) \ Gn

∣∣+ ‖1C∞∩nPn
− 1C∞∩nF ‖�1 + ∣∣(C∞ \ nF) ∩ nB−

∣∣. (9.48)

The second line above follows from Lemma 8.4. The discrete precursor to Pn was Fn ⊂ C∞, defined in (7.2). The
polytope F in the statement of this proposition is not related to this Fn (this is the only instance the letter F is
overloaded with meaning). Use the definition of Fn and Lemma 8.4:

�−∑
j=1

∣∣�−
j

∣∣≤ |Fn \ Gn| + ‖1C∞∩nPn
− 1C∞∩nF ‖�1 + ∣∣(C∞ \ nF) ∩ nB−

∣∣ (9.49)

≤ |Fn \ Gn| + δndαdrd + c(d)ndLd
(
(B ∩ F) � B−

)
, (9.50)

when n is taken sufficiently large depending on r,F and d . Within the event (9.39), Lemma 7.10 implies |Fn \ Gn| ≤
ndn−ε(d), where ε(d) is defined in (7.1). All that matters is that ε(d) > 0, which is the case when d ≥ 3, and we use
this in (9.50) to deduce:

�−∑
j=1

∣∣�−
j

∣∣≤ ndn−ε(d) + δndαdrd + c(d)δndαdrd . (9.51)

We complete the proof taking n larger if necessary, and using (9.51) with (9.45). �

Remark 9.13. We can now bound | slice±
j | by combining (9.22) of Corollary 9.9 and (9.40) of Proposition 9.12. As

Figure 16 suggests, the slice±
j together with the edges of ∂ωGn lying in the thin cylinder n cyl(D(x, r ′), hr ′) form a

cutset separating the faces of this cylinder. We leverage this in the next subsection.

Motivated by Remark 9.13, introduce the following edge set depending on Gn ∈ Gn, h > 0 and the ball B(x, r).

En := (
∂ωGn ∩ nB(x, r)

)∪
(

�+⋃
j=1

slice+
j

)
∪
(

�−⋃
j=1

slice−
j

)
. (9.52)

9.3. Lower bounds on |∂ωGn|

Given a collection of balls {B(xi, ri)}mi=1 from Lemma 9.2, a polytope F , h > 0 and Gn ∈ Gn, repeat the construction

of the previous subsection within each B(xi, ri). For Gn ∈ Gn, h > 0 and each B(xi, ri), define the edge set E
(i)
n as in

(9.52).
For these objects and the parameters δ > 0 and s ∈ (0,1/2), define an event whose purpose is described in Re-

mark 9.14:

F(Gn, i;h) :=
{∣∣E(i)

n

∣∣≤ (
1 − s + c(p, d)

δ

h

)
nd−1αd−1(ri)

d−1βp,d(vi)

}
. (9.53)

The constant c(p, d) > 0 is not specified here, as it arises naturally in the proof of Corollary 9.15 below. It comes
from the constants in (9.40) and (9.22), the ratio αd−1/αd and the extreme values of βp,d over the unit sphere.
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Remark 9.14. The bounds on | slice± | from the previous section also control each |E(i)
n |. We use these bounds with

concentration estimates when the E
(i)
n form a cutset to show F(Gn, i;h) is rare when δ,h and s are chosen appropri-

ately. Corollary 9.15 below relates the events E(Gn, i) introduced at the beginning of the section to the F(Gn, i;h).
By Lemma 9.5, knowing each F(Gn, i;h) is a low-probability event tells us it is also rare for |∂ωGn| to be too small.

Corollary 9.15. Let Gn ∈ Gn, let F ⊂ [−1,1]d be a polytope and let {B(xi, ri)}mi=1 be a collection of balls as in

Lemma 9.2 for F and the paramters δ > 0, s ∈ (0,1/2). Let h > 0, and form the edge sets E
(i)
n . For n sufficiently large

depending on d, εF and F ,

E(Gn, i) ∩ {‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤ εF nd

}∩
{

max
Gn∈Gn

∣∣∂ωGn

∣∣≤ η3n
d−1

}
⊂F(Gn, i;h), (9.54)

where E(Gn, i) and F(Gn, i;h) are events respectively defined in (9.7) and (9.53), and where εF = δ minm
i=1(ri)

dαd

was defined in (9.5).

Proof. For the convenience of the reader, we recall the definition of the event E(Gn, i):

E(Gn, i) = {∣∣∂ωGn ∩ nB(xi, ri)
∣∣≤ (1 − s)nd−1αd−1(ri)

d−1βp,d(vi)
}
. (9.55)

Working within the event on the left-hand side of (9.54), and as each B(xi, ri) from Lemma 9.2 satisfies

Ld
((

B(xi, ri) ∩ F
)
� B−(xi, ri)

)≤ δαd(ri)
d , (9.56)

we apply Proposition 9.12 within each ball (with n taken sufficiently large), obtaining

�+∑
j=1

∣∣�+
j (i)

∣∣+ �−∑
j=1

∣∣�−
j (i)

∣∣≤ c(d)δndαd(ri)
d , (9.57)

where the �±
j (i) are the inward and outward components corresponding to Gn,h > 0 and the ball B(xi, ri). Form the

edge sets slice±
j (i) are defined as in (9.21) and apply Corollary 9.9:

�+∑
j=1

∣∣slice+
j (i)

∣∣+ �−∑
j=1

∣∣slice−
j (i)

∣∣≤ c(d)

nhri

(
c(d)δndαd(ri)

d
)

(9.58)

≤ c(d)
δ

h
nd−1αd−1(ri)

d−1. (9.59)

Use the definitions of E(Gn, i) and the E
(i)
n : within the event on the left-hand side of (9.54),∣∣E(i)

n

∣∣≤ (1 − s)nd−1αd−1(ri)
d−1βp,d(vi) + c(d)

δ

h
nd−1αd−1(ri)

d−1. (9.60)

The proof is complete upon defining F(Gn, i;h) appropriately in (9.53). �

The next lemma tells us each E
(i)
n forms an open cutset with high probability.

Lemma 9.16. Let F be a polytope, let h > 0 and let {B(xi, ri)}mi=1 be a collection of balls as in Lemma 9.2 for
F , δ > 0 and s ∈ (0,1/2). Let E1 be the event that for each Gn ∈ Gn and all i ∈ {1, . . . ,m}, any open path in
d-cyl(D(x, r ′

i ), hr ′
i , n) joining the faces d-face±(D(x, r ′

i ), hr ′
i , n) uses an edge of E

(i)
n . There are positive constants

c1, c2 depending on p,d,F, δ, s, h so that

Pp(E1) ≥ 1 − c1 exp
(−c2n

(d−1)/d
)
, (9.61)

where we recall r ′
i := (1 − h2)r2

i .
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Proof. Our primary tool is Theorem A.5. We drop the indexing for the sake of clarity and work with generic objects:
balls B(x, r), discs D(x, r ′) and edge sets En.

From the careful construction of slice±
j , any open path in C∞ between faces d-face±(D(x, r ′), hr ′, n) in

d-cyl(D(x, r ′), hr ′, n) uses an edge of En. In the almost sure event that there is a unique infinite cluster,
d-face±(D(x, r ′), hr ′, n) can only be joined by an open path in d-cyl(D(x, r ′), hr ′, n) if this path lies in a finite open
cluster. Such a path uses at least 2r ′hn edges, and the cluster containing this path must have volume at least 2r ′hn.
A union bound with Theorem A.5 applied to each point in [−n,n]d ∩Z

d gives the desired result. �

Remark 9.17. Let E1 be the event from Lemma 9.16. For each ω ∈ E1, completing each E
(i)
n to a full cutset in

d-cyl(D(x, r ′), hr ′, n) implies |E(i)
n | ≥ �face(D(xi, r

′
i ), hr ′

i , n) in ω. The next proposition aggregates all work done in
this section.

Proposition 9.18. Let F ⊂ [−1,1]d be a polytope, and for s ∈ (0,1/2), let λF (s) = (1 − 2s)Ip,d(F ). There are
positive constants c1(p, d, s,F ), c2(p, d, s,F ) and ε̃F (p, d, s,F ) so that

Pp

({∃Gn ∈ Gn such that
∣∣∂ωGn

∣∣≤ λF (s)nd−1 and d(μn, νF ) ≤ ε̃F

})≤ c1 exp
(−c2n

1/2d
)
. (9.62)

Proof. Let {B(xi, ri)}mi=1 be a collection of balls as in Lemma 9.2 for F , δ > 0 and s ∈ (0,1/2). The parameter δ and
a height parameter h > 0 will be fixed as functions of p,d and s later.

Let E0 be the event from Proposition 9.11 for parameter ε̃F to be determined later. Let E1 be the event from
Lemma 9.16, and for constants η3 and γ from Lemma A.10 and Corollary 8.5, define

E2 :=
{

max
Gn∈Gn

d(μn, νn) ≤ ε̃F

}
, E3 :=

{
max

Gn∈Gn

∣∣∂ωGn

∣∣≤ η3n
d−1

}
, (9.63)

E4 :=
{

max
Gn∈Gn

per(Pn) ≤ γ
}
, (9.64)

Let E∗ be the intersection of E0 through E4. Apply Lemma 9.5 to conclude{∃Gn ∈ Gn such that
∣∣∂ωGn

∣∣≤ λF (s)nd−1 and d(μn, νF ) ≤ ε̃F

}∩ E∗ (9.65)

⊂
⋃

Gn∈Gn

m⋃
i=1

E(Gn, i) ∩ {
d(μn, νF ) ≤ ε̃F

}∩ E∗ (9.66)

⊂
⋃

Gn∈Gn

m⋃
i=1

E(Gn, i) ∩ {
d(νn, νF ) ≤ 2̃εF

}∩ E∗, (9.67)

where (9.67) follows from E∗ ⊂ E2. Use that E∗ is contained in E0 and in E4 with Proposition 9.11, choosing ε̃F small
depending on εF , d and F so that{∃Gn ∈ Gn such that

∣∣∂ωGn

∣∣≤ λF (s)nd−1 and d(μn, νF ) ≤ ε̃F

}∩ E∗ (9.68)

⊂
⋃

Gn∈Gn

m⋃
i=1

E(Gn, i) ∩ {‖1C∞∩nPn
− 1C∞∩nF ‖�1 ≤ εF nd

}∩ E∗ (9.69)

⊂
⋃

Gn∈Gn

m⋃
i=1

F(Gn, i;h) ∩ E∗, (9.70)

where we have used Corollary 9.15 and taken n large depending on d,F and εF , using E∗ ⊂ E3.
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Finally, as E∗ contains E1, we use Remark 9.17 to conclude{∃Gn ∈ Gn such that
∣∣∂ωGn

∣∣≤ λF (s)nd−1 and d(μn, νF ) ≤ ε̃F

}∩ E∗ (9.71)

⊂
⋃

Gn∈Gn

m⋃
i=1

{
�face

(
D
(
xi, r

′
i

)
, hr ′

i , n
)≤

(
1 − s + c(p, d)

δ

h

)
nd−1αd−1(ri)

d−1βp,d(vi)

}
(9.72)

⊂
m⋃

i=1

{
�face

(
D
(
xi, r

′
i

)
, hr ′

i , n
)≤

(
1 − s + c(p, d)

δ

h

)
nd−1αd−1(ri)

d−1βp,d(vi)

}
(9.73)

⊂
m⋃

i=1

{
�face

(
D
(
xi, r

′
i

)
, hr ′

i , n
)≤

(
1 − s + c(p, d)

δ

h

)
1

(1 − h2)(d−1)/2
nd−1αd−1

(
r ′
i

)d−1
βp,d(vi)

}
. (9.74)

We now calibrate parameters. Choose h small depending on p,d and s/2 so that the concentration estimates of
Proposition 5.2 are applicable when n is taken large depending on h and εF . Next, choose δ depending on s, c(p, d)

and h so that{∃Gn ∈ Gn such that
∣∣∂ωGn

∣∣≤ λF (s)nd−1 and d(μn, νF ) ≤ ε̃F

}∩ E∗ (9.75)

⊂
m⋃

i=1

{
�face

(
D
(
xi, r

′
i

)
, hr ′

i , n
)≤ (1 − s/2)nd−1αd−1

(
r ′
i

)d−1
βp,d(vi)

}
, (9.76)

noting that the number m of events in the above union now depends only on p,d, s and F . By using Proposition 5.2,
we find

Pp

(∃Gn ∈ Gn such that
∣∣∂ωGn

∣∣≤ λF (s)nd−1 and d(μn, νF ) ≤ ε̃F

)
(9.77)

≤
m∑

i=1

c1 exp
(−c2n

(d−1)/3)+ Pp

((
E∗)c) (9.78)

≤ c1 exp
(−c2n

(d−1)/3)+ Pp

((
E∗)c), (9.79)

where c1 and c2 are positive constants depending on p,d, s, h, δ and F . As ε̃F , δ and h all depend only on p,d, s and
F , these constants have the correct dependencies, and Pp((E∗)c) is also bounded satisfactorily. Use Proposition 9.11
and Lemma 9.16 to bound Pp(Ec

0 ) and Pp(Ec
1 ). We further use Theorem 8.8, Lemma A.10 and Corollary 8.5 to bound

Pp(Ec
2 ),Pp(Ec

3 ) and Pp(Ec
4 ) respectively, concluding

Pp

(∃Gn ∈ Gn such that
∣∣∂ωGn

∣∣≤ λF (s)nd−1 and d(μn, νF ) ≤ ε̃F

)≤
m∑

i=1

c1 exp
(−c2n

(1)/2d
)
, (9.80)

for c1 and c2 positive constants depending on p,d, s,F . �

Remark 9.19. We assert that Proposition 9.18 holds also when F is a translate of the Wulff crystal Wp,d ; this follows
from Theorem 9.23 for instance.

Remark 9.20. Proposition 9.18 is the result we have been aiming for since the beginning of the section: when Gn ∈ Gn

is such that d(μn, νF ) is small, we have high probability lower bounds on |∂ωGn| in terms of Ip,d(F ). We use
Proposition 9.18 with a compactness argument to prove the main results of the paper.

9.4. Proof of main results

We first prove Theorem 8.12, from which we deduce Theorem 1.3 and Theorem 1.2. A quantitative version of the
isoperimetric inequality for Ip,d is central. Given F ⊂ Rd a set of finite perimeter, define the asymmetry index of F
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as

A(F) := inf

{Ld(F � (x + rWp,d))

Ld(F )
: x ∈R

d,Ld(rWp,d) = Ld(F )

}
. (9.81)

For r > 0 chosen to make rWp,d and F equal in volume, define the isoperimetric deficit of F as

D(F) := Ip,d(F ) − Ip,d(rWp,d)

Ip,d(rWp,d)
. (9.82)

The isoperimetric inequality implies D(F) ≥ 0 for all sets F of finite perimeter, while Taylor’s theorem (Theorem 2.3)
implies D(F) = 0 if and only if A(F) = 0. The next result quantifies this.

Theorem 9.21 (Figalli–Maggi–Pratelli [26]). Let F ⊂ R
d be a set of finite perimeter with finite volume. There is

c(d) > 0 so that

A(F) ≤ c(d)D(F)1/2. (9.83)

Remark 9.22. It follows from Theorem 9.21 that whenever rWp,d is a dilate of the Wulff crystal, and whenever F r

is a set of finite perimeter such that Ld(F r) = Ld(rWp,d), we have

Ip,d(F r)

Ip,d(rWp,d)
≥ 1 + c(d)

(
A
(
Fr
))2

. (9.84)

The next theorem boosts results for polytopes to results for sets of finite perimeter.

Theorem 9.23 ([15], Proposition 14.9). Let F ⊂ [−1,1]d be a set of finite perimeter. There is a sequence of polytopes
{Fn}∞n=1, each contained within [−1,1]d , so that Ld(F � Fn) → 0 and |Ip,d(Fn) − Ip,d(F )| → 0 as n → ∞.

Proof of Theorem 8.12 (Precursor to shape theorem). Throughout the proof, write θ for θp(d). Let ξ > 0, define
η = η(ξ) via the relation

(1 − η) = 1

1 + ξ
, (9.85)

and use ξ and η to define the following collection of measures:

Wξ :=
{
νW+x : x ∈ R

d, (W + x) ⊂ [−1,1]d and W is a dilate of Wp,d

such that Ld((1 − η)Wp,d) ≤ Ld(W) ≤ Ld((1 + 2ξ)Wp,d)

}
. (9.86)

Let ζ > 0, and choose ξ = ξ(ζ ) > 0 and ε = ε(ζ, ξ) > 0 so that the following relations hold:

1

1 + ξ
= 1 − 2ζ,

1 + 2ξ

1 + c(p, d)ε2
= 1 − 2ζ, (9.87)

where c(p, d) is specified later. We remark that ε is distinct from ε(d) defined in (7.1); this latter fixed value only
appears in exponents of various upper bounds, and we always explicate the dependence on d in this case. Our principal
aim is to show the probabilities

Pp

(∃Gn ∈ Gn such that d(μn,Wξ ) ≥ ε
)

(9.88)

decay rapidly with n. Recall that

Pγ,ξ = {
νF : F ⊂ [−1,1]d,per(F ) ≤ γ,Ld(F ) ≤ Ld

(
(1 + ξ)Wp,d

)}
, (9.89)
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let Vε(Wξ ) be the open ε-neighborhood of Wξ in the metric d, and let Kγ,ξ (ε) be the complement of this neighborhood
in Pγ,ξ . By Lemma 8.11, Kγ,ξ (ε) is compact. Define

Polyγ,ξ := {
νF : F ⊂ [−1,1]d is a polytope,per(F ) ≤ 2γ,Ld(F ) ≤ Ld

(
(1 + 2ξ)Wp,d

)}
, (9.90)

so that using the definition of d and Theorem 9.23, the d-balls{
B(νF , ε̃F /2)

}
F∈Polyγ,ξ

(9.91)

form an open cover of Kγ,ξ (ε), where ε̃F is chosen as in Proposition 9.18 for F and s = ζ/2. For a parameter δ′ > 0
to be used shortly, we lose no generality choosing ε̃F smaller if necessary so that

(1 + ε̃F /θ) ≤ (
1 + δ′), (9.92)

ε̃F ≤ ε/2 (9.93)

hold for each F . Given F ∈ Polyγ,ξ , define λF (ζ ) := (1 − ζ )Ip,d(F ) and use the compactness of Kγ,ξ (ε) to extract
a finite subcover from (9.91): there are polytopes F1, . . . ,Fm such that{

B(νFj
, ε̃Fj

/2)
}m

j=1 (9.94)

covers Kγ,ξ (ε). We now begin to estimate (9.88).

Pp

(∃Gn ∈ Gn such that d(μn,Wξ ) ≥ ε
)

(9.95)

≤ Pp

(
max

Gn∈Gn

d(μn,Wξ ) ≥ ε and n�̂n ≤ (
1 + δ′)ϕWp,d

)
+ Pp

(
n�̂n >

(
1 + δ′)ϕWp,d

)
(9.96)

≤ Pp

(
max

Gn∈Gn

d(μn,Wξ ) ≥ ε and n�̂n ≤ (
1 + δ′)ϕWp,d

)
+ c1 exp

(−c2n
(d−1)/3). (9.97)

Where we have used bounds from the proof of Corollary 5.5, and we recall that ϕWp,d
is the conductance (defined at

the very end of Section 3) of the Wulff crystal. Choose δ > 0 so that

δ ≤ m

min
j=1

ε̃Fj
/2, (9.98)

and invoke Corollary 8.9 for δ to further deduce

Pp

(∃Gn ∈ Gn such that d(μn,Wξ ) ≥ ε
)

(9.99)

≤ Pp

(
max

Gn∈Gn

d(μn,Wξ ) ≥ ε and max
Gn∈Gn

d(μn,Pγ,ξ ) < δ and n�̂n ≤ (
1 + δ′)ϕWp,d

)
(9.100)

+ c1 exp
(−c2n

(1−ε(d))/2d
)
. (9.101)

Use the finite open cover (9.94), the choice of δ and a union bound:

Pp

(∃Gn ∈ Gn such that d(μn,Wξ ) ≥ ε
)

(9.102)

≤
m∑

i=1

Pp

(∃Gn ∈ Gn such that d(μn, νFj
) ≤ εFj

and n�̂n ≤ (
1 + δ′)ϕWp,d

)
(9.103)

+ c1 exp
(−c2n

(1−ε(d))/2d
)
. (9.104)

We focus on bounding each summand of the form Pp(Fj ) above, where

Fj := {∃Gn ∈ Gn such that d(μn, νFj
) ≤ εFj

and n�̂n ≤ (
1 + δ′)ϕWp,d

}
. (9.105)
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We begin by unravelling the Cheeger constant and using (9.92).

Pp(Fj ) = Pp

⎛⎝∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and
n|∂ωGn| ≤ (1 + δ′)|Gn|ϕWp,d

⎞⎠ (9.106)

≤ Pp

⎛⎝ ∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and
n|∂ωGn| ≤ (1 + δ′)nd(θLd(Fj ) + ε̃Fj

)ϕWp,d

⎞⎠ (9.107)

≤ Pp

⎛⎝ ∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and
|∂ωGn| ≤ (1 + δ′)2nd−1θLd(Fj )ϕWp,d

⎞⎠ . (9.108)

To obtain (9.107), we used the definition of d, and to obtain (9.108) we used (9.92). Observe that

Pp(Fj ) ≤ Pp

⎛⎝ ∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and
|∂ωGn| ≤ (1 + δ′)2nd−1Ip,d(Fj )(ϕFj

)−1ϕWp,d

⎞⎠ (9.109)

≤ Pp

⎛⎜⎝ ∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and

|∂ωGn| ≤ (1 + δ′)2 Ip,d (rWp,d )

Ip,d (Fj )
rnd−1Ip,d(Fj )

⎞⎟⎠ , (9.110)

where r > 0 is chosen so that Ld(Fj ) = Ld(rWp,d). Form two cases. In Case (1), r ≤ (1 − η), and in Case (2),
r ∈ (1 − η,1 + 2ξ ]. Focusing on the first case for now, use Theorem 2.3 and the relation (9.85) between ξ and η:

Pp(Fj ) ≤ Pp

⎛⎜⎝∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and

|∂ωGn| ≤ (1+δ′)2

1+ξ
nd−1Ip,d(Fj )

⎞⎟⎠ (9.111)

As ξ was chosen as in (9.87), we choose δ′ small enough depending on ξ and ζ so that

Pp(Fj ) ≤ Pp

(∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and
∣∣∂ωGn

∣∣≤ λFj
(ζ )nd−1) (9.112)

holds whenever we are in Case (1).
We maneuver into a similar position in Case (2). From (9.110), we deduce

Pp(Fj ) ≤ Pp

⎛⎜⎝ ∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and

|∂ωGn| ≤ (1+δ′)2

1+c(d)(A(Fj ))2 (1 + 2ξ)nd−1Ip,d(Fj )

⎞⎟⎠ , (9.113)

where A(Fj ) is the asymmetry index of Fj introduced in (9.81), and where we have used the observation in (9.84). In
(9.93), we chose each ε̃Fj

to be at most ε/2. The finite open cover (9.94) may be assumed to have no redundancies,
so by the construction of Kγ,ξ (ε),

d(νFj
Wξ ) ≥ ε/2 (9.114)

for each Fj . Using the definition (2.6) of d, we have the following lower-bound on the asymmetry index of each Fj :

A(Fj ) ≥ (ε/4)Ld(Fj ) ≥ (ε/4)(1 − η)Ld(Wp,d). (9.115)
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As ξ and hence η will be taken to zero, we lose no generality supposing η < 1/2. Thus, (9.115) and (9.113) together
yield

Pp(Fj ) ≤ Pp

⎛⎜⎝ ∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and

|∂ωGn| ≤ (1+δ′)2

1+c(p,d)ε2 (1 + 2ξ)nd−1Ip,d(Fj )

⎞⎟⎠ . (9.116)

Now use our choice of ε in (9.87), taking δ′ sufficiently small depending on ξ and ζ so that

Pp(Fj ) ≤ Pp

(∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and
∣∣∂ωGn

∣∣≤ λFj
(ζ )nd−1) (9.117)

holds in Case (2) also.
Return to (9.104) and apply the bounds (9.112) and (9.117) to each summand:

Pp

(∃Gn ∈ Gn such that d(μn,Wξ ) ≥ ε
)

(9.118)

≤
m∑

i=1

Pp

(∃Gn ∈ Gn such that d(μn, νFj
) ≤ ε̃Fj

and
∣∣∂ωGn

∣∣≤ λFj
(ζ )nd−1) (9.119)

+ c1 exp
(−c2n

(1−ε(d))/2d
)
. (9.120)

Thus,

Pp

(∃Gn ∈ Gn such that d(μn,Wξ ) ≥ ε
)≤ mc1 exp

(−c2n
1/2d

)+ c1 exp
(−c2n

(1−ε(d))/2d
)
. (9.121)

We have used the hard-earned bounds from Proposition 9.18 directly above. By Borel–Cantelli,

Pp

(
max

Gn∈Gn

d(μn,Wξ ) ≤ ε(ζ, ξ) for all but finitely many n
)

= 1. (9.122)

Observe that

d(Wξ ,W) ≤ c(p, d)max
(
Ld
(
Wp,d \ (1 − η)Wp,d

)
,Ld

(
(1 + 2ξ)Wp,d \ Wp,d

))
(9.123)

≤ c(p, d, ξ), (9.124)

where c(p, d, ξ) tends to 0 as ξ → 0. From (9.87), we have that ξ ≡ ξ(ζ ) → 0 as ζ → 0 and also that ε ≡ ε(ζ, ξ) → 0
as ζ, ξ → 0. Thus,

Pp

(
max

Gn∈Gn

d(μn,W) ≤ c(p, d, ζ ) for all but finitely many n
)

= 1 (9.125)

where c(p, d, ζ ) → 0 as ζ → 0. This completes the proof of Theorem 8.12. �

Proof of Theorem 1.3 (Cheeger asymptotics). We first show W is compact in d by appealing to the proof of
Lemma 8.11. It suffices to show that whenever {Wn}∞n=1 is a sequence with νWn ∈ W and 1Wn tending to some
1F in L1-sense, F is a translate of Wp,d . By dominated convergence, Ld(F ) = Ld(Wp,d). Lemma A.14 implies
Ip,d(F ) ≤ Ip,d(Wp,d), and it follows from Theorem 2.3 that F is a translate of Wp,d .

Let ε, ζ ′ > 0. For each νW ∈ W , choose ε̃W as in Proposition 9.18 for ζ ′ = 2s (see Remark 9.19). The d-balls
B(νW , ε̃W /2) indexed by W are an open cover of W ; extract a finite collection of translates of Wp,d , enumerated
W1, . . . ,Wm, so that{

B(νWi
, ε̃Wi

/2)
}m

i=1 (9.126)
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covers W . Choose ζ > 0 small so that c(p, d, ζ ) in (9.125) is at most minm
i=1 ε̃Wi

/2, and work in the almost sure event
from (9.125). Use Proposition 9.18, Remark 9.19 and Borel–Cantelli to conclude

Pp

(
lim inf
n→∞ min

Gn∈Gn

|∂ωGn|
nd−1

≥ (
1 − ζ ′)Ip,d(Wp,d)

)
= 1. (9.127)

Because we are within the event from (9.125), we take ζ smaller if necessary in a way depending on p,d and ζ ′ so
that

Pp

(
lim sup
n→∞

max
Gn∈Gn

|Gn|
nd

≤ (
1 + ζ ′)θp(d)Ld(Wp,d)

)
= 1. (9.128)

Choose ζ ′ small depending on ε so that by (9.127) and (9.128),

Pp

(
lim inf
n→∞ n�̂n ≥ (1 − ε)

Ip,d(Wp,d)

θp(d)Ld(Wp,d)

)
= 1. (9.129)

The complementary upper bound on �̂n was shown in Corollary 5.5, completing the proof. �

Proof of Theorem 1.2 (Shape theorem). In (5.54), we defined the empirical measure of a translate W ⊂ [−1,1]d of
the Wulff crystal as:

νW (n) := 1

nd

∑
x∈C∞∩nW

δx/n. (9.130)

Let ε, ε′ > 0. Define Mn := n−1
Z

d ∩ [−1,1]d , so that |Mn| ≤ (3n)d . By Corollary 5.6, there are positive constants
c1(p, d, ε′) and c2(p, d, ε′) so that

Pp

(
max

x∈Mn,(Wp,d+x)⊂[−1,1]d
d
(
νWp,d+x(n), νWp,d+x

)≤ ε′)≥ 1 − c1 exp
(−c2n

d−1), (9.131)

and by Borel–Cantelli, the event

E1 :=
{

lim sup
n→∞

max
x∈Mn,(Wp,d+x)⊂[−1,1]d

d
(
νWp,d+x(n), νWp,d+x

)≤ ε′} (9.132)

occurs almost surely.
Choose ζ in (9.125) small depending on ε′, so that the event

E2 :=
{

max
Gn∈Gn

d(μn,W) ≤ ε′ for all but finitely many n
}

(9.133)

also occurs almost surely. Take n large depending on ε′ so that for any translate W ⊂ [−1,1]d of the Wulff crystal,
there is x ∈ Mn with d(νW , νWp,d+x) ≤ ε′. For any ω ∈ E1 ∩ E2, there is N(ω) ∈N so that n ≥ N(ω) implies

max
Gn∈Gn

min
x∈Mn

d
(
μn, νWp,d+x(n)

)≤ 3ε′. (9.134)

Suppose the following holds for some Gn ∈ Gn and some x ∈ Mn:

d
(
μn, νWp,d+x(n)

)≤ 3ε′. (9.135)

Let k ∈ N, and let �k ≡ �k,d denote the dyadic cubes at scale k contained in [−1,1]d . Define

Q := {
Q ∈ �k : Q ∩ ∂(Wp,d + x) �=∅

}
, (9.136)
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and observe that

‖1Gn − 1n(Wp,d+x)∩Cn
‖�1 ≤

∑
Q∈�k

‖1Gn∩nQ − 1n(Wp,d+x)∩Cn∩nQ‖�1 (9.137)

≤
∑

Q∈�k\Q

‖1Gn∩nQ − 1n(Wp,d+x)∩Cn∩nQ‖�1

+
∑
Q∈Q

‖1Gn∩nQ − 1n(Wp,d+x)∩Cn∩nQ‖�1 (9.138)

≤
∑

Q∈�k\Q

‖1Gn∩nQ − 1n(Wp,d+x)∩Cn∩nQ‖�1 + c(p, d)2−dknd, (9.139)

where c(p, d) > 0 accounts for the perimeter of Wp,d . For each Q ∈ �k \ Q, either n(Wp,d + x) ∩ nQ = nQ or
n(Wp,d + x) ∩ nQ =∅. From the definition (2.6) of d,

‖1Gn − 1n(Wp,d+x)∩Cn
‖�1 ≤ 2k

∣∣�k
∣∣ndd

(
μn, νWp,d+x(n)

)+ c(p, d)2−dknd . (9.140)

Choose k large depending on ε, and then ε′ small depending on ε and k, using (9.135), to conclude

n−d‖1Gn − 1n(Wp,d+x)∩Cn
‖�1 ≤ ε. (9.141)

The choice of k and ε′ do not depend on Gn ∈ Gn, on x ∈ Mn or on ω ∈ E1 ∩ E2. For ε′ chosen this way according to
k and ε, for any ω ∈ E1 ∩ E2, and n ≥ N(ω),

max
Gn∈Gn

min
x∈Mn

(
n−d‖1Gn − 1n(Wp,d+x)∩Cn

‖�1

)≤ ε. (9.142)

We conclude that for any ε > 0,

Pp

(
lim sup
n→∞

max
Gn∈Gn

inf
x∈Rd

n−d‖1Gn − 1Cn∩(x+nWp,d )‖�1 ≤ ε
)

= 1, (9.143)

completing the proof. �

Appendix: Tools from percolation, graph theory and geometry

A.1. Tools from percolation

We present tools from percolation used throughout the paper, introducing the notation �(n) := [−n,n]d ∩Zd . Propo-
sition A.1 and its corollary control the size of open edge boundaries of large subgraphs of Cn.

Proposition A.1 (Berger–Biskup–Hoffman–Kozma [6], Proposition A.2). Let d ≥ 2 and p > pc(d). There are
positive constants c1(p, d), c2(p, d) and c3(p, d) so that for all t > 0,

Pp

(∃� � 0,ω-connected, |�| ≥ td/(d−1),
∣∣∂ω�

∣∣< c3|�|(d−1)/d
)≤ c1 exp(−c2t). (A.1)

The next corollary is similar to Proposition A.1 in [6]; we include the proof because it is short.

Corollary A.2. Let d ≥ 2, p > pc(d) and α ∈ (0,1). There are positive constants c1(p, d), c2(p, d), c3(p, d) and
an almost surely finite random variable R = R(ω) such that whenever n ≥ R, we have the following lower bound on
|∂ω�| for each ω-connected � satisfying � ⊂ C2n and |�| ≥ nα :∣∣∂ω�

∣∣≥ c3|�|(d−1)/d . (A.2)
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Moreover, we have the following tail bounds on R:

Pp(R > n) ≤ c1n
d exp

(−c2n
α(d−1)/d

)
. (A.3)

Proof. Let c3 be as in Proposition A.1, and for α ∈ (01, ) let En be the following event:{∃�,ω-connected with � ⊂ C2n, |�| ≥ nα but
∣∣∂ω�

∣∣< c3|�|(d−1)/d
}
. (A.4)

Apply Proposition A.1 to every point in the box �(2n) with t = nα(d−1)/d to obtain

Pp(En) ≤ c1n
d exp

(−c2n
α(d−1)/d

)
. (A.5)

These probabilities are summable in n. Let R be the (random) smallest natural number such that that n ≥ R implies
Ec

n occurs. As {R > n} ⊂ En, the proof is complete. �

We now introduce a tool for controlling the density of the infinite cluster within a large box.

Proposition A.3 (Durrett–Schonmann [25], Gandolfi [27]). Let d ≥ 2 and p > pc(d). Recall that θp(d) = Pp(0 ∈
C∞) is the density of the infinite cluster. For any ε > 0, there are positive constants c1(p, d, ε) and c2(p, d, ε) so that

Pp

( |Cn|
|�(n)| /∈ (θp(d) − ε, θp(d) + ε

))≤ c1 exp
(−c2n

d−1). (A.6)

Proposition A.3 was later refined by Pisztora [44]; the following is an immediate corollary.

Corollary A.4. Let d ≥ 2 and p > pc(d). Let r > 0, let Q ⊂ R
d be a translate of the cube [−r, r]d and let ε > 0.

There are positive constants c1(p, d, ε), c2(p, d, ε) so that

P

( |C∞ ∩ Q|
Ld(Q)

/∈ (θp(d) − ε, θp(d) + ε
))≤ c1 exp

(−c2r
d−1). (A.7)

The next result is fundamental, it is used in Section 9.

Theorem A.5 (Grimmett–Marstrand [34]). Let d ≥ 2 and p > pc(d), and let C(0) denote the open cluster con-
taining the origin. There is a positive constant c(p) so that

Pp

(∣∣C(0)
∣∣= n

)≤ exp
(−cn(d−1)/d

)
. (A.8)

We now apply these tools to the Gn ∈ Gn, and begin with a basic observation.

Lemma A.6. For all n, if Gn ∈ Gn is disconnected, then Gn is a finite disjoint union of connected optimal subgraphs.

Proof. The proof follows from the identity that for a, b, c, d > 0,

a + b

c + d
≥ min

(
a

c
,
b

d

)
. (A.9)

Remark 2.2 implies the connected components of any Gn ∈ Gn have disjoint open edge boundaries. If Gn is optimal
and disconnected, decompose G into two disjoint subgraphs G′

n and G′′
n and we must have ϕGn = ϕG′

n
= ϕG′′

n
. �

We now use Corollary A.4 to obtain a high probability upper bound on �̂n.

Lemma A.7. Let d ≥ 2 and p > pc(d). There are positive constants c1(p, d), c2(p, d) and c′
3(p, d) so that

Pp

(
�̂n > c′

3n
−1)≤ c1 exp

(−c2n
d−1). (A.10)



2154 J. Gold

Proof. Abbreviate θp(d) as θ and work in the high probability event from Corollary A.4 for the box [−r, r]d with
r := n/2(d!)1/d for some ε > 0. Also work in the corresponding high probability event for the box [−n,n]d with the
same ε. Write ε′ ≡ ε/θ and let Hn be C∞ ∩ [−r, r]d , so that(

1 − ε′)θ(2r)d ≤ |Hn| ≤
(
1 − ε′)θ(2n)d (A.11)

holds when ε is taken small depending on d . Thus, Hn is valid with volume on the order of nd . The size of ∂ωHn is
at most the Hd−1-measure of ∂[−r, r]d , which completes the proof. �

We use Lemma A.7 with Corollary A.2 to bound the volume of any Gn ∈ Gn from below.

Lemma A.8. Let d ≥ 2 and p > pc(d). There are positive constants c1(p, d), c2(p, d) and η1(p, d) so that,

Pp

(∃Gn ∈ Gn such that |Gn| < η1n
d
)≤ c1 exp

(−c2n
(d−1)/2d

)
. (A.12)

Proof. Set α = 1/2, and work in the intersection of the high probability events{
�̂n ≤ c′

3n
−1}∩ {R ≤ n} (A.13)

respectively from Lemma A.7 and Corollary A.2. For Gn ∈ Gn, use Lemma A.6 to extract from Gn a connected
subgraph Hn ⊂ Gn with Hn ∈ Gn. If |Hn| ≤ n1/2, that Hn ⊂ Cn implies ∂ωHn is non-empty, and hence that ϕHn >

n−1/2. This is impossible when �̂n ≤ c′
3n

−1 and n is large.
Suppose |Hn| ≥ n1/2, and use the event from Corollary A.2:∣∣∂ωHn

∣∣≥ c3|Hn|(d−1)/d . (A.14)

Thus,

c3|Hn|−1/d ≤ ϕHn ≤ c′
3n

−1, (A.15)

and the claim holds with η1 = (c3/c
′
3)

d . �

Using Lemma A.8 with Lemma A.6 and the bound |�(n)| ≤ (3n)d , we deduce the following.

Corollary A.9. Let d ≥ 2 and p > pc(d). There are positive constants c1(p, d), c2(p, d) and η4(p, d) so that

Pp

( ∃Gn ∈ Gn such that the number of
connected components of Gn exceeds η4

)
≤ c1 exp

(−c2n
(d−1)/2d

)
. (A.16)

Having established that Cheeger optimizers are usually volume order, we now exhibit control on the open edge
boundary of each Cheeger optimizer.

Lemma A.10. Let d ≥ 2 and p > pc(d). There are positive constants c1(p, d), c2(p, d) and η2(p, d), η3(p, d) so
that

Pp

(∃Gn ∈ Gn so that
∣∣∂ωGn

∣∣< η2n
d−1 or

∣∣∂ωGn

∣∣> η3n
d−1)≤ c1 exp

(−c2n
(d−1)/2d

)
. (A.17)

Proof. Work in the high probability event {�̂n ≤ c′
3n

−1} from Lemma A.7 and consider Gn ∈ Gn. Set η3 = (c′
3)3

d .
As ϕGn ≤ c′

3n
−1 and |Gn| ≤ (3n)d ,∣∣∂ωGn

∣∣≤ η3n
d−1. (A.18)

To prove the second half of this lemma, set α = 1/2 and work in the intersection of the events

{R ≤ n} ∩ {∀Gn ∈ Gn, we have |Gn| ≥ η1n
d
}

(A.19)
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from Corollary A.2 and Lemma A.8. Given Gn ∈ Gn, extract through Lemma A.6 a subgraph Hn ⊂ Gn which is
connected and optimal. Within {R ≤ n},∣∣∂ωGn

∣∣≥ ∣∣∂ωHn

∣∣≥ c3
(
η1n

d
)(d−1)/d

, (A.20)

and we set η2 = c3(η1)
(d−1)/d . �

A.2. Tools from graph theory, approximation, miscellany

We begin by stating Turán’s theorem, used in the proof of Proposition 7.7. For a graph (V,E), an independent set of
vertices A ⊂ V is a collection of vertices such that no two elements of A are joined by an edge in E. For a finite graph
(V,E), the independence number of (V,E) is

α(V,E) := max
{|A| : A is an independent subset of V

}
. (A.21)

Theorem A.11 ([49], Lemma 6). For (V,E) a finite graph with maximal degree δ,

α(V,E) ≥ |V|
δ + 1

. (A.22)

The next tool is standard, it gives bounds on the number of ∗-connected subsets of Zd containing the origin.

Proposition A.12 ([32], Equation (4.24)). There is a positive constant c(d) so that the number of ∗-connected subsets
of Zd of size s containing the origin is at most [c(d)]s .

Moving back to the continuum, we make a short remark.

Remark A.13. We use the phrase isometric image throughout the paper. An isometry i : Rd−1 → R
d is a function

preserving Euclidean distances. Given F ⊂R
d , say F is the isometric image of a set E ⊂R

d−1 if there is an isometry
i : Rd−1 →R

d so that i(E) = F .

We now discuss the surface energy functional defined in (2.7).

Lemma A.14 ([15], Section 14.2). Let τ be a norm on R
d . The associated surface energy functional Iτ is lower

semicontinuous: if En is a sequence of Borel sets in R
d such that 1En → 1E in L1-sense, then

Iτ (E) ≤ lim inf
n→∞ Iτ (En) (A.23)

A consequence of lower semicontinuity is the following approximation result.

Proposition A.15. Consider the Wulff crystal Wp,d of Theorem 1.2. Given ε > 0, there is a polytope Pε ⊂ Wp,d so
that

(i) |Ip,d(Pε) − Ip,d(Wp,d)| ≤ ε

(ii) Ld(Wp,d \ Pε) ≤ ε.

The last object we deal with is S from Section 3, specifically the nicely varying property defined in Section 3.4.
Let Sd−1+ denote the closed, upper hemisphere of the unit (d − 1)-sphere S

d−1. Write T S
d−1 for the tangent bundle

of Sd−1, and let T S
d−1+ be the restriction of this bundle to the upper hemisphere. An orthonormal k-frame on S

d−1+ is
an assignment taking each x ∈ S

d−1+ to an ordered collection of k orthonormal vectors in TxS
d−1+ , the tangent plane to

S
d−1+ at x. This may be written in Euclidean coordinates due to natural embeddings of the sphere and tangent spaces
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into Rd , and may thus be written as a function

f : x �→ (
v1(x), . . . , vk(x)

)
, (A.24)

with x ∈ S
d−1+ ⊂R

d , and with each vi(x) ∈ TxS
d−1+ ⊂R

d .

Proposition A.16. There is an orthonormal (d − 1)-frame f and a constant C > 0 so that for ε > 0, whenever
x, y ∈ S

d−1+ satisfy |x − y|2 ≤ ε, we have∣∣(f (x)
)
i
− (

f (y)
)
i

∣∣
2 ≤ Cε (A.25)

for all i ∈ {1, . . . , d − 1}.

Proof. Let s ∈ S
d−1 denote the south pole, with coordinate representation (0, . . . ,0,−1) in R

d . Consider the standard
stereographic projection π : Sd−1 \ {s} → R

d−1. The image of Sd−1+ under π is a closed disc D ⊂ R
d−1 centered at

the origin. The disc D is parallelizable, that is, we may construct a smooth (d − 1)-frame g on D. Indeed, one can
take the standard basis for Rd−1at each tangent space TyD. Define f as the pullback π∗g. As f varies smoothly over
a compact domain, each of its coordinate functions is Lipschitz, which completes the proof. �
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