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Abstract. We study an weak transport cost related to the notion of convex order between probability measures. On the real line, we
show that this weak transport cost is reached for a coupling that does not depend on the underlying cost function. As an application,
we give a necessary and sufficient condition for weak transport-entropy inequalities (related to concentration of convex/concave
functions) to hold on the line. In particular, we obtain a weak transport-entropy form of the convex Poincaré inequality in dimension
one.

Résumé. Dans cet article, nous étudions une nouvelle famille de coûts de transport optimaux faibles en lien avec la notion d’ordre
convexe pour les mesures de probabilité. Nous montrons, en dimension un, que le couplage optimal ne dépend pas de la fonction
de coût choisie. Nous utilisons ensuite ce résultat pour établir une condition nécessaire et suffisante pour les inégalités de transport-
entropie associées à ces coûts de transport faibles. En particulier, nous obtenons une forme transport équivalente de l’inégalité de
Poincaré restreinte aux fonctions convexes sur la droite.
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1. Introduction

The aim of this paper is to study a weak transport cost and its associated weak transport-entropy inequality, both
introduced by four of the authors in [25], on the real line. In order to present our results, we shall first introduce the
various mathematical objects of interest to us, placing and motivating their significance within the classical theory of
optimal transport and its connection with the concentration of measure phenomenon.

Throughout the paper, P(R) denotes the set of Borel probability measures on R and P1(R) := {μ ∈ P(R) :∫
R

|x|μ(dx) < ∞}, the subset of probability measures having a finite first moment.
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Let θ :R+ → R
+, with θ(0) = 0, be a measurable function referred to as the cost function. Then, the usual optimal

transport cost, in the sense of Kantorovich, between two probability measures μ and ν on R is defined by

Tθ (ν,μ) := inf
π

∫∫
θ
(|x − y|)π(dx dy), (1)

where the infimum runs over the set of couplings π between μ and ν, i.e., probability measures on R
2 such that

π(dx ×R) = μ(dx) and π(R× dy) = ν(dy).
Since the works by Marton [34–36] and Talagrand [47], these transport costs have been extensively used as

a tool to reach concentration properties for measures on product spaces. More precisely, optimal transport is re-
lated to the concentration of measure phenomenon via the so-called transport-entropy inequalities that we now re-
call. A probability measure μ on R is said to satisfy the transport-entropy inequality T(θ), if for all ν ∈ P(R), it
holds

Tθ (ν,μ) ≤ H(ν|μ), (2)

where H(ν|μ) denotes the relative entropy (also called Kullback–Leibler distance) of ν with respect to μ, defined
by

H(ν|μ) :=
∫

log

(
dν

dμ

)
dν,

if ν is absolutely continuous with respect to μ, and H(ν|μ) := ∞ otherwise. Note that we focus on the line,
but that all the above definitions easily generalize to probability measures on a general metric space. As a spe-
cial case, as proved by Talagrand in his seminal paper [47], Inequality (2) is satisfied by the standard Gaussian
measure for the cost θ(x) = x2/2. By extension, we shall say that μ satisfies the inequality T2(C) (often re-
ferred to as “Talagrand’s inequality” in the literature), if (2) holds for a cost function of the form θ(x) = x2/C,
for some C > 0. We refer to the books or survey [13,22,31,48] for a complete presentation of transport-entropy
inequalities and of the concentration of measure phenomenon, as well as for bibliographic references in the
field.

In the next few lines we shall shortly discuss the consequences of transport-entropy inequalities in terms of con-
centration. For simplicity we may only consider Inequality T2(C).

As discovered by Marton and Talagrand, when a probability μ satisfies T2(C), then for all positive integers n, and
all functions f :Rn → R which are 1-Lipschitz with respect to the Euclidean norm on R

n, it holds

μn
(
f > med(f ) + r

) ≤ e−(r−ro)
2/C, ∀r ≥ ro := √

C log(2), (3)

where med(f ) denotes a median of f under μn. We refer to [13,31] for a presentation of the numerous applications of
this type of dimension-free concentration of measure inequalities. Conversely, it was shown by the first named author
in [20] that a probability μ satisfying the dimension-free Gaussian concentration (3) necessarily satisfies T2(C), thus
giving to Inequality T2 a special status among other functional inequalities appearing in the concentration of measure
literature. The key argument explaining why Talagrand’s inequality implies the dimension-free concentration behavior
(3) is the well-known tensorisation property enjoyed in general by inequalities of the form T(θ) (see, e.g., [22]). The
tensorisation property shows in particular that if μ satisfies T2(C), then the n-fold product measure μ ⊗ · · · ⊗ μ also
satisfies T2(C) (on R

n) with the same constant C.
More generally, given a measure on a product space (which is not necessarily a product measure), and assuming

that each of its conditional one-dimensional marginals satisfies a transport-entropy inequality, several authors have
obtained, using different non-independent tensorisation strategies, transport-entropy inequalities for the whole mea-
sure under weak dependence assumptions (see for instance [16,37,49,50]). Then, the transport-entropy inequality for
the whole measure leads again to concentration properties using the same classical arguments as in the product case.
Thus, in many situations one is reduced to verifying the one-dimensional transport-entropy inequalities, and there-
fore it is of a real interest to characterize those probability measures μ on R that satisfy the inequality T2, and more
generally, T(θ) for a general cost function θ .
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In this direction, in [21], the first-named author obtained necessary and sufficient conditions for T(θ) to hold, when
the cost function θ : R+ → R

+ is continuous, convex and quadratic near 0. In order to present such conditions, we
need to introduce some notation. Denote by Fμ(x) := μ((−∞, x]), x ∈ R, the cumulative distribution function of a
probability measure μ and by F−1

μ its general inverse defined by

F−1
μ (u) := inf

{
x ∈R,Fμ(x) ≥ u

} ∈R∪ {±∞}, ∀u ∈ [0,1].
The conditions obtained in [21] are expressed in terms of the behavior of the modulus of continuity of the non-
decreasing map Uμ := F−1

μ ◦ Fτ , where τ is the symmetric exponential distribution on R,

τ(dx) := 1

2
e−|x| dx,

so that

Uμ(x) =
{

F−1
μ (1 − 1

2e−|x|) if x ≥ 0,

F−1
μ ( 1

2e−|x|) if x ≤ 0.
(4)

By construction, Uμ is the unique left-continuous and non-decreasing map transporting τ onto μ (i.e.,
∫

f ◦ Uμ dτ =∫
f dμ for all f ). In the special case of the inequality T2, the characterization of [21] reads as follows: a probability

measure μ satisfies T2(C) for some constant C if and only if the following holds

• for some constant b > 0 and all u ≥ 0, it holds

sup
x∈R

(
Uμ(x + u) − Uμ(x)

) ≤ 1

b

√
1 + u,

• for some constant c > 0 and all f of class C1, the Poincaré inequality holds

Varμ(f ) ≤ c

∫
f ′2 dμ. (5)

We refer to [21] for a precise quantitative relation between C, b and c.
In the present paper, partly following [21], we focus on the study of a new weak transport-entropy inequality

introduced in [25] that is related to a weak type of dimension-free concentration. More precisely, in dimension one,
we consider the weak optimal transport cost of ν with respect to μ defined by

T θ (ν|μ) = inf
π

∫
θ

(∣∣∣∣x −
∫

yp(x, dy)

∣∣∣∣
)

μ(dx),

where the infimum runs over all couplings π(dx dy) = p(x, dy)μ(dx) of μ and ν, and where p(x, ·) denotes the
disintegration kernel of π with respect to its first marginal. The notation bar comes from the barycenter entering in
its definition. Note that, contrary to the usual transport cost, T θ is not symmetric. Also, in terms of random variables,
one has the following interpretation T θ (ν|μ) = infE(θ(|X−E(Y |X)|)) whereas Tθ (ν,μ) = infE(θ(|X−Y |)), where
in both cases the infimum runs over all random variables X, Y such that X follows the law μ and Y the law ν. As
a consequence, when θ is convex, by Jensen’s inequality, one has T θ (ν|μ) ≤ Tθ (ν,μ). Therefore, if a measure μ

satisfies T(θ) then it also satisfies the following weaker transport-entropy inequalities.

Definition 1.1. Let θ :R+ → R
+ be a convex cost function. A probability measure μ on R is said to satisfy the weak

transport-entropy inequality

T
+
(θ): if for all ν ∈P1(R), it holds

T θ (ν|μ) ≤ H(ν|μ),
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T
−
(θ): if for all ν ∈P1(R), it holds

T θ (μ|ν) ≤ H(ν|μ), and

T(θ): if μ satisfies both T
+
(θ) and T

−
(θ).

In Section 4, we recall, from [25, Section 4] a dual formulation of these weak transport inequalities in terms of
infimum convolution operators. In particular, the inequality T(θ) appears as the dual formulation of the so-called
convex (τ )-property introduced by Maurey [38] (see also [40] for further development).

The above defined weak transport-entropy inequalities are of particular interest since the class of measures satisfy-
ing such inequalities also includes discrete measures on R such as Bernoulli, binomial and Poisson measures [25,40].
In comparison, the classical Talagrand’s transport inequality (and more generally any T(θ)) is never satisfied by a dis-
crete probability measure unless it is a Dirac measure.3 Moreover these weak transport-entropy inequalities also enjoy
the tensorisation property (see [25, Theorem 4.11]), thus connecting them to a special dimension-free concentration
behavior. For instance, let us recall the following particular case of [25, Corollary 5.11].

Theorem 1.2. A probability measure μ satisfies T2(C) (i.e., T(θ) with θ(x) = x2/C, x ∈ R) if and only if it satisfies
the following weak dimension-free concentration of measure inequality: there exist ro ≥ 0 and C′ > 0 such that for
all positive integers n and all convex or concave functions f : Rn → R which are also 1-Lipschitz for the Euclidean
norm on R

n, it holds

μn
(
f > med(f ) + r

) ≤ e−(r−ro)
2/C′

, ∀r ≥ ro, (6)

where med(f ) denotes a median of f under μ.

We refer to [25, Corollary 5.11] for more details about the quantitative links between C and ro, C′ in both directions.
The first example of a probability measure satisfying this weak dimension-free concentration of measure phe-

nomenon for convex or concave functions (6) is the uniform measure μ on the two point space {0,1} as was discov-
ered by Talagrand in [45]. Soon after, Johnson and Schechtman [30] extended Talagrand’s induction proof to a more
general setting and showed that (6) was in fact true as soon as μ is a probability measure on a normed space whose
support has a finite diameter. This result was then recovered by Maurey [38] using the formalism of convex infimum
convolution inequalities. We refer to [31,46] for a survey of subsequent developments and applications of this type of
concentration inequalities.

A natural question in this context was to determine the set of all probability measures on the real line satisfying
the concentration property (6). Even if some sufficient conditions already appeared in [2,3] using an approach based
on the logarithmic Sobolev inequality restricted to convex functions, the question was still open and was the main
motivation behind the present paper.

With this motivation in mind we shall prove the following characterization (the main result of the paper) of the
transport inequalities T(θ) associated to any convex cost function θ which is quadratic near 0. In the sequel we may
use the following standard notation θ(a·) for the function x 
→ θ(ax).

Theorem 1.3. Let μ ∈ P1(R), to > 0 and θ : R+ → R
+ be a convex cost function such that θ(t) = t2 for all t ≤ to.

The following propositions are equivalent:

(i) There exists a > 0 such that μ satisfies T(θ(a·)).
(ii) There exists b > 0 such that for all u > 0,

sup
x

(
Uμ(x + u) − Uμ(x)

) ≤ 1

b
θ−1(u + t2

o

)
,

where θ−1 :R+ → R
+ denotes the inverse of the (increasing) function θ .

3Indeed, as mentioned above, the Poincaré inequality is a consequence of Talagrand’s transport inequality, and as such it forces the support of μ to
be connected.
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Moreover, constants are related as follows:

(i) implies (ii) with b = aκ1,
(ii) implies (i), with a = bκ2,

where κ1 := to
8θ−1(log(3)+t2

o )
and κ2 := min(1,to)

210θ−1(2+t2
o )

.

In particular, a probability measure μ on R satisfies the weak dimension-free concentration of measure inequality
(6) if and only if there is some b > 0 such that

sup
x

(
Uμ(x + u) − Uμ(x)

) ≤ 1

b

√
u + 1, ∀u ≥ 0.

Remark 1.4. In comparison with the characterization of the inequalities T(θ) given in [21], one sees that only the
condition on the modulus of continuity of Uμ remains. Nevertheless, as we shall explain below, the Poincaré Inequality
has not completely disappeared from the picture. Also, denoting by �μ the modulus of continuity of Uμ defined by

�μ(h) = sup
{
Uμ(x + u) − Uμ(x), x ∈R,0 ≤ u ≤ h

}
, h ≥ 0,

condition (ii) asserts that

�μ(h) ≤ 1

b
θ−1(h + t2

o

)
.

Therefore �μ is bounded above near zero but does not necessarily go to zero, as h goes to zero. In fact, if the measure
μ is discrete and not a Dirac measure, the support of μ is not connected and so there exist a < b with a and b in the
support of μ such that μ(]a, b[) = 0. In that case, we may easily check that for all h > 0, b − a ≤ �μ(h). This shows
that in a discrete setting limh→0 �μ(h) > 0.

The proof of Theorem 1.3, given in Section 6, is based on a refined study of the weak transport cost T θ (μ|ν) of
independent interest. Indeed, we shall prove that, in dimension 1, all the optimal weak transport costs T θ (μ|ν) are
achieved by the same coupling independently of the convex cost function θ . This result is well-known for the classical
transport cost Tθ . More precisely, it follows from the works by Hoeffding, Fréchet and Dall’Aglio [15,19,29] (see also
[14]) that Tθ (μ, ν) = ∫

θ(|x − Tν,μ(x)|)ν(dx) where Tν,μ := F−1
μ ◦ Fν . In particular, given any two convex costs θ1,

θ2, it holds Tθ1+θ2(μ, ν) = Tθ1(μ, ν) + Tθ2(μ, ν). In order to state our second main result, recall that one says that ν1
is dominated by ν2 in the convex order, denoted by ν1 � ν2, if

∫
f dν1 ≤ ∫

f dν2 for all convex functions f : R→R.

Theorem 1.5. For all μ,ν ∈ P1(R), there exists a probability measure γ̂ dominated by ν in the convex order, γ̂ � ν,
such that for all convex cost functions θ it holds

Tθ (ν|μ) = Tθ (γ̂ ,μ).

In particular, for any two convex cost functions θ1, θ2, it holds

T θ1+θ2(μ|ν) = T θ1(μ|ν) + T θ2(μ|ν). (7)

The notion of convex ordering, characterized by Strassen [43] in terms of martingales, will turn out to be crucial in
the understanding of the weak transport costs Tθ . In Section 2, we recall certain classical properties of the convex order
and in particular its geometrical meaning (in discrete setting) given by Rado’s theorem [39] (see Theorem 2.9). From
this geometrical interpretation, we shall obtain an intermediate outcome (Theorem 2.10) that might be interpreted as a
discrete version of Theorem 1.5. Finally, the proof of Theorem 1.5, given in Section 3, will follow by an approximation
argument.

With the result of Theorem 1.5 in hand, we can briefly introduce the main ideas of the proof of Theorem 1.3.
Following [21], the weak transport-entropy inequality (i) will follow from (ii) by decomposition of the weak optimal



1672 N. Gozlan et al.

cost θ into two parts. One part is related to the quadratic behavior of θ on [0, to] and the second part is related to its
behavior for t ≥ to: one has θ ≤ θ1 + θ2 with

θ1(t) := t21[0,to](t) + (
2t to − t2

o

)
1[to,+∞)(t),

and

θ2(t) := [
θ(t) − t2

o

]
+ = (

θ(t) − t2
o

)
1[to,+∞)(t), t ∈R.

Therefore, by Theorem 1.5,

T θ(a·)(ν|μ) ≤ T (θ1+θ2)(a·)(ν|μ) = T θ1(a·)(ν|μ) + T θ2(a·)(ν|μ) ≤ 2H(ν|μ),

for a proper choice of the constant a, where the last inequality will follow by relating the condition appearing in (ii) to
the two weak transport-entropy inequalities with cost θ1(a·) and θ2(a·). More precisely, following [21, Theorem 2.2],
we will show in Theorem 6.1 that (ii) characterizes the weak transport-entropy inequality T(θ2(a·)) while, as stated
in the next theorem (our last main result), the weaker condition supx(Uμ(x + 1) − Uμ(x)) ≤ h, for some h > 0,
characterizes the weak transport-entropy inequality T(θ1(a·)) which thus appears (thank to [8]) to be also equivalent
to the Poincaré inequality (5) restricted to convex functions.

Theorem 1.6. Let μ ∈P1(R). The following assertions are equivalent:

(i) There exists h > 0 such that

sup
x∈R

[
Uμ(x + 1) − Uμ(x)

] ≤ h.

(ii) There exists C > 0 such that for all convex function f on R it holds

Varμ(f ) ≤ C

∫
R

|∇f |2 dμ,

where, for all x ∈R, |∇f |(x) is the minimal slope at x defined as follows∣∣∇f (x)
∣∣ = min

{∣∣(1 − θ)f ′−(x) + θf ′+(x)
∣∣; θ ∈ [0,1]},

denoting by f ′− and f ′+ the left and right derivatives of f (which are always well-defined for a convex function).

(iii) There exist D, lo > 0 such that μ satisfies T
−
(α) and T

+
(α). Namely, it holds

T α(μ|ν) ≤ H(ν|μ) and T α(ν|μ) ≤ H(ν|μ) ∀ν ∈ P1(R),

for the cost function α defined by

α(u) =
{

u2

2D
if |u| ≤ loD,

lo|u| − l2
oD/2 if |u| > loD.

In particular, with κ := 5480 and c := 1/(10
√

2),

• (i) ⇒ (iii) with D = κh2 and lo = c/h,
• (iii) ⇒ (ii) with C = 2D,
• (i) ⇒ (ii) with C = κh2.

The equivalence (i) ⇔ (ii) goes back to Bobkov and Götze [8]. Hence, Theorem 1.6 completes the picture by
showing that (i) or (ii) also characterize the measures satisfying a weak transport-entropy inequality with a cost func-
tion which is quadratic near zero and then linear (like θ1). The dependence between the constants in the implication
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(ii) ⇒ (i) is not given for technical reasons. Indeed, the proof relies on an argument from [8] that uses a non trivial
proof from [10] where one loses the explicit dependence on the constants.

We indicate that during the preparation of this work, we learned that the characterization of the convex Poincaré
inequality in terms of the convex (τ )-Property (which is equivalent to the transport-entropy inequalities of item (iii),
by duality, as we shall recall in Lemma 4.1) was obtained by Feldheim, Marsiglietti, Nayar and Wang in a recent paper
[18].

The proof of Theorem 1.6 is given in Section 5. It uses results of independent interest like a new discrete logarithmic
Sobolev inequality for the exponential measure τ (Lemma 5.2). By transportation techniques, such a logarithmic-
Sobolev inequality provides logarithmic-Sobolev inequalities restricted to the class of convex or concave functions
for measures satisfying the condition in item (i) (Proposition 5.1). Then the weak transport-entropy inequalities of
item (iii) are obtained in their dual forms, involving infimum convolution operators (Lemma 4.1), by means of the
Hamilton–Jacobi semi-group approach of Bobkov, Gentil and Ledoux [7], an approach also generalized in [24,25,32].

After the preparation of this paper, several additional progresses have been made in the understanding of weak
transport inequalities and related functional inequalities [1,41,42,44]. We think it is worth mentioning these recent
papers in some detail. In [1], Adamczak and Strzelecki have generalized the equivalence between (ii) and (iii) in
our Theorem 1.6 to any dimension. It seems however, that for technical reasons this extension involves constants
depending on the dimension. In [42], the fourth named author and Strzelecki have shown that, under some mild
assumptions on the cost function θ , the weak transport inequality T(θ) (in dimension 1) is in fact equivalent to a
modified log-Sobolev inequality restricted to convex functions. In [44], Strzelecka, Strzelecki and Tkocz have obtained
weak transport inequalities with an optimal cost function θ for probability measures on the real line having log-
concave tails. Finally, in [41], the fourth named author gave a simpler proof of the additivity formula (7) based on the
dual formulation of weak transport costs obtained in [25].

The paper is organized as follows. In the next section, we introduce and recall some known properties of the
convex ordering that we use in Section 3 to prove Theorem 1.5. Then, in Section 4, we very briefly recall the dual
formulation of the weak-transport entropy inequalities T

±
and T, borowed from [25], which will be useful later on.

Finally, Section 5 and 6 are devoted to the proofs of Theorem 1.6 and 1.3, respectively.

2. Convex ordering and a majorization theorem

This section is devoted to the study of the convex ordering. After recalling some classical definitions and results, we
prove a majorization theorem which will be a key ingredient in the proof of Theorem 1.5.

2.1. Convex ordering of probability measures

We collect here some basic facts about convex ordering of probability measures. We refer the interested reader to [33]
and [28] for further results and bibliographic references. The proofs are well-known, but we state some of them for
completeness.

We start with the definition of the convex order.

Definition 2.1 (Convex order). Given ν1, ν2 ∈ P1(R), we say that ν2 dominates ν1 in the convex order, and write
ν1 � ν2, if for all convex functions f on R,

∫
R

f dν1 ≤ ∫
R

f dν2.

Remark 2.2. Observe that for any probability measure belonging to P1(R) the integral of any convex function always
makes sense in R∪ {+∞}.

The convex ordering of probability measures can be determined by testing only some restricted classes of convex
functions as the following proposition indicates.

Proposition 2.3. Given ν1, ν2 ∈P1(R), the following are equivalent:

(i) ν1 � ν2.
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(ii)
∫

xν1(dx) = ∫
xν2(dx) and for all Lipschitz, non-decreasing and non-negative convex functions f : R → R

+,∫
f (x)ν1(dx) ≤ ∫

f (x)ν2(dx).
(iii)

∫
xν1(dx) = ∫

xν2(dx) and for all t ∈ R,
∫ [x − t]+ν1(dx) ≤ ∫ [x − t]+ν2(dx).

For the reader’s convenience and for the sake of completeness, we sketch the proof of this classical result. We refer
to [33] for more details.

Sketch of the proof. Let us show that (i) is equivalent to (ii). First, since the functions x 
→ x and x 
→ −x are both
convex, it is clear that ν1 � ν2 implies

∫
xν1(dx) = ∫

xν2(dx) so that (i) implies (ii). Conversely, since the graph of
a convex function always lies above its tangent, subtracting an affine function if necessary, one can restrict to non-
negative convex functions. Moreover, if f : R → R

+ is a convex function, then fn : R → R
+ defined by fn = f on

[−n,n], fn(x) = fn(n)+f ′
n(n)(x−n) if x ≥ n and fn(x) = fn(−n)+f ′

n(−n)(x+n) if x ≤ −n (where f ′
n denotes the

right derivative of f ) is Lipschitz and converges monotonically to f as n goes to infinity. The monotone convergence
theorem then shows that one can further restrict to Lipschitz convex functions. Finally, up to the subtraction of an
affine map, any Lipschitz convex function is non-decreasing, proving that (ii) implies (i).

Now it is not difficult to check that any convex, non-decreasing Lipschitz function f : R→R
+ can be approached

by a non-increasing sequence of functions of the form α0 +∑n
i=1 αi[x − ti]+, with αi ≥ 0 and ti ∈ R. This shows that

(ii) and (iii) are equivalent. �

The next classical result, due to Strassen [43], characterizes the convex ordering in terms of martingales. Recall
that a couple (X,Y ) of integrable random variables is a martingale if E[Y |X] = X almost surely.

Theorem 2.4 (Strassen). Given ν1, ν2 ∈ P1(R), the following are equivalent:

(i) ν1 � ν2.
(ii) There exists a martingale (X,Y ) such that X has law ν1 and Y has law ν2.

We refer to [25] for a (two-line) proof of Theorem 2.4 involving Kantorovich duality for transport costs of the form T .

2.2. Majorization of vectors

The convex ordering is closely related to the notion of majorization of vectors that we recall in the following definition.
As for the previous subsection, all the proofs are well-known and we state them for completeness.

Definition 2.5 (Majorization of vectors). Let a, b ∈R
n; one says that a is majorized by b, if the sum of the largest j

components of a is less than or equal to the corresponding sum of b, for every j , and if the total sum of the components
of both vectors are equal.

Assuming that the components of a = (a1, . . . , an) and b = (b1, . . . , bn) are in non-decreasing order (i.e., a1 ≤
a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn), a is majorized by b, if

an + an−1 + · · · + an−j+1 ≤ bn + bn−1 + · · · + bn−j+1, for j = 1, . . . , n − 1,

and
∑n

i=1 ai = ∑n
i=1 bi .

The next proposition recalls the link between majorization of vectors and convex ordering.

Proposition 2.6. Let a, b ∈ R
n and set ν1 = 1

n

∑n
i=1 δai

and ν2 = 1
n

∑n
i=1 δbi

. The following are equivalent:

(i) a is majorized by b.
(ii) ν1 is dominated by ν2 for the convex order. In other words, for every convex f : R→R, it holds that

∑n
i=1 f (ai) ≤∑n

i=1 f (bi).
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Thanks to the above proposition and with a slight abuse of notation, in the sequel we will also write a � b when a

is majorized by b.

Proof. Assume without loss of generality that the components of a and b are sorted in increasing order. We observe
first that, by construction, the equality

∫
xν1(dx) = ∫

xν2(x) is equivalent to
∑n

i=1 ai = ∑n
i=1 bi .

We will first prove that (i) implies (ii). By item (iii) of Proposition 2.3 we only need to prove that a � b implies

n∑
k=1

[ak − t]+ ≤
n∑

k=1

[bk − t]+, ∀t ∈R. (8)

Assume that t ≤ maxak (otherwise (8) obviously holds). Then, let ko be the smallest k such that ak ≥ t so that∑n
k=1[ak − t]+ = ∑n

k=ko
(ak − t). Therefore, by the majorization assumption (which guarantees that

∑n
k=ko

ak ≤∑n
k=ko

bk), we get

n∑
k=1

[ak − t]+ =
n∑

k=ko

(ak − t) ≤
n∑

k=ko

bk − t ≤
n∑

k=1

[bk − t]+.

Conversely, let us prove that (ii) implies (i). Fix k ∈ {1, . . . , n} and set fk(x) := [x − bk]+, x ∈ R. Plugging fk into
item (ii) of Proposition (2.3) leads to

n∑
i=k

ai − bk ≤
n∑

i=1

[ai − bk]+ = n

∫
fk(x)ν1(dx)

≤ n

∫
fk(x)ν2(dx) =

n∑
i=1

[bi − bk]+ =
n∑

i=k

bi − bk,

so that
∑n

i=k ai ≤ ∑n
i=k bi , which proves that a is majorized by b. �

Next we recall a simple classical consequence of Proposition 2.6 in terms of discrete optimal transport on the line.

Proposition 2.7. Let x, y ∈ R
n be two vectors whose coordinates are listed in non-decreasing order (i.e., x1 ≤ x2 ≤

· · · ≤ xn, y1 ≤ y2 ≤ · · · ≤ yn). Then for all permutation σ of {1, . . . , n} and all convex functions θ :R→ R, it holds

n∑
i=1

θ(xi − yi) ≤
n∑

i=1

θ(xi − yσ(i)).

Proof. Since, for all k,
∑n

i=k yi ≥ ∑n
i=k yσ(i), it holds for

∑n
i=k(xi − yi) ≤ ∑n

i=k(xi − yσ(i)) (with equality for
k = 1). Therefore, denoting yσ = (yσ(1), . . . , yσ(n)), it holds x − y � x − yσ . Applying Proposition 2.6 completes the
proof. �

Remark 2.8. In particular, let μ, ν are two discrete probability measures on R of the form

μ = 1

n

n∑
i=1

δxi
and ν = 1

n

n∑
i=1

δyi
,

where the xi ’s and the yi ’s are in increasing order, and assume for simplicity that the xi ’s are distinct. Then the map
T sending xi on yi for all i realizes the optimal transport of μ onto ν for every cost function θ .

We end this section with a characterization of the convex ordering (or equivalently of the majorization of vectors,
thanks to Proposition 2.6), due to Hardy–Littlewood–Pólya [26] ((i) ⇔ (ii)) and Rado [39] ((i) ⇔ (iii)). For simplicity,
we denote by Sn the set of all permutations of {1,2, . . . , n} and, given σ ∈ Sn and x = (x1, . . . , xn) ∈ R

n, we set
xσ := (xσ(1), . . . , xσ(n)).
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Theorem 2.9 (Hardy–Littlewood–Pólya, Rado). Given a, b ∈ R
n, the following are equivalent:

(i) The vector a is majorized by b.
(ii) There exists a doubly stochastic matrix P such that a = bP .

(iii) There exists a collection of non-negative numbers (λσ )σ∈Sn with
∑

σ∈Sn
λσ = 1 such that a = ∑

σ∈Sn
λσ bσ (i.e.,

a lies in the convex hull of the permutations of b).

Below, we sketch a proof based on Strassen’s Theorem and refer to [33, Theorem B.2, Chapter 2] for more classical
arguments.

Proof. First we will prove that (i) implies (ii). According to Proposition 2.6, a � b is equivalent to saying that ν1 =
1
n

∑n
i=1 δai

is dominated by ν2 = 1
n

∑n
i=1 δbi

in the convex order. Set X := {a1, . . . , an}, Y := {b1, . . . , bn}, kx :=
#{i ∈ {1, . . . , n} : ai = x}, x ∈X and 
y = #{i ∈ {1, . . . , n} : bi = y}, y ∈ Y (where # denotes the cardinality); observe
that ν1 = 1

n

∑
x∈X kxδx and ν2 = 1

n

∑
y∈Y 
yδy . According to the Strassen Theorem (Theorem 2.4), there exists a

couple of random variables (X,Y ) on some probability space (�,A,P) such that X is distributed according to ν1,
and Y according to ν2 and X = E[Y |X]. Since X is a discrete random variable,

E[Y |X] =
∑
x∈X

E[Y1X=x]
P(X = x)

1X=x, a.s.

Therefore, for all x ∈X ,

x = E[Y1X=x]
P(X = x)

=
∑
y∈Y


yyKy,x,

where Ky,x := n
P(X=x,Y=y)

kx
y
. Hence a = bP with Pj,i := Kbj ,ai

, i, j = 1, . . . , n. This proves item (ii), since P is
doubly stochastic by construction.

If a = bP with a doubly stochastic matrix P , then it is easily checked that
∑n

i=1 f (ai) ≤ ∑n
i=1 f (bi) for any

convex function f on R so that (ii) implies (i).
Finally, according to Birkhoff’s theorem [33, Theorem A.2, Chapter 2], the extremes points of the set of doubly

stochastic matrices are permutation matrices. Therefore every doubly stochastic matrix can be written as a convex
combination of permutation matrices showing that (ii) and (iii) are equivalent. �

2.3. Geometric aspects of convex ordering and a majorization theorem

Contrary to the previous subsections, the results presented here are new. Fix some vector b = (b1, b2, . . . , bn) of Rn

with distinct components (for simplicity). We will be working with the convex hull of the permutations of b, a polytope
we denote by Perm(b) and defined as

Perm(b) :=
{ ∑

σ∈Sn

λσ bσ ,with λσ ≥ 0 and
∑
σ∈Sn

λσ = 1

}
.

Such a polytope is often refered to as the Permutahedron generated by b. According to Theorem 2.9, Perm(b) = {a ∈
R

n : a � b}. Hence, Perm(b) is a subset of the following affine hyperplane

Eb :=
{

x ∈R
n :

n∑
i=1

xi =
n∑

i=1

bi

}
= b + E0,

with E0 := {x ∈R
n : ∑n

i=1 xi = 0}.
We will be interested in the faces, facets containing a given face, and normal vectors to such facets of Perm(b). To

this aim, we need to introduce some notations.
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Denote by [n] the set of integers from 1 to n. For S ⊂ [n], let vS(b) denote the vector with the |S| largest compo-
nents of b in the positions indexed by S (in decreasing order, say), and the remaining n − |S| lowest components of
b in the other positions indexed by [n] \ S (also in a decreasing order). Also, when S �= ∅, we denote by PS(b) the
set that contains the vector vS(b) along with all vectors obtained by permuting any subset of coordinates of vS(b), as
long as the subset is contained in S or in [n] \ S. (That is, the only permutations that are not allowed are those that
involve elements from both S and [n] \ S). More precisely

PS(b) := {(
vS(b)

)
σ
, σ ∈ Sn such that σ(S) = S

}
,

where σ(S) := {σ(i), i ∈ S} denotes the image of S by σ .
More generally, given a partition S = (S1, S2, . . . , Sk) of [n], let vS(b) denote the vector with the largest |S1|

coordinates of b in the positions indexed by S1 (in decreasing order), then the next largest |S2| coordinates in the
positions indexed by S2 and so on (as an illustration, for b = (1,4,5,−2,3,9,6,−5) ∈ R

8 and S = (S1, S2, S3) with
S1 = {1,2}, S2 = {3,6,7} and S3 = {4,5,8}, we get vS(b) = (9,6,5,1,−2,4,3,−5) where the italic positions refer
to the set S1, the bold positions to the set S2 and the remaining positions to S3). Also, we denote by PS(b) the set
containing the vector vS(b) along with all vectors obtained by permuting the coordinates of vS(b) that belong to the
same Si :

PS(b) := {(
vS(b)

)
σ
, σ ∈ Sn such that for all i, σ (Si) = Si

}
.

Now we recall two geometric definitions/facts from [6].

Fact 1: A facet of Perm(b) is the convex hull of PS(b), for some S �=∅, [n].
Fact 2: A face of Perm(b) is the convex hull of PS(b), for some partition S = (S1, S2, . . . , Sk) of [n] with k ≥ 3.

Furthermore, given a face F = Conv(PS(b)), there exist exactly k − 1 facets containing F that are obtained by
coalescing the first and last several Si ’s in S : that is, for each 1 ≤ j ≤ k − 1, the facet Fj containing F can be
described by taking the partition [n] = T1 ∪ T2 with T1 = S1 ∪ · · · ∪ Sj , and T2 = Sj+1 ∪ · · · ∪ Sk .

The next theorem, which we may call the Majorization Theorem, is a key ingredient in the proof of Theorem 1.5.
It provides a geometric interpretation of majorization in terms of projection.

Theorem 2.10 (Majorization Theorem). Let a, b ∈R
n, assume that b has distinct coordinates and that a /∈ Perm(b).

Then the following are equivalent:

(i) ĉ ∈ Perm(b) satisfies

a − ĉ � a − c, ∀c ∈ Perm(b);
(ii) ĉ is the closest point of Perm(b) to a; that is,

ĉ := arg min
c∈Perm(b)

(‖a − c‖2
)
.

Moreover the vector ĉ is sorted as a : (ai ≤ aj ) ⇒ (ĉi ≤ ĉj ), for all i, j .

Let us recall that the orthogonal projection of a point a on the polytope Perm(b) is the unique c̄ ∈ Perm(b) such
that

〈a − c̄, c − c̄〉 ≤ 0, ∀c ∈ Perm(b). (9)

Proof. Observe that if
∑n

i=1 ai �= ∑n
i=1 bi , then letting ã := a − k

n
(1,1, . . . ,1) with k := ∑n

i=1 ai − ∑n
i=1 bi , we see

(using (9)) that the orthogonal projection of a and ã on Perm(b) are equal (to some point we denote by ĉ, say), and
that a − ĉ � a − c if and only if ã − ĉ � ã − c. Therefore we can assume without loss that a and b are such that∑n

i=1 ai = ∑n
i=1 bi .
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First let us prove that (i) implies (ii) which is the easy part of the proof. Let c̄ be the closest point of Perm(b) to a

(i.e., c̄ := arg minc∈Perm(b)(‖a − c‖2)). Then by (i), a − ĉ � a − c̄, which, by Proposition 2.6 (applied to f (x) = x2)
implies that

∑n
i=1(a − ĉ)2

i ≤ ∑n
i=1(a − c̄)2

i . By definition of c̄, this is possible only if ĉ = c̄.
Next let us prove that (ii) implies (i). For the sake of clarity, we first deal with the simple case when ĉ lies on a

facet of Perm(b), before dealing with the general case of ĉ being on a face.
Let ĉ be the closest point of Perm(b) to a. Since Perm(b) is invariant by permutation, it easily follows from

Proposition 2.7 that the coordinates of ĉ are in the same order as the coordinates of a. Hence, we are left with the
proof that a − ĉ � a − c for all c ∈ Perm(b).

(a) A simple case: ĉ ∈ F for some facet F . Since ĉ is chosen from Perm(b), and since we assumed that
∑

i bi =∑
i ai , we have

∑
i (a − ĉ)i = 0. Writing α := a − ĉ ∈ E0, suppose that α is perpendicular to the affine subspace H :=

HF containing a facet F , defined by some nonempty subset S of [n]. For all x, y ∈ F , we thus have 〈α,x − y〉 = 0.
Choosing x = vS(b) and y = xτij

obtained by permuting two coordinates of x whose indices are both in S or both in
Sc (i.e., τij = (ij) is the transposition that permutes i and j , with i, j ∈ S, or i, j ∈ Sc), one sees that the coordinates of
α are constant on S and Sc. We denote by αS and αSc the values of α on these sets, which verify kαS + (n− k)αSc = 0
since α ∈ E0.

Now (recalling that α = a − ĉ) our task is to show that

α � α − (
c′ − ĉ

)
, for every c′ ∈ Perm(b).

This amounts to showing that

α � α − c, for every c such that 〈α, c〉 ≤ 0, and
∑

i

ci = 0.

Indeed, on the one hand, by (9), the choice of ĉ implies that for every c′ ∈ Perm(b), we have 〈α, c′ − ĉ〉 ≤ 0, and on
the other hand, since ĉ, c′ ∈ Perm(b), necessarily

∑
i ci = ∑

i c
′
i − ∑

i ĉi = 0.
Now 〈α, c〉 ≤ 0 and

∑
i ci = 0 together imply (recalling that α is constant on S and Sc),

(αS − αSc )
∑
i∈S

ci ≤ 0.

Let us assume that αS > αSc . Then denoting by cS = ∑
i∈S ci and by cSc = ∑

i∈Sc ci , one has cS ≤ 0 and cSc ≥ 0.
Therefore, for any convex function f on R, according to Jensen’s inequality and by convexity, we get

n∑
i=1

f (αi − ci) = k

∑
i∈S f (αS − ci)

k
+ (n − k)

∑
i∈Sc f (αSc − ci)

n − k

≥ kf

(
αS − cS

k

)
+ (n − k)f

(
αSc − cSc

n − k

)

≥ kf (αS) + (n − k)f (αSc ) − f ′(αS)cS − f ′(αSc )cSc

≥
n∑

i=1

f (αi),

where the last inequality comes from the fact that f ′(αS)cS + f ′(αc
S)cSc = cS(f ′(αS) − f ′(αSc )) ≤ 0. According to

Proposition 2.6, we conclude that α � α − c which is the expected result.
(b) The general case. Suppose that ĉ lies in a face F of the polytope. This face is related to a partition S =

(S1, . . . , Sk) of [n], with k ≥ 3. Then α := a − ĉ ∈ N(F), where N(F) denotes the normal cone of F . Recall that the
extreme rays of N(F) are given by the facet directions for the facets containing F . For all i ∈ {1, . . . , n − 1}, let us
denote by Fi the facet containing F associated to the partition Ti = {S1 ∪ · · · ∪ Si;Si+1 ∪ · · · ∪ Sk}, 1 ≤ i ≤ k − 1.
Consider the vectors p1,p2, . . . , pk−1 ∈ E0 defined by

pi = 1S1∪S2∪···∪Si
− ki

n
1[n],
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where 1T denotes the 0 − 1 indicator vector of T , for T ⊆ [n], and ki = |S1| + · · · + |Si |. For each i, the vector pi is
orthogonal to the facet Fi . Moreover, for all c ∈ Perm(b) one may check that 〈c,pi〉 ≤ 〈vTi

, pi〉, with equality on Fi .
This shows that pi is an outward normal vector to Fi . Therefore N(F) is the conical hull of the pi ’s, and so we may
express α, for a suitable choice of λi ≥ 0, as:

α =
∑

i

λi1S1∪S2∪···∪Si
− σ1[n],

where σ = (1/n)[∑k−1
i=1 λi |S1| + ∑k−1

i=2 λi |S2| + · · · + λk−1|Sk−1|]. In particular, α is constant on each Sj : for all
i ∈ Sj , αi = (

∑k−1
p=j λp) − σ := Aj .

In order to establish (i), we need to show that

α � α − (c − ĉ), ∀c ∈ Perm(b),

or in other words, we need to show that

α � α − c′, ∀c′ ∈ Perm(b) − ĉ.

We now use again the fact that our choice of ĉ implies that, for all 1 ≤ i ≤ k − 1,

〈pi, ĉ〉 ≥ 〈pi, c〉, ∀c ∈ Perm(b).

This in turn gives the following:

Perm(b) − ĉ ⊆ {
c′ : 〈c′,pi

〉 ≤ 0,∀i
}
.

Thus using N(F)0 := {d ∈ E0; 〈d,pi〉 ≤ 0,∀i} to denote the polar cone, it then suffices to show that for α (as above),

α � α − d, ∀d ∈ N(F)0.

Now, d ∈ N(F)0 implies that

〈d,1S1∪S2∪···∪Sj
〉 ≤ 0 and

∑
i

di = 0,

therefore denoting Ej = ∑
i∈S1∪···∪Sj

di , for all j ∈ {0,1, . . . , k}, one has Ej ≤ 0 and E0 = Ek = 0.

Let f : R→R be a convex function; denoting by f ′ its right derivative, the convexity of f implies that

n∑
i=1

f (αi − di) =
k∑

j=1

∑
i∈Sj

f (Aj − di) ≥
k∑

j=1

|Sj |f (Aj ) −
k∑

j=1

f ′(Aj )Dj ,

where Dj = ∑
i∈Sj

di . Now, using an Abel transform (and the fact that E0 = Ek = 0), one gets

k∑
j=1

f ′(Aj )Dj =
k∑

j=1

f ′(Aj )(Ej − Ej−1) =
k−1∑
j=1

(
f ′(Aj ) − f ′(Aj+1)

)
Ej ≤ 0,

where the inequality comes from Ej ≤ 0, Aj ≥ Aj+1 and the monotonicity of f ′. Therefore, one gets

n∑
i=1

f (αi − di) ≥
k∑

j=1

|Sj |f (Aj ) =
n∑

i=1

f (ai),

which proves that a � a − d , thanks to Proposition 2.6, as expected. This completes the proof. �
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3. Properties of the optimal coupling for weak transport costs

This section is devoted to the proof of Theorem 1.5. We will establish first a preliminary result which gives some
connection between T and T . In the sequel, we denote by Im(μ), respectively Im↑(μ), the set of probability measures
on R which are images of μ under some map S :R→ R, respectively some non-decreasing map S, i.e.,

Im(μ) = {
γ ∈ P(R) : ∃S : R→R measurable such that γ = S#μ

}
,

and

Im↑(μ) = {
γ ∈ P(R) : ∃S :R→ R non-decreasing such that γ = S#μ

}
. (10)

Proposition 3.1. For all probability measures μ,ν ∈P1(R) and all convex function θ : R+ → R
+, it holds

inf
γ�ν,γ∈Im↑(μ)

Tθ (γ,μ) ≥ T θ (ν|μ) ≥ inf
γ�ν,γ∈Im(μ)

Tθ (γ,μ).

Remark 3.2. Note that when μ has no atoms, then Im↑(μ) = Im(μ). If μ is a discrete probability measure, then the
two sets may be different. For instance, if μ = 1

3δ0 + 2
3δ1, then γ = 2

3δ0 + 1
3δ1 is in Im(μ) but not in Im↑(μ). In the

proof of Theorem 1.5 below, we will use Proposition 3.1 with μ being the uniform distribution on n distinct points
for which it is clear that Im↑(μ) = Im(μ).

Proof. First we will prove that T θ (ν|μ) ≥ infγ�ν,γ∈Im(μ) Tθ (γ,μ). To that aim, denote by π(dx dy) = p(x,

dy)μ(dx) some coupling between μ and ν and set S(x) := ∫
yp(x, dy), x ∈ R. Clearly S#μ ∈ Im(μ). Moreover

if f : R→R is some convex function, by Jensen’s inequality, it holds∫
f (x)S#μ(dx) =

∫
f

(∫
yp(x, dy)

)
μ(dx) ≤

∫∫
f (y)p(x, dy)μ(dx) =

∫
f (y)ν(dy)

so that S#μ � ν. Therefore,∫
θ

(
x −

∫
yp(x, dy)

)
μ(dx) =

∫
θ
(
x − S(x)

)
μ(dx) ≥ Tθ (S#μ,μ) ≥ inf

γ�ν,γ∈Im(μ)
Tθ (γ,μ),

from which the claim follows by taking the infimum over p.
Now we turn to the proof of the inequality T θ (ν|μ) ≤ infγ�ν,γ∈Im↑(μ) Tθ (γ,μ). Assume that γ � ν and that γ =

S#μ for some non-decreasing map S. According to Strassen’s theorem, there exists a coupling π1 with first marginal
γ and second marginal ν such that π1(dx dy) = p1(x, dy)γ (dx) and x = ∫

R
yp1(x, dy), γ almost everywhere. For all

x ∈ R, define the following probability measure p(x, dy) := p1(S(x), dy). Then for all bounded continuous function
f , it holds∫∫

f (y)p(x, dy)μ(dx) =
∫∫

f (y)p1
(
S(x), dy

)
μ(dx)

=
∫∫

f (y)p1(x, dy)γ (dx) =
∫

f (y)ν(dy).

Thus the coupling π(dx dy) = p(x, dy)μ(dx) has μ as first marginal and ν as second marginal. Moreover, by defini-
tion of p1 and p, μ almost everywhere, it holds∫

yp(x, dy) =
∫

yp1
(
S(x), dy

) = S(x).

Since S is non-decreasing, it realizes the optimal transport between μ and ν for the classical transport cost Tθ . This
last property is a classical result of optimal transport. Let us give a quick justification. Let � = {(x, S(x));x ∈ R}.
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If (xi, yi)1≤i≤n is a finite family of points of �, then according to Proposition 2.7, it holds
∑n

i=1 θ(xi − yi) ≤∑n
i=1 θ(xi − yi+1) (denoting yn+1 = y1). Therefore � is c-cyclically monotone for the cost function c(x, y) =

θ(x − y), x, y ∈R. Therefore, according to [48, Theorem 5.10 (ii)] the transport map S is optimal for the cost Tθ . So
it follows that

Tθ (γ,μ) =
∫

θ
(∣∣x − S(x)

∣∣)μ(dx) =
∫

θ

(∣∣∣∣x −
∫

yp(x, dy)

∣∣∣∣
)

μ(dx) ≥ T θ (ν|μ),

which achieves the proof by taking the infimum over γ . �

We are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. The proof of the first part of Theorem 1.5 is divided into two steps. In the first step we will
deal with uniform discrete measures on n points, while in the second step we will use an approximation argument in
order to reach any measure.

Step 1. We first deal with

μ := 1

n

n∑
i=1

δai
and ν := 1

n

n∑
i=1

δbi
,

with a1 < a2 < · · · < an and b1 < b2 < · · · < bn. Set a := (a1, . . . , an) and b := (b1, . . . , bn). According to Theo-
rem 2.10, there exists some ĉ ∈ Perm(b) such that a − ĉ � a − c, for all c ∈ Perm(b). Moreover the coordinates of
ĉ satisfy ĉi ≤ ĉi+1. Set γ̂ := 1

n

∑n
i=1 δĉi

and observe that ν dominates γ̂ in the convex order and γ̂ ∈ Im↑(μ), where
Im↑(μ) is defined by (10).

Now for any γ := 1
n

∑n
i=1 δci

∈ Im↑(μ) with ci ≤ ci+1 and for any convex cost function θ , it holds (since the
coordinates are non-decreasing)

Tθ (γ,μ) = 1

n

n∑
i=1

θ
(|ai − ci |

)
.

In particular

Tθ (γ̂ ,μ) = 1

n

n∑
i=1

θ
(|ai − ĉi |

) ≤ inf
c∈Perm(b)

1

n

n∑
i=1

θ
(|ai − ci |

)
. (11)

A probability γ such that γ � ν, γ ∈ Im↑(μ) is of the form γ = 1
n

∑n
i=1 δci

with ci ≤ ci+1 and c = (c1, . . . , cn) ∈
Perm(b), and for such a c, it holds 1

n

∑n
i=1 θ(|ai − ci |) = Tθ (γ,μ). Therefore, the latter implies

Tθ (γ̂ ,μ) ≤ inf
γ�ν,γ∈Im↑(μ)

Tθ (γ,μ) = T θ (ν|μ),

where the last equality follows from Proposition 3.1 and the fact that for such a distribution μ, it holds Im(μ) =
Im↑(μ) (see Remark 3.2). Since obviously T θ (ν|μ) ≤ Tθ (γ̂ ,μ), we conclude that Tθ (γ̂ ,μ) = T θ (ν|μ) as expected.

Step 2. In the second step we deal with the general case using an approximation argument.
Let μ and ν be two elements of P1(R). By assumption,

∫ |x|μ(dx) < ∞ and
∫ |x|ν(dx) < ∞, hence, according

to the de la Vallée-Poussin Theorem (see, e.g., [12, Theorem 4.5.9]), there exists an increasing convex function β :
R

+ → R
+ such that β(t)/t → ∞ as t → ∞ and such that

∫
β(|x|)μ(dx) < ∞ and

∫
β(|x|)ν(dx) < ∞.

Next we will construct discrete approximations of μ and ν. According to Varadarajan’s theorem (see, e.g.,
[17, Theorem 11.4.11]), if Xi is an i.i.d. sequence of law μ, then, with probability 1, the empirical measure
LX

n := 1
n

∑n
i=1 δXi

converges weakly to μ. On the other hand, according to the strong law of large numbers, with
probability 1, 1

n

∑n
i=1 |Xi | →

∫ |x|μ(dx) as n → ∞. Let us take (xi)i≥1, a positive realization of these events and set

μn = 1
n

∑n
i=1 δ

x
(n)
i

, where x
(n)
1 ≤ x

(n)
2 ≤ · · · ≤ x

(n)
n denotes the increasing re-ordering of the vector (x1, x2, . . . , xn).
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Then the sequence μn converges weakly to μ and
∫ |x|μn(dx) → ∫ |x|μ(dx). According to [48, Theorem 6.9], this

is equivalent to the convergence of the W1 distance : W1(μn,μ) → 0 as n → ∞. Note that one can assume that the
points x

(n)
i are distinct. Indeed, if this is not the case, then letting x̃

(n)
i = x

(n)
i + i/n2 one obtains distinct points and

it is not difficult to check that μ̃n = 1
n

∑n
i=1 δ

x̃
(n)
i

still weakly converges to μ (for instance the W1 distance between

μn and μ̃n is easily bounded from above by (n + 1)/(2n2)). The same argument yields a sequence νn = 1
n

∑n
i=1 δ

y
(n)
i

with y
(n)
i < y

(n)
i+1 converging to ν in the W1 sense. It is not difficult to check (invoking the strong law of large numbers

again) that one can further impose that
∫

β(|x|)νn(dx) → ∫
β(|x|)ν(dx), as n → ∞.

For all n ≥ 1, one applies the result proved in the first step: there exists a unique probability measure γ̂n � νn such
that

T θ (νn|μn) = Tθ (γ̂n,μn),

for all convex cost functions θ . Let us show that one can extract from γ̂n a subsequence converging to some γ̂ in P1(R)

for the W1 distance. By construction
∫

β(|x|)νn(dx) → ∫
β(|x|)ν(dx) and so M = supn≥1

∫
β(|x|)νn(dx) is finite.

Since γ̂n � νn and since the function x 
→ β(|x|) is convex, it thus holds
∫

β(|x|)γn(dx) ≤ ∫
β(|x|)νn(dx) ≤ M . In

particular, setting c(R) = inft≥R β(t)/t , R > 0, Markov’s inequality easily implies that

∫
[−R,R]c

|x|γ̂n(dx) ≤
∫

β(|x|)νn(dx)

c(R)
≤ M

c(R)
.

Consider γ̃n defined by dγ̃n

dγ̂n
(x) = 1+|x|∫

1+|x|γ̂n(dx)
. Then it holds,

sup
n≥1

γ̃n

([−R,R]c) ≤ 2M

c(R)
, ∀R ≥ 1,

and so the sequence γ̃n is tight. Therefore, according to the Prokhorov Theorem, extracting a subsequence if necessary,
one can assume that γ̃n converges to some γ̃ for the weak topology. Extracting yet another subsequence if necessary,
one can also assume that

∫
(1+|x|)γn(dx) converges to some number Z > 0. The weak convergence of γ̃n to γ̃ means

that
∫

ϕ dγ̃n → ∫
ϕ dγ for all bounded continuous ϕ, which means that∫ (

1 + |x|)ϕ(x)γ̂n(dx) →
∫ (

1 + |x|)ϕ(x)γ̂ (dx),

where γ̂ (dx) = Z
1+|x| γ̃ (dx) ∈ P1(R). Invoking again [48, Theorem 6.9], this implies γ̂n → γ̂ as n → ∞ for the W1

distance.
Now we will check that γ̂ is such that Tθ (ν|μ) = Tθ (γ̂ ,μ) for all convex cost functions θ : R+ → R

+. First
assume that θ is Lipschitz, and denote by Lθ its Lipschitz constant. According to [25, Theorem 2.11], the following
Kantorovich duality formula holds

T θ (νn|μn) = sup
ϕ

{∫
Qθϕ(x)νn(dx) −

∫
ϕ(y)μn(dy)

}
,

where the supremum is taken over the set of convex functions ϕ bounded from below, with Qθϕ(x) := infy∈R{ϕ(y)+
θ(|x − y|)}, x ∈ R. Define ϕ̄(y) := supx∈R{Qθϕ(x) − θ(|x − y|)}. Then it is easily checked that ϕ̄ ≤ ϕ, ϕ̄ is bounded
from below and Qθϕ̄ = Qθϕ. Moreover, being a supremum of convex and Lθ -Lipschitz functions, the function ϕ̄

is also convex and Lθ -Lipschitz. Therefore, the supremum in the duality formula above can be further restricted
to the class of convex functions which are Lθ -Lipschitz and bounded from below. Using the fact that W1(νn, ν) =
sup{∫ f dνn − ∫

f dν} where the supremum runs over 1-Lipschitz functions and the fact that Qθϕ is Lθ -Lipschitz
(being an infimum of such functions), we easily get the following inequality∣∣T θ (νn|μn) − T θ (ν|μ)

∣∣ ≤ LθW1(νn, ν) + LθW1(μn,μ).
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A similar (but simpler reasoning) based on the usual Kantorovich duality for Tθ yields the inequality∣∣Tθ (γ̂n,μn) − Tθ (γ̂ ,μ)
∣∣ ≤ LθW1(γ̂n, γ̂ ) + LθW1(μn,μ).

Passing to the limit as n → ∞ in the identity T θ (νn|μn) = Tθ (γ̂n,μn), we end up with T θ (ν|μ) = Tθ (γ̂ ,μ).
Now it remains to extend this identity to general convex functions θ , not necessarily Lipschitz. Let θ : R+ → R

+
be a convex cost function (such that θ(0) = 0) and for all n ≥ 1, let θn be the convex cost function defined by θn(x) =
θ(x), if x ∈ [0, n] and θn(x) = θ(n) + θ ′(n)(x − n), if x ≥ n, where θ ′ denotes the right derivative of θ . It is easily
seen that θn is Lipschitz and that Qθnϕ converges to Qθϕ monotonically as n → ∞, for any function ϕ bounded from
below. Therefore, the monotone convergence theorem implies that for any probability measure γ , it holds

∫
Qθϕ dγ =

supn≥1

∫
Qθnϕ dγ . We deduce from this that T θ (ν|μ) = supn≥1 T θn(ν|μ) and Tθ (γ̂ |μ) = supn≥1 Tθn(γ̂ ,μ). Since

T θn(ν|μ) = Tθn(γ̂ ,μ) for all n ≥ 1, this ends the proof of the first part of the theorem, i.e., that T θ (ν|μ) = Tθ (γ̂ |μ).
From the first part of the theorem we conclude that there exists some γ̂ ∈P1(R) such that T θ (ν|μ) = Tθ (γ̂ ,μ) for

the three cost functions θ = θ1, θ2, θ1 + θ2. The result then follows from the well-known additivity of Tθ in dimension
one: Tθ1+θ2(γ̂ ,μ) = Tθ1(γ̂ ,μ) + Tθ2(γ̂ ,μ). This completes the proof of the theorem. �

4. Dual formulation for weak transport-entropy inequalities

In this short section we recall the Bobkov and Götze dual formulation of the transport-entropy inequality (2) and its
extensions, borrowed from [25], related to the transport-entropy inequalities of Definition 1.1, in terms of infimum
convolution inequalities. The results are stated in dimension one to fit our framework but hold in more general settings
(see [25]). They will be used in the next sections.

Lemma 4.1. Let μ ∈ P1(R) and θ : R+ → R
+ be a convex cost function and, for all functions g : R → R bounded

from below, set

Qtg(x) := inf
y∈R

{
g(y) + tθ

( |x − y|
t

)}
, t > 0, x ∈ R.

Then the following holds.

(i) μ satisfies T(θ) if and only if for all g : R→R bounded from below it holds

exp

(∫
Q1g dμ

)
exp

(
−

∫
g dμ

)
≤ 1.

(ii) μ satisfies T
+
(θ) if and only if for all convex g : R→R bounded from below it holds

exp

(∫
Q1g dμ

)∫
exp(−g)dμ ≤ 1.

(iii) μ satisfies T
−
(θ) if and only if for all convex g : R→R bounded from below it holds∫

exp(Q1g)dμ exp

(
−

∫
g dμ

)
≤ 1.

(iv) If μ satisfies T(θ), then for all convex g :R→ R bounded from below it holds∫
exp(Qtg) dμ

∫
exp(−g)dμ ≤ 1, (12)

with t = 2. Conversely, if μ satisfies (12) for some t > 0, then it satisfies T(tθ(·/t)).
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Proof. The first item is due to Bobkov and Götze [9] and is based on a combination of the well-known duality formulas
for the relative entropy and for the transport cost Tθ . Items (ii) and (iii) generalize the first item to the framework of
weak transport-entropy inequalities. We refer to [25, Proposition 4.5] for a more general statement and for a proof
(based on an extension of duality for weak transport costs).

Finally we sketch the proof of item (iv) (which already appeared in a slightly different form in [22, Propositions 8.2
and 8.3]). By the definition of T(θ), if μ satisfies T(θ) then it satisfies T

±
(θ) and therefore, it satisfies the exponential

inequalities given in items (ii) and (iii). Note that if g is convex and bounded from below then Q1g is also convex and
bounded from below. Therefore it holds

exp

(∫
Q1g dμ

)∫
exp(−g)dμ ≤ 1

and ∫
exp

(
Q1(Q1g)

)
dμ exp

(
−

∫
Q1g dμ

)
≤ 1.

Multiplying these two inequalities and noticing that Q1(Q1g) = Q2g (for a proof of this well-known semi-group
property, see, e.g., [48, Theorem 22.46]) gives (12) with t = 2. The converse implication simply follows from Jensen’s
inequality. �

5. A transport form of the convex Poincaré inequality

This section is devoted to the proof of Theorem 1.6. Since, from [8], item (i) is equivalent to item (ii), and since it
is easy to prove that item (iii) implies item (ii) we will mainly focus on the implication (i) ⇒ (iii). Our strategy is to
prove a modified logarithmic Sobolev inequality for the exponential probability measure τ and then, using a transport
argument, a modified logarithmic Sobolev inequality for general μ (satisfying the assumption of item (i)) restricted
to convex or concave Lipschitz functions. Finally, following the well-known Hamilton–Jacobi interpolation technique
of [7], the desired transport inequalities will follow in their dual forms (recalled in Lemma 4.1).

We need to introduce some notations. Given a convex or concave function g : R→ R, we set

|∇g|(x) := min
{∣∣θg′−(x) + (1 − θ)g′+(x)

∣∣; θ ∈ [0,1]}, (13)

where g′− and g′+ denote the left and right derivatives of g (which are well-defined and finite valued for such functions,
see, e.g., [27, Theorem 6.3, Chapter 0]). In particular, if g is convex

|∇g|(x) =

⎧⎪⎨
⎪⎩

|g′+(x)| if g′+(x) ≤ 0,

0 if g′−(x) ≤ 0 ≤ g′+(x),

g′−(x) if g′−(x) ≥ 0,

and if g is concave

|∇g|(x) =

⎧⎪⎨
⎪⎩

|g′−(x)| if g′−(x) ≤ 0,

0 if g′+(x) ≤ 0 ≤ g′−(x),

g′+(x) if g′+(x) ≥ 0.

The following result is one of the key ingredients in the proof of Theorem 1.6. Recall that the map Uμ is defined
by (4) in the Introduction.

Proposition 5.1. Let μ ∈ P1(R). Assume that supx∈R[Uμ(x + 1) − Uμ(x)] ≤ h for some h > 0. Set K := 2740 and
c := 1/(10

√
2). Then, for all convex or concave and l-Lipschitz functions g with l ≤ c/h, it holds

Entμ
(
eg

) ≤ Kh2
∫
R

∣∣∇g(x)
∣∣2

eg(x)μ(dx), (14)
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where we recall that for all non-negative functions h,

Entμ(h) =
∫

h loghdμ − log

(∫
hdμ

)∫
hdμ.

The proof of Proposition 5.1 is postponed to the end of this section.

Proof of Theorem 1.6. As already mentioned above, from [8] we conclude that item (i) is equivalent to item (ii).
In order to make the dependency of the constants explicit in the implication (i) ⇒ (ii), one can use a well-known
expansion argument: apply (14) to εf and take the limit ε → 0, see, e.g., [5]. On the other hand, using a similar
expansion argument, it is easy to prove that item (iii) implies item (ii) with C = 2D: apply (12) to g = εf and take
the limit ε → 0, see, e.g., [22,23]. Hence, we are left with the proof of (i) implies (iii) which closely follows the
Hamilton–Jacobi semi-group approach introduced in [7].

Let μ be a probability measure on the line and assume that item (i) of Theorem 1.6 holds. According to Proposi-
tion 5.1, for any convex or concave differentiable function g which is l-Lipschitz with l ≤ c/h := lo, it holds

Entμ
(
eg

) ≤ Kh2
∫
R

∣∣∇g(x)
∣∣2

eg(x)μ(dx), (15)

with K = 2740 and c = 1/(10
√

2). It is easy to check that the latter is equivalent to

Entμ
(
eg

) ≤
∫

α∗(|∇g|)eg dμ, (16)

for all convex or concave g : R→ R with

α∗(v) := sup
u

{
uv − α(u)

} =
{

Kh2v2 if |v| ≤ lo,

+∞ if |v| > lo

the convex conjugate of

α(u) :=
{

u2

4Kh2 if |u| ≤ 2loKh2,

lo|u| − l2
oKh2 if |u| > 2loKh2.

Now, introduce the inf-convolution operators Qt , for t ∈ (0,1], defined by

Qtf (x) := inf
y∈R

{
f (y) + tα

(
x − y

t

)}
, x ∈R, t ∈ (0,1],

which make sense, for instance, for any Lipschitz function f or for any function f bounded from below. For simplicity
denote by F the set of functions f : R→ R that are convex and bounded below or concave and l-Lipschitz for l ≤ lo.
Then, Qt satisfies the following properties:

(a) If f is convex, then Qtf is convex.
(b) If f is concave and Lipschitz, then Qtf is concave.
(c) If f ∈F , then Qtf is lo-Lipschitz.
(d) If f ∈F , then the function u(t, x) := Qtf (x) satisfies the following Hamilton–Jacobi equation

d

dt+
u(t, x) + α∗(∣∣∇−u

∣∣)(t, x) = 0, ∀t ∈ (0,1],∀x ∈ R, (17)

where d
dt+ is the right time-derivative and |∇−u(t, x)| = lim supy→x

[u(t,y)−u(t,x)]−
|y−x| (where as usual [X]− :=

max(−X,0) denotes the negative part).
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Item (a) is easy to check and is a general fact about infimum convolution of two convex functions (f and α). Item (b)
follows from the fact that, after a change of variables, Qtf (x) = infu{f (x − u) + tα(u

t
)} so that Qtf is an infimum

of concave functions and is therefore also concave. As for item (c), we observe that x 
→ tα(
x−y

t
) is lo-Lipschitz, for

any y, so that Qtf is also lo-Lipschitz as an infimum of lo-Lipschitz functions. A proof of item (d) can be found in
[24] or [4].

With these properties and definitions in hand, let f ∈ F and (following [7]) define

F(t) := 1

t
log

(∫
R

etQtf dμ

)
, t ∈ (0,1].

The function F is right differentiable at every point t > 0 (thanks to the above technical properties of Qt , see, e.g.,
[24] for details) and it holds

d

dt+
F(t) = 1

t2

1∫
R

etQtf dμ

(
Entμ

(
etQtf

) + t2
∫
R

(
d

dt+
Qtf

)
etQtf dμ

)

= 1

t2

1∫
R

etQtf dμ

(
Entμ

(
etQtf

) − Kh2t2
∫
R

∣∣∇−Qtf
∣∣2

etQtf dμ

)

≤ Kh2∫
R

etQtf dμ

(∫
|∇Qtf |2etQtf dμ −

∫
R

∣∣∇−Qtf
∣∣2

etQtf dμ

)
≤ 0,

where the second equality follows from (17), the first inequality from (16) applied to the function g = tQtf (which
is convex or concave and t lo-Lipschitz) and the last inequality from the fact that for a convex or concave function g,
|∇g| ≤ |∇−g| (we recall that |∇g| is defined in (13)).

Thus the function F is non-increasing and satisfies F(1) ≤ limt→0 F(t) = ∫
f dμ. In other words,∫

eQ1f dμ ≤ e
∫

f dμ ∀f ∈F . (18)

Now according to item (iii) of Lemma 4.1 one concludes, on the one hand, that μ satisfies the transport-entropy
inequality T

−
(α): T α(μ|ν) ≤ H(ν|μ), for all ν ∈P1(R).

On the other hand, applying (18) to f = −Q1g with g convex and bounded from below (so that f is concave and
lo-Lipschitz) yields to e

∫
Q1g dμ

∫
eQ1(−Q1g) dμ ≤ 1. Since Q1(−Q1g) ≥ −g we end up with

e
∫

Q1g dμ

∫
e−g dμ ≤ 1,

for all g convex and bounded from below. According to item (ii) of Lemma 4.1, this implies that μ satisfies the
transport-entropy inequality T

+
(α): T α(ν|μ) ≤ H(ν|μ), for all ν ∈ P1(R), which completes the proof. �

The end of the section is dedicated to the proof of Proposition 5.1.

Proof of Proposition 5.1. Let K and c be defined by Lemma 5.2 below. We may deal first with convex functions
g and divide the proof into three different (sub-)cases: g monotone (non-decreasing and then non-increasing), and g

arbitrary.
Assume first that g is convex non-decreasing and l-Lipschitz with l ≤ c/h. Set f = g ◦ Uμ, with Uμ defined by

(4). Then, since g is non-decreasing, and since Uμ(x − 1) ≥ Uμ(x) − h by assumption, for all x ∈ R, it holds

f (x) − f (x − 1) ≤ g
(
Uμ(x)

) − g
(
Uμ(x) − h

) ≤ lh ≤ c, ∀x ∈R.

Therefore, since μ is the image of τ under the map Uμ, Lemma 5.2 (apply (19) to f ) and the latter guarantee that

Entμ
(
eg

) = Entτ
(
ef

) ≤ K

∫
R

(
f (x) − f (x − 1)

)2
ef (x)τ (dx)
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≤ K

∫
R

(
g
(
Uμ(x)

) − g
(
Uμ(x) − h

))2
eg(Uμ(x))τ (dx)

= K

∫
R

(
g(x) − g(x − h)

)2
eg(x)μ(dx) ≤ Kh2

∫
R

∣∣∇g(x)
∣∣2

eg(x)μ(dx),

where the last inequality is due to the fact that g is convex and non-decreasing and therefore satisfies 0 ≤ g(x)−g(x −
h) ≤ g′−(x)h = |∇g(x)|h. As a conclusion we proved (14) for all convex non-decreasing and l-Lipschitz functions g

with l ≤ c/h.
Now suppose that g is convex, non-increasing and l-Lipschitz with l ≤ c/h and set f (x) = g(Uμ(−x)). The

function f is non-decreasing and, since Uμ(−x + 1) ≥ Uμ(−x) + h by assumption, satisfies

f (x) − f (x − 1) = g
(
Uμ(−x)

) − g
(
Uμ(−x + 1)

) ≤ g
(
Uμ(−x)

) − g
(
Uμ(−x) + h

) ≤ c.

Similarly to the previous lines, Lemma 5.2 implies that

Entμ
(
eg

) = Entτ
(
ef

) ≤ K

∫
R

(
g
(
Uμ(−x)

) − g
(
Uμ(−x + 1)

))2
eg(Uμ(−x))τ (dx)

≤ K

∫
R

(
g
(
Uμ(−x)

) − g
(
Uμ(−x) + h

))2
eg(Uμ(−x))τ (dx)

= K

∫
R

(
g(x) − g(x + h)

)2
eg(x)μ(dx) ≤ Kh2

∫
R

∣∣∇g(x)
∣∣2

eg(x)μ(dx),

where we used the symmetry of τ and that 0 ≤ g(x) − g(x + h) ≤ g′+(x)(−h) = |∇g(x)|h. Therefore we proved (14)
for all convex non-increasing and l-Lipschitz functions g with l ≤ c/h.

Finally, consider an arbitrary convex and l-Lipschitz function g with l ≤ c/h and assume without loss of generality
that g is not monotone. Being convex, there exists some a ∈R such that g restricted to (−∞, a] is non-increasing and
g restricted to [a,∞) is non-decreasing. Subtracting g(a) if necessary, one can further assume that g(a) = 0, since
(14) is invariant by the change of function g → g + C (for any constant C). Set g1 = g1(−∞,a] and g2 = g1(a,∞).
The functions g1 and g2 are convex, monotone and l-Lipschitz. Therefore, according to the two previous sub-cases, it
holds

Entμ
(
eg1

) ≤ Kh2
∫ a

−∞
∣∣∇g(x)

∣∣2
eg(x)μ(dx) and Entμ

(
eg2

) ≤ Kh2
∫ +∞

a

∣∣∇g(x)
∣∣2

eg(x)μ(dx).

So what remains to prove is the following sub-additivity property of the entropy functional

Entμ
(
eg1+g2

) ≤ Entμ
(
eg1

) + Entμ
(
eg2

)
,

which, since
∫

geg dμ = ∫
g1e

g1 dμ + ∫
g2e

g2 dμ, amounts to proving that∫
eg1 dμ log

(∫
eg1 dμ

)
+

∫
eg2 dμ log

(∫
eg2 dμ

)
≤

∫
eg dμ log

(∫
eg dμ

)
.

Setting A = ∫
eg1 dμ−1, B = ∫

eg2 dμ−1 and X = ∫
eg dμ and observing that A+B +1 = X the latter is equivalent

to proving that

(A + 1) log(A + 1) + (B + 1) log(B + 1) ≤ X logX,

which follows from the sub-additivity property of the convex function � : x 
→ (x + 1) log(x + 1) on [0,∞), that
satisfies �(0) = 0. This completes the proof when g is convex.

The case g concave follows the same lines (use (20) instead of (19)). Details are left to the reader. �

In the proof of Proposition 5.1, we used the following lemma which is a (discrete) variant of a result by Bobkov
and Ledoux [11] and an entropic counterpart of a result (involving the variance) by Bobkov and Götze (see [8,
Lemma 4.8]).
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Lemma 5.2. For all non-decreasing functions f : R→ R with f (x) − f (x − 1) ≤ 1/(10
√

2), x ∈R, it holds

Entτ
(
ef

) ≤ 939
∫
R

(
f (x) − f (x − 1)

)2
ef dτ (19)

and

Entτ
(
ef

) ≤ 2740
∫
R

(
f (x + 1) − f (x)

)2
ef dτ. (20)

Proof. Let τ+ be the exponential probability measure on R
+: τ+(dx) = e−x1[0,∞) dx. We shall use the following

fact, borrowed from [8, Lemma 4.7] (with a = 0 and h = 1 so that the constant c(a,h) appearing in [8] can be
explicitly bounded by 1/200): for all f : [−1,∞) → R non-decreasing and satisfying f (0) = 0, it holds∫

f 2 dτ+ ≤ 200
∫ (

f (x) − f (x − 1)
)2

dτ+(x). (21)

We will first prove (19). Since (19) is invariant by the change of function f → f + C for any constant C, we may
assume without loss of generality that f (0) = 0. Set f̃ (y) := −f (−y), y ∈ R and observe that f is non-decreasing.
Since u logu ≥ u − 1 for all u ≥ 0, one has

Entτ
(
ef

) ≤
∫ (

f ef − ef + 1
)
dτ

=
∫ (∫ 1

0
tf 2etf dt

)
dτ

= 1

2

∫ ∞

0
f 2

(∫ 1

0
tetf dt

)
dτ+ + 1

2

∫ ∞

0
f̃ 2

(∫ 1

0
te−t f̃ dt

)
dτ+

≤ 1

4

∫
f 2ef dτ+ + 1

4

∫
f̃ 2 dτ+, (22)

where the last inequality comes from the fact both f and f̃ are non-negative on R
+. Now suppose that the function

f is such that f (y) − f (y − 1) ≤ c for all y ∈ R and some c ∈ (0,1). Our aim is to bound each term in the right hand
side of the above inequality.

By (21) applied to the function f̃ , one has∫
f̃ 2 dτ+ ≤ 200

∫ (
f̃ (y) − f̃ (y − 1)

)2
dτ+(y)

= 200∫
e−f̃ dν

∫ (
f̃ (y) − f̃ (y − 1)

)2
e−f̃ (y) dτ+(y)

≤ 200 exp

(∫
f̃ (y)(f̃ (y) − f̃ (y − 1))2 dτ+(y)∫

(f̃ (y) − f̃ (y − 1))2 dτ+(y)

)∫ (
f̃ (y) − f̃ (y − 1)

)2
e−f̃ (y) dτ+(y),

where we set dν
dτ+ (y) = (f̃ (y)−f̃ (y−1))2∫

(f̃ (y)−f̃ (y−1))2 dτ+(y)
and we used Jensen’s inequality to guarantee that 1/

∫
e−f̃ dν ≤ e

∫
f̃ dν .

By the Cauchy–Schwarz inequality and using (21) again, we get

∫
f̃ (y)

(
f̃ (y) − f̃ (y − 1)

)2
dτ+(y) ≤

(∫ (
f̃ (y) − f̃ (y − 1)

)4
dτ+(y)

)1/2(∫
f̃ 2 dτ+

)1/2

≤ √
200c

∫ (
f̃ (y) − f̃ (y − 1)

)2
dτ+(y).
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It finally follows that∫
f̃ 2 dτ+ ≤ 200e

√
200c

∫ (
f̃ (y) − f̃ (y − 1)

)2
e−f̃ (y) dτ+(y)

= 200e
√

200c

∫ 0

−∞
(
f (y + 1) − f (y)

)2
ef (y)ey dy

= 200e
√

200c−1
∫ 1

−∞
(
f (y) − f (y − 1)

)2
ef (y−1)ey dy

≤ 400e
√

200c+1
∫ 1

−∞
(
f (y) − f (y − 1)

)2
ef (y) dτ (y),

where in the last line we used that ey/(e−|y|/2) ≤ 2e2 for all y ≤ 1.
Next we deal with the first term in the right hand side of (22). Our aim is to apply (21) to g = f ef/2. Observe that,

since f is non-decreasing, f (x) ≥ f (−1) ≥ −c + f (0) = −c ≥ −1 so that, since x 
→ xex/2 is non-increasing on
[−2,∞), we are guaranteed that g is non-decreasing on [−1,∞). Therefore we can apply (21) to g. Applying (21) to
g = f ef/2 and using the inequality

0 ≤ beb/2 − aea/2 ≤ (b − a)eb/2 + b

2
(b − a)eb/2, −2 ≤ a ≤ b,

we get

B :=
∫

f 2ef dτ+ ≤ 200
∫ (

f (y)ef (y)/2 − f (y − 1)ef (y−1)/2)2
dτ+(y)

≤ 400
∫ (

f (y) − f (y − 1)
)2

ef (y) dτ+(y) + 100
∫

f 2(y)
(
f (y) − f (y − 1)

)2
ef (y) dτ+(y)

≤ 400
∫ (

f (y) − f (y − 1)
)2

ef (y) dτ+(y) + 100c2B.

Therefore, provided c < 1/10, we end up with

B ≤ 400/
(
1 − 100c2)∫ (

f (y) − f (y − 1)
)2

ef (y) dτ+(y).

Hence, plugging the previous two bounds into (22) and choosing c = 1/
√

200, Inequality (19) follows with the con-
stant 939.

To obtain (20) from (19), it suffices to observe that, by a simple change of variable

∫ (
f (y) − f (y − 1)

)2
ef (y) dτ (y) =

∫ (
f (x + 1) − f (x)

)2
ef (x+1) e

−|y+1|

2
dy

≤ ec+1
∫ (

f (x + 1) − f (x)
)2

ef (x) dτ (x)

and that 939ec+1 ≤ 2740 for c = 1/
√

200. This ends the proof. �

6. Proof of Theorem 1.3

In this final section we prove Theorem 1.3. As mentioned in the introduction, we may need to decompose the cost
θ into the sum of two costs, one that takes care of the behavior near 0 (the cost θ1) and the other one vanishing in a
neighborhood of 0 (the cost θ2). The next theorem deals with the latter.
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Theorem 6.1. Let μ ∈ P1(R) and β : R+ → R
+ be a convex cost function such that {t ∈ R

+ : β(t) = 0} = [0, to],
where to > 0 is some positive constant. The following are equivalent:

(i) There exists a > 0 such that μ satisfies the transport-entropy inequality T(β(a·)).
(ii) There exists a′ > 0 such that μ satisfies the weak transport-entropy inequality T(β(a′·)).

(iii) There exists b > 0 such that max(K+(b),K−(b)) < ∞, where

K+(b) := sup
x≥m

1

μ((x,∞))

∫ ∞

x

eβ(b(u−x))μ(du),

K−(b) := sup
x≤m

1

μ((−∞, x))

∫ x

−∞
eβ(b(x−u))μ(du),

and m is a median of μ. (Here we use the convention 0/0 = 0.)
(iv) There exists d > 0 such that

∣∣Uμ(u) − Uμ(v)
∣∣ ≤ 1

d
β−1(|u − v|), ∀u �= v ∈ R.

(Note that β−1 is well defined on (0,∞).)

In particular,

• (i) ⇒ (ii) with a′ = a,
• (ii) ⇒ (iii) with b = a′/2,
• (ii) ⇒ (iv) with d = a′ to

8β−1(log 3)
,

• (iv) ⇒ (ii) with a′ = d to
9β−1(2)

.

Proof of Theorem 6.1. The equivalence between items (i), (iii) and (iv) is proved in [21, Theorem 2.2], with some
explicit dependency between the constants. In order to complete the proof of Theorem 6.1 we need to show that
(i) ⇒ (ii) ⇒ (iii).

It follows from Jensen’s inequality that Tβ(a·)(μ, ν) ≥ max(T β(a·)(ν|μ);T β(a·)(μ|ν)). Therefore (i) implies (ii)
with a′ = a.

Next we will show that (ii) implies (iii). Assume that μ satisfies T(β(a′·)) for some a′ > 0. According to item (iv)
of Lemma 4.1, for all convex functions g : R→R bounded from below, it holds∫

exp(Qf )dμ

∫
e−f dμ ≤ 1, where Qf (x) = inf

y∈R
{
f (y) + 2β

(
a′|y − x|/2

)}
.

Consider the convex function fx which equals 0 on (−∞, x] and ∞ otherwise. Then Qfx(y) = 0 on (−∞, x] and
Qfx(y) = 2β(a′(y − x)/2) on (x,∞). Thus, applying the inequality above to fx yields(

μ
(
(−∞, x]) +

∫
(x,∞)

e2β(a′(y−x)/2)μ(dy)

)
μ

(
(−∞, x]) ≤ 1.

Considering x ≥ m yields that K+(a′/2) ≤ 3. One proves similarly that K−(a′/2) ≤ 3. This shows that (ii) implies
(iii) with b = a′/2. This achieves the proof of Theorem 6.1. �

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Let θ : R+ → R
+ be a convex cost function such that θ(t) = t2 on [0, to] for some to > 0.

Let us define θ1(t) = t2 on [0, to] and θ1(t) = 2t to − t2
o on [to,+∞) and θ2(t) = [θ(t) − t2

o ]+. Note that θ1 and θ2 are
both convex and that θ2 vanishes on [0, to] and that max(θ1, θ2) ≤ θ ≤ θ1 + θ2.
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First assume that μ satisfies the weak transport-entropy inequality T(θ(a·)) for some a > 0 (i.e., item (i) of The-
orem 1.3). Then, since θ ≥ θ2 it clearly satisfies T(θ2(a·)). According to Theorem 6.1, the mapping Uμ sending the
exponential measure on μ satisfies the condition:

sup
x∈R

Uμ(x + u) − Uμ(x) ≤ 1

b
θ−1

2 (u), ∀u > 0, (23)

with b = aκ1, where κ1 = to/(8θ−1
2 (log 3)). Since θ−1

2 (u) = θ−1(u + t2
o ), this proves item (ii) of Theorem 1.3 with

the announced dependency between the constants.
Now assume that μ satisfies item (ii) of Theorem 1.3, or equivalently (23) for some b > 0. Recall that we set, in

Theorem 1.6, κ := 5480 and c := 1/(10
√

2). Then, observe that, plugging u = 1 into (23) and using Theorem 1.6,
one concludes that μ satisfies T(α) with α defined by α(u) = ᾱ(u/

√
2D), with D = κ(θ−1(1 + t2

o ))2 1
b2 and

ᾱ(v) =
{

v2 if |v| ≤ c
√

κ/2,

c
√

κ|v| − c2κ
2 if |v| > c

√
κ/2

=
{

v2 if |v| ≤ √
137/10,

2
√

137|v| − 137
5 if |v| > c

√
137/10.

It is not difficult to check that ᾱ compares to θ1. More precisely, for all v ∈ R, it holds

ᾱ(v) ≥ θ1

(
max

(
c
√

κ/2

to
;1

)
|v|

)
= θ1

(
max

(√
137/10

to
;1

)
|v|

)
.

Therefore μ satisfies T(θ1(a
′
1·)), and by monotonicity T(θ1(a1·)) with

a′
1 := max((c

√
κ/2)/to;1)√

2κθ−1(1 + t2
o )

b = max(
√

137/10
to

;1)

4
√

685θ−1(1 + t2
o )

b ≥ 1

105

max(1, to)

toθ−1(1 + t2
o )

b =: a1.

On the other hand, according to Theorem 6.1, μ also satisfies T(θ2(a2·)), with a2 = to
θ−1(2+t2

o )
b. Letting a =

min(a1, a2), one concludes that μ satisfies both T(θ1(a·)) and T(θ2(a·)). Hence, since θ(at) ≤ θ1(at) + θ2(at) and
according to (7), it holds

Tθ(a·)(ν|μ) ≤ Tθ1(a·)+θ2(a·)(ν|μ) = Tθ1(a·)(ν|μ) + Tθ2(a·)(ν|μ)

≤ 2H(ν|μ),

and so μ satisfies T
+
( 1

2θ(a·)). By convexity of θ and since θ(0) = 0, it holds 1
2θ(2at) ≥ θ(at), and so μ satisfies

T
+
(θ((a/2)·)). Finally we observe that

a

2
= b

210
min

(
max(1, to)

toθ−1(1 + t2
o )

; 105to

θ−1(2 + t2
o )

)
≥ b

210

min(1, to)

θ−1(2 + t2
o )

=: κ2b

so that, by monotonicity, μ satisfies T
+
(θ(κ2b·)). The same reasoning yields the conclusion that μ satisfies

T
−
(θ(κ2b·)), which completes the proof. �
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