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Abstract. We consider the generalized parabolic Anderson equation (gPAM) in 2 dimensions with periodic boundary. This is an
example of a singular semilinear stochastic partial differential equation in the subcritical regime, with (renormalized) solutions only
recently understood via Hairer’s regularity structures and, in some cases equivalently, paracontrollled distributions by Gubinelli,
Imkeller and Perkowski. In the present paper we utilise the paracontrolled machinery and obtain a (Stroock–Varadhan) type support
description for the law of gPAM. In the spirit of rough paths, the crucial step is to identify the support of the enhanced noise in a
sufficiently fine topology. The renormalization is seen to affect the support description.

Résumé. On considère l’équation d’Anderson parabolique généralisée (gPAM) en dimension 2 avec condition au bord périodique.
Cette équaton est une équation aux dérivées partielles stochastique singulière qui a été étudiée en utilisant les structures de régularité
introduites par M. Hairer ou de manière équivalente par les distributions paracontrolées introduites M. Gubinelli, P. Imkeller et
N. Perkpowski. Dans ce travail on se propose d’utiliser la notion de distribution paracontrolée afin d’obtenir le support (de type
Stroock–Varadhan) de la loi de gPAM. Dans le même esprit que les chemins rugueux, le point crucial est d’identifier le support du
bruit augmenté dans une topologie assez fine. On voit dans ce modèle que la renormalisation affecte le support de la solution.
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1. Introduction

In a major recent advance, carried out independently (and with different techniques) by Hairer [11] and Gubinelli,
Imkeller and Perkowski [9] it was understood how to make rigorous sense of a number of important singular semi-
linear stochastic partial differential equations (SPDEs) arising in mathematical physics. While Hairer’s theory of
regularity structures can handle more general classes of such highly irregular SPDEs, the two theories yield essentially
equivalent results in a number of interesting cases, including the (generalized) parabolic Anderson model in a spatial
continuum of dimension 2, on which this article will focus. More specifically, we consider a solution u :R+ ×T2 →R

to the following SPDE (cf. Theorem 2.9 below)

{
L u = f (u)ξ,

u(0, x) = u0(x) ∈ Cα(T2).
(1)

Here L = ∂t − � is the heat-operator, � the Laplacian on the two dimensional torus T2, Cα(T2) is the Besov space
Bα∞,∞ (see (7) for the exact definition), f ∈ C3(R;R) a three times differentiable function, and at last ξ is spatial

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/16-AIHP800
mailto:khalil.chouk@gmail.com


Support theorem for a singular SPDE 203

white noise with (for convenience) zero spatial mean; that is ξ is a centred Gaussian field with1

E
[
ξ(x)ξ(y)

] = δ(x − y) − 1.

The aim of this paper is to give a characterization for the topological support of the law of the solution u in a
suitable Hölder–Besov space.

Even in the well-understood and classical context of stochastic differential equations (SDEs), such a “support
theorem” is a deep result and was first obtained in a seminal paper by Stroock–Varadhan [22], many extensions and
alternative proofs followed. A basic observation, used in virtually all this works, is that Wong–Zakai approximations
give the “easy” inclusion in the support theorem. Most relevant for us, Lyons’ rough path theory [17–19] has provided
a “robust” view on SDE theory which subsequently led to decisive proofs of the Stroock–Varadhan support theory: the
problem is reduced to establish the support characterization for the enhanced noise, in sufficiently strong topologies,
upon which the solution depends in a continuous fashion. This strategy of proof was carried our first by Ledoux, Qian
and Zhang [16], see also Friz, Lyons and Stroock [6] and the references in [8, Ch.19].

The theories of regularity structures and paracontrolled distributions, both inspired by rough path theory, provide
an equally “robust” view on the classes of SPDEs, which they helped to define in the first place. A similar route
towards support characterizations should then be possible. To this end, a number of technical problems need to be
overcome, the perhaps most immediate being the divergence of “Wong–Zakai” approximations2 due to an infinite Itô–
Stratonovich correction. (Such a problem was already encountered in the classical literature for SPDEs, in particular
the work of Bally, Millet and Sanz-Solé [2] appears close to ours in spirit, although of course both techniques and
classes of considered SPDEs are entirely different.)

It is clear that our general démarche invites generalizations to other SPDEs where the theory of regularity structures
or paracontrolled distributions can be employed, notably the three dimensional stochastic quantization equation �4

3 [5,
11], the KPZ equation [10] and [7, Ch.15] and its generalizations presently studied by Bruned, Hairer and Zambotti.
Indeed, it would be very desirable, although we believe this is presently out of reach, to have a “general support
theorem” that applies to all (local) solutions to subcritical SPDEs. A more realistic programme consists of tackling
each singular SPDE of interest with a tailor-made analysis, inspired/extending the one presented in this paper in the
case of gPAM [9,11]. For instance, we are convinced that �4

3, with paracontrolled analysis due to [5], can be dealt
within a reasonably similar framework even though the details seem to require a considerable additional effort.3

Having explained our focus on gPAM, we recall the basic issue with this model given by equation (1): the problem
is that ξ is too rough to have a well-defined product f (u)ξ . Indeed, it is well-known that ξ ∈ C−1−δ(T2) a.s. for all
δ > 0, and no better, which implies at least formally that at best u(t, ·) ∈ C1−δ a.s., in view of regularization properties
of the heat flow. It is well-known from harmonic analysis that Schwartz distributions in such Besov–Hölder spaces
can be multiplied only if the exponents add up to a positive number, which is plainly not the case here and leaves one
with the ill-defined product f (u)ξ . If one proceeds by brute force approximation arguments, one quickly finds that
the limiting equations is not (1) but of the (non-sensical) form

{
L u = f (u)ξ − ∞(· · · ),
u(0, x) = u0(x) ∈ Cα(T2).

(2)

This problem has been treated in the simple case of f (u) = u in [14] by interpreting the product as the Wick product
generated by the Gaussian structure of the white noise and then a chaos expansion of the solution is obtained. For the
case of general f , no such trick will work.

As already mentioned, recently two different approaches have been developed to deal with this singular SPDE. One
is based on the theory of regularity structure due to Hairer [11], the other one the paracontrolled distribution approach
due to Gubinelli, Imkeller and Perkowski [9]. In the latter, the authors use the Bony paraproduct (see [1,3]) to obtain
a space of distributions which admit some sort of Taylor expansion where in a sense the pointwise product is replaced

1More precisely, ξ is a centered Gaussian field indexed by L2(T2) so that E[(ξ,ϕ)(ξ,ψ)] = (ϕ,ψ) − (ϕ,1)(ψ,1). Note that this covariance
structure indeed implies zero (spatial) mean, i.e.

∫
T2 ξ(x)dx = 0 almost surely.

2See Hairer-Pardoux [12] for a study of renormalized Wong–Zakai approximations.
3The situation may be compared to the support theorem for fractional Brownian rough paths, cf. [8] and the references therein: the case H ∈
(1/4,1/3], which requires a “level-3” enhancement of the noise, is well-known to be substantially more involved than the case H ∈ (1/3,1/2].
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by the Bony paraproduct, and which is ultimately seen to contain the solution u of the equation, with good properties
vis a vis to the afore-mentioned multiplication f (u)ξ .

Both theories yield a notion of renormalized solution for (1), local in time, obtained as limit u = limε→0 uε , limit
taken in C([0, τ )],Cα), α < 1, with explosion time τ = τ(ω) > 0 a.s.,

{
L uε = f (uε)ξε − cεf

′(uε)f (uε),

u(0, x) = u0(x) ∈ Cα(T2),
(3)

with ρ a suitable mollifier function, ξε = ε−2ρ( ·
ε
) � ξ mollified white noise and diverging constants cε = cε(ρ), see

Theorem 2.9. (We insist that the limit u does not depend on the choice of ρ.) Assuming non-explosion the above
convergence takes place in C([0, T ],Cα), for any fixed T > 0. We note that non-explosion holds in the linear case
f (u) = u; a non-explosion condition for non-linear f was recently given in [4] and includes the case of compactly
supported f ∈ C3

c (R). Let us remark that the assumption of non-explosion is not essential for our work, however it
removes the need for attaching a cemetery state to the state space (as done, also in the context of a singular SPDE, in
[13]).

Let us also emphasize that, u = limε→0 uε should not be considered as the only solution to the (formal) Cauchy
problem for (1): given a real constant a, replacing cε by c̃ε ≡ cε + a in equation (3) one indeed gets a (in general
different) limit ũ = limε→0 ũε , which may also be regarded as solution (driven by enhanced but stationary noise) to
(1).

Writing u[a] ≡ ũ, this is effectively a reflection of the renormalization group, here a ∈ (R,+), which acts on
renormalized solutions of this SPDE, point of view emphasized in [11].

Let H be the Cameron–Martin space associated to ξ i.e. the set of f ∈ L2(T2) with zero-mean,
∫
Td f (x)dx = 0.

Define the separable space C0,α(Td) as the closure of smooth functions in Cα(Td). Assuming non-explosion, the law
of u can then be regarded as (Borel-)meausre on the (Polish) space C([0, T ],C0,α(T2)). We are now ready to state our
main result.

Theorem 1.1. Let T > 0, α ∈ (2/3,1), u0 ∈ C0,α(Td) and f ∈ C3(R). Assuming non-explosion, denote by u = u[0]
the solution of the Cauchy problem (1) given by Theorem 2.9 and by u�P the law of u in C([0, T ],C0,α(T2)). Then we
have, with the closure below taken in C([0, T ],C0,α(T2)), and N∞ an arbitrary neighbourhood of +∞,

supp(u�P) = {
S (u0, h, c), h ∈ H, c ∈ N∞

}
, (4)

where S (u0, h, c) = v is the classical solution to (cf. Proposition A.1 in the Appendix)
{
L v = f (v)h − cf ′(v)f (v),

v(0, x) = u0(x) ∈ C0,α(T2).
(5)

At last, the support is invariant under the action of the renormalization group in the sense that,

supp
((

u[a])
�
P
) = supp(u�P), for any a ∈ R. (6)

We remark that the infinite term in (2) is replaced by a finite expression in (5), of the form cf ′(u)f (u), and this is
a key aspect in the analysis. It should be noted that, in general, the constant c which appears in (4) and ranges over a
neighbourhood of +∞ cannot be omitted. We give a direct proof of

{
S (u0, h, c), h ∈ H, c ∈ N∞

}
�

{
S (u0, h,0), h ∈H,

}
in Lemma A.3 (and also Lemma 3.14), so that, in particular, ignoring the renormalization constant is not possible in
the support description. This is in contrast to the results of Bally, Millet and Sanz-Solé [2] where an infinite constant
was effectively set to zero. The underlying reason is that they deal with space-time white noise whereas in PAM case
we have purely spatial noise. More specifically, as seen explicitly in [2, (2.7)] the Itô–Stratonovich correction, finite
at the level of approximations, can be absorbed in the driving space-time white noise, via a suitable application of
Girsanov’s theorem. This is a consequence of the particular structure of their equation and, even for SDEs, not true in
general. In particular, no such absorbation can be expected in the case of spatial-only driving noise as is the case for
gPAM.
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2. Well-posedness result for the parabolic Anderson equation

2.1. Besov spaces and Bony paraproduct

Before stating the main result of [9] about the parabolic Anderson equation let us collect some definition and basics
facts about the Besov space. Let χ and ρ be a nonnegative smooth radial functions such that

1. The support of χ is contained in a ball and the support of ρ is contained in an annulus;
2. χ(ξ) + ∑

j≥0 ρ(2−j ξ) = 1 for all ξ ∈ Rd ;

3. supp(χ) ∩ supp(ρ(2−i ·)) =∅ for i ≥ 1 and supp(ρ(2−i ·)) ∩ supp(ρ(2−j ·)) =∅ when |i − j | > 1

(for the existence of such a function see [1], Proposition 2.10.). Then the Littlewood–Paley blocks are defined by:

�−1u = F−1(χFu) and for j ≥ 0, �ju = F−1(ρ(
2−j ·)Fu

)
.

Where Ff is the Fourier transform of a distribution f ∈ S ′(Rd).
We define the Besov space of distributions by:

Bα
p,q =

{
u ∈ S ′(Rd

); ‖u‖q

Bα
p,q

=
∑

j≥−1

2jqα‖�ju‖q
Lp < +∞

}
. (7)

In the sequel we will deal extensively with the special case of Cα := Bα∞,∞ and the Sobolev space Hα := Bα
2,2

and we write ‖u‖α = ‖u‖Bα∞,∞ . Let us also introduce the space Ȟ α(Rd) (respectively Čα(Rd)) of distributions f ∈
Hα(Rd)(respectively f ∈ Cα(Rd)) such that f̂ (0) = 0 equipped with the norm of Hα(Rd) (respectively Cα(Rd)) and
we remark that Ȟ 0 =H. At some point we will deal with stochastic objects and the trick is to work with Besov spaces
with finite indexes and then go back to the space Cα . For that we have the following useful Besov embedding.

Proposition 2.1 (Besov embedding). Let 1 ≤ p1 ≤ p2 ≤ +∞ and 1 ≤ q1 ≤ q2 ≤ +∞. For all s ∈R the space Bs
p1,q1

is continuously embedded in B
s−d( 1

p1
− 1

p2
)

p2,q2 . In particular we have ‖u‖
α− d

p
� ‖u‖Bα

p,p
.

Taking f ∈ Cα and g ∈ Cβ we can formally decompose the product as

fg = f ≺ g + f ◦ g + f  g

with

f ≺ g = g  f =
∑

j≥−1

∑
i<j−1

�if �jg (Paraproduct term)

and

f ◦ g =
∑

j≥−1

∑
|i−j |≤1

�if �jg (Resonating term).

With these notations the following results hold.

Proposition 2.2 (Bony estimates [3]). Let α,β ∈R. Then

(i) For f ∈ L∞ and g ∈ Cβ

‖f ≺ g‖β � ‖f ‖∞‖g‖β;
(ii) for β < 0, f ∈ Cα and g ∈ Cβ

‖f  g‖α+β � ‖f ‖α‖g‖β;
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(iii) for α + β > 0 and f ∈ Cα and g ∈ Cβ

‖f ◦ g‖α+β � ‖f ‖α‖g‖β.

Moreover if we have that f ∈ Cα and g ∈ Hβ with α + β > 0 then

‖f ◦ g‖α+β−d/2 � ‖f ‖α‖g‖Hβ .

We finish this section by describing the action of the Fourier multiplier operator on the Besov spaces.

Proposition 2.3 (Schauder estimate). Let m ∈ R and ψ an infinitely differentiable function on Rd − {0} such that
|Dkψ(x)| � |x|−m−k for all k. Then the following bound

∥∥ψ(D)f
∥∥

α+m
� ‖f ‖α

for f ∈ Cα with ψ(D)f = F−1(ψf̂ ).

Remark 2.4. We note that all the above facts about Besov space can be stated on the Torus Td for detail see [21].

2.2. Convergence of the mollified equation

Let us now discuss the known (global!) existence and uniqueness results for the gPAM. Similar to the resolution of
SDEs via rough path theory, the problem is divided in two parts.

• A first part which is purely analytic in which the PDE driven by smooth ξ is extended to “rougher” driving noise,
with values in a “bigger space” X α .

• A second purely stochastic step in which it is shown that the white noise ξ can be enhanced in an element �pam ∈
X α .

The intuition here is very similar to rough path theory, and the space X α effectively consists of a component for the
noise plus room for an enhancement of the noise, to be compared with Lévy’s area.

Let us write L = ∂t − � for the heat-operator. Č∞ denotes the space of smooth functions, with zero mean, on the
torus. We have

Theorem 2.5 ([9,11]). Let α ∈ (2/3,1), f ∈ C3
b(R) and

S smooth : Cα
(
T2) × Č∞(

T2) ×R �→ C
(
R+,Cα

(
T2))

the solution operator as function of (u0, θ, c), for the classical PDE (cf. Proposition A.1)

{
L u = f (u)θ − cf ′(u)f (u),

u(0, x) = u0(x).
(8)

Then, assuming non-explosion,4 there exist a Polish space X α and a continuous map

S rough : Cα
(
T2) × X α → C

(
R+;Cα

(
T2))

which extends S smooth in the following sense

S smooth(u0, θ, c) = S rough(u0,M (θ, c)
)

(9)

4Cf. Remark 1.13 in [11] or [9]. We note again that this assumption is not essential but simplifies the presentation removing the need to attaching a
cemetery state, sufficient conditions for non-explosion were given in [4].
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with (◦ denotes the resonating product, introduced above)

M (θ, c) := (θ; θ ◦ Kθ − c), (10)

where Kθ := (−�)−1θ is the (unique) smooth, zero-mean solution to (−�)u = θ ∈ Č∞, cf. Proposition A.2.

As is easy to see, each Cα(T2) in the above statement can be replaced by the (separable, hence Polish)

C0,α
(
T2) = C∞(

T2
)C α

.

Let us now be more precise about the “enhanced noise space” X α .

Definition 2.6. Let H α := Cα−2(T2)×C2α−2(T2) and ‖F‖H α denote the norm in this Banach space. Now we define
the set X α by the following identity:

X α := {
(θ, θ ◦ Kθ − c); θ ∈ Č∞(

T2
)
, c ∈R

}H α

.

Finally we denote by � = (�1,�2) a generic element in X α . Whenever �1 = ξ , we call � an enhancement (or lift)
of ξ .

We have the following alternative description of X α . Recall that H = Ľ2, the space of zero-mean square-integrable
functions on the torus, is precisely the Cameron–Martin space for our spatial zero-mean white-noise ξ .

Lemma 2.7. For α < 1, the following set identity holds,

X α = {
(θ, θ ◦ Kθ − c); θ ∈ H, c ∈R

}H α

.

Proof. Let θ ∈ H then by the Besov embedding we have that ‖θ‖Cα−2 � ‖θ‖C−1(T2) � ‖θ‖L2(T2). Moreover by a
direct computation we get:

‖θ ◦ Kθ‖2
Hγ =

∑
k∈Z2

|k|2γ

∣∣∣∣
∑

k1+k2=k;k2,k1 �=0;|i−j |≤1

1

|k2|2 F (�iθ)(k1)F (�j θ)(k2)

∣∣∣∣
2

�
∑
k∈Z2

|k|2γ

∣∣∣∣
∑

k1+k2=k,|k|�|k1|∼|k2|

1

|k2|2 θ̂ (k1)θ̂ (k2)

∣∣∣∣
2

� ‖θ‖4
L2(T2)

∑
k∈Z2

|k|2γ−4 < +∞ (11)

if γ < 1. Now using the Besov embedding once again we get that ‖θ ◦ Kθ‖γ−1 � ‖θ‖2
L2(T2)

for all γ < 1 and in

particular if we take 2α − 2 ≤ γ − 1 < 0 we get that ‖θ ◦ Kθ‖2α−2 � ‖θ‖2
L2(T2)

then if we take θε a regularization of

θ such that ‖θε − θ‖L2(T2) →ε→0 0 we obtain immediately by the same computation that

∥∥θε ◦ Kθε − θ ◦ Kθ
∥∥

2α−2 �
∥∥(

θ − θε
) ◦ Kθ

∥∥
2α−2 + ∥∥θ ◦ (−�)−1(θ − θε

)∥∥
2α−2 � ‖θ‖L2(T2)

∥∥θ − θε
∥∥

L2(T2)

and then we obtain the convergence of (θε, θε ◦ Kθε) to (θ, θ ◦ Kθ) in H α and this for every θ ∈ H. In conclusion
any element of H can be lifted in an rough distribution in X α , in other word the following identity:

X α = {
(θ, θ ◦ Kθ − c); θ ∈ H, c ∈R

}H α

hold. �
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Remark 2.8. The extension property (9) was given for all smooth zero-mean function on the torus. But it extends to
all elements of H and this can be seen as follows.

Let θ ∈ H and θε a regularization of θ such that ‖θε − θ‖L2(T2) → 0 then due to the previous lemma we know that
(θε, θε ◦ Kθε − c) converge to (θ, θ ◦ Kθ − c) in H α and this gives the convergence of Sr (u0, (θ

ε, θε ◦ Kθε − c))

to Sr (u0, (θ, θ ◦ Kθ − c)) in C(R+,C α(T2)). Now taking the classical solution Sc(u0, θ
ε, c) to

L uθε = f (u)θε − cf ′(uθε)
f

(
uθε)

, u(0, x) = u0(x),

we know that by definition it satisfies the relation

S rough(u0,
(
θε, θε ◦ Kθε − c

)) = S smooth(u0, θ
ε, c

)
.

And then taking the limit in this equation we obtain immediately that

lim
ε→0

S smooth(u0, θ
ε, c

) = S rough(u0, (θ, θ ◦ Kθ − c)
)
.

Moreover we know by the Proposition A.1 that the map θ �→ S smooth(u0, θ, c) is continuous from H to
C(R+,L2(T2)), from which we get the following relation

S smooth(u0, θ, c) = S rough(u0, (θ, θ ◦ Kθ − c)
)

for all θ ∈ H and c ∈R.

Recall from the introduction that ξ denotes zero mean spatial white noise on the two-dimensional torus. We con-
sider a mollification of this noise. Let ψ be a radial positive bounded function with compact support which is contin-
uous at the origin, with ψ(0) = 1, and set

ξε := ξε(ψ) :=
∑
k �=0

ψ(εk)ξ̂ (k)ek, (12)

where (ek) is the Fourier basis of L2(T2) then at this point we have the following convergence result.

Theorem 2.9 ([9]). Let α < 1. Then, with (diverging!) constants cε = cε(ψ) ∈R given by

cε =
∑
k �=0

|ψ(εk)|2
|k|2

we have convergence of M (ξε, cε) ≡ (ξε; ξε ◦ Kξε − cε) to some limit �pam. More precisely, with convergence in
Lp(�,X α) for all p > 1 and almost surely,

�ε := M
(
ξε, cε

) →ε→0 �pam ∈ X α

such that (�pam)1 = ξ . Moreover, the limit �pam does not depend on the function ψ used to mollify the noise.

Now, following [9], the point is that with uε := S rough(u0,�
ε), due to the constants cε , the function uε does not

satisfy equation (1) but a modified equation given by

L uε = f
(
uε

)
ξε − cεf

(
uε

)
f ′(uε

)
.

One then dedcues that uε converges to u = S rough(u0,�) in C([0, T ],Cα(T2)) where the convergence is in
Lp(�,X α) for all p > 1 and almost surely.
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3. Support theorem

3.1. Description of the strategy and support theorem for the white noise

Now to obtain the support theorem for our equation we begin by obtaining the result for the rough distribution �pam

associated to the white noise and then we transfer our result to u by using the continuity of the map S rough. Recall
that C0,β(T2) is the (β-Besov–Hölder) closure of smooth functions on the torus; Č0,β(T2) denotes the closure of zero-
mean, smooth functions. As a warm-up, we now characterize the support of the white noise ξ in the Besov–Hölder
space.

Proposition 3.1. Let (�,A ,P) the abstract probability space associated to zero-mean white noise ξ on T2 and ξ�P

the law of ξ viewed as Borel measure on C0,α−2(T2), any α < 1. Then

supp(ξ�P) = Č0,α−2(T2).
This follows of course immediately from general facts of Gaussian measures on separable Banach spaces: support

equals closure of the Cameron–Martin space H, here given by zero-mean elements in L2(T2), and it is a simple
exercise to verify Č0,α−2(T2) = H with (α − 2)-Besov–Hölder-closure, any α < 1. That said, we now (re)prove
Proposition 3.1 with an argument that extends to enhanced noise, as discussed below, which is clearly a non-Gaussian
object.

The easy half of Proposition 3.1, supp(ξ�P) ⊆ Č0,α−2(T2), follows at once from the convergence ξε → ξ in Cα−2

for all α < 1, with mollified noise ξε(ω) ∈ Č∞(T2) as introducted in (12). Now to prove the other inclusion let us
introduce the translation operator Th : S ′(T2) → S ′(T2) for h ∈ H defined by Thψ := h + ψ . It is immediate to
check that Th is a continuous invertible operator from Č0,α−2 to Č0,α−2 with inverse T−h. We then state the (well-
known) Cameron–Martin theorem.

Theorem 3.2. For h ∈ H, the law of ξ and the law of Thξ are equivalent.

A simple consequence of this theorem is that the support of the law of ξ is invariant by Th. Although straight-
forward, we spell out the proof for later inspection.

Lemma 3.3. Let h ∈ H then Th supp(ξ�P) ⊆ supp(ξ�P).

Proof. (Lemma) Let x ∈ supp(ξ�P), then - by definition - we know that for any open set U of Čα−2(T2) such that
x ∈ U we have P(ξ ∈ U) > 0. Let V be an open set such that Thx ∈ V . By continuity of Th we know that there exist
an open set U such that x ∈ U and ThU is contained in V so that P(ξ ∈ V ) ≥ P(T−hξ ∈ U) > 0 where the final strict
positivity follows from P(ξ ∈ U) > 0 and the Cameron–Martin theorem. As a consequence, Thx ∈ supp(ξ�P). �

We now prove the other half of Proposition 3.1, that is supp(ξ�P) ⊇ Č0,α−2(T2). Take x ∈ supp(ξ�P). From the
first inclusion, it is clear that there exist (xn)n a sequence of elements in H such that limn→+∞ xn = x in the
space Čα−2(T2), equivalently T−xnx →n+∞ 0. By the invariance of the support of ξ�P under the translation op-
erator, T−xnx ∈ supp(ξ�P) and using the fact the support is a closed set in Cα−2(T2) we obtain immediately that
0 ∈ supp(ξ�P). Then any Th0 = h is also in the support, hence H ⊆ supp(ξ�P) which gives the second inclusion.

3.2. Support theorem for the enhanced white noise

The goal of this section is to characterize the support of the law of �pam. We have

Theorem 3.4. Let α ∈ (2/3,1) and let (�pam)�P the law of �pam viewed as a Borel measure on X α . Then5

supp
((

�pam)
�
P
) = X α = {

(θ, θ ◦ Kθ − c) : θ ∈H, c ∈ R
}H α

.

5The second equality was already established in Lemma 2.7.
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Remark 3.5. Recently it was proved in [20] that X α = Č0,α−2(T2) × Č0,2α−2(T2).

Let us here recall

�pam = lim
ε→0

M
(
ξε, cε

) ∈ X α a.s. (13)

with convergence in the space H α , and (Polish) space X α as introduced in Definition 2.6, where cε = E[ξε ◦Kξε] =∑
k �=0 |ψ(εk)|2|k|−2. As a trivial consequence, we note that the support of the law of

�pam[a] := lim
ε→0

M
(
ξε, cε + a

) = �pam + (0,−a)

is not affected by the perturbation (0,−a), i.e.

supp
((

�pam[a])
�
P
) = {

(θ, θ ◦ Kθ − c) : θ ∈ H, c ∈R
}H α

.

From the equation (13) we get immediately the easy half of Theorem 3.4,

supp
((

�pam)
�
P
) ⊆ X α.

To obtain the other inclusion we will need the following lemma which can be seen in the context of rough paths, as
analogue of highly oscillatory approximations to the so called pure area rough path (will also be used in Lemma 3.13
below).

Lemma 3.6. Let c ≥ 0 then there exist (Xn,c)n∈N, smooth functions on the T2, such that

1. ‖Xn,c‖α−2 →n→+∞ 0,
2. ‖Xn,c ◦ KXn,c − c‖2α−2 →n→+∞ 0

for α < 1. In fact, with z := (1,1) we may take

Xn,c(x) = c1/22n+1 cos
(
2n〈z, x〉).

Proof. Let Yn(x) = 2nei〈2nz,x〉. Then we see that by a simple computation that

�qYn(x) = ρ
(
2−q+nz

)
2nei〈2nz,x〉, �−1Y

n(x) = χ
(
2nz

)
2nei〈2nz,x〉

for all q ≥ 0 and then we get easily that
∥∥Yn

∥∥
α−2 � max

(
2−n(1−α),2nχ

(
2nz

)) →n→+∞ 0.

Since Yn has exact frequency 2n, the paraproduct Yn ≺ Yn vanishes and so Yn ◦ Yn = YnYn. Hence

Yn ◦ KYn = 1

22n|z|2 Yn ◦ Yn = |z|−2ei2n+1〈z,x〉

and then we get that
∥∥Yn ◦ KYn

∥∥
2α−2 � max

(
2−n(2−2α),χ

(
2n|z|)) →n→+∞ 0.

Let us also note that, again as consequence of both Yn,Y n having frequency 2n

Y n ◦ KYn = YnKYn = |z|−2 = 1/2.

Now when c > 0 we can take Xn,c(x) = c1/2(Y n(x) + Yn(x)) = c1/22n+1 cos(2n〈z, x〉) where Yn is the complex
conjugate of Yn and then obviously we have that:

∥∥Xn,c
∥∥

α−2 →n+→∞ 0
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moreover we have the following equality

Xn,c ◦ KXn,c = 2cRe
(
Yn ◦ KYn

) + 2cY n ◦ KYn = 2cRe
(
Yn ◦ KYn

) + c,

where Re(·) denotes the real part of a complex number. And then we obtain immediately that
∥∥Xn,c ◦ KXn,c − c

∥∥
2α−2 �

∥∥Yn ◦ KYn
∥∥

2α−2. �

And then we obtain immediately the following result, to be compared with Lemma 2.7.

Proposition 3.7. Let α ∈ (2/3,1) then we have that

X α = {
(θ, θ ◦ Kθ − c) : θ ∈H, c > 0

}H α

.

Proof. Let θ ∈ H, a ∈ R, c > max(0, a) and take Xn,c−a as in the Lemma 3.6 and define θn = θ + Xn,c−a then of
course we have that

∥∥θn − θ
∥∥

2α−2 = ∥∥Xn,c−a
∥∥

2α−2 →n→+∞ 0

and a quick computation gives

θn ◦ Kθn = θ ◦ Kθ + Xn,c−a ◦ Kθ + θ ◦ KXn,c−a + Xn,c−a ◦ KXn,c−a.

And using the Bony estimate for the resonating term we get that
∥∥θ ◦ KXn,c−a

∥∥
2α−2 �

∥∥θ ◦ KXn,c−a
∥∥

α−1

� ‖θ‖L2(T2)

∥∥KXn,c−a
∥∥

α
→n→+∞ 0

and by the same way we show that ‖Kθ ◦ Xn,c−a‖2α−2 vanish when n go to the infinity. Then we have shown that
(θn, θn ◦ Kθn − c) converge to (θ, θ ◦ Kθ − a) which gives:

(θ, θ ◦ Kθ − a) ∈ {
(h,h ◦ Kh − c) : h ∈ H, c > 0

}H α

and finally we get

X α ⊆ {
(θ, θ ◦ Kθ − c) : θ ∈H, c > 0

}H α

of course the other inclusion is an obvious fact. �

We get from this result that

supp
((

�pam)
�
P
) ⊆ {

(θ, θ ◦ Kθ − c) : θ ∈ H, c > 0
}H α

= X α.

Now let us focus on the other inclusion. As in the case of the white noise we will need to introduce an appropriate
translation operator on the space X α . Let h ∈ H and we define for � = (�1,�2) ∈ H α the following translation
operator:

Th� = (
�1 + h,�2 + h ◦ Kh + h ◦ K�1 + �1 ◦ Kh

)
.

Is not difficult to see that Th is a continuous invertible map on H α , the inverse given by T−h. More precisely, we have

Proposition 3.8. Let h ∈ H. Then we have

‖Th�1 − Th�2‖H α ≤ 2
(‖h‖H + 1

)∥∥�1
1 − �1

2

∥∥
α−2 + ∥∥�2

1 − �2
2

∥∥
2α−2.
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Proof. By definition we have that:

‖Th�1 − Th�2‖H α ≤ ∥∥�1
1 − �1

2

∥∥
α−2 + ∥∥�2

1 − �2
2

∥∥
2α−2 + ∥∥h ◦ (

K�1
1 − K�1

2

)∥∥
2α−2

+ ∥∥(
�1

1 − �1
2

) ◦ Kh
∥∥

2α−2.

Using the Bony estimates for the resonating term (see (2.2)) and the Schauder estimate for K(Proposition A.2) we
obtain that:

∥∥h ◦ (
K�1

1 − K�1
2

)∥∥
2α−2 �

∥∥h ◦ (
K�1

1 − K�1
2

)∥∥
α−1 �

∥∥�1
1 − �1

2

∥∥
α−2‖h‖H.

Now by the same argument we get:
∥∥Kh ◦ (

�1
1 − �1

2

)∥∥
2α−2 �

∥∥�1
1 − �1

2

∥∥
α−2‖h‖H

which completes the proof. �

Now we have the following proposition which is the equivalent of the Cameron–Martin theorem for �pam.

Proposition 3.9. We have

P
({

ω ∈ �;Th�
pam(ω) = �pam(ω + h) for all h ∈H

}) = 1.

As a consequence (of the standard Cameron–Martin theorem for Gaussian measures) the laws of �pam and Th�
pam

are equivalent.

Proof. Without loss of generality we can assume that � = S ′(T2) and P is the law of the white noise with zero mean
and that ξ is given by the projection process (i.e.: for ω ∈ �,ξ(ω)(φ) = ω(φ) for all φ ∈ S (T2)). Let us now define
�pam,ε by

�pam,ε(ω) := (
ωε,ωε ◦ Kωε − cε

)

with ωε := ∑
k ψ(εk)ω̂(k)ek then we know that there exist a measurable set A with P(A) = 1 and such that for all

ω ∈A the convergence �pam,ε(ω) → �pam(ω) holds in H α . Now taking ω ∈ A using the fact that

�pam,ε(ω + h) = Thε�pam(ω)

and the continuity of the translation operator (h,�) �→ Th� we see that �pam(ω+ ε) is also convergent to Th�
pam(ω)

on the other hand we have that

�pam(ω + h) = lim
ε

�pam,ε(ω + h)

thanks to the fact that the limit in the r.h.s exist and the fact that very realization of �pam is the limit of �pam,ε . This
of course allow us to identify

Th�
pam(ω) = �pam(ω + h). �

Now as in the case of the white noise this last result allows to get the invariance of the support by Th. Indeed we
have the following corollary

Corollary 3.10. Let h ∈H and take � ∈ supp((�pam)�P) then Th� ∈ supp((�pam)�P).

Now to proceed as in the white noise case we will show that the support of �pam contain the 0 element. This exactly
the propose of the next proposition:
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Proposition 3.11. Given a ∈R then there exist � ∈ supp((�pam)�P) and hk
a ∈ H such that

T−hk
a
� →ε→0 (0,−a) in H α.

To prove this proposition we will need the following preliminary result:

Lemma 3.12. Let bε be defined by

bε :=
∑

k∈Z2,k �=0

|ψ(εk)|
|k|2

then the following convergence

ξ ◦ Kξε − bε →ε→0 �2,pam, ξ ε ◦ Kξ − bε →ε→0 �2,pam

hold in the space Lp(�,C2α−2(T2)) for every p > 1.

Proof. We have by a direct computation that:

bε =
∑

|i−j |≤1,k∈Z2;k12=k

ρ
(
2−ik1

)
ρ
(
2−j k2

)
E

[
ξ̂ (k1)ξ̂ (k2)

]
ψ(εk1)|k2|−2ek =

∑
k1

ψ(εk1)|k1|−2,

where we wrote k12 instead of k1 + k2 for shorter notation. In view of the convergence giving in the Theorem 2.9 it
suffice to prove that:

(
ξε ◦ Kξ − bε

) − (
ξε ◦ Kξε − cε

) →ε→0 0

in Lp(�,C−δ(T2)). A quick computation gives

∣∣�q

((
ξε ◦ Kξ − bε

) − (
ξε ◦ Kξε − cε

))
(x)

∣∣2

=
∑

|i1−i2|,|j1−j2|≤1
k12=k,k′

12=k′

|k2|−2
∣∣k′

2

∣∣−2
ρ
(
2−qk

)
ρ
(
2−qk′) 2∏

l=1

(
ρ
(
2−il kl

)
ρ
(
2−jl k′

l

))

× ψ(εk1)ψ(εk2)
(
1 − ψ(εk2)

)(
1 − ψ

(
εk′

2

))

× (
ξ̂ (k1)ξ̂ (k2) −E

[
ξ̂ (k1)ξ̂ (k2)

])(
ξ̂
(
k′

1

)
ξ̂
(
k′

2

) −E
[
ξ̂
(
k′

1

)
ξ̂
(
k′

2

)])
ek−k′(x).

Then using the Wick theorem we obtain that:

E
[∣∣�q

((
ξε ◦ Kξ − bε

) − (
ξε ◦ Kξε − cε

))
(x)

∣∣2] = J ε
1 + J ε

2

with

J ε
1 =

∑
q�i1∼i2∼j1∼j2

k∈Z2,k12=k

∣∣ρ(
2−qk

)∣∣2
2∏

l=1

(
ρ
(
2−il kl

)
ρ
(
2−jl kl

))∣∣ψ(εk1)
∣∣2|k2|−4

∣∣ψ(εk2) − 1
∣∣2

and remarking that this sum is restricted to the frequency |k| � |k2| ∼ |k1| we get easily:

∑
k12=k,|k|�|k1|∼|k2|

|ψ(εk2) − 1|2|ψ(εk1)|2
|k2|4 � |k|−2+δr(ε)



214 K. Chouk and P. K. Friz

for all δ > 0 small enough, with

r(ε) :=
∑
k2 �=0

|k2|−2−δ
∣∣ψ(εk2) − 1

∣∣2 →ε 0

by dominate convergence. Then putting this last bound in the definition of J ε
1 allows to obtain the following inequality:

J ε
1 � r(ε)22qδ.

To finish our argument let us observe that:

J ε
2 =

∑
q�i1∼i2∼j1∼j2

k∈Z2,k12=k

∣∣ρ(
2−qk

)∣∣2
2∏

l=1

(
ρ
(
2−il kl

)
ρ
(
2−jl kl

))∣∣ψ(εk1)
∣∣∣∣ψ(εk2)−1

∣∣∣∣ψ(εk2)
∣∣∣∣ψ(εk1)−1

∣∣|k2|−2|k1|−2

and then due to the fact that the sum is over the frequency |k1| ∼ |k2| we see that J ε
1 ∼ J ε

2 from which we can conclude
the following bound:

E
[∣∣�q

((
ξε ◦ Kξ − bε

) − (
ξε ◦ Kξε − cε

))
(x)

∣∣2] � r(ε)22qδ

for all δ > 0 and ρ < δ and then using the Gaussian hypercontractivity (see [15]) and the Besov embedding we get:
∥∥(

ξε ◦ Kξ − bε

) − (
ξε ◦ Kξε − cε

)∥∥p

Lp(�,C−2δ−2/p)

�
∥∥(

ξε ◦ Kξ − bε

) − (
ξε ◦ Kξε − cε

)∥∥p

Lp(�,B−2δ
p,p )

�
∑

q≥−1

2−2qpδ

∫
T2

E
[∣∣�q

((
ξε ◦ Kξ − bε

) − (
ξε ◦ Kξε − cε

))
(x)

∣∣2] p
2 dx � r(ε)p/2

which finishes the proof of the lemma. �

Now we are able to prove the Proposition 3.11.

Lemma 3.13. Let us define ξn and cn

ξn :=
∑

|k|≤ν2n

ξ̂ (k)ek, cn =
∑

|k|≤ν2n

1

|k|2

for ν > 0. Then for ν large enough (depending only on the annulus and the ball given in the Littlewood–Paley decom-
position) the following convergence

lim
n→+∞T−ξn+Xn,cn−a�pam = (0,−a)

holds in H α in probability. Where Xn,cn−a is given by the Lemma 3.6. Then to obtain the statement of the Proposi-
tion 3.11 is suffice to take � = �pam(ω) and hk = ξnk (ω) − Xnk,cnk

−a with ω is fixed in the set of probability one for
which the last convergence hold along a subsequence T−ξnk +X

nk,cnk
−a�pam.

Proof. We have by definition that

(
T−ξn+Xn,cn−a�pam)1 = ξ − ξn + Xn,cn−a.

To prove that the right hand side of this equality converge to 0 is suffice to remark that ‖ξn − ξ‖α−2 →n→+∞ 0 and
then it suffice to prove that

∥∥Xn,cn−a
∥∥

α−2 →n→+∞ 0
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but following the proof of the Lemma 3.6 we see that

∥∥Xn,cn−a
∥∥

α−2 � (cn)
1/2 max

(
2−n(1−α),χ

(
2nk

))
.

Then recall in that

cn =
∑

|k|≤ν2nk∈Z2

|k|−2 �ν n

we deduce easily that

∥∥Xn,cn−a
∥∥

α−2 � n1/2 max
(
2−n(1−α),2nχ

(
2nk

)) → 0.

Which is gives the needed convergence for the first component of T−ξn+Xn,cn �pam. Now by definition we have that

(
T−ξn+Xn,cn−a�pam)2 = �pam,2 + ξn ◦ Kξn − ξn ◦ Kξ − ξ ◦ Kξn + (

ξ − ξn
) ◦ KXn,cn−a

+ Xn,cn−a ◦ K
(
ξ − ξn

) + Xn,cn−a ◦ KXn,cn−a.

And let us remark that

supp
(
F

(
ξn − ξ

)) ⊆ {|k| > ν2n
}

and that

supp
(
F

(
Xn,cn−a

)) ⊆ {|k| = 2n|z|}

and then we can choose ν large enough (depending only on the size of the annulus and the ball which given in the
definition of χ and ρ) such that

�i

(
ξn − ξ

)
�j

(
Xn,cn−a

) = 0

for |i − j | ≤ 1. And then we get immediately that

Xn,cn−a ◦ K
(
ξ − ξn

) = (
ξ − ξn

) ◦ Xn,cn−a = 0

for all n. Then we see that

(
T−ξn+Xn,cn−a�pam)2 = �pam,2 + (

ξn ◦ Kξn − cn

) + (
cn − ξn ◦ Kξ

)
+ (

cn − ξ ◦ Kξn
) + (

Xn,cn−a ◦ KXn,cn−a − (cn − a)
) − a.

Now using the Lemma 3.12 we can see that

∥∥(
ξn ◦ Kξn − cn

) + (
cn − ξn ◦ Kξ

) + (
cn − ξ ◦ Kξn

) + �pam,2
∥∥

2α−2 →n→+∞ 0

in probability. To obtain the needed convergence is suffice to show that

∥∥Xn,cn−a ◦ KXn,cn−a − (cn − a)
∥∥

2α−2 →n→+∞ 0.

Once again following the argument given in the Lemma 3.6 we see easily that

∥∥Xn,cn ◦ KXn,cn − (cn − a)
∥∥

2α−2 � nmax
(
2−2n(1−α),χ

(
2n|z|)) →n→+∞ 0

we have used the fact that cn � n. This completes the proof. �
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Take � ∈ supp((�pam)�P) and hk ∈ H such that:

T−hk� →k→+∞ (0,−a) in H α

(this is possible thanks the Proposition 3.11). Moreover we know that the support of �pam is invariant by translation,
then Thk�pam ∈ supp((�pam)�P) for all k which give us that (0,−a) ∈ supp((�pam)�P). Once again the invariance by
translation give us that

X α ⊆ supp
((

�pam)�
P
)

which finishes the proof of the Theorem 3.4.
Before going into the proof of the Theorem 1.1 let us observe the fact that the constant c can’t dropped from the

space X α , indeed we claim that

Lemma 3.14. Given α ∈ (2/3,1), then the closure of the set

{
(h,h ◦ Kh),h ∈H

}

in the space H α is strictly embedded in X α .

Proof. Let assume that there exist hn in H such that (hn,hn ◦ Khn) converge in H α to (0,−1). Then the point is
that now

�(Khn)
2 = 2|∇Khn|2 − 2hnKhn

with ∇ is the gradient operator. Then using the fact that hn →n→+∞ 0 in C α−2 and thus �(Khn)
2 →n→+∞ 0 in

C α−2(T2). On the other side using the Bony estimates (2.2) and the fact that hn ◦ Khn →n→+∞ −1 we obtain easily
that:

hnKhn = hn ≺ Khn + hn  Khn + hn ◦ Khn →n→+∞ −1

in the space C α−2(T2). Which allow us to conclude that 2|∇Khn|2 → −1 in the space C α−2(T2) which is of course
impossible and thus a such sequence can’t exist which end the proof due to the fact (0,−1) ∈ X α . �

4. Proof of the Theorem 1.1

We know by construction that u = S rough(u0,�
pam) and that �pam ∈ X α a.s. then we can conclude that there exist

θn ∈ H and cn > 0 such that �pam = limn(θ
n, θn ◦ Kθn − cn) which by the continuity of the map Sr give

u = lim
n

S rough(u0,
(
θn, θn ◦ Kθn − cn

)) = limS smooth(u0, θ
n, cn

)

a.s in C([0, T ],Cα(T2)). We then have that

supp(u�P) ⊆ {
S smooth(u0, h, c), h ∈H, c > 0

}C([0,T ],Cα(T2))
.

The other inclusion is more interesting. Now,

supp
((

�pam)
�
P
) = {

(θ, θ ◦ Kθ − c)θ ∈ H, c > 0
}H α

ensures that for any η > 0, c > 0 and θ ∈ L2(T2) we have:

P
(∥∥�pam − M (θ, c)

∥∥
H α < η

)
> 0.
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Let δ > 0 then by the continuity of S rough there exist η := η(δ, θ, c) > 0 such that ‖�pam − M (θ, c)‖H α ≤ η ⇒
‖u − S smooth(u0, θ, c)‖C([0,T ],Cα(T2)) ≤ δ and then

P
(∥∥u − S smooth(u0, h, c)

∥∥
C([0,T ],Cα(T2))

≤ δ
) ≥ P

(∥∥�pam − M (θ, c)
∥∥

H α < η
)
> 0.

Which proves the first identity set of Theorem 1.1. At this point let us observe that

u[a] = S rough(u0,�pam + (0,−a)
)
.

Since the support of the law of �pam + (0,−a) is equal to the support of the law of �pam the identity (6) follows.

Appendix

Proposition A.1. Let T > 0. Given f ∈ C3
b(R), u0 ∈ L2(T2) and h ∈ H then there exists a unique global solution

v ∈ C([0, T ];L2(T2)) to the equation:

L v = f (v)h − cf ′(v)f (v), u(0, x) = u0(x)

Moreover the map h �→ v is continuous from H to C(R+,L2(T2))

Proof. Let a, b ∈ L2(T2) then by a direct computation we get:

∣∣F ((
f (a) − f (b)

)
h
)
(k)

∣∣ =
∣∣∣∣

∑
k1+k2=k

F
(
f (a) − f (b)

)
(k1)F (h)(k2)

∣∣∣∣� ∥∥f (a) − f (b)
∥∥

L2(T2)
‖h‖H

moreover we have that ‖f (a) − f (b)‖L2 � ‖f ′‖L∞(R)‖a − b‖L2(T). And then

∥∥(
f (a) − f (b)

)
h
∥∥

Hγ �
∥∥f ′∥∥

L∞(R)
‖h‖H‖a − b‖L2(T2)

for all γ < −1. Now is suffice to remark that if h ∈ C([0, T ],Hγ (T2)) and denoting by Pt = et� the heat flow then
the following bound:

∥∥∥∥
∫ t

0
Pt−shs ds

∥∥∥∥
L2(T2)

�
∫ t

0
‖Pt−shs‖L2 ds �

∫ t

0
(t − s)γ /2 ds‖h‖C([0,T ],Hγ (T2)) � T 1+γ /2‖h‖C([0,T ],Hγ (T2))

hold for γ > −2. Introducing the map � : C([0, T ],L2(T2)) → C([0, T ],L2(T2)) defined by

�T (v) = Ptu0 +
∫ t

0
Pt−sf (vs)hds − c

∫ t

0
Pt−sf

′(vs)f (vs)ds.

Due to the last computation this map is well defined moreover it satisfy the following bound:
∥∥�T (u) − �T (v)

∥∥
C([0,T ],L2(T2))

�c T 1+γ /2(1 + ‖f ‖L∞(R) + ∥∥f ′∥∥
L∞(R)

+ ∥∥f ′′∥∥
L∞(R)

)2‖h‖H‖u − v‖C([0,T ],L2(T2))

for T < 1 and some γ ∈ (−2,−1). Then choosing T � small enough we can see that � become a contraction on
C([0, T ],L2(T2)) into itself and then it admit a unique fix point vh. Due to the fact that T � does not depend on
‖u0‖L2 we can iterate our result to obtain a global solution. Now we will us focus on the continuity of the map
h �→ vh and let h1, h2 ∈H and R > 0 such that ‖h1‖ + ‖h2‖ ≤ R then we have by definition that:

vh1 − vh2 =
∫ t

0
dsPt−sf

(
vh1

)
(h1 − h2) +

∫ t

0
dsPt−s

(
f

(
vh2

) − f
(
vh1

))
h2 + c

∫ t

0
dsPt−s

(
g
(
vh1

) − g
(
vh2

))
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with g = f ′f . Due to the estimate used to stand the fixed point argument we easily get that:

∥∥vh1 − vh2
∥∥

C([0,T ],L2(T2))

� T ‖f ‖L∞(T2)‖h2 − h1‖H + T γ/2+1(R∥∥f ′∥∥
L∞(R)

+ c
∥∥g′∥∥

L∞(R)

)∥∥vh1 − vh2
∥∥

C([0,T ],L2(T2))

then choosing T1 > 0 small enough such that T
γ/2+1

1 (R‖f ′‖L∞(R) + c‖g′‖L∞(R)) < 1/2 allow to obtain that

∥∥vh1 − vh2
∥∥

C([0,T1],L2(T2))
� T1‖f ‖L∞(T2)‖h2 − h1‖H

Now iterating this procedure allow to get finally that

∥∥vh1 − vh2
∥∥

C([0,T ],L2(T2))
�R,f ‖h2 − h1‖H

for every T > 0, which end the proof. �

Recall that .̌ indicates zero-mean of elements in the appropriate function spaces.

Proposition A.2. Let T > 0, the map:

θ ∈ Ȟ α �→ −�θ ∈ Ȟ α−2

is invertible. In particular, its inverse

K : Ȟ α → Ȟ α+2

is well-defined and is a continuous linear operator. The same statement holds if we replace the space Ȟ α(Td) by
Čα(Td).

Proof. For f ∈ S ′(T2) with f̂ (0) = 0 the equation

−�θ = f, θ̂(0) = 0

admit a unique solution θ ∈ S ′(T2) defined by θ̂ (k) = |k|−2f̂ (k) for k �= 0 and θ̂ (0) = 0. Moreover by a direct
computation we see that if f ∈ Ȟ α then ‖θ‖Hα+2 = ‖f ‖Hα which gives the statement for the Sobolev space. Now if
f ∈ Čα(Td) we have by a direct application of the Proposition 2.3 that ‖θ‖α+2 � ‖f ‖α and this finishes the proof. �

Now the following lemma ensure that the constant c can’t be set it to zero without cost.

Lemma A.3. Let α < 1, f the identity function and u0 ≡ 1 then in this case the closure of the set

{
S

(
u0, h,0

)
, h ∈ H

}

in the space C([0, T ],Cα(T2)) is strictly contained in the support of the law of u characterized in the Theorem 1.1.

Proof. Let v the unique solution of the equation

L v = cv, v(0, x) = 1

for some fixed c < 0. Of course v have the explicit formula v(t, x) = ect . Now let vn a sequence of function which
converge to v in C([0, T ],Cα(T2)) and such that

L vn = vnhn, vn(0, x) = 1 (A.1)
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for some hn ∈H. By the Feynman–Kac formula we have immediately that

vn(t, x) = E
[
e
∫ t

0 hn(Bs+x)ds
]
> 0

with B is a Brownian motion. Then if we set ṽn = logvn we can see that ṽ satisfy the following equation

L ṽn = |∇ṽn|2 + hn, ṽn(0, x) = 0.

By passing to the integral on [0, T ] ×T2 in this last equation and observing that
∫
T2 hn = 0 we get

∫
T2

ṽn(T , x)dx =
∫ T

0

∫
T2

∣∣∇ṽn(t, x)
∣∣2 dx dt ≥ 0.

Now the point is that ṽn(T , x) converges uniformly in x (actually in Cα) to logv(T , x) ≡ cT < 0 and then we conclude
that v cannot be approximated by a sequence which satisfies the equation (A.1) which ends the proof. �
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