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Abstract. Consider the real Markov walk Sn = X1 + · · ·+Xn with increments (Xn)n≥1 defined by a stochastic recursion starting
at X0 = x. For a starting point y > 0, denote by τy the exit time of the process (y + Sn)n≥1 from the positive part of the real line.
We investigate the asymptotic behaviour of the probability of the event τy ≥ n and of the conditional law of y + Sn given τy ≥ n

as n → +∞.

Résumé. On considère une marche Markovienne réelle Sn = X1 + · · ·+Xn dont les accroissements (Xn)n≥1 sont définis par une
récursion stochastique partant de X0 = x. Pour un point de départ y > 0, on note par τy le temps de sortie du processus (y +Sn)n≥1
de la partie positive de la droite des réels. On s’intéresse au comportement asymptotique de la probabilité de l’évènement τy ≥ n

ainsi qu’à la loi conditionnelle de y + Sn sachant τy ≥ n quand n → +∞.
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1. Introduction

Assume that the Markov chain (Xn)n≥0 is defined by the stochastic recursion

X0 = x ∈R, Xn+1 = an+1Xn + bn+1, n ≥ 0, (1.1)

where (ai, bi)i≥1 is a sequence of i.i.d. real random pairs satisfying E(|a1|α) < 1 and E(|b1|α) < +∞, for some α > 2.
Consider the Markov walk Sn = ∑n

k=1 Xk , n ≥ 1. Under a set of conditions ensuring the existence of the spectral gap
of the transition operator of the Markov chain (Xn)n≥0, it was established in Guivarc’h and Le Page [17] that there
exist constants μ and σ > 0 such that, for any t ∈ R,

Px

(
Sn − nμ

σ
√

n
≤ t

)
→ �(t) as n → +∞, (1.2)

where � is the standard normal distribution function and Px is the probability measure generated by (Xn)n≥0 starting

at X0 = x. There are simple expressions of μ and σ in terms of law of the pair (a, b): in particular μ = Eb
1−Ea

.
For a starting point y > 0, define the first time when the affine Markov walk (y + Sn)n≥1 becomes non-positive by

setting

τy = min{k ≥ 1, y + Sk ≤ 0}.
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In this paper we complete upon the results in [17] by determining the asymptotic of the probability Px(τy > n) and
proving a conditional version of the limit theorem (1.2) for the sum y + Sn, given the event {τy > n} in the case when
μ = 0. The main challenge in obtaining these asymptotics is to prove the existence of a positive harmonic function
pertaining to the associated Markov chain (Xn, y + Sn)n≥0. A positive harmonic function, say V , is defined as a
positive solution of the equation Q+V = V , where Q+ is the restriction on R × R

∗+ of the Markov transition kernel
Q of the chain (Xn, y + Sn)n≥0.

From the more general results of the paper it follows that, under the same hypotheses that ensure the CLT (see
Condition 1 in Section 2), if the pair (a, b) is such that P((a, b) ∈ (0,1) × (0,C]) > 0 and P((a, b) ∈ (−1,0) ×
(0,C]) > 0, for some C > 0, then

Px(τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

(1.3)

and

Px

(
y + Sn

σ
√

n
≤ t | τy > n

)
−→

n→+∞ �+(t), (1.4)

where �+(t) = 1 − e−t2/2 is the Rayleigh distribution function. In particular, the above mentioned results hold true if
a and b are independent and a is such that P(a ∈ (0,1)) > 0 and P(a ∈ (−1,0)) > 0. Less restrictive assumptions on
the pair (a, b) are formulated in our Section 2. For example, (1.3) and (1.4) hold if a = 0 and b satisfies Condition 1
which covers the case of independent increments.

The above mentioned results are in line with those already known in the literature for random walks with indepen-
dent increments conditioned to stay in limited areas: the rate 1/

√
n in (1.3) and the asymptotic distribution �+(t) in

(1.4) are the same. We refer the reader to Iglehart [18], Bolthausen [2], Doney [11], Bertoin and Doney [1], Borovkov
[3,4], Caravenna [5], Eichelsbacher and Köning [12], Garbit [13], Denisov, Vatutin and Wachtel [7], Denisov and
Wachtel [8,10]. More general walks with increments forming a Markov chain have been considered by Presman [20,
21], Varopoulos [22,23], Dembo [6], Denisov and Wachtel [9] or Grama, Le Page and Peigné [16]. In [20,21] the case
of sums of lattice random variables defined on finite regular Markov chains has been considered. Varopoulos [22,23]
studied Markov chains with bounded increments and obtained lower and upper bounds for the probabilities of the
exit time from cones. Some studies take advantage of additional properties: for instance in [9] the Markov walk has
a special integrated structure; in [16] the moments of Xn are bounded by some constants not depending on the initial
condition. However, to the best of our knowledge, the asymptotic behaviour of the probability Px(τy > n) in the case
of the stochastic recursion (1.1) has not yet been considered in the literature.

Note that the Wiener–Hopf factorization, which usually is employed in the case of independent random variables,
cannot be applied in a straightforward manner for Markov chains. Instead, to study the case of the stochastic recursion,
we rely upon the developments in [9,10] and [16]. The main idea of the paper is given below. The existence of the
positive harmonic function V is linked to the construction of a martingale approximation for the Markov walk (Sn)n≥1.
While the harmonicity is inherently related to the martingale properties, the difficulty is to show that the approximating
martingale is integrable at the exit time of the Markov walk (y + Sn)n≥1. In contrast to [10] and [16], our proof of
the existence of V employs different techniques according to positivity or not of the values of E(a1). The constructed
harmonic function allows to deduce the properties of the exit time and the conditional distribution of the Markov walk
from those of the Brownian motion using a strong approximation result for Markov chains from Grama, Le Page and
Peigné [15].

The technical steps of the proofs are as follows. We first deal with the case when the starting point of the Markov
walk (y + Sn)n≥0 is large: y > n1/2−ε , for some ε > 0. When y > 0 is arbitrary, the law of iterated logarithm ensures
that the sequence (|y + Sk|)1≤k≤n1−ε will cross the level n1/2−ε with high probability. Then, by the Markov property,
we are able to reduce the problem to a Markov walk with a large starting point y′ = y + Sνn , where νn is the first time
when the sequence |y + Sk| exceeds the level n1/2−ε . The major difficulty, compared to [10] and [16], is that, for the
affine model under consideration, the sequence (Xνn)n≥1 is not bounded in L

1. To overcome this we need a control of
the moments of Xn in function of the initial state X0 = x and the lag n.

We end this section by agreeing upon some basic notations. As from now and for the rest of this paper the symbols
c, cα, cα,β, . . . denote positive constants depending only on their indices. All these constants are likely to change their
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values every occurrence. The indicator of an event A is denoted by 1A. For any bounded measurable function f on
X = R

d , d = 1,2, random variable X in X and event A, the integral
∫
X

f (x)P(X ∈ dx,A) means the expectation
E(f (X);A) = E(f (X)1A).

2. Notations and results

Assume that on the probability space (	,F,P) we are given a sequence of independent real random pairs (ai, bi),
i ≥ 1, with the same law as the generic random pair (a, b). Denote by E the expectation pertaining to P. Consider the
Markov chain (Xn)n≥0 defined by the affine transformations

Xn+1 = an+1Xn + bn+1, n ≥ 0,

where X0 = x ∈ R is a starting point. The partial sum process (Sn)n≥0 defined by Sn = ∑n
i=1 Xi for all n ≥ 1 and

S0 = 0 will be called affine Markov walk. Note that (Sn)n≥0 itself is not a Markov chain, but the pair (Xn,Sn)n≥0

forms a Markov chain.
For any x ∈ R, denote by Px and Ex the probability and the corresponding expectation generated by the finite

dimensional distributions of (Xn)n≥0 starting at X0 = x.
We make use of the following condition which ensures that the affine Markov walk satisfies the central limit

theorem (1.2) (cf. [17]):

Condition 1. The pair (a, b) is such that:

(1) There exists a constant α > 2 such that E(|a|α) < 1 and E(|b|α) < +∞.
(2) The random variable b is non-zero with positive probability, P(b �= 0) > 0, and centred, E(b) = 0.

Note that Condition 1 is weaker than the conditions required in [17] in the special case α > 2. Nevertheless, using
the same techniques as in [17] it can be shown that, under Condition 1, the Markov chain (Xn)n≥0 has a unique
invariant measure m and its partial sum Sn satisfies the central limit theorem (1.2) with

μ =
∫
R

xm(dx) = E(b)

1 −E(a)
= 0 (2.1)

and

σ 2 =
∫
R

x2m(dx) + 2
∞∑

k=1

∫
R

xEx(Xk)m(dx) = E(b2)

1 −E(a2)

1 +E(a)

1 −E(a)
> 0. (2.2)

Moreover, it is easy to see that under Condition 1 the Markov chain (Xn)n≥0 has no fixed point: P(ax + b = x) < 1,
for any x ∈ R. Below we make use of a slightly refined result which gives the rate of convergence in the central limit
theorem for Sn with an explicit dependence of the constants on the initial value X0 = x stated in Section A.3.

For any y ∈ R consider the affine Markov walk (y + Sn)n≥0 starting at y and define its exit time

τy = min{k ≥ 1, y + Sk ≤ 0}.

Corollary A.7 implies the finiteness of the stopping time τy : under Condition 1, it holds Px(τy < +∞) = 1, for any
x ∈ R and y ∈R.

The asymptotic behaviour of the probability P(τy > n) is determined by the harmonic function which we proceed to
introduce. For any (x, y) ∈ R×R, denote by Q(x, y, ·) the transition probability of the Markov chain (Xn, y +Sn)n≥0.
The restriction of the measure Q(x, y, ·) on R×R

∗+ is defined by

Q+(x, y,B) = Q(x, y,B)
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for any measurable set B on R × R∗+ and for any (x, y) ∈ R × R. Let D be a measurable set in R × R containing
R × R

∗+. For any measurable ϕ : D → R set Q+ϕ(x, y) = ∫
R×R

∗+ ϕ(x′, y′)Q+(x, y,dx′ × dy′). A Q+-harmonic
function on D is any function V : D → R which satisfies

Q+V (x, y) = V (x, y), for any (x, y) ∈ D .

The existence of a non-negative harmonic function is obvious: V = 0 is an example. To ensure the existence of a
harmonic function which is positive on a set containing R×R

∗+, we need additional assumptions.

Condition 2. For all x ∈ R and y > 0,

Px(τy > 1) = P(ax + b > −y) > 0.

Condition 3. For any x ∈ R and y > 0, there exists p0 ∈ (2, α) such that for any constant c > 0, there exists n0 ≥ 1
such that,

Px

(
(Xn0 , y + Sn0) ∈ Kp0,c, τy > n0

)
> 0,

where

Kp0,c = {
(x, y) ∈R×R

∗+, y ≥ c
(
1 + |x|p0

)}
.

It is clear that Condition 3 implies Condition 2. Moreover under either Condition 2 or Condition 3, the event
{τy > n} has positive probability, for any n ≥ 1, x ∈R and y > 0.

The existence of a harmonic function is guaranteed by the following theorem. For any x ∈ R consider the process
(Mn)n≥0 defined by

M0 = 0, Mn = Sn + E(a)

1 −E(a)
(Xn − x), n ≥ 1, (2.3)

and the natural filtration (Fn)n≥0 with F0 the trivial σ -algebra and Fn the σ -algebra generated by X1,X2, . . . ,Xn. It
is easy to verify that (Mn,Fn)n≥0 is a Px -martingale, for any x ∈ R (see Gordin [14]).

Theorem 2.1. Assume Condition 1.

(1) For any x ∈R and y > 0, the random variable Mτy is integrable,

Ex

(|Mτy |
)
< +∞

and the function

V (x, y) = −Ex(Mτy ), x ∈ R, y > 0,

is well defined on R×R
∗+.

(2) The function V has the following properties:
(a) For any x ∈R, the function V (x, ·) is non-decreasing.
(b) For any δ > 0, p ∈ (2, α), x ∈R and y > 0,

V (x, y) ≥ max
(
0, (1 − δ)y − cp,δ

(
1 + |x|p))

,

V (x, y) ≤ (
1 + δ

(
1 + |x|p−1))y + cp,δ

(
1 + |x|p)

.

(c) For any x ∈R, it holds limy→+∞ V (x,y)
y

= 1.
(3) The function V is Q+-harmonic on R×R

∗+: for any x ∈R and y > 0,

Q+V (x, y) = V (x, y).
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(4) If in addition we assume either Condition 2 and E(a) ≥ 0, or Condition 3, then the function V is positive on
R×R

∗+.

Using the harmonic function from the previous theorem, we obtain the asymptotic of the tail probability of the exit
time τy .

Theorem 2.2. Assume Condition 1.

(1) For any p ∈ (2, α), x ∈R and y > 0,

√
nPx(τy > n) ≤ cp

(
1 + y + |x|)p

.

(2) If in addition we assume either Condition 2 and E(a) ≥ 0, or Condition 3, then for any x ∈ R and y > 0,

Px(τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

Corollary 2.3. Assume Condition 1. For any p ∈ (2, α), x ∈R, y > 0 and γ ∈ (0,1/2),

Ex

(
τ

γ
y

) ≤ cp,γ

(
1 + y + |x|)p

.

If in addition we assume Condition 2 and E(a) ≥ 0, or Condition 3, then

Ex

(
τ

1/2
y

) = +∞.

Moreover, we prove that the Markov walk (y + Sn)n≥0 conditioned to stay positive satisfies the following limit
theorem.

Theorem 2.4. Assume either Conditions 1, 2 and E(a) ≥ 0, or Conditions 1 and 3. For any x ∈R, y > 0 and t > 0,

Px

(
y + Sn

σ
√

n
≤ t | τy > n

)
−→

n→+∞ �+(t),

where �+(t) = 1 − e− t2
2 is the Rayleigh distribution function.

Theorems 2.1, 2.2, 2.4 can be extended to some non-positive initial points y. Set

D− := {
(x, y) ∈ R×R−,Px(τy > 1) = P(ax + b > −y) > 0

}
.

Theorem 2.5. Assume Condition 1.

(1) For any (x, y) ∈ D−, the random variable Mτy is integrable and the function V (x, y) = −Ex(Mτy ), is well
defined on D−.

(2) The function V is Q+-harmonic on D = D− ∪R×R
∗+.

(3) If in addition we assume either Condition 2 and E(a) ≥ 0, or Condition 3, then V is positive D = D− ∪R×R
∗+.

(4) For any (x, y) ∈ D−,

√
nPx(τy > n) ≤ cp

(
1 + |x|)p

.

(5) If in addition we assume either Condition 2 and E(a) ≥ 0, or Condition 3, then
(a) for any (x, y) ∈ D−,

Px(τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.
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(b) for any (x, y) ∈ D− and t > 0,

Px

(
y + Sn

σ
√

n
≤ t | τy > n

)
−→

n→+∞ �+(t).

The study of the asymptotic behaviour of τy and y + Sn for y ≤ 0 can be motivated by the problem of determining
the time when the population y0 + Sn, starting at y0 > 0, stays over a fixed level H . When y = y0 − H is in (−H,0],
the time τy = inf{k ≥ 1, y0 + Sk ≤ H } is the return time of the population y0 + Sn under the level H .

Below we discuss two more restrictive assumptions which, however, are easier to verify than Conditions 2 and 3,
respectively.

Condition 2bis. The law of the pair (a, b) is such that for all C > 0,

P
(
b ≥ C|a|) > 0.

Condition 3bis. There exists C > 0 such that,

P((a, b) ∈ (−1,0) × (0,C]) > 0 and P((a, b) ∈ (0,1) × (0,C]) > 0.

It is straightforward that Condition 2bis implies Condition 2. This follows from the inequality

P(ax + b > −y) ≥ P
(
b ≥ C|a|),

with C = |x|. The fact that Condition 3bis implies Condition 3 is proved in the Appendix A.1.
Under Condition 1, it is easy to see that Condition 3bis is satisfied, for example, when random variables a and b

are independent and P(a ∈ (−1,0)) > 0 and P(a ∈ (0,1)) > 0.
Note that, while Condition 3 implies Condition 2, there is no link between Conditions 2bis and 3bis. Indeed, if a

and b are independent, a is non-negative and the support of b contains R+, then Condition 2bis holds true whereas
Condition 3bis does not. At the opposite, if a and b are independent, b bounded and the support of a equals to
{−1/2} ∪ {1/2} then Condition 3bis holds true whereas Condition 2bis does not.

The outline of the paper is as follows. The martingale approximation (Mn)n≥0 of the Markov walk (Sn)n≥0 and
some of its properties are given in Section 3. In Section 4 we prove that the expectation of the killed Markov walk
((y + Sn)1{τy>n})n≥0 is bounded uniformly in n. This allows us to prove the existence of the harmonic function and
establish some of its properties in Section 5. With the help of the harmonic function and of a strong approximation
result for Markov chains we prove Theorems 2.2, 2.4 and 2.5, in Sections 6, 7 and 8 respectively. Appendix is an
Appendix where we collect some results used in the proofs.

3. Martingale approximation

In this section we approximate the Markov walk (Sn)n≥0 by the martingale defined in (2.3) and state some related
bounds.

We start by a lemma which shows that there is an exponential decay of the dependence of Xn on the initial state
x = X0 as n grows to infinity. This simple fact will be used repeatedly in the sequel.

Lemma 3.1. Assume Condition 1. For all p ∈ [1, α], x ∈R, and n ≥ 0,

E
1/p
x

(|Xn|p
) ≤ cp + (

E
1/p

(|a|p))n|x| ≤ cp

(
1 + |x|).

Proof. Since Xn = ∑n
k=1(bk

∏n
i=k+1 ai) + ∏n

i=1 aix, for n ≥ 1, with the convention
∏n

i=n+1 ai = 1, we have by the
Minkowski inequality and the independence of (ai, bi)i≥1,

E
1/p
x

(|Xn|p
) ≤

n∑
k=1

(
E

1/p
(|b|p)

E
1/p

(|a|p)n−k) +E
1/p

(|a|p)n|x|.

The conclusion of the lemma is thus a direct consequence of Condition 1. �
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All over the paper we use the abbreviation

ρ = E(a)

1 −E(a)
. (3.1)

Using this notation and the martingale (Mn)n≥0 defined in (2.3), for any x ∈ R and y ∈ R, the Markov walk (y +
Sn)n≥0 has the following martingale representation:

y + Sn = y + ρx + Mn − ρXn, n ≥ 0. (3.2)

Define the sequence (X0
n)n≥0, by

X0
0 = 0 and X0

n =
n∑

k=1

bk

n∏
i=k+1

ai, n ≥ 1, (3.3)

with the convention
∏n

i=k+1 ai = 1 for k = n. The sequence (X0
n)n≥0 corresponds to the stochastic recursion starting

at 0. In the same line, we define M0
0 = 0 and M0

n = ∑n
k=1

X0
k−E(a)X0

k−1
1−E(a)

, for all n ≥ 1. It is easy to see that the process

(M0
n,Fn)n≥0 is a zero mean Px -martingale which is related to the martingale (Mn)n≥0 by the identity

Mn = M0
n + �nx, (3.4)

where

�0 = 0 and �n =
n∑

k=1

∏k−1
i=1 ai

1 −E(a)

(
ak −E(a)

)
, n ≥ 1.

The following two lemmas will be used to control Ex(|Mn|p).

Lemma 3.2. Assume Condition 1.

(1) The sequence (�n)n≥0 is a centred martingale.
(2) For all p ∈ [1, α] and n ≥ 0,

E
1/p

(|�n|p
) ≤ cp.

Proof. The first claim follows from the fact that �n is a difference of two zero mean martingales. Using the
Minkowski inequality for 1 ≤ p ≤ α, the independence of (ai)i≥1 and Condition 1 we obtain the second claim. �

Let us introduce the martingale differences:

ξ0
k = M0

k − M0
k−1 = X0

k −E(a)X0
k−1

1 −E(a)
, k ≥ 1.

Lemma 3.3. Assume Condition 1. For all p ∈ [1, α] and n ≥ 0,

E
1/p

(∣∣ξ0
n

∣∣p) ≤ cp and E
1/p

(∣∣M0
n

∣∣p) ≤ cp

√
n.

Proof. For the increments ξ0
n we simply use Lemma 3.1 with x = 0. For the martingale (M0

n)n≥0, the upper bound is
obtained by Burkholder inequality: for all 2 < p ≤ α and all n ≥ 1,

E
1/p

(∣∣M0
n

∣∣p) ≤ cpE
1/p

((
n∑

k=1

(
ξ0
k

)2

)p/2)
.
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By the Hölder inequality with the exponents u = p/2 > 1 and v = p
p−2 , we obtain

E
1/p

(∣∣M0
n

∣∣p) ≤ cpE
1/p

[(
n∑

k=1

∣∣ξ0
k

∣∣2u

) p
2u

n
p
2v

]
≤ cpn

p−2
2p

(
n∑

k=1

cp

)1/p

= cp

√
n.

This proves the claim when 2 < p ≤ α. When 1 ≤ p ≤ 2 the assertion follows from the case above since the Lp norm
is less than the Lq norm for q ∈ (2, α]. �

Lemma 3.4. Assume Condition 1. For all p ∈ [1, α] and n ≥ 0,

E
1/p
x

(|Mn|p
) ≤ cp

(|x| + √
n
)
.

Proof. By the Minkowski inequality and equation (3.4), for all 1 ≤ p ≤ α, x ∈ R and n ≥ 1,

E
1/p
x

(|Mn|p
) ≤ E

1/p
(|�n|p

)|x| +E
1/p

(∣∣M0
n

∣∣p)
.

Then, by the claim 2 of Lemma 3.2 and Lemma 3.3, the result follows. �

4. Bound on the expectation of the killed martingale

The goal of this section is to prepare the background to prove the integrability of the random variable Mτy , which is
crucial for showing the existence of the harmonic function in Section 5. We use different approaches depending on
the sign on E(a): when E(a) ≥ 0, in Section 4.2 we prove that the expectation of the martingale (y + ρx + Mn)n≥0
killed at τy is uniformly bounded in n, while, when E(a) < 0, in Section 4.3 we prove that the expectation of the same
martingale killed at Ty is uniformly bounded in n, where Ty is the exit time of the martingale (y + ρx + Mn)n≥0.

4.1. Preliminary results

We first state a result concerning the first time when the process (|y + Sn|)n≥1 (respectively (|y + ρx + Mn|)n≥1)
crosses the level n1/2−ε . Introduce the following stopping times: for any n ≥ 1, ε ∈ (0,1/2), x ∈ R and y ∈R,

νn = νn,ε,y = min
{
k ≥ 1, |y + Sk| > n1/2−ε

}
(4.1)

and

vn = vn,ε,x,y = min
{
k ≥ 1, |y + ρx + Mk| > n1/2−ε

}
.

Lemma 4.1. Assume Condition 1. Let p ∈ (2, α). There exists ε0 > 0 such that for any ε ∈ (0, ε0], δ > 0, x ∈R, y > 0
and n ≥ 1,

Px

(
νn > δn1−ε

) ≤ cp,ε,δ

np/2−pε
+ cp,ε,δ e−cp,ε,δn

1−2ε |x|p

and

Px

(
vn > δn1−ε

) ≤ cp,ε,δ

np/2−pε
+ cp,ε,δ e−cp,ε,δn

1−2ε |x|p.

Proof. With ε < min(1/2, ε0), where ε0 is defined in Corollary A.6 and b > 0 a constant to be chosen below, let
l = [b2δn1−2ε], K = [nε/b2] and for any m ≥ 1, x ∈R and y ∈ R, with z = y + ρx,

Am(x, y) =
{

max
1≤k≤m

|z + Mkl | ≤
(
1 + 2|ρ|)n1/2−ε

}
.
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Note that by the martingale representation (3.2), we have for any k ≥ 2, |z + Mk| = |y + Sk + ρ(y + Sk) − ρ(y +
Sk−1)| ≤ (1 + |ρ|)|y + Sk| + |ρ||y + Sk−1|. Then, choosing n large enough to have l ≥ 2,

Px

(
νn > δn1−ε

) = Px

(
max

1≤k≤[δn1−ε]
|y + Sk| ≤ n1/2−ε

)
≤ Px

(
max

2≤k≤[δn1−ε]
|z + Mk| ≤

(
1 + 2|ρ|)n1/2−ε

)
≤ Px

(
AK(x, y)

)
.

Moreover, we have also,

Px

(
vn > δn1−ε

) ≤ Px

(
AK(x, y)

)
.

Since (Xn, y + Sn)n≥0 is a Markov chain,

Px

(
AK(x, y)

) =
∫
R2

Px′
(
A1

(
x′, y′))

Px

(
X(K−1)l ∈ dx′, y + S(K−1)l ∈ dy′,AK−1(x, y)). (4.2)

We use the decomposition (3.4) to write that, with c = 1 + 2|ρ|,
Px′

(
A1

(
x′, y′)) ≤ Px′

(∣∣z′ + M0
l

∣∣ ≤ 2cn1/2−ε,
∣∣�lx

′∣∣ ≤ cn1/2−ε
)

+ Px′
(∣∣�lx

′∣∣ > cn1/2−ε
)
.

Using (3.2) with x = 0, we have M0
n = S0

n + ρX0
n. By the Markov inequality,

Px′
(
A1

(
x′, y′)) ≤ Px′

(∣∣z′ + S0
l

∣∣ ≤ 3cn1/2−ε, |ρ|∣∣X0
l

∣∣ ≤ cn1/2−ε
)

+ Px′
(|ρ|∣∣X0

l

∣∣ > cn1/2−ε
) + cp

E(|�l |p)

np/2−pε

∣∣x′∣∣p.

Since S0
l does not depend on x′, using Lemma 3.1 and the claim 2 of Lemma 3.2, we obtain

Px′
(
A1

(
x′, y′)) ≤ sup

y′∈R
P
(∣∣y′ + S0

l

∣∣ ≤ 3cn1/2−ε
) + cp(1 + |x′|p)

np/2−pε
.

Inserting this bound in (4.2), it follows that

Px

(
AK(x, y)

) ≤ Px

(
AK−1(x, y)

)
sup
y′∈R

P
(∣∣y′ + S0

l

∣∣ ≤ 3cn1/2−ε
)

+ cp

np/2−pε

(
1 +Ex

(|X(K−1)l |p
))

.

Set rn = 3cn1/2−ε√
l

. Denote by B−y′√
l

(rn) the closed ball centred in −y′√
l

of radius rn. The rate of convergence in the central

limit theorem from Corollary A.6 (applied with x = 0) implies that,

sup
y′∈R

P

(
S0

l√
l
∈ B−y′√

l

(rn)

)
≤ sup

y′∈R

∫
B−y′√

l

(rn)

e− u2

2σ2
du√
2πσ

+ 2
cp,ε

lε
.

Moreover,

sup
y′∈R

∫
B−y′√

l

(rn)

e− u2

2σ2
du√
2πσ

≤ 2rn√
2πσ

≤ cδ

b
.
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Let q < 1. With b large enough in the definition of l, we have 2 cp,ε

lε
≤ q

2 , cδ

b
≤ q

2 and thus

sup
y′∈R

P

(
S0

l√
l
∈ B−y′√

l

(rn)

)
≤ q < 1.

Iterating, we get

Px

(
AK(x, y)

) ≤ qK−1
Px

(
A1(x, y)

) + cp

np/2−pε

K−2∑
k=0

qk
(
1 +Ex

(|X(K−1−k)l |p
))

.

Using the fact that qK−1Px(A1(x, y)) ≤ qK−1 = 1
q

e−[nε/b2] ln(1/q) ≤ cp,ε,δ

np/2−pε , Lemma 3.1 and the fact that (K − 1 −
k)l ≥ cε,δn

1−2ε for all 0 ≤ k ≤ K − 2, we finally obtain

Px

(
AK(x, y)

) ≤ cp,ε,δ

np/2−pε
+ cp,ε,δ e−cp,ε,δn

1−2ε |x|p. �

4.2. Bound on the expectation of the killed martingale: The case E(a) ≥ 0

The difficulty in proving that the expectation Ex(y + ρx + Mn; τy > n) is bounded uniformly in n lies in the fact that
whereas the killed Markov walk (y + Sn)1{τy>n} is non-negative, the random variable (y + ρx + Mn)1{τy>n} may be
not. In the case when E(a) ≥ 0 we take advantage of the properties presented in the next lemma.

Lemma 4.2. Assume Condition 1 and E(a) ≥ 0.

(1) For all x ∈ R and y > 0,

y + ρx + Mτy ≤ 0, Px-a.s.

(2) For all x ∈ R and y > 0,

Xτy

1 −E(a)
< y + ρx + Mτy , Px-a.s.

(3) For all x ∈ R and y > 0, the sequence ((y + ρx + Mn)1{τy>n})n≥0 is a submartingale with respect to Px .

Proof. Claim 1. Let, for brevity, z = y + ρx. Since, by the definition of τy ,

Xτy = y + Sτy − (y + Sτy−1) < 0,

it follows from (3.2) and the bound E(a) ≥ 0 that z + Mτy ≤ y + Sτy ≤ 0.
Claim 2. Rewrite the martingale representation (3.2) in the form

z + Mn = y + Sn−1 + Xn

1 −E(a)
. (4.3)

So, at the exit time τy ,

Xτy

1 −E(a)
= z + Mτy − (y + Sτy−1) < z + Mτy .

Claim 3. Using the first claim and the fact that (Mn)n≥0 is a martingale,

Ex(z + Mn+1; τy > n + 1 | Fn) = z + Mn −Ex(z + Mτy ; τy = n + 1 | Fn) −Ex(z + Mn+1 | Fn)1{τy≤n}
≥ (z + Mn)1{τy>n}. �
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In the next lemma we obtain a first bound for the expectation of the killed martingale ((y + ρx + Mn)1{τy>n})n≥0

which is of order n1/2−2ε , for some ε > 0. Using a recursive procedure we improve it subsequently to a bound not
depending on n.

Lemma 4.3. Assume Condition 1 and E(a) ≥ 0. Let p ∈ (2, α). For any ε ∈ (0,
p−2
4p

), x ∈ R, y > 0 and n ∈ N, we
have

Ex(y + ρx + Mn; τy > n) ≤ y + ρx + c|x| + cpn1/2−2ε.

Proof. By the Doob optional stopping theorem and the claim 2 of Lemma 4.2, with z = y + ρx,

Ex(z + Mn; τy > n) ≤ z −Ex

(
Xτy

1 −E(a)
; τy ≤ n

)
.

Note that Xn = ∏n
i=1 aix + X0

n, with X0
n given by (3.3). Then, with ε ∈ (0,1/4),

Ex(z + Mn; τy > n)

≤ z + c

n∑
k=1

k∏
i=1

E
(|ai |

)|x| + cEx

(∣∣X0
τy

∣∣; τy ≤ n, max
1≤k≤n

∣∣X0
k

∣∣ ≤ n1/2−2ε
)

+ cEx

(∣∣X0
τy

∣∣; τy ≤ n, max
1≤k≤n

∣∣X0
k

∣∣ > n1/2−2ε
)
.

By the Markov inequality, for 2 < p < α,

Ex(z + Mn; τy > n) ≤ z + c

n∑
k=1

E
k
(|a|)|x| + cn1/2−2ε + cEx

(
max1≤k≤n|X0

k |p
n

p−1
2 (1−4ε)

)
.

By Lemma 3.1 (with x = 0),

Ex(z + Mn; τy > n) ≤ z + c|x| + cn1/2−2ε + cp

n

n
p−1

2 (1−4ε)
.

Since ε ∈ (0,
p−2
4p

), we have p−1
2 (1 − 4ε) > 1/2 + 2ε which concludes the proof. �

Now we give an improvement of Lemma 4.3 which establishes a bound of the expectation of the killed martingale
((y + ρx + Mn)1{τy>n})n≥0 depending only on the starting values x, y.

Lemma 4.4. Assume Condition 1 and E(a) ≥ 0. For any δ > 0, p ∈ (2, α), x ∈R, y > 0 and n ≥ 0,

Ex(y + ρx + Mn; τy > n) ≤ (
1 + cpδ

(
1 + |x|)p−1)

y + cp,δ

(
1 + |x|)p

.

Moreover, with δ = 1, for any p ∈ (2, α), x ∈R, y > 0 and n ≥ 0,

Ex(y + ρx + Mn; τy > n) ≤ cp

(
1 + y + |x|)(1 + |x|)p−1

.

Proof. Let δ > 0 and ε ∈ (0, ε1], where ε1 = min(ε0,
p−2
4p

) and ε0 is defined in Lemma 4.1. Set z = y + ρx. We split
the proof following the values of n.

Assume first that n ≤ δ−1/ε . A bound of Ex(z + Mn; τy > n) is obtained immediately from Lemma 4.3: since
z = y + ρx, for any y > 0,

Ex(z + Mn; τy > n) ≤ y + c|x| + c
√

n ≤ y + cδ

(
1 + |x|)
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and the lemma is proved when n ≤ δ−1/ε .
Assume now that n ≥ δ−1/ε and y > n1/2−ε . From Lemma 4.3, we deduce that,

Ex(y + ρx + Mn; τy > n) ≤ y + ρx + c|x| + cpn1/2−2ε ≤ (
1 + cpn−ε

)
y + c|x|,

which proves the lemma when y > n1/2−ε and n is larger than δ−1/ε .
Now, we turn to the last case, when n ≥ δ−1/ε and 0 < y ≤ n1/2−ε . Introduce the following stopping time:

νε
n = νn + [

nε
]
.

We have the following obvious decomposition:

Ex(z + Mn; τy > n) = Ex

(
z + Mn; τy > n,νε

n >
[
n1−ε

])︸ ︷︷ ︸
=:J1

+Ex

(
z + Mn; τy > n,νε

n ≤ [
n1−ε

])︸ ︷︷ ︸
=:J2

. (4.4)

Bound of J1. Using the Hölder inequality for 1 < p < α, Lemma 3.4 and Lemma 4.1, we have

J1 ≤ cp,ε

√
n
(
1 + y + |x|) (1 + |x|)p−1

n(p−1)( 1
2 −ε)

.

As ε <
p−2
4p

, denoting Cp,ε(x, y) = cp,ε(1 + y + |x|)(1 + |x|)p−1, for all n ≥ 1,

J1 ≤ Cp,ε(x, y)

nε
. (4.5)

Bound of J2. Using the martingale representation (3.2) for the Markov walk (y + Sn)n≥1, by the Markov property,

J2 =
[n1−ε]∑
k=1

∫
R×R

∗+
Ex′

(
y′ + ρx′ + Mn−k; τy′ > n − k

)
Px

(
Xνε

n
∈ dx′, y + Sνε

n
∈ dy′, τy > νε

n, ν
ε
n = k

)
.

By Lemma 4.3,

J2 ≤ Ex

(
z + Mνε

n
+ c|Xνε

n
| + cpn1/2−2ε; τy > νε

n, ν
ε
n ≤ [

n1−ε
])

.

For the term z +Mνε
n
, we use the fact that ((z +Mn)1{τy>n})n≥0 is a submartingale (claim 3 of Lemma 4.2), while for

the term c|Xνε
n
| = c|Xνn+[nε]| we use the Markov property at νn and Lemma 3.1. This gives

J2 ≤ Ex

(
z + M[n1−ε]; τy >

[
n1−ε

]
, νε

n ≤ [
n1−ε

]) + cpEx

(
n1/2−2ε +E

[nε](|a|)|Xνn |; τy > νn, νn ≤ [
n1−ε

])
.

Since 0 < y ≤ n1/2−ε and νn is the first time when (|y + Sn|)n≥1 exceeds n1/2−ε , the jump Xνn is necessarily positive
on the event {τy > νn}. Therefore, under the condition E(a) ≥ 0, by the representation (3.2) we have z+Mνn > n1/2−ε .
Using the last bound, we obtain

J2 ≤ Ex

(
z + M[n1−ε]; τy >

[
n1−ε

]
, νε

n ≤ [
n1−ε

])
+ cpEx

(
z + Mνn

nε
; τy > νn, νn ≤ [

n1−ε
]) + cp e−cpnε

Ex

(|Xνn |;νn ≤ [
n1−ε

])
.

Again, using the fact that ((z + Mn)1{τy>n})n≥0 is a submartingale and Lemma 3.1, we bound J2 as follows,

J2 ≤
(

1 + cp

nε

)
Ex

(
z + M[n1−ε]; τy >

[
n1−ε

]) + cp e−cp,εn
ε

n1−ε
(
1 + |x|)

−Ex

(
(z + M[n1−ε])

(
1{νε

n>[n1−ε]} + cp

nε
1{νn>[n1−ε]}

)
; τy >

[
n1−ε

])
︸ ︷︷ ︸

=:J3

. (4.6)
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We bound J3 in a same manner as J1,

|J3| ≤ cp,ε

√[
n1−ε

](
1 + y + |x|)cp,ε

(1 + |x|)p−1

n
p−1

2 −(p−1)ε
≤ Cp,ε(x, y)

nε
.

Inserting this bound in (4.6) and using (4.5) and (4.4) we find that, for any n ≥ n0 = [y1/(1/2−ε)] + 1,

Ex(z + Mn; τy > n) ≤
(

1 + cp

nε

)
Ex

(
z + M[n1−ε]; τy >

[
n1−ε

]) + Cp,ε(x, y)

nε
.

Since ((z + Mn)1{τy>n})n≥0 is a submartingale, the sequence un = Ex(z + Mn; τy > n) is non-decreasing. By
Lemma A.1 used with α = cp , β = Cp,ε(x, y) and γ = 0 it follows that, for any n ≥ n0 and k0 ∈ {n0, . . . , n},

Ex(z + Mn; τy > n) ≤
(

1 + cp,ε

kε
0

)
Ex(z + Mk0; τy > k0) + Cp,ε(x, y)

kε
0

.

By Lemma 4.3 and the fact that z = y + ρx, we have

Ex(z + Mn; τy > n) ≤
(

1 + cp,ε

kε
0

)
y + cp,εk

1/2−2ε

0

+ cp,ε|x| + cp,ε

kε
0

(
1 + y + |x|)(1 + |x|)p−1

≤
(

1 + cp,ε(1 + |x|)p−1

kε
0

)
y + cp,ε,k0

(
1 + |x|)p

.

Choosing k0 ≥ δ−1/ε , for any 0 < y ≤ n1/2−ε and n ≥ δ−1/ε ,

Ex(z + Mn; τy > n) ≤ (
1 + cp,εδ

(
1 + |x|)p−1)

y + cp,ε,δ

(
1 + |x|)p

.

Finally we conclude that the lemma holds true for any n ∈N. �

We can now transfer the bound provided by Lemma 4.4 to the Markov walk (y + Sn)n≥0.

Corollary 4.5. Assume Condition 1 and E(a) ≥ 0. For any p ∈ (2, α), x ∈R, y > 0 and n ∈N,

Ex(y + Sn; τy > n) ≤ cp

(
1 + y + |x|)(1 + |x|)p−1

.

Proof. Using equation (3.2), the result follows from Lemma 4.4 and Lemma 3.1. �

4.3. Bound on the expectation of the killed martingale: The case E(a) < 0

We adapt the mainstream of the proof for the case E(a) ≥ 0 given in the previous section, highlighting the details that
have to be modified.

In the discussion preceding Lemma 4.2, we noted that (y + ρx + Mn)1{τy>n} may not be positive. In the case
E(a) < 0, we overcome this by introducing the exit time of the martingale (y + ρx + Mn)n≥0: for any y ∈R,

Ty = min{k ≥ 1, y + ρx + Mk ≤ 0}.
The importance of this new exit time is stressed by the fact that one can check that when E(a) < 0, the sequence
((y + ρx + Mn)1{τy>n})n≥0 is not a submartingale (as in Lemma 4.2 when E(a) ≥ 0) but a supermartingale. Instead
we prove that ((y +ρx +Mn)1{Ty>n})n≥0 is a submartingale (see Lemma 4.6 below). This will play an important role
in view of obtaining upper bounds. By Corollary A.7 we have Px(Ty < +∞) = 1 for any x ∈R. The main point is to
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show the integrability of y + ρx + MTy . Under the assumption E(a) < 0 we have τy ≤ Ty (see Lemma 4.6 below),
which together with the integrability of y + ρx + MTy and the fact (|y + ρx + Mn|)n≥0 is a submartingale, will allow
us to prove in Section 5.2 that y + ρx + Mτy is integrable.

Lemma 4.6. Assume Condition 1.

(1) If E(a) < 0, then for all x ∈R and y > 0,

τy ≤ Ty Px-a.s.

(2) For all x ∈ R and y ∈R, the sequence ((y + ρx + Mn)1{Ty>n})n≥0 is a submartingale with respect to Px .

Proof. Claim 1. We note that when Ty > 1, by (3.2) and (4.3), with z = y + ρx,

y + STy = z + MTy − ρXTy ≤ −ρXTy ,

y + STy−1 = z + MTy − XTy

1 −E(a)
≤ − XTy

1 −E(a)
.

Since ρ < 0, according to the positivity or non-positivity of XTy , we have respectively y + STy ≤ 0 or y + STy−1 ≤ 0.
When Ty = 1 and y > 0 we have X1 < 0 and so τy = 1 = Ty .

Claim 2. In a same manner as in the proof of the claim 3 of Lemma 4.2, the claim 2 is a consequence of the fact
that z + MTy ≤ 0 and that (Mn)n≥0 is a martingale. �

The following lemma is similar to Lemma 4.3 but with Ty replacing τy .

Lemma 4.7. Assume Condition 1. Let p ∈ (2, α). For any ε ∈ (0,
p−2
4p

), x ∈ R, y > −ρx and n ≥ 0, we have

Ex(y + ρx + Mn;Ty > n) ≤ y + ρx + c|x| + cpn1/2−2ε.

Proof. Note that z = y +ρx > 0. Since at the exit time Ty we have 0 ≥ z +MTy ≥ ξTy = XTy −E(a)XTy−1

1−E(a)
, by the Doob

optional stopping theorem,

Ex(z + Mn;Ty > n) ≤ z + cEx

(|XTy | + |XTy−1|;Ty ≤ n
)
.

Since |XTy | + |XTy−1| ≤ 2 max1≤k≤n|Xk| + |x| on {Ty ≤ n}, following the proof of Lemma 4.3,

Ex(z + Mn;Ty > n) ≤ z + c

(
1 +

n∑
k=1

k∏
i=1

E
(|ai |

))|x|

+ cn1/2−2ε
P

(
max

1≤k≤n

∣∣X0
k

∣∣ ≤ n1/2−2ε
)

+ cE
(

max
1≤k≤n

∣∣X0
k

∣∣; max
1≤k≤n

∣∣X0
k

∣∣ > n1/2−2ε
)

≤ z + c|x| + cpn1/2−2ε. �

Lemma 4.8. Assume Condition 1. Let p ∈ (2, α). There exists ε1 > 0 such that for any ε ∈ (0, ε1), x ∈ R, y ∈ R,
n ≥ 0 and 2 ≤ k0 ≤ n,

Ex(y + ρx + Mn;Ty > n) ≤
(

1 + cp,ε

kε
0

)
max(y,0) + cp,ε|x| + cp,ε

√
k0 + cp,ε e−cp,εk

ε
0 |x|p

≤ cp

(
1 + max(y,0) + |x|p)

.
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Proof. We proceed as in the proof of Lemma 4.4. Set ε1 = min(ε0,
p−2
4p

), where ε0 is defined in Lemma 4.1. Let
ε ∈ (0, ε1]. With z = y + ρx and vε

n = vn + [nε], we have

Ex(z + Mn;Ty > n) = Ex

(
z + Mn;Ty > n,vε

n >
[
n1−ε

])︸ ︷︷ ︸
=:J1

+Ex

(
z + Mn;Ty > n,vε

n ≤ [
n1−ε

])︸ ︷︷ ︸
=:J2

. (4.7)

Bound of J1. Let mε = [n1−ε] − [nε]. Since on {vn > mε} it holds z′ = z + Mmε ≤ n1/2−ε , by the Markov property
we write that

J1 ≤ n1/2−ε
Px(vn > mε) +

∫
R

Ex′
(|Mn−mε |

)
Px

(
Xmε ∈ dx′, vn > mε

)
.

By Lemma 3.4 and the Hölder inequality,

J1 ≤ n1/2−ε
Px(vn > mε) +Ex

(
c
(√

n − mε + |Xmε |
);vn > mε

)
≤ cn1/2

Px(vn > mε) +E
1/p
x

(|Xmε |p
)
P

1/q
x (vn > mε).

By Lemma 3.1 and Lemma 4.1 (since mε ≥ n1−ε/cε),

J1 ≤ cp,ε

n
p−1

2 −pε
+ cp,ε e−cp,εn

1−2ε |x|p. (4.8)

Bound of J2. Repeating the arguments used for bounding the term J2 in Lemma 4.4, by the Markov property and
Lemma 4.7, we get

J2 ≤ Ex

(
z + Mvε

n
+ c|Xvε

n
| + cpn1/2−2ε;Ty > vε

n, v
ε
n ≤ [

n1−ε
])

.

Using the claim 2 of Lemma 4.6 and Lemma 3.1,

J2 ≤ Ex

(
z + M[n1−ε];Ty >

[
n1−ε

]
, vε

n ≤ [
n1−ε

])
+Ex

(
cpn1/2−2ε;Ty > vn, vn ≤ [

n1−ε
]) + cp,ε e−cεn

ε

Ex

(|Xvn |;vn ≤ [
n1−ε

])
.

On the event {Ty > vn}, we have n1/2−ε < z + Mvn . Hence

J2 ≤ Ex

(
z + M[n1−ε];Ty >

[
n1−ε

]
, vε

n ≤ [
n1−ε

])
+ cpEx

(
z + Mvn

nε
;Ty > vn, vn ≤ [

n1−ε
]) + cp,ε e−cεn

ε

Ex

(|Xvn |;vn ≤ [
n1−ε

])
.

Coupling this with (4.8) and (4.7) and using again the claim 2 of Lemma 4.6, we obtain that

Ex(z + Mn;Ty > n) ≤
(

1 + cp

nε

)
Ex

(
z + M[n1−ε];Ty >

[
n1−ε

])
+ cp,ε

n
p−1

2 −pε
+ cp,ε e−cp,εn

ε |x|p.

Since ((z + Mn)1{Ty>n})n≥0 is a submartingale (claim 2 of Lemma 4.6), the sequence un = E(z + Mn;Ty > n) is
non-decreasing. By Lemma A.1 with α = cp , β = cp,ε , γ = |x|p and δ = cp,ε , we write that

Ex(z + Mn;Ty > n) ≤
(

1 + cp,ε

kε
0

)
Ex(z + Mk0;Ty > k0) + cp,ε

kε
0

+ cp,ε e−cp,εk
ε
0 |x|p.
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Using Lemma 3.4 and the fact that z = y + ρx, we obtain that

Ex(z + Mn;Ty > n) ≤
(

1 + cp,ε

kε
0

)
max(y,0) + cp,ε|x| + cp,ε

√
k0 + cp,ε e−cp,εk

ε
0 |x|p. �

To transfer the assertion of Lemma 4.8 to the random walk (y + Sn)n≥0, we need to assume that E(a) < 0.

Corollary 4.9. Assume Condition 1 and E(a) < 0. Let p ∈ (2, α). For any x ∈R, y > 0 and n ∈N,

Ex(y + Sn; τy > n) ≤ cp

(
1 + y + |x|p)

.

Proof. By (3.2) and the claim 1 of Lemma 4.6, we have

Ex(y + Sn; τy > n) = Ex(y + ρx + Mn;Ty ≥ τy > n) −Ex(ρXn; τy > n).

The result follows from Lemma 4.8. �

5. Existence of the harmonic function

In this section we prove Theorem 2.1. We split the proof into two parts according to the values of E(a).

5.1. Existence of the harmonic function: The case E(a) ≥ 0

We start with the following assertion.

Lemma 5.1. Assume Condition 1 and E(a) ≥ 0. For any x ∈ R and y > 0, the random variable Mτy is integrable.
Moreover, for any p ∈ (2, α),

Ex

(|Mτy |
) ≤ cp

(
1 + y + |x|)(1 + |x|)p−1

.

Proof. Let z = y + ρx. Using the claim 1 of Lemma 4.2 and the Doob optional stopping theorem, we have

Ex

(|Mτy |; τy ≤ n
) ≤ −Ex(z + Mn; τy ≤ n) + y + ρ|x|
= Ex(z + Mn; τy > n) − z + y + ρ|x|.

By second bound in Lemma 4.4, for all n ≥ 0,

Ex

(|Mτy |; τy ≤ n
) ≤ cp

(
1 + y + |x|)(1 + |x|)p−1 =: Cp(x, y).

Since ({τy ≤ n})n≥1 is a non-decreasing sequence of events and Px(τy < +∞) = 1 for any x ∈ R (by Corollary A.7),
the result follows by the Lebesgue monotone convergence theorem. �

It follows from Lemma 5.1 that the function

V (x, y) = −Ex(Mτy )

is well defined for any x ∈R and y > 0, which also proves the claim 1 of Theorem 2.1 when E(a) ≥ 0.
The following two propositions prove the claims 2 and 3 of Theorem 2.1 when E(a) ≥ 0.

Proposition 5.2. Assume Condition 1 and E(a) ≥ 0.

(1) For any x ∈R and y > 0,

V (x, y) = lim
n→+∞Ex(y + ρx + Mn; τy > n) = lim

n→+∞Ex(y + Sn; τy > n).
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(2) For any x ∈R, the function V (x, ·) is non-decreasing.
(3) For any δ > 0, p ∈ (2, α), x ∈R and y > 0,

max(0, y + ρx) ≤ V (x, y) ≤ (
1 + cpδ

(
1 + |x|)p−1)

y + cp,δ

(
1 + |x|)p

.

1. For any x ∈R,

lim
y→+∞

V (x, y)

y
= 1.

Proof. We use the notation z = y + ρx.
Claim 1. Since, by Lemma 5.1, Mτy is integrable, we have by the Lebesgue dominated convergence theorem,

Ex(z + Mn; τy > n) = z −Ex(z + Mτy ; τy ≤ n) −→
n→+∞ −Ex(Mτy ) = V (x, y).

To prove the second equality of the claim 1 we use Lemma 3.1 and the fact that τy < +∞:

∣∣Ex(Xn; τy > n)
∣∣ ≤ E

1/2
x

(|Xn|2
)√

Px(τy > n) ≤ c2
(
1 + |x|)√Px(τy > n) −→

n→+∞ 0.

Using (3.2), we obtain the claim 1.
Claim 2. If y1 ≤ y2, then τy1 ≤ τy2 and

Ex(y1 + Sn; τy1 > n) ≤ Ex(y2 + Sn; τy1 > n) ≤ Ex(y2 + Sn; τy2 > n).

Taking the limit as n → +∞ we get the claim 2.
Claim 3. The upper bound follows from the claim 1 and Lemma 4.4. On the event {τy > n}, we obviously have

y + Sn > 0 and so by claim 1, V (x, y) ≥ 0. Moreover, since z + Mτy ≤ 0 (by claim 1 of Lemma 4.2), we have, by
claim 1,

V (x, y) = z − lim
n→+∞Ex(z + Mτy ; τy ≤ n) ≥ z,

which proves the lower bound.
Claim 4. By the claim 3, for all δ > 0, x ∈R,

1 ≤ lim inf
y→+∞

V (x, y)

y
≤ lim sup

y→+∞
V (x, y)

y
≤ (

1 + cpδ
(
1 + |x|)p−1)

.

Letting δ → 0, we obtain the claim 4. �

We now prove that V is harmonic on R×R
∗+.

Proposition 5.3. Assume Conditions 1 and E(a) ≥ 0.

(1) The function V is Q+-harmonic on R×R
∗+: for any x ∈R and y > 0,

Q+V (x, y) = V (x, y).

(2) If in addition we assume Condition 2, then the function V is positive on R×R
∗+.

Proof. Claim 1. Denote for brevity Vn(x, y) = Ex(y + Sn; τy > n). For all x ∈ R, y > 0 and n ≥ 1, by the Markov
property,

Vn+1(x, y) = Ex

(
Vn(X1, y + S1); τy > 1

)
.
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By Corollary 4.5, we see that the quantity Vn(X1, y + S1) is dominated by the random variable cp(1 + y + S1 +
|X1|)(1 + |X1|)p−1 which is integrable with respect to Ex . Consequently, by the Lebesgue dominated convergence
theorem and the claim 1 of Proposition 5.2,

V (x, y) = Ex

(
V (X1, y + S1); τy > 1

) = Q+V (x, y),

where by convention, V (x, y)1{y>0} = 0 if y ≤ 0 and x ∈R.
Claim 2. Fix x ∈ R and y > 0. Using the claim 1 and the fact that V is non-negative on R × R

∗+ (claim 3 of
Proposition 5.2) we write

V (x, y) ≥ Ex

(
V (X1, y + S1); τy > 1,X1 >

−y

2(1 + ρ)

)
.

By the lower bound of the claim 3 of Proposition 5.2 and (3.2),

V (x, y) ≥ Ex

(
y + (1 + ρ)X1; τy > 1,X1 >

−y

2(1 + ρ)

)
≥ y

2
Px

(
X1 >

−y

2(1 + ρ)

)
.

By Condition 2, we conclude that, V (x, y) > 0 for any x ∈R and y > 0. �

5.2. Existence of the harmonic function: The case E(a) < 0

In this section we prove the harmonicity and the positivity of the function V in the case E(a) < 0. The following
analogue of Lemma 5.1 shows that the random variables MTy and Mτy are integrable.

Lemma 5.4. Assume Condition 1.

(1) For any x ∈R and y ∈ R,

Ex

(|MTy |
) ≤ cp

(
1 + |y| + |x|p)

.

(2) If in addition E(a) < 0, then for any x ∈R and y ∈ R,

Ex

(|Mτy |
) ≤ cp

(
1 + |y| + |x|p)

.

Proof. Claim 1. The proof of the bound of Ex(|MTy |) is similar to that of Lemma 5.1 using Lemma 4.8 instead of
Lemma 4.4 and the fact that by Corollary A.7 we have Px(Ty < +∞) = 1, x ∈R.

Claim 2. By the claim 1 of Lemma 4.6, we have τy ∧ n ≤ Ty ∧ n. Since (|Mn|)n≥0 is a submartingale, with
z = y + ρx,

Ex

(|Mτy |; τy ≤ n
) ≤ Ex

(|Mτy∧n|
) ≤ Ex

(|MTy∧n|
) ≤ 2|z| + 2Ex

(|MTy |;Ty ≤ n
)
.

The Lebesgue monotone convergence theorem implies the claim 2. �

It follows from the claim 2 of Lemma 5.4 that, under Condition 1 and E(a) < 0, the function

V (x, y) = −Ex(Mτy )

is well defined for any x ∈ R and y > 0. This also implies the claim 1 of Theorem 2.1 when E(a) < 0. To prove the
positivity of the function V on R×R

∗+, we also consider the function

W(x,y) = −Ex(MTy ),

which is well defined on R×R by the claim 1 of Lemma 5.4. Note that W exists under solely Condition 1.

Proposition 5.5. Assume Condition 1.
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(1) For any x ∈R and y ∈ R,

W(x,y) = lim
n→+∞Ex(y + ρx + Mn;Ty > n).

(2) For any x ∈R, the function W(x, ·) is non-decreasing.
(3) For any p ∈ (2, α), there exists ε1 > 0 such that for any ε ∈ (0, ε1], k0 ≥ 2, x ∈ R and y ∈R,

max(0, y + ρx) ≤ W(x,y) ≤
(

1 + cp,ε

kε
0

)
max(y,0) + cp,ε|x| + cp,ε

√
k0 + cp,ε e−cp,εk

ε
0 |x|p.

(4) For any x ∈R,

lim
y→+∞

W(x,y)

y
= 1.

(5) For any x ∈R and y ∈ R,

W(x,y) = Ex

(
W(X1, y + S1);Ty > 1

)
,

and (W(Xn,y + Sn)1{Ty>n})n≥0 is a martingale.

Proof. The proof is very close to that of Proposition 5.2. The upper bound of the claim 3 is obtained taking the limit
as n → +∞ in Lemma 4.8. We prove the claim 4 taking the limit as y → +∞ and then as k0 → +∞ in the inequality
of the claim 3. The proof of the claim 5 is the same as that of the claim 1 of Proposition 5.3. �

Turning now to V , we have the following proposition.

Proposition 5.6. Assume Condition 1 and E(a) < 0.

(1) For any x ∈R and y > 0,

V (x, y) = lim
n→+∞Ex(y + ρx + Mn; τy > n) = lim

n→+∞Ex(y + Sn; τy > n).

(2) For any x ∈R, the function V (x, ·) is non-decreasing.
(3) For any p ∈ (2, α), δ > 0, x ∈R and y > 0,

0 ≤ V (x, y) ≤ W(x,y) ≤ (1 + cpδ)y + cp,δ

(
1 + |x|p)

.

(4) The function V is Q+-harmonic on R×R
∗+: for any x ∈R and y > 0,

Q+V (x, y) = V (x, y)

and (V (Xn, y + Sn)1{τy>n})n≥0 is a martingale.

Proof. The proofs of the claims 1, 2, 4 and of the lower bound of the claim 3, being similar to that of the previous
proposition and of the Proposition 5.2, is left to the reader. The upper bound of the claim 3 is a consequence of the
fact that τy ≤ Ty (claim 1 of Lemma 4.6): with z = y + ρx,

V (x, y) = lim
n→+∞Ex(z + Mn; τy > n)

≤ lim
n→+∞Ex(z + Mn;Ty > n) = W(x,y). �

Our next goal is to prove that V (x, y) ≥ max(0, (1−δ)y −cp,δ(1+|x|p)) from which we will deduce the positivity
of V . For this we make appropriate adjustments to the proof of Lemmas 4.3 and 4.4 where the submartingale ((y +
ρx + Mn)1{τy>n})n≥0 will be replaced by the supermartingale (W(Xn,y + Sn)1{τy>n})n≥0. Instead of upper bounds
in Lemmas 4.3 and 4.4 the following two lemmas establish lower bounds.
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Lemma 5.7. Assume Condition 1 and E(a) < 0. For any p ∈ (2, α), there exists ε1 > 0 such that for any ε ∈ (0, ε1],
x ∈ R, y > 0 and n ∈ N,

Ex

(
W(Xn,y + Sn); τy > n

) ≥ W(x,y) − cp,εn
1/2−2ε − cp,ε|x|p.

Proof. By the claim 1 of Lemma 4.6 and the claim 5 of Lemma 5.5, as in the proof of Lemma 4.3,

Ex

(
W(Xn,y + Sn); τy > n

) = W(x,y) −Ex

(
W(Xτy , y + Sτy );Ty > τy, τy ≤ n

)
.

Using the claim 3 of Proposition 5.5 and the fact that y + Sτy ≤ 0,

Ex

(
W(Xτy , y + Sτy );Ty > τy, τy ≤ n

)
≤ Ex

(
cp,ε|Xτy | + cp,ε

√
k0 + cp,ε e−cp,εk

ε
0 |Xτy |p; τy ≤ n

)
.

Taking k0 = [n1−4ε], the end of the proof is the same as the proof of Lemma 4.3. �

Lemma 5.8. Assume Condition 1 and E(a) < 0. For any p ∈ (2, α) there exists ε1 > 0 such that for any ε ∈ (0, ε1],
k0 ≥ 2, x ∈R and y > 0,

Ex

(
W(Xn,y + Sn); τy > n

) ≥ y

(
1 − cp,ε

kε
0

)
− cp,εk

2
0

(
1 + |x|p)

.

Proof. The proof is similar to that of Lemma 4.4. With vε
n = vn + [nε], we have

J0 = Ex

(
W(Xn,y + Sn); τy > n

) ≥ Ex

(
W(Xn,y + Sn); τy > n,vε

n ≤ [
n1−ε

])
.

Using the Markov property, Lemma 5.7 and the fact that n − vε
n ≤ n,

J0 ≥ Ex

(
W(Xvε

n
, y + Svε

n
) − cp,εn

1/2−2ε − cp,ε|Xvε
n
|p; τy > vε

n, v
ε
n ≤ [

n1−ε
])

.

By the claim 1 of Lemma 4.6, on {τy > vn} we have z + Mvn > n1/2−ε , where z = y + ρx. Moreover, using the
fact that (W(Xn,y + Sn)1{Ty>n})n≥1 is a non-negative martingale (claim 3 and 5 of Proposition 5.5) and the fact that
τy ≤ Ty a.s. (claim 1 of Lemma 4.6) we can see that (W(Xn,y + Sn)1{τy>n})n≥1 is a supermartingale. From this and
as in the bound of the term J2 of Lemma 4.4, we obtain that

J0 ≥ Ex

(
W(X[n1−ε], y + S[n1−ε]); τy >

[
n1−ε

])
−Ex

(
W(X[n1−ε], y + S[n1−ε]); τy >

[
n1−ε

]
, vε

n >
[
n1−ε

])
− cp,ε

nε
Ex

(
z + Mvn;Ty > vn, vn ≤ [

n1−ε
]) − cp,ε e−cp,εn

ε(
1 + |x|p)

. (5.1)

Using the claim 3 of Proposition 5.5 with k0 = n and the martingale representation (3.2), the absolute value of the
second term in the r.h.s. of (5.1) does not exceed

cp,εEx

(
z + M[n1−ε] + √

n + |X[n1−ε]| + e−cp,εn
ε |X[n1−ε]|p; τy >

[
n1−ε

]
, vε

n >
[
n1−ε

])
.

Since ((z + Mn)1{Ty>n})n≥0 is a submartingale, by claim 2 of Lemma 4.6, the absolute value of the third term is less
than

cp,ε

nε
Ex(z + Mn;Ty > n).



Conditioned affine Markov walks 549

These bounds imply

J0 ≥ Ex

(
W(X[n1−ε], y + S[n1−ε]); τy >

[
n1−ε

])
− cp,εEx

(
z + M[n1−ε] + √

n + |X[n1−ε]|; τy >
[
n1−ε

]
, vε

n >
[
n1−ε

])
− cp,ε e−cp,εn

ε

Ex

(|X[n1−ε]|p; τy >
[
n1−ε

]
, vε

n >
[
n1−ε

])
− cp,ε

nε
Ex(z + Mn;Ty > n) − cp,ε e−cp,εn

ε(
1 + |x|p)

. (5.2)

Using the Markov property with the intermediate time mε = [n1−ε] − [nε], Lemmas 3.4 and 3.1 and the fact that
vε
n = vn + [nε], the absolute value of the second term in the r.h.s. of (5.2) is bounded by

cp,εEx

(|z + Mmε | + cnε/2 + c|Xmε | +
√

n + c
(
1 + |Xmε |

); τy > mε, vn > mε

)
,

which, in turn, using the fact that z + Mmε ≤ n1/2−ε on {vn > mε}, is less than

cp,εEx

(√
n + |Xmε |; τy > mε, vn > mε

)
.

The absolute value of the third term in the r.h.s. of (5.2) is bounded using Lemma 3.1 by cp,ε e−cp,εn
ε
(1 + |x|p). The

fourth term is bounded by Lemma 4.8. Collecting these bounds, we obtain

J0 ≥ Ex

(
W(X[n1−ε], y + S[n1−ε]); τy >

[
n1−ε

])
− cp,εEx

(√
n + |Xmε |; τy > mε, vn > mε

) − cp,ε

nε

(
1 + y + |x|p)

. (5.3)

Coupling the Hölder inequality with Lemma 3.1 and Lemma 4.1, we find that the second term in the r.h.s. of (5.3)
does not exceed

cp,ε

(√
n +E

1/p
x

(|Xmε |p
))
P

1/q
x

(
vn >

n1−ε

cε

)
≤ cp,ε

(√
n + |x|)cp,ε(1 + |x|)p−1

n
p−1

2 −(p−1)ε
.

Implementing this into (5.3),

J0 ≥ Ex

(
W(X[n1−ε], y + S[n1−ε]); τy >

[
n1−ε

]) − cp,ε

nε

(
1 + y + |x|p)

.

Since (W(Xn,y + Sn)1{τy>n})n≥1 is a supermartingale, Lemma A.2 implies that

J0 ≥ Ex

(
W(Xk0, y + Sk0); τy > k0

) − cp,ε

kε
0

(
1 + y + |x|p)

.

Using the lower bound of the claim 3 of Proposition 5.5 and Lemma 3.4, we deduce that

Ex

(
W(Xn,y + Sn); τy > n

) ≥ yPx(τy > k0) − y
cp,ε

kε
0

− cp,ε

√
k0 − cp,ε|x|p.

Now, when y → +∞, one can see that Px(τy > k0) → 1: more precisely,

Px(τy > k0) ≥ Px

(
max

1≤k≤k0
|Xk| < y

k0

)
≥ 1 − c

k2
0(1 + |x|)

y
.

Finally,

Ex

(
W(Xn,y + Sn); τy > n

) ≥ y

(
1 − cp,ε

kε
0

)
− cp,εk

2
0

(
1 + |x|p)

. �

Under Condition 3 we use Lemma 5.8 to prove that V is positive on R×R∗+.
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Proposition 5.9. Assume Conditions 1 and E(a) < 0.

(1) For any δ > 0, p ∈ (2, α), x ∈R, y > 0,

V (x, y) ≥ (1 − δ)y − cp,δ

(
1 + |x|p)

.

(2) For any x ∈R,

lim
y→+∞

V (x, y)

y
= 1.

(3) If in addition we assume Condition 3, then the function V is positive on R×R
∗+.

Proof. Claim 1. Using the claim 1 of Lemma 4.6 and the claims 3 and 5 of Proposition 5.5, with z = y +ρx, we write

Ex(z + Mn; τy > n)

≥ Ex(z + Mn;Ty > n) −Ex

(
W(Xn,y + Sn);Ty > n, τy ≤ n

)
= Ex(z + Mn;Ty > n) − W(x,y) +Ex

(
W(Xn,y + Sn); τy > n

)
.

Using Lemma 5.8, the claim 1 of Proposition 5.5 and the claim 1 of Proposition 5.6, we obtain

V (x, y) ≥ y

(
1 − cp,ε

kε
0

)
− cp,εk

2
0

(
1 + |x|p)

.

Taking k0 large enough, the claim 1 is proved.
Claim 2. Taking the limit as y → +∞ and as δ → 0 in the claim 1, we obtain first that lim infy→+∞ V (x, y)/y ≥ 1.

By the claim 3 of Proposition 5.6, we obtain also that lim supy→+∞ V (x, y)/y ≤ 1.
Claim 3. Fix x ∈ R, y > 0 and δ0 > 0. By Condition 3, there exists p0 ∈ (2, α) such that for any c > 0 there exists

n0 ≥ 1 such that Px((Xn0 , y + Sn0) ∈ Kp0,c, τy > n0) > 0. Thus, using the claim 4 of Proposition 5.6,

V (x, y) ≥ Ex

(
V (Xn0 , y + Sn0); (Xn0 , y + Sn0) ∈ Kp0,c, τy > n0

)
.

Using the claim 1 with p = p0 and δ = 1/2 and choosing the constant c = 2cp0,δ + 2δ0, there exists n0 such that

V (x, y) ≥ δ0Px

(
(Xn0, y + Sn0) ∈ Kp0,c, τy > n0

)
> 0. �

6. Asymptotic for the exit time

The aim of this section is to prove Theorem 2.2. The asymptotic for the exit time of the Markov walk (y + Sn)n≥0

will be deduced from the asymptotic of the exit time for the Brownian motion in Corollary A.4 using the functional
approximation in Proposition A.5.

6.1. Auxiliary statements

We start by proving an analogue of Corollaries 4.5 and 4.9, where n is replaced by the stopping time νn defined by
(4.1).

Lemma 6.1. Assume Condition 1. For any p ∈ (2, α), there exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R, y > 0
and n ≥ 1,

E1 = Ex

(
y + Sνn; τy > νn, νn ≤ [

n1−ε
]) ≤ cp,ε

(
1 + y + |x|)(1 + |x|)p−1

.
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Proof. When τy > νn > 1, we note that

0 < Xνn < y + Sνn . (6.1)

Using the martingale representation (3.2) and (6.1), we have

y + Sνn ≤ z + Mνn + max(0,−ρ)Xνn ≤ z + Mνn + max(0,−ρ)(y + Sνn),

with z = y + ρx, and so

0 < y + Sνn ≤ 1

1 − max(0,−ρ)
(z + Mνn) ≤ 2(z + Mνn).

Consequently, using Lemma 3.1 when νn = 1,

E1 ≤ c
(
1 + y + |x|) + cEx

(
z + Mνn; τy > νn,1 < νn ≤ [

n1−ε
])

≤ c
(
1 + y + |x|) + cEx

(
z + Mνn; τy > νn, νn ≤ [

n1−ε
])︸ ︷︷ ︸

E′
1

. (6.2)

Now, denoting νn ∧ [n1−ε] = min(νn, [n1−ε]), we write

E′
1 = cEx(z + Mνn∧[n1−ε]) − cEx

(
z + Mνn∧[n1−ε]; τy ≤ νn ∧ [

n1−ε
])

− cEx

(
z + M[n1−ε]; τy >

[
n1−ε

]
, νn >

[
n1−ε

])
.

Since (Mn)n≥0 is a centred martingale, using Lemma 5.1 when E(a) ≥ 0 and the claim 2 of Lemma 5.4 when E(a) <

0, Lemmas 3.4, 4.1 and Hölder inequality, we obtain

E′
1 ≤ cp,ε

(
1 + y + |x|)(1 + |x|)p−1

.

Implementing this into (6.2), it concludes the proof. �

Now, we can prove an upper bound of order 1/n1/2−ε of the probability of survival Px(τy > n).

Lemma 6.2. Assume Condition 1. For any p ∈ (2, α), there exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R, y > 0
and n ≥ 1,

Px(τy > n) ≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

n1/2−ε
.

Moreover, summing these bounds, we have

[n1−ε]∑
k=1

Px(τy > k) ≤ cp,ε

(
1 + y + |x|)(1 + |x|)p−1

n1/2+ε.

Proof. We write

Px(τy > n) ≤ Ex

(
y + Sνn

n1/2−ε
; τy > νn, νn ≤ [

n1−ε
]) + Px

(
νn > n1−ε

)
.

Using Lemma 6.1 and Lemma 4.1, the claim follows. �

Before to proceed with the proof of Theorem 2.2, we need two additional technical lemmas. Recall the notation
ν

ε/6
n = νn + [nε/6].
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Lemma 6.3. Assume Condition 1. There exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R and y > 0,

E2 = Ex

(
y + S

ν
ε/6
n

; τy > ν
ε/6
n , ν

ε/6
n ≤ [

n1−ε
]) −→

n→+∞ V (x, y).

Proof. Using the martingale approximation (3.2),

E2 = −ρEx

(
X

ν
ε/6
n

; τy > ν
ε/6
n , ν

ε/6
n ≤ [

n1−ε
])

︸ ︷︷ ︸
=:E21

+Ex

(
z + M

ν
ε/6
n

; τy > ν
ε/6
n , ν

ε/6
n ≤ [

n1−ε
])

︸ ︷︷ ︸
=:E22

. (6.3)

Bound of E21. By the Markov property, Lemma 3.1 and the fact that (y + Sνn)/n1/2−ε > 1,

|E21| ≤ cEx

(
1 + e−cnε/6 |Xνn |; τy > νn, νn ≤ [

n1−ε
])

≤ c

n1/2−ε
E1 + c e−cnε/6

[n1−ε]∑
k=1

Ex

(|Xk|
)
.

By Lemma 6.1, we obtain

|E21| ≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

n1/2−ε
. (6.4)

Bound of E22. We proceed in the same way as for bounding E′
1 defined in (6.2):

E22 = z −Ex

(
z + Mτy ; τy ≤ ν

ε/6
n ∧ [

n1−ε
])

−Ex

(
z + M

ν
ε/6
n ∧[n1−ε]; τy > ν

ε/6
n ∧ [

n1−ε
]
, ν

ε/6
n >

[
n1−ε

])
.

By the Hölder inequality, Lemma 3.4 and Lemma 4.1,

E22 ≤ z −Ex

(
z + Mτy ; τy ≤ ν

ε/6
n ∧ [

n1−ε
]) + cp,ε

(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
. (6.5)

Since ν
ε/6
n ≥ [nε/6] → +∞ as n → +∞ and Mτy is integrable (using Lemma 5.1 when E(a) ≥ 0 and the claim 2 of

Lemma 5.4 when E(a) < 0), by the Lebesgue dominated convergence we deduce that

lim
n→+∞E22 = −Ex(Mτy ) = V (x, y).

Coupling this with equations (6.3) and (6.4), we conclude that E2 −→
n→+∞ V (x, y). �

Lemma 6.4. Assume Condition 1. There exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R and y > 0,

E3 = Ex

(
y + S

ν
ε/6
n

;y + S
ν

ε/6
n

> n1/2−ε/6, τy > ν
ε/6
n , ν

ε/6
n ≤ [

n1−ε
]) −→

n→+∞ 0.

Proof. The first step of the proof consists in proving that we can replace the time ν
ε/6
n in the definition of E3 by the

time νn. More precisely, we shall prove that the following bound holds true:

E3 ≤ cnε/6
Ex

(
y + Sνn;y + Sνn > n1/2−ε/2, τy > νn, νn ≤ [

n1−ε
])︸ ︷︷ ︸

=:E31

+ cp,ε

(1 + y + |x|)(1 + |x|)p−1

nε/6
. (6.6)
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To this end, we bound E3 as follows:

E3 ≤ E31 +Ex

(|S
ν

ε/6
n

− Sνn |;y + Sνn > n1/2−ε/2; τy > νn, νn ≤ [
n1−ε

])
︸ ︷︷ ︸

=:E32

+Ex

(
y + Sνn;y + Sνn ≤ n1/2−ε/2, y + S

ν
ε/6
n

> n1/2−ε/6, τy > νn, νn ≤ [
n1−ε

])
︸ ︷︷ ︸

=:E33

+Ex

(|S
ν

ε/6
n

− Sνn |;y + Sνn ≤ n1/2−ε/2, y + S
ν

ε/6
n

> n1/2−ε/6, τy > νn, νn ≤ [
n1−ε

])
︸ ︷︷ ︸

=:E34

. (6.7)

Bound of E32. By the Markov property and Lemma 3.1,

E32 ≤
∫
R×R

∗+
Ex′

(|S[nε/6]|
)
Px

(
Xνn ∈ dx′, y + Sνn ∈ dy′, y + Sνn > n1/2−ε/2, τy > νn, νn ≤ [

n1−ε
])

≤ Ex

(
cnε/6(1 + |Xνn |

);y + Sνn > n1/2−ε/2, τy > νn, νn ≤ [
n1−ε

])
.

If τy > νn > 1, by (6.1), we have |Xνn | = Xνn < y + Sνn . Using this bound when νn > 1 and the Markov inequality
when νn = 1,

E32 ≤ Ex

(
cnε/6(1 + |X1|

);y + X1 > n1/2−ε/2, νn = 1
) + cnε/6E31

≤ c
(1 + y + |x|)(1 + |x|)

n1/2−cε
+ cnε/6E31. (6.8)

Bound of E33. By the Markov property,

E33 ≤
∫
R×R

∗+
y′
Px′

(
y′ + S[nε/6] > n1/2−ε/6)

× Px

(
Xνn ∈ dx′, y + Sνn ∈ dy′, y + Sνn ≤ n1/2−ε/2, τy > νn, νn ≤ [

n1−ε
])

.

When y′ ≤ n1/2−ε/2, by the Markov inequality, we have,

Px′
(
y′ + S[nε/6] > n1/2−ε/6) ≤ Px′

(
|S[nε/6]| >

n1/2−ε/6

cε

)
≤ cεn

ε/6(1 + |x′|)
n1/2−ε/6

.

On the event {y + Sνn ≤ n1/2−ε/2, τy > νn}, we obviously have x′ = Xνn ≤ n1/2−ε/2. From these bounds, using the
positivity of Xνn for νn > 1, see (6.1), we obtain

E33 ≤ Ex

(
(y + S1)

cε(1 + |X1|)
n1/2−ε/3

;νn = 1

)
+ cε

nε/2−ε/3
E1.

By Lemma 6.1, we obtain

E33 ≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

nε/6
. (6.9)

Bound of E34. Again, by the Markov property,

E34 ≤
∫
R×R

∗+
Ex′

(|S[nε/6]|;y′ + S[nε/6] > n1/2−ε/6)
× Px

(
Xνn ∈ dx′, y + Sνn ∈ dy′, y + Sνn ≤ n1/2−ε/2, τy > νn, νn ≤ [

n1−ε
])

.
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When y′ ≤ n1/2−ε/2, using the Markov inequality and Lemma 3.1, we have

Ex′
(|S[nε/6]|;y′ + S[nε/6] > n1/2−ε/6) ≤ Ex′

(
c
p−1
ε |S[nε/6]|p

n
p−1

2 −(p−1)ε/6

)
≤ cp,ε

(1 + |x′|)p
n

p−1
2 −cpε

.

Then, using Lemma 3.1 again and the Markov property for the terms in the last sum of the first line below,

E34 ≤ cp,ε

n
p−1

2 −cpε
+ cp,ε

n
p−1

2 −cpε

[nε]∑
k=1

Ex

(|Xk|p
) + cp,ε

n
p−1

2 −cpε

[n1−ε]∑
k=[nε]+1

Ex

(|Xk|p; τy > k
)

≤ cp,ε(1 + |x|p)

n
p−1

2 −cpε
+ cp,ε

n
p−1

2 −cpε

[n1−ε]−[nε]∑
k=1

Ex

(
1 + e−cpnε |Xk|p; τy > k

)

≤ cp,ε(1 + |x|p)

n
p−1

2 −cpε
+ cp,ε e−cp,εn

ε(
1 + |x|p) + cp,ε

n
p−1

2 −cpε

[n1−ε]∑
k=1

Px(τy > k).

Using the second bound in Lemma 6.2, and taking ε > 0 small enough, we obtain

E34 ≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
−→

n→+∞ 0. (6.10)

Inserting (6.8), (6.9) and (6.10) in (6.7), we conclude the proof of (6.6).
Bound of cnε/6E31. Note that, when νn > 1 and y + Sνn > n1/2−ε/2, we have Xνn = y + Sνn − (y + Sνn−1) >

n1/2−ε/2 − n1/2−ε ≥ n1/2−ε/2

cε
. Consequently,

cnε/6E31 ≤ cnε/6
Ex

(
y + Sνn;νn ≤ [

nε
])︸ ︷︷ ︸

=:E35

+ cnε/6
Ex

(
y + Sνn;Xνn >

n1/2−ε/2

cε

, τy > νn,
[
nε

]
< νn ≤ [

n1−ε
])

︸ ︷︷ ︸
=:E36

. (6.11)

Bound of E35. Using the definition of νn, the Markov inequality and Lemma 3.1,

E35 ≤ cnε/6
Ex

(
max
k≤[nε]|y + Sk|; max

k≤[nε]|y + Sk| > n1/2−ε
)

≤ cp(1 + y + |x|)2

n1/2−cpε
. (6.12)

Bound of E36. The idea is based on the observation that, according to the first bound in Lemma 3.1, the random
variables y + Sνn−[nε] and Xνn are “almost” independent. In this line, summing over the values of νn and bounding
the indicators 1{νn=k} by 1, we write

E36 ≤ cnε/6
[n1−ε]∑

k=[nε]+1

Ex

(
y + Sk−[nε];Xk >

n1/2−ε/2

cε

, τy > k

)

+ cnε/6
[n1−ε]∑

k=[nε]+1

Ex

(
|Sk − Sk−[nε]|;Xk >

n1/2−ε/2

cε

, τy > k

)
.
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By the Markov property,

E36 ≤ cnε/6
[n1−ε]∑

k=[nε]+1

∫
R×R

∗+
y′
Px′

(
X[nε] >

n1/2−ε/2

cε

)

× Px

(
Xk−[nε] ∈ dx′, y + Sk−[nε] ∈ dy′, τy > k − [

nε
])

+ cnε/6
[n1−ε]∑

k=[nε]+1

Ex

(
nε max

k−[nε]≤i≤k
|Xi |;Xk >

n1/2−ε/2

cε

, τy > k

)
. (6.13)

Recall that, under Px′ , by (3.3), X[nε] = ∏[nε]
i=1 aix

′+X0[nε]. Then, since ai ’s are independent and identically distributed,
by claim 1 of Condition 1 and Lemma 3.1,

Px′
(

X[nε] >
n1/2−ε/2

cε

)
≤ P

([nε]∏
i=1

aix
′ > n1/2−ε/2

2cε

)
+ P

(∣∣X0[nε]
∣∣ >

n1/2−ε/2

2cε

)

≤ cε e−cεn
ε ∣∣x′∣∣ + cp,ε

n
p
2 −cpε

. (6.14)

Inserting (6.14) into (6.13) and using Cauchy–Schwartz inequality, by Corollaries 4.5 and 4.9,

E36 ≤
[n1−ε]∑
j=1

(
cε e−cεn

ε

E
1/2
x

(|y + Sj |2
)
E

1/2
x

(|Xj |2
) + cp,ε

n
p
2 −cpε

(
1 + y + |x|)(1 + |x|)p−1

)

+ cnε+ε/6
[n1−ε]∑

k=[nε]+1

Ex

(
maxk−[nε]≤i≤k|Xi |p

n
p−1

2 −cpε
; τy > k − [

nε
])

.

Using the decomposition (3.2) and Lemmas 3.1 and 3.4

E36 ≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
+ cp

n
p−1

2 −cpε

[n1−ε]∑
k=[nε]+1

Ex

(
nε

(
1 + |Xk−[nε]|p

); τy > k − [
nε

])
.

Re-indexing j = k − [nε], after some elementary transformations, we get

E36 ≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
+ cp

n
p−1

2 −cpε

[n1−ε]∑
j=1

Px(τy > j)

+ cp

n
p−1

2 −cpε

[nε]∑
j=1

Ex

(|Xj |p
) + cp

n
p−1

2 −cpε

[n1−ε]∑
j=[nε]+1

Ex

(|Xj |p; τy > j − [
nε

])
.

Again using the Markov property, Lemma 3.1 and Lemma 6.2, we have

E36 ≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
+ cp

n
p−1

2 −cpε

[n1−ε]∑
j=1

Px(τy > j) + cpe−cpnε
[n1−ε]∑
j=1

Ex

(|Xj |p; τy > j
)

≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
.
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Inserting this bound and (6.12) into (6.11), we obtain

cnε/6E31 ≤ cp,ε(1 + y + |x|)p
n

p−2
2 −cpε

.

Together with (6.6), this bound implies that

E3 ≤ cp(1 + y + |x|)p
nε/6

−→
n→+∞ 0. (6.15)

�

6.2. Proof of the claim 2 of Theorem 2.2

Assume either Conditions 1, 2 and E(a) ≥ 0, or Conditions 1 and 3. Introducing the stopping time ν
ε/6
n = νn +[nε/6],

we have

Px(τy > n) = Px

(
τy > n,ν

ε/6
n ≤ [

n1−ε
]) + Px

(
τy > n,ν

ε/6
n >

[
n1−ε

])
. (6.16)

We bound the second term by Lemma 4.1: for 2 < p < α,

Px

(
τy > n,ν

ε/6
n >

[
n1−ε

]) ≤ Px

(
νn >

n1−ε

cε

)
≤ cp,ε

(1 + |x|)p
np/2−cpε

= o

(
1√
n

)
. (6.17)

To bound the first term, we introduce more notations. Let (Bt )t≥0 be the Brownian motion from Proposition A.5, Ak

be the event Ak = {max0≤t≤1|S[tk] − σBtk| ≤ k1/2−2ε} where σ is defined by (2.2), and Ak be its complement. Using
the Markov property, we have

Px

(
τy > n,ν

ε/6
n ≤ [

n1−ε
])

=
[n1−ε]∑
k=1

∫
R×R

∗+
Px′(τy′ > n − k,An−k)Px

(
Xk ∈ dx′, y + Sk ∈ dy′, τy > k, ν

ε/6
n = k

)
︸ ︷︷ ︸

=:J1

+
[n1−ε]∑
k=1

∫
R×R

∗+
Px′(τy′ > n − k,An−k)Px

(
Xk ∈ dx′, y + Sk ∈ dy′, τy > k, ν

ε/6
n = k

)
︸ ︷︷ ︸

=:J2

. (6.18)

Bound of J1. Taking into account that n − k ≥ n
cε

for any k ≤ [n1−ε], by Proposition A.5 with ε small enough, we
find

Px′(τy′ > n − k,An−k) ≤ Px′(An−k) ≤ cp,ε

(
1 + ∣∣x′∣∣)p

n−2ε.

By the Markov property and the first bound in Lemma 3.1,

J1 ≤ Ex

(
cp,ε e−cp,εn

ε/6 |Xνn |p + cp,ε

n2ε
; τy > νn, νn ≤ [

n1−ε
])

.

Since y+Sνn

n1/2−ε > 1, using Lemma 6.1,

J1 ≤ cp,ε e−cp,εn
ε/6(

1 + |x|)p + cp,ε

n1/2−ε+2ε
E1 ≤ cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε
. (6.19)
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Bound of J2. The idea is as follows. When y′ ≤ θn

√
n, with θn = n−ε/6, we are going to control the probability

Px′(τy′ > n − k,An−k) in J2 by the claim 2 of Corollary A.4. When y′ > θn

√
n we shall apply Lemma 6.4. Accord-

ingly, we split J2 into two terms as follows:

J2 =
[n1−ε]∑
k=1

∫
R×R

∗+
Px′(τy′ > n − k,An−k)Px

(
Xk ∈ dx′, y + Sk ∈ dy′, y + Sk > n1/2−ε/6, τy > k, ν

ε/6
n = k

)
︸ ︷︷ ︸

=:J3

+
[n1−ε]∑
k=1

∫
R×R

∗+
Px′(τy′ > n − k,An−k)Px

(
Xk ∈ dx′, y + Sk ∈ dy′, y + Sk ≤ n1/2−ε/6, τy > k, ν

ε/6
n = k

)
︸ ︷︷ ︸

=:J4

.

(6.20)

Bound of J3. Let τ bm
y be the exit time of the Brownian motion defined by (A.10) and y′+ = y′ + (n − k)1/2−2ε .

Since

Px′(τy′ > n − k,An−k) ≤ Px′
(
τ bm
y′+

> n − k
)
, (6.21)

using the claim 1 of Corollary A.4 with y′+ > 0, we get

J3 ≤
[n1−ε]∑
k=1

Ex

(
c
y + Sk + (n − k)1/2−2ε

√
n − k

;y + Sk > n1/2−ε/6, τy > k, ν
ε/6
n = k

)
.

Since c√
n−k

≤ cε√
n

and y + Sk + (n − k)1/2−2ε ≤ 2(y + Sk) on the event {y + Sk > n1/2−ε/6}, using Lemma 6.4, we
have

J3 ≤ cε√
n
E3 = o

(
1√
n

)
. (6.22)

Upper bound of J4. Since n
cε

≤ n − k ≤ n, we have y′+ ≤ cε(n − k)1/2−ε/6 when y′ ≤ n1/2−ε/6. Using (6.21), from

the claim 2 of Corollary A.4 with θm = cεm
−ε/6, we deduce that

J4 ≤
[n1−ε]∑
k=1

Ex

(
2√

2π(n − k)σ

(
y + Sk + (n − k)1/2−2ε

)(
1 + cθ2

n−k

);
y + Sk ≤ n1/2−ε/6, τy > k, ν

ε/6
n = k

)
. (6.23)

Taking into account that 1√
n−k

≤ 1√
n
(1 + cε

nε ), θn−k ≤ cε

nε/6 and 1 <
y+Sνn

n1/2−ε , we obtain

J4 ≤ 2√
2πnσ

(
1 + cε

nε/3

)
E2 + cε

n1/2+ε
E1. (6.24)

Using Lemma 6.1 and Lemma 6.3, we get the following upper bound,

J4 ≤ 2V (x, y)√
2πnσ

(
1 + o(1)

)
. (6.25)
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Lower bound of J4. In the same way as for the upper bound of J4, with y′− = y + S
ν

ε/6
n

− (n − ν
ε/6
n )1/2−2ε > 0 on

the event {(n − ν
ε/6
n )1/2−2ε < y + S

ν
ε/6
n

}, we have

J4 ≥ 2√
2πnσ

(
1 − cε

nε/3

)
Ex

(
y′−; (n − ν

ε/6
n

)1/2−2ε
< y + S

ν
ε/6
n

≤ n1/2−ε/6, τy > ν
ε/6
n , ν

ε/6
n ≤ [

n1−ε
])

−
[n1−ε]∑
k=1

∫
R

Px′(An−k)Px

(
Xk ∈ dx′, τy > k, ν

ε/6
n = k

)
. (6.26)

Using the fact that −y′− ≥ 0 on {(n − ν
ε/6
n )1/2−2ε ≥ y + S

ν
ε/6
n

}, we obtain in a same way as for the upper bound of J1,

J4 ≥ 2√
2πnσ

(
1 − cε

nε/3

)
E2 − 2√

2πnσ
Ex

(
n1/2−2ε y + Sνn

n1/2−ε
; τy > νn, νn ≤ [

n1−ε
])

− 2√
2πnσ

E3 − cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε

≥ 2√
2πnσ

(
1 − cε

nε/3

)
E2 − c

n1/2+ε
E1 − c√

n
E3 − cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε
.

Consequently, using the results of Lemma 6.3, Lemma 6.1 and Lemma 6.4 we conclude that

J4 ≥ 2V (x, y)√
2πnσ

(
1 − o(1)

)
. (6.27)

Coupling the obtained lower bound with the upper bound in (6.25) we obtain J4 ∼ 2V (x,y)√
2πnσ

. With the decomposition

of J2 in (6.20) and the bound of J3 in (6.22) we get J2 ∼ 2V (x,y)√
2πnσ

. Finally, the claim 2 of Theorem 2.2 follows from
(6.16), (6.17), (6.18) and (6.19).

6.3. Proof of the claim 1 of Theorem 2.2

Assume Condition 1. All the necessary bounds are obtained in the previous Section 6.2. It is easy to see that they hold
under solely Condition 1. We highlight how to gather them. By (6.16), (6.17), (6.18) and (6.20), we have,

Px(τy > n) ≤ cp,ε

(1 + |x|p)√
n

+ J1 + J3 + J4.

Then, by (6.19), (6.22), and (6.24),

Px(τy > n) ≤ cp,ε

(1 + y + |x|)(1 + |x|)p−1

√
n

+ cε√
n
E3 + cε√

n
(E2 + E1).

Now, by Lemma 6.1, (6.3) and (6.15),

Px(τy > n) ≤ cp,ε

(1 + y + |x|)p√
n

+ cε√
n
(E21 + E22).

Finally, using (6.4), (6.5) and Lemmas 5.1 and 5.4 we have,

Px(τy > n) ≤ cε√
n

(
z −Ex

(
z + Mτy ; τy ≤ ν

ε/6
n ∧ [

n1−ε
])) + cp,ε

(1 + y + |x|)p√
n

≤ cε√
n
Ex

(|Mτy |
) + cp,ε

(1 + y + |x|)p√
n

≤ cp

(1 + y + |x|)p√
n

.
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6.4. Proof of Corollary 2.3

For any p > 0,

Ex

(
τ

p
y

) =
+∞∑
k=0

Px(τy > k)
(
(k + 1)p − kp

)
.

Now the first and the second assertions of the corollary follow respectively from the claim 1 and 2 of Theorem 2.2.

7. Asymptotic for conditioned Markov walk

In this section we prove Theorem 2.4. We will deduce the asymptotic of the Markov walk (y + Sn)n≥0 conditioned
to stay positive from the corresponding result for the Brownian motion given by Proposition A.3. As in Section 6, we
will use the functional approximation of Proposition A.5. We will refer frequently to Section 6 in order to shorten the
exposition.

Proof of Theorem 2.4. Introducing ν
ε/6
n = νn + [nε/6] and taking into account Condition 2 or 3, we have

Px(y + Sn ≤ t
√

n | τy > n) = Px(y + Sn ≤ t
√

n, τy > n,ν
ε/6
n > [n1−ε])

Px(τy > n)︸ ︷︷ ︸
=:L1

+ Px(y + Sn ≤ t
√

n, τy > n,ν
ε/6
n ≤ [n1−ε])

Px(τy > n)︸ ︷︷ ︸
=:L2

. (7.1)

Bound of L1. Using Lemma 4.1 and Theorem 2.2,

L1 ≤ Px(νn > n1−ε

cε
)

Px(τy > n)
≤ cp,ε(1 + |x|)p

n
p
2 −cpε

Px(τy > n)
−→

n→+∞ 0. (7.2)

Bound of L2. As in Section 6, setting Ak = {max0≤t≤1|S[tk] − σBtk| ≤ k1/2−2ε}, by the Markov property,

Px(τy > n)L2

=
[n1−ε]∑
k=1

∫
R×R

∗+
Px′

(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)
Px

(
Xk ∈ dx′, y + Sk ∈ dy′, τy > k, ν

ε/6
n = k

)
︸ ︷︷ ︸

=:Px(τy>n)L3

+
[n1−ε]∑
k=1

∫
R×R

∗+
Px′

(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)
Px

(
Xk ∈ dx′,

y + Sk ∈ dy′, y + Sk > n1/2−ε/6, τy > k, ν
ε/6
n = k

)︸ ︷︷ ︸
=:Px(τy>n)L4

+
[n1−ε]∑
k=1

∫
R×R

∗+
Px′

(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)
Px

(
Xk ∈ dx′,

y + Sk ∈ dy′, y + Sk ≤ n1/2−ε/6, τy > k, ν
ε/6
n = k

)︸ ︷︷ ︸
=:Px(τy>n)L5

. (7.3)
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Bound of L3. Using the bound of J1 in (6.19) and Theorem 2.2,

L3 ≤ J1

Px(τy > n)
≤ cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+εPx(τy > n)
−→

n→+∞ 0. (7.4)

Bound of L4. Using the bound of J3 in (6.22) and Theorem 2.2, we have

L4 ≤ J3

Px(τy > n)
= o(1). (7.5)

Upper bound of L5. Define t+ = t + 2
(n−k)2ε and y′+ = y′ + (n − k)1/2−2ε . By Proposition A.3,

Px′
(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)
≤ P

(
y′+ + σBn−k ≤ t+

√
n, τ bm

y′+
> n − k

)
= 1√

2π(n − k)σ

∫ t+
√

n

0
e
− (s−y′+)2

2(n−k)σ2 − e
− (s+y′+)2

2(n−k)σ2 d s.

Note that for any y′ ≤ n1/2−ε/6 we have y′+/
√

n ≤ 2
nε/6 and for any k ≤ [n1−ε] we have n(1 − 1

nε ) ≤ n − k ≤ n. Using

these remarks with the fact that sh(x) ≤ x(1 + x2

6 ch(x)) for any x ≥ 0, we obtain after some calculations that

Px′
(
y′ + Sn−k ≤ t

√
n, τy′ > n − k,An−k

)

≤ 2y′+√
2πnσ

(
1 + cε

nε

)∫ t+
√

n

0

s e
− s2+(y′+)2

2(n−k)σ2

(n − k)σ 2

[
1 + s2(y′+)2

6(n − k)2σ 4
ch

(
sy′+

(n − k)σ 2

)]
d s

≤ 2y′+√
2πnσ

(
1 + ct,ε

nε/3

)(
1 − e− t2

2σ2
)
.

Consequently, using the same arguments as in the proof of Theorem 2.2 in Section 6 (see the developments from

(6.23) to (6.25)), we obtain, with �+
σ (t) = 1 − e

− t2

2σ2 ,

L5 ≤
(

1 + ct,ε

nε/3

)
�+

σ (t)
2V (x, y)√

2πnσPx(τy > n)

(
1 + o(1)

)
,

which by the claim 2 of Theorem 2.2 implies that

L5 = �+
σ (t)

(
1 + o(1)

)
. (7.6)

Lower bound of L5. In the same way as for the upper bound, with y′− = y′ − (n − k)1/2−2ε and t− = t − 2
(n−k)2ε ,

we have

Px(τy > n)L5

≥
[n1−ε]∑
k=1

∫
R

∗+
P
(
y′− + σBn−k ≤ t−

√
n, τ bm

y′−
> n − k

)
Px

(
y + Sk ∈ dy′,

(n − k)1/2−2ε < y + Sk ≤ n1/2−ε/6, τy > k, ν
ε/6
n = k

)
−

[n1−ε]∑
k=1

∫
R

Px′(An−k)Px

(
Xk ∈ dx′, τy > k, ν

ε/6
n = k

)
.
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Using Lemma A.3 with y′−, which is positive when (n − k)1/2−2ε < y′ ≤ n1/2−ε/6, we obtain after calculation that

P
(
y′− + σBn−k ≤ t−

√
n, τ bm

y′−
> n − k

) ≥ 2y′−√
2πnσ

(
1 − ct,ε

nε/3

)
�+

σ (t).

Copying the proof of the bound of J1 in (6.19) and using the same arguments as in the proof of Theorem 2.2 in
Section 6 (see the developments from (6.26) to (6.27)), we get

L5 ≥ �+
σ (t)

2V (x, y)√
2πnσPx(τy > n)

(
1 − o(1)

) = �+
σ (t)

(
1 − o(1)

)
.

Coupling this with (7.6) we obtain that

L5 = �+
σ (t)

(
1 + o(1)

)
.

Inserting this and (7.4) and (7.5) into (7.3), we deduce that L2 ∼
n→+∞ �+

σ (t). By (7.1) and (7.2), we finally have

Px(y + Sn ≤ t
√

n | τy > n) −→
n→+∞ �+

σ (t).

Changing t into tσ , this concludes the proof.

8. The case of non-positive initial point

In this section, we prove Theorem 2.5.

Lemma 8.1. Assume Condition 1. For any (x, y) ∈ D−, the random variable Mτy is integrable and the function
V (x, y) = −Ex(Mτy ), is well defined on D−.

Proof. If E(a) ≥ 0, by the Markov inequality, with z = y + ρx,

Ex(z + Mn; τy > n) =
∫
R×R

∗+
Ex′

(
y′ + ρx′ + Mn−1; τy′ > n − 1

)
× Px

(
X1 ∈ dx′, y + S1 ∈ dy′, τy > 1

)
.

Since y + S1 > 0 on {τy > 1}, by Lemma 4.4,

Ex(z + Mn; τy > n) ≤ cpEx

((
1 + y + S1 + |X1|

)(
1 + |X1|

)p−1; τy > 1
)

≤ cpEx

((
1 + |X1|

)p)
≤ cp

(
1 + |x|)p

. (8.1)

Moreover

Ex

(|Mτy |; τy ≤ n
) ≤ |z| +

n∑
k=2

∫
R×R

∗+
Ex′

(∣∣y′ + ρx′ + Mk−1
∣∣; τy = k − 1

)
× Px

(
X1 ∈ dx′, y + S1 ∈ dy′, τy > 1

)
+Ex

(|M1|; τy = 1
)
.

Since y + S1 > 0 on {τy > 1}, by Lemma 4.2,

Ex

(|Mτy |; τy ≤ n
) ≤ c

(
1 + |y| + |x|) −Ex(z + Mτy ; τy ≤ n)

≤ c
(
1 + |y| + |x|) +Ex(z + Mn; τy > n).
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Using (8.1), we deduce that Ex(|Mτy |; τy ≤ n) ≤ cp(1 + |y| + |x|p). Consequently, by the Lebesgue monotone con-
vergence theorem, the assertion is proved when E(a) ≥ 0. When E(a) < 0, the assertion follows from Lemma 5.4. �

Lemma 8.2. Assume Condition 1. The function V is Q+-harmonic on D = D− ∪R×R
∗+. If in addition we assume

either Condition 2 and E(a) ≥ 0, or Condition 3, then the function V is positive on D = D− ∪R×R
∗+.

Proof. Note that by Corollary A.7, we have Px(τy < +∞) = 1, for any x ∈R and y ∈ R. Therefore, by the Lebesgue
dominated convergence theorem,

V (x, y) = −Ex(Mτy ) = z − lim
n→∞Ex(z + Mτy ; τy ≤ n) = lim

n→∞Ex(z + Mn; τy > n),

for any (x, y) ∈ D−. The fact that V is Q+-harmonic on D can be proved in the same way as in the proof of
Proposition 5.3. Therefore, for any (x, y) ∈ D−,

V (x, y) = Ex

(
V (X1, y + S1); τy > 1

)
. (8.2)

By the claim 2 of Proposition 5.3 and the claim 3 of Proposition 5.9, on {τy > 1}, the random variable V (X1, y + S1)

is positive almost surely. Since by the definition of D−, we have Px(τy > 1) > 0, we conclude that V (x, y) > 0 for
any (x, y) ∈ D−. �

Lemma 8.3. Assume Condition 1.

(1) For any (x, y) ∈ D−,

√
nPx(τy > n) ≤ cp

(
1 + |x|)p

.

(2) If in addition we assume either Condition 2 and E(a) ≥ 0, or Condition 3, then for any (x, y) ∈ D−,

Px(τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

Proof. By the Markov property,

√
nPx(τy > n) =

∫
R×R

∗+

√
nPx′(τy′ > n − 1)Px

(
X1 ∈ dx′, y + S1 ∈ dy′, τy > 1

)
.

By Theorem 2.2, for any y ′ > 0, we have
√

nPx′(τy′ > n − 1) ≤ cp(1 + y′ + |x′|)p and moreover, for any y ≤ 0,

Ex

(
cp

(
1 + y + S1 + |X1|

)p; τy > 1
) ≤ cp

(
1 + |x|)p

.

Then, we obtain the claim 1 and by the Lebesgue dominated convergence theorem and the claim 2 of Theorem 2.2,

lim
n→∞

√
nPx(τy > n) = Ex

(
2V (X1, y + S1)√

2πσ
; τy > 1

)
.

Using (8.2) we conclude the proof. �

Lemma 8.4. Assume either Conditions 1, 2 and E(a) ≥ 0, or Conditions 1 and 3. For any (x, y) ∈ D− and t > 0,

Px

(
y + Sn

σ
√

n
≤ t | τy > n

)
−→

n→+∞ 1 − e− t2
2 .
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Proof. Similarly as in the proof of Lemma 8.3, we write,

Px

(
y + Sn

σ
√

n
≤ t | τy > n

)

= 1

Px(τy > n)

∫
R×R

∗+
Px′

(
y′ + Sn−1

σ
√

n − 1
≤ t; τy′ > n − 1

)

× Px

(
X1 ∈ dx′, y + S1 ∈ dy′, τy > 1

)
= 1√

nPx(τy > n)

∫
R×R

∗+
Px′

(
y′ + Sn−1

σ
√

n − 1
≤ t | τy′ > n − 1

)√
nPx′(τy′ > n − 1)

× Px

(
X1 ∈ dx′, y + S1 ∈ dy′, τy > 1

)
.

Since, by Lemma 8.3,
√

nPx′(τy′ > n − 1) ≤ cp(1 + |x′|)p , applying the Lebesgue dominated convergence theorem,
Theorem 2.2, Theorem 2.4 and Lemma 8.3, we have

lim
n→∞Px

(
y + Sn

σ
√

n
≤ t | τy > n

)

=
√

2πσ

2V (x, y)

∫
R×R

∗+

(
1 − e− t2

2
)2V (x′, y′)√

2πσ
Px

(
X1 ∈ dx′, y + S1 ∈ dy′, τy > 1

)
.

Using (8.2) concludes the proof. �

Appendix

A.1. Proof of the fact Condition 3bis implies Condition 3

We suppose that Condition 3bis holds. Then, there exists δ > 0 such that

P
(
(a, b) ∈ [−1 + δ,0] × [δ,C]) > 0 (A.1)

and

P
(
(a, b) ∈ [0,1 − δ] × [δ,C]) > 0. (A.2)

For any x ∈ R, set Cx = max(|x|, C
δ
) and

An = {δ ≤ X1 ≤ Cx, δ ≤ X2 ≤ CX1, . . . , δ ≤ Xn ≤ CXn−1}.
Using (A.1) for x < 0 and (A.2) for x ≥ 0, we obtain that Px(A1) > 0. By the Markov property, we deduce that
Px(An) > 0. Moreover, it is easy to see that, on An, we have y + Sk ≥ y + kδ > 0, for all k ≤ n, and |Xn| ≤ Cx .
Taking n = n0 large enough, we conclude that Condition 3 holds under Condition 3bis.

A.2. Convergence of recursively bounded monotonic sequences

The following lemmas give sufficient conditions for a monotonic sequence to be bounded.

Lemma A.1. Let (un)n≥1 be a non-decreasing sequence of reals such that there exist n0 ≥ 2, ε ∈ (0,1), α,β, γ ≥ 0
and δ > 0 such that for any n ≥ n0,

un ≤
(

1 + α

nε

)
u[n1−ε] + β

nε
+ γ e−δnε

. (A.3)
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Then, for any n ≥ n0 and any integer k0 ∈ {n0, . . . , n},

un ≤ exp

(
α

kε
0

2ε2ε2

2ε2 − 1

)(
uk0 + β

kε
0

2ε2ε2

2ε2 − 1
+ γ

exp(−δ
kε

0
2ε )

1 − e−δ(2ε2 −1)

)

≤
(

1 + cα,ε

kε
0

)
uk0 + β

cα,ε

kε
0

+ γ cα,δ,ε e−cα,δ,εk
ε
0 .

In particular, choosing k0 constant, it follows that (un)n≥1 is bounded.

Proof. Fix n ≥ n0 and k0 ∈ {n0, . . . , n} and consider for all j ≥ 0,

pj = [
n(1−ε)j

]
.

The sequence (pj )j≥0 starts at n0 = n, is non-increasing and converge to 1. So there exists m = m(k0) ∈ N such that

pm ≥ k0 ≥ pm+1. Since n(1−ε)j /2 ≥ k0/2 ≥ 1, for all j ∈ {0, . . . ,m}, we have

n(1−ε)j ≥ pj ≥ n(1−ε)j − 1 ≥ n(1−ε)j

2
. (A.4)

Using (A.3) and the fact that (un)n≥2 is non-decreasing, we write for all j = 0, . . . ,m,

upj
≤

(
1 + α

pε
j

)
upj+1 + β

pε
j

+ γ e−δpε
j ≤

(
1 + α

pε
j

)(
upj+1 + β

pε
j

+ γ e−δpε
j

)
.

Iterating, we obtain that

un ≤ Am(upm+1 + βBm + γCm),

where Am = ∏m
j=0(1 + α

pε
j
), Bm = ∑m

j=0
1
pε

j
and Cm = ∑m

j=0 e−δpε
j . Since pm+1 ≤ k0 and since (un)n≥2 is non-

decreasing,

un ≤ Am(uk0 + βBm + γCm). (A.5)

Now, we bound Am as follows,

Am ≤
m∏

j=0

e
α
pε
j = eαBm . (A.6)

Denoting ηj = n−(1−ε)j ε , using (A.4), we have Bm ≤ 2ε
∑m

j=0 ηj . Moreover, for all j ≤ m, we note that
ηj

ηj+1
=

1
nε2(1−ε)j

≤ 1

kε2
0

≤ 1
2ε2 < 1 and so

ηj ≤ ηm

2ε2(m−j)
≤ 1

pε
m2ε2(m−j)

≤ 1

kε
02ε2(m−j)

. (A.7)

Therefore, Bm is bounded as follows:

Bm ≤ 2ε

kε
0

m∑
k=0

(
1

2ε2

)k

≤ 1

kε
0

2ε2ε2

2ε2 − 1
. (A.8)
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Using (A.4) and (A.7), we have

Cm ≤
m∑

j=0

e
− δ

2εηj ≤
m∑

j=0

exp

(
−δkε

02ε2(m−j)

2ε

)
.

Since for any u ≥ 0 and k ∈N, we have (1 + u)k ≥ 1 + ku, it follows that

Cm ≤ e− δkε
0

2ε

m∑
k=0

exp
(−δk

(
2ε2 − 1

)) ≤ e− δkε
0

2ε

1 − e−δ(2ε2 −1)
. (A.9)

Putting together (A.6), (A.8) and (A.9) into (A.5) proves the lemma. �

Lemma A.2. Let (un)n≥1 be a non-increasing sequence of reals such that there exist n0 ≥ 2, ε ∈ (0,1) and β ≥ 0
such that for any n ≥ n0,

un ≥ u[n1−ε] − β

nε
.

Then, for any n ≥ n0 and any integer k0 ∈ {n0, . . . , n},

un ≥ uk0 − β

kε
0

2ε2ε2

2ε2 − 1
= uk0 − cε

β

kε
0
.

In particular, choosing k0 constant, it follows that (un)n≥1 is bounded.

Proof. For the proof it is enough to use Lemma A.1 with un replaced by −un. �

A.3. Results on the Brownian case and strong approximation

Consider the standard Brownian motion (Bt )t≥0 living on the probability space (	,F,PPP). Define the exit time

τ bm
y = inf{t ≥ 0, y + σBt ≤ 0}, (A.10)

where σ > 0. The following assertions are due to Lévy [19].

Proposition A.3. For any y > 0, 0 ≤ a ≤ b and n ≥ 1,

PPP
(
τ bm
y > n

) = 2√
2πnσ

∫ y

0
e
− s2

2nσ2 d s

and

PPP
(
τ bm
y > n,y + σBn ∈ [a, b]) = 1√

2πnσ

∫ b

a

(
e
− (s−y)2

2nσ2 − e
− (s+y)2

2nσ2
)

d s.

From this one can deduce easily:

Corollary A.4.

(1) For any y > 0,

PPP
(
τ bm
y > n

) ≤ c
y√
n
.
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(2) For any sequence of real numbers (θn)n≥0 such that θn −→
n→+∞ 0,

sup
y∈[0;θn

√
n]

(
PPP(τ bm

y > n)

2y√
2πnσ

− 1

)
= O

(
θ2
n

)
.

To transfer the results from the Brownian motion to the Markov walk, we use a functional approximation given in
Theorem 3.3 from Grama, Le Page and Peigné [15]. We have to construct an adapted Banach space B and verify the
hypotheses M1–M5 in [15] which are necessary to apply Theorem 3.3. Fix p ∈ (2, α) and let ε, θ , c0 and δ be positive
numbers such that c0 + ε < θ < 2c0 < α − ε and 2 < 2 + 2δ < (2 + 2δ)θ ≤ p. Define the Banach space B = Lε,c0,θ

as the set of continuous function f from R to C such that ‖f ‖ = |f |θ + [f ]ε,c0 < +∞, where

|f |θ = sup
x∈R

|f (x)|
1 + |x|θ , [f ]ε,c0 = sup

(x,y)∈R2

x �=y

|f (x) − f (y)|
|x − y|ε(1 + |x|c0)(1 + |y|c0)

.

For example, one can take ε < min(
p−2

4 , 1
2 ), c0 = 1, θ = 1 + 2ε and 2 + 2δ = p

1+2ε
. Using the techniques from [17]

one can verify that, under Condition 1, the Banach space B and the perturbed operator Pt f (x) = Ex(f (X1) eitX1)

satisfy Hypotheses M1–M5 in [15]. The hypothesis M1 is verified straightforwardly. In particular the norm of the
Dirac measure δx is bounded: ‖δx‖B→B ≤ 1 + |x|θ , for each x ∈R. We refer to Proposition 4 and Corollary 3 of [17]
for M2–M3. For M4, we have

μδ(x) = sup
k≥1

E
1/2+2δ
x

(|Xn|2+2δ
) ≤ cδ

(
1 + |x|).

Hypothesis M5 follows from Proposition 1 of [17] and Lemma 3.1.
With these considerations, the C(x) = C1(1 + μδ(x) + ‖δx‖)2+2δ in Theorem 3.3 established in [15] is less than

cp(1+|x|)p , where C1 is a constant. Therefore Theorem 3.3 can be reformulated in the case of the stochastic recursion
as follows.

Proposition A.5. Assume Condition 1. For any p ∈ (2, α), there exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈R and
n ≥ 1, without loss of generality (on an extension of the initial probability space) one can reconstruct the sequence
(Sn)n≥0 with a continuous time Brownian motion (Bt )t∈R+ , such that

Px

(
sup

0≤t≤1
|S[tn] − σBtn| > n1/2−ε

)
≤ cp,ε

nε

(
1 + |x|)p

,

where σ is given by (2.2).

This proposition plays the crucial role in the proof of Theorem 2.2 and Theorem 2.4 (cf. Sections 6 and 7). The
following straightforward consequence of Proposition A.5 is used in the proof of Lemma 4.1 in Section 4. Set �(t) =

1√
2π

∫ t

−∞ e− u2
2 du.

Corollary A.6. Assume Condition 1. For any p ∈ (2, α), there exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R and
n ≥ 1,

sup
u∈R

∣∣∣∣Px

(
Sn√
n

≤ u

)
− �

(
u

σ

)∣∣∣∣ ≤ cp,ε

nε

(
1 + |x|)p

.

Proof. Let ε ∈ (0,1/2) and An = {sup0≤t≤1|S[tn] − σBtn| > n1/2−ε}. For any x ∈ R and any u ∈R,

Px

(
Sn√
n

≤ u

)
≤ Px(An) + Px

(
σBn√

n
≤ u + 1

nε

)
,
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where the last probability does not exceed �( u
σ
)+ cεn

−ε . Using Proposition A.5, we conclude that there exists ε0 > 0
such that for any ε ∈ (0, ε0] and x ∈R,

Px

(
Sn√
n

≤ u

)
≤ �

(
u

σ

)
+ cp,ε

nε

(
1 + |x|)p

.

In the same way we obtain a lower bound and the assertion follows. �

A.4. Finiteness of the exit times

Corollary A.7. Assume Condition 1. For any x ∈ R and y ∈R,

Px(τy < +∞) = 1 and Px(Ty < +∞) = 1.

Proof. Let y > 0 and ε ∈ (0,1/2). Set An = {sup0≤t≤1|S[tn] − σBtn| ≤ n1/2−ε}. Using Proposition A.5, there exists
ε0 > 0 such that for any ε ∈ (0, ε0], x ∈R and y > 0,

Px(τy > n) ≤ Px(τy > n,An) + Px(An)

≤ P
(
τ bm
y+n1/2−ε > n

) + cp,ε

nε

(
1 + |x|)p

.

Since, by the claim 1 of Corollary A.4, P(τ bm
y+n1/2−ε > n) ≤ c

y+n1/2−ε√
n

≤ (1 + y) c
nε , taking the limit as n → +∞ we

conclude that Px(τy < +∞) = 1.
Let Dn = {max1≤k≤n|Sk − Mk| ≤ n1/2−ε}. Obviously

Px(Ty > n) ≤ Px(Ty > n,An,Dn) + Px(An) + Px(Dn)

≤ P
(
τ bm
y+2n1/2−ε > n

) + cp,ε

nε

(
1 + |x|)p + Px

(
max

1≤k≤n
|ρXk| > n1/2−ε

)
.

Using the claim 1 of Corollary A.4, the Markov inequality and Lemma 3.1, for any ε ∈ (0, ε0], x ∈R and y > 0,

Px(Ty > n) ≤ (1 + y)
c

nε
+ cp,ε

nε

(
1 + |x|)p + cp

1 + |x|p
n

p−2
2 −pε

.

Choosing ε small enough and taking the limit as n → +∞ we conclude the second assertion when y > 0.
When y ≤ 0, the results follow since the applications y �→ τy and y �→ Ty are non-decreasing. �
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