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Abstract. We find a lower bound for the Hausdorff dimension of times that a Liouville Brownian motion spends in thick points
of the Gaussian Free Field, as a function of the thickness parameter. This completes a conjecture in Berestycki (Ann. Inst. Henri
Poincaré Probab. Stat. 51 (2015) 947–964), where the corresponding upper bound was shown, thereby charactarising the multi-
fractal spectrum of LBM.

In the course of the proof, we obtain estimates on the (Euclidean) local diffusivity exponent, which depends strongly on the

thickness of the starting point. For a Liouville typical point, it is 1/(2 − γ 2

2 ). In particular, for γ >
√

2, the path is Lebesgue –
almost everywhere differentiable, almost surely. However, depending on the thickness of the point it can be both locally sub- and
super-diffusive.

Résumé. Nous trouvons une limite inférieure pour la dimension Hausdorff de l’ensemble des temps qu’un mouvement brownien
de Liouville (LBM) passe dans les points épais du GFF, en fonction du paramètre d’épaisseur. Ceci démontre une conjecture de
Berestycki (Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015) 947–964), où la limite supé-rieure correspondante était obtenue,
caractérisant le spectre multifractal du LBM.

Au cours de la preuve, nous obtenons des estimations sur l’exposant local de diffusivité (euclidien), qui dépend fortement de

l’épaisseur du point de départ. Pour un point Liouville typique, nous trouvons 1/(2 − γ 2

2 ). Notamment, pour γ >
√

2, la trajectoire
est Lebesgue – presque partout dérivable, presque sûrement.
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1. Introduction

The goal of this paper is to study the multifractal nature of Liouville Brownian motion. This is a process which was
introduced in [6] and [10] as the canonical diffusion in planar Liouville quantum gravity, also known as Liouville
quantum field theory. (In fact, it is a diffusion in the geometry defined by the exponential of the Gaussian free field,
but locally these two geometries are absolutely continuous with respect to each other. See Remark 1.7 for more detail.)
Liouville quantum gravity and its geometry have themselves been at the centre of remarkable developments recently.
We point out, among many other works, [7,9,22].

Liouville Brownian motion (LBM for short) can be thought of as the canonical diffusion in this geometry, and is
also a useful tool for exploring it. In fact, Watabiki already considered the object (in a non rigorous way) in an attempt
to describe the metric and fractal structure of Liouville quantum gravity [27]. This led him to propose a formula for
the Hausdorff dimension of the random metric space. In the papers [6,10], the authors rigorously construct LBM. The
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Fig. 1. Simulation of LBM on the surface of a GFF.

theory is further developed in [11] where the heat kernel of LBM is constructed which allows, amongst other things,
for a calculation of the spectral dimension in [24]. In [7], the authors use the heat kernel of LBM to give a new proof
of KPZ relation, which suggests that Liouville Brownian motion can be used for exploring the multifractal nature of
Liouville quantum gravity. This is precisely the purpose of the present paper, as the main result is a calculation of the
multifractal spectrum of LBM. An example of the LBM exploring the surface of the GFF can be seen in Figure 1.

The multifractal nature of the problem presents a significant challenge compared to the monofractal situation. For
instance, in the Euclidean case the Hölder exponent of Brownian motion is everywhere 1/2 (see for example [20]).
In contrast, we will see that Liouville Brownian motion has local Hölder exponents (with respect to the Euclidean
metric) which depend crucially on the thickness of the point where it is started. In particular, a single LBM can be
both sub- and super-diffusive, locally.

A related problem is that of heat kernel estimates. On deterministic monofractals, heat kernel estimates can be
made very precise. See [3] for an example of Brownian motion and its heat kernel on the Sierpinski gasket. However,
getting good estimates for the heat kernel of Liouville Brownian motion appears to be much more difficult. The
spectral dimension was found in [24], and the current best bounds are obtained in [2,19].

The general structure of the paper is as follows. In the remainder of this section, we state the main results and
try to give the intuitive idea behind the proof. In Section 2 we will briefly introduce the objects and definitions we
use throughout the paper, providing references for the reader should they need more detail. In Section 3.1 we show
that the quantum clock process has finite moments around times when the Brownian motion is conditioned to be
in a thick point, and derive crude tail estimates for the quantum clock from those bounds. In Section 3.2 we use a
quantitative version of Kolmogorov’s continuity argument to obtain a concentration result for the harmonic projection
of the Gaussian Free Field onto a disc. The concentration result serves as an analogue of the scaling relation enjoyed
by exactly stochastically scale invariant fields. In Section 3.3 we combine the results from the previous sections to
show Hölder like properties of the quantum clock process Fγ . Finally, in Sections 3.4 and 3.5, we complete the proof
of the main theorems, using the regularity results obtained in Section 3.3.

1.1. Statement of results

Let h be a zero boundary Gaussian Free Field, defined in a simply connected proper domain D ⊂ C. One of the
difficulties of working with a GFF is that it is not defined as a function, so we cannot say what value h(z) takes, for
z ∈ D. However, it is regular enough that we can talk about its average value on a set. We will usually take that set to
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be the circle of radius ε > 0 centred at a point z ∈ D, and call that average hε(z). Let {hε(z); ε > 0}z∈D be the circle
averages of h. We will define both the GFF and its averages more precisely in Section 2.1.

Recall that Hausdorff dimension of a set E is defined as

dimH (E) = inf
{
s ≥ 0 : Hs(E) = 0

}
,

where Hs(E) is the s-Hausdorff measure of E. (We will present the definition more thoroughly in Section 2.4.) For
α > 0, the set Tα of α-thick points is given by

Tα =
{
z ∈ D : lim

ε↓0

hε(z)

log 1
ε

= α

}
.

By a theorem in [15], it is known that the (Euclidean) Hausdorff dimension of Tα is

dimH (Tα) = max

(
0,2 − α2

2

)

almost surely.
Let 0 < γ < 2. We will denote by Zγ a γ -Liouville Brownian motion, formally defined as follows. Let B be

a Brownian motion killed upon leaving D, started from a single, prescribed point. We define its (quantum) clock
process Fγ to be

Fγ (t) =
∫ t

0
eγh(Bs)− γ 2

2 E[h(Bs)
2] ds,

and the LBM is given by Z
γ
t = B

F−1
γ (t)

. It is not trivial to make sense of this definition. This was done in [6] and [10],
where further properties were also proved. We recall the construction more precisely in Section 2.3.

The main goal of this paper is to prove the following bound:

Theorem 1.1. Fix α,γ ∈ [0,2), and let Zγ denote a γ -Liouville Brownian motion. Then, almost surely,

dimH

({
t : Zγ

t ∈ Tα

})≥ 1 − α2

4

1 − αγ
2 + γ 2

2

,

where dimH refers to the Hausdorff dimension.

The proof of Theorem 1.1 follows similar lines as the proof of Theorem 4.1 in [23]. (We point out, however,
that many of these techniques originate in the papers [4,5] by Barral.) Long range correlations introduced by the
Brownian motion and the lack of exact stochastic scale invariance of the field create a few more technical difficulties
to overcome. The authors of [23] proved their result for an exactly stochastically scale invariant field, and claimed
that the result generalised from that to all log-correlated Gaussian fields. However, we were also unable to follow the
generalisation of their proof, which used a non-standard application of Kahane’s convexity inequality; instead we rely
on Lemma 3.5, a quantitative version of Kolmogorov’s continuity argument, as well as the Markov property of the
GFF to replace scale invariance.

Theorem 1.1, combined with Theorem 1.4 in [6], gives us the following corollary:

Corollary 1.2. Fix α,γ ∈ [0,2), and let Zγ denote a γ -Liouville Brownian motion. Then, almost surely,

dimH

({
t : Zγ

t ∈ Tα

})= 1 − α2

4

1 − αγ
2 + γ 2

2

.

Similar results for diffusions on deterministic fractals were given in [12].
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The key to our proof is good estimates on the regularity of the clock Fγ around α-thick points. For a given α, we
do not get the regularity results around all of the α-thick points, but we do get it around almost all of them, for the
correct choice of measure. If we define the measure μα by setting, for s ≤ t ,

μα

([s, t])= Fα(t) − Fα(s),

then, by [6], μα is supported on {t : Bt ∈ Tα} and we will show that Fγ behaves polynomially for μα-almost every t ,
in the following sense:

Theorem 1.3. Fix α,γ ∈ [0,2). Then, for μα-almost every t > 0, the change of time Fγ has the following growth
rate:

lim
r→0

log |Fγ (t) − Fγ (t + r)|
log |r| = 1 − αγ

2
+ γ 2

4
,

almost surely.

When we combine the regularity of the clock Fγ with known regularity properties of Brownian motion, we are
able to find a bound on the small time behaviour of LBM. Let us call Mα the Liouville measure constructed from a
GFF with parameter α, which is defined as the weak limit (in probability)

Mα(dz) = lim
ε↓0

εα2/2eαhε(z) dz.

The measure Mα is almost surely supported on the set of α-thick points and so, if we choose a point in D according
to Mα , it will almost surely be an α-thick point of the GFF.

Corollary 1.4. Fix α,γ ∈ [0,2). Suppose that the starting point of a γ -Liouville Brownian motion is chosen according
to Mα , i.e. Z

γ

0 ∼ Mα . Then

lim sup
t↓0

log |Zγ
t |

log t
= 1

2 − αγ + γ 2

2

almost surely.

Remark 1.5. When α = γ (which, from a result in [6], is the case for Lebesgue-almost all times), the diffusivity

exponent is 2 − γ 2

2 . Also observe that a single process can be both super-diffusive (e.g. when α = 0) and sub-diffusive
(e.g. when α = γ ).

Finally, we will show the following result about the differentiability of a Liouville Brownian motion, for certain
values of the parameter γ .

Corollary 1.6. Let γ ∈ (
√

2,2). Then the γ -Liouville Brownian motion Zγ is Lebesgue-almost everywhere differen-
tiable with derivative zero, almost surely.

Remark 1.7. We now give more details on the between the geometry of Liouville quantum gravity and that of the
exponential of the Gaussian free field. Liouville quantum gravity geometry is rigorously constructed on the sphere
in [8] and on the unit disc in [16]. We present a brief simplified overview of the planar domain case here, ignoring
boundary effects which add a few complications. We want to construct a random metric g on a proper subdomain
D ⊂ C, which can be written as g = eγhĝ, where ĝ is a smooth reference measure and h : D → R is a random field.
The field h has a law which we can understand heuristically by the equation, defined for suitable functionals F ,

E
[
F(h)

]= 1

Z

∫
F(h)e−S(h,ĝ) dh, (1.1)
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where the measure dh is a formal uniform measure on some set of maps h : D → R, and Z is a normalising constant.
The exponential weighting factor S is the Liouville action, given by

S(h, ĝ) = 1

4π

∫
D

(∣∣∂ĝh
∣∣2 + QRĝh + 4πμeγh

)
λĝ, (1.2)

where ∂ĝ , Rĝ and λĝ are the gradient, Ricci scalar curvature and volume form in the metric ĝ, the constant Q is
given by Q = 2/γ + γ /2, and μ ≥ 0 is a parameter which plays the role of the cosmological constant. When we take
ĝ = dz2, the Euclidean metric, then (1.2) reduces to

S
(
h,dz2)= 1

4π

∫
D

(|∇h|2 + 4πμeγh
)
dz.

Hence the exponential of the GFF, on which this paper is focussed, corresponds to the case μ = 0. Indeed, in that
case (1.1) formally defines a GFF. In general, the law of h is weighted by e−4πμMγ (D), the exponential of (a constant
times) the total quantum mass of the domain. It is therefore locally absolutely continuous with respect to a GFF, hence
the results of this paper remain valid for “true” LBM.

1.2. Intuition behind the proof

Since we are looking at the dimension of times that a γ -LBM spent in α-thick points, it helps us to first note the
following lemma. It is not used in the proofs of the main theorems, but it provides motivation for them.

Lemma 1.8. Let α ∈ [0,2).The Hausdorff dimension of time that a Brownian motion B spends in the α-thick points
of a GFF is given by

dimH

({t : Bt ∈ Tα})= 1 − α2

4

almost surely.

Proof. Let [B] denote the path of the Brownian motion B . Kauffman’s dimension doubling formula for Brownian
motion (see, for example, Theorem 9.28 of [20]), tells us that

2 dimH

({t : Bt ∈ Tα})= dimH

(
Tα ∩ [B])

almost surely. But then, since B is independent of the GFF and hence Tα , by a theorem due to Hawkes [13,14] (clearly
stated and proved as Corollary 5.2 in [21]), we know that

dimH

(
Tα ∩ [B])= dimH (Tα)

almost surely. The result in [15] gives us that

dimH (Tα) = 2 − α2

2

almost surely, which completes our proof. �

Recall the result that, if a function f is β-Hölder continuous, then for any suitable set E we have the bound

dimH

(
f (E)

)≤ 1

β
dimH (E). (1.3)

Let us call the set Tα = {t : Bt ∈ Tα}. Then notice that Fγ (Tα) is the set of time spent by γ -Liouville Brownian
motion in α-thick points. We will show that the inverse of the change of time, F−1

γ is 1

1− αγ
2 + γ 2

4

-Hölder continuous
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around α thick points, allowing us to see that

1 − α2

4
= dimH (Tα) = dimH

(
F−1

γ

(
Fγ (Tα)

))≤ (1 − αγ

2
+ γ 2

4

)
dimH

(
Fγ (Tα)

)
,

where the final inequality comes from a result very similar to that in (1.3). (We cannot use that result exactly, since the
Hölder continuity property of F−1

γ is restricted to a subset of its domain. We will discuss this further in Section 2.4.)

Rather than showing the regularity of F−1
γ directly, we will find properties of Fγ and use them to deduce results

about the inverse. However, showing the regularity properties of Fγ around a single thick point, while useful, is not
enough. We want to look at the regularity of Fγ simultaneously around all α-thick points that the Brownian motion
B visits. This is where we use the upper bound that was previously found in [6]. The upper bound is enough to show
that a γ -LBM, Zγ , spends Lebesgue-almost all of its time in γ -thick points, almost surely. Our trick, therefore, is to
construct two Liouville Brownian motion processes simultaneously on the same underlying path B; one will use the
parameter γ , the other will use the parameter α. Then, if we sample a time uniformly at random and look at where the
process Zα is, it will almost surely be an α-thick point. Since the process is constructed using the Brownian motion
B , we know that B must pass through that particular α-thick point at some time t , say. But then we know that Fγ (t)

corresponds to a time that Zγ is in an α-thick point.
Using this procedure, we can construct a measure on the (Euclidean) set of times that Zγ spends in α-thick points.

We can then sample a time at random from this measure, and look at the regularity properties of Fγ around that time.
This idea is more thoroughly fleshed out in Section 3.3.

2. Setup

We will now collect a few of the definitions and results that we use throughout Section 3. Throughout, we let D be
a simply connected, proper domain in C. By conformal invariance of Liouville Brownian motion (including its clock
process) we can assume without loss of generality that D is bounded. (See Theorem 1.3 in [6].)

2.1. Gaussian free field

We will briefly introduce the Gaussian Free Field here, mostly to clarify our notation. For more detail see, for example,
[26] or the introduction of [9].

Before we can define the GFF we need to define the Dirichlet inner product. For any two smooth, compactly
supported functions φ and ψ defined on D, we define the Dirichlet inner product as

〈φ,ψ〉∇ = 1

2π

∫
D

∇φ(z) · ∇ψ(z)dz.

We can now define the Gaussian Free Field.

Definition 2.1. Let H 1
0 (D) be the Sobolev space given by the completion under the Dirichlet inner product of smooth,

compactly supported functions defined on D. The Gaussian Free Field is a centered Gaussian process on the space
H 1

0 (D).

A consequence of the Hilbert space definition given above is that for any two functions f,g ∈ H 1
0 (D), the random

variables 〈h,f 〉∇ and 〈h,g〉∇ are centred Gaussian random variables with covariance

cov
(〈h,f 〉∇ , 〈h,g〉∇

)= 〈f,g〉∇ .

This means that we can define a regularisation of the GFF, and we know about its covariance properties.

Definition 2.2. The average of the GFF h on a circle of radius ε, centred at a point z ∈ {z′ ∈ D : dist(z′, ∂D) > ε} is
defined as as

hε(z) = 〈h, ξz
ε

〉
∇ .
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The function ξz
ε is given by

ξz
ε (y) = − log

(|z − y| ∨ ε
)+ φz

ε(y), (2.1)

where φz
ε is harmonic in D and is equal to log(|z − y| ∨ ε) for y ∈ ∂D.

The reason that we think of the above definition as giving the circle average of the GFF is that, as a distribution,
we have that −�ξz

ε = 2πνz
ε , where νz

ε is the uniform distribution on the circle centred at z with radius ε. Therefore,
integration by parts gives us〈

h, ξz
ε

〉
∇ = 〈h, νz

ε

〉
,

where 〈·, ·〉 refers to the standard L2 inner product. We will use a continuous modification of the circle average process
{hε(z); ε > 0}z∈D throughout. For more detail, see Propositions 3.1 and 3.2 in [9].

The following lemma will be useful in Section 3.2, as it allows us to use properties of the log function rather than
relying on the abstract definition of E[hε(x)hη(y)].

Lemma 2.3. Let h be a zero boundary GFF defined on a simply connected domain D. For any subdomain D̃ which
is compactly contained in D, there exists a constant C > 0 such that, for all 0 < ε,η ≤ dis t (D̃, ∂D) with η ≤ ε,

log
1

|x − y| + ε
− C ≤ E

[
hε(x)hη(y)

]≤ log
1

|x − y| + ε
+ C

for all x, y ∈ D̃.

Proof. First note that, by definition, E[hε(x)hη(y)] = 〈ξx
ε , ξ

y
η 〉∇ . Integration by parts lets us write that as 〈ξx

ε , ξ
y
η 〉∇ =

〈ξx
ε , ν

y
η 〉. Since x, y ∈ D̃ are uniformly bounded away from ∂D, D is a bounded domain, and φx

ε (defined in (2.1)) is
harmonic in D̃, we know that there exists a constant C such that

−C ≤ φx
ε (y) ≤ C (2.2)

for all x, y ∈ D̃ and ε > 0. So, to complete the proof, it is sufficient to find bounds on 〈− log(|x − ·| ∨ ε), ν
y
η 〉. To that

end, we claim that, for all x, y ∈ D and u ∈D such that |u − y| ≤ η, we have

1

3

(|x − y| + ε
)≤ |x − u| ∨ ε ≤ |x − y| + ε. (2.3)

The right-hand inequality follows directly from the triangle inequality. For the left-hand inequality, note that

1

3

(|x − y| + ε
)≤ 1

3
|x − u| + 2

3
ε

by the triangle inequality. Then, if |x − u| ≤ ε, we see that

1

3
|x − u| + 2

3
ε ≤ ε = |x − u| ∨ ε,

and if |x − u| > ε, we see that

1

3
|x − u| + 2

3
ε ≤ |x − u| = |x − u| ∨ ε.

Now, the inequalities in (2.3) imply that, for all x, y ∈ D̃ and u ∈ ∂B(y,η), there exists some constant C̃ such that

− log
(|x − y| + ε

)− C̃ ≤ − log
(|x − u| ∨ ε

)≤ − log
(|x − y| + ε

)+ C̃.
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When we average over u ∈ ∂B(y,η) therefore, we find that

− log
(|x − y| + ε

)− C̃ ≤ 〈− log
(|x − ·| ∨ ε

)
, νz

η

〉≤ − log
(|x − y| + ε

)+ C̃,

which, when we combine it with (2.2), completes the proof. �

One of the properties of the Gaussian Free Field which we will use is the domain Markov property. It roughly states
that, given a subdomain U ⊂ D, the GFF h on D can be decomposed as the sum of a zero boundary GFF h̃ on U and
the difference, hhar = h − h̃, which is independent of h̃ and harmonic on U .

Proposition 2.4 (Markov property). Let U ⊂D be a subdomain of the simply connected domain D. Let h be a GFF
on D. Then we can write h = hhar + h̃, where

1. hhar and h̃ are independent,
2. h̃ is a zero boundary GFF on U and zero on D \ U ,
3. hhar is harmonic on U and agrees with h on D \ U .

Note 2.5. We will often refer to hhar in the decomposition above as “the harmonic projection of h onto U .”

We now define the set of α-thick points of the field h. We can think of these as a kind of “level set” of the field. We
are interested in how much time the Liouville Brownian motion spends in these points, for α ∈ [0,2) in particular.

Definition 2.6. The set of α-thick points, Tα is

Tα =
{
z ∈ D : lim

ε↓0

hε(z)

− log ε
= α

}
.

2.2. Scale invariant Gaussian field

To help with calculations in Section 3.1, we introduce a centred Gaussian field Y defined on the whole complex plane,
following the presentation of [23]. We use this particular log-correlated field because it has the exact stochastic scale
invariance property. A great deal more information about log-correlated Gaussian fields and the measures created
from them (those of Gaussian multiplicative chaos) can be found in [17,25] for example, and more about the scaling
relations which log-normal random measures satisfy can be found in [1].

Informally, we define the field Y to be a centered Gaussian field on C with covariance function

E
[
Y(x)Y (y)

]= log+
T

|x − y| + C

for positive constants T and C. For simplicity, we will take T = 1 and C = 0 throughout. Although we want to view
Y as a random field (and have called it a field so far) it is not defined pointwise, so strictly we should be calling it a
distribution rather than a field. We will always be using regularisations of Y , however, which avoids this problem. We
give the precise definition using the white noise decomposition of Y :

Definition 2.7. Let (Yε)ε∈(0,1] be the white noise decomposition of the distribution Y , which has correlation structure

E
[
Yε(x)Yε(y)

]=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |x − y| > 1,

log 1
|x−y| if ε ≤ |x − y| ≤ 1,

log 1
ε

+ 2(1 − |x−y| 1
2

ε
1
2

) if |x − y| ≤ ε.

The following lemma is useful in the study of properties Gaussian multiplicative chaos locally in Y .
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Lemma 2.8 (Exact stochastic scale invariance). For all λ < 1, the field Y satisfies the following scaling relation:

(
Yλε(λx)

)
|x|≤ 1

2

d= (Yε(x)
)
|x|≤ 1

2
+ �λ,

where �λ is a centred Gaussian random variable with variance log 1
λ

, independent of the field Y .

2.3. Liouville Brownian motion

The Liouville Brownian motion is defined as a time change of a Brownian motion, with the path chosen independently
from the field h. We will start the Brownian motion at the origin (assuming 0 ∈ D), and run it until some a.s. finite
stopping time T . The following definition is non-trivial: for more details about the almost sure existence of the limit
and other properties, see [6,10].

Definition 2.9. Let B be a planar Brownian motion, independent of the field h. For ε > 0 and γ ∈ [0,2), define the
regularised time change Fγ,ε by

Fγ,ε(t) =
∫ t∧T

0
eγhε(Bs)− γ 2

2 E[hε(Bs)
2] ds.

The time change Fγ is defined as the limit

Fγ (t) = lim
ε↓0

Fγ,ε(t).

Definition 2.10. Using the same Brownian motion B as in Definition 2.9, we define the γ -Liouville Brownian motion
(γ -LBM for short) Zγ as

Z
γ
t = B

F−1
γ (t)

.

Note 2.11. If we call Tα = {t ≥ 0 : Bt ∈ Tα} the set of times that the Brownian motion B spends in α-thick points, the
set of times that the γ -LBM Zγ spends in α-thick points is the image, under the map Fγ , of the times that B spends
in them, i.e. Fγ (Tα) = {t ≥ 0 : Zγ

t ∈ Tα}.
As the Brownian path B of the Liouville Brownian motion Zγ is independent of the Gaussian Free Field h, it will

be useful to decompose the probability measure P as

P= PB ⊗ Ph.

Decomposing P in this way will let us consider expectations on events which depend only on the field h or the path B .

2.4. Hausdorff dimension

We will now recall the definition of the Hausdorff of a set, and collect some useful tools for finding upper and lower
bounds for the Hausdorff dimension. Since we will be working in either R or R2, we will not state the definitions in
their full generality. For more detail see, for example, Chapter 4 of [20].

Definition 2.12. Let E ⊂R
n. For s ≥ 0 and δ > 0 we define

Hs
δ(E) = inf

{ ∞∑
i=1

|Ei |s : E ⊂
∞⋃
i=1

Ei and |Ei | < δ ∀i ≥ 1

}
,

where |Ei | = sup{|x − y| : x, y ∈ Ei} is the diameter of the set Ei . Then the limit

Hs(E) = lim
δ↓0

Hs
δ(E)

is the s-Hausdorff measure of E.
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Definition 2.13. The Hausdorff dimension of a set E ⊂Rn is defined as

dimH (E) = inf
{
s ≥ 0 : Hs(E) = 0

}
.

One tool for finding bounds on the Hausdorff dimension of a set is to use Hölder continuity properties of functions.
Indeed, if f : Rn → R

m is β-Hölder continuous, then for any set E ⊂R
n we have

dimH

(
f (E)

)≤ 1

β
dimH (E), (2.4)

where f (E) = {f (x) : x ∈ E} is the image of E under f . The assumption of Hölder continuity is too strong for our
purpose. We now define what we call a β-Hölder-like function, and show that the property is strong enough that the
inequality in (2.4) still holds.

Definition 2.14. Let f : R → R be a continuous function, and let E ⊂ R. We say that f is β-Hölder-like on E if
there exist constants C,R > 0 such that∣∣f (x) − f (x + r)

∣∣≤ Crβ

for all r ∈ [0,R) and x ∈ E.

Proposition 2.15. Let E ⊂ R, and suppose that f : R → R is increasing and β-Hölder-like on E. Then we have the
bound

dimH

(
f (E)

)≤ 1

β
dimH (E).

Proof. Suppose that the radius and multiplicative constant for the Hölder-like property of f are R and C respectively.
Let s > dimH (E), and let ε > 0. Since Hs(E) = 0, we know that there exists some δ0 such that Hs

δ(E) ≤ ε for all
δ ∈ (0, δ0).

Fix a particular δ ∈ (0, δ0 ∧ R). Then we can find a cover {Ei} of E with |Ei | < δ for all i such that

∞∑
i=1

|Ei |s < ε.

Without loss of generality, we may assume that the intersection E ∩ Ei is non-empty. Therefore, for each Ei we can
define an interval Ii = [ai, bi], where ai = inf{Ei ∩E} and bi = sup{Ei ∩E}. Then certainly |Ii | < δ for all i, the sets
{Ii} cover E and

∑ |Ii |s < ε.
As f is increasing, we know that∣∣f (Ii)

∣∣= ∣∣f (ai) − f (bi)
∣∣.

Now, ai is a limit point of Ei ∩ E, so we can find a sequence {xn} ⊂ Ei ∩ E such that xn ↓ ai as n → ∞. Since each
xn ∈ E, the β-Hölder-like property of f , tells us that∣∣f (Ii)

∣∣≤ ∣∣f (ai) − f (xn)
∣∣+ ∣∣f (xn) − f (bi)

∣∣≤ ∣∣f (ai) − f (xn)
∣∣+ C|xn − bi |β.

So, letting n → ∞, and recalling that f is continuous (by assumption), we see that∣∣f (Ii)
∣∣≤ C|ai − bi |β = C|Ii |β.

Therefore, we can deduce that

∞∑
i=1

∣∣f (Ii)
∣∣ s

β ≤ C

∞∑
i=1

|Ii |s < Cε.
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Since {f (Ii)} covers f (E), we have shown that

H
s
β

2δ

(
f (E)

)
< Cε.

We may now let δ ↓ 0 and then ε ↓ 0 to see that H
s
β (f (E)) = 0, and hence

dimH

(
f (E)

)≤ s

β
.

Now letting s ↓ dimH (E) gives the desired result. �

3. Proofs of the main theorems

One of the tools we use in the proof of the lower bound is the exact stochastic scale invariance of the auxiliary field Y .
In order to do that, we need to ensure that we consider times when the Brownian motion B does not stray too far from
the origin. Therefore, we define the stopping time τ = inf{t ≥ 0 : Bt /∈ B(0, 1

2 )}, where B(0, 1
2 ) is the ball of radius 1

2
centred at the origin. For simplicity, we will assume that our domain contains the ball of radius 1

2 , B(0, 1
2 ) ⊂D.

3.1. Moments of Fγ around a thick point

We first need to obtain estimates on the moments of the time change Fγ around α-thick points of the free field. We
will use these bounds in Section 3.3 to derive Hölder-like properties of Fγ .

Since the law of the GFF conditional on the origin being a thick point is that of an independent zero boundary

GFF plus a log singularity, h(z)
d= h̃(z) − α log |z|, the effect on the measure is to divide by |z|αγ . That is why we are

thinking the results in this section as results about Fγ close to thick points.

Proposition 3.1 (A positive moment is bounded). Let α,γ ∈ [0,2). And let p ∈ (0,1) satisfy ξ(p)−αγp > 0, where

ξ(p) =
(

2 − γ 2

2

)
p − γ 2

2
p2.

Then there exists a finite constant Cp such that

sup
ε∈[0,1)

E

[(∫ τ

0

eγhε(Bs)− γ 2

2 E[hε(Bs)
2]

(|Bs | + ε)αγ
ds

)p]
≤ Cp.

Proof. By Kahane’s convexity inequality (Lemma 2 in [17]), taking the measure ν(ds) = ds
(|Bs |+ε)αγ , it is sufficient to

prove the proposition for the scale invariant field Y .
Let σ be the first time that B leaves the disc of radius 1

2
√

2
. Then, by subadditivity of x �→ xp for p ∈ (0,1), we

know that

E

[(∫ τ

0

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p]
≤ E

[(∫ σ

0

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p]

+E

[(∫ τ

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p]
, (3.1)

and it is sufficient to find a uniform upper bound for the right-hand side.
We will first find a uniform bound for the second term on the right-hand side of (3.1). Let R < 1

2
√

2
be fixed, which

we will choose later, and define the time τR = inf{t > σ : |Bt | ≤ R} that the Brownian motion returns to the ball of
radius R after it reaches the circle of radius 1

2
√

2
.
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On the event {τR > τ }, we know that |Bt | > R for all t ∈ (σ, τ ). Therefore we find the bound

E

[(∫ τ

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p

1{τR>τ }
]

≤ R−αγp
E

[(∫ τ

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2] ds

)p

1{τR>τ }
]

≤ R−αγp
E

[(∫ τ

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2] ds

)p]
. (3.2)

Now, the L1 norm of the regularised change of time process is uniformly bounded in ε and, since p < 1, the expecta-
tion of the pth power of it on the event must also be uniformly bounded in ε. We will call the uniform bound M .

On the event {τR < τ } we will split up the interval (σ, τ ) into (σ, τR) and (τR, τ ), using the sub-additivity of
x �→ xp as before to find that

E

[(∫ τ

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p

1{τR<τ }
]

≤ E

[(∫ τR

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p

1{τR<τ }
]

+E

[(∫ τ

τR

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p

1{τR<τ }
]
. (3.3)

Consider the first term on the right-hand side of (3.3). Similarly to before, we know that |Bt | > R for all t ∈ (σ, τR),
and so we can bound the expectation uniformly by

E

[(∫ τR

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p

1{τR<τ }
]

≤ R−αγp
E

[(∫ τR

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2] ds

)p

1{τR<τ }
]

≤ R−αγp
E

[(∫ τ

σ

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2] ds

)p]

≤ R−αγpM. (3.4)

To deal with the interval (τR, τ ), let W be another Brownian motion, with W0 = BτR
and which, for t > 0, evolves

independently of B . Let T = inf{t > 0 : Wt /∈ B(0, 1
2 )}. Then, by the strong Markov property of Brownian motion, we

see that

(∫ τ

τR

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p

1{τR<τ }
d=
(∫ T

0

eγYε(Ws)− γ 2

2 E[Yε(Ws)
2]

(|Ws | + ε)αγ
ds

)p

1{τR<τ },

and that
∫ T

0
e
γYε(Ws )− γ 2

2 E[Yε(Ws )2]
(|Ws |+ε)αγ ds is independent of 1{τR<τ }. Therefore, we see that

E

[(∫ τ

τR

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p

1{τR<τ }
]

= E

[(∫ T

0

eγYε(Ws)− γ 2

2 E[Yε(Ws)
2]

(|Ws | + ε)αγ
ds

)p]
P[τR < τ ]. (3.5)
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Because we started W closer to the boundary of B(0, 1
2 ) we know that, on average, it has a shorter lifespan than B ,

and so

E

[(∫ T

0

eγYε(Ws)− γ 2

2 E[Yε(Ws)
2]

(|Ws | + ε)αγ
ds

)p]
≤ E

[(∫ τ

0

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p]
. (3.6)

Combining (3.5) and (3.6) gives us the bound

E

[(∫ τ

τR

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p

1{τR<τ }
]

≤ E

[(∫ τ

0

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p]
P[τR < τ ]. (3.7)

Now, consider the first term on the right-hand side of (3.1). Scaling time by a factor of 1
2 and space by a factor of

1√
2

gives

∫ σ

0

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds = 2−1

∫ 2σ

0

eγYε(Bu/2)− γ 2

2 E[Yε(Bu/2)
2]

(|Bu/2| + ε)αγ
du

d= 2−(1− αγ
2 )

∫ τ̃

0

e
γYε(

1√
2
B̃u)− γ 2

2 E[Yε(
1√
2
B̃u)2]

(|B̃u| + ε
√

2)αγ
du

d= 2−(1− αγ
2 + γ 2

4 )e
γ�√

2

∫ τ̃

0

e
γY

ε
√

2(B̃u)− γ 2

2 E[Y
ε
√

2(B̃u)2]

(|B̃u| + ε
√

2)αγ
du,

the last line coming from Lemma 2.8, where B̃ is an independent Brownian motion, τ̃ is the time that B̃ leaves the
disc of radius 1

2 , and �√
2 is a centred Gaussian random variable with variance log

√
2. Therefore, when we take the

pth moment, we find

E

[(∫ σ

0

eγYε(Bs)− γ 2

2 E[Yε(Bs)
2]

(|Bs | + ε)αγ
ds

)p]

= 2
γ 2

4 p2−(1− αγ
2 + γ 2

4 )p
E

[(∫ τ̃

0

e
γY

ε
√

2(B̃u)− γ 2

2 E[Y
ε
√

2(B̃u)2]

(|B̃u| + ε
√

2)αγ
du

)p]
. (3.8)

Let us define a sequence of scales by setting εn = 2− n
2 , for n ∈ N, and call the expectation

En = E

[(∫ τ

0

eγYεn (Bs)− γ 2

2 E[Yεn (Bs)
2]

(|Bs | + εn)αγ
ds

)p]
.

Using this notation, we substitute the scaling relation in (3.8), the uniform bounds in (3.2) and (3.4), and the inequality
in (3.7) into (3.1), to see that, for n ≥ 1,

En ≤ 2
γ 2

4 p2−(1− αγ
2 + γ 2

4 )pEn−1 + 2R−αγpM + EnP[τR < τ ]. (3.9)

Upon re-arrangement, the inequality in (3.9) becomes

En ≤
(

2
γ 2

4 p2−(1− αγ
2 + γ 2

4 )p

1 − P[τR < τ ]
)

En−1 + 2R−αγpM

1 − P[τR < τ ] .
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Consider the quantity 2
γ 2

4 p2−(1− αγ
2 + γ 2

4 )p , part of the factor multiplying En−1. Our assumption that p satisfies

ξ(p) − αγp > 0 ensures that the exponent satisfies γ 2

4 p2 − (1 − αγ
2 + γ 2

4 )p < 0 which, in turn, means that

2
γ 2

4 p2−(1− αγ
2 + γ 2

4 )p < 1. Therefore, by choosing R > 0 fixed and small enough, we can ensure that the factor

multiplying En−1, 2
γ 2
4 p2−(1− αγ

2 + γ 2
4 )p

1−P[τR<τ ] , is less than 1. When we have done this, what we have shown is that, for

some ρ ∈ (0,1) and some constant M̃ , we have En < ρEn−1 + M̃ , which implies that the sequence {En}n∈N is
bounded. �

Proposition 3.2 (A negative moment is bounded). Let α,γ ∈ [0,2). Then there exists a finite constant C−1 such
that

sup
ε∈[0,1)

E

[(∫ 1∧τ

0

eγhε(Bs)− γ 2

2 E[hε(Bs)
2]

(|Bs | + ε)αγ
ds

)−1]
≤ C−1.

Proof. Again, using Kahane’s convexity inequality (Lemma 2 of [17]), it is sufficient to prove this result for the scale
invariant field Y . We know that |Bs | + ε ≤ 3

2 for all s ∈ (0, τ ) and for all ε ∈ [0,1), almost surely, and therefore we
certainly have

∫ 1∧τ

0

eγYε(Bs)− γ 2

2 E[Y(Bs)
2]

(|Bs | + ε)αγ
ds ≥

∫ 1∧τ

0

eγYε(Bs)− γ 2

2 E[Y(Bs)
2]

(3/2)αγ
ds,

for all ε ∈ [0,1), PY and PB almost surely. Therefore, taking negative moments of both sides gives

sup
ε∈[0,1)

E

[(∫ 1∧τ

0

eγYε(Bs)− γ 2

2 E[Y(Bs)
2]

(|Bs | + ε)αγ
ds

)−1]

≤
(

3

2

)αγ

sup
ε∈[0,1)

E

[(∫ 1∧τ

0
eγYε(Bs)− γ 2

2 E[Y(Bs)
2] ds

)−1]
. (3.10)

By Lemmas 2.13 and 2.14 of [10], the right-hand side of (3.10) is finite, and so we are done. �

The following corollaries will be useful in Section 3.3.

Corollary 3.3. For any power q , we have a polynomial bound on the probability

P

[∫ 1∧τ

0

eγhε(Bs)− γ 2

2 E[hε(Bs)
2]

(|Bs | + ε)αγ
ds ≤ rq

]
≤ C−1r

q

for any r > 0.

Corollary 3.4. There exists some p > 0 such that, for any q , we have a polynomial bound on the probability

P

[∫ τ

0

eγhε(Bs)− γ 2

2 E[hε(Bs)
2]

(|Bs | + ε)αγ
ds ≥ r−q

]
≤ Cprpq

for any r > 0.

The proof of both of these are simple applications of Markov’s inequality.
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3.2. Scaling of a Gaussian free field

As well as the polynomial behaviour of the tails of Fγ around thick points that we saw in Corollaries 3.3 and 3.4, we
also need a bound on the tail behaviour on the supremum (or infimum) of the harmonic projection of a GFF on a disc
of radius

√
r .

We were able to use the scale invariant field Y throughout Section 3.1 because the moments we were trying to
bound were convex (or concave) functions of a multiplicative chaos measure, and so Kahane’s convexity theorem
let us change between fields. In Section 3.3, however, we need to consider moments of certain integrals of the field,
weighted by indicator functions depending on the field itself. Kahane’s convexity theorem therefore no longer applies,
and we have to work directly with the GFF. So, we need an analogue of the scaling property that the field Y has.

Lemma 3.5. Let D ⊂C be a bounded proper domain, and let D̃ ⊂D be a compactly contained subdomain of D. Let
h be a zero-boundary condition GFF on D. Now, using the Markov property (Proposition 2.4), let us write

h = hhar + h̃,

where hhar is the harmonic projection of h onto the disc of radius 2
√

r and centred at x ∈ D̃, and h̃ is an independent,
zero-boundary condition GFF on the disc of radius 2

√
r and centred at x ∈ D̃. Let

�x√
r
= sup

z∈B(x,
√

r)

hhar(z)

be the supremum of hhar on B(x,
√

r). Then there exist constants C,p > 0 such that, for all r > 0 small enough,

sup
x∈D̃

P
[
�x√

r
> − log r

]≤ Crp.

Proof. The proof is essentially the same as the proof of Kolmogorov’s continuity criterion. Instead of taking limits to
obtain almost sure results, however, we obtain quantitative estimates which hold with high probability. First, let us fix
x ∈ D̃. From the proof of Proposition 3.1 in [9], we know that there exists some constant K2 such that, for z,w ∈ D
and ε > 0,

E
[∣∣hε

√
r (z) − hε

√
r (w)

∣∣2]≤ K2|z − w|. (3.11)

Now, recall that hhar is harmonic on B(x,2
√

r) and so, using the mean value property of harmonic functions, we see
that the circle average regularisation of hhar is equal to hhar on sets inside B(x,2

√
r), i.e. hhar

ε
√

r
(z) = hhar(z) for ε

small enough and z ∈ B(x,
√

r). Therefore, we know that

hε
√

r (z) = hhar(z) + h̃ε
√

r (z). (3.12)

Equation (3.12) and the independence of hhar and h̃, when combined with (3.11) shows us that

E
[∣∣hhar(z) − hhar(w)

∣∣2]≤ E
[∣∣hε

√
r (z) − hε

√
r (w)

∣∣2]≤ K2|z − w| (3.13)

for z,w ∈ B(x,
√

r). Because the field h does not depend on our choice of x, we can see that the middle term in (3.13)
is independent of x, and therefore so is the constant K2.

Because hhar(z) − hhar(w) is a Gaussian random variable, (3.13) implies that for any η > 0, there exists a constant
Kη such that

E
[∣∣hhar(z) − hhar(w)

∣∣η]≤ Kη|z − w|η/2 (3.14)

for z,w ∈ B(x,
√

r). Again, Kη is independent of x by the independence of K2 from x.
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Because the supremum of a harmonic function on a domain is attained at the boundary of that domain, we need
only consider z ∈ ∂B(0,

√
r). Therefore, let us set

Xt = hhar(x + √
re2πit

)
,

for t ∈ [0,1]. From the inequality in (3.14), we deduce that for s, t ∈ [0,1]

E
[|Xs − Xt |η

]≤ Kη

∣∣√r
(
e2πis − e2πit

)∣∣η/2

≤ K̃ηr
η/2|s − t |η/2.

The bound on the covariance structure of X clearly does not depend on the choice of x.
Now that we have a bound on the η-moment of the increments, we can use Markov’s inequality to say things about

the probability that the process X is irregular. So, let Dn = {k2−n : k = 0,1, . . . ,2n} be the set of dyadic points in the
unit interval at level n. For some power p, to be chosen later, we have

P
[|Xk2−n − X(k+1)2−n | > 2−npr1/4]≤ 2npηr−η/4

E
[|Xk2−n − X(k+1)2−n |η]

≤ K̃ηr
η/42npη

∣∣k2−n − (k + 1)2−n
∣∣η/2

≤ K̃ηr
η/42−n( 1

2 η−pη),

for k = 0,1, . . . ,2n − 1. Therefore, a simple union bound shows that

P

[
sup
k

|Xk2−n − X(k+1)2−n | > 2−npr1/4
]

≤ K̃ηr
η/42−n( 1

2 η−pη−1).

If we choose 0 < p < 1
2 and η sufficiently large, we find that q := 1

2η − pη − 1 > 0. Because we have ensured that
q > 0, we can again use the union bound to find that

P

[
sup
n≥0

sup
k

|Xk2−n − X(k+1)2−n | > 2−npr1/4
]

≤ K̃ηr
η/4
∑
n≥0

2−nq

= K̃ηr
η/4
(

1

1 − 2−q

)

= Kηr
η/4.

So, we see that the event

A := {Xt is p-Hölder continuous with constant r1/4}
occurs with probability greater than 1 − Kηr

η/2. On that event we can see that

∣∣∣sup
t

Xt − inf
t

Xt

∣∣∣≤ r1/4. (3.15)

Using (3.15), we can find a bound for �x√
r

in terms of objects we have good control over. Specifically, we have

�x√
r
≤
∣∣∣sup

t
Xt − inf

t
Xt

∣∣∣+ |X|,

where X is the mean value of the process Xt . Let us consider that second term. Since X is really just hhar on a circle,
and hhar is harmonic, we can use the mean value theorem to see that X = hhar(x). But again, we can apply the mean
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value theorem to see that hhar(x) is really just the average of h on ∂B(x,2
√

r), i.e. hhar(x) = h2
√

r (x). So, we have
the inequality

P[�√
r ≥ − log r] ≤ P

[∣∣∣sup
t

Xt − inf
t

Xt

∣∣∣≥ −1

2
log r

]
+ P

[
h2

√
r (x) ≥ −1

2
log r

]
.

Because h2
√

r (x) ∼ N(0,− log 2
√

r + logC(x,D)), we know that the second term on the right-hand side decays

polynomially in r as r ↓ 0. Furthermore, since the conformal radius, C(x,D), is bounded for x ∈ D̃, the coefficients
we choose in the polynomial bound can be chosen to hold uniformly for all x ∈ D̃.

So now let us consider the first term.

P

[∣∣∣sup
t

Xt − inf
t

Xt

∣∣∣≥ −1

2
log r

]
= P

[{∣∣∣sup
t

Xt − inf
t

Xt

∣∣∣≥ −1

2
log r

}
∩ A

]

+ P

[{∣∣∣sup
t

Xt − inf
t

Xt

∣∣∣≥ −1

2
log r

}
∩ Ac

]

≤ P

[
r1/4 ≥ −1

2
log r

]
+ P
[
Ac
]

≤ 0 + Kηr
η/2,

for r small enough. Since Kη does not depend on x ∈ D̃, we have the desired result. �

3.3. Hölder-like properties of Fγ

We will now show the required regularity properties of the time change function Fγ . It will be convenient to introduce
the following measures.

Definition 3.6. Let μγ be the measure on the interval [0, τ ] defined by μγ = L ◦ F−1
γ , where L is Lebesgue measure

on the interval [0,Fγ (τ )]. In other words, for s, t ∈ [0, τ ] with s ≤ t , we set

μγ

([s, t])= Fγ (t) − Fγ (s).

Define the measure μα in a similar way, for α ∈ [0,2).

Remark 3.7. To get some intuition behind the next few results, let us think of the measures μα and μγ as probability
measures for a moment. Then, if we sample a time t ∈ [0, τ ] according to μα , it will almost surely be such that the
Brownian motion B is in an α-thick point, i.e. t ∈ Tα almost surely, because the α-LMB, Zα , spends Lebesgue-almost
all of its time in α-thick points. Similar statements hold if we sample a time from μγ .

Proposition 3.8. For all α ∈ [0,2), and γ ∈ [0,2), fix δ > 0, and let β = 1 − αγ
2 + γ 2

4 . Define the set of times

LN
γ = {t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])≥ rβ+δ ∀r ∈ [0,2−N
)}

.

Then for all � > 0, which may be random and may depend on μα([0, τ ]), there exists some random but almost surely
finite N ∈ N such that

μα

(
LN

γ

)≥ μα

([0, τ ])− �.

This proposition is essentially saying that if t is an α-thick point, then the μγ mass of an interval of length r , starting
at t , decays more slowly than rβ+δ . It is almost like saying that around α-thick points, the map function F−1

γ is
1

β+δ
-Hölder continuous.
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The proof will rely on the following lemma:

Lemma 3.9. As before, fix δ > 0 and let β = 1 − αγ
2 + γ 2

4 , and let E > 0 be some positive constant. Then there exist
two constants D > 0 and q > 0 such that

E
[
μα

({
t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])
< Erβ+δ

})]≤ Drq

for all r ∈ (0,1).

Proof. To ease notation, we will prove the case E = 1. The reader will be able to see that the same argument works
for any positive E, with possibly different constants D and q .

Let r ≥ 0 and fix ε, ε′ > 0 so that ε′ < ε
√

r . Then by Girsanov’s change of measure theorem, we get

EBEh

[
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
eαhε′ (Bt )− α2

2 E[hε′ (Bt )
2]1{τ>t}

]

= EB

[
1{τ>t}Ph

[∫ (t+r)∧τ

t

e
γ (hε

√
r (Bs)+αEh[hε

√
r (Bs)hε′ (Bt )])− γ 2

2 E[hε
√

r (Bs)
2]

ds < rβ+δ

]]

= EB

[
1{τ>t}EB

[
Ph

[∫ (t+r)∧τ

t

e
γ (hε

√
r (Bs)+αEh[hε

√
r (Bs)hε′ (Bt )])− γ 2

2 E[hε
√

r (Bs)
2]

ds < rβ+δ

]∣∣∣Ft

]]
, (3.16)

where Ft = σ(Bs; s ≤ t) is the natural filtration for B . Now, using Lemma 2.3, we know that almost surely on the
event s, t < τ , there is a constant C such that

Eh

[
hε

√
r (Bs)hε′(Bt )

]≥ log
1

|Bs − Bt | + ε
√

r
− C,

and so we can bound the integral in (3.16) from below by∫ (t+r)∧τ

t

e
γ (hε

√
r (Bs)+αEh[hε

√
r (Bs)hε′ (Bt )])− γ 2

2 E[hε
√

r (Bs)
2]

ds

≥ e−αγC

∫ (t+r)∧τ

t

e
γ hε

√
r (Bs)− γ 2

2 E[hε
√

r (Bs)
2]

(|Bs − Bt | + ε
√

r)αγ
ds. (3.17)

Now, by changing variables and using the scaling properties of Brownian motion we see that the right-hand side of
(3.17) becomes

∫ (t+r)∧τ

t

e
γ hε

√
r (Bs)− γ 2

2 E[hε
√

r (Bs)
2]

(|Bs − Bt | + ε
√

r)αγ
ds

=
∫ r∧(τ−t)

0

e
γhε

√
r (Bt+s )− γ 2

2 E[hε
√

r (Bt+s )
2]

(|Bt+s − Bt | + ε
√

r)αγ
ds

= r

∫ 1∧((τ−t)/r)

0

e
γhε

√
r (Bt+ru)− γ 2

2 E[hε
√

r (Bt+ru)2]

(|Bt+ru − Bt | + ε
√

r)αγ
du

d= r

∫ 1∧τ ′

0

e
γhε

√
r (

√
rB̃u+Bt )− γ 2

2 E[hε
√

r (
√

rB̃u+Bt )
2]

(|√rB̃u| + ε
√

r)αγ
du

= r1− αγ
2

∫ 1∧τ ′

0

e
γhε

√
r (

√
rB̃u+Bt )− γ 2

2 E[hε
√

r (
√

rB̃u+Bt )
2]

(|B̃u| + ε)αγ
du,
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where B̃ is an independent Brownian motion started at the origin, and

τ ′ = inf

{
u > 0 : |√rB̃u + Bt | = 1

2

}

is the first time
√

rB̃u + Bt exits the disc of radius 1. The equality in distribution holds Ph-almost surely. In order to
use the scaling property of the GFF h (Lemma 3.5), we also need to make sure that B̃ stays bounded. So, let

τ̃ = τ ′ ∧ inf

{
u > 0 : |B̃u| = 1

2

}
.

Then we certainly know that

r1− αγ
2

∫ 1∧τ ′

0

e
γhε

√
r (

√
rB̃u+Bt )− γ 2

2 E[hε
√

r (
√

rB̃u+Bt )
2]

(|B̃u| + ε)αγ
du

≥ r1− αγ
2

∫ 1∧τ̃

0

e
γhε

√
r (

√
rB̃u+Bt )− γ 2

2 E[hε
√

r (
√

rB̃u+Bt )
2]

(|B̃u| + ε)αγ
du. (3.18)

Now let us use the fact that we are conditioning on Ft and the Markov property of h to write h = hhar + h̃, where
hhar is the harmonic projection of h onto the disc of radius 2

√
r , centred at Bt , and h̃ has the law of a zero-boundary

GFF on the disc of radius 2
√

r , centred at Bt . If we write �√
r = infz∈B(Bt ,

√
r) h

har(z), we know that h ≥ �√
r + h̃

inside the B(Bt ,
√

r), and so we can continue from (3.18) to see that

r1− αγ
2

∫ 1∧τ̃

0

e
γhε

√
r (

√
rB̃u+Bt )− γ 2

2 E[hε
√

r (
√

rB̃u+Bt )
2]

(|B̃u| + ε)αγ
du

≥ r1− αγ
2

∫ 1∧τ̃

0

e
γhε

√
r (

√
rB̃u+Bt )− γ 2

2 (− log(ε
√

r)+C)

(|B̃u| + ε)αγ
du

= r1− αγ
2 + γ 2

4 e− γ 2

2 C

∫ 1∧τ̃

0

e
γhε

√
r (

√
rB̃u+Bt )+ γ 2

2 log ε

(|B̃u| + ε)αγ
du

≥ r1− αγ
2 + γ 2

4 e− γ 2

2 Ce
γ�√

r

∫ 1∧τ̃

0

e
γ h̃ε

√
r (

√
rB̃u+Bt )+ γ 2

2 log ε

(|B̃u| + ε)αγ
du

≥ r1− αγ
2 + γ 2

4 e−γ 2Ce
γ�√

r

∫ 1∧τ̃

0

eγh′
ε(B̃u)− γ 2

2 E[h′
ε(B̃u)2]

(|B̃u| + ε)αγ
du, (3.19)

where h′ is a zero boundary GFF on the disc of radius 1
2 . Substituting the last expression of (3.19) back into (3.16)

(and noticing that the exponent of r is in fact β) lets us see that

P

[∫ (t+r)∧τ

t

e
γ (hε

√
r (Bs)+αEh[hε

√
r (Bs)hε′ (Bt )])− γ 2

2 E[hε
√

r (Bs)
2]

ds < rβ+δ
∣∣∣Ft

]

≤ P

[
e−(αγ+γ 2)Crβe

γ�√
r

∫ 1∧τ̃

0

eγh′
ε(B̃u)− γ 2

2 E[h′
ε(B̃u)2]

(|B̃u| + ε)αγ
du < rβ+δ

∣∣∣Ft

]

≤ P
[
e−(αγ+γ 2)Ce

γ�√
r < r

δ
2 |Ft

]+ P

[∫ 1∧τ̃

0

eγh′
ε(B̃u)− γ 2

2 E[h′
ε(B̃u)2]

(|B̃u| + ε)αγ
du < r

δ
2

]
. (3.20)
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The first term decays polynomially in r as r ↓ 0 uniformly in Bt , by Lemma 3.5, and the second term decays poly-
nomially in r as r ↓ 0 by Corollary 3.3. Therefore, looking back at (3.16) again, there certainly exist some positive
constants D and q such that

E
[
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
eαhε′ (Bt )− α2

2 E[hε′ (Bt )
2]1{τ>t}

]
≤ E
[
Drq1{τ>t}

]
= Drq

P[τ > t]. (3.21)

When we integrate (3.21) over t > 0, we find that

E

[∫ τ

0
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
eαhε′ (Bt )− α2

2 E[hε′ (Bt )
2] dt

]

≤ E[τ ]Drq. (3.22)

Proposition 2.8 of [10] tells us that, almost surely in B and h, the measure defined by με′
α (dt) =

eαhε′ (Bt )− α2
2 E[hε′ (Bt )

2] dt converges weakly to the measure we have called μα . Therefore, as the set in the indica-
tor function is open, we may use the portmanteau lemma and Fatou’s lemma to see that

E

[∫ τ

0
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
μα(dt)

]

≤ E

[
lim inf

ε′↓0

∫ τ

0
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
eαhε′ (Bt )− α2

2 E[hε′ (Bt )
2] dt

]

≤ lim inf
ε′↓0

E

[∫ τ

0
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
eαhε′ (Bt )− α2

2 E[hε′ (Bt )
2] dt

]
.

Since D and q from (3.22) are independent of ε′, we can therefore see that

E

[∫ τ

0
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
μα(dt)

]
≤ E[τ ]Drq.

We then use Fatou’s lemma twice to conclude

E
[
μα

({
t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])
< rβ+δ

})]
= E

[∫ τ

0
1{μγ ([t,(t+r)∧τ ])<rβ+δ}μα(dt)

]

= E

[∫ τ

0
lim inf

ε↓0
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
μα(dt)

]

≤ lim inf
ε↓0

E

[∫ τ

0
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds<rβ+δ}
μα(dt)

]

≤ E[τ ]Drq,

and we are done, since E[τ ] < ∞ (as it has exponentially decaying tails). �
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Proof of Proposition 3.8. Using Lemma 3.9 (taking E = 2β+δ) and Markov’s inequality, we can bound the upper tail
of the μα-measure of the set of times when μγ decays unusually fast by

P
[
μα

({
t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])
< 2β+δrβ+δ

})≥ rq/2]
≤ r−q/2

E
[
μα

({
t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])
< 2β+δrβ+δ

})]
≤ Drq/2.

So, taking a sequence of scales rn = 2−n, we see that the events

{
μα

({
t ∈ [0, τ ] : μγ

([
t, (t + rn) ∧ τ

])
< 2β+δrβ+δ

n

})≥ r
q/2
n

}
n∈N

occur only finitely often almost surely, by Borel–Cantelli. Therefore, for all � > 0 (which may be random and depend
on μα([0, τ ])), we can find a random but almost surely finite N ∈N such that

μα

(⋃
n≥N

{
t ∈ [0, τ ] : μγ

([
t, (t + rn) ∧ τ

])
< 2β+δrβ+δ

n

})≤
∑
n≥N

2−qn/2 ≤ �,

and hence

μα

(⋂
n≥N

{
t ∈ [0, τ ] : μγ

([
t, (t + rn) ∧ τ

])≥ 2β+δrβ+δ
n

})≥ μα

([0, τ ])− �. (3.23)

We now need to infer the result for all r ∈ (0,2−N) from the discrete set of radii we have it for in (3.23). So, let
t ∈⋂n≥N {t ∈ [0, τ ] : μγ ([t, (t + rn)∧ τ ]) ≥ r

β+δ
n }, take r ∈ (0,2−N), and suppose n is such that rn+1 < r ≤ rn. Then

μα

([
t, (t + r) ∧ τ

])≥ μα

([
t, (t + rn) ∧ τ

])≥ 2β+δr
β+δ

n+1 = rβ+δ
n ≥ rβ+δ,

which implies that the discrete radii event is a subset of the continuous radii event:⋂
n≥N

{
t ∈ [0, τ ] : μγ

([
t, (t + rn) ∧ τ

])≥ 2β+δrβ+δ
n

}

⊂ {t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])≥ rβ+δ ∀r ∈ [0,2−N)
}= LN

γ ,

and so we can conclude that

μα

(
LN

γ

)≥ μα

([0, τ ])− �. �

We now state and prove a result which is essentially a “converse” to Proposition 3.8.

Proposition 3.10. Fix δ > 0, and let β = 1 − αγ
2 + γ 2

4 . Define the set of times

UN
γ = {t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])≤ rβ−δ ∀r ∈ [0,2−N)
}
.

Then for all � > 0, which may be random and depend on μα([0, τ ]), there exists some random but almost surely finite
N ∈N such that

μα

(
UN

γ

)≥ μα

([0, τ ])− �.

This proposition is essentially saying that around α-thick points, the map function Fγ is (β − δ)-Hölder continuous.
To prove it, we need a lemma that is the equivalent of Lemma 3.9.
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Lemma 3.11. Fix δ > 0 and let β = 1 − αγ
2 + γ 2

4 , and let E > 0 be some positive constant. Then there exist two
constants D > 0 and η > 0 such that

E
[
μα

({
t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])
> Erβ−δ

})]≤ Drη.

for all r > 0.

The introduction of long range correlations by Brownian motion is much more apparent in this proof than the proof
of Lemma 3.9. Instead of re-scaling time by a factor of r and space by a factor of

√
r as we did previously, we will

need to allow a bit of extra wiggle room. This is essentially due to the modulus of continuity of Brownian motion

around time r ↓ 0 being
√

2r log 1
r
; we need a slightly lower power of r to account for the log correction. We will

introduce the radius R, which we will use as our scaling radius, and calculate what it needs to be closer to the end of
the proof.

Proof of Lemma 3.11. Again, we will prove this only in the case that E = 1. Let r,R > 0, and fix ε, ε′ > 0 so that
ε′ < ε

√
R. Using Girsanov’s change of measure theorem and Lemma 2.3 as we did in Lemma 3.9, we see that

EBEh

[
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds>rβ−δ}
eαhε′ (Bt )− α2

2 E[hε′ (Bt )
2]1{τ>t}

]

= EB

[
1{τ>t}P

[
eαγC

∫ (t+r)∧τ

t

e
γ h

ε
√

R
(Bs)− γ 2

2 E[h
ε
√

R
(Bs)

2]

(|Bs − Bt | + ε
√

R)αγ
ds > rβ−δ

∣∣∣Ft

]]
, (3.24)

where Ft = σ(Bs; s ≤ t) is the natural filtration for B . Now, consider the integral in (3.24). We are looking for upper
bounds on it, this time, to find an upper bound on the probability in (3.24). First of all, we apply a simple change of
time, first s �→ s − t and then s = Ru to see that

∫ (t+r)∧τ

t

e
γ h

ε
√

R
(Bs)− γ 2

2 E[h
ε
√

R
(Bs)

2]

(|Bs − Bt | + ε
√

R)αγ
ds =

∫ r∧(τ−r)

0

e
γh

ε
√

R
(Bt+s )− γ 2

2 E[h
ε
√

R
(Bt+s )

2]

(|Bt+s − Bt | + ε
√

R)αγ
ds

= R

∫ r
R

∧ τ−r
R

0

e
γh

ε
√

R
(Bt+Ru)− γ 2

2 E[h
ε
√

R
(Bt+Ru)2]

(|Bt+Ru − Bt | + ε
√

R)αγ
du

d= R

∫ r
R

∧τ ′

0

e
γh

ε
√

R
(
√

RB̃u+Bt )− γ 2

2 E[h
ε
√

R
(
√

RB̃u+Bt+Ru)2]

(|√RB̃u| + ε
√

R)αγ
du

= R1− αγ
2

∫ r
R

∧τ ′

0

e
γh

ε
√

R
(
√

RB̃u+Bt )− γ 2

2 E[h
ε
√

R
(
√

RB̃u+Bt+Ru)2]

(|B̃u| + ε)αγ
du,

where B̃ is an independent Brownian motion started at zero, and

τ ′ = inf

{
u > 0 : |√RB̃u + Bt | = 1

2

}
.

The equality in distribution holds Ph-almost surely.
We now want to use the scaling properties of the field h, from Lemma 3.5. So, as before, we use the Markov

property of the GFF to write h = hhar + h̃, where hhar is the harmonic projection of h onto the disc of radius 2
√

R,
centred at Bt , and h̃ has the law of a zero-boundary GFF on the disc of radius 2

√
R, centred at Bt . If we write

�√
R

= sup
z∈B(Bt ,

√
R)

hhar(z), we know that h ≤ �√
R

+ h̃ inside the disc B(Bt ,
√

R). In order to use Lemma 3.5, we

need to make sure that the B̃ does not move far from its starting point. So, let τ̃ be the exit time of B̃ from the unit
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disc. Then, on the event {τ̃ > r
R

} we can see that

R1− αγ
2

∫ r
R

∧τ ′

0

e
γh

ε
√

R
(
√

RB̃u)− γ 2

2 E[h
ε
√

R
(
√

RB̃u)2]

(|B̃u| + ε)αγ
du

≤ R1− αγ
2

∫ r
R

∧τ ′

0

e
γh

ε
√

R
(
√

RB̃u)− γ 2

2 (− log(ε
√

R)−C)

(|B̃u| + ε)αγ
du

= R1− αγ
2 + γ 2

4 e
γ 2

2 C

∫ r
R
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0

e
γh

ε
√

R
(
√

RB̃u)+ γ 2

2 log(ε
√

R)

(|B̃u| + ε)αγ
du

≤ R1− αγ
2 + γ 2

4 e
γ 2

2 Ce
γ�√

R

∫ r
R

∧τ ′

0

e
γ h̃

ε
√

R
(
√

RB̃u)+ γ 2

2 log(ε
√

R)

(|B̃u| + ε)αγ
du

≤ eγ 2CRβe
γ�√

R

∫ r
R

∧τ ′

0

eγh′
ε(B̃u)− γ 2

2 E[h′
ε(B̃u)2]

(|B̃u| + ε)αγ
du, (3.25)

where h′ is a zero boundary GFF on the unit disc. Therefore, we can use the right-hand side of (3.25) to bound the
probability in (3.24) by

P

[
eαγC

∫ (t+r)∧τ

t

e
γ h

ε
√

R
(Bs)− γ 2

2 E[h
ε
√

R
(Bs)

2]

(|Bs − Bt | + ε
√

R)αγ
ds > rβ−δ

∣∣∣Ft

]

≤ P

[
e(αγ+γ 2)CRβe

γ�√
R

∫ r
R

∧τ ′

0

eγh′
ε(B̃u)− γ 2

2 E[h′
ε(B̃u)2]

(|B̃u| + ε)
du > rβ−δ; τ̃ >

r

R

∣∣∣Ft

]
+ P

[
τ̃ <

r

R

]

≤ P

[
e(αγ+γ 2)CRβe

γ�√
R

∫ τ̃∧τ ′

0

eγh′
ε(B̃u)− γ 2

2 E[h′
ε(B̃u)2]

(|B̃u| + ε)
du > rβ−δ

∣∣∣Ft

]
+ P
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τ̃ <

r

R

]

≤ P

[
e(αγ+γ 2)Ce

γ�√
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(
r

R

) β
2

r− δ
2

∣∣∣Ft

]

+ P

[∫ τ̃

0

eγhε(B̃u)− γ 2

2 E[hε(B̃u)2]

(|B̃u| + ε)
du >

(
r

R

) β
2

r− δ
2

]
+ P

[
τ̃ <

r

R

]
. (3.26)

We are now in a position to see what choice we should make for the radius R. We want r
R

↓ 0 as r ↓ 0 polynomially in

r , so that the third term in (3.26) decays polynomially. We also want ( r
R

)
β
2 r− δ

2 to converge to infinity, polynomially

in r , so that the other terms in (3.26) also decay polynomially: see below. The choice R = r1− δ2
2 works for δ small

enough, since then we certainly have r
R

= rδ2 ↓ 0, and also ( r
R

)
β
2 r− δ

2 = r
β
2 δ2− δ

2 → ∞. The exponent β
2 δ2 − 1

2δ is
negative for δ small enough, and so we have the desired properties. With this choice of R, the first term on the right-
hand side of (3.26) decays polynomially by Lemma 3.5, the second term decays polynomially by Corollary 3.4. We
can bound the third term above by

P

[
τ̃ <

r

R

]
≤ P

[
T <

r

R

]
,

where T is the exit time of a one dimensional Brownian motion from the interval [− 1√
2
, 1√

2
]. The stopping time T

has exponentially decaying tails, and so we can see that the third term decays polynomially as well.
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Therefore, going all the way back to (3.24), there certainly exist some constants D > 0 and q > 0 such that, for
t > 0,

E
[
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds>rβ−δ}
eαhε′ (Bt )− α2

2 E[hε′ (Bt )
2]1{τ>t}

]≤ Drη
P[τ > t].

Integrating over t > 0 gives

E

[∫ τ

0
1

{∫ (t+r)∧τ
t e

γ h
ε
√

r
(Bs )− γ 2

2 E[h
ε
√

r
(Bs )2]

ds>rβ−δ}
eαhε′ (Bt )− α2

2 E[hε′ (Bt )
2] dt

]
≤ Drη

E[τ ]. (3.27)

Now, note that (3.27) is almost identical to (3.22). We use the same arguments to let ε′ and ε converge to zero, and
conclude that

E
[
μα

({
t ∈ [r, τ ] : μγ

([
(t) ∨ 0, (t + r) ∧ τ

])
> Erβ−δ

})]≤ Drη
E[τ ],

which completes the proof, as E[τ ] < ∞. �

Proof of Proposition 3.10. Proposition 3.10 follows from Lemma 3.11 in exactly the same way that Proposition 3.8
followed from Lemma 3.9. �

3.4. Proof of Theorems 1.1 and 1.2

We now have all of the tools ready to prove Theorem 1.1, which we re-state here in more detail.

Theorem 3.12. Fix α,γ ∈ [0,2). Let B be the Brownian motion used to construct the LBM time changes Fα and Fγ .
Call Tα = {t > 0 : Bt ∈ Tα} the set of times that the Brownian motion B is in an α-thick point. Then, almost surely,

dimH

(
Fγ (Tα)

)≥ 1 − α2

4

1 − αγ
2 + γ 2

4

,

where, by the definition of the change of time, Fγ (Tα) is the set of times the γ -LBM is in α-thick points.

Proof. We will in fact prove the lower bound only for times less than the stopping time τ when the Brownian motion
leaves the disc of radius 1

2 . To that end, we will abuse notation slightly and re-define the set of times Tα as

Tα = {t ∈ [0, τ ] : Bt ∈ Tα

}
.

Because Tα ∩ LN
γ ⊂ Tα , where LN

γ is defined as in Proposition 3.8, we know that

dimH

(
Fγ

(
Tα ∩ LN

γ

))≤ dimH

(
Fγ (Tα)

)
.

But, because F−1
γ is a 1

β+δ
-Hölder-like function, in the sense of Definition 2.14, on intervals starting at times in the

image Fγ (LN
γ ), Proposition 2.15 implies that

dimH

(
Tα ∩ LN

γ

)≤ (β + δ)dimH

(
Fγ

(
Tα ∩ LN

γ

))
, (3.28)

and so to get a lower bound on dimH (Tα), we want to find a lower bound for dimH (Tα ∩ LN
γ ). We now use Propo-

sitions 3.8 and 3.10 to see that we can take N large enough to ensure that Tα ∩ LN
γ ∩ UN

α has positive μα-measure

(taking γ = α in Proposition 3.10, and � = 1
4μα([0, τ ]) for example). Since we also know that μα[0, τ ] < ∞ almost
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surely, the measure μα defines a mass distribution on the set Tα ∩ LN
γ ∩ UN

α , and by the definition of UN
α , we know

that

μα

([t, t + r])≤ r1− α2
4 −δ

for all r ∈ [0,2−N) and t ∈ Tα ∩LN
γ ∩UN

α . So, by the mass distribution principle (Theorem 4.19 of [20] for example),
we find that

dimH

(
Tα ∩ LN

γ ∩ UN
α

)≥ 1 − α2

4
− δ.

Therefore we certainly have the bound dimH (Tα ∩ LN
γ ) ≥ 1 − α2

4 − δ, which we can substitute into (3.28) and re-
arrange to find

dimH

(
Fγ (Tα)

)≥ 1 − α2

4 − δ

1 − αγ
2 + γ 2

4 + δ
.

Since δ was arbitrary we can take the limit δ ↓ 0, and we have shown the result. �

And now we re-state Theorem 1.2 and prove it:

Corollary 3.13. Fix α,γ ∈ [0,2). Let B be the Brownian motion used to construct the LBM time changes Fα and
Fγ . Call Tα = {t ∈ [0, T ] : Bt ∈ Tα} the set of times that the Brownian motion B is in an α-thick point. Then, almost
surely,

dimH

(
Fγ (Tα)

)= 1 − α2

4

1 − αγ
2 + γ 2

4

,

where, by the definition of the change of time, Fγ (Tα) is the set of times the γ -LBM is in α-thick points.

Proof. First, following from Theorem 1.4 of [6], we introduce the sets

T −
α =

{
z ∈C : lim inf

ε↓0

hε(z)

log 1
ε

≥ α

}
,

T +
α =

{
z ∈C : lim sup

ε↓0

hε(z)

log 1
ε

≤ α

}
.

We will call T −
α = {t ∈ [0, τ ] : Bt ∈ T −

α }, and similarly define T +
α from T +

α . We know, from [6], that for α > γ we
have the upper bound

dimH

(
Fγ

(
T −

α

))≤ 1 − α2

4

1 − αγ
2 + γ 2

4

,

and the same result holds when we have α < γ and we replace T −
α with T +

α .
Let us consider the case α > γ . We know that Tα ⊂ T −

α , and so we have

1 − α2

4

1 − αγ
2 + γ 2

4

≤ dimH

(
Fγ (Tα)

)≤ dimH

(
Fγ

(
T −

α

))≤ 1 − α2

4

1 − αγ
2 + γ 2

4

,

showing us the equality. We can show equality in the case α < γ in the same way. �
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3.5. Proofs of regularity properties

We can now state Theorem 1.3 again, and give the proof.

Theorem 3.14. Fix α,γ ∈ [0,2). Then, for μα-almost every t ≥ 0, the change of time Fγ has the following growth
rate:

lim
r→0

log |Fγ (t) − Fγ (t + r)|
log |r| = 1 − αγ

2
+ γ 2

4
, (3.29)

almost surely.

Before we start the proof, we would like to explain the intuition behind μα-almost every t ∈ Tα . Suppose we have
our GFF h, and the Brownian motion B which is the path of our Liouville Brownian motion. We now run an α-LBM,
Zα , along the path B , using h to calculate the time change Fα . At some time t, chosen uniformly at random from the
lifetime of Zα , we inspect the point in the plane occupied by Zα

t . Because an α-LBM spends Lebesgue-almost all of
its time in α-thick points, we know that the point chosen by Zα

t is an α-thick point, almost surely. We also know that
it is on the path of the Brownian motion B . If we call the time B passes through this point t , i.e. t = F−1

α (t), we know
that, around this time, the γ -time change, Fγ , has the regularity property given in (3.29).

To prove Theorem 3.14, we will first prove it while taking the limit r ↓ 0, i.e. as r approaches 0 from above.

Lemma 3.15. Fix α,γ ∈ [0,2). Then, for μα-almost every t ≥ 0, the change of time Fγ has the following growth rate:

lim
r↓0

log |Fγ (t) − Fγ (t + r)|
log r

= 1 − αγ

2
+ γ 2

4
,

almost surely.

Proof. Most of the work for this proof has been done in Propositions 3.8 and 3.10. Recall that for some arbitrary
δ > 0 we defined

LN
γ = {t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])≥ rβ+δ ∀r ∈ [0,2−N)
}

and

UN
γ = {t ∈ [0, τ ] : μγ

([
t, (t + r) ∧ τ

])≤ rβ−δ ∀r ∈ [0,2−N)
}
.

Now let us define

Lγ =
⋃
N

LN
γ =

{
t ∈ [0, τ ) : lim sup

r↓0

logμγ ([t, t + r])
log r

≤ β + δ

}
,

and similarly define Uγ =⋃N UN
γ .

We showed in Propositions 3.8 and 3.10 that for any � > 0, we could find N large enough that

μα

(
LN

γ

)≥ μα

([0, τ ])− �

and

μα

(
UN

γ

)≥ μα

([0, τ ])− �.

Since � was arbitrary and LN
γ , UN

γ are increasing sets, we find that

μα(Lγ ∩ Uγ ) = μα

([0, τ ]).
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Because δ was arbitrary, and we defined μγ ([t, t + r]) := F(t + r) − F(t), we have shown the result. �

We now need a lemma which allows us to “reverse time” in some way, and extend the result from Lemma 3.15 to
the statement in Theorem 3.14.

Lemma 3.16. Let B be a Brownian motion started at zero, and let t > 0. Define two stochastic processes, conditional
on Bt , by setting

W+
s = Bt+s

for s ≥ 0, and

W−
s = Bt−s

for s ∈ [0, t]. Now, let ε < t . Then, conditional on the event {τ > t} (where τ is the first exit time of B from the disc of
radius 1

2 ), the laws of the restricted processes (W+
s )s∈[0,ε] and (W−

s )s∈[0,ε] are absolutely continuous with respect to
each other.

Proof. Conditional on Bt = z and the event {τ > t}, the law of the Brownian motion B is that of a Brownian bridge
of duration t , joining the origin and z, conditioned to stay inside the disc of radius 1

2 , followed by an independent
Brownian motion started at z. Because the event that the maximum modulus of this Brownian bridge is less than 1

2
has positive probability, it does not affect the absolute continuity of measures. So for the rest of the proof, we may
ignore the fact that we are conditioning on that event.

By reversibility of Brownian bridges, the process W− has the law of a Brownian bridge of duration t , connecting
z and the origin. And, as stated above, W+ has the law of a Brownian motion started at z. So, by (6.28) of [18]
(or, slightly more explicitly, Lemma 3.1 of [7]), we see that the laws of a Brownian bridge of duration t and a
Brownian motion, with a common starting point, are absolutely continuous with respect to each other on intervals
shorter than t . �

Proof of Theorem 3.14. Let T be an exponential random variable with mean 1, independent of the GFF h and the
Brownian motion B . Recall that the measure μα is defined by

μα

([a, b])= Fα(b) − Fα(a),

which can also be written as μα = Leb ◦ Fα . Now, because the law of T is absolutely continuous with respect to
Lebesgue measure and Fα is a bijection, the law of F−1

α (T ) is absolutely continuous with respect to μα . Therefore,
by Lemma 3.15, we see that

F−1
α (T ) ∈

{
t > 0 : lim

r↓0

log |Fγ (t) − Fγ (t + r)|
log r

= β

}
,

almost surely. It therefore follows from Lemma 3.16 that we also have

F−1
α (T ) ∈

{
t > 0 : lim

r↓0

log |Fγ (t) − Fγ (t − r)|
log r

= β

}
,

almost surely. Finally, by absolute continuity of the law of F−1
α (T ) and the measure μα again, we deduce that for

μα-almost every t we have

lim
r→0

log |Fγ (t) − Fγ (t + r)|
log |r| = β

almost surely, completing the proof. �
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We can use the regularity property of Fγ from Theorem 3.14 that we have just shown to find a bound on the growth
rate of LBM around thick points of different levels. We first prove a lemma about the growth rate of LBM given a lot
of control on how we choose the time we consider. We will then extend that to the more general statement given in
Corollary 1.4.

Lemma 3.17. Let t ≥ 0 be such that

lim
r→0

log |Fγ (t) − Fγ (t + r)|
log |r| = 1 − αγ

2
+ γ 2

4
.

Then

lim sup
u→0

log |Zγ

Fγ (t) − Z
γ

Fγ (t)+u|
log |u| = 1

2 − αγ + γ 2

2

almost surely.

Note 3.18. In Lemma 3.17, we have let r → 0 and u → 0 from above and below. In the proof of Corollary 3.19, only
the result as r ↓ 0 and u ↓ 0 are used, but the distinction is important for the proof of Corollary 3.21.

Proof. Let δ > 0. Then by Lévy’s modulus of continuity of Brownian motion, we know that, almost surely, there
exists some S < ∞ such that

|Bt − Bt+s | ≤ s
1
2 −δ (3.30)

for all s ∈ [−S,S], and for all ε > 0 there exists some s ∈ [−ε, ε] such that

|Bt − Bt+s | ≥ s
1
2 +δ. (3.31)

Now, let us write β = 1 − αγ
2 + γ 2

4 . Then by assumption, there exists some R < ∞ such that

rβ+δ ≤ Fγ (t + r) − Fγ (t) ≤ rβ−δ

for all r ∈ [−R,R]. Since F−1
γ is well defined, this in turn implies that, for all u with |u| small enough,

u
1

β−δ ≤ F−1
γ

(
Fγ (t) + u

)− t ≤ u
1

β+δ . (3.32)

Recalling the definition Z
γ
t = B

F−1
γ (t)

and combining (3.30) and (3.32) shows us that

∣∣Zγ

Fγ (t) − Z
γ

Fγ (t)+u

∣∣≤ (|u| 1
β+δ
) 1

2 −δ (3.33)

for all |u| small enough. Furthermore, combining (3.31) and (3.32) shows us that, for any ε′ > 0 there exists some
u ∈ [−ε′, ε′] such that

∣∣Zγ

Fγ (t)
− Z

γ

Fγ (t)+u

∣∣≥ (|u| 1
β−δ
) 1

2 +δ
.

Taking logs then implies that

1 − δ

2(β + δ)
≤ lim sup

u→0

log |Zγ

Fγ (t) − Z
γ

Fγ (t)+u|
log |u| ≤ 1 + δ

2(β − δ)

almost surely. Therefore, letting δ ↓ 0 along a countable sequence shows us that the limsup equals 1
2β

almost surely,
as claimed. �
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We can now use the results from Theorem 3.14 and Lemma 3.17 to prove Corollary 1.4, which we restate here.

Corollary 3.19. Fix α,γ ∈ [0,2). Suppose that the starting point of a γ -Liouville Brownian motion is chosen accord-
ing to Mα , i.e. Z

γ

0 ∼ Mα . Then

lim sup
t↓0

log |Zγ
t |

log t
= 1

2 − αγ + γ 2

2

almost surely.

Proof. Let T be an exponential random variable with mean 1, which is independent of the GFF h and the Brownian
motion B .

By the same reasoning as that used in the proof of Theorem 3.14, we see that

F−1
α (T ) ∈

{
t ≥ 0 : lim

r↓0

log |Fγ (t) − Fγ (t + r)|
log r

= β

}
,

almost surely. (If T > supt Fα(t), we set F−1
α (T ) =∅, and claim that the equality below holds, vacuously.) Therefore

if we write T ′ = Fγ (F−1
α (T )), Lemma 3.17 tells us that

lim sup
u↓0

log |Zγ

T ′ − Z
γ

T ′+u
|

logu
= 1

2β
.

Let H be the sigma algebra generated by the GFF h, i.e.

H = σ
(〈h,f 〉∇ : f ∈ H 1

0 (D)
)
.

Now consider the filtration defined by

Gt = σ
(
Z

γ
s : s < t

)∨H

= σ
(
Bs : s < F−1

γ (t)
)∨H.

The process Zγ is certainly Gt -adapted, and T ′ is a Gt -stopping time since{
T ′ > t

}= {Fγ

(
F−1

α (T )
)
> t
}= {T > Fα

(
F−1

γ (t)
)}

and

Fα

(
F−1

γ (t)
)= lim

ε↓0

∫ F−1
γ (t)

0
eαhε(Bs)− α2

2 E[hε(Bs)
2] ds

is Gt -measurable.
We can therefore use the strong Markov property of Zγ to deduce that

lim sup
t↓0

log |Zγ
t |

log t
= 1

2β
(3.34)

whenever Z
γ

0 is chosen according to Pα
T , the law of Zα

T .
From Theorem 2.5 in [11], we know that, for a fixed t ≥ 0, the law of Zα

t is absolutely continuous with respect to
the Liouville measure Mα , with Radon–Nikodym derivative

dPα
t

dMα
(y) = pα

t (0, y) ≥ 0.
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We can therefore write

dPα
T

dMα
(y) =

∫ ∞

0
e−tpα

t (0, y) dt.

Theorem 2.5 of [11] also implies that, for Mα-almost every y ∈ D, the transition density pα
t (0, y) is strictly positive

for all t in a measurable set with positive Lebesgue measure. (This fact was noted in an earlier version of their paper.)
But that implies that

dPα
T

dMα
(y) > 0

for Mα-almost every y ∈ D, i.e. the Liouville measure Mα and Pα
T are absolutely continuous with respect to each

other. Therefore, since (3.34) holds almost surely whenever Z
γ

0 was chosen according to Pα
T , we deduce that it also

holds almost surely with Z
γ

0 is chosen according to Mα . �

Remark 3.20. The exponential time T in the proof above can be replace with a deterministic time t provided we
know the existence of a continuous version of the transition density, for which pt(x, y) > 0 for all x, y ∈ D and all
t > 0. This is known in the case of a torus [19], and similar arguments probably work in the planar case as well. We
have made no attempt to check this, however.

We now restate and prove Corollary 1.6:

Corollary 3.21. Let γ ∈ (
√

2,2). Then the γ -Liouville Brownian motion Zγ is Lebesgue-almost everywhere differ-
entiable with derivative zero, almost surely.

Proof. By taking α = γ in Theorem 3.14, we know that for μγ -almost every t ≥ 0, the change of time Fγ has the
following growth rate:

lim
r→0

log |Fγ (t) − Fγ (t + r)|
log |r| = 1 − γ 2

4
.

Now, let δ ∈ (0, 1

2− γ 2
2

− 1). We can apply Lemma 3.17, or specifically (3.33) in the proof of Lemma 3.17, to see that

for μγ -almost every t ≥ 0 we have

∣∣Zγ

Fγ (t) − Z
γ

Fγ (t)+r

∣∣≤ |r|1/(2− γ 2

2 )−δ,

for all r with |r| small enough. But, by the definition of μγ , the Fγ image of a set with full μγ measure has full
Lebesgue measure. Therefore, we can see that for Lebesgue-almost every t ≥ 0 we have

∣∣Zγ
t − Z

γ
t+r

∣∣≤ |r|1/(2− γ 2

2 )−δ

for all r with |r| small enough. Therefore, we have

lim
r→0

|Zγ
t − Z

γ
t+r |

|r| ≤ lim
r→0

|r|1/(2− γ 2

2 )−δ−1 = 0,

where the final inequality is because we have chosen δ to ensure that 1

2− γ 2
2

− δ − 1 > 0. So, we certainly have

differentiability for Zγ , for Lebesgue-almost every t ≥ 0, and the derivative is equal to zero. �
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