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Abstract. We give a sufficient and necessary condition for a probability measure μ on the real line to satisfy the logarithmic
Sobolev inequality for convex functions. The condition is expressed in terms of the unique left-continuous and non-decreasing map
transporting the symmetric exponential measure onto μ. The main tool in the proof is the theory of weak transport costs.

As a consequence, we obtain dimension-free concentration bounds for the lower and upper tails of convex functions of inde-
pendent random variables which satisfy the convex log-Sobolev inequality.

Résumé. Nous proposons une condition nécessaire et suffisante pour qu’une mesure de probabilité μ sur la droite réelle satisfasse
une condition de Sobolev logarithmique sur les fonctions convexes. Cette condition est exprimée en termes de l’unique plan de
transport optimal croissant et continu à gauche entre la mesure exponentielle symétrique et la mesure μ. L’outil principal vient de
la théorie du transport faible.

Comme conséquence, nous obtenons un résultat de concentration adimensionnelle sur les estimées de queue de fonctions
convexes de variables aléatoires indépendantes, lié à l’inégalité de Sobolev logarithmique convexe.
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1. Introduction and main results

Let μ be a Borel probability measure on R
n. We say that μ satisfies the (modified) log-Sobolev inequality for a class

of functions F (with cost function H :Rn → [0,∞) and constant c < ∞) if for every f ∈F we have

Entμ
(
ef

) ≤
∫
Rn

H(c∇f )ef dμ. (1.1)

Here Entμ(g) denotes the usual entropy of a non-negative function g, i.e.

Entμ(g) =
∫
Rn

g ln(g) dμ −
∫
Rn

g dμ ln

(∫
Rn

g dμ

)
(1.2)

if
∫
Rn g ln(g) dμ < ∞ and Entμ(g) = ∞ otherwise.
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In the most classical setting where H(x) = |x|2 and F is the class of C1 functions this inequality was first intro-
duced by Gross in [20]. In this case it can be rewritten in the form

Entμ
(
g2) ≤ 4C

∫
Rn

|∇g|2 dμ, (1.3)

where C = c2, or in yet another form which states that the entropy of a positive function g is bounded by its Fisher
information:

Entμ(g) ≤ C

∫
Rn

|∇g|2
g

dμ.

Due to its tensorization property the log-Sobolev inequality is a powerful tool and can be used to obtain dimension-
free concentration bounds (via the so-called Herbst argument). It has been investigated also in more general settings of
Riemannian manifolds and in the context of applications to the study of Markov chains (see, e.g., the monographs [4,
5] and the expository article [12]).

Inequality (1.1) with F = C1 and non-quadratic functions H has been studied by Bobkov and Ledoux in [8], who
considered

H(x) = |x|21{|x|≤δ} + ∞1{|x|≥δ}, x ∈ R
n,

and Gentil, Guillin, and Miclo in [15,16], with H essentially of the form

n∑
i=1

max
{|xi |2, |xi |p

}
, x = (x1, . . . , xn) ∈ R

n,p ≥ 2.

Also, in the case of modified log-Sobolev inequalities on the real line, Barthe and Roberto in [7] characterized (under
some mild technical conditions) measures satisfying inequality (1.1) with

H(x) = x21{|x|≤1} + �(|x|)
�(1)

1{|x|>1}, x ∈ R,

where � : [0,∞) → [0,∞) is a sufficiently nice Young function (cf. [6]; the quadratic case was handled earlier by
Bobkov and Götze in [11]).

In this paper we are primarily interested in the case when F is the class of convex functions.2 The restriction
of the class of functions allows us to work with measures which satisfy much weaker regularity conditions. Most
importantly, their supports do not need to be connected, as opposed to many classical functional inequalities such as
the Poincaré, transport-information, or log-Sobolev inequality. On the other hand, a disturbing issue arises: the log-
Sobolev inequality for convex functions yields via standard reasonings only deviation inequalities for the upper tail of
functions, i.e.

μ⊗N

({
x ∈ (

R
n
)N : f (x) ≥

∫
(Rn)N

f dμ⊗N + t

})
, t ≥ 0

(in the classical setting of smooth functions one obtains bounds on the lower tail simply by working with −f instead
of f , but this is precluded in our situation because −f is usually not convex).

For brevity in what follows we shall slightly informally refer to the log-Sobolev inequality for convex functions
simply as “the convex log-Sobolev inequality”.

Our goal is to give an intrinsic characterization of probability measures on the real line for which the convex log-
Sobolev inequality holds. As a corollary we will obtain dimension-free concentration bounds for upper and lower tails
of convex functions of independent random variables satisfying the convex log-Sobolev inequality. Before stating our
main result let us outline what is known in the convex setting.

2Note that in this case the dimension-free tensorization property still holds, but the alternative formulations (1.2) and (1.3) – with g being convex,
respectively convex and non-negative – are no longer equivalent to (1.1).
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In [1] Adamczak found a sufficient condition for a probability measure on the real line to satisfy the con-
vex log-Sobolev inequality with H(x) = x2, x ∈ R. This has been extended to functions of the form H(x) =
max{x2, x(β+1)/β}, where β ∈ [0,1], by Adamczak and the second named author in [3].

Recall that in the classical setting there are strong links between the log-Sobolev inequality, transport-entropy in-
equalities (introduced by Talagrand in [24] and subsequently widely studied, see, e.g., [25] for a complete and detailed
introduction) and the infimum convolution inequality (first introduced by Maurey in [21]). Specifically, Bobkov and
Götze in [11] showed that the transport-entropy inequality is equivalent to some kind of infimum-convolution in-
equality, and later Bobkov, Gentil, and Ledoux in [9] established a condition equivalent to the log-Sobolev inequality
in terms of the infimum-convolution inequality (these results are closely connected with the celebrated Otto–Villani
theorem, see [22,23]).

Similar connections have been observed by Gozlan, Roberto, Samson, and Tetali in [19] for convex log-Sobolev
inequalities, weak transport-entropy inequalities (introduced therein, see Section 2 for definitions and more details),
and the convex infimum convolution inequality. Later, Gozlan, Roberto, Samson, Tetali, and the first named author
established in [18] a condition sufficient for the convex modified log-Sobolev inequality to hold on the real line. This
condition is expressed in terms of the unique left-continuous and non-decreasing map transporting the symmetric
exponential measure onto μ (more precisely, in terms of the quantity �μ(h) defined below in (1.4); see Section 4 for
a precise statement of the result). In fact, their sufficient condition is weaker than the condition considered in [3] (and
leads to a result formally stronger than the convex log-Sobolev inequality, cf. Proposition 4.1).

On the other hand, it follows from [18] and the independent work of Feldheim, Marsiglietti, Nayar, and Wang
in [14] that in the case when H is quadratic on an interval near zero and then infinite the following are equivalent:

• the condition on the tail of the measure μ from [3] in the case β = 0,
• the condition on monotone transport map obtained in [18],
• the log-Sobolev inequality for convex functions

(and further: the convex Poincaré inequality, the convex infimum convolution inequality with a quadratic-linear cost
function). In what follows we extend this result to more general choices of the function H .

In order to formulate our main result we need to introduce some notation. Let τ be the symmetric exponential
measure on R with density 1

2e−|x|. For a Borel probability measure μ on R we denote by Uμ the unique left-continuous
and non-decreasing map transporting τ onto the reference measure μ. More precisely,

Uμ(x) = F−1
μ ◦ Fτ (x) =

{
F−1

μ ( 1
2e−|x|) if x < 0,

F−1
μ (1 − 1

2e−|x|) if x ≥ 0,

where

F−1
μ (t) = inf

{
y ∈ R : Fμ(y) ≥ t

} ∈R∪ {±∞}, t ∈ [0,1],
is the generalized inverse of the cumulative distribution function defined as

Fμ(x) = μ
(
(−∞, x]), x ∈R.

Denote moreover by

�μ(h) = sup
x∈R

{
Uμ(x + h) − Uμ(x)

}
, h > 0, (1.4)

the modulus of continuity of Uμ (by all means we can have limh→0+ �μ(h) > 0).
Our main result is the following. The results are new already in the case of the quadratic function H(x) = 1

4x2.

Theorem 1.1. Let H : R → [0,∞) be a symmetric convex function, such that H(x) = 1
4x2 for x ∈ [−2t0,2t0] for

some t0 > 0, and let H ∗ : R→ [0,∞) be its Fenchel–Legendre transform. Suppose moreover that limx→∞ H ∗(x)/x =
∞ and that there exist A ∈ [1,∞) and α ∈ (1,2] such that

∀x∈R ∀s∈[0,1] H(sx) ≤ AsαH(x). (1.5)

Denote θ(t) = H ∗(t), t ≥ 0. For a probability measure μ on the real line the following conditions are equivalent.
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(i) For every s > 0 we have
∫
R

es|x| dμ(x) < ∞ and there exists c > 0 such that

Entμ
(
eϕ

) ≤
∫
R

H
(
cϕ′)eϕ dμ

for every smooth convex Lipschitz function ϕ :R→ R.
(ii) There exists b > 0 such that for all h > 0,

�μ(h) ≤ 1

b
θ−1(t2

0 + h
)
.

Remark 1.2. The dependence of constants is explicit but complicated and hence we shall only specify it throughout

the proof of the theorem. However, in the case when H(x) = x2

4 the dependence of constants can be simplified: (ii)
implies (i) with c = 1

κb
where

κ = max
t0>0

{
min(1, t0)

210
√

2 + t2
0

}
= 1

210
√

3
;

(i) implies that �μ(h) ≤ 16c( 2
3 + √

h/2).

Remark 1.3. The condition (1.5) is stable under taking convex combinations or maxima of functions and, for 1 <

p < ∞, the function

H(x) = Hp(x) =
{

1
4x2 if |x| ≤ 2,
2
p
(|x/2|p − 1) + 1 if |x| > 2,

satisfies (1.5) with α = min{p,2} and A = 1. Indeed, if x > 0 and s ∈ (0,1), then by Cauchy’s mean value theorem

H(sx)

H(x)
= sH ′(sξ)

H ′(ξ)
=

⎧⎪⎨⎪⎩
s2 if 0 ≤ sξ ≤ ξ ≤ 2,

s2(ξ/2)2−p = sp(sξ/2)2−p if 0 ≤ sξ ≤ 2 < ξ,

sp if 2 < sξ ≤ ξ

for some ξ ∈ (0, x). In either case, H(sx) ≤ max{s2, sp}H(x) = smin{p,2}H(x).

Remark 1.4. The condition on �μ from (ii) is to some extent related to the conditions considered in [1,3,14] (see
also Lemma 4.5 below). Indeed, suppose for simplicity that μ is symmetric and has a nowhere vanishing density. By
the definition of Uμ we have

μ
([

Uμ(x + h),∞)) = τ
([x + h,∞)

) = e−hτ
([x,∞)

) = e−hμ
([

Uμ(x),∞))
for x,h ≥ 0. This easy computation shows that (ii) implies:

(ii′) There exists b > 0 such that for every h > 0,

μ
([

x + g(h),∞)) ≤ e−hμ
([x,∞)

) ∀x ≥ 0,

where g(h) = 1
b
θ−1(t2

0 + h).

The last inequality is similar to the inequalities which appear in the definitions of the classes Mβ from [1,3], and [14]
(but there h is fixed and x is assumed to be sufficiently large; moreover g = g(x) in [1,3]).

Remark 1.5. In (i) the assumption about exponential integrability is added in order to exclude very heavy-tailed
measures for which the only exponentially integrable convex Lipschitz functions are constants and hence the convex
log-Sobolev inequality is trivially satisfied, whereas (ii) cannot hold.
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Remark 1.6. In the definition of the log-Sobolev inequality the constant c is introduced as a scaling of the argument
of the function H rather than as a multiplicative constant outside of the integral. We decided to use this form because
it simplifies some of the calculations in Section 3. Clearly, in the most common cases, e.g., in the case of the functions
Hp from Remark 1.3, the two formulations are equivalent up to numerical constants (for the functions Hp those
constants depend on p).

Since the condition (ii) is in fact equivalent to the infimum convolution inequality for convex functions considered
in [18] (see also Proposition 4.1 and Proposition 2.1 below) we immediately obtain concentration bounds for the upper
and lower tails of convex Lipschitz functions. For simplicity we state them in the case H(x) = 1

4x2, but one can obtain
appropriate results also in the case when H is not quadratic. We refer to, e.g., [14, Corollary 3] for a similar statement
(with H quadratic on an interval near zero and then infinite) and to [19, Corollary 5.11] for a general overview of
concentration properties implied by weak transportation inequalities.

Corollary 1.7. Let μ be a probability measure on R such that for every s > 0 we have
∫
R

es|x| dμ(x) < ∞ and

Entμ
(
eϕ

) ≤ C

∫
R

∣∣ϕ′∣∣2
eϕ dμ

for every smooth convex Lipschitz function ϕ : R → R. Then there exist A,B < ∞ (depending only on C), such that
for any convex (or concave) function ϕ : RN → R which is 1-Lipschitz (with respect to the Euclidean norm on R

N )
we have

μ⊗N
({

x ∈ R
N : ∣∣ϕ(x) − Medμ⊗N (ϕ)

∣∣ ≥ t
}) ≤ Be−t2/A, t ≥ 0,

where

Medμ⊗N (ϕ) = inf
{
s ∈ R : μ⊗N

({
x ∈R

N : ϕ(x) ≤ s
}) ≥ 1/2

}
is the median of ϕ.

The article is organized as follows. In Section 2 we recall the definitions of the weak transport-entropy inequalities
and provide preliminary results about infimum convolution inequalities from [19] and [18]. In Sections 3 and 4 we
prove that the conditions (i) and (ii) both are equivalent to a weak transport-entropy inequality. Finally, in Section 5
we summarize the results of the previous sections and give the proof of Theorem 1.1 (and Corollary 1.7). We also
recapitulate all conditions equivalent to the convex log-Sobolev inequality in the quadratic case and pose some open
questions.

2. A reminder about weak transport-entropy inequalities

In this section, we recall the definition of the weak transport problem and some preliminary results. Although through-
out the most part of the paper we work with measures on the real line we introduce the notation in a slightly greater
generality. Below | · | denotes the standard Euclidean norm in R

n.

2.1. Weak transport costs

For two probability measures μ1, μ2 on R
n the weak (barycentric) transport cost associated to the convex cost function

θ : [0,∞) → [0,∞] is defined by the formula

T θ (μ2|μ1) = inf
π

∫
Rn

θ

(∣∣∣∣x −
∫
Rn

yp(x, dy)

∣∣∣∣)μ1(dx),

where the infimum is taken over all couplings π(dx dy) = p(x, dy)μ1(dx) of μ1 and μ2, and p(x, ·) denotes the
disintegration kernel of π with respect to its first marginal. Using probabilistic notation we can write

T θ (μ2|μ1) = infEθ
(∣∣X1 −E(X2|X1)

∣∣),
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where the infimum is taken over all random variables X1 ∼ μ1, X2 ∼ μ2. The adjective weak stands for the fact that,
by Jensen’s inequality, it is smaller than the classical transport cost,

Tθ (μ2,μ1) = inf
π

∫
Rn×Rn

θ
(|x − y|)π(dx, dy), (2.1)

considered in the Monge–Kantorovich transport problem. Note also that in contrast to Tθ the weak transport cost T θ

is not symmetric.

2.2. From weak transport inequality to infimum convolution inequality

Recall that for two probability measures the relative entropy of ν with respect to μ is given by the formula

H(ν|μ) =
∫
Rn

log

(
dν

dμ

)
dν ∈ [0,+∞]

if ν is absolutely continuous with respect to μ; otherwise we set H(ν|μ) = +∞.
We say that a probability measure μ on R

n satisfies the weak transport-entropy inequality T
−
(θ) (respectively,

T
+
(θ)) if

T θ (μ|ν) ≤ H(ν|μ)
(
respectively,T θ (ν|μ) ≤ H(ν|μ)

)
for every probability measure ν on R

n having a finite first moment. We say that μ satisfies T(θ) if μ satisfies both
T

−
(θ) and T

+
(θ).

A Bobkov–Götze type criterion for the weak-transport inequality was given in [19, Proposition 4.5] (cf. also [18,
Lemma 4.1], where a formulation more similar to the below is given). It is expressed in terms of the infimum convo-
lution operator Qθ

t defined by the formula

Qθ
t f (x) = inf

y∈Rn

{
f (y) + tθ

(|x − y|/t
)}

, x ∈R
n,

for t > 0 and f : Rn →R.

Proposition 2.1 ([19, Proposition 4.5]). Let μ be a probability measure on R
n and let θ : [0,∞) → [0,∞] be a

convex cost function. Then the following holds.

(a) The measure μ satisfies T
−
(θ) if and only if∫

Rn

exp
(
Qθ

1f
)
dμ exp

(
−

∫
Rn

f dμ

)
≤ 1 (2.2)

for every convex function f : Rn →R bounded from below.
(b) The measure μ satisfies T

+
(θ) if and only if

exp

(∫
Rn

Qθ
1f dμ

)∫
Rn

exp(−f )dμ ≤ 1

for every convex function f : Rn →R bounded from below.
(c) If the measure μ satisfies T(θ), then∫

Rn

exp
(
Qθ

t f
)
dμ

∫
Rn

exp(−f )dμ ≤ 1

for t = 2 and every convex function f : Rn → R bounded from below. Conversely, if the above inequality holds
for some t > 0, then μ satisfies T(tθ(·/t)).
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3. Equivalence of the convex log-Sobolev inequality and the weak transportation inequality

In this section we establish the equivalence of the convex log-Sobolev inequality and the weak transport-entropy
inequality. In the case of the quadratic cost this was done in [19] (see also [3] for related results for other cost
functions). Using the techniques developed therein, especially in the dual formulation (2.2), we extend this result to a
wider class of cost functions. We work with measures on the real line, but in contrast to Section 4 there are no essential
problems with extending the results of this section to a higher dimensional setting (cf. [3,19]).

Let H : R → [0,∞) be a symmetric convex function, such that H(x) = 1
4x2 for x ∈ [−2t0,2t0] for some t0 > 0.

Note that then the Fenchel–Legendre transform of H , given by the formula

H ∗(x) = sup
y∈R

{
xy − H(y)

}
, x ∈R,

is also quadratic near zero (namely, H ∗(x) = x2 for x ∈ [−t0, t0], since for such x the supremum in the definition of
H ∗ is attained at y = 2x). Moreover, we assume that there exist A ∈ [1,∞) and α ∈ (1,2] such that

∀x∈R ∀s∈[0,1] H(sx) ≤ AsαH(x). (3.1)

Finally, we assume that limx→∞ H ∗(x)/x = ∞.
Note that we have

H(x) ≥ (4A)−1t2−α
0 xα for x ≥ t0 (3.2)

(this follows immediately by taking s = t0/x in condition (3.1)).
The main result of this section is the following.

Proposition 3.1. For a probability measure μ on the real line the following conditions are equivalent.

(i) There exists a > 0 such that the measure μ satisfies T
−
(H ∗(a·)).

(ii) For every s > 0 we have
∫
R

es|x| dμ(x) < ∞ and there exists c > 0 such that

Entμ
(
eϕ

) ≤
∫
R

H
(
cϕ′)eϕ dμ

for every smooth convex Lipschitz function ϕ :R→ R.

The dependence of the constants is the following: (i) implies (ii) with c = 2/a; (ii) implies (i) with a =
((α − 1)/A)1/αc−1.

The implication (i) =⇒ (ii) is a general fact and no special assumptions are used in the proof. For the sake of
completeness we sketch the main argument here.

Proof of Proposition 3.1, (i) =⇒ (ii). The exponential integrability follows from the dual formulation of
T

−
(H ∗(a·)) tested with the function x �→ s|x| (cf. [3, p. 86]).
According to [19, Proposition 8.3], (i) implies that the so-called (τ )-log-Sobolev inequality holds: for all functions

f : R→R with
∫
R

f ef dμ < ∞ we have

Entμ
(
ef

) ≤ 1

1 − λ

∫
R

(
f − Rλf

)
ef dμ

for every λ ∈ (0,1). Here

Rλf (x) := inf
p

{∫
R

f (y)p(dy) + λH ∗
(

a

∣∣∣∣x −
∫
R

yp(dy)

∣∣∣∣)}
,
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where the infimum is taken over all probability measures p on R (note that we skip the dependence on H ∗ in the
notation). Since H ∗ is convex, for convex functions f the infimum above is achieved at some Dirac measure:

Rλf (x) = inf
y∈R

{
f (y) + λH ∗(a(x − y)

)}
(indeed, if we replace the measure p by a Dirac mass at the point yp = ∫

R
yp(dy), then, by Jensen’s inequality, the

expression under the infimum in the definition of Rλ will not increase; cf. Theorem 2.11 and Section 8.2 in [19]).
Now, by convexity of f ,

f (x) − Rλf (x) = f (x) + sup
y∈R

{−f (y) − λH ∗(a(x − y)
)}

≤ f (x) + sup
y∈R

{−f (x) − f ′(x)(y − x) − λH ∗(a(x − y)
)} = λH

(
f ′(x)

aλ

)
,

where we have used the fact that H ∗∗ = H . Thus, after taking λ = 1/2, we arrive at the assertion (with c = 2/a). �

For the proof of the second implication we need the following simple lemma. It is based on an argument of Maurey
(cf. [21, Proof of Theorem 3]), but takes into account the observation that for compactly supported measures it doesn’t
matter whether for large arguments the cost function is quadratic or equal to +∞. Recall that | · | stands for the
Euclidean norm.

Lemma 3.2. Let μ be a probability measure on R
n such that the diameter of the support of μ is not greater than D

and denote

θD(x) =
{

1
4D2 |x|2 if |x| ≤ D,

+∞ if |x| > D.

Then for any convex function ϕ :Rn → R bounded from below∫
Rn

eQ
θD
1 ϕ dμ

∫
Rn

e−ϕ dμ ≤ 1, (3.3)

where Q
θD

1 ϕ(x) = inf{ϕ(y) + θD(x − y) : y ∈ R
n}, x ∈ R

n, stands for the infimum convolution.
Conversely, if inequality (3.3) holds for some D, then the support of μ is bounded: x, y ∈ Suppμ =⇒ |x −y| ≤ D.

Proof. Assume that the diameter of the support of μ is bounded by D. Take a convex function ϕ, bounded from below.
By adding a constant to ϕ, we may assume that infSuppμ ϕ = 0. Take any ε > 0, any x ∈ Suppμ, and let z ∈ Suppμ

be such that ϕ(z) < ε. Moreover, define y = (1 − λ)x + λz, where λ ∈ [0,1]. Then |x − y| ≤ D and hence

Q
θD

1 ϕ(x) ≤ ϕ(y) + 1

4D2
|x − y|2 ≤ (1 − λ)ϕ(x) + λϕ(z) + λ2

4D2
|x − z|2

≤ (1 − λ)ϕ(x) + λε + λ2

4
.

We now let ε → 0+, and then optimize with respect to λ ∈ [0,1]: if ϕ(x) ≥ 1/2 we take λ = 1, and if 0 ≤ ϕ(x) ≤ 1/2
we take λ = 2ϕ(x). This gives Q

θD

1 ϕ(x) ≤ k(ϕ(x)), where

k(u) = (
u − u2) · 1{u∈[0,1/2)} + 1

4
· 1{u≥1/2}.

Note that we have ek(u) ≤ 2 − e−u. Indeed, for u = 1/2 (or larger) the inequality holds, and for u ∈ [0,1/2) we have(
eu−u2 + e−u

)
/2 ≤ e−u2/2 cosh

(
u − u2/2

) ≤ e−u2/2 cosh(u) ≤ 1.
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Hence∫
eQ

θD
1 ϕμ ≤

∫
ek(ϕ) dμ ≤ 2 −

∫
e−ϕ dμ ≤

(∫
e−ϕ dμ

)−1

.

Conversely, assume that inequality (3.3) holds, but there exist x0, y0 ∈ Suppμ such that |x0 − y0| > D. Then there
exist ε, δ > 0, such that μ(B(x0, ε)) > δ and μ(Rn \ B(x0,D + 2ε)) > δ. Consider now ϕa : Rn → R defined by the
formula ϕa(x) = a dist(x,B(x0, ε)) for a > 0. For x ∈R

n \ B(x0,D + 2ε) we have

Q
θD

1 ϕa(x) = inf
y∈Rn:|x−y|≤D

{
a dist

(
y,B(x0, ε)

) + 1

4D2
|x − y|2

}
≥ aε.

Moreover, ϕa = 0 on B(x0, ε). Thus for sufficiently large a > 0,∫
Rn

eQ
θD
1 ϕa dμ

∫
Rn

e−ϕa dμ ≥
∫
Rn\B(x0,D+2ε)

eQ
θD
1 ϕa dμ

∫
B(x0,ε)

e−ϕa dμ ≥ δ2 exp(aε) > 1,

which contradicts inequality (3.3). �

Proof of Proposition 3.1, (ii) =⇒ (i). Assume that (ii) holds. Without loss of generality we can assume that μ

is absolutely continuous with respect to the Lebesgue measure. Indeed, if γ is a uniform probability distribution on
[0, δ], then by Lemma 3.2, Proposition 2.1(c), and the already proved implication (i) =⇒ (ii) of Proposition 3.1 it
satisfies the convex log-Sobolev inequality with a quadratic-linear function

H0(x) = δ2x21{|x|≤1/(2δ)} + (
δ|x| − 1/4

)
1{|x|>1/(2δ)}

(and constant c = 2). Hence by (3.2) the product measure μ ⊗ γ on R
2 satisfies (for sufficiently small δ > 0)

Entμ⊗γ

(
eφ

) ≤
∫
R2

(
H

(
cφ′

x

) + H
(
cφ′

y

))
eφ dμ ⊗ γ (3.4)

for all smooth convex Lipschitz functions φ : R2 → R. Let ϕ : R → R be a smooth convex Lipschitz function and let
φ : R2 → R be defined by the formula φ(x, y) = ϕ(x + εy), x, y ∈ R. Applying (3.4) to the function φ and using the
assumption (3.1), we see that the convolution μ ∗ γε , where γε(·) = γ (·/ε), satisfies, up to a multiplicative constant
which tends to 1 as ε → 0+, the same modified log-Sobolev inequality as μ:

Entμ∗γε

(
eϕ

) ≤ (
1 + Aεα

)∫
R

H
(
cϕ′)eϕ dμ ∗ γε.

The reader will easily check that the proof below shows that μ ∗ γε satisfies (i) with aε = ((α − 1)/Aε)
1/αc−1,

where Aε = A · (1 + Aεα) (the multiplicative constant 1 + Aεα will appear in one place in the estimate of F ′(t)).
By the Lebesgue dominated convergence theorem applied to the dual formulation this implies that μ satisfies (i) with
a = ((α − 1)/A)1/αc−1 (note that it suffices to consider the dual formulation for convex Lipschitz functions only and
that we use the estimate

Q
H ∗(aε ·)
1 f (x) ≤ f (x) ≤ f (0) + Lip(f )|x|

and the assumption that
∫
R

es|x| dμ(x) < ∞ for every s > 0).
Note that if μ is absolutely continuous, then standard approximation shows that (ii) holds for all convex Lipschitz

functions (by the Rademacher theorem the gradient is then almost surely well defined).
Denote for brevity

Qtf (x) = Q
H ∗(·)
t f (x) = inf

y∈R

{
f (y) + tH ∗

( |x − y|
t

)}
and set F(t) = ∫

R
ek(t)Qtϕ(x) dμ(x) for t > 0 (for some non-decreasing function k yet to be determined). Using

first the fact that ∂tQtϕ + H(∂xQtϕ) = 0 almost surely on (0,∞) × R (see, e.g., Chapter 3 of [13]), then the log-



2084 Y. Shu and M. Strzelecki

Sobolev inequality, and finally the estimate H(ck(t)·) ≤ Acαk(t)αH(·) which follows from the assumption (3.1) if
only ck(t) ≤ 1, we arrive at

k(t)F ′(t) = k(t)

∫
R

ek(t)Qtϕ(x)
(
k′(t)Qtϕ(x) + k(t)∂tQtϕ(x)

)
dμ(x)

= k(t)

∫
R

ek(t)Qtϕ(x)
(
k′(t)Qtϕ(x) − k(t)H

(
∂xQtϕ(x)

))
dμ(x)

= k′(t)F (t) logF(t) + k′(t)Entμ
(
ek(t)Qtϕ

)
− k2(t)

∫
R

ek(t)Qtϕ(x)H
(
∂xQtϕ(x)

)
dμ(x)

≤ k′(t)F (t) logF(t) + k′(t)
∫
R

ek(t)Qtϕ(x)H
(
ck(t)∂xQtϕ(x)

)
dμ(x)

− k2(t)

∫
R

ek(t)Qtϕ(x)H
(
∂xQtϕ(x)

)
dμ(x)

≤ k′(t)F (t) logF(t) + [
Acαk′(t)k(t)α − k2(t)

] ·
∫
R

ek(t)Qtϕ(x)H
(
∂xQtϕ(x)

)
dμ(x).

Denote Ã = A1/α and take

k(t) = (Ãc)−α/(α−1)
(
(α − 1)t

)1/(α−1)
.

Then k(0) = 0, ck(t) ≤ 1 for t ∈ [0, Ãαc/(α − 1)], and Acαk′(t)k(t)α − k2(t) = 0. Thus the above differential in-
equality is equivalent to (log(F (t))/k(t))′ ≤ 0 for almost all t ∈ (0, Ãαc/(α − 1)), which, since Qtϕ ≤ ϕ, yields

logF(t)

k(t)
≤ lim inf

s→0+
logF(s)

k(s)
≤ lim

s→0+
log(

∫
R

ek(s)ϕ(x) dμ(x))

k(s)
=

∫
R

ϕ dμ

for t ∈ (0, Ãαc/(α − 1)). This is exactly the dual formulation of T
−
(tk(t)H ∗(·/t)) (see Proposition 2.1(a)). Taking

t = t∗ = Ãc/(α − 1)1/α we see that t∗k(t∗) = 1, t∗ ≤ Ãαc/(α − 1) (recall that A ≥ 1 and 1 < α ≤ 2), and thus also
ck(t∗) ≤ 1. We conclude that μ satisfies T

−
(H ∗(a·)) with a = 1/t∗ = ((α − 1)/A)1/αc−1. �

4. Equivalence of the weak transportation inequality and the condition on Uμ

In the previous section we showed the equivalence of the convex log-Sobolev inequality and the weak transport-
entropy inequality. In this section, working towards the proof of the main theorem, we deal with weak transport-
entropy inequalities.

Throughout this section let μ be a measure on the real line (which is not a Dirac mass) with median m = F−1
μ (1/2).

Denote sμ = inf Supp(μ) ∈ [−∞,∞), tμ = sup Supp(μ) ∈ (−∞,∞].
Let θ : [0,∞) → [0,∞) be a convex cost function such that θ(t) = t2 for t ∈ [0, t0] for some t0 > 0. Note that by

convexity θ is increasing. We moreover assume that
∫ ∞

0 θ(x)e−λx dx < ∞ for any λ > 0. Recall that the following
result is proved in [18].

Proposition 4.1 ([18, Theorem 1.3]). The following conditions are equivalent.

(i) There exists a > 0 such that μ satisfies T(θ(a·)).
(ii) There exists b > 0 such that for all h > 0 we have

�μ(h) ≤ 1

b
θ−1(t2

0 + h
)
.

The dependence of the constants is the following: (i) implies (ii) with b = κ1a and (ii) implies (i) with a = κ2b, where
κ1 = t0

8θ−1(log(3)+t2
0 )

, κ2 = min(1,t0)

210θ−1(2+t2
0 )

.
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The goal of this section is to provide a proof of the following stronger version of the above proposition, where
T(θ(a·)) is replaced by the formally weaker inequality T

−
(θ(a·)). Note that this in particular means that the inequal-

ities T and T
−

are equivalent.

Proposition 4.2. The following conditions are equivalent.

(i) There exists a > 0 such that μ satisfies T
−
(θ(a·)).

(ii) There exists b > 0 such that for all h > 0 we have

�μ(h) ≤ 1

b
θ−1(t2

0 + h
)
.

The dependence of the constants is the following: (i) implies (ii) with

b = min(a,1)

16

(
1 + 1

at0
θ−1

(
log(2eCθ /2 − 1)

2

))−1

,

where Cθ = ∫ ∞
0 θ(2 + 1

log 2 t)e−t dt , and (ii) implies (i) with a = κb, where κ = min(1,t0)

210θ−1(2+t2
0 )

.

For the proof we need the following lemma which is an immediate consequence of Theorem 2.2 from [17] (cf.
[18, Theorem 6.1]), where the connection between the condition (ii) satisfied by the map Uμ and transport-entropy
inequalities connected to transport cost which are equal to zero in a neighborhood of zero is explained in detail. In
what follows the symbol

∫ t2
t1

always denotes an integral over the open interval (t1, t2).

Lemma 4.3 ([17, Theorem 2.2]). Let β : [0,∞) → [0,∞) be a function which is equal to zero on the interval [0, t0]
and then strictly increasing; denote its inverse by β−1 : [0,∞) → [t0,∞). The following conditions are equivalent.

(i) There exists d > 0 such that for all h > 0 and x ∈R,

�μ(h) ≤ 1

d
β−1(h).

(ii) There exist k > 0, K < ∞ such that

sup
x∈[m,tμ)

1

μ((x,∞))

∫ ∞

x

exp
(
β
(
k(u − x)

))
μ(du) ≤ K,

sup
x∈(sμ,m]

1

μ((−∞, x))

∫ x

−∞
exp

(
β
(
k(x − u)

))
μ(du) ≤ K.

The dependence of the constants is the following: (i) implies (ii) with K = 3 and k = d
t0

18β−1(2)
; (ii) implies (i) with

d = k
t0

4β−1(logK)
.

We also need the following preparatory result. Note that for the assertion to hold it suffices to assume only that μ

satisfies the convex Poincaré inequality.

Lemma 4.4. If μ satisfies T
−
(θ(a·)), then

1

μ((x,∞))

∫ ∞

x

θ
(
a(u − x)

)
μ(du) ≤ Cθ for x ∈ [m, tμ),

1

μ((−∞, x))

∫ x

−∞
θ
(
a(x − u)

)
μ(du) ≤ Cθ for x ∈ (sμ,m],

where Cθ = ∫ ∞
0 θ(2 + 1

log 2 t)e−t dt . Moreover, if θ(x) = x2 then one can choose Cθ = 1.



2086 Y. Shu and M. Strzelecki

Proof of Lemma 4.4. First note that μ satisfies the convex Poincaré inequality: for any (smooth) convex Lipschitz
f : R→R we have

Varμ(f ) ≤ 1

2a2

∫
R

|f ′|2 dμ. (4.1)

This follows by a standard Taylor expansion argument from the dual formulation of the transport entropy inequality
(see Proposition 2.1(a)): we plug in εf instead of f , use the estimate

Qθ
1(εf )(x) = inf

y∈R
{
εf (x − y) + θ

(|y|)} ≥ εf (x) + inf
y∈R

{−εf ′(x)y + θ
(|y|)} ≥ εf (x) − θ∗(ε∣∣f ′(x)

∣∣)
(valid for convex functions), and take ε → 0+ (alternatively, one could use Proposition 3.1 and deduce the Poincaré
inequality with a slightly worse constant from the log-Sobolev inequality by a similar argument).

We only need to prove the first inequality (where x ∈ [m, tμ)), the second one can be taken care of in a similar way.
First, we deal with the case θ(x) := x2. Inequality (4.1) implies that

A − B ≤ 1

2
μ

(
(x,∞)

)
,

where A = ∫ ∞
x

(a(u − x))2μ(du) and B = (
∫ ∞
x

a(u − x)μ(du))2. (This is obtained by testing (4.1) with u �→
a max{u − x,0} – note that even though μ can have atoms there are no problems with non-differentiability at u = x,
see [17, Proposition 4.6].) By the Cauchy–Schwarz inequality B ≤ Aμ((x,∞)) and thus

A ≤ 1

2
μ

(
(x,∞)

) + Aμ
(
(x,∞)

)
,

which, since x ≥ m, leads to

1

μ((x,∞))

∫ ∞

x

θ
(
a(u − x)

)
μ(du) ≤ 1

2(1 − μ((x,∞)))
≤ 1.

Now we turn to the general θ . By the characterization of Bobkov and Götze [10, Theorem 4.2] (cf. [18, Theo-
rem 1.5]), there exist D1,D2 > 0 such that �μ(h) ≤ D1 + D2h for all h ≥ 0. Following the proof of [14, Theorem 1]
(see Lemma 4.5 below for more details), we see that one can choose D1 = 2

a
and D2 = 1

a log 2 .
Fix x ≥ m and define v := sup{u : Uμ(u) ≤ x}. Since the map Uμ is left-continuous we have Uμ(v) ≤ x <

Uμ(v + ε) for any ε > 0; also v ≥ 0 since x ≥ m. Recall that τ denotes the exponential measure and that∫
R

f dμ =
∫
R

f ◦ Uμ dτ

for any measurable function f . Thus (note that μ((Uμ(v), x]) = 0 if we have Uμ(v) < x)

1

μ((x,∞))

∫ ∞

x

θ
(
a(u − x)

)
μ(du) = 1

τ((v,∞))

∫ ∞

v

θ
(
a
(
Uμ(u) − x

))
τ(du)

≤ ev

∫ ∞

v

θ
(
a
(
Uμ(u) − Uμ(v)

))
e−u du

≤
∫ ∞

v

θ
(
a
(
D1 + D2(u − v)

))
e−(u−v) du

=
∫ ∞

0
θ
(
a(D1 + D2t)

)
e−t dt

=
∫ ∞

0
θ

(
2 + 1

log 2
t

)
e−t dt = Cθ < ∞,

where the last inequality follows from the integrability condition placed on θ . �
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Let us clarify here what we mean above by “Following the proof of [14, Theorem 1]”, especially since in the
proof of [14, Theorem 1] the reference measure μ is assumed to be symmetric and the function Uμ does not appear
explicitly.

Lemma 4.5. If μ satisfies the convex Poincaré inequality, then we have Uμ(x +h)−Uμ(x) ≤ 4
a

+ 1
a log(2)

h. However,
the constant 4/a may be replaced by 2/a if we know that x and x + h are of the same sign. Thus in the above proof
one can take D1 = 2

a
and D2 = 1

a log 2 .

Proof. Let X,X′ be two independent random variables with distribution μ. Fix u ≥ m and plug the function f (x) =
max{x − u,0} into (4.1):

1

2a2
μ

([u,∞)
) ≥ Varμ(f ) = 1

2
E

(
f (X) − f

(
X′))2

≥ 1

2
E

(
f (X) − f

(
X′))2[1{X′≤m}1{X≥u+2/a} + 1{X≤m}1{X′≥u+2/a}

]
≥ 1

2
Ef (X)21{X≥u+2/a} ≥ 2

a2
μ

([u + 2/a,∞)
)
.

Thus,

μ
([u + 2/a,∞)

) ≤ 1

4
μ

([u,∞)
)
, u ≥ m,

and similarly

μ
(
(−∞, u − 2/a]) ≤ 1

4
μ

(
(−∞, u]), u ≤ m.

By the definition of Uμ (recall that this function is left-continuous) for x ∈R and all ε > 0,

Fμ

(
Uμ(x) − ε

) ≤ Fτ (x) ≤ Fμ

(
Uμ(x)

)
.

Denote now h0 = 2 ln(2) and let x, x + h0 ≤ 0. Then, for ε > 0,

μ
((−∞,Uμ(x + h0) − 2/a − ε

]) ≤ 1

4
μ

((−∞,Uμ(x + h0) − ε
])

≤ e−h0τ
(
(−∞, x + h0]

) = τ
(
(−∞, x])

≤ μ
((−∞,Uμ(x)

])
.

Hence Uμ(x +h0)−Uμ(x) ≤ 2/a for x, x +h0 ≤ 0 (since ε > 0 was arbitrary). Similarly Uμ(x +h0)−Uμ(x) ≤ 2/a

for x, x + h0 ≥ 0, since

μ
([

Uμ(x) + 2/a + ε,∞)) ≤ 1

4
μ

([
Uμ(x) + ε,∞)) ≤ 1

4

(
1 − Fμ

(
Uμ(x)

))
≤ e−h0

(
1 − Fτ (x)

) ≤ 1 − Fτ (x + h0)

≤ μ
([

Uμ(x + h0) − ε,∞))
.

Using these inequalities in a telescoping manner at most �h/h0� ≤ 1 + h/h0 times we conclude that

Uμ(x + h) − Uμ(x) ≤ 2

a
+ 1

a log(2)
h

for any x ∈ R and h ≥ 0 such that x and x + h are of the same sign . If x < 0 < x + h, then the additive constant 2/a

in the last estimate has to be replaced by 4/a. �
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Now we are ready to prove Proposition 4.2.

Proof of Proposition 4.2. Due to Proposition 4.1 we only need to check that if μ satisfies the inequality T
−
(θ(a·)),

then the condition from (ii) is satisfied by Uμ.

Fix x > m and consider the function f (t) = θ(a[t − x]+). Then Q
θ(a·)
1 f (t) = 0 if t ≤ x. For t > x,

Q
θ(a·)
1 f (t) = inf

y∈R
{
θ
(
a[y − x]+

) + θ
(
a|t − y|)} = inf

y∈[x,t]
{
θ
(
a(y − x)

) + θ
(
a(t − y)

)} = 2θ
(
a(t − x)/2

)
,

where the last equality follows from the fact that we have an inequality due to the convexity of θ and on the other
hand the infimum is attained at y = (x + t)/2. Hence the dual formulation of the weak transport inequality (see
Proposition 2.1(a)) implies that

μ
(
(−∞, x]) +

∫ ∞

x

exp
(
2θ

(
a(t − x)/2

))
μ(dt) ≤ exp

(∫ ∞

x

θ
(
a(t − x)

)
μ(dt)

)
.

Denote k = 1/2 and β(u) = 2θ(a[u− t0]+) for u > 0. Since θ is increasing we have β(ku) ≤ 2θ(au/2). Therefore,∫ ∞

x

exp
(
β
(
k(t − x)

))
μ(dt) ≤ exp

(∫ ∞

x

θ
(
a(t − x)

)
μ(dt)

)
− 1 + μ

(
(x,∞)

)
. (4.2)

By Lemma 4.4 there exists Cθ < ∞ such that
∫ ∞
x

θ(a(t − x))μ(dt) ≤ Cθμ((x,∞)). Hence, since μ((x,∞)) ∈
[0,1/2],∫ ∞

x
exp(β(k(t − x)))μ(dt)

μ((x,∞))
≤ exp(Cθμ((x,∞))) − 1 + μ((x,∞))

μ((x,∞))
≤ 2eCθ /2 − 1.

One can deal with x ≤ m similarly. Since

β−1(h) =
(

t0 + 1

a
θ−1(h/2)

)
,

Lemma 4.3 implies that

�μ(h) ≤ 1

d
β−1(h) = 1

d

(
t0 + 1

a
θ−1(h/2)

)
≤ 1

d min(a,1)

(
t0 + θ−1(h/2)

)
≤ 2

d min(a,1)
θ−1(t2

0 + h
)
, (4.3)

where

d = t0

8β−1(log(2eCθ /2 − 1))
= t0

8(t0 + 1
a
θ−1( 1

2 log(2eCθ /2 − 1)))

(recall that k = 1/2). This finishes the proof of the implication (i) =⇒ (ii). �

5. Summary

5.1. Proof of the main result and dependence of constants for H(x) = 1
4x2

The results of the two preceding sections allow us to prove Theorem 1.1. The proof of Corollary 1.7 is postponed to
the next subsection.
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Proof of Theorem 1.1. The implication (ii) =⇒ (i) has been proved in [18]. The implication (i) =⇒ (ii) follows
immediately by combining Propositions 3.1 and 4.2. The only assumption we need to check is that

∫ ∞
0 θ(x)e−λx dx <

∞ for any λ > 0, but this follows from the scaling condition placed on H . Indeed, for s ∈ (0,1],
H ∗(y/s) = (

H(s·))∗
(y) ≥ (

AsαH(·))∗
(y) = AsαH ∗(y/

(
Asα

))
.

Taking z ≥ 1 and substituting into the above inequality s = z−1/(α−1) and y = As = Az−1/(α−1) we arrive at θ(z) =
H ∗(z) ≤ H ∗(A)A−1zα/(α−1), which implies the claim. �

As for the dependence of constants, in the case H(x) = 1
4x2 one can take A = 1 and α = 2 in (1.5). Let us consider

the implication (i) =⇒ (ii) from Theorem 1.1. In Proposition 3.1 we have a = 1/c and moreover we can take Cθ = 1
in Lemma 4.4. Therefore, inequality (4.3) reads

�μ(h) ≤ 1

d
(t0 + c

√
h/2) ≤ 8

t0 + 2
3c

t0
(t0 + c

√
h/2), (5.1)

since

d = t0

8(t0 + 1
a

√
1
2 log(2e1/2 − 1))

≥ t0

8(t0 + 2
3c)

.

Taking t0 = 2
3c we obtain the result announced in Remark 1.2 (the dependence of constants for the implication (ii) =⇒

(i) follows directly from Proposition 3.1 and Proposition 4.1). In fact, we can take t0 = c 4
√

2h/9 (which minimizes the
right-hand side of (5.1)) to obtain a slightly better estimate

�μ(h) ≤ 8c
(
2/3 + √

h/2 + 2 4
√

2h/9
)
.

5.2. Conditions equivalent to the convex log-Sobolev inequality

Taking into account the results from [18], we can state a handful of conditions equivalent to the convex log-Sobolev
inequality on the real line. For simplicity we work with the quadratic cost.

Theorem 5.1. Let θ(t) = t2 for t ≥ 0. For a probability measure μ on the real line the following conditions are
equivalent.

(i) For every s > 0 we have
∫
R

es|x| dμ(x) < ∞ and there exists C > 0 such that

Entμ
(
eϕ

) ≤ C

∫
R

∣∣ϕ′∣∣2
eϕ dμ

for every smooth convex Lipschitz function ϕ :R→ R.
(ii) There exist a, b > 0 such that for all h > 0,

�μ(h) ≤ √
a + bh.

(iii) There exists a1 > 0 such that μ satisfies the inequality T
−
(θ(a1·)).

(iv) There exists a2 > 0 such that μ satisfies the inequality T(θ(a2·)).
(v) There exists t > 0 such that μ satisfies the infimum convolution inequality∫

R

exp
(
Qθ

t f
)
dμ

∫
R

exp(−f ) ≤ 1

for every convex function f : R→R bounded from below.

In each of the implications the constants in the conclusion depend only on the constants in the premise.
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With this theorem we can easily give the proof of the concentration inequalities from Corollary 1.7.

Proof of Corollary 1.7. By Theorem 5.1 the measure μ satisfies the inequality T for the quadratic cost. An application
of, e.g., [19, Corollary 5.11] completes the proof. Alternatively, for a more self-contained reasoning, one can use item
(v) of the above theorem and adapt the approach of [21]. �

5.3. Relation to Talagrand’s inequality

Let θ(t) = t2 for t ≥ 0. We say that a probability measure μ on the real line satisfies Talagrand’s inequality (with
constant C) if

Tθ (μ, ν) ≤ CH(ν|μ)

for every probability measure ν, where Tθ was defined in (2.1). Recall that in the classical setting of smooth functions
we have the implication chain

log-Sobolev inequality =⇒ Talagrand’s inequality =⇒ Poincaré inequality

and these implications are strict (see [17, Section 4.3] for a nice discussion of counterexamples). From [18] we also
know that Talagrand’s inequality is strictly stronger than the convex log-Sobolev inequality. The following corol-
lary explains what additional information is carried by the Talagrand inequality. It is an immediate consequence of
Theorem 1.1 and [17, Theorem 1.1].

Corollary 5.2. A probability measure μ on the real line satisfies the Talagrand inequality if and only if it satisfies the
Poincaré inequality for smooth functions and the log-Sobolev inequality for convex functions.

5.4. Open questions

We conclude with three open questions, which to the best of our knowledge are open even in the case θ(t) = t2. They
address the possibility of extending some of the results of this paper.

Roughly speaking, Theorem 1.1 together with the results from [19] implies that if a measure μ on the real line
satisfies the log-Sobolev inequality for convex functions (i.e. the inequality T

−
), then it also satisfies the log-Sobolev

inequality for (almost all) concave functions (i.e. the inequality T
+

). Does the reverse implication hold true? Which
of those implications hold in a higher dimensional space?

In terms of the weak transport-entropy inequalities the above questions read:

1. Suppose that a probability measure μ on R
n, n ≥ 2, satisfies the inequality T

−
(θ(a·)) for some a > 0. Does it

satisfy the inequality T(θ(a′·)) for some a′ > 0?
2. Suppose that a probability measure μ on the real line satisfies the inequality T

+
(θ(a·)) for some a > 0. Does it

satisfy the inequality T
−
(θ(a′·)), and thus T(θ(min{a′, a}·)), for some a′ > 0?

We refer to [19, Theorem 8.15] and [19, Remark 8.18] for details and subtleties concerning the log-Sobolev inequality
for concave functions. We also point out that in the case of the quadratic-linear cost a partial answer to the above two
questions has been recently obtained by Adamczak and the second named author [2].

The last question is deliberately somewhat vague. An intuitive way to understand Theorem 1.1 is the following:
on the real line one can obtain a measure which satisfies the convex log-Sobolev inequality by a local perturbation of
another measure which satisfies this inequality. (Indeed, if μ is a measure on the real line which satisfies the convex
log-Sobolev inequality and μ̃ coincides with μ on the complement of a bounded inteval, then, using the condition (ii)
from Theorem 1.1, it is not hard to see that μ̃ also satisfies the convex log-Sobolev inequality.) Now take a measure
satisfying the convex log-Sobolev inequality in R

n and rearrange the mass locally. Does the convex log-Sobolev
inequality still hold? More generally, suppose that a probability measure μ on R

n, n ≥ 2, satisfies the convex log-
Sobolev inequality. Can one state this fact with a condition which is not expressed in terms of quantifiers ranging over
families of functions or measures (like, e.g., the conditions in Section 3) but rather in terms of the measure μ itself
(like the condition (ii) in Theorem 1.1)? To put it briefly:
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3. Find an intrinsic characterization of probability measures on R
n, n ≥ 2, which satisfy the convex log-Sobolev

inequality.
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