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Abstract. This work aims to extend the existing results on thick points of logarithmic-correlated Gaussian Free Fields to Gaussian
random fields that are more singular. To be specific, we adopt a sphere averaging regularization to study polynomial-correlated
Gaussian Free Fields in higher-than-two dimensions. Under this setting, we introduce the definition of thick points which, heuristi-
cally speaking, are points where the value of the Gaussian Free Field is unusually large. We then establish a result on the Hausdorff
dimension of the sets containing thick points.

Résumé. Cet article a pour but d’étendre certains résultats existants sur les points épais de champs libres gaussiens a corrélation
logarithmique, à des champs aléatoires gaussiens qui sont plus singuliers. Plus précisément, nous utilisons une moyenne sphérique
pour étudier les champs libres gaussiens a corrélation polynomiale en dimension supérieure à 2. Dans ce contexte nous introduisons
une définition des points épais qui, de manière heuristique, sont les points pour lesquels la valeur du champ libre gaussien est
inhabituellement grande. Nous établissons un résultat sur la dimension de Hausdorff des ensembles contenant ces points épais.
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1. Introduction

Many recent developments in statistical physics and probability theory have seen Gaussian Free Field (GFF) as an
indispensable tool. Heuristically speaking, GFFs are analogues of Brownian motion with multidimensional time pa-
rameters. Just as Brownian motion is thought of as a natural interpretation of “random curve”, GFFs are considered
as promising candidates for modeling “random surface” or “random manifold”, which ultimately lead to the study
of random geometry. Motivated by their importance, GFFs have been widely studied both in discrete and continuum
settings, and certain geometric properties of GFFs have been revealed. For example, the distribution of extrema and
near-extrema of two-dimensional log-correlated discrete GFFs are studied by Ding et al. [4,10,11]. However, for con-
tinuum GFFs, the notion of “extrema” is not applicable, because even in the two-dimensional case a generic element
of the GFF is only a tempered distribution which is not defined pointwise. In fact, it is the singularity of GFFs that
poses most challenges in obtaining analytic results on the geometry of GFFs. To overcome the challenges, one needs
to apply a procedure, known as “regularization” in physics literature, to approximate pointwise values of GFFs in
continuum settings. Various regularization procedures have been considered in the study of problems related to the
geometry of log-correlated GFFs.

One such example is the theory of Gaussian multiplicative chaos (GMC) introduced by Kahane in his seminal
work [18]. The GMC theory enables one to define in any dimensions random Borel measures which formally take
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the form “eh(x) dx”, where h is a generic element of a log-correlated Gaussian random field from a large class of
such random fields, and dx is the Lebesgue measure. Such measures, known as the Liouville quantum gravity (LQG)
measures, are important objects in quantum field theory. Kahane’s work has led to the multi-fractal analysis of the LQG
measures by showing that these measures are supported on Borel sets where “unusually” large values are achieved
by the regularized h. Over the past decade, further results, such as the exact Hausdorff dimension of the support of a
LQG measure, have been established during extensive study of the LQG measures under the framework of GMC (see,
e.g., [2,3,14,20–22]). Besides, using the tool of GMC, the extreme values of the regularized h are treated in [19].

Apart from the GMC approach, another regularization procedure often used in the study of a continuum GFF is
to average the generic field element h over some sufficiently “nice” Borel sets. This is also the regularization that
will be adopted in this article. Although being a tempered distribution, h can still be integrated over sufficiently
regular submanifolds. Since convolution or integration is the natural way to “tame” the singularity of a tempered
distribution, such an averaging procedure becomes a natural choice when it comes to the study of the “landscape” of
h. For example, for h being a log-correlated GFF in 2D, by considering the averages of h over circles, Duplantier
and Sheffield [15] also provided a rigorous construction of the LQG measures in 2D and derived the same property
for the supports of the LQG measures as mentioned above, i.e., such measures are supported on sets where the
averaged h achieves “unusually” large values. Meanwhile, using the same regularization, i.e., circular averages of h,
Hu, Miller and Peres [17] studied specifically the points where the averaged h is “unusually” large, and introduced
the terminology of “thick points”2 for such points.

More specifically, let h be a generic element of the GFF associated with the operator � on a bounded domain
D ⊆R

2 with the Dirichlet boundary condition. Governed by the properties of the Green’s function of � in 2D, such a
GFF is logarithmically correlated, and it is possible to interpret, in the sense of random variable, the circular average
of h:

h̄t (z) := 1

2πt

∫
∂B(z,t)

h(x)σ (dx),

where z ∈ D, ∂B(z, t) is the circle centered at z with radius t and σ(dx) is the length measure along the circle. To get
an approximation of “h(z)”, it is to our interest to study h̄t (z) as t ↘ 0. For every a ≥ 0, the set of a-thick points of h

are defined in [17] as

T a
h :=

{
z ∈ D : lim

t↘0

h̄t (z)

(− ln t)
=
√

a

π

}
. (1.1)

With z fixed, the circular average process {h̄t (z) : z ∈ (0,1]} has the same distribution as a Brownian motion {Bτ (z) :
τ ≥ 0} up to a deterministic time change τ = (− ln t)/

√
2π , and as t ↘ 0, h̄t (z) behaves just like Bτ (z) as τ ↗ ∞.

Then, for any given z ∈ D, written in terms of {Bτ (z) : τ ≥ 0}, the limit involved in (1.1) is equivalent to

lim
τ→∞

Bτ (z)

τ
= √

2a,

which occurs with probability zero for any a > 0. Therefore, a-thick points, so long as a > 0, are locations where the
field value is “unusually” large. The authors of [17] prove that for every a ∈ [0,2], dimH(T a

h ) = 2 − a a.s., where
“dimH” denotes the Hausdorff dimension.

Besides being the support of the LQG measures, thick points themselves characterize a fundamental aspect of the
“landscape” of GFFs, that is, where the “high peaks” occur. Hence, thick points are of importance to understanding
the geometry of GFFs. By adapting the circle averaging regularization introduced above, certain results from [15] and
[17] on log-correlated GFFs have been extended from 2D to higher dimensions. For example, Chen and Jakobson [5]
treated the LQG measure associated with a log-correlated GFF in higher even dimensions via a specific functional
of spherical averages of the field; based on similar regularization, Cipriani and Hazra [7,8] investigated the thick
points of higher dimensional log-correlated GFFs. It is shown that for log-correlated GFFs in any dimensions, one

2The term “thick point” is borrowed from the literature of stochastic analysis. There it refers to the extremes of the occupation measure of a
stochastic process (see, e.g., [9]).
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can similarly define thick point sets as in (1.1) and a result on Hausdorff dimensions of such sets is in order. However,
to the best of the author’s knowledge, there had been no comparable study of thick points for GFFs that are more
singular, e.g., polynomial-correlated GFFs. In fact, to date little is known about the geometry of such GFFs.3 Inspired
by the approach presented in [17], this article lays out the first step of an attempt to explore geometric problems
associated with polynomial-correlated GFFs in any dimensions.

The main focus of this article is to extend the techniques and the results on thick points of log-correlated GFFs to
polynomial-correlated GFFs on R

ν for any ν > 2. Intuitively speaking, compared with the log-correlated counterparts,
GFFs that are polynomially correlated consist of generic elements that are more singular so the “landscape” of such
a field is “rougher”, and the higher the dimension ν is, the worse it becomes. To make these remarks rigorous and to
bring generality to our approach, we adopt the theory of the Abstract Wiener Space [16] to interpret general Gaussian
random fields, including GFFs with any degree of polynomial singularity in any dimensions. Let θ be a generic
element of such a field. It is always possible, by averaging θ over codimension-1 spheres centered at x ∈R

ν , to obtain
a proper approximation θ̄t (x) which approaches “θ(x)” as t ↘ 0. We give a careful analysis of the two parameter
Gaussian family{

θ̄t (x) : x ∈R
ν, t ∈ (0,1]}

and use the concentric spherical averages (with x fixed) to define thick points. It turns out that, instead of the most
straightforward analogue of (1.1), the suitable definition for thick points of the degree-(ν − 2)-polynomial-correlated
GFF is that, for γ ≥ 0, x is a γ -thick point of θ if and only if

lim sup
t↘0

θ̄t (x)√−G(t) ln t
≥√2νγ , (1.2)

where G(t) := E[(θ̄t (x))2]. In a similar spirit as (1.1), if γ > 0, then a γ -thick point is a location where θ is unusually
large. By adapting the approach presented in [17], we establish the result (Theorem 9) that if T

γ
θ is the set consisting

of all the γ -thick points of θ in the unit cube in R
ν , then

dimH
(
T

γ
θ

)= ν(1 − γ ) a.s.

Moreover, we investigate the relation between (1.1) and (1.2), and show that (Theorem 13) due to the higher-order
singularity of the polynomial-correlated GFFs, with probability one, the “perfect” γ -thick point, i.e., x such that

lim
t↘0

θ̄t (x)√−G(t) ln t
=√2νγ , (1.3)

does not exist, which explains why (1.2) is more suitable a choice than (1.1) as the definition of thick point for GFFs
that are polynomially correlated. On the other hand, if we relax the condition in (1.3) to

lim
n→∞

θ̄rn(x)√−G(rn) ln rn
=√2νγ , (1.4)

where {rn : n ≥ 0} is any sequence that decays to zero sufficiently fast, then we find out (Theorem 16) that, if ST
γ
θ is

the set consisting of all the points x in the unit cube in R
ν that satisfies (1.4), then

dimH
(
ST

γ
θ

)= ν(1 − γ ) a.s.

Some lemmas we obtained during the process are of independent interest.
In Section 2 we briefly introduce the theory of the Abstract Wiener Space as the foundation for the study of GFFs.

In Section 3 we give a detailed study of the Gaussian family consisting of spherical averages of the GFFs. These are

3In the discrete setting, it is possible to realize on Z
ν (ν ≥ 3) a polynomial-correlated discrete GFF via a random-coefficient series of eigenfunctions

of Laplacian on Z
ν . In that realm related problems such as percolation models associated with level sets of discrete GFFs have been studied (e.g.,

[12] and the references therein).
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the main tools that will be exploited in later parts of this article. Our main results are stated in Section 4 and at the
beginning of Section 5. In particular, the result on dimH(T

γ
θ ) are proved by establishing the upper bound and the

lower bound separately. The upper bound is proved in Section 4.1, and the lower bound is established in multiple
steps in Section 5.

2. Abstract Wiener space and Gaussian free fields

The theory of Abstract Wiener Space (AWS), first introduced by Gross [16], provides an analytical foundation for
the construction and the study of Gaussian measures in infinite dimensions. To be specific, given a real separable
Banach space E, a non-degenerate centered Gaussian measure W on E is a Borel probability measure such that for
every x∗ ∈ E∗ \ {0}, the functional x ∈ E �→ 〈x, x∗〉 ∈ R has non-degenerate centered Gaussian distribution under
W , where E∗ is the space of bounded linear functionals on E, and 〈·, x∗〉 is the action of x∗ ∈ E∗ on E. Further
assume that H is a real separable Hilbert space which is continuously embedded in E as a dense subspace. Then E∗
can be continuously and densely embedded into H , and for every x∗ ∈ E∗ there exists a unique hx∗ ∈ H such that
〈h,x∗〉 = (h,hx∗)H for all h ∈ H . Under this setting if the Gaussian measure W on E has the following characteristic
function:

E
W[exp

(
i
〈·, x∗〉)]= exp

(
−‖hx∗‖2

H

2

)
for every x∗ ∈ E∗,

then the triple (H,E,W) is called an Abstract Wiener Space. Moreover, since {hx∗ : x∗ ∈ E∗} is dense in H , the
mapping

I : hx∗ ∈ H �→ I(hx∗) := 〈·, x∗〉 ∈ L2(W)

can be uniquely extended to a linear isometry between H and L2(W). The extended isometry, also denoted by I , is
the Paley–Wiener map and its images {I(h) : h ∈ H }, known as the Paley–Wiener integrals, form a centered Gaussian
family whose covariance is given by

E
W[I(h)I(g)

]= (h, g)H for all h,g ∈ H.

Therefore, if {hn : n ≥ 1} is an orthonormal basis of H , then {I(hn) : n ≥ 1} is family of i.i.d. standard Gaussian
random variables. In fact,

for W-a.e. x ∈ E, x =
∑
n≥1

I(hn)(x)hn. (2.1)

Although W is a measure on E, it is the inner product of H that determines the covariance structure of W . H is
referred to as the Cameron–Martin space of (H,E,W). The theory of AWS says that given any separable Hilbert
space H , one can always find E and W such that the triple (H,E,W) forms an AWS. On the other hand, given
a separable Banach space E, any non-degenerate centered Gaussian measure W on E must exist in the form of an
AWS. That is to say that, AWS is the “natural” format in which any infinite dimensional Gaussian measure exists. For
further discussions on the construction and the properties of AWS, we refer to [6,16,24] and Chapter 8 of [25].

We now apply the general theory of AWS to study Gaussian measures on function or generalized function spaces.
To be specific, given ν ∈ N and p ∈ R, consider the Sobolev space Hp := Hp(Rν), which is the closure of C∞

c (Rν),
the space of compactly supported smooth functions on R

ν , under the inner product given by, for every φ,ψ ∈ C∞
c (Rν),

(φ,ψ)Hp := ((I − �)pφ,ψ
)
L2(Rν )

= 1

(2π)ν

∫
Rν

(
1 + |ξ |2)pφ̂(ξ)ψ̂(ξ) dξ,

where ·̂ denotes the Fourier transform. (HP , (·, ·)Hp) is a separable Hilbert space, and it will be taken as the Cameron–
Martin space for the discussions in this article. As mentioned earlier, there exists a separable Banach space p :=
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p(Rν) and a Gaussian measure Wp := Wp(Rν) on p such that the triple (Hp,p,Wp) forms an AWS, to which
we refer as the dim-ν order-p Gaussian Free Field (GFF).4 It is clear that the covariance of such a field is determined
by the Green’s function of (I − �)p on R

ν .
To give explicit formulations for the GFFs introduced in the framework above, we review the result in [25] (Sec-

tion 8.5) that, when p = ν+1
2 , 

ν+1
2 can be taken as


ν+1

2 :=
{
θ ∈ C

(
R

ν
) : lim|x|→∞

|θ(x)|
log(e + |x|) = 0

}
,

equipped with the norm

‖θ‖


ν+1
2

:= sup
x∈Rν

|θ(x)|
log(e + |x|) .

In other words, the dim-ν order- ν+1
2 GFF consists of continuous functions on R

ν . More generally, for p ∈ R, Hp is

the isometric image of H
ν+1

2 under the Bessel-type operator (I − �)
ν+1−2p

4 . Therefore, we can take p to be image

of 
ν+1

2 under (I − �)
ν+1−2p

4 and the corresponding Gaussian measure is

Wp = ((I − �)−
ν+1−2p

4
)
�
W ν+1

2 .

In addition, if we identify H−p as the dual space of Hp , then (p)∗ ⊆ H−p and for every λ ∈ (p)∗, it is easy to see
that

λ �→ hλ := (I − �)−pλ (2.2)

gives the unique element hλ ∈ Hp such that the action of λ ∈ (p)∗, when restricted on Hp , coincides with (·, hλ)Hp .
Moreover, the map (2.2) can also be viewed as an isometry between H−p and Hp . For λ ∈ H−p , we still use “hλ”
to denote the image of λ under (2.2). Then the Paley–Wiener integrals {I(hλ) : λ ∈ H−p} form a centered Gaussian
family with the covariance

E
Wp [I(hλ)I(hη)

]= (hλ,hη)Hp = (λ, η)H−p for every λ,η ∈ H−p.

It is clear from the discussions above that with the dimension ν fixed, the larger the order p is, the more regular the
elements of the GFF are; on the other hand, if p is fixed, then the higher the dimension ν is, the more singular the GFF
becomes. In most of the cases that are of interest to us, generic elements of GFFs are only tempered distributions. For
example, this is the case with GFFs that are logarithmically correlated. Interpreted under the framework introduced
above, log-correlated GFFs are dim-ν order-(ν/2) GFFs, i.e., with p = ν/2, since the Green’s function of (I − �)ν/2

on R
ν has logarithmic singularity along the diagonal. On the other hand, if 2p ∈ N and 2p < ν, the Green’s function

have polynomial singularity with degree ν−2p and hence the corresponding GFFs are polynomially correlated. In this
article, we focus on studying certain geometric properties of polynomial-correlated GFFs with5 p ∈N and p < ν/2.

We finish this section by remarking that, instead of using the Bessel-type operator (I − �)p to construct GFFs
on R

ν , one can also use the operator �p , equipped with proper boundary conditions, to construct GFFs on bounded
domains on R

ν (e.g., [15,17] and [23]). The field elements obtained in either way possess similar local properties.
However, (I − �)p rather than �p is a better choice for this project for the technical reason that (I − �)p allows the
GFF to be defined on the entire space, and hence we don’t have to specify a boundary condition, which is an advantage
at least when p > 1.

4In physics literature, the term “GFF” only refers to the case when p = 1. Here we slightly extend the use of this term and continue to use GFF.
5The GFFs with p being half integers (and hence the operator is non-local) are considered by O. Nadeau-Chamard and the author in a separate
paper which is currently in preparation.
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3. Spherical averages of Gaussian free fields

For the rest of this article, we assume that ν,p ∈ N, ν > 2 and 1 ≤ p < ν/2, and θ is a generic element of the dim-
ν order-p GFF, i.e., θ ∈ p is sampled under Wp . Although “θ(x)” is not defined for every x ∈ R

ν , we can use
the “average” of θ over a sphere centered at x to approximate “θ(x)”, as the radius of the sphere tends to zero. To
make this precise, we need to introduce some notation. Let B(x, t) and ∂B(x, t) be the open ball and, respectively,
the sphere centered at x ∈ R

ν with radius (under the Euclidean metric) t > 0, σx,t the surface measure on ∂B(x, t),
αν(t) := ανt

ν−1 the surface area of ∂B(x, t) with αν := 2(πν/2)/�(ν/2), and σ ave
x,t := σx,t /αν(t) the spherical average

measure over ∂B(x, t). We first state the following simple facts about σ ave
x,t . It is straightforward to derive these results,

so we will omit the proofs.

Lemma 1. For every x ∈R
ν and t > 0, σ ave

x,t ∈ H−1(Rν) and its Fourier transform is given by

∀ξ ∈ R
ν, σ̂ ave

x,t (ξ) = (2π)
ν
2

αν

ei(x,ξ)Rν · (t |ξ |) 2−ν
2 Jν−2

2

(
t |ξ |), (3.1)

where Jν−2
2

is the standard Bessel function of the first kind with index ν−2
2 .

The first assertion of the lemma implies that σ ave
x,t ∈ H−p(Rν) for every p ≥ 1. In particular, this fact shows that, no

matter what the dimension is and how singular the GFF is, a codimension-1 sphere is always sufficiently “nice” that
it is possible to average the GFF over such a sphere. As a consequence, I(hσ ave

x,t
), viewed as the spherical average

of the GFF, is well defined for every x ∈ R
ν and t > 0 as a Gaussian random variable, and as t ↘ 0, from the point

of the view of tempered distributions, I(hσ ave
x,t

)(θ) approximates “θ(x)”. With the help of (3.1), we can compute,
by Parseval’s identity, the covariance of the Gaussian family consisting of all the spherical averages and express the
covariance as follows.

Lemma 2. {I(hσ ave
x,t

) : x ∈ R
ν, t > 0} is a two-parameter centered Gaussian family under Wp , and the covariance is

given by

E
Wp[I(hσ ave

x,t
)I(hσ ave

y,s
)
]

= (2π)ν/2

α2
ν (ts|x − y|) ν−2

2

∫ ∞

0

τ 2− ν
2 Jν−2

2
(tτ )J ν−2

2
(sτ )J ν−2

2
(|x − y|τ)

(1 + τ 2)p
dτ. (3.2)

In particular, when x = y, i.e., in the case of concentric spherical averages,

E
Wp[I(hσ ave

x,t
)I(hσ ave

x,s
)
]= 1

αν(ts)
ν−2

2

∫ ∞

0

τJ ν−2
2

(tτ )J ν−2
2

(sτ )

(1 + τ 2)p
dτ. (3.3)

Again, these results follow easily from integral representations of Bessel functions ([27], Section 3.3) combined with
straightforward computations. Proofs are omitted.

To study the distribution of the family of spherical averages, and to use them effectively to approximate “pointwise
values” of the GFF, it is useful to obtain as explicit an expression for the covariance as possible. To this end, we will
first assume p = 1 and treat the concentric spherical averages (Section 3.1) and the non-concentric ones (Section 3.2)
separately. During this process, we find for each x ∈ R

ν a set of “renormalized spherical averages” which still approx-
imates “θ(x)” but whose covariance has technically desirable properties. In Section 3.3 we briefly explain the strategy
for treating the spherical averages when p > 1.

3.1. When p = 1. Concentric spherical averages

For the rest of this article, when p = 1, we simply write (Hp,p,Wp) as (H,,W). It is clear from (3.3) that the
distribution of the concentric spherical averages {I(hσ ave

x,t
) : t > 0} at any given x ∈R

ν is independent of x. In fact, the
distribution of the GFF is translation invariant. First we state a closed formula for the integral in (3.3).
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Lemma 3. Fix any x ∈ R
ν . For every t, s > 0,

E
W[I(hσ ave

x,t
)I(hσ ave

x,s
)
]= 1

αν(ts)
ν−2

2

I ν−2
2

(t ∧ s)Kν−2
2

(t ∨ s), (3.4)

where I ν−2
2

and Kν−2
2

are the modified Bessel functions (with pure imaginary argument) with the index ν−2
2 .

One can use a formula in [27] (Section 13.53) to derive (3.4) directly. An alternative proof was provided in the
Appendix of [5].6 So we will omit the proof of Lemma 3 and refer to [27] and [5] for details.

By (3.4), {I(hσ ave
x,t

) : t > 0} is a backward7 Markov Gaussian process. In fact, (3.4) leads to a renormalization of
the spherical averages. Namely, if

σ̄x,t := (t/2)
ν−2

2

�(ν/2) · I ν−2
2

(t)
· σ ave

x,t ,

then σ̄x,t ∈ H−1. Let θ̄t (x) be the corresponding Paley–Wiener integral I(hσ̄x,t )(θ). It is easy to verify that

lim
t→0

(t/2)
ν−2

2

�(ν/2) · I ν−2
2

(t)
= 1,

so as t ↘ 0, θ̄t (x) still is a legitimate approximation of “θ(x)”. It follows from (3.4) that the covariance of the Gaussian
process {θ̄t (x) : t > 0} is given by, for 0 < s ≤ t ,

E
W[θ̄t (x)θ̄s(x)

]= αν

(2π)ν
·
Kν−2

2
(t)

I ν−2
2

(t)
=: G(t). (3.5)

The function G defined above is positive and decreasing on (0,∞), and when t is sufficiently small, G(t) =O(t2−ν),
which reflects the fact that the dim-ν order-1 GFF is polynomially correlated with degree ν − 2.

Remark 4. Since we are only concerned about θ̄t (x) when t is small, without loss of generality, we assume that
t ∈ (0,1]. As a consequence of (3.5), {θ̄t (x) : t ∈ (0,1]} is a Gaussian process with independent increment (in the
direction of t decreasing), which, up to a time change, has the same distribution as a Brownian motion. To be specific,
if we define a “clock” by

τ := G(t) − G(1) for t ∈ (0,1],
then {

Bτ := θ̄G−1(τ+G(1))(x) − θ̄1(x) : τ ≥ 0
}

has the same distribution as a standard Brownian motion.

Based on the preceding observations, results about the Brownian motion can be transported directly to {θ̄t (x) : t ∈
(0,1]}, and the behavior of θ̄t (x) when t is small resembles that of the Brownian motion Bτ when τ is large. For
example, by the law of the iterated logarithm,

lim sup
t↘0

|θ̄t (x)|√
2G(t) · ln lnG(t)

= 1 a.s. (3.6)

6The formula (3.4), as well as (3.7) and (3.8) below, are proven in the Appendix in [5] for the case when ν = 4, but the proof is identical in any
dimensions.
7A “backward” Markov process is a process which exhibits Markov property as the parameter “t” decreases.
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3.2. When p = 1. Non-concentric spherical averages

We now move on to the family of non-concentric spherical averages. Again, instead of the regular spherical averages,
we adopt the renormalized spherical averages introduced in Section 3.1. Consider the two-parameter Gaussian family{

θ̄t (x) : x ∈R
ν, t ∈ (0,1]},

and denote by Cov(x, t;y, s) the covariance of θ̄t (x) and θ̄s(y). One can compute Cov(x, t;y, s) using (3.2) and the
renormalization. In fact, under certain circumstances, it is possible to obtain explicit formulas for Cov(x, t;y, s).

Lemma 5. Let x, y ∈R
ν and t, s ∈ (0,1].

(i) If |x − y| ≥ t + s, i.e., if B(x, t) ∩ B(y, s) =∅,

Cov(x, t;y, s) = (2π)−ν/2 ·
Kν−2

2
(|x − y|)

|x − y| ν−2
2

=: Cdisj
(|x − y|). (3.7)

In particular, Cdisj(|x − y|) =O(|x − y|2−ν) when |x − y| is small.
(ii) If t ≥ |x − y| + s, i.e., if B(x, t) ⊃ B(y, s),

Cov(x, t;y, s) = (2π)−ν/2 ·
I ν−2

2
(|x − y|)

|x − y| ν−2
2

·
Kν−2

2
(t)

I ν−2
2

(t)
=: Cincl

(
t, |x − y|). (3.8)

In particular, Cincl(t, |x − y|) =O(t2−ν) when t is small.

Again, by combining (3.2) with a formula in [27] (Section 13.53, pp. 429–430), one can easily verify these results.
An alternative derivation was also provided in the Appendix of [5]. We omit the proofs and refer to [27] and [5] for
details. We remark that (3.7) and (3.8) demonstrate the advantage of this particular renormalization of the spherical
averages. For the family of the renormalized spherical averages, under the hypothesis (i) or (ii) in Lemma 5, small
radius (radii) does not affect the covariance, which favors convergence as radius (radii) tends to zero.

However, one still needs to treat the renormalized spherical averages in the most general case. To this end, we
introduce the intrinsic metric d associated with the Gaussian family {θ̄t (x) : x ∈ R

ν, t ∈ (0,1]} where

d(x, t;y, s) := (EW[∣∣θ̄t (x) − θ̄s(y)
∣∣2]) 1

2

for x, y ∈R
ν and t, s ∈ (0,1]. Assuming 0 < s ≤ t ≤ 1, the triangle inequality implies that

d(x, t;y, s) ≤ d(x, t;y, t) +√G(s) − G(t), (3.9)

so to work with d(x, t;y, s), we need to study d(x, t;y, t), i.e., the intrinsic metric associated with the family {θ̄t (x) :
x ∈ R

ν} at any fixed t ∈ (0,1].

Lemma 6. There exists a constant8 Cν > 0 such that for every t ∈ (0,1] and every x, y ∈R
ν ,

d2(x, t;y, t) ≤ Cν · t2−ν

(√ |x − y|
t

∧ 1

)
. (3.10)

Proof. Based on (3.7), when |x − y| ≥ 2t ,

d2(x, t;y, t) = 2G(t) − 2Cdisj
(|x − y|),

8Throughout the article, Cν denotes a constant that only depends on the dimension, and Cν ’s value may vary from line to line.
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which immediately implies (3.10). More generally, using (3.2) and (3.3), we can rewrite d2(x, t;y, t) as

d2(x, t;y, t) = E
W[(θ̄t (x) − θ̄t (y)

)2]
= 2αν

(2π)νI 2
ν−2

2
(t)

∫ ∞

0

τ

1 + τ 2
J 2

ν−2
2

(tτ )�
(
τ |x − y|)dτ,

where � is the function given by

∀w ∈ (0,∞), �(w) := 1 − (2π)ν/2

αν

w
2−ν

2 Jν−2
2

(w).

It follows from the properties of Jν−2
2

that � is analytic and

�(w) = �(ν/2)

∞∑
m=1

(−1)m−12−2m

m!�(ν
2 + m)

· w2m.

Clearly, there exists Cν > 0 such that |�(w)| ≤ Cν

√
w for all w ∈ [0,∞). Therefore,

d2(x, t;y, t) ≤ Cν · t2−ν
√|x − y|

∫ ∞

0

τ 3/2

1 + τ 2
J 2

ν−2
2

(tτ ) dτ,

and the integral on the right, after a change of variable u = tτ , becomes

t−1/2
∫ ∞

0

u3/2

t2 + u2
J 2

ν−2
2

(u) du ≤ t−1/2
∫ ∞

0
u−1/2J 2

ν−2
2

(u) du = Cν · t−1/2,

which leads to the desired inequality. �

Based on (3.9) and (3.10), it follows from the Kolmogorov continuity theorem that there exists a continuous modifi-
cation of {θ̄t (x) : x ∈ R

ν, t ∈ (0,1]}. From now on, we assume that {θ̄t (x) : x ∈ R
ν, t ∈ (0,1]} is such a modification.

In other words, we assume that for every θ ∈ , (x, t) ∈ R
ν × (0,1] �→ θ̄t (x) ∈ R is continuous.

Since the distribution of the GFF is translation invariant and the notion of “thick point” only concerns local prop-
erties of the GFF, without loss of generality, we may restrict the GFF to S(O,1) the closed cube centered at the
origin with side length 2 under the Euclidean metric.9 We will apply the metric entropy method [1,13,26] to study
the boundedness and the continuity of the family {θ̄t (x) : x ∈ S(O,1), t ∈ (0,1]}. To set this up, we need to introduce
some more notation. For every compact subset A ⊆ S(O,1) × (0,1], let diamd(A) be the diameter of A under the
metric d . A is also compact under d , so A can be finitely covered under d . For ε > 0 and x ∈ S(O,1) × (0,1], let
Bd(x, ε) be the open ball centered at x with radius ε under d , and N(ε,A) the smallest number of such balls Bd(x, ε)

required to cover A. Then N is the metric entropy function with respect to d . Applying the standard entropy methods,
we get the following results.

Lemma 7. There exists a constant Cν > 0 such that for every t, s ∈ (0,1] and every x ∈ S(O,1),

E
W
[

sup
y∈S(x,s)

∣∣θ̄t (y)
∣∣]≤ Cν · t1−ν/2

(
s1/4

t1/4
∧
√

ln

(
s

t

))
. (3.11)

Proof. By (3.10), there exists Cν > 0 such that for every y, y′ ∈ S(x, s),

d
(
y, t;y′, t

)≤ Cν · t1−ν/2
( |y − y′|1/4

t1/4
∧ 1

)
.

9Similarly, for x ∈ S(O,1) and s > 0, S(x, s) is the Euclidean closed cube centered at x with side length 2s.
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First we assume that 2
√

νs ≤ t . For any ε > 0, d(y, t;y′, t) ≤ ε whenever |y − y′| ≤ C−1
ν · ε4t2ν−3. Therefore, for

some Cν with possibly different value,

N
(
ε, S(x, s) × {t})≤ Cν

(
sε−4t3−2ν

)ν
.

Besides, (3.10) implies that

diamd

(
S(x, s) × {t})≤ Cν · s1/4t (3−2ν)/4.

By the standard results on entropy ([1], Theorem 1.3.3), there exists a universal constant K > 0 (later K will be
absorbed by Cν ) such that

E
W
[

sup
y∈S(x,s)

∣∣θ̄t (y)
∣∣]≤ K

∫ diamd (S(x,s)×{t})/2

0

√
lnN
(
ε, S(x, s) × {t})dε

≤ 4Kν

∫ Cν ·s1/4t (3−2ν)/4

0

√
ln
(
Cν · s1/4t (3−2ν)/4ε−1

)
dε.

≤ Cν · s1/4t (3−2ν)/4
∫ ∞

0
e−u2

u2 du,

which leads to (3.11).
Next, if 2

√
νs > t , then diamd(S(x, s) × {t}) ≤ Cν · t1−ν/2. Following exactly the same arguments as earlier, we

arrive at

E
W
[

sup
y∈S(x,s)

∣∣θ̄t (y)
∣∣]≤ Cν · s1/4t (3−2ν)/4

∫ ∞
√

ln(Cν ·s1/4t−1/4)

e−u2
u2 du.

Combining this with the fact that∫ ∞

a

e−u2
u2 du =O

(
ae−a2)

for sufficiently large a > 0,

we arrive at the desired conclusion. �

3.3. When p ≥ 2

As shown in Lemma 3, the process given by the concentric spherical averages of the dim-ν order-1 GFF is a (back-
ward) Markov process, which enables the renormalization that transforms it into a time-changed Brownian motion.
However, when (I − �) is replaced by (I − �)p for p ≥ 2, spherical averages of the corresponding GFF no longer
possess such properties. In particular, for the dim-ν order-p GFF with p ≥ 2, for any fixed x ∈ R

ν , the concentric
spherical average process {I(hσ ave

x,t
) : t ∈ (0,1]} fails to be (backward) Markovian. However, it is still possible to

explicitly compute the covariance of this process, the result of which shows that, although not being an exact one,
the process is “close” to becoming a Markov process. To make this rigorous, we adopt the same method as the one
presented in [5]. For simplicity, we only outline the idea here and refer to [5] for more details.

The derivations of the covariance of the spherical averages, as shown in Section 3.1 and Section 3.2, can be
generalized to the operator m2 − � for any m > 0. To be specific, if the operator I − � is replaced by m2 − �

in constructing the dim-ν order-1 GFF, then for every x, y ∈ R
ν and every t, s ∈ (0,1],

E
W[I(hσ ave

x,t
)I(hσ ave

y,s
)
]

= (2π)ν/2

α2
ν (ts|x − y|) ν−2

2

∫ ∞

0

τ 2− ν
2 Jν−2

2
(tτ )J ν−2

2
(sτ )J ν−2

2
(|x − y|τ)

m2 + τ 2
dτ.
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Comparing this expression with the general formula (3.2), one can easily verify that, for the dim-ν order-p GFF,
E
Wp [I(hσ ave

x,t
)I(hσ ave

y,s
)] is equal to

(2π)ν/2/(p − 1)!
α2

ν (ts|x − y|) ν−2
2

(−1

2m

d

dm

)p−1

m=1

[∫ ∞

0

τ 2− ν
2 Jν−2

2
(tτ )J ν−2

2
(sτ )J ν−2

2
(|x − y|τ)

m2 + τ 2
dτ

]
.

In particular, when x = y and 0 < s ≤ t ≤ 1,

E
Wp [I(hσ ave

x,t
)I(hσ ave

x,s
)
]

= 1

αν(ts)
ν−2

2 (p − 1)!

(−1

2m

d

dm

)p−1

m=1

[
Kν−2

2
(mt)I ν−2

2
(ms)

]
,

which obviously takes the form of

p∑
k=1

ak(t)bk(s), (3.12)

where functions ak only depend on t and functions bk only depend on s for each k = 1, . . . , p. A covariance of the form
of (3.12) does indicate that the Gaussian process {I(hσ ave

x,t
) : t ∈ (0,1]} is not (backward) Markovian. Heuristically

speaking, at any given radius, the spherical average alone “provides” too little information for one to predict how the
process will evolve for smaller radii. To restore the Markov property, we “collect” more information10 about the GFF
over each sphere.

To this end, recall the remark at the end of Section 2 that the higher the order of the operator is, the more regular
the corresponding GFF becomes. In particular, for p ≥ 2, the lth derivative of the spherical average measure in radius,
i.e., (d/dt)lσ ave

x,t in the sense of tempered distribution, also gives rise to a Paley–Wiener integral I(h(d/dt)lσ ave
x,t

) for
l = 1, . . . , p − 1. It turns out that, with x ∈ R

ν fixed, if Vx,t , for t ∈ (0,1], is the R
p-valued random variable on p

given by

Vx,t := (I(hσ ave
x,t

),I(h(d/dt)σ ave
x,t

), . . . ,I(h(d/dt)p−1σ ave
x,t

)
)
,

then the process {Vx,t : t ∈ (0,1]} is a R
p-valued Gaussian (backward) Markov process, and for 0 < s ≤ t ≤ 1,

E
Wp [

(Vx,t )
�(Vx,s)

]= A(t) · B(s), (3.13)

where “·” here refers to matrix multiplication, A(t) and B(s) are two p × p matrices depending only on t and,
respectively, only on s, and for 1 ≤ i, j ≤ p,

(
A(t)
)
ij

=
(

d

dt

)i−1

aj (t) and
(
B(s)
)
ij

=
(

d

ds

)j−1

bi(s),

where aj ’s and bi ’s are as in (3.12). In other words, when collecting simultaneously the spherical average and its first
(p−1)st order derivatives, the Markov property is restored by this vector-valued process. Furthermore, the matrix B(s)

is non-degenerate when s is sufficiently small, so (3.13) also leads to a renormalization which is Ux,t := Vx,t · B−1(t).
It follows from (3.13) that, for 0 < s ≤ t ≤ 1,

E
Wp [

(Ux,t )
�(Ux,s)

]= B−1(t) · A(t).

The renormalized process {Ux,t : t ∈ (0,1]} has independent increment (in the direction of t decreasing). Moreover, it
is possible to find a constant vector ξ ∈R

p such that, as t ↘ 0,(
σ ave

x,t , (d/dt)σ ave
x,t , . . . , (d/dt)p−1σ ave

x,t

) · B−1(t) · ξ� → δx

10This idea was originally proposed by D. Stroock during a discussion with the author.
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in the sense of tempered distribution; this is because the coefficient of (d/dt)lσ ave
x,t , as a function of t , decays suffi-

ciently fast as t ↘ 0 for each l = 1, . . . , p − 1. Therefore, θ̄t (x) := Ux,t (θ) · ξ� still is a legitimate approximation of
“θ(x)” when t is small. In other words, although the derivatives of the spherical averages are introduced to recover
the Markov property, these derivatives do not affect the approximation of pointwise values of the GFF. Moreover,
the two-parameter family {θ̄t (x) : x ∈ R

ν, t ∈ (0,1]} possesses the same properties as those shown in Section 3.1 and
Section 3.2.

Governed by the Green’s function of (I − �)p on R
ν , the dim-ν order-p GFF is polynomially correlated with the

degree of the polynomial being ν − 2p. In fact, later discussions in this article, i.e., the study of thick point, only
requires the existence of an approximation θ̄t (x) such as the one obtained above. Therefore, it is sufficient to assume
p = 1 and investigate the thick point problem for the dim-ν order-1 GFF with arbitrary ν > 2.

4. Thick points of Gaussian free fields

To study the thick points of the dim-ν order-1 GFF (H,,W), the first problem we face is to determine a proper
definition for the notion of “thick point”. On one hand, inspired by (1.1) the thick point definition of log-correlated
GFFs, we want to investigate the points x ∈ S(O,1) where the rate of θ̄t (x) “blowing up” as t ↘ 0 is comparable with
certain function in t that is singular at t = 0. On the other hand, a polynomial-correlated GFF is expected to behave
differently from a log-correlated GFF in various aspects. Firstly, for each fixed x ∈ S(O,1), as t decays, the Gaussian
process {θ̄t (x) : t ∈ (0,1]} has a variance that grows faster than in the log-correlated case, which makes θ̄t (x) more
unstable and less likely to achieve an “unusually” large value through a limit such as the one in (1.1). Secondly, for any
x, y ∈ S(O,1) and x �= y, Cov(θ̄t (x), θ̄s(y)) =O(|x −y|2−ν) for sufficiently small t and s, so for x and y being close,
the covariance is stronger than in the log-correlated case, which makes thick points, defined in any reasonable sense,
tend to form a sparse subset of S(O,1). Both factors contribute to making thick points of a polynomial-correlated
GFF harder to detect. Taking into account of these considerations, we adopt a thick point definition that is different
from (1.1) but proven to be more suitable for polynomial-correlated GFFs.

Definition 8. Let γ ≥ 0. For each θ ∈ , x ∈ S(O,1) is a γ -thick point of θ if

lim sup
t↘0

θ̄t (x)√−G(t) ln t
≥√2νγ , (4.1)

where G(t) := E
W [(θ̄t (x))2].

We denote by T
γ
θ the set of all the γ -thick points of θ . Since θ̄t (x) is assumed to be continuous in (x, t) ∈ R

ν × (0,1],
T

γ
θ is a measurable subset of S(O,1). Moreover, viewing from the perspective of (3.6), if γ > 0, (4.1) requires θ̄t (x)

to grow, as t ↘ 0, no slower than a unusually large function in t , at least along a sequence in t . In this sense, the value
of θ is unusually large at a γ -thick point so long as γ > 0. Compared with (1.1), the requirement in (4.1) is easier
to achieve, which contributes positively to T

γ
θ having “detectable” mass. In fact, such a deviation from (1.1) (i.e.,

replacing in the definition “limt↘0” by “lim supt↘0” and “=” by “≥”) is necessary, as we will see later in Section 4.2.
Our main goal is to determine the Hausdorff dimension of T

γ
θ , denoted by dimH(T

γ
θ ). We state the main result

below.

Theorem 9. For γ ∈ [0,1],
dimH

(
T

γ
θ

)= ν(1 − γ ) a.s.

Moreover, for W-a.e. θ ∈ , x ∈ T 0
θ for Lebesgue-a.e. x ∈ S(O,1), and T

γ
θ =∅ when γ > 1.

The theorem is proven by establishing the upper bound and the lower bound separately. More specifically, we prove
in Section 4.1

the upper bound : dimH
(
T

γ
θ

)≤ ν(1 − γ ) a.s. (4.2)
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Then we devote the entire Section 5 to proving

the lower bound : dimH
(
T

γ
θ

)≥ ν(1 − γ ) a.s. (4.3)

As mentioned earlier, the polynomially singular covariance of the GFF makes thick points rare and hence hard to
detect, as a consequence of which, the upper bound on the Hausdorff dimension of T

γ
θ is readily obtained, but deriving

the lower bound is more complicated.

4.1. Proof of the upper bound

The derivation of the upper bound (4.2) follows an adaptation of the procedure used in [17]. The idea behind of the
proof is that, if x is a thick point of θ , i.e., if θ̄t (x) achieves “unusually” large values, then based on the continuity
results of the family {θ̄t (x) : (x, t) ∈ S(O,1) × (0,1]} established in Section 3, one can argue that, whenever (y, r) is
sufficiently close to (x, t), θ̄r (y) will also be “unusually” large. This enables us to reduce the problem to the study of a
discrete Gaussian family, i.e., the family of θ̄r (y)’s for (y, r) chosen from a lattice approximation of S(O,1) × (0,1].
First, we will apply the results in Section 3 to show that, at least for our purpose, to study the behavior of θ̄t (x), it
does no harm to restrict (x, t) on a lattice approximation of S(O,1) × (0,1]. To simplify the notation, we write

D(t) :=√−G(t) ln t for t ∈ (0,1].

Lemma 10. There exists a constant Cν > 0 such that for every x ∈ S(O,1) and every n ≥ 1,

E
W
[

sup
(y,t)∈S(x,2−n)×[2−n,2−n+1]

θ̄t (y)

D(t)

]
≤ Cν · 1√

n
. (4.4)

Proof. Similarly as in Lemma 7, we will prove the desired result by the metric entropy method. Let n ≥ 1 be fixed.
For every ε > 0, set

τn,ε := 1

2

[(
ε2

9
· C−1

ν · 2−(n+1)(ν−3/2)

)2

∧ 2−n−1
]
,

where Cν , for the moment, is the same constant as in (3.10). Let{
B(yl, τn,ε) : l = 1, . . . ,Lε

}
be a finite covering of S(x,2−n) where yl ∈ S(x,2−n) and Lε is the smallest number of balls B(yl, τn,ε) needed to
cover S(x,2−n) and hence Lε = O(2−nν/τ ν

n,ε). By (3.10), the choice of τn,ε is such that the diameter of each ball
B(yl, τn,ε) under the metric d(·,2−n−1; ∗,2−n−1) is no greater than ε/3. In fact, for any t ≥ 2−n−1, (3.10) implies
that, if |y − y′| ≤ 2τn,ε , then

d2(y, t;y′, t
)≤ Cνt

3/2−ν
√

2τn,ε ≤ ε2/9.

Next, take τ0 := 2−n−1 and define τm inductively such that

G(τm−1) − G(τm) = ε2/9

for m = 1, . . . ,Mε , where Mε is the smallest integer such that τMε ≥ 2−n+2 and hence

Mε =O
(
G
(
2−n
))

/ε2.

Consider the covering of S(x,2−n) × [2−n,2−n+1] that consists of the cylinders{
B(yl, τn,ε) × (τm−1, τm) : l = 1, . . . ,Lε,m = 1, . . . ,Mε

}
.
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Any pair of points ((y, t), (w, s)) that lies in one of the cylinders above, e.g., B(yl, τn,ε) × (τm−1, τm), satisfies that

d(y, t;w, s) ≤ d(y, t;y, τm) + d(y, τm;w,τm) + d(w, τm;w, s)

≤ ε/3 + ε/3 + ε/3 = ε.

This implies that

N
(
ε,S
(
x,2−n

)× [2−n,2−n+1])≤ Lε · Mε,

where N is the entropy function defined before Lemma 7. Moreover, the diameter of S(x,2−n) × [2−n,2−n+1] under
the metric d is bounded by 2

√
G(2−n). Therefore, there is a universal constant K > 0 (later K is absorbed into Cν )

such that

E
W
[

sup
(y,t)∈S(x,2−n)×[2−n,2−n+1]

θ̄t (y)
]

≤ K

∫ √
G(2−n)

0

√
ln(Lε · Mε)dε

≤ K

∫ √
G(2−n)

0
(
√

lnLε +√lnMε)dε

≤ Cν

√
G
(
2−n
)
.

Equation (4.4) follows from dividing both sides of the inequality above by D(2−n+1). �

Now we can get to the proof of the upper bound (4.2).
Proof of the upper bound: When γ = 0, (4.2) is trivially satisfied. Without loss of generality, we assume that

γ ∈ (0,1] for the rest of the proof. For each n ≥ 0, consider a finite lattice partition of S(O,1) with cell size 2 · 2−n

(i.e., the length, under the Euclidean metric, of each side of the cell is 2 · 2−n). Denote {x(n)
j : j = 1, . . . , Jn} the lattice

cell centers where Jn = 2νn is the total number of the cells. Let γ ′′, γ ′ be two numbers such that 0 < γ ′′ < γ ′ < γ and
γ ′ and γ ′′ can be arbitrarily close to γ . Consider the subset of the indices

In :=
{
j : 1 ≤ j ≤ Jn s.t. sup

(y,r)∈S(x
(n)
j ,2−n)×[2−n,2−n+1]

θ̄r (y)

D(r)
>
√

2νγ ′
}
.

Combining (4.4) and the Borell-TIS inequality ([1] Section 2.1 and the references therein), we have that, for every
j = 1, . . . , Jn,

W(j ∈ In) =W
(

sup
(y,r)∈S(x

(n)
j ,2−n)×[2−n,2−n+1]

θ̄r (y)

D(r)
>
√

2νγ ′
)

≤ exp

[
−1

2

(√
2νγ ′ − Cν√

n

)2

· ln 2 · (n − 1)

]
≤ exp

(−νγ ′′ · ln 2 · n).
Therefore,

E
W[card(In)

]= ∑
j∈Jn

W(j ∈ In) ≤ Cν · 2ν(1−γ ′′)n.

On the other hand, if y ∈ T
γ
θ , then there exists a sequence {tk : k ≥ 0} with tk ↘ 0 as k ↗ ∞ such that

θ̄tk (y)

D(tk)
>
√

2νγ ′ for all k ≥ 0.
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For every k, let n(k) be the unique positive integer such that

2−n(k) ≤ tk < 2−n(k)+1.

If x
(n(k))
j is the cell center (at n(k)th level) such that |y − x

(n(k))
j | ≤ √

ν2−n(k), then clearly j ∈ In(k). Therefore,

T
γ
θ ⊆

⋂
m≥1

⋃
n≥m

⋃
j∈In

S
(
x

(n)
j ,2−n

)
.

Moreover, for each m ≥ 1, {S(x
(n)
j ,2−n) : j ∈ In, n ≥ m} forms a covering of T

γ
θ , and the diameter (under the Eu-

clidean metric) of the member S(x
(n)
j ,2−n) is 2

√
ν · 2−n. Thus, if Hα is the Hausdorff-α measure for α > 0, then

Hα
(
T

γ
θ

)≤ lim inf
m→∞

∑
n≥m

∑
j∈In

(
2
√

ν · 2−n
)α

= Cν · lim inf
m→∞

∑
n≥m

card(In)2
−nα.

It follows from Fatou’s lemma that

E
W[Hα

(
T

γ
θ

)]≤ Cν · lim inf
m→∞

∑
n≥m

E
W[card(In)

] · 2−nα

≤ Cν · lim
m→∞

∑
n≥m

2[ν(1−γ ′′)−α]n.

Clearly, for any α > ν(1 − γ ′′), with probability one, Hα(T
γ
θ ) = 0 and hence dimH(T

γ
θ ) ≤ α. Since γ ′′ is arbitrarily

close to γ , we conclude that

dimH
(
T

γ
θ

)≤ ν(1 − γ ) a.s.

We have completed the proof of the upper bound (4.2). In addition, following the same arguments as above, if
γ > 1, we can choose γ ′′ to be greater than 1, in which case∑

n≥m

E
W[card(In)

]≤∑
n≥m

2ν(1−γ ′′)n → 0 as m → ∞.

This observation immediately implies the last assertion in Theorem 9, that is, if γ > 1, then T
γ
θ =∅ a.s.

4.2. Perfect γ -thick point

In this subsection we explain why the definition (4.1) is more proper for the study of thick points for polynomial-
correlated GFFs. Simply speaking, the straightforward analogue of (1.1), the thick point definition for log-correlated
GFFs, imposes too strong a condition to fulfill in the case of polynomial-correlated GFFs. To make this precise, we
first define a more strict analogue of (1.1).

Definition 11. Let γ ≥ 0. For each θ ∈ , x ∈ S(O,1) is called a perfect γ -thick point of θ if

lim
t↘0

θ̄t (x)√−G(t) ln t
=√2νγ . (4.5)

Again, if PTγ
θ is the set that contains all the perfect γ -thick points of θ , then PTγ

θ is a measurable subset of S(O,1).
This subsection will be devoted to showing that if γ > 0, then perfect γ -thick point does not exist, i.e, PTγ

θ = ∅, for
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W-a.e. θ ∈ . Recall that D(t) = √−G(t) ln t . Compared with (4.1), the definition given above imposes a stronger
condition because the existence of the limit in (4.5) requires that θ̄t (x) − √

2νγD(t) = o(D(t)) for all sufficiently
small t . However, we will see that the probability of θ̄t (x) exhibiting such stable behaviors decays very fast as t tends
to zero; this is not surprising because, according to Remark 4, θ̄t (x) can be viewed as a Brownian motion Bτ running
by the clock τ = G(t) which blows up very fast as t ↘ 0, and hence one would expect θ̄t (x) to be rather unstable as
t varies. To make these arguments rigorous, we follow a similar strategy as in Section 4.1, which is to first use the
continuity properties of θ̄t (x) to reduce the problem to its discrete approximation.

For each n ≥ 0, set sn := 2−n2
. For n ≥ 1, consider the two-parameter Gaussian family

An := {θ̄t (x) : x ∈ S(O,1), t ∈ [sn, sn−1]
}
.

Let ωn be the modulus of continuity of An under the intrinsic metric d , i.e., for every δ > 0,

ωn(δ) := sup
{∣∣θ̄t (x) − θ̄s(y)

∣∣ : d(x, t;y, s) ≤ δ, x, y ∈ S(O,1), t, s ∈ [sn, sn−1]
}
.

Lemma 12. There exists a constant Cν > 0 such that for every n ≥ 1 and every 0 < δ � √
G(sn),

E
W[ωn(δ)

]≤ Cν · δ
√

ln
(
s
(3−2ν)/4
n /δ

)
. (4.6)

Moreover, if

Bn := {(x, y) ∈ (S(O,1)
)2 : |x − y| ≤ √

ν · s2n

}
,

then

W
(

sup
(x,y)∈Bn,t∈[sn,sn−1]

∣∣∣∣ θ̄t (x)

D(t)
− θ̄t (y)

D(t)

∣∣∣∣> 2−3n2/16, i.o.

)
= 0. (4.7)

Proof. For every ε > 0, let N(ε,An) be the entropy function, as introduced before Lemma 7. Then, it follows from a
similar argument as the one used in the proof of Lemma 10 that N(ε,An) ≤ Lε · Mε where Lε = O(s

ν(3−2ν)
n )/ε4ν is

the entropy for the set S(O,1) under the metric d(·, sn; ∗, sn), and Mε = O(G(sn))/ε
2 is the entropy for the interval

[sn, sn−1] corresponding to the concentric process {θ̄t (x) : t ∈ [sn, sn−1]} for any fixed x. Hence ([1], Corollary 1.3.4),
there exists a universal constant K > 0 such that for every n ≥ 1,

E
W[ωn(δ)

]≤ K

∫ δ

0

√
lnN(ε,An) dε ≤ K

∫ δ

0
(
√

lnLε +√lnMε)dε.

Similarly as the integrals we evaluated when proving (3.11), we have that∫ δ

0

√
lnLε dε ≤ Cν · δ

√
ln
(
s
(3−2ν)/4
n /δ

)
and ∫ δ

0

√
lnMε dε ≤ Cν · δ

√
ln
(
s
(1−ν/2)
n /δ

)
for some Cν > 0, which lead to the first assertion.

To prove the second assertion, notice that by (3.10), if |x − y| ≤ √
ν · s2n, then for any t ∈ [sn, sn−1],

d(x, t;y, t) ≤ Cν · t (3−2ν)/4 · s1/4
2n ≤ Cν · 2n2(2ν−7)/4.
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Therefore, by (4.6),

E
W
[

sup
(x,y)∈Bn,t∈[sn,sn−1]

∣∣θ̄t (x) − θ̄t (y)
∣∣] ≤ E

W[ωn

(
Cν · 2n2(ν/2−7/4)

)]
≤ Cν · 2n2(ν/2−7/4) · n.

The desired conclusion follows from dividing both sides of the inequality above by D(sn−1) and applying the Borel–
Cantelli lemma. �

Now we are ready to establish the main result of this subsection, that is, if γ > 0, then the perfect γ -thick point does
not exist almost surely. Being “perfect” prevents such points from existing.

Theorem 13. If γ > 0, then PTγ
θ =∅ a.s.

Proof. Based on (4.7), for W-a.e. θ , there exists Nθ ∈ N such that for every n ≥ Nθ and x, y such that y ∈ S(x, s2n),

sup
t∈[sn,sn−1]

∣∣∣∣ θ̄t (x)

D(t)
− θ̄t (y)

D(t)

∣∣∣∣≤ 2−3n2/16.

Choose M > 0 to be a sufficiently large number. Consider the lattice partition of S(O,1) with cell size 2−k , and let{
x

(k)
j : j = 1, . . . , Jk

}
be the cell centers. Let y be a perfect γ -thick point. For n that is sufficiently large, if x

(4n2)
j is the cell center such that

y ∈ S(x
(4n2)
j , s2n), then

sup
t∈[sn,sn−1]

∣∣∣∣ θ̄t (x
(4n2)
j )

D(t)
−√2νγ

∣∣∣∣≤ 1

M
.

In particular, this means that

∣∣θ̄sn−1

(
x

(4n2)
j

)−√2νγD(sn−1)
∣∣≤ D(sn−1)

M
,

and for every t ∈ [sn, sn−1],∣∣θ̄t

(
x

(4n2)
j

)− θ̄sn−1

(
x

(4n2)
j

)−√2νγ
[
D(t) − D(sn−1)

]∣∣≤ 2D(t)

M
.

Let Pn =P
x

(4n2)
j

n ⊆  be the collection of all the field elements θ such that

∀t ∈ [sn, sn−1],
∣∣θ̄t

(
x

(4n2)
j

)− θ̄sn−1

(
x

(4n2)
j

)−√2νγ
[
D(t) − D(sn−1)

]∣∣≤ 2D(t)

M
.

Clearly, Pn is a measurable set and W(Pn) doesn’t depend on x
(4n2)
j . To simplify the notation, we will write “x(4n2)

j ”
as “x” throughout this proof. The idea is to rewrite Pn in terms of a shifted θ and apply the Cameron–Martin formula.
To this end, we define, for t ∈ (0,1],

F(t) := D′(t)
G′(t)

and f (t) := F ′(t),
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and let ζx,n be the element in H−1(Rν) such that its corresponding Paley–Wiener integral is

I(hζx,n )(θ) =
∫ sn−1

sn

(
θ̄t (x) − θ̄sn−1(x)

)
f (t) dt + F(sn)

(
θ̄sn(x) − θ̄sn−1(x)

)
.

We observe that for every t ∈ [sn, sn−1],

(hσ̄x,t , hζx,n )H =
∫ t

sn

[
G(t) − G(sn−1)

]
f (s) ds +

∫ sn−1

t

[
G(s) − G(sn−1)

]
f (s) ds

+ F(sn)
[
G(t) − G(sn−1)

]
= [G(t) − G(sn−1)

]
F(t) +

∫ sn−1

t

[
G(s) − G(sn−1)

]
f (s) ds

= −
∫ sn−1

t

G′(s)F (s) ds = −
∫ sn−1

t

D′(s) ds

= D(t) − D(sn−1).

Therefore,

I(hσ̄x,t − hσ̄x,sn−1
)(θ −√2νγ hζx,n) = θ̄t (x) − θ̄sn−1(x) −√2νγ

[
D(t) − D(sn−1)

]
.

In other words, we can view

θ̄t (x) − θ̄sn−1(x) −√2νγ
[
D(t) − D(sn−1)

]
as a Paley–Wiener integral of a translated GFF. Thus, by the Cameron–Martin formula ([25], Theorem 8.2.9), W(Pn)

is equal to

E
W
[
e−√

2νγI(hζx,n )−νγ ‖hζx,n‖2
H ; ∀t ∈ [sn, sn−1],

∣∣θ̄t (x) − θ̄sn−1(x)
∣∣≤ 2D(t)

M

]
≤ e−νγ ‖hζx,n‖2

H · exp

{
2
√

2νγ

M

[∫ sn−1

sn

D(t)f (t) dt + F(sn)D(sn)

]}

= e−νγ ‖hζx,n‖2
H · exp

{
2
√

2νγ

M

[∫ sn−1

sn

(−D′(t)
)
F(t) dt + F(sn−1)D(sn−1)

]}
.

Moreover, we compute

‖hζx,n‖2
H =

∫ sn−1

sn

[
D(t) − D(sn−1)

]
f (t) dt + F(sn)

[
D(sn) − D(sn−1)

]
=
∫ sn−1

sn

(−D′(t)
)
F(t) dt.

It is easy to verify that, when n is large,∫ sn−1

sn

(−D′(t)
)
F(t) dt =O

(
n3) and F(sn−1)D(sn−1) =O

(
n2).

Thus, W(Pn) is no greater than

exp

[(
−νγ + 2

√
2νγ

M

)
O
(
n3)+ 2

√
2νγ

M
O
(
n2)]≤ exp

(−n3/M
)

when M is sufficiently large.
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To complete the proof, we repeat the arguments that lead to the last assertion in Theorem 9. Because

{
θ ∈  : PTγ

θ �=∅
}⊆
⋂
m≥1

⋃
n≥m

⋃
cell center x

(4n2)
j

P
x

(4n2)
j

n ,

and the probability of the RHS is no greater than

lim
m→∞

∑
n≥m

24νn2
e−n3/M = 0,

PTγ
θ is the empty set with probability one. �

We close this section with a remark on the universality of our main results with respect to different choices of regu-
larization of the GFF.

Remark 14. The advantage of choosing the specific regularization θ̄t (x) is that it possesses technically desirable
properties as discussed in Remark 4 and Lemma 5. However, the choice of regularization is not unique for the study
of thick points. It is possible to consider a different family of “actions”{

λt,x : t ∈ (0,1], x ∈ S(O,1)
}⊆ H−1(

R
ν
)

with limt↘0 λt,x = δx in the sense of tempered distribution, use the corresponding Paley–Wiener integrals I(hλt,x )(θ)

as the approximations of “θ(x)”, and define thick points accordingly. In this case the covariance function will be less
explicit than (3.5), (3.7) and (3.8), but follows similar asymptotics as those established in Lemma 5. Thus, using the
methods presented here (possibly with more technicality), one can obtain similar results on Hausdorff dimensions of
thick point sets. However, whether two thick point sets (with respect to the same field instance) obtained via different
regularization agree is a more complicated question. It is shown in [7] that, for log-correlated GFFs, thick point sets
agree a.s. for regularization procedures that are “close” in a specific sense. It is worth investigating this issue for
polynomial-correlated GFFs.

5. Proof of the lower bound

In this section we prove the lower bound (4.3). In fact, we will derive explicitly the Hausdorff dimension of a specific
subset of T

γ
θ , which leads to the desired lower bound of dimH(T

γ
θ ). The strategy is to study the convergence of

θ̄t (x)√−G(t) ln t
as t ↘ 0 along a prefixed sequence {rn : n ≥ 0} that decays to zero sufficiently fast. The advantage of

doing so is to reduce the problem, at least with respect to the parameter “t”, from a continuum-parameter family to
a discrete-parameter family. On the other hand, by making rn decay sufficiently fast, we are able to establish several
important technical results on which the proof relies. We assume that {rn : n ≥ 0} is a sequence of positive numbers
satisfying that r0 = 1, rn ↘ 0 as n ↗ ∞, and

lim
n→∞

n · ln rn−1

ln rn
= 0. (5.1)

Definition 15. Let γ ≥ 0. For each θ ∈ , x ∈ S(O,1) is called a sequential γ -thick point of θ with the sequence
{rn : n ≥ 0} if

lim
n→∞

θ̄rn(x)√−G(rn) ln rn
=√2νγ .

With any sequence {rn : n ≥ 0} as described above fixed, we denote by ST
γ
θ the collection of all the sequential γ -thick

points of θ with {rn : n ≥ 0}. ST
γ
θ is a measurable subset of S(O,1) and ST

γ
θ ⊆ T

γ
θ . The rest of this section will be

devoted to determining dimH(ST
γ
θ ). In particular, we will prove the following result.
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Theorem 16. For γ ∈ [0,1],
dimH

(
ST

γ
θ

)= ν(1 − γ ) a.s.

Moreover, for W-a.e. θ ∈ , x ∈ ST 0
θ for Lebesgue-a.e. x ∈ S(O,1). On the other hand, for γ > 1, ST

γ
θ =∅ a.s.

Since ST
γ
θ ⊆ T

γ
θ , the established upper bounds of the size of T

γ
θ also apply to ST

γ
θ , i.e., dimH(ST

γ
θ ) ≤ ν(1 − γ ) a.s.

for γ ∈ [0,1], and ST
γ
θ = ∅ a.s. for γ > 1. As for the lower bound, when γ = 0, (3.6) implies that W(x ∈ ST 0

θ ) = 1
for every x ∈ S(O,1). Let μLeb be the Lebesgue measure on R

ν , and Hν the ν-dimensional Hausdorff measure on
R

ν . Then, Hν = Cν · μLeb for some dimensional constant Cν > 0. By Fubini’s theorem,

E
W[Hν

(
ST 0

θ

)]= Cν

∫
S(O,1)

W
(
x ∈ ST 0

θ

)
μLeb(dx) =Hν

(
S(O,1)

)
.

Since Hν(ST 0
θ ) ≤ Hν(S(O,1)) a.s., they must be equal a.s., which implies that for μLeb-a.e. x ∈ S(O,1), x ∈ ST 0

θ

and hence x ∈ T 0
θ . Thus, it is sufficient to derive the lower bound of dimH(ST

γ
θ ) for γ ∈ (0,1).

Remark 17. One example of a sequence satisfying (5.1) is {rn = 2−2n2 +1 : n ≥ 0}. The method explained in this
section applies to any sufficiently fast decaying sequence. However, we point out that the decay rate required by (5.1)
is sufficient for our methods to work, but may not be necessary for the results in Theorem 16 to hold. On the other
hand, for technical reasons, we will also assume that

ln(− ln rn+1) = o(− ln rn) for all large n’s. (5.2)

This assumption will not reduce the generality of the method. If a given sequence {rn : n ≥ 0} does not satisfy (5.2),
one can always “fill in” more numbers to get a new sequence {r̃m : m ≥ 0} that satisfies both (5.1) and (5.2), and the
original sequence {rn : n ≥ 0} is a subsequence of {r̃m : m ≥ 0}. Then, if we establish a lower bound of dimH(ST

γ
θ )

with {r̃m : m ≥ 0}, the lower bound also applies with any subsequence of {r̃m : m ≥ 0}.
The advantage of studying sequential thick points is that the same method can be applied to the study of other

problems related to the geometry of GFFs, when convergence along sequence already gives rise to interesting objects.
For example, recall that we mentioned in the Introduction about the Liouville quantum gravity (LQG) measures
associated with log-correlated GFFs in 2D or higher dimensions. In fact, these random measures are constructed via a
limiting procedure along a sequence of the regularized GFF (see, e.g., [3,5,15,21,22]), and consequently the supports
of the LQG measures can be identified as the sets of sequential thick points corresponding to the same sequence.
Although it remains open whether the analogs of the LQG measures for polynomial-correlated GFF exist, the study of
sequential thick point sets, potentially as the supports of some random measures, is the natural first step in investigating
this matter, especially in the absence of the perfect γ -thick point as pointed out in Theorem 13.

From now on, let γ ∈ (0,1) and {rn : n ≥ 0} satisfying (5.1) and (5.2) be fixed. To simplify the notation, for every
θ ∈ , x ∈ S(O,1) and n ≥ 1, we write

�θ̄n(x) := θ̄rn(x) − θ̄rn−1(x),

�Gn := G(rn) − G(rn−1) and �Dn := D(rn) − D(rn−1).

For each x ∈ S(O,1), we define the following measurable subsets of :

Px,0 := {θ ∈  : ∣∣θ̄0(x) −√2νγD(r0)
∣∣≤√G(r0)

}
,

and for n ≥ 1,

Px,n := {θ ∈  : ∣∣�θ̄n(x) −√2νγ�Dn

∣∣≤√�Gn

}
and �x,n :=

(
n⋂

i=0

Px,i

)
.
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The strategy we adopt here to obtain the lower bound of dimH(ST
γ
θ ) is similar to that appeared in [17], Section 3.2,

where the counterpart result for log-correlated GFFs was established. The proof is carried out in multiple steps, with
Step 1 being estimating the probabilities of Px,n and �x,n. Heuristically speaking, if θ ∈ �x,n as defined above, then
the increment of θ̄t (x) over [ri−1, ri], for each i = 1, . . . , n, follows a “desired” rate that is of the order of

√
2νγ�Di ,

and hence summing over i implies that θ̄rn(x) is comparable with
√

2νγD(rn); in other words, if θ ∈ �x,n, then θ̄t (x)

is exhibiting behaviors, at least for t up to rn, that can potentially make x, as well as points that are sufficiently close
to x, sequential γ -thick points of θ . Based on this idea, in Step 2 we will identify a particular class of sequential
γ -thick points. To be specific, for any fixed θ ∈ , if y ∈ S(O,1) satisfies that, for infinitely many n’s, there exist x(n)

with |x(n) − y| < rn such that θ ∈ �x(n),n, then y must be a sequential γ -thick point of θ , i.e., y ∈ ST
γ
θ . Therefore, to

bound dimH(ST
γ
θ ) from below, it suffices to study the lower bound of the Hausdorff dimension of the set consisting

of such y’s, and this will be carried out in Steps 3–5, via a standard application of Frostman’s lemma.

Step 1: Derive the probability estimates.

Let x ∈ S(O,1) be fixed. It is clear that {θ̄0(x),�θ̄n(x), n ≥ 1} is a family of independent Gaussian random variables.
The following simple facts about Px,n and �x,n are in order.

Lemma 18. Px,i , i = 0,1, . . . , n, are mutually independent. Moreover, for all sufficiently large n’s,

W(Px,n) = eνγ ln rn+O(
√− ln rn) (5.3)

and

W(�x,n) = eνγ ln rn+o(− ln rn). (5.4)

The independence of Px,i ’s simply follows from the observation in Remark 4. Since �Gn = Var(�θ̄n(x)), the estimate
(5.3) is a result of straightforward computations with Gaussian distributions. Finally, under the assumption (5.1) on
{rn : n ≥ 0}, it is trivial to derive (5.4) from (5.3). Detailed proofs are omitted.

Step 2: Obtain a subset of ST
γ
θ .

As mentioned above, in this step we will identify a specific class of sequential γ -thick points for every θ ∈ . To this
end, for every n ≥ 0, we consider the lattice partition of S(O,1) with cell size rn, let Kn := {x(n)

j : j = 1, . . . ,Kn} be
the collection of all the cell centers where Kn := r−ν

n , and for every θ ∈ , set

�n,θ := {x(n)
j ∈ Kn : 1 ≤ j ≤ Kn, θ ∈ �

x
(n)
j ,n

}
.

Then, we can prove the following result.

Lemma 19. For every θ ∈ ,

ST
γ
θ ⊇ �

γ
θ :=

⋂
k≥1

⋃
n≥k

⋃
x∈�n,θ

S(x, rn). (5.5)

Proof. Let θ ∈  be fixed. We first show that

ST
γ
θ ⊇

⋂
k≥1

⋃
n≥k

⋃
x∈�n,θ

S(x, rn).

For any y in the RHS above, there exists a subsequence {nk : k ≥ 1} ⊆ N with nk ↗ ∞ as k ↗ ∞ and a sequence of
cell centers {x(nk) ∈ �nk,θ : k ≥ 1} such that |y − x(nk)| ≤ √

νrnk
for every k ≥ 1. Moreover, by the definition of �nk,θ



Thick points of high-dimensional Gaussian free fields 1513

and the triangle inequality, for every j = 0,1, . . . , nk ,∣∣∣∣ θ̄rj (x
(nk))

D(rj )
−√2νγ

∣∣∣∣≤
√

G(r0) +∑j

p=1

√
�Gp

D(rj )
≤ j + 1√− ln rj

.

When j is sufficiently large, the RHS above can be arbitrarily small, which can be easily derived from (5.1); moreover,
(4.7) implies that, if nk is large such that rnk

< r4
j+1, then∣∣∣∣ θ̄rj (x

(nk))

D(rj )
− θ̄rj (y)

D(rj )

∣∣∣∣≤ r
3/16
j−1 .

It follows immediately from the triangle inequality that

lim
j→∞

θ̄rj (y)

D(rj )
=√2νγ ,

and hence y ∈ ST
γ
θ .

Next, let ỹ ∈ �
γ
θ . For each k ≥ 1, there exists a sequence {yp : p ≥ 1} with

yp ∈
⋃
n≥k

⋃
x∈�n,θ

S(x, rn) for every p ≥ 1

such that limp→∞ yp = ỹ. Either, for some n ≥ k, yp ∈⋃x∈�n,θ
S(x, rn) for infinitely many p’s, in which case there

must exist x(n) ∈ �n,θ such that |ỹ − x(n)| ≤ 2
√

ν · rn, or, one can find a subsequence {np : p ≥ 0} with np ↗ ∞ as
p ↗ ∞ such that yp ∈ S(x(np), rnp ) for some x(np) ∈ �np,θ , in which case, since yp → ỹ, |x(np) − ỹ| can be arbitrarily
small when p is sufficiently large. In either case, one can follow similar arguments as above to show that ỹ ∈ ST

γ
θ . �

We now have obtained �
γ
θ , a subset of ST

γ
θ . The advantage of �

γ
θ is that it takes an explicit form in which only simple

Euclidean sets (i.e., squares S(x, rn)) are involved. Our goal is to apply Frostman’s lemma to estimate dimH(�
γ
θ ) from

below, which requires us to find a Borel measure μθ supported on �
γ
θ and to study the α-energy11 of μθ for certain

α > 0. We will obtain μθ via a limiting process by first considering a naturally chosen family of Borel measures μn,θ

supported on
⋃

x∈�n,θ
S(x, rn) for n ≥ 1. Below in Step 3 and Step 4, after formulating μn,θ as random finite measures

on S(O,1), we will investigate the second moment (with respect to the Gaussian measure W) of μn,θ (S(O,1)), as
well as the α-energy of μn,θ over S(O,1), aiming at bounding both quantities uniformly in n ≥ 1. As one will see
soon, the key ingredient in achieving both bounds is to control the following quotients:

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
for x

(n)
j , x

(n)
k ∈Kn.

The method that was used in [17] to treat the quotients above for log-correlated GFFs is not fully applicable in our
setting. We have to carry out a more careful analysis of these quotients by separating the cases according to a finer
decomposition of the range of |x(n)

j − x
(n)
k |. As a result, the work in Step 3 and Step 4 is considerably heavy in

technicality. For the sake of exposition, we leave some of the lengthy and technical proofs in the Appendix.

Step 3: Construct a family of random measures.

For each n ≥ 1 and θ ∈ , define a finite measure on S(O,1) by,

∀A ∈ B
(
S(O,1)

)
, μn,θ (A) := 1

Kn

Kn∑
j=1

I�n,θ (x
(n)
j )

W(�
x

(n)
j ,n

)

vol(A ∩ S(x
(n)
j , rn))

vol(S(x
(n)
j , rn))

, (5.6)

11The α-energy of a finite Borel measure on S(O,1) is defined in Step 4 (5.17).
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where “vol” refers to the volume under the Lebesgue measure on R
ν . It is clear that μn,θ is a measure-valued random

variable on , and

E
W[μn,θ

(
S(O,1)

)]= 1 (5.7)

for every n ≥ 1. We also need to study the second moment of μn,θ (S(O,1)), to which end we write the second
moment as

E
W[(μn,θ

(
S(O,1)

))2]= 1

K2
n

Kn∑
j,k=1

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
. (5.8)

Our goal is to show that

sup
n≥1

E
W[(μn,θ

(
S(O,1)

))2]
< ∞.

First notice that, when j = k, (5.4) implies that

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
= 1

W(�
x

(n)
j ,n

)
≤ e−νγ ln rn+o(− ln rn),

so the sum over the diagonal terms in (5.8) is bounded from above by

K−1
n · e−νγ ln rn+o(− ln rn) = e(ν−νγ ) ln rn+o(− ln rn),

which converges to zero as n → ∞ so long as γ < 1. So we only need to treat the sum over the off-diagonal terms
in (5.8), and this is done in separate cases depending on the distance between the two cell centers x

(n)
j and x

(n)
k .

Assume that j �= k. Then there exists a unique i ∈ N, 0 ≤ i ≤ n − 1, such that

2ri+1 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< 2ri, (†)

we can rewrite the sum over the off-diagonal terms in (5.8) as

1

K2
n

Kn∑
j=1

n−1∑
i=0

∑
{k:(†) holds with i}

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
. (5.9)

Let j and k be fixed for now. For l, l′ ≥ 1, set

DCov
(
l, l′
) := E

W[�θ̄l

(
x

(n)
j

) · �θ̄l′
(
x

(n)
k

)]
.

By (3.2), DCov(l, l′) only depends on rl , rl′ and |x(n)
j − x

(n)
k |. It is sufficient to treat the cases when |x(n)

j − x
(n)
k |

is small, or equivalently, when i, as determined by (†), is large. One can easily use (3.7) and (3.8) to verify that
DCov(l, l′) = 0 when l′ ≥ i + 2 and either l ≥ i + 2 or l ≤ i − 1, which implies that the family{

�θ̄l

(
x

(n)
j

)
,�θ̄l′

(
x

(n)
k

) : 1 ≤ l ≤ i − 1, i + 2 ≤ l ≤ n, i + 2 ≤ l′ ≤ n
}

(5.10)

is independent. However, the independence of this family alone is not sufficient for (5.9) to be bounded in n, mainly
because ri+1 � ri which means that the range of |x(n)

j − x
(n)
k | given by (†) is too “coarse”. To proceed, we need to

further break down the range of |x(n)
j − x

(n)
k | in such a way that we can treat each case separately by fully exploiting

the covariance properties (3.7) and (3.8) of the family of θ̄t (x). The figure below (Figure 1) shows how we will
further divide the interval [2ri+1,2ri) into multiple sections. As marked in the figure, Case 1 and Case 2 correspond
to relatively “narrow” sections, and the small widths of the intervals will help us easily control the RHS of (5.9). For
all the other cases, the key is to treat the probability of the intersection of (P

x
(n)
j ,l

)’s and (P
x

(n)
k ,l′)’s for l and l′ close

to the cut-off of each section.
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Fig. 1. Separate cases according to the range of |x(n)
j

− x
(n)
k

|.

Case 1.
Assume that, for some sufficiently small ε ∈ (0,1 − γ ),

2ri+1 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< r1−ε
i+1 .

In this case, besides the family of independent random variables in (5.10), we also have that for l′ ≥ i + 2,

B
(
x

(n)
k , rl′−1

)⊆ B
(
x

(n)
j , ri

)
and B

(
x

(n)
j , ri+1

)∩ B
(
x

(n)
k , rl′−1

)=∅,

which, by (3.7) and (3.8), leads to DCov(i; l′) = 0 and DCov(i + 1, l′) = 0, and hence �θ̄i(x
(n)
j ) and �θ̄i+1(x

(n)
j ) are

independent of �θ̄l′(x
(n)
k ). As a result,

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
≤

W(�
x

(n)
j ,n

) ·∏n
l′=i+2 W(P

x
(n)
k ,l′)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)

= 1

W(�
x

(n)
k ,i+1

)
≤ exp

[−νγ ln ri+1 + o(− ln ri+1)
]
.

The last inequality follows from (5.4). On the other hand, if j is fixed, then the number of x
(n)
k ’s such that

2ri+1 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< r1−ε
i+1

is of the order of (r1−ε
i+1 /rn)

ν . The contribution to (5.9) under this case is

n−1∑
i=0

exp
[
ν(1 − ε − γ ) ln ri+1 + o(− ln ri+1)

]
,

which is bounded in n since ε < 1 − γ .

Case 2.
Assume that

ri − ri+2 <
∣∣x(n)

j − x
(n)
k

∣∣≤ ri + ri+2. (5.11)

Since the random variables in (5.10) are independent, we have that

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
≤

W(�
x

(n)
j ,i−1

)
∏n

l=i+2 W(P
x

(n)
j ,l

)
∏n

l′=i+2 W(P
x

(n)
k ,l′)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)

= 1

W(P
x

(n)
j ,i

)W(P
x

(n)
j ,i+1

)W(�
x

(n)
k ,i+1

)
,

which, by (5.3) and (5.4), is no greater than

exp
[−3νγ ln ri+1 + o(− ln ri+1)

]
.
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Meanwhile, with x
(n)
j fixed, the number of x

(n)
k ’s that satisfy (5.11) is of the order of rν−1

i ri+2/rν
n . Hence, the contri-

bution to (5.9) under this case is

n−1∑
i=0

exp
[
ln ri+2 − 3νγ ln ri+1 + o(− ln ri+1)

]
,

which is bounded in n by the assumption (5.1).

Case 3
Assume that either

ri − ri+1 <
∣∣x(n)

j − x
(n)
k

∣∣≤ ri − ri+2, (3a)

or

ri + ri+2 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< ri + ri+1, (3b).

We observe that for all l′ ≥ i + 3, by (3.7) and (3.8), under the hypothesis (3a) or (3b), DCov(i + 1, l′) = 0. Together
with the family of independent random variables in (5.10), we see that both P

x
(n)
j ,i+1

and P
x

(n)
j ,i+2

are independent of

P
x

(n)
k ,l′ for all l′ ≥ i + 3, and similarly both P

x
(n)
k ,i+1

and P
x

(n)
k ,i+2

are independent of P
x

(n)
j ,l

for all l ≥ i + 3. Thus,

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

) is bounded from above by

n∏
l=i+3

W(P
x

(n)
j ,l

) ·
n∏

l′=i+3

W(P
x

(n)
k ,l′)W(P

x
(n)
j ,i+1

∩ P
x

(n)
j ,i+2

∩ P
x

(n)
k ,i+1

∩ P
x

(n)
k ,i+2

), (5.12)

so we only need to focus on the family{
�θ̄i+1

(
x

(n)
j

)
,�θ̄i+2

(
x

(n)
j

)
,�θ̄i+1

(
x

(n)
k

)
,�θ̄i+2

(
x

(n)
k

)}
.

After a lengthy computation through multiple stages of conditioning, we can derive the estimate below. Here we only
state the result and leave the proof in the Appendix.

Lemma 20. Under the hypothesis (3a) or (3b), there exists a constant Cν > 0 that is universal in i ≥ 0 such that

W(P
x

(n)
j ,i+1

∩ P
x

(n)
j ,i+2

∩ P
x

(n)
k ,i+1

∩ P
x

(n)
k ,i+2

)

W(P
x

(n)
j ,i+1

)W(P
x

(n)
j ,i+2

)W(P
x

(n)
k ,i+1

)W(P
x

(n)
k ,i+2

)
≤ eCν

√− ln ri+1 . (5.13)

Then, it follows from (5.1), (5.12) and (5.13) that, in Case 3,

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
≤

W(P
x

(n)
j ,i+1

∩ P
x

(n)
j ,i+2

∩ P
x

(n)
k ,i+1

∩ P
x

(n)
k ,i+2

)

W(�
x

(n)
j ,i+2

)W(�
x

(n)
k ,i+2

)

≤ exp(Cν

√− ln ri+1)

W(�
x

(n)
j ,i

)W(�
x

(n)
k ,i

)
= exp

[
o(− ln ri+1)

]
.

On the other hand, with x
(n)
j fixed, the number of x

(n)
k ’s that satisfy either (3a) or (3b) is of the order of rν−1

i ri+1/rν
n .

Hence, the contribution to (5.9) under this case is

n−1∑
i=0

exp
[
ln ri+1 + o(− ln ri+1)

]
,

which is bounded in n.
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Case 4.
The last case is that either

r1−ε
i+1 <

∣∣x(n)
j − x

(n)
k

∣∣≤ ri − ri+1, (4a)

or

ri + ri+1 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< 2ri, (4b).

The strategy for studying this case is similar to that for the previous case. We will omit the technical details that are
the same as earlier, but only address the differences in the treatment of Case 4 from that of Case 3. When (4a) or (4b)
applies, one can use (3.7) and (3.8) to verify that both P

x
(n)
j ,i

and P
x

(n)
j ,i+1

are independent of P
x

(n)
k ,l′ for all l′ ≥ i + 2,

and P
x

(n)
k ,i+1

is independent of P
x

(n)
j ,l

for all l ≥ i + 2. Thus, W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

) is no greater than

W
(

n⋂
l=i+2

P
x

(n)
j ,l

)
W
(

n⋂
l′=i+2

P
x

(n)
k ,l′

)
·W(P

x
(n)
j ,i

∩ P
x

(n)
j ,i+1

∩ P
x

(n)
k ,i+1

). (5.14)

Again, we state the key probability estimate below and leave the proof in the Appendix.

Lemma 21. Under the hypothesis (4a) or (4b), there exists a constant Cν,ε > 0 that is universal in i ≥ 0 such that

W(P
x

(n)
j ,i

∩ P
x

(n)
j ,i+1

∩ P
x

(n)
k ,i+1

)

W(P
x

(n)
j ,i

)W(P
x

(n)
j ,i+1

)W(P
x

(n)
k ,i+1

)
≤ exp(Cν,ε

√− ln ri). (5.15)

Based on (5.4), (5.14) and (5.15), we see that, in Case 4,

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
≤

W(P
x

(n)
j ,i

∩ P
x

(n)
j ,i+1

∩ P
x

(n)
k ,i+1

)

W(�
x

(n)
j ,i+1

)W(�
x

(n)
k ,i+1

)

≤ exp(Cν,ε

√− ln ri)

W(�
x

(n)
j ,i−1

)W(�
x

(n)
k ,i

)

≤ exp
[−νγ ln ri + o(− ln ri)

]
.

With x
(n)
j is fixed, the number of x

(n)
k ’s that satisfy either (4a) or (4b) is of the order of (2ri)

ν/rν
n . Hence, the contri-

bution to (5.9) under this case is

n−1∑
i=0

exp
[
ν(1 − γ ) ln ri + o(− ln ri)

]
,

which is bounded in n since γ < 1.
Summarizing our findings in all the cases above, we conclude that

sup
n≥1

E
W[(μn,θ

(
S(O,1)

))2]
< ∞. (5.16)

Step 4: Study the α-energy of μn,θ .

Besides bounding the second moment of μn,θ (S(O,1)), another ingredient we need is the boundedness of the expected
α-energy of μn,θ for certain α > 0. Namely, for fixed α > 0, θ ∈  and n ≥ 1, we will consider the α-energy of μn,θ
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over S(O,1) which is given by

Iα(μn,θ ) :=
∫

S(O,1)

∫
S(O,1)

|y − w|−αμn,θ (dy)μn,θ (dw). (5.17)

By the definition of μn,θ (5.6), EW [Iα(μn,θ )] is equal to

1

K2
n

Kn∑
j,k=1

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)

∫
S(x

(n)
j ,rn)

∫
S(x

(n)
k ,rn)

|y − w|−α dy dw

vol(S(x
(n)
j , rn))vol(S(x

(n)
k , rn))

. (5.18)

In this subsection we will show that, if 0 < α < ν(1 − γ ), then

sup
n≥1

E
W[Iα(μn,θ )

]
< ∞.

The arguments we use here are slight variations of those in Step 3. For simplicity, we write

I
(
x

(n)
j , x

(n)
k

) :=
∫
S(x

(n)
j ,rn)

∫
S(x

(n)
k ,rn)

|y − w|−α dy dw

vol(S(x
(n)
j , rn))vol(S(x

(n)
k , rn))

.

When j = k, so long as α < ν, I (x
(n)
j , x

(n)
k ) = Cν · r−α

n for some constant Cν > 0. Therefore, the sum over the
terms along the diagonal in (5.18) is

1

K2
n

Kn∑
j=1

Cν · r−α
n

W(�
x

(n)
j ,n

)
≤ Cν · exp

{[
ν(1 − γ ) − α

]
ln rn + o(− ln rn)

}
,

which tends to zero as n → ∞ whenever α < ν(1 − γ ). So it is sufficient to treat the sum over the off-diagonal terms
in (5.18). To this end, we follow a similar approach as the one adopted in the previous step. Again, assume that j �= k,
let i ∈ N, 0 ≤ i ≤ n − 1, be the unique integer such that

2ri+1 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< 2ri, (†)

and we rewrite the sum over the off-diagonal terms in (5.18) as

1

K2
n

Kn∑
j=1

n−1∑
i=0

∑
{k:(†) holds with i}

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
· I(x(n)

j , x
(n)
k

)
. (5.19)

Let α ∈ (0, ν(1 − γ )) be fixed. We study the sum in (5.19) according to the four cases presented in the previous step.
Same as earlier, it is sufficient to focus on the cases when i is large.

Case 1. Assume that for some ε ∈ (0,1 − γ − α
ν
),

2ri+1 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< r1−ε
i+1 .

We have found out in Case 1 previously (following the same arguments with a possibly smaller ε) that

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
≤ exp

[−νγ ln ri+1 + o(− ln ri+1)
]
,
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and with x
(n)
j fixed, the number of x

(n)
k ’s that satisfy the criterion of Case 1 is of the order of (r1−ε

i+1 /rn)
ν . Besides, it is

easy to see that there exists Cν > 0 such that I (x
(n)
j , x

(n)
k ) ≤ Cν · r−α

i+1. So the contribution to (5.19) under this case is

n−1∑
i=0

exp
{[

ν(1 − ε − γ ) − α
]

ln ri+1 + o(− ln ri+1)
}
,

which is bounded in n since ε < 1 − γ − α
ν

.
Case 2, Case 3 and Case (4b). Under any of the conditions, as imposed in the previous step, of these three cases,

we have that I (x
(n)
j , x

(n)
k ) ≤ Cν · r−α

i . Combining this with the findings from the previous step, i.e., the estimate on

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)

and the number of qualifying k’s for any fixed j , one can easily confirm that the contribution to (5.19) under Case 2
or Case 3 or Case (4b), is bounded in n.

Case (4a). However, in the case of (4a), the arguments above will not work, since r−α
i above would be replaced

by r
−α(1−ε)
i+1 . We need to apply a finer treatment by further decomposing the interval (r1−ε

i+1 , ri − ri+1] into a union of
disjoint intervals. To be specific, let Z be the smallest integer such that

(ri+1/ri)
(1−γ )Z ≥ 1 − ri+1

ri
,

for which to happen it is sufficient to make

(1 − γ )Z ≤ ln(1 − ri+1/ri)

ln(ri+1/ri)
,

so Z should be taken as approximately

1

ln(1 − γ )
ln

[
ln(1 − ri+1/ri)

ln(ri+1/ri)

]
+ 1 =O(− ln ri+1).

Define a sequence of positive numbers {Rm : m = 0, . . . ,Z} by R0 := r1−ε
i+1 , and

Rm := r
(1−γ )m

i+1 · r1−(1−γ )m

i for m = 1, . . . ,Z.

Clearly, Rm < Rm+1 and

RZ = ri · (ri+1/ri)
(1−γ )Z ≥ ri − ri+1.

Denote Um := (Rm,Rm+1] for m = 0,1, . . . ,Z − 1. Clearly,

(
r1−ε
i+1 , ri − ri+1

]⊆ Z−1⋃
m=0

Um.

For each m = 0,1, . . . ,Z, if |x(n)
j − x

(n)
k | ∈ Um, then I (x

(n)
j , x

(n)
k ) ≤ CνR

−α
m . Recall that, in Case 4,

W(�
x

(n)
j ,n

∩ �
x

(n)
k ,n

)

W(�
x

(n)
j ,n

)W(�
x

(n)
k ,n

)
≤ exp

[−νγ ln ri + o(− ln ri)
]
.



1520 L. Chen

Meanwhile, when x
(n)
j is fixed, the number of x

(n)
k ’s such that |x(n)

j − x
(n)
k | ∈ Um is no greater than Rν

m+1/rν
n . We will

need the following estimate:

exp
[−νγ ln ri + o(− ln ri)

] · R−α
m · Rν

m+1

≤ exp
{[−νγ − α + α(1 − γ )m + ν − ν(1 − γ )m+1] ln ri + o(− ln ri)

}
× exp

{[−α(1 − γ )m + ν(1 − γ )m+1] ln ri+1
}

= exp
{[

ν(1 − γ ) − α
]

ln ri + o(− ln ri) + [ν(1 − γ ) − α
]
(1 − γ )m ln(ri+1/ri)

}
≤ exp

{[
ν(1 − γ ) − α

]
ln ri + o(− ln ri)

}
.

Hence, under the condition (4a), the contribution to (5.19) is

n−1∑
i=0

Z−1∑
m=0

exp
[−νγ ln ri + o(− ln ri)

]
R−α

m · Rν
m+1

≤
n−1∑
i=0

Z · exp
{[

ν(1 − γ ) − α
]

ln ri + o(− ln ri)
}

≤
n−1∑
i=0

exp
{[

ν(1 − γ ) − α
]

ln ri + o(− ln ri) +O
(
ln(− ln ri+1)

)}

=
n−1∑
i=0

exp
{[

ν(1 − γ ) − α
]

ln ri + o(− ln ri)
}
,

which is bounded in n since α < ν(1 − γ ). The last line is due to the second assumption (5.2) on the choice of
{rn : n ≥ 0}.

Therefore, the work we carried out in Step 4 has led to the conclusion that for every α ∈ (0, ν(1 − γ )),

sup
n≥1

E
W[Iα(μn,θ )

]
< ∞. (5.20)

Step 5: Establish the lower bound of dimH(ST
γ
θ ).

To complete the proof of Theorem 16, we follow the same line of arguments as in [17] in the final step. Choose and
fix any α ∈ (0, ν(1 − γ )). After carefully treating the family of measures {μn,θ : n ≥ 1} in the previous two steps,
we are now ready to apply a compactness argument to extract a limit measure μθ that possesses desirable properties
which will enable us to invoke Frostman’s lemma. In particular, our goal is to show that for W-a.e. θ ∈ , μθ assigns
positive mass to �

γ
θ , the subset of ST

γ
θ as defined in (5.5), and Iα(μθ ) < ∞. To achieve this goal, the results (5.16)

and (5.20) obtained in the previous steps are essential. Set

A1 := sup
n≥1

E
W[(μn,θ

(
S(O,1)

))2] and A2 := sup
n≥1

E
W[Iα(μn,θ )

]
.

For constants c1 > 1 and c2 > 0 which will be determined later, consider the measurable subsets of 

�α:
n :=

{
θ ∈  : 1

c1
≤ μn,θ

(
S(O,1)

)≤ c1, I
θ
α (μn,θ ) ≤ c2

}
for n ≥ 1, and set �α := lim supn→∞ �α

n . Clearly, simple applications of Markov’s inequality lead to

sup
n≥1

W
(
I θ
α (μn,θ ) > c2

)≤ A2

c2
and sup

n≥1
W
(
μn,θ

(
S(O,1)

)
> c1
)≤ 1

c1
.
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Moreover, by (5.7) and the Paley–Zygmund inequality,

sup
n≥1

W
(

μn,θ

(
S(O,1)

)
<

1

c1

)
≤ 1 − (1 − 1

c1
)2

A1
.

Thus, by choosing c1 and c2 sufficiently large, we can make

W
(
�α

n

)
>

(1 − 1
c1

)2

A1
− 1

c1
− A2

c2
>

1

2A1

for every n ≥ 1, and hence W(�α) ≥ 1
2A1

.
On the other hand, if θ ∈ �α , then there exists a subsequence {nk : k ≥ 0} such that

1

c1
≤ μnk,θ

(
S(O,1)

)≤ c1, I α(μnk,θ ) ≤ c2 for all k ≥ 0.

Because Iα , as a mapping from the space of finite measures on S(O,1) to [0,∞] is lower semi-continuous with
respect to the weak topology,

M :=
{
μ Borel measure on S(O,1) : 1

c1
≤ μ
(
S(O,1)

)≤ c1, Iα(μ) ≤ c2

}
is compact, and hence there exists a Borel measure μθ on S(O,1) such that μnk,θ weakly converges to μθ along
a subsequence of {nk : k ≥ 0}. Without loss of generality, we can assume that the weak convergence happens along
{nk : k ≥ 0} itself. Thus,

1

c1
≤ μθ

(
S(O,1)

)≤ c1, Iα(μθ ) ≤ c2.

Moreover, it is clear that for every k ≥ 0, supp(μnk,θ ) ⊆⋃x∈�nk,θ
S(x, rnk

). Combining this fact with the weak con-
vergence relation, one can easily verify that

μθ

(
�

γ
θ

)≥ lim sup
k→∞

μnk,θ

( ⋃
x∈�nk,θ

S(x, rnk
)

)
≥ 1

c1
.

Therefore, if Cα(�
γ
θ ) is the α-capacity of the set �

γ
θ , i.e.,

Cα
(
�

γ
θ

) := sup

{(∫∫
�

γ
θ ×�

γ
θ

μ × μ(dy dw)

|y − w|α
)−1

: μ is a probability measure on �
γ
θ

}
,

then Cα(�
γ
θ ) > 0. Hence, by Frostman’s lemma, dimH(�

γ
θ ) ≥ α which implies that dimH(ST

γ
θ ) ≥ α. Thus, we have

established that

W
(
dimH

(
ST

γ
θ

)≥ α
)≥ W

(
�α
)≥ 1

2A1
.

In other words, dimH(ST
γ
θ ) ≥ α holds at least with a positive probability.

Finally, we recall from (2.1) that for W-a.e. θ ∈ ,

θ =
∑
n≥1

I(hn)(θ) · hn,
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where {hn : n ≥ 1} is an orthonormal basis of the Cameron–Martin space H and {I(hn) : n ≥ 1} under W forms a
sequence of i.i.d. standard Gaussian random variables. By a simple application of the Hewitt–Savage zero-one law,
we have that

W
(
dimH

(
ST

γ
θ

)≥ α
)= 1.

Since α is arbitrary in (0, ν(1 − γ )), we get the desired lower bound, that is,

dimH
(
ST

γ
θ

)≥ ν(1 − γ ) a.s.

This completes the proof of Theorem 16. Since ST
γ
θ is a subset of T

γ
θ , we have also established (4.3) and hence

Theorem 9.

Appendix

In this appendix, we include the proofs of two technical results Lemmas 20 and 21 in Section 5.
Recall that, for Lemma 20, we want to show that, if for some i ≥ 0, either

ri − ri+1 <
∣∣x(n)

j − x
(n)
k

∣∣≤ ri − ri+2, (3a)

or

ri + ri+2 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< ri + ri+1, (3b)

then

W(P
x

(n)
j ,i+1

∩ P
x

(n)
j ,i+2

∩ P
x

(n)
k ,i+1

∩ P
x

(n)
k ,i+2

)

W(P
x

(n)
j ,i+1

)W(P
x

(n)
j ,i+2

)W(P
x

(n)
k ,i+1

)W(P
x

(n)
k ,i+2

)
≤ eCν

√− ln ri+1

for some constant Cν > 0 that does not depend on i.

Proof. We will prove this result by multiple stages of conditioning. To further simplify the notation, throughout the
proof, we write

Xi+1 := �θ̄i+1
(
x

(n)
j

)
, Xi+2 := �θ̄i+2

(
x

(n)
j

)
and

Yi+1 := �θ̄i+1
(
x

(n)
k

)
, Yi+2 := �θ̄i+2

(
x

(n)
k

)
.

Clearly, Yi+2 is independent of Yi+1 and Xi+2. Furthermore, Cov(Xi+1, Yi+2) is given by, when (3a) applies,

DCov(i + 1, i + 2) = −Cincl
(
ri ,
∣∣x(n)

j − x
(n)
k

∣∣)+ Cov
(
ri , x

(n)
j ; ri+1, x

(n)
k

);
when (3b) applies,

DCov(i + 1, i + 2) = −Cdisj
(∣∣x(n)

j − x
(n)
k

∣∣)+ Cov
(
ri , x

(n)
j ; ri+1, x

(n)
k

)
.

In either case, Cov(Xi+1, Yi+2) doesn’t depend on ri+2, and by the asymptotics of the functions that are involved and
the Cauchy–Schwarz inequality,

Cov(Xi+1, Yi+2) =O
(√

G(ri+1)G(ri)
)
. (A.1)
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Similarly, Cov(Xi+1, Yi+1) is given by, when either (3a) or (3b) applies,

DCov(i + 1, i + 1) = Cdisj
(∣∣x(n)

j − x
(n)
k

∣∣)− 2 Cov
(
ri , x

(n)
j ; ri+1, x

(n)
k

)
+ Cov

(
ri , x

(n)
j ; ri , x(n)

k

)
,

which implies that

Cov(Xi+1, Yi+1) =O
(√

G(ri+1)G(ri)
)
. (A.2)

We first condition on Yi+2. The joint conditional distribution of {Xi+1,Xi+2, Yi+1}, given Yi+2 = y, is the same
as the Gaussian family {X′

i+1,X
′
i+2, Y

′
i+1} where X′

i+2 and Y ′
i+1 have the same distribution as Xi+2 and Yi+1 respec-

tively, and X′
i+1 has the Gaussian distribution N(m,σ 2) with

m := Cov(Xi+1, Yi+2)

�Gi+2
y and σ 2 := �Gi+1 − Cov2(Xi+1, Yi+2)

�Gi+2
.

In particular, if |y − √
2νγ�Di+2| ≤ √

�Gi+2, then, by (5.1) and (A.1), m = o(1) and σ 2 = �Gi+1 + o(1), and
these estimates12 can be made uniform in y. Moreover, the covariance of the family is given by Cov(X′

i+1,X
′
i+2) = 0,

Cov(X′
i+2, Y

′
i+1) = Cov(Xi+2, Yi+1) and Cov(X′

i+1, Y
′
i+1) = Cov(Xi+1, Yi+1). We write the following conditional

distribution as

W(P
x

(n)
j ,i+1

∩ P
x

(n)
j ,i+2

∩ P
x

(n)
k ,i+1

|Yi+2 = y) =W|Yi+2=y(PX′
i+1

∩ PX′
i+2

∩ PY ′
i+1

),

where W|Yi+2=y is the conditional distribution under W given Yi+2 = y, and PX′
i+1

, PX′
i+2

and PY ′
i+1

are the corre-

sponding events concerning X′
i+1, X′

i+2 and Y ′
i+1, e.g.,

PX′
i+1

= {∣∣X′
i+1 −√2νγ�Di+1

∣∣≤√�Gi+1
}
.

Next, we condition on X′
i+2 = x where |x − √

2νγ�Di+2| ≤ √
�Gi+2. Then the conditional distribution of

{X′
i+1, Y

′
i+1} is the same as that of {X′′

i+1, Y
′′
i+1} where X′′

i+1 has the same distribution as X′
i+1, and Y ′′

i+1 has the
Gaussian distribution N(λ,ς2) where

λ = Cov(Xi+2, Yi+1)

�Gi+2
x and ς2 = �Gi+1 − Cov2(Xi+2, Yi+1)

�Gi+2
.

Since Cov(Xi+2, Yi+1) = Cov(Xi+1, Yi+2), the estimates we obtained for m and σ 2 also applies to λ and ς2 respec-
tively, and those estimates are uniform in x and y. In addition, Cov(X′′

i+1, Y
′′
i+1) = Cov(Xi+1, Yi+1). Again, we write

the following conditional distribution as

W|Yi+2=y

(
PX′

i+1
∩ PY ′

i+1
|X′

i+2 = x
)=W|X′

i+2=x(PX′′
i+1

∩ PY ′′
i+1

),

where W|X′
i+2=x is the conditional distribution under W|Yi+2=y conditioning on X′

i+2 = x, and PX′′
i+1

and PY ′′
i+1

are

the corresponding events concerning X′′
i+1 and Y ′′

i+1.
To compute W|X′

i+2=x(PX′′
i+1

∩ PY ′′
i+1

), we use conditioning again. Given

Y ′′
i+1 = w ∈ [√2νγ�Di+1 −√�Gi+1,

√
2νγ�Di+1 +√�Gi+1],

the conditional distribution of X′′
i+1 is the Gaussian distribution with the mean

m + Cov(Xi+1, Yi+1)

ς2
(w − λ) =O

(√
G(ri)(− ln ri+1)

)
12Here, as well as in later occasions, when concerning o(1), the “estimate” refers to the rate of the o(1) term converging to zero.



1524 L. Chen

and the variance

σ 2 − Cov2(Xi+1, Yi+1)

ς2
= �Gi+1

(
1 + o(1)

)
.

These estimates13 follow from (A.2) and earlier estimates on m, λ, σ 2 and ς2, and they can be made uniform in w, x

and y. Therefore, one can easily verify that

W|X′
i+2=x

(
PX′′

i+1
|Y ′′

i+1 = w
)≤ exp

[
νγ ln ri+1 +O(

√− ln ri+1)
] := p1,

and p1 is independent of w, x and y. This further leads to

W|X′
i+2=x(PX′′

i+1
∩ PY ′′

i+1
) ≤ p1 exp

[
νγ ln ri+1 +O(

√− ln ri+1)
]

= exp
[
2νγ ln ri+1 +O(

√− ln ri+1)
] := p2,

and p2 is independent of x and y.
Finally, since X′

i+2 has the same distribution as Xi+2, by backtracking the condition, we have that

W|Yi+2=y(PX′
i+1

∩ PY ′
i+1

∩ PX′
i+2

) ≤ p2W(P
x

(n)
j ,i+2

),

and hence

W(P
x

(n)
j ,i+1

∩ P
x

(n)
j ,i+2

∩ P
x

(n)
k ,i+1

∩ P
x

(n)
k ,i+2

) ≤ p2W(P
x

(n)
j ,i+2

)W(P
x

(n)
k ,i+2

).

The desired estimate follows immediately from (5.3). �

Next, for Lemma 21, we want to show that, if for some i ≥ 0, either

r1−ε
i+1 <

∣∣x(n)
j − x

(n)
k

∣∣≤ ri − ri+1, (4a)

or

ri + ri+1 ≤ ∣∣x(n)
j − x

(n)
k

∣∣< 2ri, (4b)

then

W(P
x

(n)
j ,i

∩ P
x

(n)
j ,i+1

∩ P
x

(n)
k ,i+1

)

W(P
x

(n)
j ,i

)W(P
x

(n)
j ,i+1

)W(P
x

(n)
k ,i+1

)
≤ exp(Cν,ε

√− ln ri)

for some constant Cν,ε > 0 that does not depend on i.

Proof. The proof of Lemma 21 is similar to the proof of Lemma 20 given above. Namely, we will also prove the
desired estimate by multiples stages of conditioning. For simpler notation, we write

Xi := �θ̄i

(
x

(n)
j

)
, Xi+1 := �θ̄i+1

(
x

(n)
j

)
and Yi+1 := �θ̄i+1

(
x

(n)
k

)
.

When (4a) or (4b) applies, by (3.7) and (3.8),

Cov(Xi, Yi+1) =O
(
G(ri)

)
, (A.3)

13Here, as well as in later occasions, when concerning “O”, the “estimate” refers to the constants in the upper and lower bound.
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and

Cov(Yi+1,Xi+1) =O
(
G1−ε(ri+1)

)
. (A.4)

We first condition on Yi+1 = y where |y − √
2νγ�Di+1| ≤ √

�Gi+1. Then the joint conditional distribution of
{Xi,Xi+1} given Yi+1 = y is the same as that of {X′

i ,X
′
i+1} where X′

i and X′
i+1 have distributions N(m1, σ

2
1 ) and

N(m2, σ
2
2 ) respectively, where m1 = o(1), σ 2

1 = �Gi + o(1), and

m2 =O
(
�Di+1 · G−ε(ri+1)

)
and σ 2

2 = �Gi+1
[
1 +O

(
G−2ε(ri+1)

)]
, (A.5)

and moreover,

Cov
(
X′

i ,X
′
i+1

)=O
(
G(ri)/Gε(ri+1)

)
. (A.6)

These estimates on m1, σ 2
1 , m2, σ 2

2 and Cov(X′
i ,X

′
i+1) follow from (A.3) and (A.4) and can be made uniform in y.

Next, we condition on X′
i = x where |x − √

2νγ�Di | ≤ √
�Gi . Then the conditional distribution of X′

i+1 is the
Gaussian distribution N(m3, σ

2
3 ) and, by (A.6), m3 and σ 2

3 follow the same estimates as m2 and σ 2
2 respectively, i.e.,

the estimates in (A.5), and these estimates are uniform in x and y.
To proceed from here, we need to carry out a step that is different from the proof of Lemma 20. Specifically, we

need to compare W(P
x

(n)
j ,i+1

) and

N
(
m3, σ

2
3

)([√2νγ�Di+1 −√�Gi+1,
√

2νγ�Di+1 +√�Gi+1]
)
.

To this end, we write the later as

1√
2π

∫ √
2νγ�Di+1+

√
�Gi+1

√
2νγ�Di+1−

√
�Gi+1

exp[−(w − m3)
2/(2σ 2

3 )]
σ3

dw

= 1√
2π

∫ √
2νγ�Di+1+

√
�Gi+1

√
2νγ�Di+1−

√
�Gi+1

exp[−w2/(2�Gi+1)]√
�Gi+1

· E(w)dw,

where

E(w) :=
√

�Gi+1

σ3
exp

[
− (w − m3)

2

2σ 2
3

+ w2

2�Gi+1

]
.

Notice that by the estimates in (A.5) which apply to m3 and σ 2
3 , there exists a constant Cν,ε > 0 such that

sup
{w:|w−√

2νγ�Di+1|≤
√

�Gi+1}

∣∣E(w)
∣∣≤ Cν,ε.

It follows from this observation that, conditioning on X′
i = x, the conditional probability of X′

i+1 being in the desired
interval, i.e., |X′

i+1 − √
2νγ�Di+1| ≤ √

�Gi+1, is bounded by Cν,εW(P
x

(n)
j ,i+1

). From this point, we backtrack the

conditioning in the same way as we did in the proof of Lemma 20 and arrive at

W(P
x

(n)
j ,i

∩ P
x

(n)
j ,i+1

∩ P
x

(n)
k ,i+1

) ≤ eνγ ln ri+O(
√− ln ri ) ·W(P

x
(n)
j ,i+1

)W(P
x

(n)
k ,i+1

).

By (5.3), the desired estimate follows immediately. �
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