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Abstract. Let (X1, . . . ,Xn) be a d-dimensional i.i.d. sample from a distribution with density f . The problem of detection of a
two-component mixture is considered. Our aim is to decide whether f is the density of a standard Gaussian random d-vector
(f = φd ) against f is a two-component mixture: f = (1 − ε)φd + εφd(· − μ) where (ε,μ) are unknown parameters. Optimal
separation conditions on ε, μ, n and the dimension d are established, allowing to separate both hypotheses with prescribed errors.
Several testing procedures are proposed and two alternative subsets are considered.

Résumé. Soit (X1, . . . ,Xn) un n-échantillon d-dimensionnel dont la loi admet une densité f . Le problème de détection d’un
mélange à deux composantes est étudié. Notre objectif est de déterminer si f est la densité de la loi gaussienne centrée réduite d-
dimensionnelle (f = φd ) contre f est un mélange à deux composantes : f = (1 − ε)φd + εφd(·−μ) où (ε,μ) sont des paramètres
inconnus. Des conditions de séparation optimales sur ε, μ, n et la dimension d sont établies, permettant de séparer les deux
hypothèses à erreurs fixées. Plusieurs procédures de test sont proposées et deux sous-ensembles d’alternatives sont considérés.

MSC: Primary 62H15; secondary 62G30

Keywords: Gaussian mixtures; Non-asymptotic testing procedure; Separation rates

1. Introduction

Let X = (X1, . . . ,Xn) be an i.i.d. n-sample, where for all i ∈ {1, . . . , n}, Xi corresponds to a d-dimensional random
vector, whose distribution admits a density f w.r.t. the Lebesgue measure on R

d . In the following, we denote by φd(·)
the density function of the standard Gaussian distribution Nd(0d , Id) on R

d . Our aim is to test

H0 : f = φd against H1 : f ∈ F, (1)

where

F = {
f(ε,μ) : x ∈ R

d �→ (1 − ε)φd(x) + εφd(x − μ); ε ∈ ]0,1[,μ ∈ R
d
}

is the set of two-component Gaussian mixtures on R
d . Mixture models are at the core of several studies and provide

a powerful paradigm that allows to model several practical phenomena. We refer to [20] for an extended introduction
to this topic.

The particular case of a two-component mixture is sometimes referred as a contamination model. In some sense, a
proportion ε of the sample is driven from a (Gaussian) distribution centered in μ while the remaining part of the data
is centered. In this context, the testing problem (1) amounts to the detection of a plausible contamination inside the
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data at hand w.r.t. the null distribution. We refer for instance to [12] for practical motivations regarding this problem.
We stress that Gaussian mixture is at the core of our contribution since it provides a benchmark model for several
practical applications. However, the results proposed in this paper could be certainly extended to a wide range of
alternative distributions.

In a unidimensional setting (d = 1), the testing problem (1) has been widely considered in the literature in the
last two decades. A large attention has been payed to methods based on the likelihood ratio, see e.g. [2,11] or [14].
Concerning the construction of optimal separation conditions on the parameters (ε,μ), we can mention the semi-
nal contribution of Ingster [16]. These conditions have been reached by the higher-criticism procedure proposed by
Donoho and Jin [12] in a specific sparse context, i.e. when ε � 1/

√
n as n → +∞. Then, several extensions of this

contribution have been proposed in an extended context: we mention for instance [9] for a study including confidence
sets and the dense setting (ε � 1/

√
n as n → +∞), [8] for heterogeneous and heteroscedastic mixtures, or [10] where

general distributions and separation conditions have been investigated. In a slightly different spirit, a procedure based
on the order statistics and non-asymptotic investigations on the testing problem (1) have been proposed in [18].

In the contributions mentioned above, only unidimensional distributions are considered. In a different setting (sig-
nal detection), multidimensional problems have been at the core of recent investigations. We mention e.g. [1] or [7]
among others. In a recent paper, Verzelen and Arias-Castro [21] address the problem of testing normality in a multi-
dimensional framework. They consider two-component Gaussian mixture alternatives where the proportions are fixed
and the difference in means are sparse. However, up to our knowledge, the multidimensional testing problem as dis-
played in (1) has never been studied so far. We stress that in our setting, the proportion ε is allowed to depend on the
number of observations n. The present paper proposes a first attempt in this context.

The testing problem, as formalized in (1) does not allow to guarantee a possible separation between H0 and H1
with prescribed Type I and Type II errors. Indeed, we can construct mixture distributions arbitrarily close (in a sense
that should be made precise) to the Gaussian law. To this end, we will restrict our analysis to the mixtures f(ε,μ) ∈ F
satisfying ε‖μ‖� ≥ ρ, where ‖ · ‖� will alternatively denote the l2 and l∞ norms, and ρ > 0 a given radius. In each
case, our aim is to investigate the slowest possible value of the radius ρ for which both hypotheses can be separated.
In this multidimensional setting, the definition of dense and sparse regime is more involved since the dimension d of
the problem has a real influence on the detection problem. In this context, we will provide a sharp description of the
optimal separation radius ρ in a case which could be considered as dense for both norms. On the other hand, we will
provide some attempts in the sparse regime.

The paper is organized as follows. Section 2 is devoted to the l2-norm. A lower bound is proposed in Section 2.1.
Two computationally tractable testing procedures (�1,α and �2,α) are studied in Section 2.2 and an upper bound for
the aggregation of these both tests is established. One computationally intractable test procedure (�3,α) is described
in Section 2.3 and an upper bound (improving the previous result) is obtained for the aggregation of the tests �1,α

and �3,α . Section 3 is devoted to the l∞-norm. A lower bound is proposed in Section 3.1. The performances of two
different testing procedures (�4,α and �5,α) are investigated and an upper bound for the aggregation of these both
tests is established in Section 3.2. A short discussion gathering remaining open problems and possible outcomes is
presented in Section 4. The proofs of lower and upper bounds are presented in Sections 5 and 6 respectively. Some
useful lemmas are gathered in Appendix A, while Appendix B contains some technical results for unidimensional
two-component Gaussian mixtures detection.

All along the paper, we use the following notations. For any density g on R
d , we denote respectively by Pg and

Eg the probability and expectation under the assumption that the common density of each Xi in the i.i.d. sample
X = (X1, . . . ,Xn) is g. In the particular case where the X1, . . . ,Xn are i.i.d. with common density φd , which is
associated to the null hypothesis H0, we write P0 := Pφd

and E0 := Eφd
. A testing procedure � denotes a measurable

function of the sample X, having values in {0,1}. By convention, we reject (resp. do not reject) H0 if � = 1 (resp.
� = 0). Given α ∈ ]0,1[, the test � is said to be of level α if P0(� = 1) ≤ α. In such a case, we write � = �α . For
any vector μ ∈ R

d , we set ‖μ‖ = (
∑d

j=1 μ2
j )

1/2 and ‖μ‖∞ = max1≤j≤d |μj |.

2. Detection boundary for the l2-norm

2.1. Lower bound for the l2-norm in the dense regime

The non-asymptotic minimax separation rates have been introduced in [3]. Let us recall the main definitions. Given
β ∈ ]0,1[, the class of alternatives F and a level-α test �α , we define the uniform separation ρ(�α,F, β) of �α with
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respect to the l2-norm over the class F as the smallest positive number ρ such that the test has a second kind error at
most equal to β for all alternatives f(ε,μ) in F such that ε‖μ‖ ≥ ρ. More precisely,

ρ(�α,F, β) = inf
{
ρ > 0; sup

f ∈F
ε‖μ‖≥ρ

Pf (�α = 0) ≤ β
}
.

Then, the (α,β)-minimax separation rate over F is defined as

ρ(F, α,β) = inf
�α

ρ(�α,F, β),

where the infimum is taken over all level-α tests �α .
Theorem 1 proposes a lower bound for the minimax separation rate ρ(F, α,β) under the assumption that ε ≥

d1/4/
√

n, which is the case that we call the dense regime.

Theorem 1. Assume that ε ≥ d1/4/
√

n. Let α,β ∈ ]0,1[ such that α + β < 0.29. Define

ρ# = 0.4
d1/4

√
n

.

Then, if ρ < ρ#,

inf
�α

sup
f ∈F

ε‖μ‖≥ρ

Pf (�α = 0) > β, (2)

where the infimum is taken over all level-α tests. In particular, this implies that

ρ(F, α,β) ≥ ρ#.

Equation (2) indicates that the hypotheses H0 and H1 cannot be separated with prescribed first and second kind
errors α and β following the value of the terms ε, ‖μ‖, d and n. In particular, for any level-α testing procedure,
one can find a distribution f ∈ F such that ε‖μ‖ ≥ ρ# and Pf (�α = 0) > β . This result is obtained thanks to the
assumption α + β < 0.29. This assumption is essentially technical and could be removed with additional technical
algebra.

The condition ε‖μ‖ ≥ Cd1/4/
√

n for some constant C > 0 is quite informative. For a given ε ≥ d1/4/
√

n, we can
specify how the ‘energy’ ‖μ‖ should be large if one expects to detect a potential contamination in the sample. It is
worth pointing out that Theorem 1 precisely quantifies the role played by the dimension d of the problem at hand. We
will see in Section 2.2 that this lower bound is optimal, up to some constant.

The main ingredient for the proof (displayed in Section 5) is the construction of particular distributions for which
the separation of both hypotheses H0 and H1 will be impossible with a prescribed level β .

2.2. Computationally tractable upper bounds for the l2-norm

In Section 2.1, we have proposed lower bounds on the separation rates for the testing problem (1) in the dense regime.
In particular, we have proved that in some specific cases, related to the value of the parameters (ε,μ), testing is
impossible, i.e. every level-α test will be associated to a second kind error greater than a prescribed level β .

The aim of this section is to complete this discussion with upper bounds on the separation rates. We propose two
different testing procedures and investigate their related performances. In particular, we prove that these procedures
reach the lower bounds presented in Theorem 1.

The first procedure is a very simple test based on the fluctuations of the empirical mean of the data. Intuitively,
Ef [X] = εμ for all random vectors having density f ∈ F , while E0[X] = 0 under H0. In particular, if the empirical
mean of the sample has a large norm, there is a chance that the data have been driven w.r.t. a density f that belongs
to F .
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More precisely, given X = (X1, . . . ,Xn), set X̄n = 1
n

n∑
i=1 Xi . Let td,α denote the (1 − α) quantile of a chi-square

distribution with d degrees of freedom and define the test �1,α as

�1,α = 1{‖√nX̄n‖2>td,α}. (3)

The following theorem investigates the performances of this test.

Theorem 2. Let α,β ∈ ]0,1[ be fixed. We assume that nε ≥ 8
β

. Then, the testing procedure �1,α introduced in (3)
is of level α. Moreover, there exists a positive constant C(α,β), only depending on α and β , such that, for all f =
f(ε,μ) ∈F for which

ε2‖μ‖2 ≥ C(α,β)

√
d

n
,

Pf (�1,α = 0) ≤ β.

The above result indicates that the test �1,α is powerful as soon as f ∈F with ε‖μ‖ ≥ C(α,β)d1/4/
√

n. According
to the lower bound displayed in Theorem 1, it appears that in the so-called dense regime, i.e. when ε ≥ d1/4/

√
n, the

minimax detection frontier is of order d1/4/
√

n up to a constant, i.e. there exist C− and C+ such that

• the hypotheses H0 and H1 cannot be separated if ε‖μ‖ ≤ C−d1/4/
√

n,
• there exists a level-α powerful test as soon as ε‖μ‖ ≥ C+d1/4/

√
n.

We stress that we do not investigate the value of the optimal constant associated to this separation problem (C− and
C+ do not match). Such a study indeed requires advanced asymptotic tools [see e.g. [15]] and is outside the scope of
the paper.

The procedure proposed in (3) is optimal in the dense regime. We will now introduce another computation-
ally tractable procedure that improves the performances of the previous test in the sparse regime, namely when
ε < d1/4/

√
n. The test statistics is defined as

�2,α = max
1≤i≤n

1{‖Xi‖2>td,α/n}, (4)

where td,α/n denotes the (1−α/n) quantile of the chi-square distribution with d degrees of freedom. The performances
of this procedure are given in Theorem 3.

Theorem 3. Let α,β ∈ ]0,1[ be fixed. We assume that nε ≥ 8
β

. Then, the testing procedure �2,α introduced in (4) is of
level α. Moreover, there exists a positive constant C(α,β) only depending on α and β such that for all f = f(ε,μ) ∈F
for which

ε2‖μ‖2 ≥ C(α,β)ε2[√d ln(n) + ln(n)
]
,

Pf (�2,α = 0) ≤ β.

We can easily aggregate the tests �1,α and �2,α by considering the test function �1,α/2 ∨ �2,α/2. Noticing that

P0(�1,α/2 ∨ �2,α/2 = 1) ≤ P0(�1,α/2 = 1) + P0(�2,α/2 = 1) ≤ α,

this leads to a level-α test. Moreover,

Pf (�1,α/2 ∨ �2,α/2 = 0) ≤ inf
{
Pf (�1,α/2 = 0),Pf (�2,α/2 = 0)

}
,

hence the second kind error of the aggregated test is controlled (up to constants since α has been replaced by α/2) by
the smallest second kind error of the two tests. This leads to the following result.
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Theorem 4. Let α,β ∈ ]0,1[ be fixed. Let �1,α and �2,α be the both tests defined in Equations (3) and (4) respectively.
There exists a positive constant C(α,β) only depending on α, β such that, if nε ≥ 8

β
, for all f = f(ε,μ) ∈ F which

fulfills

ε2‖μ‖2 ≥ C(α,β)

[(√
d

n

)
∧ {

ε2(√d ln(n) + ln(n)
)}]

, (5)

we have

Pf (�1, α
2

∨ �2, α
2

= 0) ≤ β.

It is important to compute the right hand term of Inequality (5) to see how this result improves the separation
condition established in Theorem 2. We define

ρ2
n,d,ε =

(√
d

n

)
∧ {

ε2(√d ln(n) + ln(n)
)}

.

The separation conditions are summarized as follows:

• If d ≤ ln(n), then
– If ε ≤ d1/4/

√
n ln(n), then ρ2

n,d,ε ≤ 2ε2 ln(n).

– If ε ≥ d1/4/
√

n ln(n), then ρ2
n,d,ε ≤ √

d/n.
• If d ≥ ln(n), then

– If ε ≤ 1/(
√

n(ln(n))1/4), then ρ2
n,d,ε ≤ 2ε2√d ln(n).

– If ε ≥ 1/(
√

n(ln(n))1/4), then ρ2
n,d,ε ≤ √

d/n.

We therefore see that the separation rate of the aggregated test is smaller than the one of the test �1,α in the case
where d ≤ ln(n) and ε ≤ d1/4/

√
n ln(n), and in the case where d ≥ ln(n) and ε ≤ 1/(

√
n(ln(n))1/4). Unfortunately

we do not know if these results are optimal since we did not manage to get lower bounds for the l2-norm in the sparse
regime, namely when ε < d1/4/

√
n.

2.3. Computationally intractable upper bounds for the l2-norm

During the revision process, a referee suggested to consider an alternative testing procedure �3,α defined as follows

�3,α = sup
U∈U

1{TU >tn,d,|U |,α}, (6)

where U denotes the set of the nonempty subsets of {1, . . . , n}, |U | denotes the cardinality of U ,

TU = 1

|U |
∥∥∥∥∑

i∈U

Xi

∥∥∥∥
2

,

tn,d,k,α = d + 2
√

dxn,k,α + 2xn,k,α and xn,k,α = k ln(en/k) + ln(n/α). The statistical performances are presented in
the following theorem, whose proof is postponed to Section 6.3.

Theorem 5. Let α,β ∈ ]0,1[ be fixed. Let �1,α and �3,α be the both tests defined in Equations (3) and (6) respectively.
There exists a positive constant C(α,β) only depending on α, β such that, for all f = f(ε,μ) ∈F which fulfills nε ≥ 8

β
and

ε2‖μ‖2 ≥ C(α,β)

[(√
d

n

)
∧
{
ε2 ln

(
1

ε

)
+ ε3/2

√
d

n
ln

(
1

ε

)}]
, (7)

we have

Pf (�1, α
2

∨ �3, α
2

= 0) ≤ β.
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Fig. 1. Summary of the separation condition on ε2‖μ‖2 for the test �1,α/2 ∨ �3,α/2, where ε̄n = inf{ε ∈ ]0,1[;nε3 ln(1/ε) ≥ 1}.

The optimal set U ∈ U that allows to derive the separation condition has a cardinal of order εn. A first remark con-
cerning this result is that it improves the separation condition established in Theorem 4 since ε ≥ 1/n. The separation
conditions are summarized in Figure 1, the computations are detailed at the end of the proof of Theorem 5. However,
it can be noticed that computing this testing procedure is probably NP-hard, contrary to the test �1,α/2 ∨ �2,α/2. This
may explain the difference of performances between both approaches [we refer to [4,5] for an extended discussion in
a different setting]. Unfortunately, we did not succeed in the construction of appropriate lower bounds. Hence, deter-
mining the minimax separation condition when ε < d1/4/

√
n with computationally tractable or not testing procedures

remains an open problem.

3. Detection boundary for the l∞-norm

3.1. Lower bound for the l∞-norm

As in Section 2.1, we consider the (α,β)-minimax separation rate over F with respect to the l∞-norm defined
as

ρ∞(F, α,β) = inf
�α

ρ∞(�α,F, β),

where the infimum is taken over all level-α tests �α and

ρ∞(�α,F, β) = inf
{
ρ > 0; sup

f ∈F
ε‖μ‖∞≥ρ

Pf (�α = 0) ≤ β
}
.

Theorem 6 provides a lower bound for the minimax separation rate in this context, the proof is postponed to
Section 5.

Theorem 6. Let α,β ∈ ]0,1[ such that α + β < 1. Let η(α,β) = 2(1 − α − β). Define

ρ	 = ε

√
ln

[
1 + 1

nε2
ln
(
1 + dη(α,β)2

)]
.
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Then, if ρ ≤ ρ	,

inf
�α

sup
f ∈F

ε‖μ‖∞≥ρ

Pf (�α = 0) > β, (8)

where the infimum is taken over all level-α tests. In particular, this implies that

ρ∞(F, α,β) ≥ ρ	.

As for the l2-norm, two main different regimes can be distinguished from this lower bound:

• Case 1: If nε2 � ln(d), or if c1 ln(d) ≤ nε2 ≤ c2 ln(d) for 0 < c1 < c2, then ρ	 ∼ √
ln(d)/n.

• Case 2: If nε2 � ln(d), then ρ	 ∼ ε
√

ln(ln(d)/nε2).

By analogy with the discussion conducted in the previous section, the first case can be considered as the dense regime;
this case allows in particular to detect bounded contamination, i.e. contamination for which ‖μ‖∞ < ∞. The control
in Case 1 provides a similar separation condition compared to the l2 case, except that the dependency with respect to
d : the quantity d1/4 is replaced here by

√
ln(d).

On the other hand, in the case where nε2 � ln(d), which can be considered as sparse regime in this l∞ analysis,
the separation condition is of the form ε

√
ln(ln(d)/nε2). The optimality of these bounds are discussed in the next

section.

3.2. Testing procedures for the l∞-norm

In this section, we consider two testing procedures for the l∞-norm. Both consist of applying a testing procedure on
each canonical direction in order to detect a possible contamination.

For each i ∈ {1, . . . , n}, we denote Xi = (Xij )1≤j≤d . For a given j ∈ {1, . . . , d}, we can remark that (Xij )i=1,...,n

is a unidimensional sample, distributed from

• the standard Gaussian distribution N (0,1) under H0,
• the unidimensional mixture (1 − ε)φ1(·) + εφ1(· − μj ) under H1.

First, we consider the following testing procedure:

�4,α = max
j=1,...,d

1{nX̄2
j >t1, α

d
}, (9)

where X̄j = 1
n

∑n
i=1 Xij and t1, α

d
is the (1 − α

d
)-quantile of a chi-square distribution with one degree of freedom.

Theorem 7. Let α,β ∈ ]0,1[ be fixed. We assume that nε ≥ 8
β

. Then, the testing procedure �4,α introduced in (9) is of
level α. Moreover, there exists a positive constant C(α,β) only depending on α and β such that for all f = f(ε,μ) ∈F
for which

ε‖μ‖∞ ≥ C(α,β)

√
ln(d)

n
,

Pf (�4,α = 0) ≤ β.

The second testing procedure is defined by

�5,α = max
j=1,...,d

1{maxi=1,...,n X2
ij >t1, α

dn
}, (10)

where t1, α
dn

is the (1 − α
dn

)-quantile of a chi-square distribution with one degree of freedom.
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Theorem 8. Let α,β ∈ ]0,1[ be fixed. We assume that nε ≥ 8
β

. Then, the testing procedure �5,α introduced in (10) is
of level α. Moreover, there exists a positive constant C(α,β) only depending on α and β such that for all f = f(ε,μ) ∈
F for which

‖μ‖∞ ≥ C(α,β)
√

ln(dn),

Pf (�5,α = 0) ≤ β.

As explained in Section 2.2, we can easily aggregate the tests �4,α and �5,α by considering the test function
�4,α/2 ∨ �5,α/2. This leads to the following result.

Theorem 9. Let α,β ∈ ]0,1[ be fixed. Let �4,α and �5,α be the tests defined in Equations (9) and (10) respectively.
There exists a positive constant C(α,β) only depending on α, β such that, if nε ≥ 8

β
, for all f = f(ε,μ) ∈ F which

fulfills

ε‖μ‖∞ ≥ C(α,β)

[√
ln(d)

n
∧ ε

√
ln(dn)

]
, (11)

we have

Pf (�4, α
2

∨ �5, α
2

= 0) ≤ β.

Concerning the upper bound for the separation rate established in Theorem 9, we obtain the following results:

• If nε2 ≥ ln(d)/ln(dn), the right hand term in Inequality (11) is of order
√

ln(d)/n.
• If nε2 ≤ ln(d)/ln(dn), the right hand term in Inequality (11) is of order ε

√
ln(dn).

Let us now compare these upper bounds with the lower bounds obtained in Theorem 6. We see that in the case that
we have denoted Case 1, or dense case where either nε2 � ln(d), or c1 ln(d) ≤ nε2 ≤ c2 ln(d), the upper and lower
bounds coincide and our results are optimal. In the other case, a gap remains between lower and upper bounds, which
provides an open problem for this testing problem.

4. Discussions

In this paper, we have addressed the detection problem of a mixture distribution as formalized in (1). The alternative
involved an energy condition through the expression ε‖μ‖� ≥ ρ where ‖ · ‖� has alternatively denoted the l2 and l∞
norms, and ρ a minimal value for which the hypotheses H0 and H1 can be separated with prescribed levels.

The results presented in Sections 2 and 3 provide a first attempt toward the description of optimal values for the
quantity ρ. In the so-called dense regimes, ε � d1/4/

√
n and ε �

√
ln(d)/n for the l2 and l∞ norms respectively,

Theorems 1, 2, 6 and 9 provide a precise characterization of the separation radius ρ. On the other hand, the sparse
regimes seem to be more involved. In particular, we did not provide a sharp characterization of the dependency with
respect to the dimension d for this detection problem. By the way, a deeper analysis will require discussions on
computability conditions that are outside the initial purpose of this paper.

Several additional investigations could be driven in this setting, among them: considering more general benchmark
distributions (i.e. different from the standard Gaussian distribution), heteroscedastic mixtures or taking into account
some uncertainty on the reference distribution. All these questions are outside the scope of the paper but could be at
the core of future contributions.

5. Proof of Theorems 1 and 6

For the sake of convenience, we introduce the subset F[ρ] which corresponds to

F2[ρ] = {
f ∈F; ε‖μ‖ ≥ ρ

}
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in the first proof, and

F∞[ρ] = {
f ∈F; ε‖μ‖∞ ≥ ρ

}
in the second proof, for any given radius ρ > 0. Following [3] or [15], we will use a Bayesian argument in order to
bound the minimax separation radius in the two contexts. Thus, we consider a subset {gω;ω ∈ �} of F[ρ] which will
be specified for each proof later. Then,

sup
f ∈F [ρ]

Pf (�α = 0) ≥ Pgω(�α = 0), ∀ω ∈ �.

Denoting the uniform probability measure π on the finite set �, we have

sup
f ∈F [ρ]

Pf (�α = 0) ≥
∫

�

Pgω(�α = 0) dπ(ω) := Pπ (�α = 0). (12)

Using (12) and similar computations as in [3] or [15], we obtain

inf
�α

sup
f ∈F [ρ]

Pf (�α = 0) ≥ inf
�α

Pπ (�α = 0)

≥ 1 − α − 1

2

√
E0

[
L2

π (X)
]− 1,

where Lπ(X) = dPπ

dP0
(X) is the likelihood ratio. In particular, if we can ensure that

E0
[
L2

π (X)
]
< 1 + η(α,β)2,

where η(α,β) = 2(1 − α − β) for all α,β ∈ ]0,1[, then

inf
�α

sup
f ∈F [ρ]

Pf (�α = 0) > 1 − α − 1

2
η(α,β) = β.

In the two following proofs displayed below, we will specify the subset {gω;ω ∈ �} and propose an upper bound for
the term E0[L2

π (X)].
5.1. Proof of Theorem 1

In this proof, recall that

F[ρ] = {
f ∈ F; ε‖μ‖ ≥ ρ

}
,

for any given radius ρ > 0.
We now consider r > 0 and ε ∈ ]0,1[ such that εr = ρ. In this context, we choose � = {−1,1}d and

∀ω ∈ �, gω(·) = (1 − ε)φd(·) + εφd

(
· − r√

d
ω

)
∈F[ρ].

Then, we have to propose an upper bound for the term E0[L2
π (X)] where in this setting

Lπ(X) = dPπ

dP0
(X)

= 1

2d

∑
ω∈{−1,1}d

n∏
i=1

[
(1 − ε) + ε

φd(Xi − r√
d
ω)

φd(Xi)

]

= 1

2d

∑
ω∈{−1,1}d

n∏
i=1

[
(1 − ε) + εe− r2

2 e
〈Xi,

r√
d
ω〉]

.
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Thus,

L2
π (X) = 1

22d

∑
ω,ω̃∈{−1,1}d

n∏
i=1

[
(1 − ε)2 + ε(1 − ε)e− r2

2
(
e
〈Xi,

r√
d
ω〉 + e

〈Xi,
r√
d
ω̃〉)

+ ε2e−r2
e
〈Xi,

r√
d
(ω+ω̃)〉]

.

Since for all μ ∈R
d , E0[e〈Xi,μ〉] = e‖μ‖2/2, we have

E0
[
L2

π (X)
] = 1

22d

∑
ω,ω̃∈{−1,1}d

n∏
i=1

[
(1 − ε)2 + 2ε(1 − ε) + ε2e−r2

e
r2
2d

‖ω+ω̃‖2]
.

Noticing that ‖ω + ω̃‖2 = 2d + 2〈ω, ω̃〉,

E0
[
L2

π (X)
] = 1

22d

∑
ω,ω̃∈{−1,1}d

n∏
i=1

[
1 − ε2 + ε2e

r2
d

〈ω,ω̃〉]

= 1

22d

∑
ω,ω̃∈{−1,1}d

[
1 + ε2(e r2

d
〈ω,ω̃〉 − 1

)]n

= E
[{

1 + ε2(e r2
d

〈W,W̃ 〉 − 1
)}n]

,

where W and W̃ are two independent d-dimensional Rademacher random variables, i.e.

P(W = w) = P(W̃ = w) = 1

2d
∀w ∈ {−1,1}d .

Noticing that

〈W,W̃ 〉 =
d∑

j=1

WjW̃j

and that the variables WjW̃j for 1 ≤ j ≤ d are also i.i.d. Rademacher random variables, 〈W,W̃ 〉 has the same distri-
bution as Y = ∑d

j=1 Wj . This leads to

E0
[
L2

π (X)
] = E

[{
1 + ε2(e r2

d
Y − 1

)}n]
.

Let C > 0. We now use the following inequality which holds for any real number u such that |u| ≤ C:

∣∣eu − 1 − u
∣∣ ≤ eC

2
u2. (13)

We set M = 0.4, since ρ ≤ ρ# and ε ≥ d1/4/
√

n, we have∣∣∣∣r2 Y

d

∣∣∣∣ ≤ r2 ≤ (ρ#)2

ε2
≤ M2.

Hence, we have

e
r2
d

Y − 1 ≤ r2

d
Y + eM2

2

r4

d2
Y 2.
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This gives

0 ≤ 1 − ε2 ≤ 1 + ε2(e r2
d

Y − 1
) ≤ 1 + ε2r2

√
d

(
Y√
d

+ eM2

2
M2 Y 2

d

)
.

Setting C(M) = 1 + eM2
M2/2,

0 ≤ 1 + ε2(e r2
d

Y − 1
) ≤ 1 + C(M)

ε2r2

√
d

( |Y |√
d

∨ Y 2

d

)
,

we obtain

E0
[
L2

π (X)
] ≤ E

[{
1 + a

( |Y |√
d

∨ Y 2

d

)}n]
,

where

a = C(M)ε2r2/
√

d. (14)

Using the inequality ln(1 + x) ≤ x for all x ≥ 0, we have

E0
[
L2

π (X)
] ≤ E

[
e
{na(

|Y |√
d
∨ Y2

d
)}]

≤ ena
P

( |Y |√
d

≤ 1

)
+E

[
ena Y2

d 1{ |Y |√
d
>1}

]
.

Moreover, using an integration by part

E
[
ena Y2

d 1{ |Y |√
d
>1}

] ≤ ena
P

( |Y |√
d

> 1

)
+

∫ +∞

ena

P
(
ena Y2

d > t
)
dt,

leading to

E0
[
L2

π (X)
] ≤ ena +

∫ +∞

ena

P
(
ena Y2

d > t
)
dt.

We deduce from Hoeffding’s inequality that for all x > 0,

P

( |Y |√
d

> x

)
≤ 2 exp

(−x2/2
)
.

Hence, for all t > ena ,

P
(
ena Y2

d > t
) ≤ 2t−1/2na.

In the particular case where na < 1/2, we get

E0
[
L2

π (X)
] ≤ ena + 2

∫ +∞

ena

t−1/2na dt

≤ ena

(
1 + 4na

1 − 2na
e−1/2

)
≤ h(na),

where the function h(·) is defined as

h(x) = ex

(
1 + 4x

1 − 2x
e−1/2

)
∀x ∈ [0,1/2[.
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The function h is non decreasing on [0,1/2[. Hence

na ≤ 1/4 ⇒ E0
[
L2

π (X)
] ≤ h(1/4) ≤ 3 < 1 + η(α,β)2,

since, according to our assumption

α + β < 1 − 1√
2

� 0.293 ⇒ (1 − α − β)2 > 1/2.

In order to conclude the proof, just remark from (14) that

na ≤ 1/4 ⇔ ρ2 = ε2r2 ≤ √
d/

(
4C(M)n

)
.

Hence, setting ρ# = Md1/4/
√

n, the last inequality holds if M2 ≤ 1/(4C(M)) which is true for M ≤ 0.4.
We finally get that if ρ ≤ ρ#, then E0[L2

π (X)] < 1 + η(α,β)2, which leads to the desired result.

5.2. Proof of Theorem 6

In this context,

F[ρ] =F∞[ρ] = {
f ∈ F; ε‖μ‖∞ ≥ ρ

}
,

for any ρ > 0. Let r > 0 and ε ∈ ]0,1[ such that εr = ρ. In this context, we choose

� =
{

ω ∈ {0,1}d s.t.
d∑

j=1

ωj = 1

}
,

and we define for all ω ∈ �,

gω(·) = (1 − ε)φd(·) + εφd(· − rω) ∈F∞[ρ].
Now, we turn our attention to the control of the associated likelihood ratio. For each j = 1, . . . , d , let D(j) ∈ {0,1}d
such that D

(j)
 = 1=j and

Lπ(X) = dPπ

dP0
(X)

=
[

n∏
i=1

φd(Xi)

]−1[
1

d

d∑
j=1

n∏
i=1

{
(1 − ε)φd(Xi) + εφd

(
Xi − rD(j)

)}]

= 1

d

d∑
j=1

Uj (X),

with

Uj(X) =
n∏

i=1

{
(1 − ε) + ε

φd(Xi − rD(j))

φd(Xi)

}
.

Thus

E0
[
L2

π (X)
] = 1

d2

d∑
j=1

E0
[
Uj (X)2]+ 1

d2

∑
k �=j

E0
[
Uj (X)Uk(X)

]
. (15)
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In a first time, we can remark that for all j ∈ {1, . . . , d}

E0
[
Uj(X)2] = E0

[(
n∏

i=1

{
(1 − ε) + ε

φd(Xi − rD(j))

φd(Xi)

})2]

= Eφd

[{
(1 − ε) + ε

φd(X1 − rD(j))

φd(X1)

}2]n

,

and

Eφd

[{
(1 − ε) + ε

φd(X − rD(j))

φd(X)

}2]

= (1 − ε)2 + ε2
∫
Rd

φ2
d(x − rD(j))

φd(x)
dx + 2(1 − ε)ε

∫
Rd

φd

(
x − rD(j)

)
dx

= (1 − ε)2 + ε2er2 + 2(1 − ε)ε

= 1 + ε2(er2 − 1
)
,

since
∫
Rd

φ2
d (x−μ)

φd(x)
dx = exp(‖μ‖2). Thus

E0
[
Uj(X)2] = {

1 + ε2(er2 − 1
)}n

.

Concerning the second sum in (15), we obtain for all j, k ∈ {1, . . . , d}, j �= k

E0
[
Uj(X)Uk(X)

]
= E0

[
n∏

i=1

{
(1 − ε) + ε

φd(Xi − rD(j))

φd(Xi)

}{
(1 − ε) + ε

φd(Xi − rD(k))

φd(Xi)

}]

=
{
Eφd

[
(1 − ε)2 + (1 − ε)ε

φd(X1 − rD(j)) + φd(X1 − rD(k))

φd(X1)

+ ε2 φd(X1 − rD(j))φd(X1 − rD(k))

φd(X1)2

]}n

= {
(1 − ε)2 + 2(1 − ε)ε + ε2 exp

[
r2〈D(j),D(k)

〉]}n

= {
(1 − ε)2 + 2(1 − ε)ε + ε2}n = 1,

since
∫
Rd

φd (x−μ1)φd (x−μ2)
φd (x)

dx = exp(〈μ1,μ2〉). Finally,

E0
[
L2

π (X)
] = 1

d

{
1 + ε2(er2 − 1

)}n + d(d − 1)

d2
.

We obtain

E0
[
L2

π (X)
]
< 1 + η(α,β)2 ⇔ 1

d

{
1 + ε2(er2 − 1

)}n + d(d − 1)

d2
< 1 + η(α,β)2

⇔ {
1 + ε2(er2 − 1

)}n
< 1 + dη(α,β)2. (16)

At this step, set

r2 = ln(1 + u) where u = 1

nε2
ln
(
1 + dη(α,β)2). (17)
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Then,

{
1 + ε2(er2 − 1

)}n = (
1 + ε2u

)n
=

{
1 + ln(1 + dη(α,β)2)

n

}n

= exp

{
n ln

(
1 + ln(1 + dη(α,β)2)

n

)}

≤ 1 + dη(α,β)2,

where for the last line, we have used the inequality ln(1 + x) ≤ x for all x ≥ 0. Hence, Inequality (16) is satisfied
provided r is chosen according to (17). This concludes the proof of Theorem 6.

6. Proof of the upper bounds

6.1. Proof of Theorem 2

First, remark that

‖√nX̄n‖2 =
d∑

j=1

(
1√
n

n∑
i=1

Xij

)2

.

Under H0, Xij are i.i.d. standard Gaussian random variables. Hence ‖√nX̄n‖2 is a chi-square random variable with
d degrees of freedom and

P0(�1,α = 1) = P0
(‖√nX̄n‖2 > td,α

) = α,

according to the definition of the quantile td,α . The test �1,α is hence of level α.
Now, we want to control the second kind error. Under H1, each variable Xi can be written as

Xi = Viμ + ηi,

where Vi is a Bernoulli variable with parameter ε, ηi ∼Nd(0d , Id) and Vi and ηi are independent. Then

√
nX̄n = S√

n
μ + B,

where S =
n∑

i=1 Vi ∼ B(n, ε) is a binomial random variable with parameters (n, ε), B =
n∑

i=1 ηi/
√

n ∼ Nd(0d, Id)

and S, B are independent. In particular, conditionally to S, the variable ‖√nX̄n‖2 = ‖ S√
n
μ + B‖2 has a non-central

chi-square distribution with d degrees of freedom and noncentrality parameter λS = ‖ S√
n
μ‖2. Introduce

hS = d + λS − 2
√[d + 2λS] ln(2/β).

According to Lemma 2 in Appendix A [see also [17]]

P

(∥∥∥∥ S√
n
μ + B

∥∥∥∥
2

≤ hS |S
)

≤ β

2
.
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Hence, for each f ∈ F ,

Pf (�1,α = 0) = Pf

(‖√nX̄n‖2 ≤ td,α

)
= P

(∥∥∥∥ S√
n
μ + B

∥∥∥∥
2

≤ td,α

)

= P

({∥∥∥∥ S√
n
μ + B

∥∥∥∥
2

≤ td,α

}
∩ {hS ≤ td,α}

)
+ P

({∥∥∥∥ S√
n
μ + B

∥∥∥∥
2

≤ td,α

}
∩ {hS > td,α}

)

≤ P(hS ≤ td,α) + P

(∥∥∥∥ S√
n
μ + B

∥∥∥∥
2

≤ hS

)

≤ P(hS ≤ td,α) + β

2
.

According to Lemma 1 in Appendix A,

td,α ≤ d + b(α, d) where b(α, d) = 2 ln(1/α) + 2
√

d ln(1/α).

Hence

P(hS ≤ td,α) ≤ P
(
hS ≤ d + b(d,α)

)
≤ P

(
λS − 2

√[d + 2λS] ln(2/β) ≤ b(d,α)
)

≤ P
(
λS − 2

√
2 ln(2/β)

√
λS − [

2
√

d ln(2/β) + b(d,α)
] ≤ 0

)
≤ P

(√
λS ≤ R(α,β, d)

)
,

with

R(α,β, d) = √
2 ln(2/β) +

√
2 ln(2/β) + 2

√
d ln(2/β) + b(α, d).

We notice that R(α,β, d) ≤ C(α,β)d1/4 where C(α,β) is a constant only depending on α and β . Assuming that√
nε‖μ‖ > C(α,β)d1/4 and using a Tchebychev’s inequality leads to

P(hS ≤ td,α) ≤ P

(
S ≤

√
n

‖μ‖C(α,β)d1/4
)

≤ P

(
|S − nε| > nε −

√
n

‖μ‖C(α,β)d1/4
)

≤ nε‖μ‖2

[nε‖μ‖ − √
nC(α,β)d1/4]2

. (18)

If
√

nε‖μ‖ > 2C(α,β)d
1
4 then nε‖μ‖ − √

nC(α,β)d1/4 ≥ nε‖μ‖
2 .

Thus, P(hS ≤ td,α) ≤ 4
nε

≤ β
2 as soon as nε ≥ 8

β
.

6.2. Proof of Theorem 3

It is easy to see that �2,α is a level-α test. Indeed,

P0(�2,α = 1) = P0
(∃1 ≤ i ≤ n,‖Xi‖2 > td,α/n

)
≤

n∑
i=1

P0
(‖Xi‖2 > td,α/n

) ≤
n∑

i=1

α

n
= α
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since, under the null hypothesis, ‖Xi‖2 is a chi-square variable with d degrees of freedom. Note that, according to
Lemma 1 in Appendix A,

td,α/n ≤ d + 2
√

d ln(n/α) + 2 ln(n/α).

Then, under H1, each variable Xi can be written as

Xi = Viμ + ηi, i = 1, . . . , n,

where Vi ∼ B(ε) denotes a random Bernoulli variable and ηi ∼ Nd(0d, Id), Vi and ηi being independent. Let S =
n∑

i=1 Vi ∼ B(n, ε). We have

Pf (�2,α = 0) ≤ Pf (�2,α = 0 ∩ S ≥ nε/2) + P(S ≤ nε/2).

First, according to Markov’s inequality,

P

(
|S − nε| ≥

√
2nε

β

)
≤ β

2
,

thus P(S < nε −
√

2nε
β

) ≤ β
2 . Assuming that nε ≥ 8

β
,

P

(
S ≤ nε

2

)
≤ P

(
S < nε −

√
2nε

β

)
≤ β

2
.

Second, since nε/2 ≥ 4
β

≥ 1,

Pf (�2,α = 0 ∩ S ≥ nε/2) ≤ Pf (�2,α = 0 ∩ S ≥ 1)

≤ Pf

(∃1 ≤ i ≤ n,‖μ + ηi‖2 ≤ td,α/n

)
≤

n∑
i=1

Pf

(‖μ + ηi‖2 ≤ td,α/n

)

≤ nPf

(‖μ + η1‖2 ≤ td,α/n

)
,

where ‖μ+ η1‖2 is a noncentral chi-square random variable with d degrees of freedom and a noncentrality parameter
‖μ‖2. We deduce from Lemma 2 that for xβ = ln(2n/β),

P
(‖μ + η1‖2 ≤ d + ‖μ‖2 − 2

√(
d + 2‖μ‖2

)
xβ

) ≤ e−xβ = β

2n
.

Gathering the previous inequalities, we get that Pf (�2,α = 0) ≤ β provided that

td,α/n ≤ d + ‖μ‖2 − 2
√(

d + 2‖μ‖2
)
xβ.

After some easy computations, we see that this condition is fulfilled if

‖μ‖2 ≥ C(α,β)
(√

d ln(n) + ln(n)
)
,

which concludes the proof.
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6.3. Proof of Theorem 5

Following the definition of tn,d,k,α and since TU has a chi-square distribution with d degrees of freedom under H0,
�3,α is ensured to be a level-α test:

P0(�3,α = 1) ≤
n∑

k=1

∑
U ;|U |=k

P0(TU > tn,d,k,α)

≤
n∑

k=1

∑
U ;|U |=k

e−xn,k,α

≤
n∑

k=1

(
n

k

)(
en

k

)−k
α

n
≤ α,

according to Lemma 1.
Now, we want to control the second kind error. Let f ∈ F . Under H1, each variable Xi can be written as Xi =

Viμ + ηi where Vi is a Bernoulli variable with parameter ε, independent of ηi ∼ Nd(0d, Id). Let S =
n∑

i=1 Vi ∼
B(n, ε) and for all U ∈ U , SU = ∑

i∈U Vi ∼ B(|U |, ε). The second kind error can be upper bounded by

Pf (�3,α = 0) ≤ Pf (�3,α = 0 ∩ S ≥ nε/2) + P(S ≤ nε/2). (19)

First, according to Markov’s inequality, we get, as in the proof of Theorem 3 that

P

(
S ≤ nε

2

)
≤ β

2
,

since nε ≥ 8
β

. Second,

Pf (�3,α = 0 ∩ S ≥ nε/2) = Pf

(∀k ∈ {1, . . . , n},∀U ; |U | = kTU ≤ tn,d,k,α ∩ S ≥ nε/2
)
.

Let k̃ = �nε�. If S ≥ nε
2 , there exists U0 ∈ U such that |U0| = k̃ and SU0 ≥ k̃

2 . Since

TU0 =
∥∥∥∥ 1√|U0|

∑
i∈U0

ηi + SU0√|U0|μ
∥∥∥∥

2

,

TU0 |SU0 ∼ χ2(d,
S2

U0

k̃
‖μ‖2). Thus,

Pf (�3,α = 0 ∩ S ≥ nε/2) ≤ Pf

(
∃U0; |U0| = k̃;TU0 ≤ t

n,d,k̃,α
∩ SU0 ≥ k̃

2

)

≤
∑

U0;|U0|=k̃

Pf

(
TU0 ≤ t

n,d,k̃,α
∩ SU0 ≥ k̃

2

)
.

We remark that
S2

U0

k̃
‖μ‖2 ≥ k̃

4‖μ‖2 if SU0 ≥ k̃
2 . Thus, according to Lemma 3,

Pf

(
TU0 ≤ t

n,d,k̃,α
∩ SU0 ≥ k̃

2

)
≤ P(A ≤ t

n,d,k̃,α
),
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where A ∼ χ2(d, k̃
4‖μ‖2). Then,

Pf (�3,α = 0 ∩ S ≥ nε/2) ≤
∑

U0;|U0|=k̃

Pf

(
TU0 ≤ t

n,d,k̃,α
∩ SU0 ≥ k̃

2

)

≤
(

n

k̃

)
P(A ≤ t

n,d,k̃,α
)

≤
(

en

k̃

)k̃

P(A ≤ κ) if t
n,d,k̃,α

≤ κ

≤
(

en

k̃

)k̃

e−x̃ = β

2
,

where κ = d + k̃
4‖μ‖2 − 2

√
(d + k̃

4‖μ‖2)x̃ and x̃ = k̃ ln(en/k̃) + ln(β/2). The condition t
n,d,k̃,α

≤ κ is equivalent to

t
n,d,k̃,α

≤ κ ⇔ d + 2
√

dx
n,k̃,α

+ 2x
n,k̃,α

≤ d + k̃

4
‖μ‖2 − 2

√(
d + k̃

4
‖μ‖2

)
x̃

⇔
√

dx
n,k̃,α

+ x
n,k̃,α

+
√(

d + k̃

4
‖μ‖2

)
x̃ ≤ k̃

8
‖μ‖2. (20)

After some easy computations, one can show that Condition (20) is satisfied if

‖μ‖2 ≥ 16

k̃
(x̃ + √

dx̃ + x
n,k̃,α

+
√

dx
n,k̃,α

).

Noting that x
n,k̃,α

≤ c(α)nε ln(1/ε) and x̃ ≤ c(β)nε ln(1/ε), and since k̃ = [nε], (20) holds as soon as

‖μ‖2 ≥ C(α,β)

[
ln

(
1

ε

)
+

√
d

nε
ln

(
1

ε

)]
.

We now consider the aggregated test

�α = �1,α/2 ∨ �3,α/2.

Then, Pf (�α = 0) ≤ β if

ε2‖μ‖2 ≥ C(α,β)

[(√
d

n

)
∧
{
ε2 ln

(
1

ε

)
+ ε3/2

√
d

n
ln

(
1

ε

)}]
.

Let us now compute the right hand term of the previous inequality.

• If nε3 ln(1/ε) ≥ 1, we get

C(α,β)

(√
d

n

)
.

• If n−1/2 ≤ ε and nε3 ln(1/ε) < 1, then
– If d ≤ n2ε4 ln2( 1

ε
) we get

C(α,β)

(√
d

n

)
.
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– If n2ε4 ln2( 1
ε
) ≤ d ≤ nε ln( 1

ε
), we get

C(α,β)ε2 ln

(
1

ε

)
.

– If d ≥ nε ln( 1
ε
) we obtain

C(α,β)ε3/2

√
d

n
ln

(
1

ε

)
.

6.4. Proof of Theorem 7

First, �4,α is a level-α test since

P0(�4,α = 1) = P0
(∃j ∈ {1, . . . , d};nX̄2

j > t1, α
d

)

≤
d∑

j=1

P0
(
nX̄2

j > t1, α
d

) = d × α

d
= α

since nX̄2
j is a chi-square variable with one degree of freedom under H0.

Second, let f = f(ε,μ) ∈F . According to Lemma 4 and since nε ≥ 8
β

, the second kind error is controlled by

Pf (�4,α = 0) = Pf

(∀j ∈ {1, . . . , d};nX̄2
j ≤ t1,α/d

)
≤ inf

j
Pf

(
nX̄2

j ≤ t1,α/d

)
≤ β

if

∃j ∈ {1, . . . , d}; √
nε|μj | > Cβ + C

√
ln(d/α).

Thus, Pf (�4,α = 0) ≤ β if

ε‖μ‖∞ ≥ C(α,β)

√
ln(d)

n
,

where C(α,β) is a positive constant only depending on α and β .

6.5. Proof of Theorem 8

First, �5,α is a level-α test since

P0(�5,α = 1) = P0
(∃j ∈ {1, . . . , d},∃i ∈ {1, . . . , n};X2

ij > t1, α
nd

)

≤
d∑

j=1

n∑
i=1

P0
(
X2

ij > t1, α
nd

) = dn × α

dn
= α

since for all i, j , X2
ij is a chi-square variable with one degree of freedom under H0.
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In a second time, let f = f(ε,μ) ∈F . According to Lemma 5 and since nε ≥ 8
β

, the second kind error is controlled
by

Pf (�5,α = 0) = Pf

(
∀j ∈ {1, . . . , d}; max

i=1,...,n
X2

ij ≤ t1,α/nd

)

≤ inf
j
Pf

(
max

i=1,...,n
X2

ij ≤ t1,α/nd

)
≤ β

if

∃j ∈ {1, . . . , d} s.t. |μj | ≥ Cβ

√
ln(n) +

√
Cβ

√
ln(n) + A(α/d,n),

where A(α
d
,n) = 2

√
ln(nd/α) + 2 ln(nd/α). Thus, Pf (�5,α = 0) ≤ β if

‖μ‖∞ ≥ C(α,β)
√

ln(dn),

where C(α,β) is a positive constant only depending on α and β .

Appendix A: Properties for chi-square distributions and noncentral chi-square distributions

In this section, we present some well-known results there are useful throughout the proofs. The first lemma is con-
cerned with deviation of a chi-square random variable, proposed in [19].

Lemma 1. Let U be a chi-square random variable with d degrees of freedom. Then,

• for any positive x,{
P(U ≥ d + 2

√
dx + 2x) ≤ e−x,

P(U ≤ d − 2
√

dx) ≤ e−x.

• For any given α ∈ ]0,1[, let u(d,α) be the (1 − α)-quantile of χ2(d). Then

u(d,α) ≤ d + 2 ln(1/α) + 2
√

d ln(1/α) = d + b(α, d).

This second lemma provides the control of deviations of a noncentral chi-square random variable, available in [6].

Lemma 2. Let T be a noncentral chi-square random variable with d degrees of freedom and a noncentrality param-
eter λ. Then, for any positive x,{

P(T ≥ d + λ + 2
√

(d + 2λ)x + 2x) ≤ e−x,

P(T ≤ d + λ − 2
√

(d + 2λ)x) ≤ e−x.

This third lemma provides that the cumulative distribution function of the noncentral chi-square distribution is a
non-increasing function in the noncentrality parameter λ, for a fixed degree of freedom (see for instance [13]).

Lemma 3. Let Tλ be a noncentral chi-square random variable with d degrees of freedom and a noncentrality param-
eter λ. Then, if λ ≥ λ̃,

P(Tλ ≤ x) ≤ P(Tλ̃ ≤ x)

for any real number x.
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Appendix B: Unidimensional test

In this section, we consider two testing procedures in a unidimensional context, which are required to prove Theo-
rems 7 and 8.

Let (Z1, . . . ,Zn) be i.i.d. random variables from an unknown density g w.r.t. the Lebesgue measure on R. We want
to test

H0 : g = φ(·) versus H1 : g ∈ G,

where φ(·) = φ1(·) is the unidimensional standard Gaussian density and

G = {
g(ε,τ) : z ∈R �→ (1 − ε)φ(z) + εφ(z − τ); ε ∈ ]0,1[, τ ∈ R

}
.

B.1. First testing procedure

The first procedure is based on the mean Z̄n = 1
n

∑n
i=1 Zi . Let α ∈ ]0,1[ and T4,α be the testing procedure defined as

T4,α = 1{nZ̄2
n>t1,α}, (21)

where t1,α is the (1 − α)-quantile of a chi-square distribution with one degree of freedom. The following lemma
establishes sufficient conditions that allow to control the second kind error of T4,α .

Lemma 4. Let α,β ∈ ]0,1[. Assume that nε ≥ 8
β

. Then, the testing procedure T4,α defined in (21) is of level α.
Moreover, there exist two positive constants Cβ and C such that for all g ∈ G for which

√
nε|τ | > Cβ + C

√
ln(1/α),

Pg(T4,α = 0) ≤ β.

Proof. First, it is easy to see that T4,α is a level-α test. Now, we want to control the second kind error. Under H1, each
variable Zi can be written as

Zi = Viτ + ηi,

where Vi is a Bernoulli variable with parameter ε, ηi ∼N (0,1) and Vi and ηi are independent. Then

√
nZ̄n = S√

n
τ + B,

where S =
n∑

i=1 Vi ∼ B(n, ε), B =
n∑

i=1 ηi/
√

n ∼ N (0,1) and S, B are independent. Conditionally to S, the
variable nZ̄2

n has a non-central chi-square distribution with one degree of freedom and noncentrality parameter
λS = ( S√

n
τ )2. Let

hS = 1 + λS − 2
√

(1 + 2λS) ln(2/β).

According to Lemma 2 in Appendix A (see also [17])

P
(
nZ̄2

n ≤ hS |S) ≤ β

2
.

Hence, for each g ∈ G,

Pg(T4,α = 0) = Pg

(
nZ̄2

n ≤ t1,α

)
= P

({
nZ̄2

n ≤ t1,α

}∩ {hS ≤ t1,α})
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+ P
({

nZ̄2
n ≤ t1,α

}∩ {hS > t1,α})
≤ P(hS ≤ t1,α) + β

2
.

According to Lemma 1 in Appendix A,

t1,α ≤ 1 + 2 ln(1/α) + 2
√

ln(1/α).

Hence

P(hS ≤ t1,α) ≤ P
(
1 + λS − 2

√
(1 + 2λS) ln(2/β) ≤ 1 + 2 ln(1/α) + 2

√
ln(1/α)

)
≤ P

(√
λS ≤ R(α,β,1)

)
,

with

R(α,β,1) = √
2 ln(2/β) +

√
2 ln(2/β) + 2

√
ln(2/β) + 2 ln(1/α) + 2

√
ln(1/α) ≤ Cβ + C

√
ln(1/α),

where Cβ and C are two positive constants.
Using a Tchebychev’s inequality leads to

P(hS ≤ t1,α) ≤ P

(
S ≤

√
n

|τ |
(
Cβ + C

√
ln(1/α)

))

≤ P

(
|S − nε| > nε −

√
n

|τ |
(
Cβ + C

√
ln(1/α)

))

≤ nετ 2

[nε|τ | − √
n(Cβ + C

√
ln(1/α))]2

.

If
√

nε|τ | > 2(Cβ + C
√

ln(1/α)) then nε|τ | − √
n(Cβ + C

√
ln(1/α)) ≥ nε|τ |

2 . Thus, P(hS ≤ t1,α) ≤ 4
nε

≤ β
2 as

soon as nε ≥ 8
β

. �

B.2. Second testing procedure

Let α ∈ ]0,1[ and T5,α be the testing procedure defined as

T5,α = 1{max1≤i≤n Z2
i >t1, α

n
}, (22)

where t1, α
n

is the (1 − α
n
)-quantile of a chi-square distribution with one degree of freedom. The following lemma

establishes sufficient conditions that allow to control the second kind error of T5,α .

Lemma 5. Let α,β ∈ ]0,1[. Assume that nε ≥ 8
β

. Then, the testing procedure T5,α defined in (22) is of level α.
Moreover, there exists a positive constant Cβ such that for all g ∈ G for which

|τ | ≥ Cβ

√
ln(n) +√

A(α,n)

with A(α,n) = 2
√

ln(n/α) + 2 ln(n/α),

Pg(T5,α = 0) ≤ β.
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Proof. First

P0(T5,α = 1) = P0
(∃1 ≤ i ≤ n,Z2

i > t1,α/n

)
≤

n∑
i=1

P0
(
Z2

i > t1,α/n

)

≤
n∑

i=1

α

n
= α

since, under the null hypothesis, Z2
i is a chi-square variable with one degree of freedom. Note that, according to

Lemma 1 in Appendix A,

t1,α/n ≤ 1 + 2
√

ln(n/α) + 2 ln(n/α).

Under H1, each variable Zi can be written as

Zi = Viτ + ηi, i = 1, . . . , n,

where Vi ∼ B(ε), ηi ∼ N (0,1), and Vi and ηi are independent. Let S =
n∑

i=1 Vi ∼ B(n, ε). As in the proof of
Theorem 3, assuming that nε ≥ 8

β
, P(S ≤ nε

2 ) ≤ β
2 . Moreover,

Pg(T5,α = 0 ∩ S ≥ nε/2) ≤ Pg(T5,α = 0 ∩ S ≥ 1)

≤ P
(∃1 ≤ i ≤ n, (τ + ηi)

2 ≤ t1,α/n

)
≤ nP

(
(τ + η1)

2 ≤ t1,α/n

)
,

where (τ + η1)
2 is a noncentral chi-square random variable with one degree of freedom and a noncentrality parame-

ter τ 2. We deduce from Lemma 2 that for xβ = ln(2n/β),

P
(
(τ + η1)

2 ≤ 1 + τ 2 − 2
√(

1 + 2τ 2
)
xβ

) ≤ e−xβ = β/(2n).

Gathering the previous inequalities, we get that Pg(T5,α = 0) ≤ β provided that

1 + 2
√

ln(n/α) + 2 ln(n/α) ≤ 1 + τ 2 − 2
√(

1 + 2τ 2
)
xβ.

This condition is fulfilled if

τ 2 − Cβ

√
ln(n)|τ | − A(α,n) ≥ 0,

where A(α,n) = 2
√

ln(n/α) + 2 ln(n/α) and Cβ is a positive constant only depends on β . After some easy computa-
tions, we see that this condition is fulfilled if

|τ | ≥ Cβ

√
ln(n) +√

A(α,n). �
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