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Abstract. We prove that the model of Activated Random Walks on Zd with biased jump distribution does not fixate for any
positive density, if the sleep rate is small enough, as well as for any finite sleep rate, if the density is close enough to 1. The proof
uses a new criterion for non-fixation. We provide a pathwise construction of the process, of independent interest, used in the proof
of this non-fixation criterion.

Résumé. On démontre que le modèle de marches aléatoires activées sur Zd avec distribution de saut biaisée ne se fixe pas,
quelle que soit la densité initiale si le taux de désactivation est suffisamment bas, ou quel que soit le taux (fini) de désactivation
si la densité initiale est suffisamment proche de 1. La démonstration fait appel à un nouveau critère de non-fixation. On fournit
également une construction d’une version trajectorielle du processus, qui est utilisée dans la preuve de ce critère et qui présente un
intérêt indépendant.
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1. Introduction

The Activated Random Walk model is a system of particles in either one of two states, active or passive. Active
particles perform continuous-time independent random walks on Zd with jump distribution p(·), and switch to passive
state at rate λ > 0 when they are alone on a site. Passive particles do not move but are reactivated immediately when
visited by another particle. Initially, all particles are active. In this process, competition occurs between the global
spread of activity by diffusion and spontaneous local deactivations, which leads to a transition between two regimes,
as either λ decreases or the initial density μ of particles increases. For small μ or large λ, the system is expected to
fixate, i.e., the process in any finite box eventually remains constant. For small λ or μ close to 1, activity is believed
to persist forever.

Fixation for small μ or large λ was proved by Rolla and Sidoravicius [6] in dimension 1. Non-fixation was proved
by Shellef [7] and by Amir and Gurel-Gurevich [1] when μ > 1, and by Cabezas, Rolla and Sidoravicius [4] when
μ = 1.

These results have been recently extended or sharpened, under restrictive assumptions on the walks. In the case
when particles perform simple symmetric random walks, fixation was proved in any dimension by Sidoravicius and
Teixeira [8] for sufficiently small μ. Basu, Ganguly and Hoffman [3] showed that, in dimension 1, non-fixation
happens for sufficiently low sleep rate.

In the case of biased random walks, Taggi [9] proved non-fixation if the density μ is sufficiently close to 1.
More precisely, under the assumption that the jump distribution is biased, Taggi proved that, for d = 1, non-fixation
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happens if μ > 1−F(λ), where F(λ) is positive and tends to 1 as λ → 0 (see below for the definition of F ). In higher
dimensions, Taggi shows that non-fixation happens when μF(λ) > ν0, where ν0 is the density of initially unoccupied
sites. As a consequence, for some particular families of distributions, non-fixation happens for some pair of λ > 0 and
μ < 1. It also implies non-fixation for arbitrary λ in case ν0 gets small as μ → 1 (e.g. for Bernoulli initial condition).

In this paper we extend the latter result, proving that, for biased walks in any dimension, non-fixation happens if
μ > 1 − F(λ). Thus, for arbitrarily low density μ, non-fixation happens provided the sleep rate λ is small enough,
and, for arbitrarily high λ, it happens provided μ is close enough to 1. Let us give the precise statement.

For any vector v ∈ Rd \ {0}, define the half-space Hv = {x ∈ Zd : x · v ≤ 0} and let

Fv(λ) = E
[
(1 + λ)−�Hv

]
, (1)

where �Hv
is the total time spent in Hv by a discrete-time random walk with jump distribution p(·). Notice that, if

Xn · v → +∞ a.s., then Fv(λ) > 0 for any λ, and Fv(λ) → 1 as λ → 0+.

Theorem 1. For the Activated Random Walk on Zd with sleep rate λ and i.i.d. initial condition with mean μ, if
μ > 1 − Fv(λ) for some v, then a.s. the system does not fixate.

Existence of a stochastic process corresponding to the ARW follows from general results about particle systems
on non-compact state spaces [2]. Equivalence between fixation of such process and stability of the Diaconis–Fulton
site-wise representation was established in [6], yielding a framework suitable for the study of the fixation vs. non-
fixation question (see Section 2 for a description of the site-wise representation and Section 7 for its relationship with
the continuous-time particle system). The abelian property of the site-wise representation implies that one can choose
the order at which particles will move, and a stabilizing strategy refers to a particular procedure to determine such
choice.

The proof of [9] for d = 1 consists in a stabilizing strategy where one moves the particles in a very coordinated
fashion, and uses (1) to bound the number of particles lost on the way. It is based on a criterion from [6], which in
particular reduces the question of non-fixation to the following condition. For n ∈ N, let Pn denote the law of the
ARW process whose evolution is restricted to Vn = {−n, . . . , n}d , that is, particles freeze outside Vn. For n ∈ N, fix
xn ∈ Vn and denote by Kn the number of visits to xn.

Proposition 2. If Pn(Kn ≥ C) → 1 for any C, then a.s. the system does not fixate.

In order to use a similar strategy in d ≥ 2, [9] considers ghost particles, which provide some independence. This is
needed as the above criterion requires a control in probability on the number of visits to a given site.

The proof given here is a simplified version of Taggi’s argument for d = 1, and yet it works on any dimension. This
is made possible by the use of a new criterion for non-fixation. Let Mn count the number of particles that ever exit Vn.

Proposition 3. If lim supn
EnMn|Vn| > 0, then a.s. the system does not fixate.

Although the above criterion gives a condition that can be verified in terms of the site-wise representation, the
proof uses the notion of particle fixation. We say that a given particle fixates if it stays in passive state forever after
a random finite time. This definition makes sense for a process where each particle carries a label, so that it can be
followed through time. We shall refer to this as the labeled version of the process. In contrast, the usual unlabeled
version of a particle system only considers the number of particles at each site without distinguishing among them.

One way to study the labeled system is to construct it explicitly. In the particle-wise construction, each particle
carries a random path and a Poisson clock. The evolution of such particle is given by a time-change of its own path,
depending both on its Poisson clock and on the interaction with other particles. This approach can be extremely useful
for the use of arguments based on ergodicity, mass-transport principle, resampling, etc. The following was proved
in [1] using these tools.

Theorem 4. Assume that the particle-wise construction is almost surely well-defined. Suppose that the initial condi-
tion is i.i.d. If a particle is non-fixating with positive probability, then a.s. the system does not fixate.
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To prove Proposition 3, we use a non-abelian variation of the site-wise construction to obtain a sequence of finite
approximations to the labeled process and show that lim supn

EnMn|Vn| > 0 implies positive probability for a labeled
particle not to fixate. Now in order to apply Theorem 4, we need to prove that the labeled version of the ARW
model can be constructed from this collection of random paths and Poisson clocks in a translation-covariant way, via
an argument of almost-sure convergence. This is the content of the next result, whose precise meaning is given in
Section 4.

Theorem 5. The particle-wise construction is almost surely well-defined.

Statements and proofs are given in Zd for simplicity. The proof of Theorem 5 works in the setting of transitive uni-
modular graphs, and the proof of Proposition 3 works on the same setting with the further assumption of amenability.
See Section 8 for details.

The next section exposes the site-wise representation and the local site-wise construction. Assuming the non-
fixation criterion, i.e. Proposition 3, this paves the way to proving Theorem 1 in Section 3. In the aim of proving this
criterion in Section 5, we first expose the formal definition of the particle-wise construction in Section 4 and state its
well-definedness, whose proof is deferred to Section 6. Finally, Section 7 presents the global site-wise construction
and Section 8 discusses the extensions of the results to more general graphs.

2. Notation and site-wise representation

In this section we briefly describe the site-wise representation and state its abelian property. This property will be
used when proving Theorem 1 with the aid of Proposition 3. Properties used in the proof of Proposition 3 itself will
be discussed during the proof. Denote N= {1,2,3, . . .} and N0 = {0,1,2,3, . . .}, and o as the origin in Zd .

Let η ∈ (N0�)Z
d

denote a configuration of particles. Here N0� = {0, �,1,2,3, . . .}, and the symbol � corresponds
to the presence of one passive particle (there may be at most one), while 1 represents one active particle.

Let Ix = (Ix,k)k∈N denote the sequence of instructions assigned to each site x, where Ix,k ∈ Zd ∪{�}. The toppling
operation consists in performing the action indicated by the first unused instruction ι in the sequence Ix assigned to
x, which is to make a particle present at that site x jump to x + y (and activate a possibly present passive particle
there) when ι = y ∈ Zd , or try to fall asleep (succeeding only if the particle is alone) when ι = �. In other words, the
system goes through the transition η → τx,ιη where

τx,yη = η − δx + δx+y, and τx,�η =
{

η − δx + �δx if η(x) = 1,

η otherwise,

with the convention that � + 1 = 2 and 1 − 1 + � = �. In the sequel we discuss some combinatorial properties of this
operation, in a deterministic setting.

2.1. Topplings and stability

Assume that (Ix,k)k∈N,x∈Zd is fixed. Let η ∈ (N0�)Z
d

and h ∈ (N0)
Z

d
. Here, η can be thought of as a configuration

reached by an ARW and h as the number of instructions that have already been executed at each site to get to η.
A site x is unstable in the configuration η if x contains active particles in that configuration, and stable otherwise.

The toppling of an unstable site x is an operation on η and h, denoted by 
x , which changes the configuration η

according to the next unused instruction at x, and increases the counter h by 1 at x:


x(η,h) = (
τx,Ix,h(x)+1

η,h + δx

)
.

We write 
xη for 
x(η,0). Toppling a site is legal for η if the site is unstable in η.
Let α = (x1, . . . , xn) denote a finite sequence of sites in Zd , which we think of as the order in which a se-

quence of topplings will be applied. The sequence α is said to be legal for η if each subsequent toppling involved
in 
xn(· · · (
x1η)) is legal, in which case 
αη can be defined, where 
α = 
xn · · ·
x1 . Let V denote a finite subset



Non-fixation for biased Activated Random Walks 941

of Zd . A configuration η is said to be stable in V if all the sites x ∈ V are stable in η. We write α ⊆ V if all elements
of α are in V . We say that α stabilizes η in V if the configuration in 
αη is stable in V . Let mα ∈ NZ

d

0 count the
number of times each site appears in α.

Lemma (Local Abelianness). If α and β are legal sequences of topplings for η such that mα = mβ , then 
αη = 
βη.

Lemma (Global Abelianness). If α and β are both legal toppling sequences for η that are contained in V and
stabilize η in V , then mα = mβ . In particular, 
αη = 
βη.

For the proofs, see e.g. [6].

2.2. Site-wise construction of finite systems

We now describe the site-wise construction of a continuous-time stochastic process (ηt )t≥0 corresponding to a system
that contains finitely many particles. The variable ηt (x) ∈ N0� represents the number and type of particles at the site
x ∈ Zd at time t ≥ 0.

Let the sleep rate λ > 0 and the jump distribution p(·) on Zd with p(o) 	= 1 be given. For each site x, sample a
càdlàg process t 
→ Nx(t) ∈ N0 that starts at Nx(0) = 0 and jumps by +1 at rate given by 1 + λ. Sample an i.i.d.
sequence Ix with

Ix,k =
{

y with probability 1
1+λ

p(y),

� with probability λ
1+λ

.

Sample the initial condition η0 according to a prescribed probability distribution.
To define the continuous-time evolution (ηt )t≥0, which will be piecewise constant and right continuous, let us first

associate to it a local time process (Lx
t )x∈Zd ,t≥0. For each x ∈ Zd , (Lx

t )t≥0 starts at 0, it is continuous and piecewise
linear with slope given by the number ηt (x)1{ηt (x)≥1} of active particles at x. For each t and x, we define ht (x) =
Nx(Lx

t ). Note that h0 = 0 and, unless all particles are passive, there are some sites x for which Lx is increasing at
time 0+. The process η is kept constant equal to η0 until the first time t1 when h jumps, which has to be to δx1 for

some x1. At this time, we let η jump to ηt1 = τI
x1,1

η0. The process η is then kept constant until the next jump of h,

which occurs at a time t2 and to ht1 + δx2 for some x2. We let at this time η jump to ηt2 = τI
x2,ht (x2)

ηt1 , and so on. This
procedure can be continued until a stable configuration is reached. Notice that we have (ηt , ht ) = 
x1,...,xk

(η0, h0) for
t ∈ [tk, tk+1).

Given a probability distribution on (N0�)Z
d

and finite V ⊆ Zd , let P[V ] denote the law of (η0,I,N) if I and N are
sampled as above, and η0 is first sampled according to such distribution and then η0(x) is replaced by −∞ for x /∈ V .
In words, P[V ] corresponds to a dynamics where particles are erased as soon as they leave V . For Pn and Vn defined
in the Introduction, we have Pn = P[Vn].

By the abelian property, the stable configuration eventually reached by (ηt )t≥0 depends on η0 and I , not on the
Poisson clocks Nx . This will be crucial in the next section.

3. Non-fixation for biased ARW

In this section we prove Theorem 1. Let us start with a preliminary observation. Consider a discrete-time random walk
with jump distribution p starting at o. Let a particle follow this random walk, but for each time the random walk is
about to jump from a site in Hv (there are �Hv

such times), toss a coin and destroy the particle with probability 1
1+λ

.
The number Fv(λ) defined in (1) is the probability that the particle survives forever.

Assume μ > 1 − Fv(λ). By Proposition 3, we have to show that

lim sup
n

EnMn

|Vn| > 0. (2)
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By the discussion in Section 2.2, we may use the explicit site-wise construction of Pn and in particular its abelian
property. The proof below consists in describing a toppling strategy that allows to show that, on average, sufficiently
many particles (a positive density of them) quit Vn.

Let us choose a labeling Vn = {x1, . . . , xr}, where r = |Vn| and x1 · v ≤ · · · ≤ xr · v. For i = 0, . . . , r , let Ai =
{xi+1, . . . , xr} ⊆ Vn.

Stage 1: leveling. We first make legal topplings inside Vn until reaching a leveled configuration, that is, a configu-
ration where each site in Vn contains at most one particle, and all particles inside Vn are active. This can be achieved
by repeating the following procedure: locate the sites in Vn containing at least two particles, and topple each of them
once. Since the number of particles in Vn cannot increase during this procedure, a finite number of states can be
reached from the initial one. Therefore, repeating this procedure leads a.s. to a leveled state, as required.

Stage 2: rolling. This stage subdivides into r successive steps. For i = 1, . . . , r , Step i goes as follows: if there
is a particle at xi then we do a sequence of legal topplings, starting by a toppling at xi , then at the location where
this toppling pushed the particle to, and so on until this particle either (i) exits Vn, (ii) reaches an empty site in Ai ,
or (iii) falls asleep in Vn. If the latter happens, we declare that the particle is left behind. Because of the stopping
condition (ii), condition (iii) can only happen at Vn \ Ai ⊆ xi +Hv .

By induction we have that, for i = 1, . . . , r , after Step i, the configuration is leveled on Ai . In particular, at the start
of Step i, there is at most one particle at xi . Therefore, at most one particle is left behind at each step, which happens
with probability bounded from above by 1 − Fv(λ).

Stage 3: finishing. Some particles in the previous stage may have activated particles previously left behind, so the
final state may not be stable. In this last stage we just stabilize the configuration inside Vn by whatever sequence of
topplings.

Density of quitters. During Stage 2, each particle either ends up exiting Vn or being left behind (if a given step
ends due to condition (ii), the corresponding particle will be moved again in a later step). Let Nn denote the number
of particles left behind during Stage 2. Notice that Mn ≥ ∑

x∈Vn
η0(x) − Nn. Therefore, En[Mn] ≥ |Vn|μ − |Vn|(1 −

Fv(λ)), completing the proof.

4. Particle-wise construction

Consider a representation of the ARW process where each particle is individually labeled, so that it can be followed
through time, similarly to the informal description at the Introduction. Such a labeled process determines the unlabeled
evolution (ηt )t≥0, by simply counting particles present at each site, but also contains significantly more information.

Given an initial condition η0, each particle is assigned a label (x, i) where x ∈ Zd is the initial location and
i ∈ {1, . . . , η0(x)} distinguishes between particles starting at the same site. The randomness will not be attached to the
sites as in the previous sections, but to the particles instead.

Particle-wise randomness

Assign to each particle (x, i) ∈ Zd × N a continuous-time walk Xx,i = (X
x,i
t )t≥0 with jump rate 1 and jump distri-

bution p(·), independently of anything else, as well as a Poisson clock Px,i ⊆ R+ according to which the particle
will try to sleep. Xx,i will be the path of the particle parameterized by its inner time, which is meant to halt when the
particle becomes deactivated, and to resume at reactivation. For this reason, Xx,i will be called the putative trajectory
of particle (x, i). These elements, together with the initial configuration η0, which can also be random, will be denoted
by ξ = (η0,X,P).

Case of finite configurations

Given ξ = (η0,X,P) where η0 contains finitely many particles (i.e.,
∑

x η0(x) < ∞), the particle-wise ARW is a
simple continuous-time Markov chain on a countable state-space, and it is straightforward to define it explicitly using
the trajectories X and clocks P . Let us denote this process by(

ζ
x,i
t ;x ∈ Zd, i ∈ N

)
t≥0 = (

Y
x,i
t , γ

x,i
t ;x ∈ Zd , i ∈N

)
t≥0,
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where Y
x,i
t ∈ Zd ∪ {ϒ} stands for the position of particle (x, i) if i ≤ η0 and Yx,i = ϒ if i > η0(x), and γ

x,i
t ∈ {1, �}

stands for its state.
The pair ζ = (Y,γ ) describes the whole evolution of the system, and can be seen as a function of ξ so we can write

ζ = ζ (ξ ) = ζ (η0,X,P).

Extension to the infinite system

We are now interested in defining ζ (η0,X,P) when η0 contains infinitely many particles.
Let us introduce a notation for the “fully-labeled occupation measure” of ζ . Assuming that η0 has finitely many

particles, for any site z and time t , let ηt (z) denote the set of particles present at site z at time t , together with their
states:

ηt (z) = ηt (z;η0,X,P) = {
(x, i, σ ) ∈ Zd ×N× {1, �} : (Yx,i

t , γ
x,i
t

) = (z, σ )
}
.

Thus, ηt is a site-wise counterpart to ζt , and knowing the former is equivalent to knowing the latter. We write ηt =
(ηt (z))z∈Zd and η = (ηt )t≥0.

Fix an increasing sequence (Un)n of finite subsets of Zd such that Un ↑ Zd . For initial configurations η0 with
possibly infinitely many particles, we wish to define η(η0,X,P) by: for all T ≥ 0, for all z ∈ Zd ,

η|[0,T ](z;η0,X,P) = lim
n

η|[0,T ](z;η0 · 1w+Un,X,P), (3)

where w ∈ Zd would be arbitrary (and would thus give translation invariance), and the right-hand side sequence would
be eventually constant in n. This leads us to

Definition. Given ξ = (η0,X,P), the process η(η0,X,P) is well-defined if, for all T ≥ 0 and z ∈ Zd , for all w ∈ Zd ,
the sequence

η|[0,T ](z;η0 · 1w+Un,X,P); n ≥ 0,

is eventually constant and its limit does not depend on w. In this case, we define η(η0,X,P) as in (3).

Let us discuss a few important consequences of the above definition.
First, if η is well-defined, then the counting process (ηt )t≥0, given

ηt (z;η0,X,P) =
∑

(x,i,σ )∈ηt (z)

σ,

has same law as in the site-wise definition.
If η is well-defined, then we may also define the processes ζ x,i(η0,X,P) for x ∈ Zd , i ∈ N, by

ζ
x,i
|[0,T ](η0,X,P) = lim

n
ζ

x,i
|[0,T ](η0 · 1w+Un,X,P), (4)

where w is arbitrary, and the right-hand side sequence is eventually constant. Indeed, for all T > 0, for all n, ζ x,i
[0,T ](η0 ·

1w+Un,X,P) ⊆ X
x,i
[0,T ], and η|[0,T ](η0 · 1w+Un,X,P) is eventually constant almost surely at all points of the finite set

X
x,i
[0,T ], with a limit that does not depend on w.
By the definition, η is translation covariant, i.e., if η(ξ ) is well-defined, then η(θξ) is well-defined and η(θξ) =

θη(ξ), where θξ = (θη0, θX, θP). As a consequence, the same holds for ζ as well.
Finally, if η is well-defined, then ζ is locally finite, i.e., the number of particles (x, i) visiting a given site z before

a given time T is almost surely finite, since it is the limit of an eventually constant sequence of integers.
We are now in position to restate Theorem 5 from the Introduction in a precise way:

Theorem 6. Assume that supx∈Zd E[η0(x)] < ∞. Then η(η0,X,P) is a.s. well-defined.

We postpone the proof of Theorem 6 to Section 6. In the next section, we prove Proposition 3, using the particle-
wise construction and thus the above existence theorem.
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5. A sufficient condition for non-fixation

In this section we prove the non-fixation criterion, Proposition 3.
Fixation as defined so far concerns the state of sites, and will be called here site fixation. In contrast, when each

labeled particle eventually fixates, we call it particle fixation. Due to Theorems 4 and 6, it will suffice for us to prove
that (2) implies particle non-fixation.

The core of the proof therefore uses the particle-wise construction, although a monotonicity property (Lemma 7
below) will also require a variant of the local site-wise construction.

Proof of Proposition 3. We are assuming that η0(x), x ∈ Zd , are i.i.d. We can moreover assume that E[η0(o)] < ∞,
otherwise non-fixation holds by [1, Corollary 1.2].

In the particle-wise setting, “stabilizing Vn” means that we let the process evolve inside Vn (with no particle
outside), and stop particles at the boundary, until every particle either has become passive or has exited Vn (since it
is a finite-state Markov chain given η0, the system reaches such an absorbing state in finite time). Recall also that we
denote the law of this process by P[Vn].

Let us introduce

Ṽn = Vn−Ln,

where Ln is an integer sequence (e.g. �logn) such that

Ln → ∞ but
|Vn \ Ṽn|

|Vn| → 0.

For n ∈N, introduce the event (which depends on the infinite labeled system)

An =
{

sup
t

∣∣Yo,1
t

∣∣ ≥ Ln

}
= “particle (o,1) reaches distance Ln”.

Let M̃n be the number of particles originally in Ṽn that exit Vn. By definition of Ṽn, and translation invariance of P,

E[M̃n] =
∑
x∈Ṽn

∑
i∈N

P
(
particle Yx,i exits Vn

)
≤

∑
x∈Ṽn

∑
i∈N

P
(
particle Yx,i reaches distance Ln from x

)
= |Ṽn|

∑
i∈N

P
(
particle Yo,i reaches distance Ln from o

)
= |Ṽn|

∑
i∈N

P
(
particle Yo,1 reaches distance Ln from o,η0(o) ≥ i

)
≤ |Ṽn|

∑
1≤i≤K

P(An) + |Ṽn|
∑
i>K

P
(
η0(o) ≥ i

)
= |Ṽn|KP(An) + |Ṽn|E

[(
η0(o) − K

)
+
]

for any K ∈N. Therefore,

E[Mn] ≤ E[M̃n] + μ|Vn \ Ṽn| ≤ |Ṽn|
(
KP(An) +E

[(
η0(o) − K

)
+
]) + o

(|Vn|
)
.

However, by Lemma 7 below, E[Vn][Mn] ≤ E[Mn], hence

P
(
Yo,1 does not fixate

) = lim
n

P(An) ≥ 1

K

(
lim sup

n

E[Vn][Mn]
|Ṽn|

−E
[(

η0(o) − K
)
+
])

> 0

from the assumptions, provided K is chosen large enough.
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From Theorem 4, we conclude that a.s. the system does not fixate, which finishes the proof of the proposition. �

It remains for us to consider the monotonicity property used above.

Lemma 7. Let U be a finite subset of Zd . Let the random variable MU denote the number of particles starting in U

that visit Uc . Then E[U ][MU ] ≤ E[MU ].

In order to show that the distribution of MU under P[U ] is dominated by that under P, we use an intermediate step
which is related to the particle-wise construction. Namely, the distribution of MU under P can be well approximated
by a process that starts from η0 · 1V for big enough V ⊆ Zd . Let PV denote the law of such process.

Remark that, under P[U ], that is, the dynamics where particles freeze outsize U , the unlabeled process is sufficient
to determine the variable MU , since the latter is simply the total number of particles found outside U after stabilization.
Therefore, the distribution of MU under P[U ] can be studied using either the particle-wise or site-wise construction.
However, this is not the case under P or PV for any V ⊇ U . Indeed, in the unlabeled system, it is not possible to
distinguish the particles that have exited and re-entered U from the particles that have met them after their re-entrance.
In order to use the monotonicity properties in the spirit of the site-wise representation, the proof uses a two-color site-
wise construction. In this construction, particles which started in U and have not yet exited U are colored blue, and
all other particles are colored red. There are two stacks of instructions at each site, one for each color. This way one
can distinguish the particles which have not yet exited U from those who have, and use this distinction to define MU

without giving a different label to each particle.

Proof of Lemma 7. Let us first show how the lemma follows from

∀V ⊇ U finite, ∀T > 0, P[U ]
(
MT

U ∈ ·) ≤st PV

(
MT

U ∈ ·), (5)

where MT
U is the number of particles initially in U that visit Uc before time T .

First, for all T > 0, it follows from the well-definedness of the particle-wise construction that the sequence of
variables MT

U in a system which starts from η0 ·1Un , for n ∈N, is a.s. eventually constant (cf. Section 4), for any fixed
sequence Un ↑ Zd . Hence, we can use (5) with V = Un to get

P[U ]
(
MT

U ∈ ·) ≤st PUn

(
MT

U ∈ ·) → P
(
MT

U ∈ ·).
Taking expectation gives E[U ][MT

U ] ≤ E[MT
U ]. Finally, since MT

U ↑ MU as T → ∞, we conclude that E[U ][MU ] ≤
E[MU ], finishing the proof.

We now prove (5) by a suitable coupling. Let V ⊇ U be finite and let T > 0.
We introduce a two-colored particle system, where we are only interested at particle counts color by color: the

configuration at time t is η(t) = (ηB(t), ηR(t)) ∈ (N0� ×N0�)Z
d
. Initially, blue (B) particles are the particles that start

from U , and red (R) particles are the particles that start from outside U . Blue particles become red when they exit U ,
but otherwise, colorblind dynamics will be the same as for ARW. The precise construction is as follows.

Let us consider two independent families IB and IR of Diaconis-Fulton instructions (see Section 2), to be respec-
tively used by blue particles and red particles (thus we will only need IB inside U ). Let us also be given collections
PB and PR of independent Poisson point processes at rate 1, attached to each site, to be respectively used to trig-
ger blue and red topplings. Similarly to the standard site-wise construction (Section 2), this enables to construct the
process (ηB,ηR) from a finite initial configuration, with the difference that two clocks (B and R) now run at each
site, at a speed given the respective numbers of B and R particles, and each clock triggers a toppling of the same
color. Furthermore, blue topplings have the additional effect of changing the color of the jumping blue particle if it
jumps out of U . Note that topplings affect the state of particles of both colors because red and blue at same site share
activity: a red particle can prevent a blue particle from becoming passive, and vice-versa. This construction yields a
natural coupling between the process restricted to U (for which red particles play no role) and the process started from
particles in V .

Unfortunately, this bi-color representation is not abelian. Nevertheless, since each color uses a different stack of
instructions, adding red particles has the only effect, regarding blue particles, of enforcing activation of some of them



946 L. T. Rolla and L. Tournier

at some times. The part of the proof of Lemma 4 in [6, v2 on arXiv] that proves monotonicity of LM
t (and thus of hM

t )

in M adapts here to show increase of the number of blue topplings h
(B)
t when red particles are added: Property 2 is

unchanged, and new activations only help said monotonicity.
Since red topplings do not change the total number η(B)(Zd) of blue particles, and blue topplings may only con-

serve or decrease that number, we deduce that MT
U = η

(B)
0 (Zd) − η

(B)
T (Zd) cannot decrease when switching from the

restricted process to the process started from V , which gives (5). �

6. Well-definedness of the particle-wise construction

In this section, we prove Theorem 6. To that aim, let us first check that it suffices to prove the following:

Proposition 8. Assume the distribution η0 is such that

sup
x∈Zd

E
[
η0(x)

]
< ∞.

Then, for any increasing sequence (Wn)n of finite subsets of Zd such that
⋃

n Wn = Zd , almost surely, for all z ∈ Zd

and all T > 0, the sequence of processes

η|[0,T ](z;η0 · 1Wn,X,P); n ≥ 0,

is eventually constant.

Proof of Theorem 6. In order to prove well-definedness, it suffices to justify that the limit

η|[0,T ](z;η0,X,P) = lim
n

η|[0,T ](z;η0 · 1w+Un,X,P), (6)

which exists almost surely for all w ∈ Zd due to the above proposition, does almost surely not depend on w. This
follows as well from the above proposition applied to an increasing sequence (Wn)n of subsets of Zd that has subse-
quences in common with all sequences (w + Un)n for w ∈ Zd . �

The proof of Proposition 8 is based on the study of the propagation of the influence of a particle, which we shall
bound stochastically by a branching process. That way, we control the “radius of influence” of particles and discard the
possibility that the state of a site depends on a infinite chain of influences, which would be the obstacle for existence.

Definition. For a finite configuration η0, putative paths X and clocks P , for x, z ∈ Zd , i ∈ N and t ≥ 0, the particle
(x, i) has an influence on site z during [0, t] in (η0,X,P), and we shall write (x, i) �[0,t],η0

z, if η0(x) ≥ i and

η|[0,t](z;η0,X,P) 	= η|[0,t]
(
z;η0 − δx,X∗,P∗),

where X∗ and P∗ are obtained by removing the particle (x, i) and shifting down the particles coming next, i.e.,
X∗(v,j) = X(v,j+1) if v = x and j ≥ i, and X∗(v,j) = X(v,j) else.

In other words, (x, i) has an influence on z during [0, t] with initial condition η0 if removing the particle (x, i)

in η0 (but keeping the same putative walks and sleeping times everywhere else) would change the evolution of the
process at z at some time before t .

Assume that X and P are i.i.d. putative paths and clocks (as in the finite particle-wise construction). For x ∈ Zd

and t ≥ 0, and any finite initial condition π , we let

Z
x,i
t (π) = {

z ∈ Zd : (x, i) �[0,t],π z
}
.

It is the set of vertices influenced during [0, t] by the removal of the particle (x, i) in π . Note that if i > π(x) then
Z

x,i
t (π) =∅.
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Lemma 9. One can construct a process (Z̃t )t≥0 that takes values in finite subsets of Zd and such that

• for all (x, i) ∈ Zd × N, t ≥ 0, for any finite configuration π , Z
x,i
t (π) ⊆st x + Z̃t , i.e., for any A ⊆ Zd , P(A ⊆

Z
x,i
t (π)) ≤ P(A ⊆ x + Z̃t );

• for all t ≥ 0, E[|Z̃t |] ≤ e2(1+λ)t .

Let us deduce Proposition 8 and then prove the lemma.

Proof of Proposition 8. Assume supx E[η0(x)] < ∞.
Let z ∈ Zd , T > 0 and let (Wn)n be an increasing sequence of finite subsets of Zd such that

⋃
n Wn = Zd . Note

first that, up to introducing new terms inside the sequence, we may assume that (Wn)n is of the form

Wn = {x1, . . . , xn},
where Zd = {xn : n ∈ N∗} and the xn’s are distinct. We have

P
(
the sequence

(
η|[0,T ](z;η0 · 1Wn,X,P)

)
n≥0 is not eventually constant

)
= P

(
for infinitely many n, η|[0,T ](z;η0 · 1Wn,X,P) 	= η|[0,T ](z;η0 · 1Wn−1 ,X,P)

)
. (7)

However, for all n, since Wn = Wn−1 ∪ {xn}, the fact that

η|[0,T ](z;η0 · 1Wn,X,P) 	= η|[0,T ](z;η0 · 1Wn−1 ,X,P) (8)

implies that, for some i ≤ η0(xn), (xn, i) has an influence on z before time T in (η0 · 1Wn−1 + iδxn,X,P), i.e.,
z ∈ Z

xn

T (η0 ·1Wn−1 + iδxn). This is seen by adding particles at xn one by one until a change appears in the configuration
at z before time T .

On the other hand,

E
[
#{n ∈ N : ∃i ≤ η0(xn), z ∈ Z

xn,i
T (η0 · 1Wn−1 + iδxn)

]
≤

∑
n∈N

∑
i∈N

P
(
i ≤ η0(xn), z ∈ Z

xn,i
T (η0 · 1Wn−1 + iδxn)

)
≤

∑
n∈N

∑
i∈N

P
(
i ≤ η0(xn)

)
P(z ∈ xn + Z̃T )

=
∑
x∈Zd

E
[
η0(x)

]
P(z ∈ x + Z̃T )

≤ sup
x∈Zd

E
[
η0(x)

] ∑
x∈Zd

P(z ∈ x + Z̃T )

= sup
x∈Zd

E
[
η0(x)

] ∑
x∈Zd

P(2z − x ∈ z + Z̃T )

= sup
x∈Zd

E
[
η0(x)

]
E

[|Z̃T |]
≤ sup

x∈Zd

E
[
η0(x)

]
e2(1+λ)T

< ∞, (9)

where the (in)equalities follow from the properties listed in Lemma 9, and linearity of expectation. This proves that
almost surely (8) holds only for finitely many n, which shows that the last probability in (7) equals zero, and concludes
the proof of Proposition 8. �
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Proof of Lemma 9. Let (x, i) ∈ Zd ×N, T > 0 and a finite configuration π be given. We aim at bounding the set of
vertices influenced before time T by the presence in π of the particle (x, i). We may assume i ≤ π(x), for otherwise
the bound is trivial.

Notice that particles behave independently except when a particle gets reactivated by another – we consider here
that particles may always deactivate at rate λ but are reactivated instantaneously if another particle shares the same
site –, hence the influence only propagates in this case, and more precisely only when the reactivation may not be due
to a third particle. Thus, a particle is influenced by (x, i) during [0, t] if either it is the particle (x, i) itself, or if it was
reactivated from passive state before time t by sharing the same site only with particles that were influenced before.
If a particle is influenced, its inner time may change when the particle (x, i) gets removed; in order to keep track of
every possibility and bound the number of influenced particles, we shall consider all potential paths simultaneously,
and have influenced particles both stay at a site and jump to the next one at the same time by doubling those particles.

Consider the system with initial condition π . In addition to the A (active) and S (passive, or sleeping) states, let us
introduce new states I (influenced) and J (“trail” of influenced particles), and modify the system as follows:

• at time 0, the particle (x, i) is put in state I (while the others in π are A);
• particles in states A and S behave as in the usual ARW, i.e., jump at rate 1 (according to their putative path X),

deactivate at rate λ (according to their clock P) and reactivate as soon as another particle is present;
• particles in state I jump at rate 1 (according to their putative path given by X), and leave a new particle in state J at

the site they just left;
• particles in state J do not move (and thus do not need to be given a path or clock);
• when a particle in state S is reactivated by a particle in state I or J, and no particle of state A is present at the same

site, then it switches from state S to state I.

It is important to note that the initial system is embedded in the new one, with some particles having state I or J instead
of A and S. The state J enables to cover the case of particles slowed down by deactivations. Also, it follows from the
previous discussion that, at any time t , all the vertices influenced by (x, i) contain particles in state I or J. In other
words, Z

x,i
t is included in the set of locations of I and J particles at time t .

The set Z
x,i
t depends however on the restriction of the initial condition, i.e., on π . Still, one can stochastically

dominate Z
x,i
t , uniformly in π , by the process x + Z̃t , where Z̃t is defined as the set of locations of particles in state

I or J at time t in the following simplified system:

• at time 0, the system starts with only one particle, which is at o and in state I;
• particles in state I jump at rate 1 (according to the jump distribution p(·)), and leave a new particle in state J at the

site they just left and a new particle in state I at the site they land on;
• particles in state J do not move;
• at rate λ, particles in state I or J produce a new particle in state I at the same site.

Indeed, the additional I particles are meant to cover the cases of conversion from A or S to I; they correspond to the
case of fastest possible conversion and lead to an upper bound in general. In the case of jump of a particle in state I, the
new particle introduced above covers the case when the target site contains already one particle in state S (there may
be at most 1). In the last point, the new particle corresponds to a particle switching to state S that would be reactivated
exclusively by I and J particles; since there may be at most one such particle, this happens at rate (at most) λ.

In summary, each particle gives birth to at most 2 new particles, at rate at most max(1, λ) ≤ 1 + λ, hence

E
[|Z̃t |

] ≤ e2(1+λ)t .

This concludes the proof. �

7. Well-definedness of the site-wise construction

This section is not needed in the rest of the paper. We show how the arguments from [6] can actually be used to
construct the whole evolution (ηt )t≥0 as a translation-covariant function of (η0,I,N). Assume that

η0 is spatially ergodic and E
[
η0(o)

]
< ∞. (10)
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In Section 2.2, the site-wise representation (η0,I) plus random clocks N were used for a local site-wise construc-
tion of the process. The law P[V ] indicated initial condition replaced by −∞ outside V . In Section 5 we introduced PV

to indicate the initial condition being replaced by 0 outside V . This construction also has the property that occupation
times Lx(t), and thus the toppling counter ht (x), are increasing in the initial configuration η0. See the more detailed
proof of [6, Lemma 4], available at arXiv:0908.1152v2.

It follows from general results about particle systems on non-compact state spaces [2] that a stochastic process
(ηt )t≥0 corresponding to the ARW dynamics exists and is a Feller process with respect a certain topology, see [6,
Footnote 6]. This topology is stronger than product topology (and necessarily so, since it is always possible to find
initial configurations that are empty in an arbitrarily large box and still can affect the configuration at o at arbitrarily
small times with arbitrarily high probability), but fortunately it is weak enough so that local events are described by
a limit of finite systems. More precisely, for every event E that depends on a finite space-time window η|[0,T ]×B(o,n)

of
the process η, under assumption (10) we have

P(E) = lim
V ↑Zd

PV (E). (11)

This local site-wise construction also has the property that, for each x ∈ Zd and T < ∞, the expected number of
times that other sites send particles to x during [0, T ] is finite.

Monotonicity of ht in both V and t allow a certain limit swap. Using this and the last property above, one proves the
equivalence between fixation for the evolution (ηt )t≥0 and stabilizability of η0 in the timeless site-wise representation.

All this is done without requiring that the process (ηt )t≥0 be constructed directly from (η0,I,N). In fact, we
are unaware of such global site-wise construction of the ARW having been considered in the literature. Thanks to
a question raised by the anonymous referee, when finishing the revision of the present paper we had the pleasant
surprise to realize that the above properties are actually enough to ensure a global site-wise construction.

Assuming the reader went through the proof of [6, Lemma 4], the field ht is increasing in V , so it has a limit that
does not depend on the particular increasing sequence V ↑ Zd . Moreover, in the limiting field, for each fixed T and
each site x, hT (x) is finite and the set of sites z such that Iz,k = x − z for some k ≤ hT (z) is also finite. So given
t ∈ [0, T ] and a sequence V ↑ Zd , (ht (z)) is eventually constant for z in this set, which by Local Abelianness implies
that ηt (x) is eventually constant, and does not depend on the particular sequence of domains V . So convergence holds
simultaneously for all x ∈ Zd and t ∈ Q+, for t ∈ R+ we take limits from the right, and by (11) we can conclude that
the resulting process (ηt )t≥0 has the correct distribution.

8. Comments on extensions of the results

Let us briefly comment on validity and relevance of our results in more general settings.
Let G = (V ,E) be a graph with finite degrees, and p(·, ·) be a transition kernel on V . Translation invariance is

replaced by the following: Assume that there is a transitive unimodular subgroup � of automorphisms that leave p(·, ·)
invariant, i.e., � is a subgroup of automorphisms and, if we write S(x) = {γ ∈ � : γ x = x} for the stabilizer of x ∈ V ,

(transitivity) for all x, y ∈ V , there is γ ∈ � such that γ x = y;

(unimodularity) for all x, y ∈ V , we have
∣∣S(x)y

∣∣ = ∣∣S(y)x
∣∣;

(invariance) for all x, y ∈ V and γ ∈ �, p(γ x, γy) = p(x, y).

Unimodularity implies mainly that the mass transport principle is satisfied: for any function F : V × V → [0,1] that
is �-invariant (F(γ x, γy) = F(x, y) for any γ ∈ �, x, y ∈ V ),∑

y∈V

F (x, y) =
∑
y∈V

F (y, x).

We refer the reader to [5, Chapter 8] for a thorough introduction.
The above is the setting in which [1] proves Theorem 4.

http://arxiv.org/abs/arXiv:0908.1152v2
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The well-definedness of the particle-wise construction (Theorem 6) carries on as well, under the same assumption
supx∈V E[η0(x)] < ∞, with the same proof, except that we choose an origin vertex o ∈ V and in Lemma 9, x + Z̃t is
replaced by γxZ̃t where, for all x ∈ V , γx ∈ � is chosen arbitrarily so that γx(o) = x, and one can add the property
that Z̃t is invariant in distribution under any γ ∈ S(o). Then the equality (9) is changed with the relation∑

x∈V

P
(
z ∈ γx(Z̃t )

) =
∑
x∈V

P
(
x ∈ γz(Z̃t )

)
,

which is a consequence of the mass transport principle. Indeed, the function F : (x, z) 
→ P(x ∈ γz(Z̃t )) is �-invariant
because of the previously mentioned invariance of Z̃t .

In particular, these extensions of Theorems 6 and 4 together give that for i.i.d. initial conditions of mean μ > 1, the
ARW a.s. does not fixate (cf. [1, Corollary 1.3]).

It is then a simple matter to extend Proposition 3 to amenable graphs as follows:

Proposition 10. Let G = (V ,E) be an amenable graph, and assume that the jump distribution p(·, ·) is invariant
under a transitive group of automorphisms of G. Let Vn ⊆ V be finite and satisfy |∂Vn|

|Vn| → 0. Consider the ARW model
with i.i.d. integrable initial configuration on G. For each n ∈ N, consider the law Pn of its evolution restricted to Vn

and let Mn be the random variable counting how many particles exit Vn during stabilization. If

lim sup
EnMn

|Vn| > 0,

then the system does not fixate.

The only modification in the proof consists in redefining Ṽn ⊆ Vn, which must satisfy |Vn \ Ṽn| = o(|Vn|). Recall
also that any transitive subgroup of automorphisms of an amenable graph is unimodular (Soardi and Woess, cf. [5]).

As a motivation for such generality, one may notice that, with this proposition, the proof of Theorem 1 seamlessly
enables to obtain non-fixation for ARW on Z × G where G is an amenable, transitive graph, provided the jump
distribution p(·, ·) is invariant under a transitive group of automorphisms and such that the random walk (Xn)n with
jump distribution p(·, ·) on Z × G satisfies almost surely π1(Xn) −→

n
+∞, where π1 is the projection onto Z, and

the sleep rate λ is small enough.
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