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Abstract. Burdzy and Chen (Electron. J. Probab. 3 (1998) 29–33) proved results on weak convergence of multidimensional
normally reflected Brownian motions. We generalize their work by considering obliquely reflected diffusion processes. We require
weak convergence of domains, which is stronger than convergence in Wijsman topology, but weaker than convergence in Hausdorff
topology.

Résumé. Burdzy et Chen (Electron. J. Probab. 3 (1998) 29–33) ont montré des résultats portant sur la convergence faible des
mouvements Browniens multidimensionnels avec réflexion normale. Nous généralisons leurs travaux dans le cas de processus de
diffusion avec réflexion oblique. Notre résultat requiert la faible convergence des domaines. Notons que cette convergence est plus
forte que la convergence dans la topologie de Wijsman, mais plus faible que celle de la topologie de Hausdorff.
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1. Introduction

Consider a sequence of reflected diffusions (Zn)n≥0: for every n = 0,1,2, . . . let Zn = (Zn(t), t ≥ 0) be a reflected
diffusion in Dn, where Dn ⊆ R

d is an open connected subset (bounded or unbounded). When Zn(t) ∈ Dn, this
process is in the interior of its state space, it moves as a diffusion with drift vector field gn(·) and covariance matrix
field An(·). When Zn hits the boundary ∂Dn at a point z ∈ ∂Dn, it is instantaneously reflected inside Dn, according to
the direction rn(z). Here, rn : ∂Dn → R

d is a continuous vector field, defined on the boundary ∂Dn. In a more general
setting, this boundary can have non-smooth parts (say, the origin for Dn = (0,∞)2); then the reflection field rn is
defined everywhere on the boundary, except these non-smooth parts. If rn(z) is the inward unit normal vector to ∂Dn

at a point z ∈ ∂Dn, then this reflection is normal at this point z. Otherwise, it is oblique. We assume that the initial
condition is Zn(0) = zn.

The main topic of this paper is: When do Zn weakly converge to Z0 as elements of C([0, T ],Rd) of continu-
ous functions [0, T ] → R

d? To establish this convergence, we need convergence of domains, drift vector fields and
covariance matrix fields, reflection fields, and initial conditions:

Dn → D0, gn → g0, An → A0, rn → r0, zn → z0.

But in which sense do we need to require this convergence? This article provides an answer to this question. The
convergence of domains should be in what we call the weak sense, which is slightly stronger than in the Wijsman
topology, see [1,21]. The convergence of functions poses certain problems, since they are defined on different domains.
However, we find a way around this; we define what turns out to be a generalization of locally uniform convergence
(and which, in fact, is locally uniform convergence if these functions, say gn, are defined on the same domain).
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Convergence of reflected Brownian motions has been studied in [2] for the case of normal reflection and increasing
sequence of domains Dn ↑ D0. In this article, we study this question in a more general setting: the reflection can be
oblique, the concept of convergence Dn → D0 is more general than Dn ↑ D0, and we have general diffusion processes
(with general drift and covariance fields instead of constant ones) instead of a Brownian motion.

However, in some sense our conditions are more restrictive: we require the boundary ∂Dn to be smooth, except
only a “small” subset; in the paper [2], it is only assumed that the boundary is continuous and the domain is bounded.
In addition, we assume that the reflection fields rn → r0 in a certain sense. In the paper [2], there is no additional
assumption that reflection (in their case, normal) fields converge. Last but not least, in our paper the limiting process
Z0 should not hit non-smooth parts of the boundary. There are sufficient conditions for this to be true when the domain
D0 is a convex polyhedron, see for example [17,22]; see also a related paper [3]. An example of a reflected Brownian
motion hitting or not hitting non-smooth parts of the boundary can be found in Proposition 3.1.

A related question is an invariance principle for a reflected Brownian motion in a convex polyhedron or, more
generally, piecewise smooth domains. This has been studied in [11,24]. See also a recent paper [10] which uses
similar techniques to prove well-posedness of a corresponding submartingale problem. We use similar techniques
to our paper [19], which deals with penalty method for obliquely reflected diffusions. The difference is that the
paper [19] approximated an obliquely reflected diffusion by a solution of an SDE without reflection, but with an
appropriately chosen drift vector field. The current paper approximates on obliquely reflected diffusion by another
obliquely reflected diffusion.

1.1. Organization of the paper

Section 2 contains definitions and the main result (Theorem 2.7). In Section 3, we apply these results to reflected Brow-
nian motion in the orthant and in other convex polyhedral domains. Section 4 is devoted to the proof of Theorem 2.7.
Section 5 contains results for the case when Dn → R

d , that is, the limiting process Z0 is actually a non-reflected
diffusion. The Appendix contains some technical lemmata.

1.2. Notation

For a vector or a matrix a, the symbol a′ denotes the transpose of a. Denote the weak convergence by ⇒. Let
C([0, T ],Rd) be the space of all continuous functions [0, T ] → R

d , with the max-norm. For d = 1, we simply write
C[0, T ]. For two vectors a = (a1, . . . , ad)′ and b = (b1, . . . , bd)′ in R

d , we denote their dot product by a · b =
a1b1 + · · · + adbd . The Euclidean norm of a is given by ‖a‖ = [a2

1 + · · · + a2
d ]1/2. For x = (x1, . . . , xd)′ ∈ R

d and
y = (y1, . . . , yd)′ ∈ R

d , we write x ≥ y if xi ≥ yi for i = 1, . . . , d and x > y if xi > yi for i = 1, . . . , d ; similarly
for x ≤ y and x < y. For x ∈ R

d , ε > 0, let U(x, ε) := {y ∈ R
d | ‖x − y‖ < ε} be the ε-neighborhood of x. For a

point x ∈ R
d and a set E ⊆ R

d , denote the distance from x to E by dist(x,E). For a set E ⊆ R
d and r > 0, denote

Ur(E) = {x ∈ R
d | dist(x,E) < r}. For two sets E,F ⊆ R

d , denote the distance from E to F by dist(E,F ). For a
subset E ⊆ R

d , we denote the set of its interior points by intE, and the complement Rd \ E by Ec. We denote its
closure by E. We write f ∈ Cr for r times continuously differentiable function f , defined on some subset of Rd . We
also say that a subset E of Rd is Cr if E is an r times continuously differentiable hypersurface in R

d . The symbol
mes(E) denotes the Lebesgue measure of a set E in R or Rd , depending on the context. The set of all d × d positive
definite symmetric matrices is denoted by Pd . Define the modulus of continuity for a function f : R+ → R

d : for T > 0
and δ > 0,

ω
(
f, [0, T ], δ) := sup

t,s∈[0,T ]
|t−s|≤δ

∥∥f (t) − f (s)
∥∥.

2. Definitions and the main result

2.1. Definition of a reflected diffusion

Fix d ≥ 1, the dimension. Consider a domain (open connected subset) D ⊆ R
d . Take a function g : D → R

d and a
matrix-valued function A : D → Pd . Let σ(x) := A1/2(x) be the positive definite matrix square root of A(x). Assume
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that the boundary ∂D is C2 everywhere, except a closed subset V ⊆ ∂D; that is, ∂D \ V is C2. The set V is called
an exceptional set, or non-smooth parts of the boundary ∂D. For example, if D = intS, where S := R

d+ is an interior
of the positive d-dimensional orthant, then the boundary ∂D = ∂S consists of d faces: Si := {x ∈ S | xi = 0}, and
V := ⋃

1≤i<j≤d(Di ∩ Dj). If D is smooth, or, more precisely, the whole boundary ∂D is C2, then we let V := ∅.

Denote for x ∈ ∂D \ V the inward unit normal vector by n(x). Take a vector field r : ∂D \ V → R
d such that

r(x) · n(x) > 0. (Without loss of generality, we can assume r(x) · n(x) = 1; a very short proof of this fact is given in
[19].) The function r is called a reflection field. We note that the set V includes, but is not limited to, the parts of the
boundary ∂D where it is not C2. It also might include points of the boundary where ∂D is smooth, but the reflection
field r is undefined. Slightly abusing the notation, we call the collection of all these points non-smooth parts of the
boundary.

We would like to define a reflected diffusion Z = (Z(t), t ≥ 0) in D with drift coefficient g, covariance matrix A,
and reflection field r . This is a process that:

(i) behaves as a solution of an SDE with drift coefficient g and covariance matrix A, so long as it stays inside D;
(ii) when it hits the boundary ∂D at a point x ∈ ∂D \ V , it reflects according to the reflection vector r(x); if r(x) =

n(x), this reflection is called normal, and otherwise it is called oblique.

Definition 1. Take d i.i.d. standard Brownian motions W1, . . . ,Wd and let W = (W1, . . . ,Wd)′. A continuous adapted
process Z = (Z(t), t ≥ 0) with values in D is called a reflected diffusion in D, stopped after hitting V with drift
vector field g, covariance matrix field A, and reflection field r , starting from Z(0) = z0, if there exists a real-valued
continuous adapted nondecreasing process l = (l(t), t ≥ 0) with l(0) = 0, such that l can increase only when Z ∈ ∂D,
and

Z(t) = z0 +
∫ t∧τV

0
g
(
Z(s)

)
ds +

∫ t∧τV

0
σ
(
Z(s)

)
dW(s) +

∫ t∧τV

0
r
(
Z(s)

)
dl(s), t ≥ 0, (1)

where τV := min{t ≥ 0 | Z(t) ∈ V}, and σ(x) := A1/2(x) is the positive definite symmetric square root of the matrix
A(x), for every x ∈ D. The process L(t) := ∫ t∧τV

0 r(Z(s))dl(s), t ≥ 0, is called the reflection term. We say this
reflected diffusion avoids non-smooth parts of the boundary if τV = ∞ a.s.

We can write (1) in the differential form:

dZ(t) = g
(
Z(t)

)
dt + σ

(
Z(t)

)
dW(t) + r

(
Z(t)

)
dl(t), t < τV .

The property that l can increase only when Z ∈ ∂D can be written formally as∫ ∞

0
1
(
Z(t) ∈ D

)
dl(t) = 0.

There are several conditions for weak or strong existence and uniqueness of this diffusion, discussed in the articles
mentioned in the Introduction. In this article, we simply assume that it exists in the weak sense, is unique in law, and
does not hit non-smooth parts of the boundary. More precisely, let us state the following assumptions.

Assumption 1. The exceptional set V is “small enough”; namely, for every x ∈R
d we have:

dist(x, ∂D) = dist(x, ∂D \ V).

For example, this is true for an orthant D = (0,∞)d , or a convex polyhedron D (see Section 3).

Assumption 2. The reflection field r : ∂D \ V → R
d is continuous on ∂D \ V . Moreover, as mentioned above,

r(z) · n(z) = 1 for z ∈ ∂D \ V .

Assumption 3. The reflected diffusion from Definition 1 with parameters g, A, r , starting from z0, exists and is
unique in the weak sense.
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A particular case of a reflected diffusion is reflected Brownian motion, when the drift coefficient g(x) and the
covariance matrix A(x) do not depend on x: g(x) ≡ g, and A(x) ≡ A. An example of a reflected Brownian motion
hitting or not hitting non-smooth parts of the boundary is given in Section 3, Proposition 3.1.

2.2. Weak convergence of domains

For each n = 0,1,2, . . . , define the function ϕn :Rd → R to be the signed distance to ∂Dn:

ϕn(x) :=

⎧⎪⎨
⎪⎩

dist(x, ∂Dn), x ∈ Dn;
0, x ∈ ∂Dn;
−dist(x, ∂Dn), x ∈R

d \ Dn.

Definition 2. We say that the sequence of domains (Dn)n≥1 converges weakly to the domain D0 in R
d , and write

Dn ⇒ D0, if ϕn(x) → ϕ0(x) for every x ∈R
d .

There are other well-known concepts of set convergence in R
d .

Definition 3. Take subsets En ⊆ R
d , n = 0,1,2, . . . . We say that En → E0 in Wijsman topology if dist(x,En) →

dist(x,E0) for all x ∈ R
d . If this convergence is uniform for x ∈ R

d , then En → E0 in Hausdorff topology. An
equivalent definition of Hausdorff convergence is through Hausdorff distance, which is defined for A,B ⊆ R

d as
follows:

dH (A,B) = inf
{
ε > 0 | A ⊆ Uε(B) and B ⊆ Uε(A)

}
.

For Wijsman convergence, we can substitute En by their closures, because

dist(x,En) ≡ dist(x,En).

There are equivalent definitions of Hausdorff convergence, distance and topology. We refer the reader to the book
[13]. For Wijsman convergence, see the articles [1,21]. In a sense, both Wijsman convergence and weak convergence
are “local” analogues of Hausdorff convergence, just as locally uniform convergence of functions with respect to
uniform convergence. Let us state a few elementary properties of Wijsman and weak convergence, with the proofs
postponed until Appendix.

Lemma 2.1. Suppose En → E0 in Wijsman topology. Then:

(i) dist(x,En) → dist(x,E0) uniformly on every compact subset K ⊆R
d ;

(ii) if xn ∈ En and xn → x0, then x0 ∈ E0.

Lemma 2.2. The following statements for domains Dn, n = 0,1,2, . . . are equivalent:

(i) Dn ⇒ D0;
(ii) Dn → D0 and Dc

n → Dc
0 in Wijsman topology;

(iii) ϕn(x) → ϕ0(x) uniformly on every compact subset K ⊆R
d ;

(iv) for every compact subset K ⊆R
d and a sequence (εn)n≥1 with εn → 0, we have:

max
xn,x0∈K‖xn−x0‖≤εn

∣∣ϕn(xn) − ϕ0(x0)
∣∣ → 0 as n → ∞;

(v) for every T > 0 and every sequence (fn)n≥1 of functions fn : [0, T ] → R
d which converges uniformly on [0, T ]

to a continuous function f0 : [0, T ] → R
d , we have: ϕn(fn(·)) → ϕ0(f0(·)) uniformly on [0, T ];
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(vi) ∂Dn → ∂D0 in Wijsman topology, and, in addition,

D0 ⊆ lim
n→∞

Dn and lim
n→∞Dn ⊆ D0; (2)

(vii) if xnk
∈ ∂Dnk

and xnk
→ x0 for some subsequence (nk)k≥1, then x0 ∈ ∂D0, and (2) holds.

Corollary 2.3. Assume Dn ⇒ D0.

(i) Take a sequence (xk)k≥1. If xk ∈ Dnk
for some subsequence (nk)k≥1, and xk → x0, then x0 ∈ D0. If xk ∈ Dc

nk
,

and xk → x0, then x0 ∈ Dc
0. If xk → x0, and xk ∈ ∂Dnk

, then x0 ∈ ∂D0.
(ii) For every compact subset K ⊆ D0, there exists n0 such that for n > n0, we have: K ⊆ Dn. For every compact

subset K ⊆ D
c

0, there exists n0 such that for n > n0, we have: K ⊆ D
c

n.

When (Dn)n≥1 is a monotone sequence, this concept of convergence can be simplified.

Lemma 2.4. If Dn ↑ D0 or Dn ↓ D0, then Dn ⇒ D0.

The following lemma provides comparison of convergence modes.

Lemma 2.5.

(i) Weak convergence Dn ⇒ D0 is stronger than Wijsman convergence.
(ii) Weak convergence Dn ⇒ D0 is weaker than Hausdorff convergence.

(iii) Dn → D0 in Hausdorff topology if and only if ϕn(x) → ϕ0(x) uniformly on the whole R
d .

Example 1. Fix d ≥ 2, the dimension. Let e1 = (1,0, . . . ,0)′ ∈ R
d . Consider a sequence Dn := U(ne1, n) of open

balls of radius n centered at ne1. This is an increasing sequence: Dn ⊆ Dn+1. It is easy to see that Dn ↑ D0 = {x ∈
R

d | x1 > 0}. By Lemma 2.4, Dn ⇒ D0.

Example 2. Take a sequence Dn = U(xn, an) of open discs in R
d . Then Dn ⇒ D0 if and only if xn → x0 and

an → a0. Indeed, ϕn(x) ≡ an −‖x −xn‖, so the “if” part is obvious. Let us show the “only if” part. Assume Dn ⇒ D0.
Take an arbitrarily small ε > 0. Then by Corollary 2.3, for K = U(x0, a0 − ε) ⊆ D0, there exists n0 such that for
n > n0 we have: K ⊆ Dn = U(xn, an). But if U(y1, a1) ⊆ U(y2, a2), then a1 < a2 and ‖y1 −y2‖ ≤ a2 −a1. Therefore,

a0 − ε < an and ‖xn − x0‖ ≤ an − a0 + ε for n > n0. (3)

We can take arbitrarily small ε > 0. From the first comparison in (3),

lim
n→∞

an ≥ a0. (4)

Similarly, taking K = U(0,N) \ U(x0, a0 + ε) for large N and small ε > 0, we conclude: K ⊆ D
c

0, and so K ⊆ D
c

n

for large enough n. Therefore, an ≤ a0 + ε. This leads to the conclusion that

lim
n→∞an ≤ a0. (5)

Combining (4) and (5), we get: an → a0. Now, from the second comparison in (3) we have: because an → a0 and
ε > 0 is arbitrarily small, xn → x0.

Example 3. Take a sequence (fn)n≥1 of smooth functions Rd−1+ → R such that fn → 0 locally uniformly and fn(0) =
0. For i = 1, . . . , d and x = (x1, . . . , xd)′, we let

x̂i = (x1, . . . , xi−1, xi+1, . . . , xd)′ ∈R
d−1.
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Now, define the following sequence of domains:

Dn = {
x ∈ R

d | xi > fn(x̂i), i = 1, . . . , d
}
.

Then Dn ⇒ D0 = (0,∞)d . The proof is similar to that of Theorem 3.2(i), (ii) below.

2.3. Main result

Consider a sequence (Dn)n≥1 of domains in R
d . Let Vn be non-smooth parts of the boundary for Dn. For each

n = 0,1,2, . . . take a reflected diffusion Zn in Dn with drift vector gn, covariance matrix An, and reflection field rn,
starting from zn = Zn(0). Suppose that for every n = 0,1,2, . . . , this reflected diffusion Zn satisfies Assumptions 1–3.

The main question of this paper is:

Under what assumptions on gn, An, rn, zn, Dn, do we have:

Zn ⇒ Z0 weakly in C
([0, T ],Rd

)
for every T > 0?

First, we need the domains Dn to converge to D0 in some sense. We already defined an appropriate concept of
weak convergence earlier. We also need to have

gn → g0, An → A0, rn → r0

uniformly in some sense. But these functions are defined on different subsets of Rd . A natural way to define conver-
gence is as follows.

Definition 4. Take functions fn : En → R
p , n = 0,1,2, . . . where En ⊆ R

d , and p ≥ 1 is some dimension. We say
that fn → f0 locally uniformly, and write fn ⇒ f0, if one of these two equivalent statements is true:

(i) for every subsequence (nk)k≥1 and any sequence (znk
)k≥1 such that znk

∈ Enk
and znk

→ z0 ∈ E0 we have:
fnk

(znk
) → f0(z0);

(ii) for every T > 0, and for every subsequence (nk)k≥1 and any sequence (xnk
)k≥1 of continuous functions [0, T ] →

R
d such that xn(t) ∈ En for all n = 0,1, . . . we have:

if xnk
(t) → x0(t) uniformly on [0, T ],

then fnk

(
xnk

(t)
) → f0

(
x0(t)

)
uniformly on [0, T ].

Lemma 2.6. These two definitions (i) and (ii) of locally uniform convergence are indeed equivalent, if f0 is continuous
on E0.

The proof of Lemma 2.6 is postponed until Appendix.

Remark 1. In the case En = E0, if the function f0 is continuous, then fn ⇒ f0 is equivalent to the locally uniform
convergence on E0 in the usual sense (that is, uniform convergence on E0 ∩K for every compact set K ⊆R

d ).

Remark 2. Note that An ⇒ A0 if and only if σn(x) := A
1/2
n (x) ⇒ σ0(x) := A

1/2
0 (x). The “if” part follows from the

obvious fact that the operation of taking the square of a matrix is continuous. The “only if” part follows from the fact
that the operation of taking a symmetric positive definite square root of a symmetric positive definite matrix is also
continuous, see for example [7].

Now comes the main result of this paper.

Theorem 2.7. Take Zn for n = 0,1,2, . . . as described above. Assume each Zn, n = 0,1,2, . . . satisfies Assump-
tions 1–3. Suppose that g0, A0, r0 are locally bounded, and Z0 does not hit non-smooth parts of the boundary.
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Assume that

Dn ⇒ D0, gn ⇒ g0, An ⇒ A0, rn ⇒ r0, zn → z0.

Also, assume that at least one of the following conditions (a) or (b) holds true:

(a) for all n ≥ n0, the process Zn does not hit non-smooth parts Vn of the boundary ∂Dn;
(b) for every compact set K ⊆R

d , we have:

lim
n→∞ max

x∈Vn∩K
dist(x,V0) = 0. (6)

Then Zn ⇒ Z0 weakly in C([0, T ],Rd) for every T > 0.

The following is a necessary and sufficient condition for (6).

Lemma 2.8. Condition (b) from Theorem 2.7 holds if and only if for every sequence (xnk
)k≥1 with xnk

∈ Vnk
and

xnk
→ x0 we have: x0 ∈ V0. In particular, we can apply Lemma 2.1(i) and conclude: condition (b) holds if Vn → V0

in Wijsman topology.

If all domains D0,D1,D2, . . . are the same, then we can restate this main result as follows.

Corollary 2.9. Assume Dn = D for n = 0,1,2, . . . , where D has non-smooth parts of the boundary V . Suppose
rn → r0 locally uniformly on ∂D \ V , and gn → g0, σn → σ0 locally uniformly on D \ V . Assume zn → z0. Finally,
assume Z0 does not hit V . Then

Zn ⇒ Z0 weakly in C
([0, T ],Rd

)
for every T > 0.

3. Semimartingale reflected Brownian motion in a convex polyhedron

3.1. Definitions

An open convex polyhedron D is defined as follows. Fix m ≥ 1, the number of edges. Let n1, . . . ,nm ∈ R
d be unit

vectors, and let b1, . . . , bm ∈ R be real numbers. The domain D is defined as

D = {
x ∈ R

d | x · ni > bi, i = 1, . . . ,m
}

(7)

We assume that D �=∅, and for each j = 1, . . . ,m, we have:{
x ∈ R

d | x · ni > bi, i = 1, . . . ,m, i �= j
} �= D.

In this case, the edges of D: Di = {x ∈ D | ni · x = bi}, i = 1, . . . ,m, are (d − 1)-dimensional. The vector ni is
the inward unit normal vector to the face Di , for each i = 1, . . . ,m. The following subset of the boundary is called
non-smooth parts of the boundary, and in our notation, it plays the role of the exceptional set V :

V =
⋃

1≤i<j≤m

(Di ∩ Dj).

We should note that V satisfies Assumption 1. The closure D of D is called a closed convex polyhedron. In the sequel,
we sometimes simply refer to D or D as a convex polyhedron, if it is obvious from the context which one we are
referring to.

Now, let us define an SRBM in the polyhedron D, with drift vector μ ∈ R
d , covariance matrix A, and a d × m-

reflection matrix R. This is a continuous adapted process Z = (Z(t), t ≥ 0), which can be represented as

Z(t) = W(t) + RL(t), t ≥ 0.
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Here, W = (W(t), t ≥ 0) is a d-dimensional Brownian motion with drift vector μ and covariance matrix A, and L =
(L1, . . . ,Lm)′, where for each i = 1, . . . ,m, Li = (Li(t), t ≥ 0) is a real-valued continuous nondecreasing adapted
process with Li(0) = 0, which can increase only when Z ∈ Di . This is denoted by Z = SRBMd(D,R,μ,A). This
is a process which reflects on each face Di , i = 1, . . . ,m, according to the vector ri , the ith column of the reflection
matrix R. A particular case is an SRBM in the orthant S =R

d+, when m = d , ni = ei is the standard ith unit vector in
R

d , and bi = 0. Then R is a d × d-matrix, and the process Z is denoted by SRBMd(R,μ,A).
An SRBM in a convex polyhedron, and, in particular, in the orthant, was a subject of extensive study over the

past few decades. Existence and uniqueness results (weak and strong) are proved in [4,6,16,20]. For an SRBM in the
orthant, see the survey [23].

An SRBM in a convex polyhedron fits into our general framework as follows: define the reflection field r : ∂D \
V → R

d to be r(x) = ri for x ∈ Di \ V , i = 1, . . . ,m. This function is continuous on ∂D \ V . Sufficient conditions
when an SRBMd(D,R,μ,A) does not hit non-smooth parts of the boundary V are known: see [17,22]. Let us give
an example.

Proposition 3.1. Consider a reflected Brownian motion SRBMd(R,μ,A) with A = (aij )i,j=1,...,d , and with R =
(rij )i,j=1,...,d having rii = 1, i = 1, . . . , d ; rij ≤ 0, i �= j ; and the spectral radius of Id −R is strictly less than 1. Then
this SRBM a.s. does not hit non-smooth parts of the boundary if and only if

rij ajj + rjiaii ≥ 2aij , i, j = 1, . . . , d.

3.2. Main result

The following result is a corollary of Theorem 2.7.

Theorem 3.2. Take m sequences of real numbers (bi,n)n≥0, i = 1, . . . ,m. Take m sequences of unit vectors in R
d :

(ni,n)n≥0, i = 1, . . . ,m. Assume that

ni,n → ni,0, bi,n → bi,0, n → ∞, for each i = 1, . . . ,m. (8)

Consider a sequence (Dn)n≥0 of convex polyhedra given by

Dn = {
x ∈ R

d | x · ni,n > bi,n, i = 1, . . . ,m
}
.

Take a sequence of positive definite symmetric d ×d matrices (An)n≥0 such that An → A0 as n → ∞. Take a sequence
(gn)n≥0 in R

d such that gn → g0 as n → ∞. Take a sequence of reflection matrices (Rn)n≥0 such that Rn → R0.
Assume that for every n ≥ 0, the process Zn := SRBMd(Dn,Rn,gn,An), starting from Zn(0) = zn ∈ Dn, exists in the
weak sense and is unique in law, and zn → z0. Assume also that the process Z0 does not hit non-smooth parts of the
boundary ∂D0. Then

Zn ⇒ Z0 weakly in C
([0, T ],Rd

)
for every T > 0.

The proof is postponed until the next subsection. Let us give an application.

Example 4. Consider a fixed convex polyhedron D ⊆R
d . Let

P := {
(R,A) | SRBMd(D,R,μ,A) does not hit non-smooth parts of the boundary

}
.

This definition makes sense because of the following fact: The property that an SRBMd(D,R,μ,A) does not hit
non-smooth parts of the boundary is independent of the starting point z ∈ D and of the drift vector μ. The proof of
this independence statement is similar to that of [17, Proposition 3.3]. From Theorem 3.2, we can conclude that the
process SRBMd(D,R,μ,A), starting from z ∈ D, is continuous as an element of C([0, T ],Rd), for every T > 0, on
the set{

(z,R,μ,A) | z ∈ D,(R,A) ∈P,μ ∈R
d
}
.
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3.3. Proof of Theorem 3.2

We need to show that:

(i) Dn ⇒ D0;
(ii) the condition (b) from Theorem 2.7 is satisfied;

(iii) rn ⇒ r0.

Proof of (i). We use Lemma 2.2(vii). Take a subsequence (nk)k≥1 and let xnk
∈ ∂Dnk

be such that xnk
→ x0. Let

us show that x0 ∈ ∂D0. The boundary ∂Dn for every n consists of m parts:

∂Dn =
m⋃

i=1

Dn,i, Dn,i := {
x ∈R

d | ni,n · x = bi,n,nj,n · x ≥ bj,n, j = 1, . . . ,m, j �= i
}
.

By the pigeonhole principle, there exists an i0 ∈ {1, . . . ,m} and a subsequence (n′
k)k≥1 ⊆ (nk)k≥1 such that xn′

k
∈

Dn′
k,i0

. That is,

ni0,n
′
k
· xn′

k
= bi0,n

′
k
, nj,n′

k
· xn′

k
≥ bj,n′

k
, j = 1, . . . ,m, j �= i0.

Letting k → ∞, we have: ni0,0 · x0 = bi0,0, and nj,0 · x0 ≥ bj,0, j = 1, . . . ,m, j �= i0. Therefore, x0 ∈ D0,i0 ⊆ ∂D0.
Now, let us show (2). Take x0 ∈ D0. Then ni,0 · x0 > bi,0, for i = 1, . . . ,m. From (8), we get: there exists n0 such that
for n > n0 we have: ni,n ·x0 > bi,n, i = 1, . . . ,m. So x0 ∈ Dn for n > n0; therefore, x0 ∈ limDn. Similarly, if x0 ∈ D

c

0,
then there exists a j ∈ {1, . . . ,m} such that nj,0 · x0 < bj,0. From (8), we get: there exists n0 such that for n > n0 we
have: nj,n · x0 < bj,n. Therefore, x0 ∈ D

c

n for n > n0; so x0 ∈ limD
c

n. This completes the proof of (2).
Proof of (ii). We use Lemma 2.8. The domain Dn has non-smooth parts of the boundary

Vn :=
⋃

1≤i<j≤m

Dn,i,j ,

where we denote

Dn,i,j := {
x ∈R

d | x · ni,n = bi,n, x · nj,n = bj,n, x · nq,n ≥ bq,n, q �= i, j
}
.

Now, take a sequence (xnk
)k≥1 with xnk

∈ Vnk
and show that if xnk

→ x0, then x0 ∈ V0. By the pigeonhole principle,
there exist a subsequence (n′

k)k≥1 and 1 ≤ i < j ≤ m such that xn′
k
∈ Dn′

k,i,j
. Therefore,

xn′
k
· ni,n′

k
= bi,n′

k
, xn′

k
· nj,n′

k
= bj,n′

k
, xn′

k
· nq,n′

k
≥ bq,n′

k
, q �= i, j.

Letting k → ∞, we get:

x0 · ni,0 = bi,0, x0 · nj,0 = bj,n′
k
, x0 · nq,n′

k
≥ bq,n′

k
, q �= i, j.

Therefore, x0 ∈ D0,i,j ⊆ V0. This completes the proof of (ii).
Proof of (iii). Take xn ∈ ∂Dn \ Vn, n = 0,1,2, . . . such that xn → x0. We need to prove that rn(xn) → r0(x0). Let

us show that for every subsequence (nk)k≥1, there exists a subsequence (n′
k)k≥1 ⊆ (nk)k≥1 such that

rn′
k
(xn′

k
) → r0(x0).

Indeed, by the pigeonhole principle, there exists a j ∈ {1, . . . ,m} and a subsequence (n′
k)k≥1 such that xn′

k
∈ Dn′

k,j
.

Then, as discussed in the proof of (i) above, x0 ∈ D0,j . Denote the j th column of Rn by rn,j . Then rn(x) ≡ rn,j for
x ∈ Dn,j , by definition of a reflection field for an SRBM in a convex polyhedron. Now, rn′

k
(xn′

k
) = rn′

k,j
→ r0,j =

r0(x0), because Rn → R0. This completes the proof.



Weak convergence of obliquely reflected diffusions 1417

4. Proof of Theorem 2.7

4.1. Outline of the proof

For the rest of this section, fix a time horizon T > 0. The first step is localization. Consider a compact set K ⊆R
d \V

such that z0 ∈ intK. Let

τK,n := inf
{
t ≥ 0 | Zn(t) /∈ intK

}
, n = 0,1,2, . . .

Let ZK
n (t) ≡ Zn(t ∧ τK,n). We say that a continuous adapted process ζ = (ζ(t), t ∈ [0, T ]) behaves as Z0 until it exits

intK if for the stopping time

τK,0 := inf
{
t ≥ 0 | ζ(t) /∈K

}
,

the process ζ(· ∧ τK,0) has the same law as ZK
0 . The following lemma was, in fact, already proved as Lemma 4.1 in

[19].

Lemma 4.1. Assume that for every compact subset K as above every weak limit point of the sequence (ZK
n )n≥1 in

C([0, T ],Rd) behaves as Z0 until it exits intK. Then the conclusion of Theorem 2.7 is true.

Remark 3. If either (a) or (b) holds, then for every compact set K ⊆R
d \V0 there exists nK such that for n ≥ nK, we

have: ZK
n does not hit Vn. Indeed, if (a) holds true, then there is nothing to prove. If (b) holds true, then dist(K,V0) :=

ε0 > 0, and there exists nK such that for n ≥ nK, we have:

max
x∈Vn∩K

dist(x,V0) < ε0.

In this case, for every n ≥ nK we have: K ∩ Vn =∅. Therefore, ZK
n (t) /∈ Vn for these n and for t ∈ [0, T ].

The rest of the proof of Theorem 2.7 tracks the proofs from the paper [19].

Lemma 4.2. The sequence (ϕ0(Z
K
n (·)))n≥1 is tight in C[0, T ].

Now, we can split ZK
n into two components:

ZK
n (t) ≡ Zn(t ∧ τK,n) = Vn(t) + Ln(t), (9)

where for n = 1,2, . . . and t ∈ [0, T ] we define:

WK
n (t) = Wn(t ∧ τK,n),

Vn(t) := zn +
∫ t∧τK,n

0
gn

(
Zn(s)

)
ds +

∫ t∧τK,n

0
σn

(
Zn(s)

)
dWn(s),

Ln(t) :=
∫ t∧τK,n

0
rn

(
Zn(s)

)
dln(s), and lKn (t) = ln(t ∧ τK,n),

and ln is the process l from Definition 1 for the reflected diffusion Zn in place of Z.

Lemma 4.3. The sequence (Vn)n≥1 is tight in C[0, T ].

Lemma 4.4. The sequence (ln)n≥1 is tight in C[0, T ].

Lemma 4.5. The sequence (Ln)n≥1 is tight in C[0, T ].
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The sequence (Wn)n≥1 of Brownian motions is obviously tight in C([0, T ],Rd) (all Brownian motions Wn have
the same distribution). Because each WK

n is a Brownian motion Wn stopped when it exits K, the sequence (WK
n )n≥1

is also tight in C([0, T ],Rd). Using Lemmata 4.3, 4.4 and 4.5, take a weak limit point (V ,L, l,W)′ of the sequence

(
Vn, l

K
n ,LK

n ,WK
n

)′
.

We have: for some subsequence (nk)k≥1,

(
Vnk

, lKnk
,LK

nk
,WK

nk

) ⇒ (V ,L, l,W)′. (10)

By Skorohod representation theorem, see for example [9, Chapter 1], we can assume that the convergence is a.s. on a
common probability space. From (9), we have:

Z(t) := V (t) + L(t) = lim
k→∞ZK

nk
(t),

where the convergence is uniform on [0, T ].

Lemma 4.6. The process W is a d-dimensional Brownian motion (with zero drift vector and identity covariance
matrix), at least until the stopping time τK := inf{t ≥ 0 | Z(t) /∈ intK}. In addition, τK ≤ limk→∞ τK,k a.s.

Lemma 4.6 was proved as Lemma 4.5 in [19].

Lemma 4.7. For t ∈ [0, τK],

V (t) = z0 +
∫ t

0
g0

(
Z(s)

)
ds +

∫ t

0
σ0

(
Z(s)

)
dW(s).

Now, let us state two lemmata which deal with the reflection terms.

Lemma 4.8. On the interval [0, τK], the process l is continuous, nondecreasing, can increase only when Z ∈ ∂D0,
and l(0) = 0.

Lemma 4.9. For t ∈ [0, T ],

L(t) =
∫ t

0
r0

(
Z(s)

)
dl(s).

Now, let us complete the proof of Theorem 2.7. Take a sequence (mk)k≥1. As in (10), there exists a subsequence
(nk)k≥1 such that (10) holds. Combining the statements of Lemmata 4.6, 4.7, 4.8, 4.9, we get: for t ≤ τK,

Z(t) = V (t) + L(t) = z0 +
∫ t

0
g0

(
Z(s)

)
ds +

∫ t

0
σ0

(
Z(s)

)
dW(s) +

∫ t

0
r0

(
Z(s)

)
dl(s),

where W behaves as a Brownian motion until τK, and the process l is continuous, nondecreasing, can increase only
when Z ∈ ∂D, and l(0) = 0. Therefore, Z behaves as Z0 until it exits intK. Apply Lemma 4.1 and finish the proof.

4.2. Proof of Lemma 4.2

The sequence of the processes (ZK
n )n≥1 satisfy the following condition: for every δ > 0,

lim
n→∞ P

(
min

0≤t≤T
ϕ0

(
ZK

n (t)
) ≥ −δ

)
= 1.
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This is analogous to [19, Lemma 4.2], but here it is much easier to prove. Indeed, ZK
n (t) ∈ Dn ∩K. But we know that

Dn ⇒ D0. From Lemma 2.2(iii), we get:

lim
n→∞

min
x∈Dn∩K

ϕ0(x) ≥ 0.

So there exists an n0(δ) such that for n ≥ n0(δ) we have:

min
x∈Dn∩K

ϕ0(x) ≥ −δ. (11)

Suppose that the following event happened:{
ω

(
ϕ0

(
ZK

n (·)), [0, T ], ε) ≥ 3δ
}
. (12)

Then there exist t1, t2 ∈ [0, T ] such that ϕ0(Z
K
n (t1)) − ϕ0(Z

K
n (t2)) ≥ 3δ and |t1 − t2| ≤ ε. Let

s1 := t1 ∧ τK,n, s2 := t2 ∧ τK,n.

Then s1, s2 ∈ [0, τK,n] and |s1 − s2| ≤ ε. Also, ϕ0(Zn(s1)) − ϕ0(Zn(s2)) ≥ 3δ. Now, ϕ0(Zn(s2)) ≥ −δ because of
(11). By continuity of ϕ0(Zn(·)), there exists s0 between s1 and s2 such that

ϕ0
(
Zn(s)

) ≥ δ for s between s1, s0, and ϕ0
(
Zn(s1)

) − ϕ0
(
Zn(s0)

) ≥ δ.

Certainly, |s0 − s1| ≤ ε. But the function ϕ0 is 1-Lipschitz, and so∥∥Zn(s1) − Zn(s0)
∥∥ ≥ ϕ0

(
Zn(s1)

) − ϕ0
(
Zn(s0)

) ≥ δ.

For s ∈ [0, τK,n], we have: Zn(s) ∈ K. Since ϕ0(Zn(s)) ≥ δ for s between s0 and s1, we have: Zn(s1) − Zn(s0) =
Vn(s1) − Vn(s0). Therefore,∥∥Vn(s1) − Vn(s0)

∥∥ = ∥∥Zn(s1) − Zn(s0)
∥∥ ≥ δ. (13)

Taking u1 = s1, u2 = s0, we get from (13) that the following event actually happened:{
ω

(
ϕ0

(
ZK

n (·)), [0, T ], ε) ≥ 3δ
} ⊆ An(ε), (14)

where we define

An(ε) := {∃u1, u2 ∈ [0, T ] | |u1 − u2| ≤ ε,
∥∥Vn(u1) − Vn(u2)

∥∥ ≥ δ
}
.

Now, the sequence (Vn(· ∧ τK,n))n≥1 is tight. Indeed, we can write

Vn(t ∧ τK,n) = zn +
∫ t

0
gn

(
Zn(s)

)
1{s≤τK,n} ds +

∫ t

0
σn

(
Zn(s)

)
1{s≤τK,n} dWn(s).

Now, from Lemma 4.10 below, there exists n1 such that for n ≥ n1,∣∣gn

(
Zn(s)

)∣∣ ≤ Cg,
∣∣σn

(
Zn(s)

)∣∣ ≤ Cσ , s ≤ τK,n.

Therefore, for all s ∈ [0, T ] and n ≥ n1,∣∣gn

(
Zn(s)

)
1{s≤τK,n}

∣∣ ≤ Cg,
∣∣σn

(
Zn(s)

)
1{s≤τK,n}

∣∣ ≤ Cσ .

By [18, Lemma 7.4] (applied to the local martingale part) and the Arzela–Ascoli criterion (applied to the bounded
variation part), the sequence (Vn(· ∧ τK,n))n≥1 is tight. Therefore,

lim
ε→0

sup
n≥1

P
(∃u1, u2 ∈ [0, T ] | |u1 − u2| ≤ ε,

∥∥Vn(u1) − Vn(u2)
∥∥ ≥ δ

) = 0. (15)
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Comparing (15) with (14), we get:

lim
ε→0

sup
n≥1

P
(
ω

(
ϕ0

(
ZK

n (·)), [0, T ], ε) ≥ 3δ
) = 0.

Apply the Arzela–Ascoli criterion and complete the proof.

Lemma 4.10. There exists an n0 and constants Cg , Cσ , Cr such that for n ≥ n0, we have:

sup
x∈K∩Dn

∥∥gn(x)
∥∥ ≤ Cg, sup

x∈K∩Dn

∥∥σn(x)
∥∥ ≤ Cσ , sup

x∈K∩∂Dn

∥∥rn(x)
∥∥ ≤ Cr. (16)

Proof. Let us prove this for gn; the proofs for σn and rn are similar. Assume the converse; then there exist nk → ∞
and xnk

∈ K ∩ Dnk
such that ‖gnk

(xnk
)‖ → ∞. But the set K is compact, so there is a convergent subsequence

xn′
k
→ x0 ∈K ∩ D0. Therefore, gn′

k
(xn′

k
) → g0(x0). This contradiction completes the proof. �

4.3. Proof of Lemma 4.3

For all s ≥ 0, ZK
n (s) ∈K ∩ Dn. We can conclude that the sequence

t �→
∫ t∧τK,n

0
gn

(
ZK

n (s)
)

ds

is tight by Arzela–Ascoli criterion. Next, the sequence

Mn(t) :=
∫ t∧τK,n

0
σn

(
ZK

n (s)
)

dWn(s)

is tight by [19, Lemma 6.4]. Indeed, each Mn is a continuous local martingale with Mn(0) = 0, and

〈Mn〉t =
∫ t∧τK,n

0

∥∥σn

(
ZK

n (s)
)∥∥2 ds.

But ZK
n (s) ∈ Dn ∩K for all s ∈ [0, T ]. Apply Lemma 4.10 and complete the proof.

4.4. Proof of Lemma 4.4

Let us state a technical lemma, which is proved in Appendix.

Lemma 4.11. For every compact subset K ⊆R
d \ V0, there exists a δK ∈ (0,dist(K,V0)/2) such that:

(i) the signed distance function ϕ0 is C2 on the set

K′ := {
x ∈K | ∣∣ϕ0(x)

∣∣ ≡ dist(x, ∂D0) ≤ δK
}; (17)

(ii) for every x ∈ K′, there exists a unique point ζ(x) ∈ ∂D0 \ V0 which is the closest to x on ∂D0: ‖x − ζ(x)‖ =
dist(x, ∂D0) = dist(x, ∂D0 \ V0), and this function ζ is continuous on K′.

Take a C∞ function ψ : R→ R such that

ψ(x) :=
{

x, |x| ≤ δK/2;
0, |x| ≥ δK.

Let us write an Itô equation for the process ψ(ϕ0(Z
K
n (·))), or, equivalently, for (ψ ◦ ϕ0)(Zn(t)) for t ≤ τK,n. We

have: ψ ◦ ϕ0 ∈ C2 on K. Therefore, we can apply Itô formula for the function ψ ◦ ϕ0. We have: ∇(ψ ◦ ϕ0)(x) =
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ψ ′(ϕ0(x))∇ϕ0(x). Abusing the notation, we can write this even if |ϕ0(x)| > δK, where the function ϕ0 might not
be C2, since then ψ ′(ϕ0(x)) = 0 and the left-hand side is also zero. In addition, a similar formula holds for second
derivatives:

θij (x) := ∂2(ψ ◦ ϕ0)(x)

∂xi ∂xj

= ψ ′′(ϕ0(x)
)∂ϕ0

∂xi

∂ϕ0

∂xj

+ ψ ′(ϕ0(x)
) ∂2ϕ0

∂xi ∂xj

.

By Itô’s formula, for t ≤ τK,n,

dψ
(
ϕ0

(
Zn(t)

)) = ψ ′(ϕ0
(
Zn(t)

))∇ϕ0
(
Zn(t)

) · dZn(t) +
d∑

i=1

d∑
j=1

θij

(
Zn(t)

)
d
〈
(Zn)i, (Zn)j

〉
t
. (18)

Now, from (9) and the fact that Ln has finite variation, we get: for t ≤ τK,n,

d
〈
(Zn)i, (Zn)j

〉
t
= (

σnσ
T
n

)
ij

(
Zn(t)

)
dt.

From the properties of ϕ0 and ψ it follows that the function ψ ′(ϕ0(x))∇ϕ0(x), as well as each θij is bounded on K.
Apply Lemma 4.10 and note that Zn(t) ∈ Dn ∩K for t ≤ τK,n. By the Arzela–Ascoli criterion, the following sequence
is tight:

t �→
∫ t∧τK,n

0

d∑
i=1

d∑
j=1

θij

(
Zn(t)

)
d
〈
(Zn)i, (Zn)j

〉
t

Take the first term in the right-hand side of (18)

ψ ′(ϕ0
(
Zn(t)

))∇ϕ0
(
Zn(t)

) · dZn(t) = ψ ′(ϕ0
(
Zn(t)

))∇ϕ0
(
Zn(t)

) · gn

(
Zn(t)

)
dt

+ ψ ′(ϕ0
(
Zn(t)

))∇ϕ0
(
Zn(t)

) · σn

(
Zn(t)

)
dWn(t)

+ ψ ′(ϕ0
(
Zn(t)

))∇ϕ0
(
Zn(t)

) · rn
(
Zn(t)

)
dln(t).

By Lemma 4.10 and the Arzela–Ascoli criterion, the following sequence is tight:

t �→
∫ t∧τK,n

0
ψ ′(ϕ0

(
Zn(s)

))∇ϕ0
(
Zn(s)

) · gn

(
Zn(s)

)
ds

Next, the following sequence of continuous local martingales

Mn(t) :=
∫ t∧τK,n

0
ψ ′(ϕ0

(
Zn(s)

))∇ϕ0
(
Zn(s)

) · σn

(
Zn(s)

)
dWn(s)

is tight by Lemma 6.4 from [19]. Indeed,

〈Mn〉t =
∫ t∧τK,n

0
ψ ′2(ϕ0

(
Zn(s)

))∥∥∇ϕ0
(
Zn(s)

) · σn

(
Zn(s)

)∥∥2 ds,

and the derivative of this function with respect to t is uniformly bounded. (This follows from the fact that ψ ′ is
bounded on R, ϕ0 is bounded on K, and from Lemma 4.10. By Lemma 6.7 from the same article [19], the sequence
ψ(ϕ0(Z

K
n (·))) is itself tight. Therefore, the sequence

Nn(t) :=
∫ t∧τK,n

0
ψ ′(ϕ0

(
Zn(s)

))∇ϕ0
(
Zn(s)

) · rn
(
Zn(s)

)
dln(s)
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is tight in C([0, T ],Rd). But the process ln can grow only when Zn ∈ ∂D0, that is, when ϕ0(Zn(s)) = 0. For these s

we have: ψ ′(ϕ0(Zn(s))) = 1, because ψ ′(0) = 1. Therefore, we can rewrite

Nn(t) :=
∫ t∧τK,n

0
∇ϕ0

(
Zn(s)

) · rn
(
Zn(s)

)
dln(s). (19)

Lemma 4.12. There exists n0 and ε0 > 0 such that for n ≥ n0, for x ∈ ∂Dn ∩K, we have: ∇ϕ0(x) · rn(x) ≥ ε0.

Proof. Assume the converse. Then there exist a subsequence (nk)k≥1 and a corresponding sequence of points xnk
∈

∂Dnk
∩K such that

∇ϕ0(xnk
) · rnk

(xnk
) ≤ 1

k
.

Since K is compact, there exists a subsequence (n′
k)k≥1 such that xn′

k
→ x0. Then x0 ∈ K ∩ ∂D0. For all k ≥ k0,

xn′
k

∈ K′ (and x0 ∈ K′). But ∇ϕ0 is continuous on K′. Therefore, ∇ϕ0(xnk
) → ∇ϕ0(x0). Also, since rn ⇒ r0, we

have: rnk
(xnk

) → r0(x0). Therefore, passing to the limit, we have: ∇ϕ0(x0) · r0(x0) ≤ 0. But ∇ϕ0(x0) has the same
direction as the inward unit normal vector n(x0) to ∂D0, and by the properties of the reflection field r0 we have:
n(x0) · r0(x0) > 0. This contradiction completes the proof. �

In view of Lemma 4.12, we can rewrite (19) as

ln(t ∧ τK,n) :=
∫ t∧τK,n

0

[∇ϕ0
(
Zn(s)

) · rn
(
Zn(s)

)]−1 dNn(t).

But (Nn)n≥1 is tight, and by Lemma 4.12 we have:

[∇ϕ0
(
Zn(s)

) · rn
(
Zn(s)

)]−1 ≤ ε−1
0 .

Therefore, ln(· ∧ τK,n) is tight. The proof is complete.

4.5. Proof of Lemma 4.5

Note that the process ln can grow only when Zn ∈ ∂Dn. By Lemma 4.10, for n ≥ n0,

sup
0≤s≤t∧τK,n

∥∥rn
(
Zn(s)

)∥∥ ≤ Cr.

Therefore, the sequence (Ln)n≥1 is also tight.

4.6. Proof of Lemma 4.7

Without loss of generality, assume nk = k for convenience of notation. We have: ZK
k → Z uniformly on [0, T ], and

ZK
k (s) ∈ Dk ∩K, and Z(s) ∈ D0 ∩K for s ∈ [0, T ].

Recall the definition of locally uniform convergence of functions defined on different subsets of Rd . Since gn ⇒ g0,
σn ⇒ σ0 by Remark 2, and

ZK
k (s) → Z(s) uniformly on [0, T ],

by Lemma 2.2(v) we have:

gk

(
ZK

k (s)
) → g0

(
Z(s)

)
, σk

(
ZK

k (s)
) → σ0

(
Z(s)

)
. (20)
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From Lemma 4.14, we have:∫ t∧τK,k

0
σk

(
ZK

k (s)
)

dWk(s) =
∫ t

0
σk

(
ZK

k (s)
)

dWK
k →

∫ t

0
σ0

(
Z(s)

)
dW(s), (21)

where the convergence is understood in probability. Therefore, there exists a subsequence (km)m≥1 such that∫ t∧τK,km

0
σkm

(
ZK

km
(s)

)
dWkm(s) →

∫ t

0
σ0

(
Z(s)

)
dW(s) a.s. uniformly on [0, T ]. (22)

Lemma 4.13. Uniformly on [0, τK], we have:∫ t∧τK,n

0
gk

(
ZK

k (s)
)

ds →
∫ t∧τK

0
g0

(
Z(s)

)
ds.

Proof. For every ε > 0 there exists k1(ε) such that for k ≥ k1(ε) we have: τK,k ≤ τK + ε, and so for t ≤ τK we have:
|t ∧ τK − t ∧ τK,k| ≤ ε. Therefore,∣∣∣∣

∫ t∧τK

0
g0

(
Z(s)

)
ds −

∫ t∧τK,k

0
g0

(
Z(s)

)
ds

∣∣∣∣ ≤ ε · max
[0,T ]

∣∣g0
(
Z(s)

)∣∣.
From (20), we have: gk(Z

K
k (t)) → g0(Z(t)) uniformly on [0, T ]. Therefore, there exists nε such that for n ≥ nε we

have:

max
t∈[0,T ]

∥∥gn

(
ZK

n (t)
) − g0

(
Z(t)

)∥∥ ≤ ε. (23)

We have: for n ≥ nε ,∣∣∣∣
∫ t∧τK,n

0
gn

(
ZK

n (s)
)

ds −
∫ t∧τK,n

0
g0

(
Z(s)

)
ds

∣∣∣∣ ≤ T · max
t∈[0,T ]

∥∥gn

(
ZK(t)

) − g0
(
Z(t)

)∥∥ ≤ T ε. (24)

Combining (23) and (24), we have: for n ≥ nε ,∣∣∣∣
∫ t∧τK

0
g0

(
Z(s)

)
ds −

∫ t∧τK,n

0
gn

(
ZK

n (s)
)

ds

∣∣∣∣ ≤ ε ·
(
T + max

[0,T ]
∣∣g0

(
Z(s)

)∣∣).

Since ε > 0 is arbitrary, the proof is complete. �

Combining Lemma 4.13 with (22) and zn → z0, we get: uniformly on [0, τK],

Vkm(t) = zkm +
∫ t∧τK,km

0
gkm

(
ZK

km
(s)

)
ds +

∫ t∧τK,km

0
σkm

(
ZK

km
(s)

)
dWkm(s)

→ z0 +
∫ t∧τK

0
g0

(
Z(s)

)
ds +

∫ t∧τK

0
σ0

(
Z(s)

)
dW0(s).

But Vn → V0 a.s. uniformly on [0, T ]. This completes the proof of Lemma 4.7.

Lemma 4.14. For m ≥ 1, let Yk = (Yk(t),0 ≤ t ≤ T ) be an R
d -valued continuous adapted process, and let Uk =

(Uk(t),0 ≤ t ≤ T ) be an R
d -valued continuous local martingale. If in C([0, T ],Rd × R

d) we have: (Yk,Uk) ⇒
(Y,U), k → ∞, then U is a semimartingale, and we have the following convergence in probability:∫ t

0
Yk dUk →

∫ t

0
Y dU uniformly on t ∈ [0, T ].

This lemma was proved in [12, Theorem 5.10]; see also [8, Lemma 3.6]. Both of these statements are more general
than Lemma 4.14. For convenience, we state this result here in the form which is convenient for our use.
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4.7. Proof of Lemma 4.8

As before, assume for simplicity that nk = k. Fix ε > 0 and let us prove these properties for l on [0, τK − ε]. Note
that there exists n(ε) such that for k ≥ n(ε) we have: τK ≤ τK,k + ε. Now, lKk → l(t) uniformly on [0, T ]; but
lKk (t) ≡ lk(t ∧ τK,k) ≡ lk(t) for t ∈ [0, τK,k] ⊆ [0, τK − ε]. Now, lk is nondecreasing and lk(0) = 0; therefore, the
same properties hold for l on [0, τK − ε].

Fix δ > 0 and let us show that l does not increase on [t1, t2] ⊆ [0, τK − ε] if dist(Z(t), ∂D0) > δ for t ∈ [t1, t2].
Indeed, since ZK

k → Z uniformly on [0, T ], by Lemma 2.2(v) we have:

ϕk(Zk) → ϕ0(Z) uniformly on [t1, t2].
But dist(Zk(t), ∂Dk) ≡ |ϕk(Zk(t))|. Therefore,

dist
(
Zk(t), ∂Dk

) → dist
(
Z(t), ∂D0

)
uniformly on [t1, t2].

Therefore, for k ≥ m(δ), t ∈ [t1, t2], we have: dist(Zk(t), ∂Dk) ≥ δ/2. Meanwhile, lk does not grow on [t1, t2]: that is,
lk(t1) = lk(t2). Let k → ∞ and conclude: l(t1) = l(t2). Thus, l does not grow on [t1, t2].

Now, let us prove a more general statement: if [t1, t2] ⊆ [0, τK] and dist(Z(t), ∂D0) > 0 for t ∈ [t1, t2], then l(t1) =
l(t2). Indeed, assume l(t1) < l(t2). By continuity of l, there exists ε > 0 such that l(t1) < l(t2 − ε). By continuity of
Z, there exists δ > 0 such that dist(Z(t), ∂D0) ≥ δ for t ∈ [t1, t2]. Now, repeat the previous argument and conclude:
l(t1) = l(t2 − ε). This contradiction completes the proof.

4.8. Proof of Lemma 4.9

As before, we assume nk = k without loss of generality. There exists n0 such that for n ≥ n0, we have: for x ∈ ∂Dn∩K,
|ϕ0(x)| ≤ δK. This follows from Lemma 2.2. In other words, for n ≥ n0 we have: ∂Dn ∩K ⊆K′, where K′ was defined
in (17). By Lemma 4.11(ii), the distance function ζ is continuous on K′. Note that

εn := max
x∈K∩∂Dn

∣∣ϕ0(x)
∣∣ → 0.

For x ∈ K0, we have: ‖ζ(x) − x‖ = dist(x, ∂D0) = |ϕ0(x)| ≤ εn. Therefore, by definition of locally uniform conver-
gence rn ⇒ r0, we have:

sup
x∈K∩∂Dn

∥∥rn(x) − r0
(
ζ(x)

)∥∥ → 0. (25)

Therefore, we get:∫ t

0
rk

(
ZK

k (s)
)

dlKk (s) −
∫ t

0
r0

(
Z(s)

)
dl(s) = I1(k) + I2(k) + I3(k),

I1(k) :=
∫ t

0

[
rk

(
ZK

k (s)
) − r0

(
ζ
(
ZK

k (s)
))]

dlKk (s),

I2(k) :=
∫ t

0

[
r0

(
ζ
(
ZK

k (s)
)) − r0

(
Z(s)

)]
dl(s),

I3(k) :=
∫ t

0
r0

(
ζ
(
ZK

k (s)
))

dlKk (s) −
∫ t

0
r0

(
ζ
(
ZK

k (s)
))

dl(s).

By Lemma 6.2 from [19], ‖I1(k)‖ → 0 as k → ∞. From the relation (25), the fact that each lKk is nondecreasing, and
the convergence lKk (T ) → l(T ), we have: ‖I3(k)‖ → 0. Finally, ζ(Z(s)) = Z(s) when Z(s) ∈ ∂D0. But the function
l can grow only when Z(s) ∈ ∂D0: this follows from Lemma 4.8. Therefore,∫ t

0
r0

(
Z(s)

)
dl(s) =

∫ t

0
r0

(
ζ
(
Z(s)

))
dl(s).
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The function ζ is continuous on K0, and since ZK
k → Z uniformly on [0, T ], we have: ζ(ZK

k ) → ζ(Z) uniformly on
[0, T ]. Therefore, as k → ∞,

∥∥I2(k)
∥∥ ≤ max

0≤s≤T

∥∥r0
(
Z(s)

) − r0
(
ζ
(
ZK

k (s)
))∥∥ · l(T ) → 0.

5. Convergence to a non-reflected diffusion

5.1. Convergence of domains to the whole space

Let us modify the definition of weak convergence Dn ⇒ D0 for the case D0 =R
d . The main question is how to define

ϕ0(x), the signed distance from x ∈ R
d to the boundary ∂D0, because the set D0 = R

d has no boundary: ∂Rd = ∅.
Intuitively, we can approximate R

d by a very large ball U(0, r). Take a point x ∈ R
d . Since r is large, x ∈ U(0, r),

and the distance from x to ∂U(0, r) is equal to r − ‖x‖, which is also large. Therefore, it makes sense to define
ϕ0(x) := ∞ for all x ∈R

d .

Definition 5. We say that a sequence of domains (Dn)n≥1 converges weakly to R
d and write Dn ⇒ R

d , if ϕn(x) → ∞
for all x ∈R

d .

The following is an equivalent characterization of this weak convergence. The proof is postponed until Appendix.

Lemma 5.1. Dn ⇒ R
d if and only if for every compact set K ⊆ R

d there exists an n0 such that for n > n0 we have:
K ⊆ Dn.

Let us state an analogue of Theorem 2.7 for the case when Dn ⇒ R
d , In this case, reflected diffusions Zn converge

weakly to a non-reflected diffusion Z0 in R
d . Take a sequence (Dn)n≥1 of domains in R

d . For each n ≥ 1, consider
a reflected diffusion Zn = (Zn(t), t ≥ 0) in Dn with drift vector gn(·), covariance matrix An(·), and reflection field
rn(·), starting from Zn(0) = zn. We suppose that Assumptions 1, 2, 3 are satisfied. We do not impose a condition that
Zn does not hit non-smooth parts Vn of the boundary ∂Dn. Define a drift coefficient g0 : Rd → R

d and a covariance
matrix A0 :Rd →Pd . For each x ∈R

d , let σ0(x) = A1/2(x). Consider a non-reflected diffusion process

dZ0(t) = g0
(
Z0(t)

)
dt + σ0

(
Z0(t)

)
dW(t), Z0(0) = z0.

Assume it exists and is unique in the weak sense.

Theorem 5.2. Assume Dn ⇒R
d weakly, and gn ⇒ g0, An ⇒ A0, zn → z0. Then Zn ⇒ Z0 in C([0, T ],Rd) for every

T > 0.

Proof. We modify the proof of Theorem 2.7 a bit. First, fix a compact set K ⊆ R
d such that z0 ∈ intK. It suffices

to show that ZK
n ⇒ ZK

0 , then apply Lemma 4.1. (It is stated and proved for a non-reflected Z0 in the same way as
for the case of a reflected diffusion Z0.) By Lemma 5.1, there exists n0 such that K ⊆ Dn for n > n0. So Ln(t) ≡ 0,
and ZK

n ≡ Vn (we use the notation from the proof of Theorem 2.7). The rest of the proof is reduced to Lemmata 4.3
and 4.7. �

5.2. Convergence of domains to “almost” the whole space

Now, assume Dn ⇒ D0 = R
d \ M, where M ⊆ R

d is a “set of dimension” less than or equal to d − 2. Then the
limiting diffusion Z0 (under some conditions) does not hit M, so this is actually a non-reflected diffusion. We use the
notation of the previous subsection. We again suppose that Assumptions 1, 2, 3 are satisfied, and we do not impose a
condition that Zn does not hit non-smooth parts Vn of the boundary ∂Dn.
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Theorem 5.3. In the notation of the previous subsection, assume

Dn ⇒ D0 =R
d \M, gn ⇒ g0, An ⇒ A0, zn → z0.

Finally, assume that the diffusion Z0 = (Z0(t), t ≥ 0), defined by

dZ0(t) = g0
(
Z0(t)

)
dt + σ0

(
Z0(t)

)
dW(t), Z0(0) = z0,

a.s. does not hit the set M:

P
(∃t ≥ 0 : Z0(t) ∈ M

) = 0.

Then Zn ⇒ Z0 in C([0, T ],Rd).

Remark 4. Sufficient conditions for Z0 not hitting M, when M is a submanifold in R
d of dimension less than or

equal to d − 2, can be found in [14,15].

Proof. As in the proof of Theorem 5.2, we follow the proof of Theorem 2.7. Fix any compact set K ⊆ D0. It suffices
to prove that ZK

n ⇒ ZK
0 . By Corollary 2.3, there exists n0 such that for n > n0, we have: K ⊆ Dn. Now, we just need

to repeat the rest of the proof of Theorem 5.2. �

Appendix

A.1. Proof of Lemma 2.1

(i) Similar to the proof of Lemma 2.2 below.
(ii) Fix ε > 0 and let us show that dist(x0,E0) < 2ε. There exists n1 such that for n ≥ n1 we have: ‖xn − x0‖ < ε.

The set K := {xn | n ≥ 1} is compact; therefore, dist(x,En) → dist(x,E0) uniformly on K, and there exists n2 such
that for n ≥ n2, we have: |dist(x,En) − dist(x,E0)| < ε for x ∈K. Take n = n1 ∨ n2. Then

dist(x0,E0) ≤ dist(x0,En) + ‖xn − x0‖ ≤ dist(xn,En) + ε + ‖xn − x0‖ ≤ 2ε.

Since ε > 0 is arbitrary, dist(x0,E0) = 0; therefore, x0 ∈ E0.

A.2. Proof of Lemma 2.2

(i) ⇒ (iii). Assume the converse: there exists a compact subset K ⊆ R
d , a positive number ε > 0 and a sequence

xnk
∈ K such that∣∣ϕnk

(xnk
) − ϕ0(xnk

)
∣∣ ≥ ε.

By compactness, there exists a limit point x0 := limxn′
k
. There exists k0 such that for k ≥ k0, we have: ‖xn′

k
− x0‖ ≤

ε/3. But the signed distance functions ϕ0 and ϕn′
k

are 1-Lipschitz, see [5]. Therefore, for k ≥ k0 we get:

∣∣ϕn′
k
(xn′

k
) − ϕn′

k
(x0)

∣∣ ≤ ε

3
,

∣∣ϕ0(xn′
k
) − ϕ0(x0)

∣∣ ≤ ε

3
.

Thus, for k ≥ k0 we have:

∣∣ϕn′
k
(x0) − ϕ0(x0)

∣∣ ≥ ε − ε

3
− ε

3
= ε

3
.

This contradicts the condition (i).
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(i) ⇔ (ii). Note that dist(x,Dn) ≡ (ϕn(x))− and dist(x,Dc
n) ≡ (ϕn(x))+. A sequence (an)n≥1 of real numbers

converges to a0 if and only if (an)+ → (a0)+ and (an)− → (a0)−. The “only if” part follows from the fact that
x �→ x+ and x �→ x− are continuous functions; the “if” part follows from the fact that x = x+ − x−. The rest is trivial.

(ii) ⇒ (iv). Since the function ϕ0 is 1-Lipschitz, as proved in [5], we have:

max
xn,x0∈K‖xn−x0‖≤εn

∣∣ϕn(xn) − ϕ0(x0)
∣∣ ≤ max

xn,x0∈K‖xn−x0‖≤εn

∣∣ϕn(xn) − ϕ0(xn)
∣∣ + εn → 0.

(iv) ⇒ (v). Take K = {z ∈ R
d | ‖z‖ ≤ max‖f0‖ + 1} and εn := max‖fn(t) − f0(t)‖ for n = 1,2, . . .

(v) ⇒ (i). Take constant functions fn(t) ≡ x for t ∈ [0, T ] and n = 0,1,2, . . .

(i) ⇒ (vi). Note that dist(x, ∂Dn) ≡ |ϕn(x)| for x ∈ R
d and n = 0,1,2, . . . Since ϕn(x) → ϕ0(x), we have:

|ϕn(x)| → |ϕ0(x)|. Now, let us show (2). Take x ∈ D0. Then limϕn(x) = ϕ0(x) > 0, and so there exists nx such
that for n ≥ nx we get: ϕn(x) > 0, and therefore x ∈ Dn. Thus, x ∈ limDn. We conclude that D0 ⊆ limDn. Similarly,
we can prove that D

c

0 ⊆ limn→∞ D
c

n, which is equivalent to limn→∞ Dn ⊆ D0.
(vi) ⇒ (i). We have: |ϕn(x)| → |ϕ0(x)| for every x ∈ R

d , as n → ∞. Consider three cases:
Case 1: ϕ0(x) > 0, which is equivalent to x ∈ D0. Using the first inclusion from (2), we get: x ∈ limDn, and so

there exists nx such that for n ≥ nx , we have: x ∈ Dn, and ϕn(x) > 0. Therefore, ϕn(x) = |ϕn(x)| → |ϕ0(x)| = ϕ0(x).
Case 2: ϕ0(x) < 0, which is equivalent to x ∈ D

c

0. Then we use the second inclusion from (2) and complete the
proof similarly to Case 1.

Case 3: ϕ0(x) = 0. Then |ϕn(x)| → |ϕ0(x)| = 0, and so ϕn(x) → 0.
(vi) ⇒ (vii). Follows from Lemma 2.1(ii) above.
(vii) ⇒ (vi). Fix x ∈R

d and let us show that dist(x, ∂Dn) → dist(x, ∂D0).

Lemma A.1. Assume (2) holds. Take x0 ∈ ∂D0. Then there exists a sequence (xn)n≥1 such that xn ∈ ∂Dn and
xn → x0.

Proof. Assume the converse: there exists a neighborhood U(x0, ε) and a subsequence (nk)k≥1 such that for k ≥ 1, we
have: U(x0, ε) ∩ ∂Dnk

=∅. Since x0 ∈ ∂D0, there exists y ∈ U(x0, ε) ∩ D0 and z ∈ U(x0, ε) ∩ D
c

0. Then y ∈ limDn;
that is, y ∈ Dn for n > ny ; and z ∈ limD

c

n, that is, z ∈ D
c

n for n > nz. Let k0 be large enough so that for k ≥ k0,
nk > ny ∨ nz. Then y ∈ Dnk

and z ∈ D
c

nk
for k ≥ k0. Therefore, [y, z] ∩ ∂Dnk

�= ∅; take wk ∈ [y, z] ∩ ∂Dnk
. But

[y, z] ⊆ U(x0, ε), because the open ball U(x0, ε) is convex. Therefore, U(x0, ε) ∩ ∂Dnk
�= ∅. This contradiction

completes the proof. �

Let yn ∈ R
d be the closest point on ∂Dn to x: ‖x − yn‖ = dist(x, ∂Dn).

Lemma A.2. The sequence (yn)n≥1 is bounded.

Proof. Consider three cases:
Case 1: x ∈ D0. Then x ∈ D0 ⊆ limn→∞ Dn. Therefore, x ∈ Dn for n ≥ nx . Now, take any y ∈ D

c

0; then y ∈ D
c

0 ⊆
limn→∞ D

c

n. Therefore, y ∈ Dn for n ≥ ny . Take n ≥ nx ∨ny ; then x ∈ Dn and y ∈ D
c

n. Therefore, [x, y] ∩ ∂Dn �=∅.
Take some un ∈ [x, y] ∩ ∂Dn; then ‖x − yn‖ ≤ dist(x, ∂Dn) ≤ ‖x − un‖ ≤ ‖x − y‖. Thus, ‖yn‖ ≤ ‖x‖ + ‖x − y‖.

Case 2: x ∈ D
c

0. This is similar to Case 1.
Case 3: x ∈ ∂D0. Use Lemma A.1 below and find a sequence xn ∈ ∂Dn such that xn → x. Then ‖x − yn‖ =

dist(x, ∂Dn) ≤ ‖x − xn‖ → 0. Therefore, yn → x, and (yn)n≥1 is bounded. �

Let us show that

dist(x, ∂D0) ≤ lim
n→∞

dist(x, ∂Dn). (A.1)

Take a subsequence (nk)k≥1. It suffices to show that there exists a subsequence (n′
k)k≥1 ⊆ (nk)k≥1 such that

dist(x, ∂D0) ≤ lim
k→∞ dist(x, ∂Dn′

k
).
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The sequence (ynk
)k≥1 is bounded by Lemma A.2. Therefore, there exists a subsequence (n′

k)k≥1 ⊆ (nk)k≥1 such that
yn′

k
→ y. By assumption (vii), y ∈ ∂D0. Therefore,

dist(x, ∂D0) ≤ ‖x − y‖ = lim
k→∞‖x − yn′

k
‖ = lim

k→∞ dist(x, ∂Dn′
k
).

This proves (A.1). Now, let us show that

dist(x, ∂D0) ≥ lim
n→∞

dist(x, ∂Dn). (A.2)

By Lemma A.1, there exists a sequence yn ∈ ∂Dn such that yn → y0. Therefore, dist(x, ∂D0) = ‖x − y0‖ =
limn→∞‖x − yn‖. But ‖x − yn‖ ≤ dist(x, ∂Dn). This proves (A.2).

A.3. Proof of Lemma 4.11

We need only to prove continuity of ζ , the rest is done in [19, Lemma 3.2]. Let xn → x0 in K0, and take y0, a limit point
of ζ(xn). Without loss of generality assume y0 = limn→∞ ζ(xn). Then dist(xn, ∂D0) = ‖xn − ζ(xn)‖ → ‖x0 − y0‖.
But the distance function is continuous. So ‖x0 − y0‖ = dist(x0, ∂D0). Since the closest point on ∂D0 to x0 is unique,
we have: y0 = ζ(x0). The proof is complete.

A.4. Proof of Corollary 2.3

(i) The proof is trivial.
(ii) Let us prove the first statement, when K ⊆ D0; the second one is similar. From Lemma 2.2(iii) we have:

ϕn(x) → ϕ0(x) > 0 uniformly on K, and ϕ0 is continuous on K. Therefore, there exists ε > 0 such that ϕ0(x) ≥ ε for
x ∈ K. By the uniform convergence, there exists n0 such that for n > n0 we have: ϕn(x) ≥ ε/2 > 0 for x ∈ K. This
completes the proof.

A.5. Proof of Lemma 2.4

Let us show the first case, when Dn ↑ D0; the second case is similar.
Case 1: x ∈ D. Then ϕ0(x) =: r > 0. There exists nx such that for n ≥ nx we have: x ∈ Dn. Therefore, ϕn(x) > 0

for n ≥ nx , and ϕn(x) = dist(x, ∂Dn) = dist(x,Dc
n). We have: (ϕn(x))n≥nx is a nondecreasing sequence, and ϕn(x) ≤

ϕ0(x) for each n ≥ nx .
Now, fix ε > 0 and consider the closed ball B(x, r −ε) ⊆ D. We have: B(x, r −ε) ⊆ ∪Dn. But this ball is compact,

so there exists a finite subcover Dn1 , . . . ,Dnm . Take kx := max(n1, . . . , nm,nx). Then B(x, r − ε) ⊆ Dkx . Therefore,
ϕkx (x) ≥ r − ε. By monotonicity of (ϕn(x))n≥nx , we have: ϕn(x) ≥ r − ε = ϕ0(x) − ε for n ≥ kx . Since ε > 0 is
arbitrary, this proves that ϕn(x) → ϕ0(x) as n → ∞.

Case 2: x /∈ D. Then ϕ0(x) ≤ 0. Therefore, dist(x, ∂D0) = |ϕ0(x)|. Take y ∈ ∂D0 such that ‖y − x‖ = |ϕ0(x)|.
Fix ε > 0; then there exists z ∈ D such that ‖z − y‖ ≤ ε. Therefore, ‖z − x‖ ≤ ‖z − y‖ + ‖y − x‖ ≤ |ϕ0(x)| + ε.
Because D = ⋂

Dn, there exists n0 such that z ∈ Dn for n ≥ n0. Therefore, dist(x,Dn) ≤ |ϕ0(x)| + ε. But x /∈ Dn for
all n ≥ 1; therefore, −dist(x,Dn) = ϕn(x). But dist(x,Dn) ≤ ‖x − z‖ ≤ |ϕ0(x)| + ε. Therefore,

ϕn(x) ≥ −∣∣ϕ0(x)
∣∣ − ε = ϕ0(x) − ε for n ≥ n0. (A.3)

But Dn ↑ D0, and x /∈ D0. Therefore, (dist(x,Dn))n≥1 is nonincreasing, and so (ϕn(x) = −dist(x,Dn))n≥1 is non-
decreasing. Also, dist(x,Dn) ≥ dist(x,D0), and so

ϕn(x) = −dist(x,Dn) ≤ −dist(x,D0) = ϕ0(x).

Therefore, (ϕn(x))n≥1 is a nonincreasing sequence, bounded below by ϕ0(x). Together with (A.3), this gives ϕn(x) →
ϕ0(x) as n → ∞.
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A.6. Proof of Lemma 2.5

(i) The fact that Dn ⇒ D0 implies Wijsman convergence follows from Lemma 2.2(ii). Now, let us give a counterexam-
ple which shows that weak convergence does not coincide with Wijsman convergence. Take the following sequence
of domains in R

2:

Dn := int
[
(R×R+) \ ([

2−n−1,2−n
] × [0,1])], n = 1,2, . . . ,

and the limiting domain D0 = R× (0,∞). Then Dn → D0 in Wijsman topology, but not in the weak sense. Indeed,
for x0 = (0,1)′ we have: ϕn(x0) ≤ 2−n−1, because the distance from x0 to the boundary ∂Dn is less than or equal to
the distance to the point (2−n−1,1)′ on the boundary. But ϕ0(x0) = 1, because the distance from x0 to the boundary
∂D0 (which is the x1-axis) is equal to 1. This contradicts that ϕn(x0) → ϕ0(x0).

(ii) Now, Hausdorff convergence implies weak convergence: if Dn → D0 in Hausdorff sense, then Dn → D0
in Wijsman sense, but also Dc

n → Dc
0 in Hausdorff sense, so Dc

n → Dc
0 in Wijsman sense; use Lemma 2.2(ii) and

complete the proof.
But weak convergence does not imply Hausdorff convergence. Indeed, let d = 2 and D0 := R

+
2 , and Dn be the

result of rotation of D0 counterclockwise by angle αn around the origin, where αn → 0. Then Dn ⇒ D0 (this is a
particular case of Theorem 3.2 below), but not Dn → D0 in Hausdorff sense.

(iii) If ϕn(x) → ϕ0(x) uniformly on R
d , then (ϕn(x))− = dist(x,Dn) → dist(x,D0) = (ϕ0(x))− uniformly on R

d .
Therefore, Dn → D0 in Hausdorff topology. Conversely, if Dn → D0 in Hausdorff topology, then Dc

n → Dc
0 in Haus-

dorff topology, and dist(x,Dn) ≡ (ϕn(x))− → dist(x,D0) ≡ (ϕ0(x))−, dist(x,Dc
n) ≡ (ϕn(x))+ → dist(x,Dc

0) ≡
(ϕ0(x))+, uniformly on R

d . Adding these convergence relations and noting that a ≡ a+ +a− for a ∈ R
d , we complete

the proof.

A.7. Proof of Lemma 2.6

(i) ⇒ (ii). Without loss of generality, assume nk = k. Take a sequence (xn)n≥0 of functions, as described in Lemma 2.6.
Assume that fn(xn) does not converge to f0(x0) uniformly. Then there exists ε > 0, a subsequence (mk)k≥1, and a
sequence (tmk

)k≥1 in [0, T ] such that∣∣fmk

(
xmk

(tmk
)
) − f0

(
x0(tmk

)
)∣∣ ≥ ε. (A.4)

We can extract a convergent subsequence tm′
k
→ t0 ∈ [0, T ]. Then

xm′
k
(tm′

k
) → x0(t0), and x0(tm′

k
) → x0(t0).

Therefore, since fn → f0 locally uniformly and f0 is continuous on E0,

fm′
k

(
xmk

(tmk
)
) → f0

(
x0(t0)

)
, and f0

(
x0(tmk

)
) → f0

(
x0(t0)

)
.

This contradicts (A.4).
(ii) ⇒ (i). Take xnk

(t) ≡ znk
and x0(t) ≡ z0.

A.8. Proof of Lemma 2.8

Assume the condition (b) holds. Take a sequence xnk
∈ Vnk

such that xnk
→ x0. Since the set K := {xnk

| k = 1,2, . . .}
is compact, from condition (b) we have: dist(xnk

,V0) → 0. The function dist(·,V0) is continuous. Therefore,
dist(x0,V0) = 0, which means x0 ∈ V0 (because the set V0 is closed). Conversely, assume that for every sequence
(xnk

)k≥1 such that xnk
∈ Vnk

and xnk
→ x0 we have: x0 ∈ V0. Take a compact set K ⊆ R

d . Let us show (6). Assume
the converse: there exists ε > 0 and a subsequence (nk)k≥1 such that

max
x∈Vnk

∩K
dist(x,V0) > ε.
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Then there exists xnk
∈ Vnk

∩K such that dist(xnk
,V0) > ε. Now, the sequence (xnk

)k≥1 is bounded, so there exists a
limit point x := limxn′

k
. Therefore, x ∈ V0 by our assumption. And

dist(x,V0) = lim
k→∞ dist(xn′

k
,V0) ≥ ε.

This contradiction completes the proof.

A.9. Proof of Lemma 5.1

Let us show the “only if” part. Take a compact set K ⊆ R
d and assume that there exists a subsequence (nk)k≥1 such

that for some xnk
∈K, we have: xnk

/∈ Dnk
. Extract a convergent subsequence: xn′

k
→ y ∈K. We claim that

lim
k→∞ϕn′

k
(y) ≤ 0. (A.5)

Indeed, if y /∈ Dn′
k
, then ϕn′

k
(y) ≤ 0. If y ∈ Dn′

k
, then ϕn′

k
(y) = dist(y, ∂Dn′

k
) = dist(y,Dc

n′
k

) ≤ ‖y − xn′
k
‖ → 0. This

proves the claim (A.5). But this contradicts the assumption that ϕn(y) → ∞.
Now, let us show the “if” part. Take x ∈ R

d and let K := U(x,N) for large N . By assumption, there exists n0
such that for n > n0 we have: K ⊆ Dn. So x ∈ Dn, and ϕn(x) = dist(x, ∂Dn) ≥ N . Since N is arbitrarily large, this
completes the proof.
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