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Abstract. A result of A.M. Davie (Int. Math. Res. Not. 24 (2007) rnm124) states that a multidimensional stochastic equation
dXt = b(t,Xt ) dt +dWt , X0 = x, driven by a Wiener process W = (Wt ) with a coefficient b which is only bounded and measurable
has a unique solution for almost all choices of the driving Wiener path. We consider a similar problem when W is replaced by a
Lévy process L = (Lt ) and b is β-Hölder continuous in the space variable, β ∈ (0,1). We assume that L1 has a finite moment of
order θ , for some θ > 0. Using a new càdlàg regularity result for strong solutions, we prove that strong existence and uniqueness
for the SDE together with Lp-Lipschitz continuity of the strong solution with respect to x imply a Davie’s type uniqueness result
for almost all choices of the Lévy path. We apply this result to a class of SDEs driven by non-degenerate α-stable Lévy processes,
α ∈ (0,2) and β > 1 − α/2.

Résumé. Un résultat de A.M. Davie (Int. Math. Res. Not. 24 (2007) rnm124) établit qu’une équation stochastique multi-
dimensionnelle dXt = b(t,Xt ) dt + dWt , X0 = x, dirigée par un processus de Wiener W = (Wt ) avec un coefficient b qui est
seulement borné et mesurable admet une unique solution pour presque tout choix de la trajectoire du processus W la dirigeant.
Nous considérons un problème similaire lorsque W est remplacé par un processus de Lévy L = (Lt ) et b est β-Hölder continu en
espace. Nous supposons que L1 a un moment fini d’ordre θ pour un certain θ > 0. En utilisant un nouveau résultat de régularité
càdlàg, nous prouvons que l’existence et unicité forte pour l’EDS, associées à une Lp-Lipschitz continuité de la solution forte par
rapport à x, impliquent une unicité de type Davie pour presque tout choix de la trajectoire de Lévy. Nous appliquons ce résultat à
une classe d’EDS dirigées par un processus de Lévy α-stable non dégénéré pour α ∈ (0,2) et β > 1 − α/2.
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1. Introduction

In [8] A.M. Davie has proved that a SDE dXt = b(t,Xt ) dt + dWt , X0 = x ∈ Rd , driven by a Wiener process W

and having a coefficient b which is only bounded and measurable has a unique solution for almost all choices of the
driving Wiener path. This type of uniqueness is also called path-by-path uniqueness. In other words, adding a single
path of a Wiener process W = (Wt) = (Wt)t≥0 regularizes a singular ODE whose right-hand side b is only bounded
and measurable.

We consider a similar uniqueness problem for SDEs driven by Lévy noises with Hölder continuous drift term b,
i.e., we deal with

Xt(ω) = x +
∫ t

s

b
(
r,Xr(ω)

)
dr + Lt(ω) − Ls(ω), t ∈ [s, T ], (1.1)

where T > 0, s ∈ [0, T ], x ∈Rd , d ≥ 1, b : [0, T ]×Rd → Rd is measurable, bounded and β-Hölder continuous in the
x-variable, uniformly in t , β ∈ (0,1]. Moreover L = (Lt ) is a d-dimensional Lévy process defined on a probability
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space (�,F,P ) and ω ∈ � (see Section 2; recall that L0 = 0, P -a.s.). Suppose that E[|L1|θ ] < ∞ for some θ > 0
(cf. Hypothesis 2). Assuming that, for any x ∈ Rd , s ∈ [0, T ], strong existence and uniqueness hold for (1.1) together
with Lp-Lipschitz continuity of the strong solution (X

s,x
t ) with respect to x, i.e.,

sup
s∈[0,T ]

E
[

sup
s≤r≤T

∣∣Xs,x
r − X

s,y
r

∣∣p]
≤ C|x − y|p, x, y ∈Rd,p ∈ [2,∞) (1.2)

(cf. Hypothesis 1 and Section 2) we prove the following result (cf. Theorem 5.1)

Theorem 1.1. Assume Hypotheses 1 and 2. There exists an event �′ ∈ F with P(�′) = 1 such that for any ω ∈ �′,
x ∈ Rd , the integral equation

f (t) = x +
∫ t

0
b
(
r, f (r) + Lr(ω)

)
dr, t ∈ [0, T ], (1.3)

has exactly one solution f in C([0, T ];Rd).

The assumptions and the uniqueness property are clear when β = 1 (the Lipschitz case). When β ∈ (0,1) the result
is a special case of assertion (v) in Theorem 5.1 which also considers s �= 0. It turns out that f (t) = φ(0, t, x,ω) −
Lt(ω), t ∈ [0, T ], where (φ(s, t, x, ·)) is a particular strong solution to (1.1). In Section 6 we will apply the previous
theorem to a class of SDEs driven by non-degenerate α-stable type Lévy processes, α ∈ (0,2), assuming as in [23] that
β ∈ (1 − α

2 ,1). Note that we can also treat locally Hölder drifts b(x) by a localization procedure (see Corollaries 5.4
and 5.5). These uniqueness results seem to be new even in dimension one. For instance, one can consider

dXt = √|Xt |dt + dL
(α)
t , X0 = x ∈ R,

with a symmetric α-stable process L(α) = (L
(α)
t ), α > 1, and prove that for almost all ω ∈ � there exists at most one

solution for (1.3) with b(r, x) = √|x| and L = L(α).
As already mentioned when L = W is a standard Wiener process, Theorem 1.1 is a special case of Theorem 1.1 in

[8]. Recall that Davie’s uniqueness is stronger then the usual pathwise uniqueness considered in the literature on SDEs
(cf. Remark 2.2 and see also [10]). Pathwise uniqueness deals with solutions which are adapted stochastic processes
and does not consider solutions corresponding to single paths (Lt (ω))t∈[0,T ]. When L = W several results on strong
existence and pathwise uniqueness are known for the SDE (1.1) with very irregular drift b: the seminal paper [35]
deals with b as in the Davie’s result; further recent results consider b which is only locally in some Lp-spaces (see
also [13,18] and [9]).

When L is a stable type Lévy process, the SDE (1.1) with a Hölder continuous and bounded drift b and its associ-
ated integro-differential generator Lb (cf. (6.8)) has received a lot of attention (see, for instance, [3,6,23,24,31,32,34]
and the references therein). On this respect in Theorem 3.2 of [34] the authors proved that when d = 1 and L is a
symmetric α-stable process, α ∈ (0,1), pathwise uniqueness may fail even with a β-Hölder continuous b if α +β < 1.

Let us come back to Davie’s theorem. The proof in [8] is self-contained but very technical; it relies on explicit
computations with Gaussian kernels. An alternative approach to the Davie uniqueness result has been proposed in
[30] (see in particular Theorems 1.1 and 3.1 in [30]). This approach uses the flow property of strong solutions of
SDEs driven by the Wiener process. Beside [8] our work has been inspired by Theorem 3.1 in [30] which deals with
drifts b possibly unbounded in time and such that b(t, ·) is Hölder continuous. We mention that applications of Davie’s
uniqueness to Euler approximations for (1.1) are given in Section 4 of [8].

In our proof we use Lp-estimates (1.2) which are well-known when L = W (they can be easily deduced from
Section 2 in [11]). They are even true for more general drifts b (i.e., b ∈ Lq(0, T ;Lp(Rd ;Rd)), d/p + 2/q < 1,
p ≥ 2, q > 2, see formula (5.9) and Proposition 5.2 in [9]). Moreover, when L is a symmetric non-degenerate α-stable
process, b(t, x) = b(x), α ≥ 1 and β ∈ (1 − α

2 ,1], such estimates follow by Theorem 4.3 in [23] (see Theorem 6.6 for
a more general case).

By the Lp-estimates (1.2), passing through different modifications (see Sections 3 and 4), we finally obtain a
suitable strong solution φ(s, t, x,ω) (see Theorem 5.1) which solves (1.1) for any ω ∈ �′, for some almost sure event
�′ which is independent on s, t and x. Such solution φ is used to prove uniqueness of (1.3) (see the proof of (v) of
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Theorem 5.1). We also establish càdlàg regularity of φ with respect to s, uniformly in t ∈ [0, T ] and x, when x varies
in compact sets of Rd . This result seems to be new even when d = 1 and b is Lipschitz continuous if L is not the
Wiener process W (when L = W , the continuous dependence on s, uniformly in x, has been proved in Section 2 of
[14] for SDEs with Lipschitz coefficients). We also prove the continuous dependence of φ(s, t, x,ω) with respect to
x and the flow property, for any ω ∈ �′ (see assertions (iii) and (iv) in Theorem 5.1). There are recent papers on the
flow property for solutions to SDEs with jumps (see, for instance, [6,21,24] and the references therein). However they
do not prove the previous assertions on φ.

Remark that when L = W and b(t, ·) is Hölder continuous as in (1.1), proving the existence of a regular strong
solution like φ is easier. Indeed in such case one can use the well-known Kolmogorov–Chentsov continuity test to get
a continuous dependence on (s, t, x). More precisely, when L = W , we can apply the Zvonkin method of [35] or the
related Itô-Tanaka trick of [11] and, using a suitable regular solution u(t, x) of a related Kolmogorov equation (cf.
Section 6.2), find that the process (u(t,Xx

t )) solves an auxiliary SDE with Lipschitz continuous coefficients. On this
auxiliary equation one can perform the Kolmogorov–Chentsov test as in [19] and finally obtain the required regular
modification of the strong solution. To get our regular strong solution φ we do not pass through an auxiliary SDE but
work directly on (1.1) using first a result in [14] and then a càdlàg criterion given in [4]. We apply this criterion to
a suitable stochastic process with values in a space of continuous functions defined on Rd (see Theorem 4.4). This
approach could be also useful to study regularity properties of solutions to SDEs with multiplicative noise.

In Section 6 we apply Theorem 5.1 to a class of SDEs driven by non-degenerate α-stable type Lévy processes,
using also results in [23] and [24]. In particular we prove a Davie’s type uniqueness result for (1.1) when L is a
standard rotationally invariant α-stable process, α ∈ (0,2) and β ∈ (1 − α

2 ,1]. The generator of L is the well-known
fractional Laplacian −(−
)α/2. To cover the case α ∈ (0,1) we also need an analytic result proved in [31] (cf.
Remark 5.5 in [24]). When α ∈ [1,2) and β ∈ (1 − α

2 ,1] we can treat more general non-degenerate α-stable type
processes like relativistic and truncated stable processes and some temperated stable processes (cf. [24] with the
references therein and see Examples 6.2). When α ∈ [1,2) we can also consider the singular α-stable process L =
(Lt ), Lt = (L1

t , . . . ,L
d
t ), t ≥ 0, where L1, . . . ,Ld are independent one-dimensional symmetric α-stable processes;

well-posedness of SDEs driven by this process has recently received particular attention (see, for instance, [2,6,23,24,
38]).

2. Notations and assumptions

We fix basic notations. We refer to [17,20,28] and [1] for more details on Lévy processes with values in Rd . By 〈x, y〉
(or x · y) we denote the euclidean inner product between x and y ∈ Rd , for d ≥ 1; further |x| = (〈x, x〉)1/2. If H ⊂Rd

we denote by 1H its indicator function. The Borel σ -algebra of a Borel set C ⊂ Rk , k ≥ 1, is indicated by B(C).
Similarly if (S, d) is a metric space we denote its Borel σ -algebra by B(S). We consider a complete probability space
(�,F,P ). The expectation with respect to P is indicated with E. If G ⊂ F is a σ -algebra, a random variable X :
� → S with values in a metric space (S, d) which is measurable from (�,G) into (S,B(S)) is called G-measurable.
Similarly a function l : [0, T ] × � → S is B([0, T ]) × F -measurable if l is measurable with respect to the product
σ -algebra B([0, T ]) ×F .

In the sequel we often need to specify the possible dependence of events of probability one from some parameters.
Recall that a set �′ ⊂ � is an almost sure event if �′ ∈ F and P(�′) = 1. To stress that �′ possibly depends also
on a parameter λ we write �′

λ (the almost sure event �′
λ may change from one proposition to another); for instance

the notation �s,x means that the almost sure event �s,x possibly depends also on s and x. We say that a property
involving random variables holds on an almost sure event �′ to indicate that such property holds for any ω ∈ �′ (i.e.,
such property holds P -a.s.).

A d-dimensional stochastic process L = (Lt ) = (Lt )t≥0, d ≥ 1, defined on (�,F,P ) is a Lévy process if it has
independent and stationary increments, càdlàg paths (i.e., P -a.s., each mapping t �→ Lt(ω) is càdlàg from [0,∞) into
Rd ; we denote by Ls−(ω) the left-limit in s > 0) and L0 = 0, P -a.s.

Similarly to Chapter II in [19] and Chapter V in [17] we define for 0 ≤ s < t < ∞ the σ -algebra FL
s,t as the

completion of the σ -algebra generated by the random variables Lr − Ls , r ∈ [s, t]. We also set FL
0,t = FL

t . Since L

has independent increments we have that Lv − Lu is independent of FL
u for 0 ≤ u < v. Note that (�,F, (FL

t )t≥0,P )
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is an example of stochastic basis which satisfies the usual assumptions (see [1], page 72). Given a Lévy process L

there exists a unique function ψ : Rd → C such that

E
[
ei〈h,Lt 〉] = e−tψ(h), h ∈Rd, t ≥ 0;

ψ is called the exponent of L. The Lévy–Khintchine formula for ψ states that

ψ(h) = 1

2
〈Qh,h〉 − i〈a,h〉 −

∫
Rd

(
ei〈h,y〉 − 1 − i〈h,y〉1{|y|≤1}(y)

)
ν(dy), (2.1)

h ∈ Rd , where Q is a symmetric non-negative definite d ×d-matrix, a ∈Rd and ν is a σ -finite (Borel) measure on Rd ,
such that

∫
Rd (1 ∧ |y|2)ν(dy) < ∞, ν({0}) = 0 (1 ∧ |y|2 = min(1, |y|2)); ν is the Lévy measure (or intensity measure)

of L. The triplet (Q,ν, a) uniquely identifies the law of L (see Proposition 9.8 in [28] or Corollary 2.4.21 in [1]). It is
called generating triplet (or characteristics) of the Lévy process L.

Given two stochastic processes X = (Xt )t∈[0,T ] and Y = (Yt )t∈[0,T ] defined on (�,F,P ) and with values in a
metric space (S, d), we say that X is a modification or version of Y if for any t ∈ [0, T ], Xt = Yt , P -a.s.; if in addition
both X and Y have càdlàg paths then, P(Xt = Yt , t ∈ [0, T ]) = P(Xt = Yt , for any t ∈ [0, T ]) = 1.

Let L = (Lt ) be a d-dimensional Lévy process defined on a complete probability space (�,F,P ), let s ∈ [0, T ]
and x ∈Rd and consider the SDE

dXt = b(t,Xt ) dt + dLt , s ≤ t ≤ T , Xs = x, (2.2)

with b : [0, T ] ×Rd → Rd which is a locally bounded Borel function.
According to [19,20] and [33] we say that an Rd -valued stochastic process Us,x = (U

s,x
t ) = (U

s,x
t )t∈[s,T ] defined

on (�,F,P ) is a strong solution to (2.2) starting from x at time s if, for any t ∈ [s, T ], the random variable U
s,x
t :

� → Rd is FL
s,t -measurable; further we require that there exists an almost sure event �s,x (possibly depending also

on s and x but independent of t ) such that the following conditions hold for any ω ∈ �s,x : (i) the map: t �→ U
s,x
t (ω)

is càdlàg on [s, T ]; (ii) we have

U
s,x
t (ω) = x +

∫ t

s

b
(
r,Us,x

r (ω)
)
dr + Lt(ω) − Ls(ω), t ∈ [s, T ]; (2.3)

(iii) the path t �→ Lt(ω) is càdlàg and L0(ω) = 0.
Given a strong solution Us,x we set for any 0 ≤ t ≤ s, U

s,x
t = x on �.

Let us recall some function spaces used in the paper. We consider Cb(R
d ;Rk), for integers k, d ≥ 1, as the Banach

space of all continuous and bounded functions g : Rd → Rk endowed with the supremum norm ‖g‖0 = ‖g‖Cb
=

supx∈Rd |g(x)|, g ∈ Cb(R
d ;Rk). Moreover, C

0,β
b (Rd ;Rk), β ∈ (0,1], is the subspace of all β-Hölder continuous

functions g, i.e., g verifies

[g]
C

0,β
b

= [g]β := sup
x �=x′∈Rd

(∣∣g(x) − g
(
x′)∣∣∣∣x − x′∣∣−β)

< ∞

(when β = 1, g is Lipschitz continuous). If β = 0 we set C
0,0
b (Rd ;Rk) = Cb(R

d ;Rk). If β ∈ (0,1) we also write

C
β
b (Rd;Rk) = C

0,β
b (Rd ;Rk); note that C

0,β
b (Rd ;Rk) is a Banach space with the norm ‖ · ‖

C
0,β
b

= ‖ · ‖β = ‖ · ‖0 +
[·]β , β ∈ (0,1]. If Rk = R, we set C

0,β
b (Rd ;Rk) = C

0,β
b (Rd) (a similar convention is also used for other function

spaces). A function g ∈ Cb(R
d ;Rk) belongs to C1

b(Rd;Rk) if it is differentiable on Rd and its Fréchet derivative Dg ∈
Cb(R

d;Rdk). If β ∈ (0,1), a function g ∈ C1
b(Rd ;Rk) belongs to C

1+β
b (Rd;Rk) if Dg ∈ C

β
b (Rd;Rdk). The space

C
1+β
b (Rd ;Rk) is a Banach space endowed with the norm ‖g‖1+β = ‖g‖

C
1+β
b

= ‖g‖0 + [Dg]β , g ∈ C
1+β
b (Rd ;Rk).

C∞
b (Rd;Rk) is the space of all infinitely differentiable functions from Rd into Rk with all bounded derivatives. Finally

g ∈ C∞
b (Rd) belongs to C∞

0 (Rd) if g has compact support. Given a bounded open set B ⊂ Rd we can define similar
Banach spaces Cβ(B) and C1+β(B) with norms ‖ · ‖Cβ(B) and ‖ · ‖C1+β(B), β ∈ (0,1).
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We usually require that the drift b belongs to L∞(0, T ;C0,β
b (Rd ;Rd)), β ∈ [0,1]. This means that b : [0, T ] ×

Rd → Rd is Borel measurable and bounded, b(t, ·) ∈ C
0,β
b (Rd;Rd), t ∈ [0, T ], and [b]β,T = supt∈[0,T ][b(t, ·)]

C
0,β
b

<

∞.
Set ‖b‖β,T = [b]β,T + ‖b‖0, ‖b‖0 = supt∈[0,T ],x∈Rd |b(t, x)| if β ∈ (0,1] and ‖b‖0,T = ‖b‖0, β = 0. Note that

(L∞(0, T ;C0,β
b (Rd ;Rd))),‖ · ‖β,T ) is a Banach space. We will also use

G0 = C
([0, T ];Rd

)
(2.4)

to denote the separable Banach space consisting of all continuous functions f : [0, T ] → Rd , endowed with the usual
supremum norm ‖ · ‖G0 .

Let us formulate our assumptions on (1.1) when b ∈ L∞(0, T ;C0,β
b (Rd ;Rd)), β ∈ [0,1]. Note that, possibly

changing b(t, x) with b(t, x)+a, to study the SDE (1.1) we may always assume that in the generating triplet (Q,ν, a)

we have

a = 0. (2.5)

In (1.1) we deal with a Lévy process L defined on (�,F,P ) and b ∈ L∞(0, T ; C
0,β
b (Rd ;Rd)) which satisfy

Hypothesis 1.

(i) For any s ∈ [0, T ] and x ∈Rd on (�,F,P ) there exists a strong solution (U
s,x
t )t∈[0,T ] to (2.2).

(ii) Let s ∈ [0, T ]. Given any two strong solutions (U
s,x
t )t∈[0,T ] and (U

s,y
t )t∈[0,T ] defined on (�,F,P ) which both

solve (2.2) with respect to L and b (starting from x and y ∈Rd , respectively, at time s) we have, for any p ≥ 2,

sup
s∈[0,T ]

E
[

sup
s≤t≤T

∣∣Us,x
t − U

s,y
t

∣∣p]
≤ C(T )|x − y|p, x, y ∈ Rd, (2.6)

with C(T ) = C((ν,Q,0), ‖b‖β,T , d,β,p,T ) > 0 independent of s, x and y.

The previous hypothesis holds clearly for any Lévy process L if β = 1 (the Lipschitz case). Next we consider the
Lévy measure ν associated to the large jump parts of L.

Hypothesis 2. There exists θ > 0 such that
∫
{|x|>1} |x|θ ν(dx) < ∞.

Remark 2.1. By Theorems 25.3 and 25.18 in [28] the following three conditions are equivalent:

(a)
∫
{|x|>1} |x|θ ν(dx) < ∞ for some θ > 0;

(b) E[|Lt |θ ] < ∞ for some t > 0;
(c) E[sups∈[0,t] |Ls |θ ] < ∞ for any t > 0.

Note also that
∫
{|x|>1} |x|θ ν(dx) < ∞ holds for some θ > 0 then

∫
{|x|>1} |x|θ ′

ν(dx) < ∞ for any θ ′ ∈ (0, θ ].

Remark 2.2. We present here for the sake of completeness some general concepts about solutions of SDEs (cf. [31]
for more details). We will not use these notions in the sequel. Let the initial time s = 0. A weak solution to (1.1)
with initial condition x ∈ Rd is a tuple (�,F, (Ft )t≥0,P ,L,X), where (�,F, (Ft )t≥0,P ) is a stochastic basis on
which it is defined a Lévy process L and a càdlàg (Ft )-adapted Rd -valued process X = (Xt ) which solves (1.1) P -a.s.
A weak solution X which is (FL

t )-adapted is called strong solution. One say that pathwise uniqueness holds for (1.1)
if given two weak solutions X and Y (starting from x ∈ Rd ) and defined on the same stochastic basis (with respect to
the same L) then P -a.s. we have Xt = Yt , for any t ∈ [0, T ].

3. Preliminary results on strong solutions

Consider (2.2) with b ∈ L∞(0, T ;C0,β
b (Rd ;Rd)), β ∈ [0,1], and suppose that L defined on (�,F,P ) and b satisfy

Hypothesis 1.
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Let s ∈ [0, T ], x ∈ Rd . We start with a strong solution (X̃
s,x
t )t∈[0,T ] to (2.2) defined on (�,F,P ) and introduce

the d-dimensional process Ỹ s,x = (Ỹ
s,x
t )t∈[0,T ],

Ỹ
s,x
t = X̃

s,x
t − (Lt − Ls), t ≥ s. (3.1)

Note that on some almost sure event �s,x (independent of t ) we have

Ỹ
s,x
t = x +

∫ t

s

b
(
r, Ỹ s,x

r + (Lr − Ls)
)
dr, t ≥ s, (3.2)

and Ỹ
s,x
t = x on � if t ≤ s. It follows that (Ỹ

s,x
t )t∈[0,T ] has continuous paths.

Let us fix s ∈ [0, T ] and x ∈ Rd . We modify the process Ỹ s,x only on �\�s,x by setting Ỹ
s,x
t (ω) = x, for t ∈ [0, T ],

if ω /∈ �s,x (we still denote by Ỹ s,x such new process).
We find that Ỹ s,x· (ω) ∈ G0 = C([0, T ];Rd), for any ω ∈ �. Moreover (cf. (2.4)) it is easy to check that

Ỹ s,x = Ỹ s,x· is a random variable with values in G0. (3.3)

Now, for each fixed s ∈ [0, T ], we will construct a suitable modification of the random field (Ỹ s,x)x∈Rd with values
in G0. We need the following special case of Theorem 1.1 of [14]. It is a generalized Garsia–Rodemich–Rumsey type
lemma.

Theorem 3.1 ([14]). Let (M,ρ) be a separable metric space and (�,F,P ) be a probability space. Let ψ : �×Rd →
M be a F × B(Rd)-measurable map such that ψ(ω, ·) is continuous on Rd , for each ω ∈ �, and there exists c > 0
and p > 2d for which E[(ρ(ψ(·, x),ψ(·, y)))p] ≤ c|x − y|p , x, y ∈Rd . Then, for any ω ∈ �, x, y ∈Rd ,

ρ
(
ψ(ω,x),ψ(ω,y)

) ≤ Y(ω)|x − y|1− 2d
p

[(|x| ∨ |y|) 2d+1
p ∨ 1

]
, (3.4)

where Y : � → [0,∞] is the following p-integrable random variable:

Y(ω) =
(∫

Rd

∫
Rd

(ρ(ψ(ω,x),ψ(ω,y)))p

|x − y|p f (x)f (y) dx dy

)1/p

, ω ∈ �,

with f (x) = c(d,p)([|x|d [(log(|x|) ∨ 0)2] ∨ 1)−1, x �= 0, for some constant c(d,p) > 0.

In Theorem 1.1 of [14] f (x) is just defined as ([|x|d [(log(|x|) ∨ 0)2] ∨ 1)−1. Moreover Y(ω) =
c3(

∫
Rd

∫
Rd

(ρ(ψ(ω,x),ψ(ω,y)))p

|x−y|p f (x)f (y) dx dy)1/p .

Lemma 3.2. Consider (2.2) with b ∈ L∞(0, T ;C0,β
b (Rd ;Rd)), β ∈ [0,1], and suppose that L defined on (�,F,P )

and b satisfy Hypothesis 1. Let us fix s ∈ [0, T ] and consider the random field Ỹ s = (Ỹ s,x)x∈Rd with values in G0 (see
(3.3)). We have:

(i) There exists a continuous version Y s = (Y s,x)x∈Rd with values in G0 (i.e., for any x ∈ Rd , Y s,x = Ỹ s,x in G0
on some almost sure event).

(ii) For any p > 2d there exists a random variable Us,p with values in [0,∞] such that, for any ω ∈ �, x, y ∈Rd ,

∥∥Y s,x(ω) − Y s,y(ω)
∥∥

G0
≤ Us,p(ω)

[(|x| ∨ |y|) 2d+1
p ∨ 1

]|x − y|1−2d/p. (3.5)

Moreover, with the same constant C(T ) appearing in (2.6),

sup
s∈[0,T ]

E
[
U

p
s,p

] ≤ C(d)C(T ) < ∞, (3.6)

where C(d) = (
∫
Rd f (x) dx)2 (hence Us,p is finite on some almost sure event possibly depending on s and p).
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(iii) On some almost sure event �′
s (independent of t and x) we have

Y
s,x
t = x +

∫ t

s

b
(
r, Y s,x

r + (Lr − Ls)
)
dr, t ≥ s, x ∈Rd (3.7)

(where Y
s,x
t (ω) = (Y s,x· (ω))(t), t ∈ [0, T ]).

Proof. (i) Using (2.6) we can apply the Kolmogorov–Chentsov continuity test as in [15], page 57, and obtain a
continuous version Y s of Ỹ s . The classical proof given in [15] uses the Borel-Cantelli lemma; by such proof it is easy
to show that an analogous of (2.6) holds for Y s , i.e., for p ≥ 2, x, y ∈Rd ,

sup
s∈[0,T ]

E
[∥∥Y s,x − Y s,y

∥∥p

G0

] = sup
s∈[0,T ]

E
[∥∥Ỹ s,x − Ỹ s,y

∥∥p

G0

] ≤ C(T )|x − y|p. (3.8)

(ii) As in Theorem 3.1 we consider the random variables

Us,p(ω) =
(∫

Rd

∫
Rd

(‖Y s,x(ω) − Y s,y(ω)‖G0

|x − y|
)p

f (x)f (y) dx dy

)1/p

,

ω ∈ �, p > 2d and s ∈ [0, T ]. By (3.8) and Theorem 3.1 we obtain (3.5) and (3.6).
(iii) We start from equation (3.2) involving the process (Ỹ s,x). Since for some almost sure event �′

s,x ⊂ �s,x , we

have Y
s,x
t (ω) = Ỹ

s,x
t (ω), ω ∈ �′

s,x , t ∈ [0, T ], we obtain from (3.2)

Y
s,x
t (ω) = x +

∫ t

s

b
(
r, Y s,x

r (ω) + (
Lr(ω) − Ls(ω)

))
dr,

for any s ∈ [t, T ], x ∈ Qd , ω ∈ �′
s = ⋂

x∈Qd �′
s,x . Note also that by (i) the function: x �→ Y s,x(ω) is continuous for

all ω ∈ �. Take now x ∈Rd and let (xn) ⊂Qd be a sequence converging to x. It follows from the continuity of b(r, ·)
and the dominated convergence theorem that, for any t ≥ s, on �′

s we have:

Y
s,x
t = lim

n→∞Y
s,xn
t = lim

n→∞xn + lim
n→∞

∫ t

s

b
(
r, Y s,xn

r + (Lr − Ls)
)
dr

= x +
∫ t

s

b
(
r, Y s,x

r + (Lr − Ls)
)
dr

and this shows the assertion. �

Let s ∈ [0, T ]. According to the previous result starting from Y s = (Y s,x)x∈Rd we can define random variables
X

s,x
t : � → Rd as follows: X

s,x
t = x if t ≤ s and

X
s,x
t = Y

s,x
t + (Lt − Ls), s, t ∈ [0, T ], x ∈Rd, s ≤ t. (3.9)

By the properties of Y s,x we get P(X̃
s,x
t = X

s,x
t , t ∈ [0, T ]) = 1, for any x ∈ Rd (cf. (3.1)). Moreover, using also (3.7),

we find that for some almost sure event �′
s (independent of x and t ) the map: t �→ X

s,x
t (ω) is càdlàg on [0, T ], for

any ω ∈ �′
s , x ∈Rd , and on �′

s we have

X
s,x
t = x +

∫ t

s

b
(
r,Xs,x

r

)
dr + Lt − Ls, s ≤ t ≤ T ,x ∈Rd . (3.10)

Thus (X
s,x
t )t∈[0,T ] is a particular strong solution to (2.2). By Lemma 3.2 we also have, for any s ∈ [0, T ], x ∈ Rd ,

on �

lim
y→x

sup
t∈[0,T ]

∣∣Xs,x
t − X

s,y
t

∣∣ = 0. (3.11)

We can prove the following flow property.
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Lemma 3.3. Under the same assumptions of Lemma 3.2 consider the strong solution (X
s,x
t )t∈[0,T ] defined in (3.9).

Let 0 ≤ s < u ≤ T . There exists an almost sure event �s,u (independent of t ∈ [u,T ] and x ∈ Rd ) such that for
ω ∈ �s,u, x ∈ Rd , we have

X
s,x
t (ω) = X

u,X
s,x
u (ω)

t (ω), t ∈ [u,T ], x ∈Rd . (3.12)

Proof. Let us fix s, u ∈ [0, T ], s < u, and x ∈ Rd . We introduce the process (V x
t )0≤t≤T on (�,F,P ) with values in

Rd :

V x
t (ω) =

{
X

s,x
t (ω) for 0 ≤ t ≤ u,

X
u,X

s,x
u (ω)

t (ω) for u < t ≤ T ,
ω ∈ �.

In order to prove (3.12) we will show that (V x
t ) is strong solution to (2.2) for t ≥ s. Then by uniqueness we will get

the assertion.
It is easy to prove that (V x

t ) has càdlàg paths. More precisely, by (3.7) on some almost sure event �′
s ∩ �′

u

(independent of x) we have that t �→ V x
t (ω) is càdlàg on [0, T ] (note also that, for any ω ∈ �′

s ∩ �′
u, z ∈ Rd ,

limt→u+ X
u,z
t (ω) = z).

Moreover, for any x ∈ Rd and t ≥ s, the random variable V x
t is FL

s,t -measurable. The assertion is clear if t ≤ u.
Let us consider the case when t > u. First X

s,x
u is FL

s,t -measurable. Define Ft,u(z,ω) = X
u,z
t (ω), z ∈ Rd , ω ∈ �. The

mapping Ft,u is clearly B(Rd) × FL
s,t -measurable on Rd × � and Ft,u(·,ω) is continuous on Rd , for any ω ∈ �, by

(3.11). It follows that also the map: ω �→ Ft,u(X
s,x
u (ω),ω) is FL

s,t -measurable.
It is clear that (V x

t ) solves (3.10) on �′
s when s ≤ t ≤ u (recall (3.7)). Let us consider the case when t ≥ u.

According to (3.10) we know that on �′
u we have

X
u,X

s,x
u

t = Xs,x
u +

∫ t

u

b
(
r,Xu,X

s,x
u

r

)
dr + Lt − Lu, t ≥ u. (3.13)

Hence on �′
u ∩ �′

s we have for t ≥ u

V x
t = X

u,X
s,x
u

t = x +
∫ u

s

b
(
r,Xs,x

r

)
dr + Lu − Ls

+
∫ t

u

b
(
r,Xu,X

s,x
u

r

)
dr + Lt − Lu = x +

∫ t

s

b
(
r,V x

r

)
dr + Lt − Ls.

It follows that (V x
t ) solves (3.10) on �′

s ∩ �′
u when s ≤ t ≤ T . By Hypothesis 1 we infer that, for any x ∈ Rd , on

some almost sure event �s,u,x we have that V x
t = X

s,x
t , t ∈ [s, T ]. In particular we get V x

t = X
s,x
t , t ∈ [u,T ] and this

proves (3.12) at least on an almost sure event �s,u,x .
To remove the dependence on x in the almost sure event, we note that the mapping: x �→ V x

t (ω) is continuous from
Rd into Rd , for any ω ∈ �, t ∈ [0, T ] (see (3.11)). Arguing as in the final part of the proof of Lemma 3.2 we obtain
that X

s,x
t (ω) = V x

t (ω), for t ∈ [u,T ], x ∈Rd and ω ∈ �s,u = ⋂
x∈Qd �s,u,x . This proves (3.12). �

Following [26] page 169 (see also Problem 48 in [26]) we introduce the space C(Rd ;G0) consisting of all contin-
uous functions from Rd into G0 = C([0, T ];Rd) endowed with the compact-open topology (or the topology of the
uniform convergence on compact sets). This is a complete metric space endowed with the following metric:

d0(f, g) =
∑
N≥1

1

2N

sup|x|≤N ‖f (x) − g(x)‖G0

1 + sup|x|≤N ‖f (x) − g(x)‖G0

, f, g ∈ C
(
Rd ;G0

)
. (3.14)

It is well-know that C(Rd ;G0) is also separable (see, for instance, [16]; on the other hand Cb(R
d ;G0) is not separa-

ble). We will also consider the following projections

πx : C(
Rd;G0

) → G0, πx(f ) = f (x) ∈ G0, x ∈Rd , f ∈ C
(
Rd ;G0

)
(3.15)
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(each πx is a continuous map). According to Lemma 3.2 for any s ∈ [0, T ] the random field (Y s,x)x∈Rd has continuous
paths. It is not difficult to prove that, for any s ∈ [0, T ], the mapping:

ω �→ Y s(ω) = Y s,·(ω) (3.16)

is measurable from (�,F,P) with values in C(Rd ;G0). Indeed thanks to the separability of C(Rd ;G0) to check
the measurability it is enough to prove that counter-images of balls Br(f0) = {f ∈ C(Rd;G0) : ∑

N≥1
1

2N ×
sup{|x|≤N,x∈Qd } ‖f (x)−f0(x)‖G0

1+sup{|x|≤N,x∈Qd } ‖f (x)−f0(x)‖G0
< r}, r > 0, f0 ∈ C(Rd ;G0), are events in �.

In the sequel we will set Y = (Y s)s∈[0,T ] to denote the previous stochastic process with values in C(Rd ;G0) and
defined on (�,F,P ).

4. A version of the solution which is càdlàg with respect to the initial time s

In Theorem 4.4 we will prove the existence of a càdlàg modification Z of the process Y = (Y s)s∈[0,T ] with values in
C(Rd ;G0) (cf. (3.16)). In particular Z is a modification of Y which is càdlàg in s uniformly in x, when x varies on
compact sets of Rd . In Lemma 4.5 we will study important properties of Z. Before discussing on càdlàg modifications
we recall a standard definition.

A process X = (Xt )t∈[0,T ] defined on (�,F,P ) with values in a metric space (S, d) is stochastically continuous
(or continuous in probability) if for any t0 ∈ [0, T ], Xt converges to Xt0 in probability (see [12] for more details).

Important results on càdlàg modifications for stochastic processes were given by Gikhman and Skorokhod (see
Section III.4 in [12]). We will use a recent result given in Theorem 4.2 of [4]. In contrast with [12] the proof of this
theorem does not require the separability of the stochastic process. It is stated in [4] for stochastic processes (Xt )

when t ∈ [0,1]. However a simple rescaling argument shows that it holds when t ∈ [0, T ], for any T > 0.

Theorem 4.1 ([4]). Let X = (Xt )t∈[0,T ] be a stochastically continuous process defined on a complete probability
space and with values in a complete metric space (S, d). Let 0 ≤ s < t < u ≤ T and define 
(s, t, u) = d(Xs,Xt ) ∧
d(Xt ,Xu). A sufficient assumption in order that X has a modification with càdlàg paths is the following one: there exist
non-negative real functions δ and x0 (δ is non-decreasing and continuous on [0, T ], δ(0) = 0, and x0 is decreasing
and integrable on (0, T ]) such that the following conditions hold, for any 0 ≤ s < t < u ≤ T , M > 0,

E
[
(s, t, u)1
(s,t,u)≥M

] ≤ δ(u − s)

∫ P(
(s,t,u)≥M)

0
x0(r) dr, (4.1)

∫ 1

0

(
u−1

∫ u

0
x0(r) dr

)
δ(u)

u
du < ∞. (4.2)

The next result follows easily (cf. Section III.4 in [12]).

Corollary 4.2. Let X = (Xt )t∈[0,T ] be a stochastically continuous process with values in a complete metric space
(S,d). A sufficient condition in order that X has a càdlàg modification is the following one: there exists q > 1/2 and
r > 0 such that, for any 0 ≤ s < t < u ≤ T , we have

E
[
d(Xs,Xt )

q · d(Xt ,Xu)
q
] ≤ C|u − s|1+r . (4.3)

Proof. In order to apply Theorem 4.1 we introduce x0(h) = 2q−1
2q

h−1/2q , h ∈ (0, T ]. Let us fix 0 ≤ s < t < u and

M > 0. Noting that for a, b ≥ 0 we have a ∧ b ≤ √
a
√

b. We find by the Hölder inequality

E
[
(s, t, u)1
(s,t,u)≥M

] ≤ (
E

[
(s, t, u)2q
])1/2q(

P
(
(s, t, u) ≥ M

)) 2q−1
2q

≤ E
[
d(Xs,Xt )

q · d(Xt ,Xu)
q
]1/2q

∫ P(
(s,t,u)≥M)

0
x0(r) dr

≤ C1/2q |u − s|(1+r)/2q

∫ P(
(s,t,u)≥M)

0
x0(r) dr.
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Setting δ(h) = h(1+r)/2q , h ∈ [0, T ], we see that
∫ T

0 δ(u)u
−1− 1

2q du < ∞ is equivalent to (4.2); we get the asser-
tion. �

We now prove the stochastic continuity of Y .

Lemma 4.3. Consider (2.2) with b ∈ L∞(0, T ;C0,β
b (Rd;Rd)), β ∈ (0,1], and suppose that L and b satisfy Hypothe-

ses 1 and 2. Then the process Y = (Y s) with values in C(Rd ;G0) (see (3.16)) is continuous in probability.

Proof. Let us fix s ∈ [0, T ]. We have to prove that

lim
s′→s

P
(

sup
|x|≤N

sup
t∈[0,T ]

∣∣Y s,x
t − Y

s′,x
t

∣∣ > r
)

= 0, for any r > 0, N ≥ 1. (4.4)

Indeed this is equivalent to lims′→s P (d0(Y
s, Y s′

) > r) = 0, r > 0. To this purpose it is enough to check both the
left and the right continuity in (4.4). Let us check the right continuity in s (assuming s ∈ [0, T )). The proof of the

left-continuity in s can be done in a similar way. Since C
0,β
b (Rd ;Rd) ⊂ C

0,β ′
b (Rd ;Rd) for 0 < β ′ ≤ β ≤ 1 we may

suppose that β is sufficiently small; we will assume (cf. Hypothesis 2)

β(2d + 1) < 2dθ. (4.5)

Let (sn) ⊂]s, T ] with sn → s. We have to prove that for fixed N ≥ 1, δ > 0,

lim
n→∞P

(
sup

|x|≤N

sup
t∈[0,T ]

∣∣Y s,x
t − Y

sn,x
t

∣∣ > δ
)

= 0. (4.6)

If we show that

E
[

sup
0≤t≤T

sup
|x|≤N

∣∣Y s,x
t − Y

sn,x
t

∣∣] → 0 as n → ∞ (4.7)

then (4.6) follows. Let us fix n ≥ 1 and consider the random variable Jt,x,n,s = |Y s,x
t − Y

sn,x
t |. If t ≤ s we find

Jt,x,n,s = 0. If s ≤ t ≤ sn then, for any x ∈ Rd , on some almost sure event �s,sn (independent of x and t ; see (3.7))

Jt,x,n,s =
∣∣∣∣
∫ t

s

b
(
r, Y sn,x

r + (Lr − Ls)
)
dr

∣∣∣∣ ≤ ‖b‖0|t − s| ≤ ‖b‖0|s − sn|.

Hence in order to get (4.7) we need to prove that

E
[

sup
sn≤t≤T

sup
|x|≤N

∣∣Y s,x
t − Y

sn,x
t

∣∣] → 0 as n → ∞. (4.8)

Let t ≥ sn. We have on �s,sn

sup
|x|≤N

∣∣Y s,x
t − Y

sn,x
t

∣∣ ≤ sup
|x|≤N

∣∣∣∣
∫ t

s

b
(
r,Xs,x

r

)
dr −

∫ t

sn

b
(
r,Xsn,x

r

)
dr

∣∣∣∣
≤ 2|s − sn|‖b‖0 + sup

|x|≤N

∫ t

sn

∣∣b(
r,Xs,x

r

) − b
(
r,Xsn,x

r

)∣∣dr. (4.9)

By Lemma 3.3 on some almost sure event �′
s,sn

⊂ �s,sn (independent of x and r) we have for r ∈ [sn, T ]

sup
|x|≤N

∣∣b(
r,Xs,x

r

) − b
(
r,Xsn,x

r

)∣∣ = sup
|x|≤N

∣∣b(
r,X

sn,X
s,x
sn

r

) − b
(
r,Xsn,x

r

)∣∣ ≤ [b]β,T sup
|x|≤N

sup
r∈[0,T ]

∣∣Xsn,X
s,x
sn

r − Xsn,x
r

∣∣β
= [b]β,T sup

|x|≤N

∥∥Y sn,X
s,x
sn − Y sn,x

∥∥β

G0
.
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By Lemma 3.2 with p = 4d , setting Us′ = Us′,p , s′ ∈ [0, T ], we get

sup
|x|≤N

∣∣b(
r,Xs,x

r

) − b
(
r,Xsn,x

r

)∣∣
≤ [b]β,T

[(|x| ∨ ∣∣Xs,x
sn

∣∣) 2d+1
4d ∨ 1

]β
Uβ

sn
sup

|x|≤N

∣∣x − Xs,x
sn

∣∣β/2
. (4.10)

Noting that, for |x| ≤ N , n ≥ 1, |Xs,x
sn | ≤ N + 2T ‖b‖0 + |Lsn − Ls | we obtain on �′

s,sn

sup
|x|≤N

∣∣b(
r,Xs,x

r

) − b
(
r,Xsn,x

r

)∣∣ ≤ [b]β,T V
β
s,sn,N sup

|x|≤N

∣∣x − Xs,x
sn

∣∣β/2
, (4.11)

r ∈ [sn, T ], where we have introduced the random variables

Vs,s′,N = [
N

2d+1
4d + (

2T ‖b‖0
) 2d+1

4d + |Ls′ − Ls | 2d+1
4d

]
Us′ , (4.12)

0 ≤ s < s′ ≤ T . By Remark 2.1 and (4.5) we know that, for any n ≥ 1,

E
[|Lsn − Ls | β(2d+1)

2d
] = E

[|Lsn−s | β(2d+1)
2d

] ≤ E
[

sup
s∈[0,T ]

|Ls | β(2d+1)
2d

]
< ∞,

since E[supr∈[0,T ] |Lr |θ ] < ∞. Using also that supr∈[0,T ] E[U2β
r,p] = k′ < ∞ (see (3.6)) we obtain by the Cauchy–

Schwarz inequality

sup
0≤s<s′≤T

E
[
V

β

s,s′,N
] = k0 < ∞ (4.13)

(k0 also depends on N ). Let us revert to (4.11). Since

∣∣Xs,x
sn

− x
∣∣ ≤

∫ sn

s

∣∣b(
r,Xs,x

r

)∣∣dr + |Lsn − Ls | ≤ ‖b‖0|s − sn| + |Lsn − Ls |, (4.14)

for any x ∈Rd , n ≥ 1, we obtain for r ∈ [sn, T ]

sup
|x|≤N

∣∣b(
r,Xs,x

r

) − b
(
r,Xsn,x

r

)∣∣ ≤ [b]β,T V
β
s,sn,N

(‖b‖0|s − sn| + |Lsn − Ls |
)β/2

(4.15)

and so (cf. (4.9))

sup
|x|≤N

∫ t

sn

∣∣b(
r,Xs,x

r

) − b
(
r,Xsn,x

r

)∣∣dr ≤ T [b]β,T V
β
s,sn,N

(‖b‖0|s − sn| + |Lsn − Ls |
)β/2

.

Let us define the random variables Zn = ‖b‖0|s − sn| + |Lsn − Ls |. By the stochastic continuity of L we know that

lim
n→∞P(Zn > δ) = 0, δ > 0. (4.16)

Using (4.9) on an almost sure event �′
s,sn

, for any δ > 0, we have

sup
sn≤t≤T

sup
|x|≤N

∣∣Y s,x
t − Y

sn,x
t

∣∣
≤ 2|s − sn|‖b‖0 + (1{Zn≤δ} + 1{Zn>δ}) · sup

|x|≤N

∫ t

sn

∣∣b(
r,Xs,x

r

) − b
(
r,Xsn,x

r

)∣∣dr

≤ T 1{Zn≤δ}[b]β,T V
β
s,sn,Nδβ/2 + 2T ‖b‖01{Zn>δ} + 2|s − sn|‖b‖0.
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Applying the expectation and using (4.13) we arrive at

E
[

sup
sn≤t≤T

sup
|x|≤N

∣∣Y s,x
t − Y

sn,x
t

∣∣]

≤ 2|s − sn|‖b‖0 + k0T [b]β,T δβ/2 + 2T ‖b‖0P(Zn > δ).

Now, using (4.16), we obtain easily (4.8) and this completes the proof. �

In the next result we need the Lévy-Itô formula. To this purpose we recall the definition of Poisson random measure
N : N((0, t] × H) = ∑

0<s≤t 1H (
Ls) for any Borel set H in Rd \ {0}; 
Ls = Ls − Ls− denotes the jump size of L

at time s > 0. The Lévy-Itô decomposition of the given Lévy process L on (�,F,P ) with generating triplet (ν,Q,0)

(see Section 19 in [28] or Theorem 2.4.16 in [1]) asserts that there exists a Q-Wiener process B = (Bt ) on (�,F,P )

independent of N with covariance matrix Q (cf. (2.1)) such that on some almost sure event �′ we have

Lt = At + Bt + Ct , t ≥ 0, where (4.17)

At =
∫ t

0

∫
{|x|≤1}

xÑ(ds, dx), Ct =
∫ t

0

∫
{|x|>1}

xN(ds, dx); (4.18)

Ñ is the compensated Poisson measure (i.e., Ñ(dt, dx) = N(dt, dx) − dtν(dx)).

Theorem 4.4. Under the same assumptions of Lemma 4.3 consider the process Y = (Y s) with values in C(Rd ;G0)

(see (3.16)). There exists a modification Z = (Zs) of Y with càdlàg paths.

Proof. To prove the assertion we will apply Corollary 4.2. We already know by Lemma 4.3 that Y is continuous in
probability.

In the proof we will use the fact that
∫
{|x|>1} |x|θ ν(dx) < ∞ for some θ ∈ (0,1). This is not restrictive according

to Remark 2.1. We proceed in some steps.
Step I. We establish simple moment estimates for the Lévy process L, using the Ito–Lévy decomposition (4.18).
Using basic properties of the martingales (At ) and (Bt ) we obtain

E|Bt |2 = CQt, E|At |2 = t

∫
{|x|≤1}

|x|2ν(dx), t ≥ 0 (4.19)

Now we concentrate on the compound Poisson process C = (Ct ); on some almost sure event �′ we have

|Ct |θ =
∣∣∣∣ ∑
0<s≤t


Ls1{|
Ls |>1}
∣∣∣∣
θ

≤
∑

0<s≤t

|
Ls |θ 1{|
Ls |>1},

since the random sum is finite for any ω ∈ �′ and θ ≤ 1. Let f0(x) = 1{|x|>1}(x)|x|θ , x ∈Rd ; using a well-know result
(cf. pages 145 and 150 in [17] or Section 2.3.2 in [1]) we get

E

[ ∑
0<s≤t

|
Ls |θ 1{|
Ls |>1}
]

= E

[∫ t

0

∫
{|x|>1}

|x|θN(ds, dx)

]

=
∫
Rd

f0(x)ν(dx) =
∫

{|x|>1}
|x|θ ν(dx)

and so

E|Ct |θ ≤ t

∫
{|x|>1}

|x|θ ν(dx) = c0t, t ≥ 0. (4.20)
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Step II. Let 0 ≤ s < s′ ≤ T . Similarly to the proof of Lemma 4.3 in this step we establish estimates for the random
variable Jt,x,s,s′ = |Y s,x

t − Y
s′,x
t |.

If t ≤ s we have Jt,x,s,s′ = 0, x ∈Rd . If s ≤ t ≤ s′ then, for any x ∈Rd , on some almost sure event �s,s′ (indepen-
dent of t and x) we find

∣∣Y s,x
t − Y

s′,x
t

∣∣ ≤ ‖b‖0|t − s| ≤ ‖b‖0
∣∣s − s′∣∣.

Let t ≥ s′ and N ≥ 1. We have (cf. (4.9))

sup
|x|≤N

∣∣Y s,x
t − Y

s′,x
t

∣∣ ≤ 2
∣∣s − s′∣∣‖b‖0 + sup

|x|≤N

∫ t

s′

∣∣b(
r,Xs,x

r

) − b
(
r,Xs′,x

r

)∣∣dr. (4.21)

Moreover, there exists an almost sure event �′
s,s′ ⊂ �s,s′ such that on �′

s,s′ we have for r ∈ [s′, T ]

sup
|x|≤N

∣∣b(
r,Xs,x

r

) − b
(
r,Xs′,x

r

)∣∣ = sup
|x|≤N

∣∣b(
r,X

s′,Xs,x

s′
r

) − b
(
r,Xs′,x

r

)∣∣
≤ [b]β,T sup

|x|≤N

∥∥Y
s′,Xs,x

s′ − Y s′,x∥∥β

G0
.

Now we use Lemma 3.2 with p ≥ 32d to be fixed and get, for any r ∈ [s′, T ] on �′
s,s′ (cf. (4.10) and (4.11))

sup
|x|≤N

∣∣b(
r,Xs,x

r

) − b
(
r,Xs′,x

r

)∣∣
≤ [b]β,T

[(|x| ∨ ∣∣Xs,x
s′

∣∣) 2d+1
p ∨ 1

]β
U

β

s′,p sup
|x|≤N

∣∣x − X
s,x
s′

∣∣β(1− 2d
p

)

and so

sup
|x|≤N

∣∣b(
r,Xs,x

r

) − b
(
r,Xs′,x

r

)∣∣ ≤ [b]β,T V
β

s,s′,N,p
sup

|x|≤N

∣∣x − X
s,x
s′

∣∣β(1− 2d
p

)
, (4.22)

Vs,s′,N,p = [
N

2d+1
p + (

2T ‖b‖0
) 2d+1

p + |Ls′ − Ls |
2d+1

p
]
Us′,p,

Coming back to (4.21) we find for t ≥ s′ on �′
s,s′

sup
s′≤t≤T

sup
|x|≤N

∣∣Y s,x
t − Y

s′,x
t

∣∣
≤ 2

∣∣s − s′∣∣‖b‖0 + T 1{sup|x|≤N |Xs,x

s′ −x|≤c0|s−s′|1/8}[b]β,T V
β

s,s′,N,p
sup

|x|≤N

∣∣x − X
s,x
s′

∣∣β(1− 2d
p

)

+ 2T ‖b‖01{sup|x|≤N |Xs,x

s′ −x|>c0|s−s′|1/8},

with c0 > 0 such that c0ρ
1/8 − ‖b‖0ρ ≥ ρ1/8, for any ρ ∈ [0, T ]. We obtain on �′

s,s′

sup
|x|≤N

sup
t∈[0,T ]

∣∣Y s,x
t − Y

s′,x
t

∣∣ = sup
|x|≤N

∥∥Y s,x − Y s′,x∥∥
G0

≤ C1
∣∣s − s′∣∣ + C1V

β

s,s′,N,p

∣∣s − s′∣∣ β
8 (1− 2d

p
)

+ C11{sup|x|≤N |Xs,x

s′ −x|>c0|s−s′|1/8}, (4.23)
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with C1 = 2(T ∨ 1)‖b‖β,T c
β

0 . Since, for any x ∈ Rd , |Xs,x
s′ − x| ≤ |s′ − s|‖b‖0 + |Ls′ − Ls | and, moreover, c0|s −

s′|1/8 − ‖b‖0|s − s′| ≥ |s − s′|1/8, we find on �′
s,s′

sup
|x|≤N

∥∥Y s,x − Y s′,x∥∥
G0

≤ C1
(∣∣s − s′∣∣ + V

β

s,s′,N,p

∣∣s − s′∣∣ β
8 (1− 2d

p
) + 1{|L′

s−Ls |>|s−s′|1/8}
)
. (4.24)

Note that C1 is independent of s, s′ and N .
Step III. Using (4.24) we provide an estimate for d0(Y

s, Y s′
) (cf. (3.14)) when 0 ≤ s < s′ ≤ T .

We have (see (4.22))

V
β

s,s′,N,p
≤ [

N
β(2d+1)

p + (
2T ‖b‖0

) β(2d+1)
p + |Ls′ − Ls |

β(2d+1)
p

]
U

β

s′,p

and so

d0
(
Y s,Y s′) =

∑
N≥1

1

2N

sup|x|≤N ‖Y s,x − Y s′,x‖G0

1 + sup|x|≤N ‖Y s,x − Y s′,x‖G0

≤ C1
∣∣s − s′∣∣ + C11{|L′

s−Ls |>|s−s′|1/8}

+ C1U
β

s′,p
∣∣s − s′∣∣ β

8 (1− 2d
p

)
∑
N≥1

1

2N

[
N

β(2d+1)
p + (

2T ‖b‖0
) β(2d+1)

p + |Ls′ − Ls |
β(2d+1)

p
]

≤ C3
(∣∣s − s′∣∣ + 1{|L′

s−Ls |>|s−s′|1/8} + U
β

s′,p
∣∣s − s′∣∣ β

8 (1− 2d
p

)(1 + |Ls′ − Ls |
β(2d+1)

p
))

,

where C3 = C3(β,T ,‖b‖β,T , d,p) > 0. Recall that p ≥ 32d has to be fixed.
Step IV. Let now 0 ≤ s1 < s2 < s3 ≤ T and set

ρ = s3 − s1.

We will apply Corollary 4.2 with q = 8/β . Let us fix p ≥ 32d (i.e., 1 − 2d
p

≥ 15/16) such that 8(2d+1)
p

< θ
4 and

introduce the random variable

Z = 1 + sup
s∈[0,T ]

|Ls |
8(2d+1)

p .

Clearly we have that |Ls′ − Ls |
8(2d+1)

p ≤ 2Z, 0 ≤ s < s′ ≤ T . Moreover by Remark 2.1 we know that E[Z4] < ∞.
Using Step III and the previous estimates we will check condition (4.3). In the sequel we denote by Ck or ck positive
constants which may depend on β,T ,‖b‖β,T , θ and d but are independent of s1, s2 and s3. We have

� = E
[(

d0
(
Y s1 , Y s2

) · d0
(
Y s2 , Y s3

))8/β]
≤ C4E

[(|s3 − s1|8/β + 1{|Ls2−Ls1 |>|s2−s1|1/8} + ZU8
s2,p

|s3 − s1|1− 2d
p

)
· (|s3 − s1|8/β + 1{|Ls3−Ls2 |>|s3−s2|1/8} + ZU8

s3,p
|s3 − s1|1− 2d

p
)]

.

We denote by c2 ≥ 1 a constant such that t8/β ≤ c2t
1− 2d

p , t ∈ [0, T ]. We obtain (ρ = s3 − s1)

� ≤ c2
2C4E

[(
ρ

1− 2d
p + 1{|Ls2−Ls1 |>|s2−s1|1/8} + ZU8

s2,p
ρ

1− 2d
p

)
· (ρ1− 2d

p + 1{|Ls3−Ls2 |>|s3−s2|1/8} + ZU8
s3,p

ρ
1− 2d

p
)]

≤ C5(�1 + �2 + �3 + �4),
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where �1 = E[1{|Ls2−Ls1 |>|s2−s1|1/8} · 1{|Ls3−Ls2 |>|s3−s2|1/8}],

�2 = ρ
1− 2d

p
[
P

(|Ls3 − Ls2 | > |s3 − s2|1/8) + P
(|Ls2 − Ls1 | > |s2 − s1|1/8)],

�3 = ρ
1− 2d

p E
[
1{|Ls3−Ls2 |>|s3−s2|1/8}ZU8

s2,p
+ 1{|Ls2−Ls1 |>|s2−s1|1/8}ZU8

s3,p

]
,

�4 = ρ
2(1− 2d

p
) + ρ

2(1− 2d
p

)
E

[
ZU8

s2,p
+ ZU8

s3,p
+ Z2U8

s2,p
U8

s3,p

]
.

It is not difficult to treat �4. Indeed we can use the Cauchy-Schwarz inequality and

sup
s∈[0,T ]

E
[
U

p
s,p

] = k′ < ∞ (4.25)

(see (3.6)) in order to control the expectation in �4. For instance, we have

E
[
Z2U8

s2,p
U8

s3,p

] ≤ E
[
Z4]1/2

(
sup

s∈[0,T ]
E

[
U32

s,p

])1/2
< ∞, (4.26)

since E[Z4] < ∞ and p ≥ 32d . We obtain

�4 ≤ C6ρ
2(1− 2d

p
) = C6|s3 − s1|2(1− 2d

p
) ≤ C6|s3 − s1|30/16. (4.27)

To estimates the other terms we need to control P(|Ls | > |s|1/8), s ≥ 0. To this purpose we use Step I. We have

P
(|Ls | > s1/8) ≤ P

(|Bs | > s1/8/3
) + P

(|As | > s1/8/3
) + P

(|Cs | > s1/8/3
)
.

By Chebychev inequality we get for s ≥ 0

P
(|Ls | > s1/8) ≤ 9

s1/4
E

[|Bs |2 + |As |2
] + 3θ

sθ/8
E

[|Cs |θ
] ≤ c3

(
s3/4 + s1− θ

8
)
. (4.28)

Using (4.28) and (4.25) we can estimate �2 and �3. For instance, since the increments of L are independent and
stationary, we find

�2 ≤ ρ
1− 2d

p
[
P

(|Ls3−s2 | > |s3 − s2|1/8) + P
(|Ls2−s1 | > |s2 − s1|1/8)]

≤ 2c3ρ
1− 2d

p
(
ρ3/4 + ρ1− θ

8
)
.

We can proceed similary for �3 (see also (4.26)):

�3 ≤ ρ
1− 2d

p
(
E

[
Z4])1/4

(
sup

s∈[0,T ]
E

[
U32

s,p

])1/4[(
P

(|Ls3−s2 | > |s3 − s2|1/8))1/2

+ (
P

(|Ls2−s1 | > |s2 − s1|1/8))1/2] ≤ C8ρ
1− 2d

p
(
ρ3/8 + ρ

1
2 (1− θ

8 )
)
.

Note that (1 − 2d
p

) + 3/8 > 5/4 and (1 − 2d
p

) + 1
2 (1 − θ

8 ) > 5/4. We get

�2 + �3 ≤ C9ρ
5
4 = C9|s3 − s1|5/4. (4.29)

Finally we consider

�1 ≤ P
(|Ls3−s2 | > |s3 − s2|1/8) · P (|Ls2−s1 | > |s2 − s1|1/8)

≤ 2c3
(
ρ3/2 + ρ2(1− θ

8 )
) ≤ c4|s3 − s1|3/2. (4.30)
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Collecting together estimates (4.27), (4.29) and (4.30) we arrive at

E
[(

d0
(
Y s1, Y s2

) · d0
(
Y s2 , Y s3

))8/β] ≤ C0|s3 − s1|5/4

and this finishes the proof. �

Taking into account Theorem 4.4 and using the projections πx (see (3.15)), in the sequel we write, for x ∈ Rd ,
s, t ∈ [0, T ],

Zs = (
Zs,x

)
x∈Rd , with πx

(
Zs

) = Zs,x ∈ G0. (4.31)

Recall that on some almost sure event �s , Y s,x = Zs,x , s ∈ [0, T ], x ∈ Rd (cf. (3.16)).

Lemma 4.5. Under the same assumptions of Lemma 4.3 consider the càdlàg process Z with values in C(Rd ;G0) of
Theorem 4.4. The following statements hold: (i) There exists an almost sure event �1 (independent of s, t and x) such
that for any ω ∈ �1, we have that t �→ Lt(ω) is càdlàg, L0(ω) = 0 and s �→ Zs(ω) is càdlàg; further, for any ω ∈ �1,

Z
s,x
t (ω) = x +

∫ t

s

b
(
r,Zs,x

r (ω) + Lr(ω) − Ls(ω)
)
dr, s, t ∈ [0, T ], s ≤ t, x ∈Rd .

Moreover, for s ≤ t , the r.v. Z
s,x
t is FL

s,t -measurable (if t ≤ s, Z
s,x
t = x).

(ii) There exists an almost sure event �2 and a B([0, T ])×F -measurable function Vn : [0, T ]×� → [0,∞], such
that

∫ T

0 Vn(s,ω)ds < ∞, for any integer n > 2d , ω ∈ �2, and, further, the following inequality holds on �2

sup
t∈[0,T ]

∣∣Zs,x
t − Z

s,y
t

∣∣ ≤ |x − y| n−2d
n

[(|x| ∨ |y|) 2d+1
n ∨ 1

]
Vn(s, ·), x, y ∈Rd , s ∈ [0, T ]. (4.32)

(iii) There exists an almost sure event �3 such that for any ω ∈ �3 we have

Z
s,x
t (ω) + Lu(ω) − Ls(ω) = Z

u,Z
s,x
u (ω)+Lu(ω)−Ls(ω)

t (ω), (4.33)

for any s, u, t ∈ [0, T ], 0 ≤ s < u ≤ T , x ∈ Rd .

Proof. (i) On some almost sure event �′
s (independent of t and x) we know that (Y

s,x
t ) verifies the SDE (3.7) for any

x ∈ Rd and t ∈ [s, T ]. Moreover Y
s,x
t = x, t < s.

On the other hand on some almost sure event �s we have Y s,x = πx(Y
s) = πx(Z

s), for any x ∈ Rd , see (4.31).
Using (Zs), we can rewrite (3.7) on the event �1 = ⋂

r∈Q∩[0,T ](�′
r ∩ �r) as follows:

[
πx

(
Zs

)]
t
= x +

∫ t

s

b
(
r,

[
πx

(
Zs

)]
r
+ (Lr − Ls)

)
dr, (4.34)

for any s ∈Q∩ [0, T ], t ∈ [s, T ], x ∈ Rd .
Note that by Theorem 4.4 for any ω ∈ � and any sequence sn → s+ we have d0(Z

s(ω),Zsn(ω)) → 0 as n →
∞. Take now s ∈ [0, T ) and let (sn) ⊂ Q ∩ [0, T ] be a sequence monotonically decreasing to s. By the dominated
convergence theorem and the right-continuity of L we have on �1, for any t > s, x ∈ Rd ,

[
πx

(
Zs

)]
t
= lim

n→∞
[
πx

(
Zsn

)]
t
= x + lim

n→∞

∫ t

s

1{r>sn}b
(
r,

[
πx

(
Zsn

)]
r
+ (Lr − Lsn)

)
dr

= x +
∫ t

s

b
(
r,

[
πx

(
Zs

)]
r
+ (Lr − Ls)

)
dr

and we get the assertion.
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(ii) Since on � we have Y s,x = πx(Y
s) we obtain by (2.6) and (3.9), for any p ≥ 2,

sup
s∈[0,T ]

E
[

sup
s≤t≤T

∣∣Xs,x
t − X

s,y
t

∣∣p]
= sup

s∈[0,T ]
E

[
sup

0≤t≤T

∣∣Y s,x
t − Y

s,y
t

∣∣p]

= sup
s∈[0,T ]

E
[∥∥πx

(
Zs

) − πy

(
Zs

)∥∥p

G0

] ≤ C(T )|x − y|p, x, y ∈Rd . (4.35)

Let s ∈ [0, T ] and consider the random field (πx(Z
s))x∈Rd with values in G0. Applying Theorem 3.1 with ψ(x,ω) =

πx(Z
s)(ω) we obtain from (4.35) for p > 2d similarly to (3.5): there exists a Vp(s,ω) ∈ [0,∞] such that, for any

ω ∈ �, x, y ∈ Rd , s ∈ [0, T ],
∥∥πx

(
Zs

)
(ω) − πy

(
Zs

)
(ω)

∥∥
G0

≤ [(|x| ∨ |y|) 2d+1
p ∨ 1

]
Vp(s,ω)|x − y|1−2d/p, (4.36)

with Vp(s,ω) = (
∫
Rd

∫
Rd (

‖πx(Zs)(ω)−πy(Zs)(ω)‖G0|x−y| )pf (x)f (y) dx dy)1/p , ω ∈ �, s ∈ [0, T ] (f is defined in Theo-

rem 3.1). Since the map: (s, x,ω) �→ πx(Z
s)(ω) is B([0, T ] ×Rd) ×F -measurable with values in G0, it follows that

the real map:

(s, x, y,ω) �→ ∥∥πx

(
Zs

)
(ω) − πy

(
Zs

)
(ω)

∥∥
G0

|x − y|−11{x �=y}

is B([0, T ] × R2d) × F -measurable. By the Fubini theorem we deduce that also Vp : [0, T ] × � → [0,∞] is

B([0, T ]) ×F -measurable. Hence we can consider the random variable ω �→ ∫ T

0 Vp(s,ω)ds (with values in [0,∞]).
Since, with the same constant C(T ) appearing in (2.6),

sup
s∈[0,T ]

E
[∣∣Vp(s, ·)∣∣p] ≤ C(d) · C(T ), (4.37)

we find E[(∫ T

0 Vp(s, ·) ds)p] ≤ T p−1
∫ T

0 E[(Vp(s, ·))p]ds ≤ T 2p−1c(d)C(T ) < ∞. It follows that, for any p > 2d ,
there exists an almost sure event �p such that

∫ T

0
Vp(s,ω)ds < ∞, ω ∈ �p. (4.38)

Let p = n. We find, for any n > 2d ,
∫ T

0 Vn(s,ω)ds < ∞, when ω ∈ �2 = ⋂
n>2d �n.

Writing (4.36) for ω ∈ �2 and n > 2d we find the assertion.
(iii) First note that the statement of Lemma 3.3 can be rewritten in term of the process Y s,x (see (3.9)) as follows:

for any 0 ≤ s < u ≤ T there exists an almost sure event �s,u (independent of t and x) such that, for any ω ∈ �s,u, we
have

Y
s,x
t (ω) + Lu(ω) − Ls(ω) = Y

u,Y
s,x
u (ω)+Lu(ω)−Ls(ω)

t (ω), for t ∈ [u,T ], x ∈ Rd . (4.39)

Since (Zs) is a modification of (Y s) (see Theorem 4.4) we know that on some almost sure event �′′
s,u ⊂ �s,u identity

(4.39) holds when (Y s,x) is replaced by (Zs,x).
Let us fix u ∈ (0, T ]. We know that (4.39) holds for (Zs,x) when t ∈ [u,T ], x ∈Rd and s ∈ [0, u) ∩Q if ω ∈ �u =⋂

s∈[0,u)∩Q(�′′
s,u ∩ �1). Using that (Zs,x) with values in G0 is in particular right-continuous in s, uniformly in x,

when x varies in compact sets of Rd , it easy to check that (4.33) holds, for any 0 ≤ s < u ≤ T , x ∈ Rd , t ∈ [u,T ],
when ω ∈ �u.

Let us define �3 = ⋂
u∈Q∩[0,T ) �u; fix any s, u0 ∈ [0, T ], x ∈ Rd , with 0 ≤ s < u0 ≤ T ; we consider ω ∈ �3 and

prove that (4.33) holds for any t ∈ [u0, T ].
If t = u0 the assertion holds. Let us suppose that t ∈ (u0, T ]. We can find a sequence (uj ) ∈ (u0, t) ∩Q such that

uj → u+
0 . Since for any j ≥ 1 we have

Z
s,x
t (ω) + Luj

(ω) − Ls(ω) = Z
uj ,Z

s,x
uj

(ω)+Luj
(ω)−Ls(ω)

t (ω), (4.40)
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we can pass to the limit as j → ∞ in both sides of the previous formula (taking also into account that Z
s,x
uj

(ω) +
Luj

(ω) − Ls(ω) belongs to a compact set Kx,s,ω ⊂ Rd for any j ≥ 1) and find that (4.40) holds when uj is replaced
by u0. The proof of (4.33) is complete. �

5. A Davie’s type uniqueness result

Assertion (v) of the next theorem gives a Davie’s type uniqueness result for SDE (1.1). The other assertions collect
results of Section 4 (see in particular Theorem 4.4 and Lemma 4.5). These are used to prove the uniqueness property
(v). We refer to Corollaries 5.4 and 5.5 for the case when b(t, ·) is only locally Hölder continuous.

We stress that all the next statements (i)–(v) hold when ω belongs to an almost sure event �′ (independent of s,
t ∈ [0, T ], s0 ∈ [0, T ) and x ∈Rd ).

Theorem 5.1. Let us consider the SDE (1.1) with b ∈ L∞(0, T ;C0,β
b (Rd;Rd)), β ∈ (0,1], and suppose that L and b

satisfy Hypotheses 1 and 2. Then there exists a function φ(s, t, x,ω),

φ : [0, T ] × [0, T ] ×Rd × � → Rd, (5.1)

which is B([0, T ] × [0, T ] × Rd) × F -measurable and such that (φ(s, t, x, ·))t∈[0,T ] is a strong solution of (1.1)
starting from x at time s. Moreover, there exists an almost sure event �′ such that the following assertions hold for
any ω ∈ �′.

(i) For any x ∈ Rd , the mapping: s �→ φ(s, t, x,ω) is càdlàg on [0, T ] (uniformly in t and x), i.e., let s ∈ (0, T )

and consider sequences (sk) and (rn) such that sk → s− and rn → s+; we have, for any M > 0,

lim
n→∞ sup

|x|≤M

sup
t∈[0,T ]

∣∣φ(rn, t, x,ω) − φ(s, t, x,ω)
∣∣ = 0, (5.2)

lim
k→∞ sup

|x|≤M

sup
t∈[0,T ]

∣∣φ(sk, t, x,ω) − φ(s−, t, x,ω)
∣∣ = 0

(similar conditions hold when s = 0 and s = T ).
(ii) For any x ∈Rd , s ∈ [0, T ], φ(s, t, x,ω) = x if 0 ≤ t ≤ s, and

φ(s, t, x,ω) = x +
∫ t

s

b
(
r,φ(s, r, x,ω)

)
dr + Lt(ω) − Ls(ω), t ∈ [s, T ]. (5.3)

(iii) For any s ∈ [0, T ], the function x �→ φ(s, t, x,ω) is continuous in x uniformly in t . Moreover, for any integer
n > 2d , there exists a B([0, T ]) × F -measurable function Vn : [0, T ] × � → [0,∞] such that

∫ T

0 Vn(s,ω)ds < ∞
and

sup
t∈[0,T ]

∣∣φ(s, t, x,ω) − φ(s, t, y,ω)
∣∣

≤ Vn(s,ω)|x − y| n−2d
n

[(|x| ∨ |y|) 2d+1
n ∨ 1

]
, x, y ∈Rd, n > 2d, s ∈ [0, T ]. (5.4)

(iv) For any 0 ≤ s < r ≤ t ≤ T , x ∈ Rd , we have

φ(s, t, x,ω) = φ
(
r, t, φ(s, r, x,ω),ω

)
. (5.5)

(v) Let s0 ∈ [0, T ), τ = τ(ω) ∈ (s0, T ] and x ∈ Rd . If a measurable function g : [s0, τ ) → Rd solves the integral
equation

g(t) = x +
∫ t

s0

b
(
r, g(r)

)
dr + Lt(ω) − Ls0(ω), t ∈ [s0, τ ), (5.6)

then we have g(r) = φ(s0, r, x,ω), for r ∈ [s0, τ ).
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Proof. Let us consider the process Z = (Zs)s∈[0,T ] of Theorem 4.4 with values in C(Rd;G0). Recall the notation
Z

s,x
t = πx(Z

s)(t) (see (3.15)). We define for ω ∈ �,s, t ∈ [0, T ], x ∈Rd :

φ(s, t, x,ω) = Z
s,x
t (ω) + Lt(ω) − Ls(ω), if s ≤ t, (5.7)

and φ(s, t, x,ω) = x if s > t . The fact that, for any 0 ≤ s < t ≤ T , x ∈ Rd , the random variable φ(s, t, x, ·) is FL
s,t -

measurable follows from Theorem 4.4 and (i) in Lemma 4.5. We also define

�′ = �1 ∩ �2 ∩ �3,

where the almost sure events �k , k = 1,2,3, are considered in Lemma 4.5.
Assertions (i), (ii), (iii), (iv) follow directly from Theorem 4.4 and Lemma 4.5. More precisely, (i) and (ii) follow

from the first assertion of Lemma 4.5 since (Zs) takes values in C(Rd ;G0) with càdlàg paths. Assertions (iii) and (iv)
follow respectively from the second and third assertion of Lemma 4.5.

(v) Let ω ∈ �′ be fixed and let g : [s0, τ [→ Rd be a solution to the integral equation (5.6) corresponding to ω. Let
us fix t ∈ (s0, τ ).

We introduce an auxiliary function f : [s0, t] → Rd which is similar to the one used in proof of Theorem 3.1 in
[30],

f (s) = φ
(
s, t, g(s),ω

)
, s ∈ [s0, t]. (5.8)

We will show that f is constant on [s0, t]. Once this is proved we can deduce that f (t) = f (s0) and so we find
g(t) = φ(s0, t, x,ω) which shows the assertion since t is arbitrary. In the sequel we proceed in three steps.

I step. We establish some estimates for |g(r) − φ(u, r, g(u),ω)| when s0 ≤ u ≤ r ≤ t .
Since

g(r) = x +
∫ u

s0

b
(
p,g(p)

)
dp + (

Lu(ω) − Ls0(ω)
) +

∫ r

u

b
(
p,g(p)

)
dp + (

Lr(ω) − Lu(ω)
)
,

we obtain∣∣g(r) − φ
(
u, r, g(u),ω

)∣∣
≤

∣∣∣∣g(u) +
∫ r

u

b
(
p,g(p)

)
dp + (

Lr(ω) − Lu(ω)
) − g(u)

−
∫ r

u

b
(
p,φ

(
u,p,g(u),ω

))
dp − (

Lr(ω) − Lu(ω)
)∣∣∣∣

≤
∫ r

u

∣∣b(
p,g(p)

) − b
(
p,φ

(
u,p,g(u),ω

))∣∣dp ≤ 2‖b‖0|r − u|.

Now using the Hölder continuity of b:

∣∣g(r) − φ
(
u, r, g(u),ω

)∣∣ ≤
∫ r

u

∣∣b(
p,g(p)

) − b
(
p,φ

(
u,p,g(u),ω

))∣∣dp
≤ [b]β,T

∫ r

u

∣∣g(p) − φ
(
u,p,g(u),ω

)∣∣β dp

≤ (
2‖b‖0

)β [b]β,T

∫ r

u

|p − u|β dp ≤ (
2‖b‖0

)β [b]β,T |r − u|1+β. (5.9)

II step. We prove that f defined in (5.8) is continuous on [s0, t].
We first show that it is right-continuous on [s0, t). Let us fix s ∈ [s0, t) and consider a sequence (sn) such that sn →

s+. We prove that f (sn) → f (s) as n → ∞. Note that |g(r)| ≤ M0, r ∈ [s0, τ ), where M0 = |x| + T ‖b‖0 + C(ω).
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We have∣∣f (sn) − f (s)
∣∣ ≤ ∣∣φ(

sn, t, g(sn),ω
) − φ

(
s, t, g(sn),ω

)∣∣
+ ∣∣φ(

s, t, g(sn),ω
) − φ

(
s, t, g(s),ω

)∣∣ ≤ Jn + In,

where In = |φ(s, t, g(sn),ω) − φ(s, t, g(s),ω)| and

Jn = sup
|x|≤M0

sup
t∈[0,T ]

∣∣φ(sn, t, x,ω) − φ(s, t, x,ω)
∣∣.

Since g(sn) → g(s) by the right continuity of g we obtain that limn→∞ In = 0 thanks to (5.4). Moreover limn→∞ Jn =
0 thanks to (5.2).

Let us show that f is left-continuous on (s0, t]. We fix s ∈ (s0, t] and consider a sequence (sk) ⊂ (s0, s) such that
sk → s. We prove that f (sk) → f (s) as k → ∞. Using the flow property (iv) we find∣∣f (sk) − f (s)

∣∣ = ∣∣φ(
sk, t, g(sk),ω

) − φ
(
s, t, g(s),ω

)∣∣
= ∣∣φ(

s, t, φ
(
sk, s, g(sk),ω

)
,ω

) − φ
(
s, t, g(s),ω

)∣∣.
By I step we know that∣∣φ(

sk, s, g(sk),ω
) − g(s)

∣∣ ≤ 2‖b‖0|sk − s| (5.10)

which tends to 0 as k → ∞. Using (5.10) and the continuity property (iii) we obtain the claim since

lim
k→∞

∣∣φ(
s, t, φ

(
sk, s, g(sk),ω

)
,ω

) − φ
(
s, t, g(s),ω

)∣∣ = 0.

III step. We prove that f is constant on [s0, t].
We will use the following well known lemma (see, for instance, pages 239–240 in [36]): Let S be a real Banach

space and consider a continuous mapping F : [a, b] ⊂ R → S, b > a. Suppose that for any h ∈ (a, b] there exists the
left derivative

d−F

dh
(h) = lim

h′→h−
F(h′) − F(h)

h′ − h
(5.11)

and this derivative is identically zero on (a, b]. Then F is constant.
Note that by considering continuous linear functionals on S one may reduce the proof of the lemma to the one of a

real analysis result.
To apply the previous lemma with [s0, t] = [a, b] we first extend our function f to [s0,∞) by setting f (r) = f (t)

for r ≥ t . Then set S = L1([0, t];Rd) and define F : [s0, t] → S as follows: F(h) = f (· + h) ∈ S, h ∈ [s0, t], i.e.,
F(h)(r) = f (r + h), r ∈ [0, t].

If we prove that the mapping F is constant then we deduce (taking h = s0 and h = t ) that f (s0 + ·) = f (t + ·) =
f (t) in S. However, since f is continuous this implies that f is constant and finishes the proof.

The continuity of F , i.e., for any h ∈ [s0, t], we have

lim
h′→h

∥∥F(h) − F
(
h′)∥∥

S
= lim

h′→h

∫ t

0

∣∣f (r + h) − f
(
r + h′)∣∣dr = 0,

is clear, using the continuity of f . Let us prove that the left derivative of F is identically zero on (s0, t].
Using the flow property (iv) we find, for h,h′ ∈ [s0, t], h′ < h and 0 ≤ r ≤ t − h,∣∣f (r + h) − f

(
r + h′)∣∣

= ∣∣φ(
r + h, t, g(r + h),ω

) − φ
(
r + h, t, φ

(
r + h′, r + h,g

(
r + h′),ω)

,ω
)∣∣. (5.12)
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Using (5.12) and changing variable we obtain (recall that f (r) = f (t), r ≥ t )∫ t

0

∣∣f (r + h) − f
(
r + h′)∣∣dr

=
∫ t−h

0

∣∣φ(
r + h, t, g(r + h),ω

) − φ
(
r + h, t, φ

(
r + h′, r + h,g

(
r + h′),ω)

,ω
)∣∣dr

+
∫ t−h′

t−h

∣∣f (t) − f
(
r + h′)∣∣dr

=
∫ t

h

∣∣φ(
p, t, g(p),ω

) − φ
(
p, t,φ

(
p + h′ − h,p,g

(
p + h′ − h

)
,ω

)
,ω

)∣∣dp
+

∫ t−h′

t−h

∣∣f (t) − f
(
r + h′)∣∣dr. (5.13)

In order to estimate ‖F(h) − F(h′)‖S let us denote by λf the modulus of continuity of f . Since in the last integral
t − h + h′ ≤ r + h′ ≤ t we have the estimate∫ t−h′

t−h

∣∣f (t) − f
(
r + h′)∣∣dr ≤ ∣∣h − h′∣∣λf

(∣∣h − h′∣∣)
and limr→0+ λf (r) = 0. Taking into account that there exists a constant N0 = N0(x, T ,‖b‖0,ω) ≥ 1 such that∣∣g(r)

∣∣ + ∣∣φ(
r, u, g(r),ω

)∣∣ ≤ N0, s0 ≤ r ≤ u ≤ T ,

we find for p ∈ [h, t], n > 2d (see (5.4) and (5.9))∣∣φ(
p, t, g(p),ω

) − φ
(
p, t,φ

(
p + h′ − h,p,g

(
p + h′ − h

)
,ω

)
,ω

)∣∣
≤ Vn(p,ω)

∣∣g(p) − φ
(
p + h′ − h,p,g

(
p + h′ − h

)
,ω

)∣∣ n−2d
n N

2d+1
n

0

≤ (
2‖b‖0

)β( n−2d
n

)[b]
n−2d

n

β,T Vn(p,ω)
∣∣h′ − h

∣∣(1+β)( n−2d
n

)
N

2d+1
n

0 .

Recall that Vn(p,ω) ∈ [0,∞] but
∫ T

0 Vn(p,ω)dp < ∞. Using the previous inequality and (5.13) we obtain for h,h′ ∈
[s0, t], h′ < h∫ t

0

∣∣f (r + h) − f
(
r + h′)∣∣dr

≤ C0
∣∣h′ − h

∣∣(1+β)( n−2d
n

)
∫ T

0
Vn(p,ω)dp + ∣∣h − h′∣∣λf

(∣∣h − h′∣∣), (5.14)

where C0 = C0(β,‖b‖β,T ,ω,T , x,n, d) > 0. Now we choose n large enough such that (1 + β)(n−2d
n

) > 1. Dividing
by |h − h′| and passing to the limit as h′ → h− in (5.14) we find

lim
h′→h−

1

|h − h′|
∥∥F(h) − F

(
h′)∥∥

L1([0,t];Rd )
= 0.

This shows that there exists the left derivative of F in each h ∈ (s0, t] and this derivative is identically zero on (s0, t].
By the lemma mentioned at the beginning of III step we obtain that F is constant. Thus f is constant on [s0, t] and
this finishes the proof. �

Remark 5.2. Note that if g : [s0, τ ] → Rd , τ = τ(ω) ∈ (s0, T ], solves (5.6) on [s0, τ ] then we have g(τ) =
φ(s0, τ, x,ω), ω ∈ �′. Indeed applying (v) on [s0, τ ) we can use that

∫ τ

s0
b(r, g(r)) dr = ∫ τ

s0
b(r,φ(s0, r, x,ω)) dr .
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Remark 5.3. It is a natural question if one can improve (5.4) in Theorem 5.1. A possible stronger assertion could be
the following one: for each α ∈ (0,1) and N ∈ R one can find C(α,T ,N,ω) < ∞ such that, for any x, y ∈ Rd , |x|,
|y| < N ,

sup
s∈[0,T ]

sup
t∈[s,T ]

∣∣φ(s, t, x,ω) − φ(s, t, y,ω)
∣∣ ≤ C(α,T ,N,ω)|x − y|α, ω ∈ �′. (5.15)

This condition is stated as property 4 in Proposition 2.3 of [30] for SDEs (1.1) when L is a Wiener process and
b ∈ Lq([0, T ];Lp(Rd)), d/p + 2/q < 1.

Assuming b ∈ L∞(0, T ;C0,β
b (Rd ;Rd)) we do not expect that (5.15) holds in general when L and b satisfy Hy-

potheses 1 and 2. Remark that a basic strategy to get (5.15) when L is a Wiener process is to use the Kolmogorov–
Chentsov test to obtain a Hölder continuous dependence on (s, t, x); one cannot use this approach when L is a dis-
continuous process. Finally note that the proof of (5.15) given in [30] is not complete ((5.15) does not follow directly
from estimate (4) in page 5 of [30] applying the Kolmogorov–Chentsov test).

Now we present two corollaries of Theorem 5.1 which deal with SDEs (1.1) with possibly unbounded b.
When b : [0, T ] ×Rd → Rd is measurable and satisfies, for any η ∈ C∞

0 (Rd), b · η ∈ L∞(0, T ;C0,β
b (Rd ;Rd)) we

say that b ∈ L∞(0, T ;C0,β
loc (Rd ;Rd)). By a localization procedure we get

Corollary 5.4. Let b ∈ L∞(0, T ;C0,β
loc (Rd ;Rd)), β ∈ (0,1], and suppose that, for any η ∈ C∞

0 (Rd), the Lévy process
L and b · η satisfy Hypotheses 1 and 2.

Then there exists an almost sure event �′′ such that, for any ω′′ ∈ �′′, x ∈ Rd , s0 ∈ [0, T ) and τ = τ(ω′′) ∈ (s0, T ],
if g1, g2 : [s0, τ ) →Rd are càdlàg solutions of (5.6) when ω = ω′′, starting from x, then g1(r) = g2(r), r ∈ [s0, τ ).

Proof. Let ϕ ∈ C∞
0 (Rd) be such that ϕ = 1 on {|x| ≤ 1} and ϕ(x) = 0 if |x| > 2. Set bn(t, x) = b(t, x)ϕ(x

n
), t ∈

[0, T ], x ∈ Rd and n ≥ 1. Consider for each n an almost sure event �′
n related to bn ∈ L∞(0, T ;C0,β

b (Rd ;Rd)) by

Theorem 5.1; set �′′ = ⋂
n≥1 �′

n. Suppose that g1, g2 are solutions of (5.6) for a fixed ω′′ ∈ �′′. Let τ
(n)
k = τ

(n)
k (ω′′) =

inf{t ∈ [s0, τ ) : |gk(t)| ≥ n}, k = 1,2 (if |gk(s)| < n, for any s ∈ [s0, τ ) then we set τ
(n)
k = τ ). Define τ (n) = τ

(n)
1 ∧ τ

(n)
2

and note that on �′′τ (n) ↑ τ as n → ∞. Since on [s0, τ
(n)(ω′′)) both g1 and g2 solve an equation like (5.6) with b

replaced by bn and ω = ω′′ we can apply (v) of Theorem 5.1 and conclude that g1 = g2 on [s0, τ
(n)(ω′′)). Since this

holds for any n ≥ 1 we get that g1 = g2 on [s0, τ (ω′′)). �

Next we construct ω by ω strong solutions to (1.1) when b is possibly unbounded. To simplify we deal with the
initial time s = 0.

Corollary 5.5. Suppose that L and b verify the assumptions of Corollary 5.4. Moreover assume that∣∣b(t, x)
∣∣ ≤ C

(
1 + |x|), x ∈ Rd, t ∈ [0, T ], (5.16)

for some constant C > 0. Let x ∈Rd and s = 0. Then there exists a (unique) strong solution to (1.1) starting from x.

Proof. We know that t �→ Lt(ω) is càdlàg for any ω ∈ �′, where �′ is an almost sure event. When ω ∈ �′ a standard
argument based on the Ascoli–Arzela theorem shows that there exists a continuous solution v = v(·,ω) to v(t) =
x + ∫ t

0 b(s, v(s) + Ls(ω)) ds on [0, T ]. We define v(t,ω) = 0, if ω /∈ �′, t ∈ [0, T ]. By using the function ϕ as in the
proof of Corollary 5.4 we introduce bn(t, x) = b(t, x)ϕ(x

n
), t ∈ [0, T ], x ∈ Rd and n ≥ 1. According to Theorem 5.1

for each n there exists a function φn as in (5.1) and an almost sure event �′
n corresponding to bn such that assertions

(i)–(v) hold. Set �′′ = (
⋂

n≥1 �′
n) ∩ �′.

Define g(t,ω) = v(t,ω) + Lt(ω), t ∈ [0, T ], ω ∈ �, and set τ (n) = τ (n)(ω) = inf{t ∈ [0, T ) : |g(t,ω)| ≥ n} (if
|g(s,ω)| < n, for any s ∈ [0, T ) then we set τ (n)(ω) = T ). Note that on �′′ we have τ (n) ↑ T as n → ∞.

Let ω ∈ �′′ and n ≥ 1. Since g(·,ω) on [0, τ (n)(ω)) solves an equation like (5.6) with s0 = 0 and b replaced by
bn+k , k ≥ 0, we can apply (v) of Theorem 5.1 and get that g(t,ω) = φn+k(0, t, x,ω), for any t ∈ [0, τ (n)(ω)), k ≥ 0.
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Since τ (n) ↑ T we deduce that, uniformly on compact sets of [0, T ), for any ω ∈ �′′, we have limn→∞ φn(0, t, x,ω) =
g(t,ω). It follows that g(t, ·) is FL

t -measurable, for any t ∈ [0, T ). By setting g(T ,ω) = x + ∫ T

0 b(r, g(r,ω)) dr +
LT (ω), we get that (g(t, ·)) is a strong solution on [0, T ]. �

Remark 5.6. The previous condition (5.16) can be relaxed, by requiring that, for fixed x ∈Rd , s = 0 and ω ∈ �′ (�′
is an almost sure event) there exists a continuous solution to the integral equation v(t) = x + ∫ t

0 b(s, v(s)+ Ls(ω)) ds

on [0, T ]. The assertion about existence and uniqueness of a strong solution starting from x remains true.

6. Uniqueness for SDEs driven by stable Lévy processes

In this section using also results from [23] and [24] we show that Theorem 5.1 can be applied to a class of SDEs
driven by non-degenerate α-stable type processes L. Let s ≥ 0, we are considering

Xt(ω) = x +
∫ t

s

b
(
Xu(ω)

)
du + Lt(ω) − Ls(ω), (6.1)

x ∈Rd , d ≥ 1, t ≥ s, where b ∈ C
0,β
b (Rd ,Rd), β ∈ [0,1]. We deal with pure-jump Lévy process L (without drift term),

i.e., we assume that the generating triplet is (ν,0,0) (i.e., Q = 0 and a = 0 as in (2.5)). To state our assumptions on
L we use the convolution semigroup (Pt ) associated to L (or to its Lévy measure ν) and acting on Cb(R

d), i.e.,
Pt : Cb(R

d) → Cb(R
d), t ≥ 0,

Ptf (x) = E
[
f (x + Lt)

] =
∫
Rd

f (x + z)μt (dz), t > 0, f ∈ Cb

(
Rd

)
, x ∈ Rd,

where μt is the law of Lt , and P0 = I (cf. [28] or [1]). The generator L of (Pt ) is

Lg(x) =
∫
Rd

(
g(x + y) − g(x) − 1{|y|≤1}

〈
y,Dg(x)

〉)
ν(dy), x ∈Rd , (6.2)

with g ∈ C∞
0 (Rd) (see Section 6.7 in [1] and Section 31 in [28]). We now consider the Blumenthal-Getoor index

α0 = α0(ν) (see [5]):

α0 = inf

{
σ > 0 :

∫
{|y|≤1}

|y|σ ν(dy) < ∞
}
; (6.3)

we always have α0 ∈ [0,2]. In the sequel we require that α0 ∈ (0,2). Moreover, in Section 6.2, we use the following
assumption on the Lévy measure ν.

Hypothesis 3. Let α0 ∈ (0,2). The convolution semigroup (Pt ) verifies: Pt(Cb(R
d)) ⊂ C1

b(Rd), t > 0, and, moreover,
there exists cα0 = cα0(ν) > 0 such that

sup
x∈Rd

∣∣DPtf (x)
∣∣ ≤ cα0 t

− 1
α0 · sup

x∈Rd

∣∣f (x)
∣∣, t ∈ (0,1], f ∈ Cb

(
Rd

)
. (6.4)

Note that Hypothesis 3 implies both Hypotheses 1 and 2 in [24] (taking α = α0). Indeed since α0 ∈ (0,2) we have∫
{|x|≤1} |y|σ ν(dy) < ∞, for σ > α0. To check the validity of the gradient estimate (6.4) we only mention a criterion

which is given in [24]; it is based on Theorem 1.3 in [29].

Theorem 6.1. Let L be a pure-jump Lévy process. A sufficient condition in order that (6.4) holds with α0 replaced
by γ ∈ (0,2) is the following one: the Lévy measure ν of L verifies: ν(B) ≥ ν1(B), B ∈ B(Rd), where ν1 is a Lévy
measure on Rd such that its corresponding symbol ψ1(h) = − ∫

Rd (e
i〈h,y〉 − 1 − i〈h,y〉1{|y|≤1}(y))ν1(dy), satisfies,

for some positive constants c1, c2 and M ,

c1|x|γ ≤ Reψ1(x) ≤ c2|x|γ , when |x| > M. (6.5)
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Examples 6.2. The next examples of α-stable type Lévy processes are also considered in [24]. It is easy to check that
in each example α0 = α ∈ (0,2). Thanks to Theorem 6.1 also (6.4) holds in each example.

Consider the following Lévy measure ν̃:

ν̃(B) =
∫ r

0

dt

t1+α

∫
S

1B(tξ)μ(dξ), B ∈ B
(
Rd

)
(6.6)

(cf. Example 1.5 of [29] with the index β of [29] which is equal to ∞). Here r > 0 is fixed; μ is a non-degenerate
finite non-negative measure on B(Rd) with support on the unit sphere S (non-degeneracy of μ is equivalent to say that
its support is not contained in a proper linear subspace of Rd ), α ∈ (0,2). The Lévy measure ν̃ verifies Hypothesis 3
since its symbol ψ̃ verifies (6.5) with γ = α. This was already remarked in page 1146 of [29]. We only note that, if
h �= 0, we have

Reψ̃(h) =
∫ r

0

dt

t1+α

∫
S

[
1 − cos

(〈
h

|h| , t |h|ξ
〉)]

μ(dξ).

By changing variable s = t |h| after some computations one arrives at (6.5).
Moreover Hypothesis 2 holds. Note that

∫
{|x|>1} |y|θ ν̃(dy) < ∞, θ ∈ (0, α). Using also ν̃ we find that the next

examples of Lévy processes verify Hypotheses 2 and 3.
(i) L is a non-degenerate symmetric α-stable process (see, for instance, [28] and the references therein). In this case

ν(B) = ∫ ∞
0

dt

t1+α

∫
S

1B(tξ)μ(dξ), B ∈ B(Rd), α ∈ (0,2), where μ is as in (6.6). A standard rotationally invariant α-
stable process L belongs to this class since its Lévy measure has density c

|x|d+α (with respect to the Lebesgue measure

in Rd ).
(ii) L is a α-stable temperated process of special form. Here

ν(B) =
∫ ∞

0

e−t dt

t1+α

∫
S

1B(tξ)μ(dξ), B ∈ B
(
Rd

)
,

where μ is as in (6.6), α ∈ (0,2).
Note that in (i) and (ii) we have ν(B) ≥ e−1ν̃(B), B ∈ B(Rd), where ν̃ is given in (6.6) with r = 1.
(iii) L is a truncated α-stable process. In this case ν(B) = c

∫
{|x|≤1}

1B(x)

|x|d+α dx, B ∈ B(Rd), α ∈ (0,2).

(iv) L is a relativistic α-stable process (cf. [27] and see the references therein). Here ψ(h) = (|h|2 + m
2
α )

α
2 − m,

for some m > 0, α ∈ (0,2), h ∈ Rd , and so (6.4) holds. Moreover by Lemma 2 in [27] we know that ν has the

density Cα,d |x|−d−αe−m1/α |x| · φ(m1/α|x|), x �= 0, with 0 ≤ φ(s) ≤ cα,d,m(s
d−1+α

2 + 1), s ≥ 0. Hence α = α0 and also
Hypothesis 2 holds for any θ > 0.

6.1. Preliminary results on strong existence and uniqueness by using solutions of Kolmogorov equations

We first present results on strong existence and uniqueness for (6.1) when s = 0 which are special cases of Lemma 5.2
and Theorem 5.3 in [24]. Then we study Lp-dependence from the initial condition x following Theorem 4.3 in [23].
Finally in Theorem 6.6 we will consider the general case when s ∈ [0, T ].

All these theorems do not require the gradient estimates (6.4). However they assume the Blumenthal–Getoor index
α0 ∈ (0,2), b ∈ Cb(R

d ,Rd) and classical solvability of the following Kolmogorov type equation:

λu(x) −Lu(x) − Du(x)b(x) = b(x), x ∈ Rd, (6.7)

where b :Rd →Rd is given in (6.1), L in (6.2) and λ > 0; the equation is intended componentwise, i.e., u : Rd → Rd

and, setting Lb = L+ b(x) · D,

λuk(x) −Lbuk(x) = bk(x), k = 1, . . . , d, (6.8)

with u(x) = (uk(x))k=1,...,d and b(x) = (bk(x))k=1,...,d . The approach to get strong uniqueness passing through solu-
tions to (6.7) is similar to the one used in Section 2 of [11] (see also [35]).
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Remark that Lg(x) in (6.2) is well defined even for g ∈ C
1+γ

b (Rd) if α0 < 1 + γ and γ ∈ [0,1) (cf. formula (13)
in [24]). Indeed when |y| ≤ 1 we can use the bound |g(y + x) − g(x) − y · Dg(x)| ≤ [Dg]γ |y|1+γ , x ∈Rd .

In addition Lg ∈ Cb(R
d) when g ∈ C

1+γ

b (Rd) and 1 + γ > α0. The next result is stated in Theorem 5.3 of [24]
in a more general form which also shows the differentiability of solutions with respect to x and the homeomorphism
property.

Theorem 6.3. Let L be any Lévy process on (�,F,P ) with generating triplet (ν,0,0) such that α0 = α0(ν) ∈ (0,2)

(see (6.3)) and let b ∈ Cb(R
d ,Rd) in (6.1). Suppose that, for some λ > 0, there exists u = uλ ∈ C

1+γ

b (Rd,Rd),
γ ∈ (0,1) and 2γ > α0, which solves (6.7). Moreover, assume ‖Duλ‖0 < 1/3.

Then on (�,F,P ), for any x ∈Rd , there exists a pathwise unique strong solution (Xx
t )t≥0 to (6.1) when s = 0.

Next we formulate a special case of Lemma 5.2 in [24]. It uses the stochastic integral against the compensated
Poisson random measure Ñ (see, for instance, [20]).

Lemma 6.4. Under the same hypotheses of Theorem 6.3 let T > 0 and suppose that (Xx
t )t∈[0,T ] is a strong solution of

(6.1) on [0, T ] when s = 0 (starting from x ∈ Rd ), then, using uλ of Theorem 6.3, we have, P -a.s., for any t ∈ [0, T ],

uλ

(
Xx

t

) − uλ(x)

= x + Lt − Xx
t + λ

∫ t

0
uλ

(
Xx

s

)
ds +

∫ t

0

∫
Rd\{0}

[
uλ

(
Xx

s− + y
) − uλ

(
Xx

s−
)]

Ñ(ds, dy). (6.9)

Proof. The assertion is stated in Lemma 5.2 of [24] for weak solutions (Xx
t )t≥0 with the condition 1 + γ > α0,

γ ∈ (0,1]. Clearly such lemma works also for strong solutions (Xx
t )t∈[0,T ] which solves (6.1) on [0, T ] (the proof is

based on Itô’s formula for uλ(X
x
t )); further the condition 2γ > α0 of Theorem 6.3 implies 1 + γ > α0. �

To prove Davie’s uniqueness for (6.1) we need the following Lp-continuity of the solutions w.r.t. initial conditions.

Theorem 6.5. Under the same hypotheses of Theorem 6.3 let T > 0, s = 0, and consider two strong solutions
(Xx

t )t∈[0,T ] and (X
y
t )t∈[0,T ] of (6.1) on [0, T ] which are defined on (�,F,P ), starting from x and y ∈ Rd respectively.

For any t ∈ [0, T ], p ≥ 2, we have

E
[

sup
0≤s≤t

∣∣Xx
s − X

y
s

∣∣p] ≤ C(t)|x − y|p, (6.10)

with C(t) = C(t, ν,p,λ, d, γ,‖uλ‖C
1+γ
b

) > 0 which is independent of x and y; here uλ is as in Theorem 6.3 (further

C(t, ν,p,λ, d, γ, ·) is increasing).

Proof. The proof follows the one of (i) in Theorem 4.3 of [23]. We only give a sketch of the proof here. We set
X = Xx , Y = Xy and u = uλ. We have from Lemma 6.4, P -a.s., using that ‖Du‖0 ≤ 1/3, |Xt − Yt | ≤ 3

2 (�1(t) +
�2(t) + �3(t) + �4), where

�1(t) =
∣∣∣∣
∫ t

0

∫
{|z|>1}

[
u(Xs− + z) − u(Xs−) − u(Ys− + z) + u(Ys−)

]
Ñ(ds, dz)

∣∣∣∣,
�2(t) = λ

∫ t

0

∣∣u(Xs) − u(Ys)
∣∣ds,

�3(t) =
∣∣∣∣
∫ t

0

∫
{|z|≤1}

[
u(Xs− + z) − u(Xs−) − u(Ys− + z) + u(Ys−)

]
Ñ(ds, dz)

∣∣∣∣,
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�4 = |u(x) − u(y)| + |x − y| ≤ 4
3 |x − y|. Remark that, P -a.s.,

sup
0≤r≤t

|Xr − Yr |p ≤ C1|x − y|p + C1

3∑
j=1

sup
0≤r≤t

�j (r)
p.

By the Hölder inequality, sup0≤r≤t �2(r)
p ≤ C2t

p−1
∫ t

0 sup0≤s≤r |Xs − Ys |p dr , where C2 = C2(p,λ,‖uλ‖C
1+γ
b

). To

estimate �1 and �3 we use Lp-estimates for stochastic integrals against Ñ (cf. [20], Theorem 2.11, or the proof of
Proposition 6.6.2 in [1]).

We find, since |u(Xs− + z) − u(Ys− + z) + u(Ys−) − u(Xs−)| ≤ 2
3 |Xs− − Ys−|, setting A = {|z| > 1},

E
[

sup
0≤r≤t

�1(r)
p
]

≤ C3E

[(∫ t

0
ds

∫
A

∣∣u(Xs− + z) − u(Ys− + z) + u(Ys−) − u(Xs−)
∣∣2

ν(dy)

)p/2]

+ C3E

∫ t

0
ds

∫
A

∣∣u(Xs− + z) − u(Ys− + z) + u(Ys−) − u(Xs−)
∣∣pν(dy)

≤ C4
(
1 + tp/2−1)∫ t

0
E

[
sup

0≤r≤s

|Xr − Yr |p
]
ds,

where C3 = ∫
{|z|>1} ν(dz) + (

∫
{|z|>1} ν(dz))p/2. To treat �3 we need the hypothesis 2γ > α0. By Lp-estimates of

stochastic integrals and using Lemma 4.1 in [23] we get

E
[

sup
0≤r≤t

�3(r)
p
]

≤ C5‖u‖p

C
1+γ
b

E

[(∫ t

0
dr

∫
{|z|≤1}

|Xr − Yr |2|z|2γ ν(dz)

)p/2]

+ C5‖u‖p

C
1+γ
b

E

∫ t

0
|Xr − Yr |p dr

∫
{|z|≤1}

|z|γpν(dz).

Note that
∫
{|z|≤1} |z|pγ ν(dz) < ∞, since p ≥ 2 and 2γ > α0. Collecting the previous estimates, we arrive at

E
[

sup
0≤r≤t

|Xr − Yr |p
]

≤ C6|x − y|p + C6
(
1 + tp−1)∫ t

0
E

[
sup

0≤r≤s

|Xr − Yr |p
]
ds,

C6 = C6(ν, p, λ, d, γ ) > 0. By the Gronwall lemma we obtain the assertion with C(t) = C6 exp(C6(1 + tp−1)). �

As a consequence of the previous results we get

Theorem 6.6. Under the same hypotheses of Theorem 6.3 let T > 0 and s ∈ [0, T ]. Then, for any x ∈ Rd , there
exists a pathwise unique strong solution X̃s,x = (X̃

s,x
t )t∈[0,T ] to (6.1) on (�,F,P ) (recall that X̃

s,x
t = x for t ≤ s).

Moreover if Us,x and Us,y are two strong solutions on [0, T ] defined on (�,F,P ) and starting at x and y, then we
have, for p ≥ 2,

sup
s∈[0,T ]

E
[

sup
s≤t≤T

∣∣Us,x
t − U

s,y
t

∣∣p]
≤ C(T )|x − y|p, x, y ∈ Rd, (6.11)

where C(T ) = C(T , ν,p,λ, d, γ,‖uλ‖C
1+γ
b

) > 0 as in (6.10).

Proof. Existence. Let us fix s ∈ [0, T ] and consider the new process L(s) = (L
(s)
t ) on (�,F,P ), L

(s)
t = Ls+t − Ls ,

t ≥ 0. This is a Lévy process with the same generating triplet of L and is independent of FL
s (see Proposition 10.7 in
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[28]). According to Theorem 6.3 there exists a unique strong solution to

Xt = x +
∫ t

0
b(Xr) dr + L

(s)
t , t ≥ 0, (6.12)

which we denote by (Xx
t,L(s) ) to stress its dependence on L(s). Note that, for any t ≥ 0, Xx

t,L(s) is measurable with

respect to FL(s)

t =FL
s,t+s . Let us define a new process with càdlàg paths (X̃

s,x
t )t∈[0,T ],

X̃
s,x
t = Xx

t−s,L(s) , for s ≤ t ≤ T ; X̃
s,x
t = x, 0 ≤ t ≤ s. (6.13)

Writing Vt = X̃
s,x
t , t ∈ [0, T ], to simplify notation, we note that Vt is FL

s,t -measurable, t ≥ s. Moreover it solves
equation (6.1); indeed, for t ∈ [s, T ],

Vt = Xx
t−s,L(s) = x +

∫ t−s

0
b
(
Xx

r,L(s)

)
dr + Lt − Ls = x +

∫ t

s

b(Vr) dr + Lt − Ls.

Uniqueness. Let (U
s,x
t ) be another strong solution. We have, P -a.s., for s ≤ t ≤ T ,

U
s,x
t−s+s = x +

∫ t

s

b
(
Us,x

r

)
dr + Lt − Ls = x +

∫ t−s

0
b
(
U

s,x
r+s

)
dr + Lt − Ls = x +

∫ t−s

0
b
(
U

s,x
r+s

)
dr + L

(s)
t−s .

Hence (U
s,x
r+s)r∈[0,T −s] solves (6.12) on [0, T − s]. By (6.10) we get

P
(
U

s,x
r+s = Xx

r,L(s) , r ∈ [0, T − s]) = P
(
U

s,x
r+s = X̃

s,x
r+s, r ∈ [0, T − s]) = 1.

This shows the assertion.
Lp-estimates. We have for any fixed s ∈ [0, T ], p ≥ 2, E[sups≤t≤T |Us,x

t − U
s,y
t |p] = E[sups≤t≤T |Xx

t−s,L(s) −
X

y

t−s,L(s) |p] by uniqueness. Using (6.10) we get

sup
s∈[0,T ]

E
[

sup
s≤t≤T

∣∣Us,x
t − U

s,y
t

∣∣p]
= sup

s∈[0,T ]
E

[
sup

s≤t≤T

∣∣Xx
t−s,L(s) − X

y

t−s,L(s)

∣∣p]

≤ sup
s∈[0,T ]

E
[

sup
t∈[0,T ]

∣∣Xx
t,L(s) − X

y

t,L(s)

∣∣p]
≤ C(T )|x − y|p. �

6.2. A Davie’s type uniqueness result when α0 ∈ [1,2)

Here we prove a Davie’s type uniqueness result for (6.1) (cf. Theorem 5.1). We consider a Lévy process L with
generating triple (ν,0,0) satisfying Hypotheses 2 and 3 with the Blumenthal-Getoor index α0 ∈ [1,2) (see (6.3)).
Moreover we assume as in [23] and [24] that b ∈ C

0,β
b (Rd ,Rd) with β ∈ (1 − α0

2 ,1].
To check Hypothesis 1 we will use Theorem 6.6 and the following purely analytic result (see Theorem 4.3 in

[24]; its proof follows the one in Theorem 3.4 of [23]). Note that the next hypothesis α0 + β < 2 could be dropped.
Moreover, to simplify we have only considered the case λ ≥ 1 instead of λ > 0.

Theorem 6.7. Assume Hypothesis 3 with α0 = α0(ν) ≥ 1. Let 0 < β < 1 with α0 +β ∈ (1,2) and consider L in (6.2).
Then, for any λ ≥ 1, f ∈ C

β
b (Rd), there exists a unique solution wλ ∈ C

α0+β
b (Rd) to

λw(x) −Lw(x) − b(x) · Dw(x) = f (x), x ∈Rd . (6.14)

Moreover, there exists C0 = C0(α0(ν), d,β,‖b‖
C

β
b

, ν) > 0 such that

λ‖wλ‖0 + [Dwλ]
C

α0+β−1
b

≤ C0‖f ‖
C

β
b

, λ ≥ 1. (6.15)

Finally, we have ‖Dwλ‖0 < 1/3, for any λ ≥ λ0(d,‖b‖
C

β
b

, α0(ν),β, ν) ≥ 1.
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Proof. We only make some comments on C0 and λ0. Let us first consider C0. To see that C0 = C0(α0(ν), d,β,

‖b‖
C

β
b

, ν) we look into the proof of Theorem 4.3 in [24]. In such proof the Schauder estimates (6.15) are first estab-

lished as apriori estimates by a localization procedure. This method is based on Schauder estimates already proved
in the constant coefficients case, i.e., when b(x) = k, x ∈Rd (see Theorem 4.2 in [24]). The Schauder constant C0
depends on the Schauder constant c appearing in formula (16) of Theorem 4.2 in [24] when λ ≥ 1. Such constant
c depends on α0(ν),β, d and also on the constant cα0 of the gradient estimates (6.4) (see, in particular, estimates
(18)–(21) in the proof of Theorem 4.2 in [24]).

Let us consider λ0. Recall the simple estimate ‖Dwλ‖0 ≤ N [Dwλ]
1

α0+β

C
α0+β−1
b

‖wλ‖
α0+β−1
α0+β

0 , where N = N(α0, β, d)

(cf. the proof of Theorem 3.4 in [23]). By (6.15) we get ‖Dwλ‖0 ≤ NC0λ
− α0+β−1

α0+β ‖f ‖
C

β
b

, λ ≥ 1, and the assertion

follows by choosing λ0 > 1 ∨ (3NC0)
α0+β

α0+β−1 . �

Currently we do not know if the statements in Theorem 6.7 hold also when α0 ∈ (0,1) (maintaining all the other
assumptions).

Now we apply Theorem 5.1 to get Davie’s type uniqueness for the SDE (6.1).

Theorem 6.8. Let L be a d-dimensional Lévy process on (�,F,P ) with generating triple (ν,0,0) satisfying Hy-
pothesis 3 with α0 ∈ [1,2). Suppose also that

∫
{|x|>1} |y|θ ν(dy) < ∞, for some θ > 0. Let us consider (6.1) with

b ∈ C
0,β
b (Rd ;Rd) and β ∈ (1 − α0

2 ,1].
Then L and b satisfy Hypotheses 1 and 2 and, for any T > 0, there exists a function φ as in Theorem 5.1 such that

assertions (i)–(v) hold on some almost sure event �′.

Proof. When β = 1 Hypothesis 1 is clearly satisfied. Let us consider β ∈ (1 − α0
2 ,1). Since C

β ′
b (Rd,Rd) ⊂

C
β
b (Rd,Rd) when 0 < β ≤ β ′ ≤ 1, we may assume that 1 − α0

2 < β < 2 − α0. To verify Hypothesis 1 we use Theo-

rems 6.7 and 6.6. By Theorem 6.7 we have a solution uλ ∈ C
1+γ

b (Rd,Rd) to (6.7) with γ = α0 − 1 + β ∈ (0,1) for
any λ ≥ 1. Note that 2γ = 2α0 −2+2β > α0. Choosing λ = λ0(d,‖b‖

C
β
b

, α0(ν),β) we obtain that also ‖Duλ‖ < 1/3

holds.
Using Theorem 6.6 we can check the validity of (2.6). Note that the constant C(T ) appearing in (6.11) depends

on T , ν, p, α0(ν), λ, d , γ and ‖uλ‖C
1+γ
b

. However by Theorem 6.7 γ = α0 − 1 + β , λ = λ0(d,‖b‖
C

β
b

, α0, β) and

‖uλ‖C
1+γ
b

= ‖uλ‖
C

α0+β

b

≤ N(α0, β, d)C0‖b‖
C

β
b

where C0 appears in the Schauder estimates (6.15). It follows that

C(T ) in (6.11) has the right dependence on d,p, β, ν, ‖b‖
C

β
b

and T as in (2.6). To finish the proof we apply Theo-

rem 5.1 since Hypotheses 1 and 2 hold. �

Remark 6.9. Theorem 6.8 shows that under suitable assumptions on L and b Davie’s uniqueness (or path-by-path
uniqueness) holds for the SDE (1.1). Moreover, the unique strong solution is given by a function φ which satisfies all
the assertions of Theorem 5.1, including (5.2) and (5.4), for any ω ∈ �′, where �′ is an almost sure event independent
of s, t and x. There are no similar results in the literature on stochastic flows for SDEs (1.1) driven by stable type
processes (cf. [23,24] and the recent paper [6] which contains the most general available results about existence and
C1-regularity of stochastic flow).

6.3. Davie’s type uniqueness when α0 = α ∈ (0,1)

Here we only consider the SDE (6.1) when L = Lα is a symmetric rotationally invariant α-stable process with α ∈
(0,1) (the case of α ∈ [1,2) is already treated in Theorem 6.8). For each α ∈ (0,1) its Lévy measure ν = να has
density cα,d

|y|d+α , y �= 0, and its generator L = L(α) (see (6.2)) coincides with the fractional Laplacian −(−
)α/2 (see

Example 32.7 in [28]). Note that, for any g ∈ C1
b(Rd), the mapping:

x �→ Lg(x) = cα,d

∫
Rd

g(x + y) − g(x)

|y|d+α
dy belongs to Cb

(
Rd

)
. (6.16)
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Clearly α = α0 (see (3.1)). Using Theorem 6.6 of the previous section together with Theorem 6.11 we can apply
Theorem 5.1 and obtain

Theorem 6.10. Let L be a d-dimensional symmetric rotationally invariant α-stable process with α ∈ (0,1) defined
on (�,F,P ). Let us consider the SDE (6.1) with b ∈ C

0,β
b (Rd ;Rd) and β ∈ (1 − α

2 ,1].
Then L and b satisfy Hypotheses 1 and 2 and, for any T > 0, there exists a function φ as in Theorem 5.1 such that

assertions (i)–(v) hold on some almost sure event �′.

We first state a result which is related to Theorem 6.7. It shows sharp C
α+β
b -regularity of solutions to (6.14). The

proof is based on Theorem 1.1 in [31].

Theorem 6.11. Let us consider the fractional Laplacian L given in (6.16) with α ∈ (0,1). Let β ∈ (0,1) such that
α +β > 1. Then, for any λ ≥ 1, f ∈ C

β
b (Rd), there exists a unique solution w = wλ ∈ C

α+β
b (Rd) to (6.14). Moreover,

there exists C0 = C0(α, d,β,‖b‖
C

β
b

) > 0 such that

λ‖wλ‖0 + [Dwλ]Cα+β−1
b

≤ C0‖f ‖
C

β
b

, λ ≥ 1. (6.17)

Finally, we have ‖Dwλ‖0 < 1/3, for any λ ≥ λ0, with λ0(d,‖b‖
C

β
b

, α,β) ≥ 1.

Proof. The uniqueness follows by the maximum principle (see Proposition 3.2 in [23] or Proposition 4.1 in [24])
which states that λ‖wλ‖0 ≤ ‖f ‖0. Let Lb be the fractional Laplacian L plus the drift b (i.e., Lb = L + b · D). The
proof proceeds in some steps.

I step. Let λ ≥ 1. We provide apriori estimates for classical C1
b -solutions u to λu − Lbu = f on Rd (with f ∈

C
β
b (Rd), b ∈ C

β
b (Rd;Rd) and α + β > 1).

Let u = uλ ∈ C1
b(Rd) be a solution to λu − Lbu = f on Rd ; in the sequel we will consider open balls Br(x0) of

center x0 ∈ Rd and radius r > 0. Let x0 ∈ Rd . One can define v(x) = u(x + x0), x ∈ Rd . Since Lv(x) = Lu(x + x0),
x ∈ Rd , we get that v ∈ C1

b(Rd) solves λv −Lb0v = f0 on Rd where Lb0 has the drift b0(·) = b(· + x0) and f0(·) =
f (· + x0).

Setting ṽ(t, x) = eλtv(x), f̃0(t, x) = eλtf0(x), t ∈ [−1,0], x ∈Rd , we see that ṽ is a bounded solution of

∂t ṽ −Lb0 ṽ = f̃0 on [−1,0] × B1(0)

according to the definition of viscosity solution given at the beginning of Section 3.1 in [31]. Hence we can apply
Theorem 1.1 in [31] to ṽ. Recall that in the Silvestre notations his s ∈ (0,1) is our α/2 and his α ∈ (0,2s) corresponds
with our α + β − 1. We deduce by [31] that ṽ(t, ·) ∈ Cα+β(B1/2(0)) and moreover

‖v‖Cα+β(B1/2(0)) = ‖ṽ‖L∞([−1/2,0];Cα+β (B1/2(0))

≤ C2
(‖ṽ‖L∞([−1,0]×Rd ) + ‖f̃ ‖L∞([−1,0];Cβ(B1/2(0)))

) = C2
(‖v‖0 + ‖f0‖C

β
b (Rd )

)
,

where C2 depends only on ‖b0‖C
β
b (Rd ;Rd )

= ‖b‖
C

β
b (Rd ;Rd )

, α and d and is independent of λ. Thus we get that uλ ∈
Cα+β(B1/2(x0)) with a bound for the Cα+β -norm of uλ on B1/2(x0) by the quantity C2(‖uλ‖0 + ‖f ‖

C
β
b (Rd )

). Since

C2 is independent on x0 it is clear that we have uλ ∈ C
α+β
b (Rd) (cf. for instance page 434 in [23]) and the following

estimate holds with C3 = C3(‖b‖
C

β
b

, α, d,β) > 0

‖uλ‖C
α+β
b (Rd )

≤ C3
(‖uλ‖0 + ‖f ‖

C
β
b (Rd )

)
.

By Proposition 3.2 in [23] we know that λ‖uλ‖0 ≤ ‖f ‖0. Hence we arrive at

‖uλ‖C
α+β
b (Rd )

≤ 2C3‖f ‖
C

β
b (Rd )

, λ ≥ 1. (6.18)
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II step. Let λ ≥ 1. We show the existence of a C1
b -solution to λw − Lbw = f̃ when b ∈ C∞

b (Rd;Rd) and f̃ ∈
C∞

b (Rd).
To construct the solution we use a probabilistic method (for an alternative vanishing viscosity method see Sec-

tion 3.2 in [31]). Let (Xx
t ) be the solution of dXt = b(Xt ) dt + dLt , X0 = x ∈ Rd and consider the associated Markov

semigroup (Rt ), i.e., Rt l(x) = E[l(Xx
t )], t ≥ 0, x ∈ Rd , l ∈ UCb(R

d) (UCb(R
d) ⊂ Cb(R

d) denotes the Banach
space of all uniformly continuous and bounded functions endowed with the sup-norm). Differentiating with respect
to x under the expectation (using the derivative of Xx

t with respect to x, cf. [37]) it is straightforward to prove that
Rtg ∈ C1

b(Rd), for any t ≥ 0 and g ∈ C1
b(Rd). For the given f̃ ∈ C∞

b (Rd) we define

w̃(x) = w̃λ(x) =
∫ ∞

0
e−λtRt f̃ (x) dt, x ∈ Rd . (6.19)

It is clear that w̃ ∈ Cb(R
d). We now show that w̃ ∈ C1

b(Rd) and solves our equation. To this purpose we first prove
that for t > 0

sup
x∈Rd

∣∣DRt f̃ (x)
∣∣ ≤ c

(
α,β,‖Db‖0

)
(t ∧ 1)(β−1)/α‖f̃ ‖

C
β
b (Rd )

. (6.20)

Once this estimate is proved, differentiating under the integral sign in (6.19) we obtain that w ∈ C1
b(Rd) since α +β >

1. Let us fix t ∈ (0,1]. By Theorem 1.1 in [37] we know in particular that

‖DRtg‖0 = sup
x∈Rd

∣∣DRtg(x)
∣∣ ≤ c(α)e‖Db‖0 t−1/α‖g‖0, g ∈ C1

b

(
Rd

)
.

Using the total variation norm as in Lemma 7.1.5 of [7] we deduce that Rt l is Lipschitz continuous for any l ∈
UCb(R

d) and moreover |Rt l(x)−Rt l(y)| ≤ c(α)e‖Db‖0 t−1/α|x − y|‖l‖0, x, y ∈Rd . By Theorem 1.1 in [37], for any
g ∈ C1

b(Rd), we can write the directional derivative of Rtg along h ∈ Rd as follows:

DhRtg(x) = E
[
g
(
Xx

t

)
J (t, x,h)

]
, x ∈ Rd, (6.21)

where J (t, x,h) is a suitable random variable such that (E|J (t, x,h)|2)1/2 ≤ c(α)e‖Db‖0 t−1/α|h|, for any x ∈ Rd .
Let again l ∈ UCb(R

d). Using mollifiers we can consider an approximating sequence (gn) ⊂ C∞
b (Rd) such that

‖gn − l‖0 → 0 as n → ∞. Using (6.21) when g is replaced by gn and passing to the limit it is not difficult to prove
that Rt l ∈ C1

b(Rd) and moreover (6.21) holds when g is replaced by l (cf. page 480 in [25]).
We have found that Rt : UCb(R

d) → C1
b(Rd) is a linear and bounded operator and∣∣DRt l(x)

∣∣ ≤ c(α)e‖Db‖0 t−1/α‖l‖0,

for x ∈ Rd , l ∈ UCb(R
d). Moreover, Rt : C1

b(Rd) → C1
b(Rd) is linear and bounded and |DRtg(x)| ≤ e‖Db‖0‖Dg‖0,

for x ∈ Rd , g ∈ C1
b(Rd). To prove such estimate we fix h ∈ Rd and differentiate Rtg(x) with respect to x along the

direction h. One can show that

DhE
[
g
(
Xx

t

)] = E
[
Dg

(
Xx

t

)
ηt

]
, (6.22)

where ηt = DhX
x
t solves ηt = h + ∫ t

0 Db(Xx
s )ηs ds, t ≥ 0, P -a.s. Note that |DhX

x
t | ≤ |h|e‖Db‖0t by the Gronwall

lemma (cf. page 1211 in [37]).
By interpolation techniques we know that (UCb(R

d),C1
b(Rd))β,∞ = C

β
b (Rd), for β ∈ (0,1) (cf. [22], Chapter 1,

and the proof of Theorem 3.3 in [23]); it follows that for any t ∈ (0,1] we have that Rt : Cβ
b (Rd) → C1

b(Rd) is linear

and bounded and |DRtf (x)| ≤ c(α,β)e‖Db‖0 t (β−1)/α‖f ‖
C

β
b

, for any x ∈ Rd , f ∈ C
β
b (Rd).

We have verified (6.20) when t ∈ (0,1]. If t > 1 we use a standard argument based on the semigroup property and
get, for any x ∈ Rd , |DRt f̃ (x)| = |DR1(Rt−1f̃ )(x)| ≤ c(α)e‖Db‖0‖Rt−1f̃ ‖0 ≤ c(α)e‖Db‖0‖f̃ ‖0. Thus (6.20) holds
and we know that w̃ ∈ C1

b(Rd). To prove that w̃ is a solution we first establish the identity

∂t (Rt f̃ )(s, x) = Rs(Lbf̃ )(x) = Lb(Rsf̃ )(x), s ≥ 0, x ∈ Rd . (6.23)
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By using Ito’s formula (see [20], Section 2.3) and taking the expectation we find E[f̃ (Xx
s+h)] − E[f̃ (Xx

s )] =∫ s+h

s
E[(Lbf̃ )(Xx

r )]dr , for h ∈R such that s + h > 0. It follows that, for x ∈Rd ,

∂t (Rt f̃ )(s, x) = lim
h→0

h−1(Rs+hf̃ (x) − Rsf̃ (x)
) = Rs(Lbf̃ )(x), s > 0, and (6.24)

lim
h→0+ h−1(Rhf̃ (x) − f̃ (x)

) = Lbf̃ (x). (6.25)

If s > 0 by (6.25) we get limh→0+ Rh(Rs f̃ )(x)−Rsf̃ (x)
h

= Lb(Rsf̃ )(x) when f̃ in (6.25) is replaced by Rsf̃ . By the

semigroup law, the last limit and (6.24) coincide and so (6.23) holds. To check that w̃ verifies λw̃ −Lbw̃ = f̃ we use
(6.20) and (6.23). First by the Fubini theorem we have

Lbw̃(x) =
∫ ∞

0
e−λtLb(Rt f̃ )(x) dt =

∫ ∞

0
e−λtRt (Lbf̃ )(x) dt.

By (6.23) it follows that, for any x ∈Rd , Lbw̃(x) = ∫ ∞
0 e−λt d

dt
(Rt f̃ (x)) dt . Integrating by parts, we get the assertion.

III step. Let λ ≥ 1. We prove the existence of a C
α+β
b -solution to λw −Lbw = f on Rd when b ∈ C

β
b (Rd ;Rd) and

f ∈ C
β
b (Rd), α + β > 1, and show (6.17).

Using convolution with mollifiers and possibly passing to subsequences (see, for instance, page 431 in [23]) one can
consider operators Lbn with drifts bn ∈ C∞

b (Rd;Rd) such that ‖bn‖C
β
b

≤ ‖b‖
C

β
b

, n ≥ 1, and bn → b in Cβ ′
(K;Rd)

for any compact set K ⊂Rd and β ′ ∈ (0, β). Similarly one can construct (fn) ⊂ C∞
b (Rd) such that ‖fn‖C

β
b

≤ ‖f ‖
C

β
b

,

n ≥ 1, and fn → f in Cβ ′
(K) for any compact set K ⊂ Rd and β ′ ∈ (0, β). By II step there exist C1

b -solutions wn to

Lbnwn = λwn − fn, n ≥ 1. By Step I we know that wn ∈ C
α+β
b (Rd), n ≥ 1, with the estimate

‖wn‖C
α+β
b (Rd )

≤ 2C3‖f ‖
C

β
b (Rd )

(6.26)

(C3 = C3(‖b‖
C

β
b

, α,β, d) is independent of λ and n). Possibly passing to a subsequence still denoted with (wn), we

have that wn → w in Cα+β ′
(K), for any compact set K ⊂ Rd with β ′ > 0 such that 1 < α + β ′ < α + β . Moreover,

(6.26) holds with wn replaced by w. We can easily pass to the limit in each term of λwn(x) − Lwn(x) − bn(x) ·
Dwn(x) = fn(x) as n → ∞ and obtain that w solves our equation.

IV step. We prove the final assertion.
We already know that there exists a unique solution wλ ∈ C

α+β
b (Rd) and that (6.17) holds. To complete

the proof we argue as in the final part of the proof of Theorem 6.7. By the interpolatory estimate ‖Dwλ‖0 ≤
N(α,β, d)[Dwλ]

1
α+β

C
α+β−1
b

‖wλ‖
α+β−1
α+β

0 , we obtain easily that ‖Dwλ‖0 < 1/3 for λ ≥ λ0(d,‖b‖
C

β
b

, α,β). �

Proof of Theorem 6.10. As in the proof of Theorem 6.8 we verify the assumptions of Theorem 5.1. Note that

Hypothesis 2 holds since
∫
{|x|>1}

|y|θ
|y|d+α dy < ∞, for any θ ∈ (0, α). In order to check Hypothesis 1 we argue as in the

proof of Theorem 6.8 (using Theorems 6.11 and 6.6; recall that α = α0). The proof is complete. �
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