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Abstract. We present a new computation of the critical value of the random-cluster model with cluster weight q ≥ 1 on Z
2.

This provides an alternative approach to the result in (Probab. Theory Related Fields 153 (2012) 511–542). We believe that this
approach has several advantages. First, most of the proof can easily be extended to other planar graphs with sufficient symmetries.
Furthermore, it invokes RSW-type arguments which are not based on self-duality. And finally, it contains a new way of applying
sharp threshold results which avoid the use of symmetric events and periodic boundary conditions. Some of the new methods
presented in this paper have a larger scope than the planar random-cluster model, and may be useful to investigate sharp threshold
phenomena for more general dependent percolation processes in arbitrary dimensions.

Résumé. Nous proposons une nouvelle preuve du fait que le point critique du modèle de percolation de Fortuin–Kasteleyn sur le
réseau carré vaut

√
q/(1 + √

q) lorsque q ≥ 1. Cette preuve est une alternative à la stratégie implémentée dans (Probab. Theory
Related Fields 153 (2012) 511–542). Cette approche a plusieurs avantages. Tout d’abord, la grande majorité des arguments peuvent
être généralisés aux autres graphes planaires (ayant suffisamment de symétries). De plus, elle n’invoque pas d’argument de type
RSW basés sur l’auto-dualité du modèle. Enfin, elle repose sur une nouvelle façon d’appliquer les théorèmes de seuil qui n’utilise
pas la symmétrie des évǹements de croisement et les conditions de bord périodiques. Certaines de ces nouvelles méthodes ont
un champs d’application qui dépasse largement le cas du modèle de percolation de Fortuin–Kasteleyn et pourrait être utile pour
prouver la décroissance exponentielles d’autres modèles de percolation dépendante.
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1. Introduction

The random-cluster model is one of the most classical generalization of Bernoulli percolation and electrical networks.
This model was introduced by Fortuin and Kasteleyn in [8] and has since then been the object of intense study, both
physically and mathematically.

A percolation configuration on a graph G = (VG,EG) (VG is the vertex set and EG the edge set) is an element
ω = (ωe : e ∈ EG) in {0,1}EG . An edge e is said to be open (in ω) if ωe = 1, otherwise it is closed. A configuration ω

can be seen as a subgraph of G with vertex set Vω := VG and edge set Eω := {e ∈ EG : ωe = 1}.
Let p ∈ [0,1] and q ≥ 1. We will work with the random-cluster measure φ1

p,q on the square lattice with weights
(p, q) and wired boundary conditions. Let us briefly recall its definition here.
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The square lattice Z
2 is defined to be the graph with

VZ2 := {
(x, y) : x, y ∈ Z

}
,

EZ2 := {{
(x, y),

(
x′, y′)} ⊂ Z

2 such that
∣∣x − x′∣∣ + ∣∣y − y′∣∣ = 1

}
.

Let G be a finite subgraph of Z2 and let φ1
G,p,q be the measure on percolation configurations ω on G defined by

φ1
G,p,q(ω) = p|Eω|(1 − p)|EG\Eω|qk1(ω)

Z1(G,p,q)
,

where k1(ω) is the number of connected components of the percolation configuration ω on Z
2 defined by ωe = ωe if

e ∈ EG, and 1 otherwise, and Z1(G,p,q) is a normalizing constant to make the total mass of the measure equal to 1.
Then, φ1

p,q is the probability measure on percolation configurations on Z
2 defined as the weak limit of the φ1

G,p,q as

G exhausts Z2. We refer to [12] for a justification that this limit exists.
The random-cluster model on Z

2 is known to undergo a phase transition for q ≥ 1. Let {0 ↔ ∞} be the event that 0
is in an infinite connected component of ω. There exists pc = pc(q) such that φ1

p,q [0 ↔ ∞] is equal to 0 for p < pc ,
and is strictly positive if p > pc . We give a new proof of the following result, which was originally obtained in [1].

Theorem 1. Let q ≥ 1, the critical value pc = pc(q) is equal to
√

q/(1 + √
q). Furthermore, for p < pc, there exists

c = c(p, q) > 0 such that for any x ∈ Z
2,

φ1
p,q [0 ↔ x] ≤ exp

[−c‖x‖], (1.1)

where ‖(a, b)‖ = max{|a|, |b|}, and {0 ↔ x} denotes the event that there exists a path from 0 to x in ω.

As in [1], our strategy is based on the study of the crossing probabilities, but we use more generic arguments. We
will first prove Theorem 2 below, then we will deduce Theorem 1 by using some self-duality properties specific to the
random-cluster model on the square lattice.

Let Ch(a, b) be the event that there exits a sequence of vertices v0, . . . , vk in �−a, a� × �−b, b� such that
v0 ∈ {−a} × �−b, b�, vk ∈ {a} × �−b, b�, and for any 0 ≤ i < k the vertex vi is a neighbor of the vertex vi+1 and
ωvi,vi+1 = 1. This event corresponds to the existence of a “crossing from left to right” in the box �−a, a� × �−b, b�.

Theorem 2. Let q ≥ 1 and p ∈ [0,1]. If

inf
n≥1

φ1
p,q

[
Ch(n,n)

]
> 0, (A)

then for any δ ∈ (0,1 − p], there exists c > 0 such that for every n ≥ 0,

φ1
p+δ,q

[
Ch(2n,n)

] ≥ 1 − e−cn.

Remark 3. If φ1
p,q [0 ↔ ∞] > 0, then (A) holds: because of the symmetry of the lattice

φ1
p,q

[
0 ↔ {−n} × �−n,n�

]
> φ1

p,q [0 ↔ ∞]/4,

and the same holds for φ1
p,q [0 ↔ {n} × �−n,n�]. FKG inequality (see the next section) then implies (A).

We isolated Theorem 2 because its proof does not involve duality arguments. Although we present the proof for
Z

2, the argument is valid for any quasi-periodic planar lattice with sufficient symmetries. (The required symmetry is
invariance under π/2 rotation and reflections with respect to horizontal and vertical axes.) Theorem 2 is combined
with a duality argument presented in Section 5 to compute the critical value and prove that the phase transition is
sharp on the square lattice. This duality argument is not valid if we only assume the symmetries mentioned above, and
we refer to [6] for a proof of sharpness of the phase transition for models with such symmetries.

The proof of Theorem 2 is divided into three steps, each one corresponding to a proposition below.
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Proposition 1 (RSW-type result). Let q ≥ 1. If (A) holds for φ1
p,q , then

lim sup
n→∞

φ1
p,q

[
Ch(3n,n)

]
> 0. (B)

The proof of this proposition is based on a Russo–Seymour–Welsh (RSW) type argument used in [17] in the context
Voronoi percolation. Interestingly, this part of the argument uses the FKG inequality only. The cost is that we obtain
that the limsup only is strictly positive, instead of the infimum. Nevertheless, as we will see this will be sufficient for
our purpose.

Proposition 2 (Sharp threshold for crossing probabilities). Let q ≥ 1 and p ∈ [0,1]. There exists c = c(p, q) > 0
such that for any δ ∈ (0,1 − p], and for any n ≥ 1,

φ1
p+δ,q

[
Ch(2n,n)

] ≥ 1 − 1

φ1
p,q [Ch(3n,n)]n

−cδ. (1.2)

This type of statement has been widely used in the recent studies of phase transition. It is based on sharp threshold
results going back to [4,14] (we provide more details before the proof). The novelty of the proof of the proposition
above lies in the fact that we do not need to symmetrize the event to which we wish to apply the sharp threshold.
More precisely, in [1], a similar sharp threshold result is obtained by first proving the result on the torus, and then
bootstrapping it to the plane. Here we present a new method based on the sharp-threshold theorem of [10] that allows
us to circumvent this difficulty.

Proposition 3 (Bootstraping to exponential decay). Let q ≥ 1 and p ∈ [0,1]. If

lim sup
n→∞

φ1
p,q

[
Ch(2n,n)

] = 1, (C)

then for any δ ∈ (0,1 − p], there exists c = c(δ,p, q) > 0 such that for any n ≥ 1,

φ1
p+δ,q

[
Ch(2n,n)

] ≥ 1 − e−cn.

These three propositions imply Theorem 2 readily. Indeed, (A) at p and Proposition 1 applied at p imply (B) at p.
Proposition 2 applied to p and δ/2 implies (C) at p + δ/2. Proposition 3 applied to p + δ/2 and δ/2 concludes the
proof.

Notation

From now on, we fix q ≥ 1 and write φp instead of φ1
p,q , and φG,p instead of φ1

G,p,q . Furthermore, for an automor-
phism T of the square lattice and an event A, we define the image of A by T as the set

B := {
ω : T −1(ω) ∈ A

}
,

where T −1(ω)e := ωT −1(e). Note that φp is symmetric under any automorphism T of the lattice, and therefore A and
the image of A by T have the same probability. We will often refer to this fact without mentioning it. Since we will
use it extensively, we also introduce τxA to be the image of A by the translation τx of vector x.

Further motivations

Our first motivation for introducing the new methods in this article is to provide a short and self-contained proof of
Theorem 2. Our writing choices are in this perspective and we did not seek for generality. Nevertheless, we would
like to mention that the methods used to prove Propositions 2 and 3 are not restricted to the planar random-cluster
model. They can be be applied in higher dimension to investigate sharp threshold phenomena of crossing events. For
example, our methods could be used to prove the following result, which is analogous to Proposition 2 and valid in
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any dimension d ≥ 2. Consider the wired random cluster φ1
Zd ,p,q

in dimension d ≥ 2 (it can defined in the same way

as in dimension 2). For 1 ≤ m ≤ n, consider the event A(m,n) that there exists an open path from the box [−m,m]d to
the boundary of [−n,n]d . For every p ∈ (0,1), there exists a constant c > 0 such that for any δ > 0 and 2 ≤ 2m ≤ n,

φ1
Zd ,p+δ,q

[
A(2m,n)

] ≥ 1 − 1

φ1
Zd ,p,q

[A(m,n)]m
−cδ. (1.3)

Our methods can also find applications for other dependent percolation measures (for example the class of monotonic
measures introduced in [11]).

Organization

The paper is organized as follows. The next three sections correspond respectively to the proofs of the last three
propositions. The last section is devoted to the proof of Theorem 1. We included bibliographical comments and
discussions on the scope of the proofs and the comparison with existing arguments at the end of each section.

2. Proof of Proposition 1

Below, we will make extensive use of the FKG inequality (see [12, Theorem 3.8]) which states that

φp[A ∩ B] ≥ φp[A]φp[B], (FKG)

for any two increasing events A and B . We recall that an event A is increasing if for every ω ∈ A and ω′ ≥ ω (for the
product ordering on {0,1}EZ2 ), we also have ω′ ∈ A.

Since we will use it repeatedly, let us recall a classical fact. Let k, � > 0, and n,m ≥ 1. If m ≥ n/k, then

φp

[
Ch(�n,n)

] ≥ φp

[
Ch(n + m,n)

]2k�
. (2.1)

In order to obtain this inequality, apply the FKG inequality to the events τ(2mj,0)Ch(n + m,n) for 2j ∈ �−k�, k�� and
τ(2mj,0)C̃h(n,n) with 2j ∈ �−k� + 1, k� − 1�, where C̃h(n,n) is the image of Ch(n,n) by the rotation of angle π/2
around the origin.

For n ≥ 1 and −n ≤ α ≤ β ≤ n, define Hn(α,β) to be the event (illustrated on Figure 1) that there exists an open
path in �−n,n�2 from {−n} × �−n,n� to {n} × �α,β�.

The symmetry with respect to the x-axis implies that

φp

[
Hn(0, n)

] ≥ 1

2
φp

[
Ch(n,n)

]
.

Fig. 1. A diagrammatic representation of the event Hn(α,β).
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Fig. 2. A diagrammatic representation of the event Xn(α).

Therefore, (A) implies that

c0 = inf
n∈Nφp

[
Hn(0, n)

]
> 0. (A′)

Fix p such that (A) is satisfied. Let hn(α) := φp[Hn(α,n)]. Note that hn is strictly decreasing and hn(0) ≥ c0.
Define αn := max{α ≤ n : hn(α) ≥ c0/2} so that

φp

[
Hn(α,n)

] ≥ c0/2 for every 0 ≤ α ≤ αn and (2.2)

φp

[
Hn(0, α)

] ≥ c0/2 for every αn ≤ α ≤ n. (2.3)

Equation (2.2) follows directly from the definition of α. To show Equation (2.3), first notice that one can assume
αn ≤ α < n, and then observe that in this case

φp

[
Hn(0, α)

] ≥ φp

[
Hn(0, n)

]︸ ︷︷ ︸
≥c0

−φp

[
Hn(α + 1, n)

]︸ ︷︷ ︸
=hn(α+1)≤c0/2

≥ c0/2. (2.4)

For 0 ≤ α ≤ n, let Xn(α) be the event (illustrated on Figure 2) that there exists a connected component of ω in
�−n,n�2 that intersects the line segments {−n} × �−n,−α�, {−n} × �α,n�, {n} × �−n,−α�, and {n} × �α,n�.

Let H1, H2, H3 and H4 be the events obtained from Hn(α,n) by taking the successive images by the orthogonal
symmetries with respect to the x and y-axis. Let F be the image of Ch(n,n) by the rotation of angle π/2 around the
origin. Then for α ≤ αn, we find

φp

[
Xn(α)

] ≥ φp

[
H1 ∩H2 ∩H3 ∩H4 ∩F

]
(FKG)≥ φp

[
Hn(α,n)

]4 · φp

[
Ch(n,n)

]
(2.2),(A)≥

(
c0

4

)4

· c0.

As a consequence,

c1 := inf
n∈Nφp

[
Xn(αn)

]
> 0. (A′′)

We now divide the proof in three cases:
Case 1: αn+
n/2� ≥ 2αn for n large enough. In such case, αn would not be bounded by n for every n, which is

absurd. Thus, this case does not occur.
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Case 2: αn ≥ n/2 for infinitely many n. In such case, pick n so that αn ≥ n/2. Set X to be the image of Xn(αn) by
rotation of angle π/2 around the origin. Thus

φp

[
Ch(3n,n)

] ≥ φp

[
3⋂

i=−3

τ(in,0)X
]

(FKG)≥ φp

[
Xn(αn)

]7 (A′′)≥ c7
1.

As a consequence, the existence of infinitely such n implies (B).
Case 3: αn < 
n/2� and αn+
n/2� < 2αn for infinitely many n. Fix n satisfying the two previous inequalities. To

lighten the notation, set m := 
n/2� and N := n + m. Consider the two square boxes

R := (−m,−αn) + �−N,N �2,

R′ := (m,−αn) + �−N,N �2.

Let E = τ(−m,−αn)HN(0,2αn) and E ′ be the image of E by the reflection with respect to the y-axis. Then, �−n,n�2 is
included in R ∩ R′ since αn ≤ m and it follows that Xn(αn) ∩ E ∩ E ′ ⊂ Ch(N + 2m,N) (see Figure 3). This, together
with αN < 2αn, implies

φp

[
Ch(N + 2m,N)

] ≥ φp

[
Xn(αn) ∩ E ∩ E ′]

(FKG)≥ φp

[
Xn(αn)

] · φp

[
HN(0,2αn)

]2

(A′′),(2.3)≥ c1 ·
(

1

2
c0

)2

. (2.5)

We can apply (2.1) to N and 2m to deduce that φp[Ch(3N,N)] ≥ c2 for some c2 > 0 which depends on c1 and c0

only. Therefore, the existence of infinity many such N implies (B).

Fig. 3. The simultaneous occurrence of Xn(αn), E and E ′ implies the existence of a horizontal crossing in �−(N + 2m), (N + 2m)� × �−N,N �.
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Remarks and comments.

1. In terms of the percolation model, as mentioned in [17], the proof only requires the FKG inequality. In particular,
it does not involve independence, duality, or a conditioning with respect to the highest crossing.

2. In terms of the graph, planarity is clearly essential. The proof also requires the graph to have several symmetries:
namely the axial symmetry with respect to the axis, the invariance under translation and the symmetry under the
rotation of angle π/2 around the origin.

3. The fact that we prove a result for the limsup only is a draw back, but this will not be relevant for the rest of the
proof.

4. One may prove stronger bounds on crossing probabilities, see e.g. [5,7].

3. Proof of Proposition 2

Our goal is to prove a sharp threshold for the probability of an open path from left to right. The starting point of the
proof of such a statement is usually the following simple differential equality [12, Theorem 3.12]. Let G be a finite
subgraph of Z2 and A an increasing event depending on the states of edges in G only. We have for every p ∈ (0,1),

d

dp
φG,p[A] = 1

p(1 − p)

∑
e∈EG

JA,G,p(e), (3.1)

where JA,G,p(e) := φG,p[1Aωe] − φG,p[A]φG,p[ωe].
In order to prove a sharp threshold result, we will use the following result, which is a straightforward consequence

of [10, Theorem 5.1] (the original result concerns a more general class of measures than that of the random-cluster
model). There exists a constant c = c(p, q) > 0 such that uniformly in G and A,

∑
e∈EG

JA,G,p(e) ≥ cφG,p[A](1 − φG,p[A]) log

(
c

max{JA,G,p(e) : e ∈ EG}
)

. (3.2)

In order to avoid confusion, let us mention that (3.2) is usually stated in terms of the notion of influence of an edge e

which is, up to constant, related to JA,p(e). At this point, (3.1) together with (3.2) imply

d

dp
φG,p[A] ≥ c · φG,p[A](1 − φG,p[A]) · fG,p(A), (3.3)

where

fG,p(A) := max

{
log

(
c

max{JA,G,p(e) : e ∈ EG}
)

,
∑
e∈EG

JA,G,p(e)

}
.

We plan to apply this inequality to our context by proving that for our event, the influence of any edge e is small. We
face a tiny technical difficulty: we are working directly in infinite volume with φp . For this reason, we introduce the
following lemma which states an integrate infinite-volume version of (3.3) (its proof can be skipped in a first reading).
Let JA,p(e) := φp[1Aωe] − φp[A]φp[ωe] and

fp(A) := max

{
log

(
c

sup{JA,p(e) : e ∈ EZ2}
)

,
∑

e∈E
Z2

JA,p(e)

}
∈ [0,∞].

Lemma 4. For every p ∈ (0,1), δ ∈ [0,1 − p), and every increasing event A depending on finitely many edges,

log

(
φp+δ[A]

1 − φp+δ[A] · 1 − φp[A]
φp[A]

)
≥ c

∫ p+δ

p

fs(A)ds. (3.4)
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Proof. For a positive integer n, let 
n := �−n,n�2. Choosing G = 
n and integrating (3.3) between p and p + δ

gives

log

(
φ
n,p+δ[A]

1 − φ
n,p+δ[A] · 1 − φ
n,p[A]
φ
n,p[A]

)
≥ c

∫ p+δ

p

f
n,s(A)ds.

The definition of the infinite-volume measure implies that the left-hand side converges to the left-hand side of (3.4).
Thus, Fatou’s lemma implies

log

(
φp+δ[A]

1 − φp+δ[A] · 1 − φp[A]
φp[A]

)
≥ c

∫ p+δ

p

lim inf
n→∞ f
n,s(A)ds,

so that it suffices to show that for any increasing event A depending on finitely many edges,

lim inf
n→∞ f
n,s(A) ≥ fs(A). (3.5)

First, fix k ≤ n and observe that

f
n,s(A) ≥
∑

e∈E
n

JA,
n,s(e) ≥
∑

e∈E
k

JA,
n,s(e)

since JA,
n,s(e) ≥ 0 by the FKG inequality. The definition of the infinite-volume measure implies that JA,
n,s(e)

tends to JA,s(e) as n tends to infinity. Letting n and then k tend to infinity implies

lim inf
n→∞ f
n,s(A) ≥ sup

k≥1

∑
e∈E
k

JA,s(e) =
∑

e∈E
Z2

JA,s(e). (3.6)

At this point, (3.5) (and therefore the claim) would follow from

lim inf
n→∞ f
n,s(A) ≥ log

(
c

sup{JA,s(e) : e ∈ EZ2}
)

, (3.7)

which we prove now. Let k ≤ n and e /∈ E
k
, the domain Markov property and the comparison between boundary

conditions (see [12]) imply that

JA,
n,s(e) = (
φ
n,s[1A|ωe = 1] − φ
n,s[A])φ
n,s[ωe]

≤ φ
k,s[A] − φs[A].

Now, since sup{JA,s(e) : e ∈ EZ2} > 0, we can use the definition of the infinite-volume measure to choose k large
enough so that

φ
k,s[A] − φs[A] ≤ sup
{
JA,s(e) : e ∈ EZ2

}
.

We deduce that

sup
n≥k

sup
{
JA,
n,p(e) : e ∈ E
n \ E
k

} ≤ sup
{
JA,s(e) : e ∈ EZ2

}
.

But the definition of the infinite-volume measure also implies that

lim sup
n→∞

sup
{
JA,
n,p(e) : e ∈ E
k

} ≤ sup
{
JA,s(e) : e ∈ EZ2

}
.
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Combining the last two displayed inequalities gives

lim inf
n→∞ f
n,s(A) ≥ log

(
c

lim supn→∞ sup{JA,
n,p(e) : e ∈ E
n}
)

≥ log

(
c

sup{JA,s(e) : e ∈ EZ2}
)

which is (3.7). �

The previous lemma will be combined with the following lemma. Let Ak = Ak(n) := Ch(k, n).

Lemma 5. For any n large enough,

3n∑
k=2n

fp(Ak) ≥ 1

6
n logn.

Before proving this lemma, let us show how it can be used to conclude the proof. Applying the above inequality to
the right-hand side of (3.4), we obtain

3n∑
k=2n

log

(
φp+δ[Ak]

1 − φp+δ[Ak] · 1 − φp[Ak]
φ1

p[Ak]
)

≥ cδ

6
n logn.

As a consequence, there exists k ∈ �2n,3n� such that

log

(
φp+δ[Ak]

1 − φp+δ[Ak] · 1 − φp[Ak]
φp[Ak]

)
≥ cδ

6
logn,

or after applying the exponential,

1

1 − φp+δ[Ak]φp[Ak] ≥ φp+δ[Ak]
1 − φp+δ[Ak] · 1 − φp[Ak]

φp[Ak] ≥ ncδ/6. (3.8)

The fact that A3n ⊂ Ak ⊂ A2n implies that

φp+δ[A2n] ≥ φp+δ[Ak]
(3.8)≥ 1 − 1

φp[Ak]n
−cδ/6 ≥ 1 − 1

φp[A3n]n
−cδ/6,

which is the claim of Proposition 2. We therefore only need to prove Lemma 5.

Proof of Lemma 5. Let e ∈ EZ2 . We have

JAk,p(e) = φp[1Ak
ωe] − φp[Ak]φp[ωe]

= φp[1τ(1,0)Ak
ωτ(1,0)e] − φp[Ak]φp[ωτ(1,0)e]

= JAk,p(τ(1,0)e) + φp

[
(1τ(1,0)Ak

− 1Ak
)ωτ(1,0)e

]
.

Since both 1τ(1,0)Ak
and 1Ak

are equal to 1 (respectively 0) on Ak+1 (respectively the complement of τ(1,0)Ak−1), we
deduce that∣∣JAk,p(e) − JAk,p(τ(1,0)e)

∣∣ ≤ φp[Ak−1] − φp[Ak+1]. (3.9)
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Since the sequence of events (Ak) is decreasing, we deduce that

3n∑
k=2n

φp[Ak−1] − φp[Ak+1] = φp[A2n−1] + φp[A2n] − φp[A3n] − φp[A3n+1] ≤ 2,

and therefore there exists a set K ⊂ �2n,3n� of cardinality at least n/2 such that for any k ∈K and any e ∈ EZ2 ,

∣∣JAk,p(e) − JAk,p(τ(1,0)e)
∣∣ (3.9)≤ φp[Ak−1] − φp[Ak+1] ≤ 4

n
.

Now, for k ∈K, one has that

fp(Ak) ≥ 1

3
logn (3.10)

as can be seen by dividing into the two following cases:
Case 1: For every e ∈ EZ2 , JAk,p(e) ≤ c

n1/3 . Then the definition of f gives

fp(Ak) ≥ 1

3
logn.

Case 2: There exists e ∈ EZ2 such that JAk,p(e) ≥ c

n1/3 . In such case, JAk,p(τ(s,0)e) ≥ c

2n1/3 for any edge τ(s,0)e

with s ≤ c
8n2/3. Therefore,

fp(Ak) ≥

 c

8 n2/3�∑
s=0

JAk,p(τ(s,0)e) ≥

 c

8 n2/3�∑
s=0

c

2
n−1/3 ≥ c2

16
n1/3 ≥ 1

3
logn.

provided n is large enough.
Summing over every k ∈ �2n,3n� gives

3n∑
k=2n

fp(Ak) ≥
∑
k∈K

fp(Ak)
(3.10)≥ 1

6
n logn.

�

Remarks and comments.

1. Sharp threshold theorems first emerged in the context of Boolean functions (see e.g. [4] and references therein).
A weak version of the method of sharp threshold appears in the work of Russo and it was used it in the context of
percolation [15,16]. Inequality (3.2) was first used for percolation by Bollobàs and Riordan [2,3]. It has since then
found many other applications, thanks in particular to the generalization [11] to the non-Bernoulli case. It was in
particular instrumental in [1,6].

2. Lemma 5 should hold without averaging, hence showing that Ch(k, n) always satisfies a sharp threshold. Un-
fortunately, in order to prove such a result, one should prove that φp[Ch(k, n)] and φp[Ch(k + 1, n)] are always
polynomially close to each others. Note that if such a result would be true, we could apply it to k = 3n and obtain
Proposition 2 with 3n instead of 2n on the left-hand side.

3. Historically, sharp threshold theorems were often proved by using events which are invariant under translations.
Such strategies required to work on a torus. In the case of models with dependencies, translating results obtained
with periodic boundary conditions to results in the plane were often very difficult. Lemma 5 enables to avoid this
difficulty.

4. We expect Lemma 5 to have further applications to the theory of sharp thresholds. Indeed, we assumed very little
about the events An, namely that they were forming a decreasing sequence of events and that An�τ(1,0)(An) ⊂
An−1 \ An+1. Other sequences of events satisfy similar properties (for instance Bn = {�−n,n�2 ↔ ∞} or even
Cn = {En ↔ F } where En is an increasing sequence of sets with F ∩ En =∅).
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5. The idea of proving that all JA,p(e) are small was already present in [11]. Following their strategy, JAn,p(e) would
be bounded by the probability of having an open path going to distance 2n. This bound could be used to prove
that pc ≤ √

q/(1 + √
q), but would be insufficient to prove Theorem 1. Furthermore, the proof of Lemma 5 is

sufficiently elementary to represent a good alternative to the strategy proposed in [11].

4. Proof of Proposition 3

In this section, Ac denotes the complement of the event A. For an increasing event A, let HAc(ω) be the Hamming
distance from ω to Ac in {0,1}EG , defined as the minimal number of edges that need to be turned to closed in order
to go from ω to a configuration in Ac. We use the following inequality, stated as a lemma.

Lemma 6. Let p ∈ [0,1], δ ∈ [0,1 − p], and A an increasing event depending on finitely many edges. Then

φp+δ[A] ≥ 1 − exp
(−4δφp[HAc ]). (4.1)

Proof. Let G be a finite subgraph of Z2 such that A is measurable with respect to the state of the edges of G. Let
|ω| = ∑

e∈EG
ωe. The facts that 1AcHAc = 0 and |ω| − HAc is increasing imply that

d

dp
log

(
1 − φG,p[A]) (3.1)= −φG,p[1A|ω|] − φG,p[A]φG,p[|ω|]

p(1 − p)(1 − φG,p[A])

= φG,p[1Ac |ω|] − φG,p[Ac]φG,p[|ω|]
p(1 − p)φG,p[Ac]

= φG,p[1Ac(|ω| − HAc)] − φG,p[Ac]φG,p[|ω|]
p(1 − p)φG,p[Ac]

(FKG)≤ φG,p[Ac]φG,p[|ω| − HAc ] − φG,p[Ac]φG,p[|ω|]
p(1 − p)φG,p[Ac]

≤ −4φG,p[HAc ]. (4.2)

Integrating (4.2) between p and p + δ and then taking the exponential, one obtain

1 − φG,p+δ[A]
1 − φG,p[A] ≤ exp

(
−4

∫ p+δ

p

φ1
G,s,q [HAc ]ds

)
≤ exp

(−4δφG,p[HAc ]).
In the second inequality we used that φG,s[HAc ] is increasing in s. We conclude the proof by using φG,p[A] ≥ 0 and
by letting G tend to infinity. �

In the of Proposition 3, a key ingredient will be the following lemma, which can be seen as a generalization of
(2.1). For a rectangle R = �−a, a� × �−b, b�, let

N(a, b) := max
{
n ≥ 1 : ∃n disjoint paths in R from {−a} × �−b, b� to {a} × �−b, b�

}
.

Note that N(a, b) is equal to HAc where A is the event that there exists a path from left to right in R (this follows from
Menger’s mincut-maxflow theorem).

As in (2.1), we have

φp

[
N(�n,n) ≥ 1

] ≥ φp

[
N(2n,n) ≥ 1

]2(�−2)+1

for every p ∈ [0,1], n ≥ 1, � ≥ 2. We prove below that this argument also works for several disjoint paths, and we can
replace the “1”s in the two events estimated above by an arbitrary number.
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Lemma 7. Let 0 ≤ p ≤ 1, n,u ≥ 1, � ≥ 2. We have

φp

[
N(�n,n) ≥ u

] ≥ φp

[
N(2n,n) ≥ u

]2(�−2)+1
.

Proof. We only prove it for � = 3. The more general statement above follows by induction. Consider the rectangles
Rj = �(−3 + j)n, (1 + j)n� × �−n,n�, j = 0,2, and R1 = �−n,n� × �−n,3n�. Let E be the event that both R0
and R2 are crossed horizontally by u disjoint paths, and R1 is crossed vertically by u disjoint paths. By the FKG
inequality, we have

φp[E] ≥ φp

[
N(2n,n) ≥ u

]3
.

Now, observe that on the event E, there must exist at least u disjoint paths crossing horizontally the rectangle R =
�−3n,3n� × �−n,n�. Indeed, if we close less than u edges in R then R0 and R2 remains crossed horizontally and
R1 remains crossed vertically, and therefore R is also crossed horizontally. Therefore, by Menger’s Mincut-Maxflow
theorem, there must exist at least u disjoint paths crossing horizontally the rectangle R. Thus we obtain

φp

[
N(3n,n) ≥ u

] ≥ φp[E] ≥ φp[p[
N(2n,n) ≥ u

]3
. �

We are ready to proceed with the proof of Proposition 3. We assume that

lim sup
n→∞

φp

[
Ch(2n,n)

] = 1, (4.3)

holds, and fix δ > 0.
We choose i0 ≥ 1 large enough such that for every i ≥ i0,

1 − exp

(
− δ2i−9

(i + 1)4

)
≥ 1

2
. (4.4)

Then, by (4.3), we can pick n0 ≥ 1 such that

φp

[
Ch(2n0, n0)

]4·22i0 ≥ 1

2
. (4.5)

The proof of Proposition 3 is based on the following lemma.

Lemma 8. For i ≥ 0 set pi = p + δ
∑

1≤j≤i
1
i2 , ci = 1 − 1

4

∑
1≤j≤i

1
i2 and Ki = 2in0. For every i ≥ i0, we have

φpi

[
N(2Ki,Ki) ≥ ci2

i
] ≥ 1/2. (4.6)

Before proving this lemma, let us explain how we finish the proof. First, observe that pi ≤ p + 2δ and ci ≥ 1/2 for
any i ≥ 0. Therefore, by monotonicity, (4.6) implies for every i ≥ i0,

φp+2δ

[
N(2Ki,Ki)

] ≥ 2i−2.

Since N(2Ki,Ki)(ω) is equal to HCc
h(2Ki,Ki), Lemma 6 implies that for i ≥ i0,

φp+3δ

[
Ch(2Ki,Ki)

] ≥ 1 − e−δ2i

.

Let n ≥ 2i0n0 and choose i such that 2in0 ≤ n < 2i+1n0. We have

φp+3δ

[
Ch(2n,n)

] ≥ φp+3δ

[
Ch(4Ki,Ki)

] (2.1)≥ (
1 − e−δ2i )5 ≥ 1 − e−c′n

for some constant c′ > 0 small enough. This implies for some constant c > 0, for every n ≥ 1

φp+3δ

[
Ch(2n,n)

] ≥ 1 − e−cn.
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Since δ is arbitrary, Proposition 3 follows readily. We now can concentrate on the proof of Lemma 8.

Proof of Lemma 8. We prove the result by induction on i ≥ i0. For i = i0, (2.1) implies that

φp

[
Ch(2Ki0, n0)

] ≥ φp

[
Ch(2n0, n0)

]4·2i0
.

Then, by considering the translates of Ch(2Ki0 , n0) by the vector (0, (2j − 1)n0) with −2i0−1 < j ≤ 2i0−1, we
deduce that

φp

[
N(2Ki0 ,Ki0) ≥ 2i0

] (FKG)≥ φp

[
Ch(2n0, n0)

]4·22i0 (4.5)≥ 1

2
.

Let us move to the induction step. Let i ≥ i0 such that (4.6) holds. First, by Lemma 7, we have

φpi

[
N(2Ki+1,Ki+1) ≥ ci2

i+1] ≥ 1

210
.

Note that (N(2Ki+1,Ki+1) − ci+12i+1) ∨ 0 is exactly equal to HN(2Ki+1,Ki+1)<ci+12i . Hence, the above equation im-
plies

φpi
[HN(2Ki+1,Ki+1)<ci+12i+1 ] ≥ 1

210
(ci − ci+1)2

i+1 = 1

211(i + 1)2
2i .

Lemma 6 applied to A = {N(2Ki+1,Ki+1) ≥ ci+12i+1} implies that

φpi+1

[
N(2Ki+1,Ki+1) ≥ ci+12i+1] ≥ 1 − exp

(
− (pi+1 − pi)2i−9

(i + 1)2

)
= 1 − exp

(
− δ2i−9

(i + 1)4

)
(4.4)≥ 1

2
.

which concludes the proof. �

Remarks and comments.

1. The argument is inspired by a similar yet less powerful argument introduced in [6].
2. In [1], exponential decay was proved in two steps. First, the cluster of the origin was proved to have finite moments

of any order. Then Theorem 5.60 of [12] implied the proof. Note that Theorem 5.60 uses the Domain Markov
property and is based on a non-trivial theorem of Kesten [9]. The argument presented here avoids the use of the
domain Markov property and is self-contained.

3. Equation (4.2) is usually stated (see [12, Theorem 2.56] or [13]) in terms of the number HA of edges that must be
switched to open in ω to be in A (this is the Hamming distance to A in {0,1}EG ), and reads

d

dp
log

(
φG,p[A]) ≥ φG,p[HA]

p(1 − p)
, (4.7)

which, when integrated between p − δ and p, gives

φG,p−δ[A] ≤ exp
(−4δφG,p[HA]).

This inequality is useful to prove that a probability is close to 0, while (4.1) is useful to prove that the probability
is close to 1.

5. Proof of Theorem 1

Consider the dual lattice (Z2)∗ = ( 1
2 , 1

2 )+Z
2. Every edge e of Z2 crosses exactly one edge of (Z2)∗ in its middle. We

denote this edge by e∗. Now, let ω∗ be the configuration on (Z2)∗ defined by ω∗
e∗ = 1 − ωe.
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Consider the measure φ0
p to be the random-cluster measure with edge-weights p and q , and free boundary condi-

tions on Z
2. The only properties of φ0

p that we will use are the following (we refer to [12] for a definition of the free
boundary conditions and the two following properties):

Stochastic domination. For any increasing event A, φ0
p[A] ≤ φ1

p[A].

Duality. If ω is sampled according to φ1
p , then ω∗ is sampled according to the measure φ0

p∗ translated by the vector

( 1
2 , 1

2 ), where

pp∗

(1 − p)(1 − p∗)
= q.

Let E be the event that there is an open path in ω from left to right in �0,2n + 1� × �0,2n�. Also introduce E∗ be
the event that there is an open path in ω∗ from top to bottom in � 1

2 ,2n + 1
2 � × �− 1

2 ,2n + 1
2 �. Since either E or E∗

occur, we deduce that

1 = φ1
p[E] + φ1

p

[
E∗] Duality= φ1

p[E] + φ0
p∗ [E].

For p = √
q/(1 + √

q), p∗ = p and therefore the stochastic domination implies that

φ1√
q/(1+√

q)

[
Ch(n,n)

] ≥ φ1√
q/(1+√

q)[E] ≥ 1

2
.

Theorem 2 implies that for any p >
√

q/(1 + √
q), there exists c > 0 such that for every n ≥ 1,

φ1
p

[
Ch(2n,n)

] ≥ 1 − e−cn. (5.1)

For every k, define Ak to be Ch(2k+1,2k) if k is even, and its image by the rotation of angle π/2 around the origin if k

is odd. If all the A� occur simultaneously for every � such that 2� ≥ n/2, then �−n,n�2 is connected to infinity. Thus,
there exists c′ > 0 such that for every n ≥ 1,

φ1
p

[
�−n,n�2 ←→ ∞] (FKG)≥

∏
�∈N:2�≥n/2

φ1
p[A�]

(5.1)≥
∏

�∈N:2�≥n/2

(
1 − e−c2�) ≥ 1 − e−c′n.

This implies that pc ≤ √
q/(1 + √

q).
Now, fix p <

√
q/(1 + √

q). Let x with ‖x‖ = n and let Ax be the event that x is connected to 0 in �−n,n�2. We
wish to bound the probability of Ax . Without loss of generality, we assume that the first coordinate of x equals n.
Then, define the event B = τ(−n,0)Ax ∩ Ax and B̃ its symmetric with respect to the y axis. We have that

φ0
p[B ∩ B̃] (FKG)≥ φ0

p[B]2 (FKG)≥ φ0
p[Ax]4.

Now, let C1 = τ(0,2n)B ∩ B̃ and C2, C3 and C4 the images by the rotations of angles π/2, π and 3π/2 around the
origin. We deduce that

φ0
p[C1 ∩ C2 ∩ C3 ∩ C4]

(FKG)≥ φ0
p[B ∩ B̃]4 ≥ φ0

p[Ax]16.

Yet, on C1 ∩ C2 ∩ C3 ∩ C4, we have that �−n,n�2 is not connected to infinity in ω∗. Using duality (note that p∗ ≥√
q/(1 + √

q)), the previous inequality implies that

φ0
p[Ax]16 ≤ 1 − φ1

p∗
[

�−n,n�2 ↔ ∞] (5.1)≤ e−cn, (5.2)

for a constant c > 0 depending on p and q only.
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Now, if 0 is connected to x, then 0 must be connected to a vertex on the boundary of the box of size ‖x‖ inside the
box itself. Hence, (5.2) implies that for any x,

φ0
p[0 ↔ x] ≤ 8‖x‖e−c‖x‖/16.

The previous inequality implies (1.1) for every p <
√

q/(1 + √
q) satisfying φ1

p = φ0
p . This can be extended to

every p <
√

q/(1 + √
q) using the fact that the set of values of p for which φ1

p �= φ0
p is at most countable (see [12,

Theorem 4.58]). Thus (1.1) holds for every p <
√

q/(1 + √
q). In particular it shows that pc ≥ √

q/(1 + √
q).

Remarks and comments. The inequality pc(q) ≥ √
q/(1+√

q) was already proved using an argument due to Zhang
in [12]. However, we did not use this inequality in the present argument.
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