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Abstract. Let L := −a(x)(−�)α/2 + (b(x),∇), where α ∈ (0,2), and a : Rd → (0,∞), b : Rd → R
d . Under certain regularity

assumptions on the coefficients a and b, we associate with the C∞(Rd)-closure of (L,C2∞(Rd)) a Feller Markov process X,
which possesses a transition probability density pt (x, y). To construct this transition probability density and to obtain the two-
sided estimates on it, we develop a new version of the parametrix method, which even allows us to handle the case 0 < α ≤ 1 and
b �= 0, i.e. when the gradient part of the generator is not dominated by the jump part.

Résumé. Soit L := −a(x)(−�)α/2 + (b(x),∇), avec α ∈ (0,2), et a :Rd → (0,∞), b : Rd → R
d . Sous certaines hypothèses de

régularité des coefficients a et b, nous associons à la C∞(Rd)-fermeture de (L,C2∞(Rd)) un processus de Markov fellerien X,
possédant une densité de probabilité de transition pt (x, y). Afin de construire cette densité, et d’en obtenir des bornes supérieures
et inférieures, nous développons une nouvelle version de la méthode parametrix, qui permet même de traiter le cas où 0 < α ≤ 1 et
b �= 0, c’est-à-dire quand la partie de gradient du générateur n’est pas dominée par la partie de saut.
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1. Introduction

Let Z(α), α ∈ (0,2), be a symmetric α-stable process in R
d ; that is, a Lévy process with the characteristic function

Eei(ξ,Z
(α)
t ) = e−t |ξ |α , ξ ∈R

d .

It is well known that the generator L(α) of the semigroup (P
(α)
t )t≥0, where

P
(α)
t f (x) = E

xf
(
Z

(α)
t

)
,

admits on C2∞(Rd) the representation

L(α)f (x) = P.V.
∫
Rd

(
f (x + u) − f (x)

) cα

|u|d+α
du. (1.1)
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Here and below we denote by Ck∞(Rd), k ≥ 0, the space of k times continuously differentiable functions, vanishing
at infinity together with their derivatives. The operator L(α) is also called a fractional Laplacian, and is denoted by
−(−�)α/2.

Consider the following “perturbation” of the operator L(α):

Lf (x) = a(x)L(α)f (x) + (
b(x),∇f (x)

)
, f ∈ C2∞

(
R

d
)
, (1.2)

where a(·) > 0, b(·) ∈ R
d . When the coefficients a(·) and b(·) do not depend on x, the operator L is just the restriction

to C2∞(Rd) of the generator of the semigroup {Tt , t ≥ 0}, which corresponds to the Lévy process Z(α) re-scaled by a

and with drift b.
The general case is much more complicated, and the purpose of this paper is to show that under suitable assump-

tions on the coefficients and the parameter α, the C∞-closure of the operator (L,C2∞(Rd)) is the generator of a
semigroup {Pt , t ≥ 0}, which corresponds to a strong Markov process.

Our approach is analytic, and mainly relies on the parametrix construction of the “candidate” pt(x, y) for the
transition probability density of the required Markov process. We develop a new version of the parametrix method,
which substantially depends on the relation between the regularity of the drift coefficient b(x) and the parameter α

and, in particular, allows us to handle the case 0 < α ≤ 1 and b �= 0, i.e. the one where the gradient part of the generator
is not dominated by the jump part. To associate the constructed kernel pt(x, y) with a Markov process in a unique way,
we develop a new method, which we believe may be useful in other settings as well. This method relies on the fact
that L possesses the positive maximum principle, and exploits a new notion of an approximate fundamental solution.
We refer the reader to a detailed discussion in Section 2.3, where we also give an overview of available results.

We also consider the probabilistic counterpart to the problem described above. Namely, we consider an SDE driven
by Z(α)

dXt = b(Xt ) dt + σ(Xt−) dZ
(α)
t ; (1.3)

here and below we denote σ(x) = a1/α(x). Using the parametrix construction and the fact that the closure of
(L,C2∞(Rd)) is the generator of a Markov process, we show that a weak solution to (1.3) is unique and actually
coincides with this Markov process. This fact also ensures that the martingale problem for (L,C2∞(Rd)) is well
posed. Finally, we provide lower and upper bounds for the transition probability density pt(x, y).

The paper is organized as follows. In Section 2 we formulate the main results, give the outline of the proofs and
an overview of already existing results, comparing them with ours. Section 3 is devoted to the parametrix method
for construction of the function pt (x, y), which is the candidate for being the fundamental solution to the Cauchy
problem for ∂t − L. Section 4 is devoted to the relation between the operators Pt and L, in particular, we prove that
the family of operators {Pt , t ≥ 0} forms a strongly continuous contraction semigroup on C∞(Rd). Then we prove
that the extension (A,D(A)) of (L,C2∞(Rd)) is in fact the generator of the semigroup {Pt , t ≥ 0}, and, moreover,
that pt(·, y) ∈ D(A), and is the fundamental solution to the Cauchy problem for ∂t − A. In Section 5 we prove that
the constructed process X is the weak solution to (1.3), and that the martingale problem (L,C2∞(Rd)) is well-posed.
In Section 6 we give the estimates on the time derivative ∂tpt (x, y) and related auxiliary function appearing in the
parametrix construction. In Section 7 we give the proofs of lower and upper bounds on pt(x, y). Appendices A and B
contain some auxiliary results, used in the proofs.

2. The main results: Preliminaries, formulation, and discussion

2.1. Notation and preliminaries

Through the paper we use the following notation.
By g(α)(x) we denote the distribution density of the symmetric α-stable variable Z

(α)
1 . Note that L(α) is a homo-

geneous operator of the order α and the process Z(α) is self-similar: for any c > 0, the process

c−1/αZ
(α)
ct , t ≥ 0,
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has the same law as Z(α). Consequently, the transition probability density of Z(α) equals t−d/αg(α)(t−1/α(y − x)).
By C∞(Rd) (respectively, Cb(R

d)) we denote the class of continuous functions vanishing at infinity (respectively,
bounded); clearly, C∞(Rd) is a Banach space with respect to the sup-norm ‖·‖∞. By Ck∞(Rd) (respectively, Ck

b(Rd)),
k ≥ 1, we denote the class of k-times continuously differentiable functions vanishing at infinity (respectively, bounded)
together with their derivatives.

We use the following notation for space and time-space convolutions of functions:

(f ∗ g)t (x, y) :=
∫
Rd

ft (x, z)gt (z, y) dz,

(f � g)t (x, y) :=
∫ t

0

∫
Rd

ft−s(x, z)gs(z, y) dz ds.

As usual, a ∧ b := min(a, b), a ∨ b := max(a, b). By | · | we denote both the modulus of a real number and the
Euclidean norm of a vector. By c and C we denote positive constants, the value of which may vary from place to
place. Relation f 
 g means that

cg ≤ f ≤ Cg.

By �(·),B(·, ·) we denote the Euler Gamma- and Beta-functions. Finally, we write Lx to emphasize that the operator
L acts on a function f (x, y) with respect to the variable x, i.e., Lxf (x, y) = Lf (·, y)(x).

Recall that a real-valued function pt(x, y) is said to be the fundamental solution to the Cauchy problem for the
operator

∂t − L, (2.1)

if for t > 0 it is differentiable in t , belongs to the domain of L as a function of x, and satisfies

(∂t − Lx)pt (x, y) = 0, t > 0, x, y ∈ R
d, (2.2)

pt (x, ·) ⇒ δx, t → 0+, x ∈R
d; (2.3)

see [33, Definition 2.7.12] in the case of a general pseudo-differential operator, which is the generalization of the
corresponding definition (cf. [21], for example) in the parabolic/elliptic setting.

In order to simplify the further exposition, we briefly outline the parametrix method, which we use to construct
pt (x, y). Consider some approximation p0

t (x, y) to this function, and denote by rt (x, y) the residue term with respect
to this approximation:

pt (x, y) = p0
t (x, y) + rt (x, y). (2.4)

Put

	t(x, y) := −(∂t − Lx)p
0
t (x, y), t > 0, x, y ∈R

d . (2.5)

Recall that pt(x, y) is supposed to be the fundamental solution for the operator (2.1), hence

(∂t − Lx)rt (x, y) = 	t(x, y). (2.6)

Recall that if pt(x, y) is the fundamental solution to (2.2), then one expects the solution to equation (2.6) to be of the
form

rt (x, y) = (p � 	)t (x, y).

Substituting now in the right-hand side of the above equation representation (2.4) for pt(x, y), we get the following
equation for rt (x, y):

rt (x, y) = (
p0 � 	

)
t
(x, y) + (

r � 	
)
t
(x, y).
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The formal solution to this equation is given by the convolution

rt (x, y) = (
p0 � 


)
t
(x, y), (2.7)

where 
 is the sum of �-convolutions of 	:


t(x, y) :=
∑
k≥1

	
�k
t (x, y). (2.8)

If the series (2.8) converges and the convolution (2.7) is well defined, we obtain the required function pt(x, y) in the
form

pt(x, y) = p0
t (x, y) +

∑
k≥1

(
p0 � 	�k

)
t
(x, y). (2.9)

Clearly, the above argument is yet purely formal; in order to make it rigorous, we need to prove that the parametrix
construction is feasible, i.e. that the sum in the right hand side of (2.9) is well defined, and then to associate pt(x, y)

with the initial operator L. We note that the key point to make the entire approach successful is the proper choice of
the zero order approximation p0

t (x, y); see Section 2.3 for more detailed discussion of this point.

2.2. The main results

Our standing assumption on the intensity coefficient a(x) is that it is strictly positive, bounded from above and below
and Hölder continuous with some index 0 < η ≤ 1, i.e. there exist 0 < c < C such that

c ≤ a(x) ≤ C,
∣∣a(x) − a(y)

∣∣ ≤ C|x − y|η, x, y ∈ R
d . (2.10)

We also assume that the drift coefficient b(x) satisfies the assumption below:

b(·) ∈ Cb

(
R

d
)
,

∣∣b(x) − b(y)
∣∣ ≤ C|x − y|γ , x, y ∈R

d, (2.11)

where γ ∈ [0,1]. We consider three cases; in each of them the Hölder index γ of the drift coefficient is related to the
index α.

Case A. α ∈ (1,2), γ = 0.
Case B. α ∈ ((1 + γ )−1,2), 0 < γ < 1.
Case C. α ∈ (0,2), γ = 1.

Remark 2.1.

(a) Observe that assumptions in the cases A–C overlap, but none of the assumptions is implied by the other one:
if we denote by αA, αB , αC the infima of α allowed in each of these cases, then we have αA = 1, αB = (1 + γ )−1,
and αC = 0. Note that the regularity assumption on drift coefficient is weakened from case A to case C, but on the
other hand we have αC ≤ αB ≤ αA. Heuristically, this means that by increasing the regularity of b we can relax the
assumption on α, and vice versa. Note also that if we let γ → 1 in the “intermediate case” B, we get αB → 1/2 �= αC ,
which means that case C cannot be obtained from B by such a limit procedure.

(b) As we will see below (cf. Proposition 2.1), the constructed function pt(x, y) is uniquely associated with the
operator in (1.2), which implies that if the coefficients a(x) and b(x) are such that some of the cases A–C overlap,
then different choices of the zero-order approximation provided by (2.15) below give the same outcome pt(x, y).
However, the upper and lower bounds on pt(x, y) depend on the choice of p0

t (x, y).

When b is Lipschitz continuous, the Cauchy problem for the ordinary differential equation (ODE)

dχt = b(χt ) dt, χ0 = x, (2.12)
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admits the flow of solutions {χt , t ∈ R}, cf. [11, Theorem 2.1]. Denote by {θt = χ−1
t , t ∈ R} the inverse flow, i.e.

(θt ◦ χt )(x) = (χt ◦ θt )(x) = x, which can be also defined just as the flow of solutions to the Cauchy problem for the
ODE

dθt = −b(θt ) dt, θ0 = x. (2.13)

In all the results formulated in the sequel, we assume that (2.10), (2.11) hold true, and one of three assumptions
which relate α and γ (cases A–C) is satisfied. In our first main result we specify in each of the cases A–C the choice of
the zero order approximation p0

t (x, y) in the parametrix construction outlined above, and prove that this construction
is feasible.

Theorem 2.1. Let

p0
t (x, y) := 1

td/αad/α(y)
g(α)

(
ω(t, y) − x

t1/αa1/α(y)

)
, (2.14)

where

ω(t, y) :=

⎧⎪⎨
⎪⎩

y, in case A;

y − tb(y), in case B;

θt (y), in case C.

(2.15)

Then the following statements hold true.

1. For t > 0, x, y ∈ R
d , the function pt (x, y) given by (2.9) is well defined, in the sense that the integrals 	�k and

p0 � 	�k exist, and for every T > 0 the series involved in (2.9) converges absolutely on (0, T ] ×R
d ×R

d , i.e.∑
k≥1

∣∣(p0 � 	�k
)
t
(x, y)

∣∣ < ∞.

2. The function pt(x, y) is continuous on (0,∞) ×R
d ×R

d .
3. For any κ ∈ (0, α ∧ η) and T > 0, the following estimate for rt (x, y) holds true:∣∣rt (x, y)

∣∣ ≤ Cp0
t (x, y)Vt

(
ω(t, y) − x

)
, t ∈ (0, T ], x, y ∈R

d, (2.16)

where

Vt (z) =

⎧⎪⎨
⎪⎩

tκ/α + tδ, if |z| ≤ t1/α,

|z|κ + tδ, if t1/α ≤ |z| ≤ 1,

1 + tδ, if |z| ≥ 1,

(2.17)

and

δ :=
{

κ, in cases A and C,

(1 − 1
α

+ γ ) ∧ (1 − 1
α

+ γ
α
) ∧ κ, in case B.

Remark 2.2. We have

p
(0)
t (x, y) 
 1

td/α

1

(1 + t−1/α|ω(t, y) − x|)d+α
(2.18)

(see (3.6) below). Hence (2.16) is equivalent to the following:∣∣rt (x, y)
∣∣ ≤ Rt

(
ω(t, y) − x

)
, t ∈ (0, T ], x, y ∈R

d , (2.19)
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where

Rt(z) =

⎧⎪⎨
⎪⎩

ct−d/α(tκ/α + tδ), if |z| ≤ t1/α,

c(|z|κ + tδ) t
|z|d+α , if t1/α < |z| ≤ 1,

ct
|z|d+α , if |z| > 1.

(2.20)

The proof of Theorem 2.1 and all the other results in this section formulated below are postponed to subsequent
sections. All the subsequent results use the same notation.

Next, we relate the function pt (x, y) to the initial operator L. To make the structure of the proofs the most transpar-
ent, we do this in two steps. First, we prove that pt (x, y) is a transition probability density of some Markov process,
and that the C∞(Rd)-generator of the respective semigroup is an extension of (L,C2∞(Rd)).

Theorem 2.2. Identity

Ptf (x) =
∫
Rd

pt (x, y)f (y) dy, f ∈ C∞
(
R

d
)
, (2.21)

defines a strongly continuous conservative contraction semigroup of non-negative operators on C∞(Rd), which in
turn defines a (strong) Feller Markov process X. Every function f ∈ C2∞(Rd) belongs to the domain D(A) of the
generator A of this semigroup, and

Af (x) = Lf (x) = a(x)L(α)f (x) + (
b(x),∇f (x)

)
, f ∈ C2∞

(
R

d
);

that is, (A,D(A)) is an extension of (L,C2∞(Rd)).

In the next theorem we prove that the semigroup (2.21) with pt(x, y) defined by (2.9) is in fact the unique Feller
semigroup associated with the operator (1.2).

Theorem 2.3. The generator (A,D(A)) is the closure of (L,C2∞(Rd)) in C∞(Rd).

The proposition below clarifies the relation between the function pt(x, y) and the notion of the “fundamental
solution,” on which the parametrix construction of pt(x, y) was based. We formulate and prove this proposition under
the additional assumption that in the case C the function b(·) is continuously differentiable (no additional assumptions
in the cases A, B are required).

Proposition 2.1. The real-valued function pt (x, y) is a fundamental solution to the Cauchy problem for the operator
∂t − A; that is, for t > 0 it is differentiable in t , belongs to the domain of A as a function of x, and satisfies (2.3) and
the analogue of (2.2) with Ax instead of Lx .

Our next step is to relate the process X constructed in Theorem 2.2 to the weak solution to the SDE driven by
an α-stable noise or, in a closely related terminology, to the solution of the martingale problem for (L,C2∞(Rd)).
Namely, the semigroup {Pt } corresponding to the process X possesses the Feller property, hence the process X has a
cádlág modification, see [17, Chapter 4, Theorem 2.7]. Denote by Px the law of the Markov process X with X0 = x

in the Skorokhod space D([0,∞),Rd) of cádlág functions [0,∞) → R
d . Recall that a measure P on D([0,∞),Rd)

is called a solution to the martingale problem (L,D(L)), if for every f ∈ D(L) the process

f (Xt ) −
∫ t

0
Lf (Xs) ds, t ≥ 0

is a martingale with respect to P, and the martingale problem for (L,D(L)) is called well posed, if for every x ∈ R
d

there exists the unique solution to (L,D(L)) with P(X0 = x) = 1.
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Theorem 2.4. For every x ∈ R
d the SDE (1.3) with the initial condition X0 = x has a unique weak solution, and the

law of this solution in D([0,∞),Rd) equals Px .
In addition, the martingale problem (L,C2∞(Rd)) is well posed, and Px is its unique solution with the initial

condition X0 = x.

Remark 2.3. It is well known that, when both coefficients in equation of (1.3) are Lipschitz continuous, there exists a
unique strong solution to (1.3) (see, for example, [28, Theorem IV.9.1], or [23, Theorem IV.3]). In our framework, the
coefficient a(x) is assumed to be only Hölder continuous. Up to our knowledge, there are no results on the existence
and uniqueness of the strong solution under the assumption of the Hölder continuity of coefficients in equations of
type (1.3), see also [3] for the negative example. See, however, [8,48], where under the assumption that a = 1 and b

is Hölder continuous the existence and uniqueness of the strong solution is shown.

The last two theorems contain explicit estimates, respectively, for pt(x, y) and for its derivative with respect to the
time variable.

Theorem 2.5. We have

pt (x, y) 
 1

td/α
g(α)

(
ω(t, y) − x

t1/α

)
, t ∈ (0, T ], x, y ∈R

d . (2.22)

Finally, in the theorem below we show the continuity of the time derivative ∂tpt (x, y), and provide the upper
estimate for it. Note that these properties of ∂tpt (x, y) are involved in the proofs of Theorem 2.3 and Proposition 2.1;
see assertions (4.21), (4.22) below. These properties also have an independent interest, e.g. in the context of estimation
of the accuracy of discrete approximation of occupation time functionals; see [22].

Theorem 2.6.

1. There exists a set ϒ ⊂ (0,∞)×R
d of zero Lebesgue measure such that the function pt(x, y) defined by (2.4)–(2.8)

has a derivative

∂tpt (x, y), x ∈R
d, (t, y) /∈ ϒ,

which for every fixed (t, y) /∈ ϒ is continuous in x. Moreover, in the cases A and B the set ϒ is empty, and ∂tpt (x, y)

is continuous in (t, x, y).
2. The derivative ∂tpt (x, y) possesses the bound

∣∣∂tpt (x, y)
∣∣ ≤ C

(
t−1 ∨ t−1/α

) 1

td/α
g(α)

(
ω(t, y) − x

t1/α

)
, x ∈ R

d, (t, y) /∈ ϒ.

3. For every f ∈ C∞(Rd) the function

(0,∞) � t �→ Ptf ∈ C∞
(
R

d
)

is continuously differentiable, and

(∂tPtf )(x) =
∫
Rd

∂tpt (x, y)f (y) dy.

Remark 2.4. For λ > 0 denote

G(λ)(x) := (|x| ∨ 1
)−d−λ

, x ∈ R
d . (2.23)

Since g(α)(x) 
 G(α)(x) (see Proposition 3.2 below), one can replace in the above bounds g(α) by G(α), which gives
more explicit estimates. We used g(α) in the estimates for pt(x, y) and ∂tpt (x, y) in order to emphasize the impact of
the original α-stable process.



Parametrix construction of the transition probability density of the solution to an SDE driven by α-stable noise 107

2.3. Overview and discussion

For the description and the background of the parametrix construction of the fundamental solution to a Cauchy prob-
lem for parabolic second order PDE’s, we refer to the monograph of Friedman [21]; see also the original papers by
E. Levi [42] and W. Feller [18]. This construction was extended in [14,15,36,37], to equations with pseudo-differential
operators, see also the reference list and an extensive overview in the monograph [16]. In [14,15,36], the “main term”
in the pseudo-differential operator is assumed to have the form a(x)L(α) (in our notation) with α > 1. In [37] the
operator of such a type is treated, and although the case α ≤ 1 is allowed, in this case the gradient term is not involved
in the equation. The list of subsequent and related publications is large, and we cannot discuss it here in details. Let
us only mention two recent preprints: [10], where two-sided estimates, more precise than those in [36] are obtained,
and [1], where the probabilistic interpretation of the parametrix construction and its application to the Monte-Carlo
simulation is developed.

In all the references listed above it is required that either the stability index α satisfies α > 1, or the gradient term
is not involved in the equation. This is the common assumption in all the references available for us in this direction,
with the one important exception given by the recent paper [12], see also [19,20]. In [12], for a Lévy driven SDE with
α-stable like noise, the question of existence of the distribution density is studied by a different method, based on
thoroughly balanced approximation of the initial SDE, Fourier transform based estimates, and discrete integration by
parts. Such an approach is applicable for SDE’s with the parameter of the noise α < 1 and a non-trivial drift, but it does
not give proper tools neither for obtaining explicit estimates for this density, nor even for proving the existence and
uniqueness of the solution to the initial SDE. Hence, the scope of our approach based on the parametrix construction,
differs substantially from that of [12].

Our version of the parametrix construction contains a substantial novelty, which makes it possible to handle the
case α ≤ 1 with non-trivial gradient term. To explain this modified construction in the most transparent way, we took
the “jump component” in a relatively simple form a(x)Z(α). Clearly, one can think about considering, for example,
α-stable symbol with state dependent spectral measure, see [37]. This, however, leads to additional cumbersome but
inessential technicalities, and we prefer not do this in the current paper.

It was already mentioned that the parametrix construction described in Section 2.1 heavily relies on the choice of
the “zero-order” approximation p0

t (x, y). In the case α > 1, the first term a(x)L(α) dominates the second term b(x)∇
in the sense that the symbol a(x)|ξ |α of the first term grows as |ξ | → ∞ faster than the modulus of the symbol ib(x)ξ

of the second term, see [33] for the detailed explanation. This allows us to chose in the case α > 1 the zero-order
approximation p0 in the “classical” way (cf. [21,36]): Take the “principal part” a(x)L(α) of the generator, “freeze”
the coefficient a(x) at some point x = z, then take the fundamental solution qz

t (x, y) to the operator ∂t −a(z)L(α) with
this “frozen principal symbol,” and finally put p0

t (x, y) := qz
t (x, y)|z=y . However, this procedure is not successful in

the case α ≤ 1, and the reason for this is already mentioned: in this case, the operator a(x)L(α) no longer dominates
the gradient term, and therefore it can not be treated as the “principal part” of L. One can modify the choice of the
zero order approximation in several ways. One of the possible choices is to “freeze” the coefficients in the entire
operator L (which is now itself considered as the “principal part”), and to take the fundamental solution qz

t (x, y) to
the Cauchy problem for ∂t − a(z)L(α) − (b(z),∇). This is exactly what we do in case B. However, this procedure
is restricted by the relation between the parameter of the Hölder continuity γ and α. In case C the choice of the
zero order approximation is no longer related to the fundamental solution to an equation with frozen coefficients, but
instead uses a carefully designed “corrector” ω(t, y), which allows us to treat all α ∈ (0,2). The price of such an
approach is the assumption of the Lipschiz continuity of the drift b.

The effect of the interplay between the value of α and the regularity properties required for b, which we have
mentioned in Remark 2.1, was observed first in [46,47]. It was shown therein that the parametrix construction is still
feasible for (possibly unbounded) b ∈ Lp(Rd), p > d/(α − 1), where α > 1. In [5] this effect was rediscovered in a
stronger form: it is required that b belongs to the Kato class Kd,α−1. In [35] this result is extended even further, with
b being allowed to be a generalized function equal to the derivative of a measure from Kd,α−1.

In general, there is a substantial gap between the problem of constructing a “candidate for being the fundamental
solution” (i.e., to prove that relations (2.4)–(2.8) make sense), and the problem of relating the constructed kernel
pt (x, y) to a Markov process. The first way how one can possibly solve this problem was proposed in [36]. It extends
the approach from [21], where it is shown in the parabolic setting that pt (x, y) is twice continuously differentiable
in x, and satisfies (2.2) in the classical sense. Note that the domain of the operator L is C2

b(Rd). In the α-stable
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case the natural upper bound ∂2
xxp

0
t (x, y) ≤ Ct−2/α is strongly singular for small t , and therefore it is difficult to

prove using the parametrix construction that pt(·, y) ∈ C2
b(Rd); thus, one cannot check straightforwardly that the

expression (2.2) makes sense. Instead, in [36] the extended domain of L(α) is introduced in terms of “hyper-singular
integrals,” and it is proved that pt (x, y) satisfies (2.2) in the corresponding “extended” sense. Once (2.2) is proved,
the required properties of the Markov process associated with pt (x, y) follow from the positive maximum principle in
a rather standard way. Another way to verify the parametrix construction proposed in [37] is to guarantee the required
smoothness of pt(x, y) by using the integration by parts procedure, but this approach seems to be only partially
relevant; see Remark 6.1 below.

Partially, one can solve the problem of relating the kernel pt (x, y) to a Markov process by using some approxi-
mation procedure (e.g. [46,47]), or by analysing the perturbation of the resolvent kernels (cf. [5]). However, the most
difficult part here is to relate uniquely the initial symbol and the Markov process associated with pt (x, y). This prob-
lem was recently solved in [35], in the framework of a singular gradient perturbation of an α-stable generator, in terms
of the weak solution to the corresponding SDE. See also [9], where alternatively the martingale problem approach
was used. The technique therein is closely related to those introduced (in the diffusive setting) in [4], and apparently
strongly relies on the structural assumption that the resolvent, which corresponds to pt (x, y), is a perturbation of the
resolvent of an α-stable process.

We propose a new method for solving this correspondence problem. Our method is based on the notion of the
approximate fundamental solution to the Cauchy problem for (2.1), see Section 4 and especially the discussion at
the beginning of Section 4.2. Combined with a proper “approximate” version of the positive maximum principle, this
notion gives a flexible tool both for proving the semigroup properties of pt(x, y) (Theorem 2.2), and for studying
more delicate uniqueness issues (Theorem 2.3). We expect that this method will be well applicable in other situations,
where the parametrix construction is feasible; this is the subject of our ongoing research.

Let us briefly discuss another large group of results, focused on the construction of a semigroup for a Markov
process with a given symbol rather than on the transition probability density pt (x, y) for it. An approach based
on properties of the symbol of the operator and on the Hilbert space methods, is developed in the works of Jacob
[30], see also the monograph [31]. It allows to show the existence of the closed extension in C∞(Rd) of a given
pseudo-differential operator, and that this extension is the generator of a Feller semigroup. This approach was further
developed in [6,7,26,27], and relies on the symbolic calculus approach for the parametrix construction (cf. [40], the
original papers [29,55], and see also [32–34] for the detailed treatment).

Finally, we mention the group of results devoted to the well-posedness of the martingale problem for an integro-
differential operator of certain type. For different types of perturbations of an α-stable generator, this problem was
treated in [2,38,39,43–45,53,54], see also [24,25] for yet another approach for rather wide class of operators.

3. Proof of Theorem 2.1 and continuity properties of Pt

3.1. Function 	: Evaluation and an upper bound

Our first step in the proof of Theorem 2.1 is to evaluate the kernel 	 and to give an upper bound for it.
For λ ∈ [0, α) we introduce a family of kernels

Q
(λ)
t (x, y) :=

(∣∣∣∣ω(t, y) − x

t1/α

∣∣∣∣
λ

∧ t−λ/α

)
1

td/α
G(α)

(
ω(t, y) − x

t1/α

)
, (3.1)

where the function G(α)(x) in defined in (2.23), and ω(t, y) in defined in (2.15). We remark that since Q
(λ)
t (x, y)

involves ω(t, y), we have in fact three different families Q
(λ)
t (x, y), λ ∈ [0, α), which correspond to the cases A–C.

Lemma 3.1. Let κ ∈ (0, α ∧ η),T > 0. Then∣∣	t(x, y)
∣∣ ≤ C

(
t−1+κ/αQ

(κ)
t (x, y) + t−1+δQ

(0)
t (x, y)

)
, t ∈ (0, T ], x, y ∈R

d , (3.2)

where δ = κ in the cases A and C, and δ = (1 − 1/α + γ ) ∧ (1 − 1/α + γ /α) ∧ κ in the case B.

Before we proceed to the proof, we formulate some auxiliary statements.
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Proposition 3.1.

1. For any λ > 0, c > 0 there exists C > 0 such that

G(λ)(cx) ≤ CG(λ)(x). (3.3)

2. For any λ1 > λ2 we have

G(λ1)(x) ≤ G(λ2)(x). (3.4)

3. For any ε ∈ (0, λ),

|x|εG(λ)(x) ≤ CG(λ−ε)(x). (3.5)

The proof of Proposition 3.1 is obvious; we omit the details.

Proposition 3.2. For any α ∈ (0,2),

g(α)(x) 
 G(α)(x), (3.6)∣∣(∇g(α)
)
(x)

∣∣ ≤ CG(α+1)(x), (3.7)∣∣(∇2g(α)
)
(x)

∣∣ ≤ CG(α+2)(x), (3.8)∣∣(L(α)g(α)
)
(x)

∣∣ ≤ CG(α)(x), (3.9)∣∣(∇L(α)g(α)
)
(x)

∣∣ ≤ CG(α+1)(x). (3.10)

The results stated in Proposition 3.2 are partly known; we defer the discussion and the remaining proofs to Ap-
pendix A.

Proof of Lemma 3.1. We consider the cases A–C separately. To improve the readability, here and below we assume
that T > 0 is fixed and, if it is not stated otherwise, in every formula containing t , x, or y we assume t ∈ (0, T ],
x ∈ R

d , y ∈ R
d .

Case A. Fix z ∈ R
d , and denote

Lz = a(z)L(α);

that is, consider “the principal part” of the operator L with the coefficient “frozen” at the point z (cf. the discussion
in Section 2.3). Denote by qz

t (x, y) the transition probability density of the process Z(α) with the time, re-scaled by
a(z):

qz
t (x, y) = 1

td/αad/α(z)
g(α)

(
y − x

t1/αa1/α(z)

)
.

Then qz
t (x, y) is a fundamental solution to the Cauchy problem for the operator (∂t − Lz), and

p0
t (x, y) = q

y
t (x, y).

Observe that for every fixed x, y ∈ R
d the function p0

t (x, y) belongs to C1(0,∞) as a function of t , and for every
fixed t ∈ (0,∞) and y ∈ R

d it belongs to C2∞(Rd) as a function of x. Since both ∇ and L(α) are well defined on
C2∞(Rd), the function 	t(x, y) is well defined by (2.5).
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Since qz is a fundamental solution for ∂t − Lz, one has

	t(x, y) = [−(
∂t − Lz

x

)
p0

t (x, y) + (
Lx − Lz

x

)
p0

t (x, y)
]∣∣

z=y
= (

Lx − Lz
x

)
p0

t (x, y)
∣∣
z=y

= (
a(x) − a(y)

)
L(α)

x p0
t (x, y) + (

b(x),∇xp
0
t (x, y)

)
= (

a(x) − a(y)
) 1

td/α+1ad/α+1(y)

(
L(α)g(α)

)( y − x

t1/αa1/α(y)

)

− 1

t (d+1)/αa(d+1)/α(y)

(
b(x),

(∇g(α)
)( y − x

t1/αa1/α(y)

))
=: 	1

t (x, y) + 	2
t (x, y). (3.11)

First we estimate 	1. Since a(x) is bounded from above and away from zero, and is η-Hölder continuous, we have∣∣a(x) − a(y)
∣∣ ≤ c

(|x − y|η ∧ 1
) ≤ c

(|x − y|κ ∧ 1
)
, (3.12)

where we used that κ < α ∧ η (recall that by c and C we denote the generic constants, which may vary from place to
place). Then by (3.9), (3.3) and (3.1) we obtain

∣∣	1
t (x, y)

∣∣ ≤ C
|y − x|κ ∧ 1

t1+d/α
G(α)

(
y − x

t1/α

)
≤ Ct−1+κ/αQ

(κ)
t (x, y). (3.13)

To estimate 	2 we use that the functions a(x) and b(x) are bounded, and a(x) is bounded away from zero. Hence by
(3.7), (3.3) and (3.4) we have

∣∣	2
t (x, y)

∣∣ ≤ Ct−(d+1)/αG(α+1)

(
y − x

t1/α

)
≤ Ct−1/αQ

(0)
t

(
y − x

t1/α

)
. (3.14)

Combining estimates (3.13) and (3.14), we obtain the required estimate.
Case B. We fix z ∈ R

d , and define

Lz = a(z)L(α) + (
b(z),∇);

that is, consider the entire operator L as its “principal part” and “freeze” its coefficients at the point z (cf. the discussion
in Section 2.3 and the proof in the case A). The fundamental solution qz

t (x, y) to the Cauchy problem for (∂t − Lz) is
equal to the transition probability density of the process Z(α) with the time parameter rescaled by a(z), and with the
additional constant drift tb(z):

qz
t (x, y) = 1

td/αad/α(z)
g(α)

(
y − x − tb(z)

t1/αa1/α(z)

)
. (3.15)

Again, we have

p0
t (x, y) = q

y
t (x, y).

Since qξ is the fundamental solution for ∂t − Lξ , we have in the same way as in (3.11)

	t(x, y) = [−(
∂t − Lz

x

)
p0

t (x, y) + (
Lx − Lz

x

)
p0

t (x, y)
]∣∣

z=y

= (
a(x) − a(y)

)
L(α)

x p0
t (x, y) + (

b(x) − b(y),∇xp
0
t (x, y)

)
= (

a(x) − a(y)
) 1

td/α+1ad/α+1(y)

(
L(α)g(α)

)(y − tb(y) − x

t1/αa1/α(y)

)

+ 1

t (d+1)/αa(d+1)/α(y)

(
b(y) − b(x),

(∇g(α)
)(y − tb(y) − x

t1/αa1/α(y)

))

=: 	1
t (x, y) + 	2

t (x, y). (3.16)



Parametrix construction of the transition probability density of the solution to an SDE driven by α-stable noise 111

Recall (3.12), and write

x − y = (
y − tb(y) − x

) + tb(y).

Then by elementary inequalities |u+ v|κ ≤ 2κ−1(|u|κ +|v|κ), |u+ v|κ ∧ 1 ≤ |u|κ ∧ 1 +|v|κ ∧ 1, and the fact that b(·)
is bounded, we obtain

∣∣a(x) − a(y)
∣∣ ≤ c

(∣∣y − tb(y) − x
∣∣κ ∧ 1

) + ctκ . (3.17)

Then using (3.9), (3.3) and (3.1) we derive

∣∣	1
t (x, y)

∣∣ ≤ Ct−1+κ/αQ
(κ)
t (x, y) + Ct−1+κQ

(0)
t (x, y). (3.18)

Similar argument can be applied to 	2
t (x, y). Namely, using that b(·) is γ -Hölder continuous and bounded, we get

∣∣b(x) − b(y)
∣∣ ≤ c

∣∣y − tb(y) − x
∣∣γ + ctγ .

Then using (3.7) and (3.3)–(3.5) we derive

∣∣	2
t (x, y)

∣∣ ≤ Ct−1/α+γ /α

∣∣∣∣y − tb(y) − x

t1/α

∣∣∣∣
γ 1

td/α
G(α+1)

(
y − tb(y) − x

t1/α

)

+ Ct−1/α+γ 1

td/α
G(α+1)

(
y − tb(y) − x

t1/α

)

≤ Ct−1/α+γ /α 1

td/α
G(α+1−γ )

(
y − tb(y) − x

t1/α

)
+ Ct−1/α+γ 1

td/α
G(α+1)

(
y − tb(y) − x

t1/α

)

≤ Ct−1+ζ Q
(0)
t (x, y), (3.19)

where ζ := (1 − 1/α + γ ) ∧ (1 − 1/α + γ /α) > 0. Thus, we arrive at (3.2).
Case C. In contrast with two previous cases, now we cannot interpret p0

t (x, y) as a fundamental solution to a
Cauchy problem for some operator with “frozen” coefficients. Instead, we use the definition of the flow θt (y) and
evaluate 	 directly.

Operators ∇ and L(α) are homogeneous with respective orders 1 and α. From the identity

(
∂t − L(α)

)[
t−d/αg(α)

(
t−1/αx

)] = 0,

we derive

∂tp
0
t (x, y) =

[
a(y)

1

ad/α(y)td/α

(
L(α)g(α)

)( w

t1/αa1/α(y)

)

+
(

∂t θt (y),
1

ad/α+1(y)td/α+1

(∇g(α)
)( w

t1/αa1/α(y)

))]∣∣∣∣
w=θt (y)−x

.

On the other hand,

Lxp
0
t (x, y) =

[
a(x)

1

ad/α(y)td/α

(
L(α)g(α)

)( w

t1/αa1/α(y)

)

−
(

b(x),
1

ad/α+1(y)td/α+1

(∇g(α)
)( w

t1/αa1/α(y)

))]∣∣∣∣
w=θt (y)−x

.
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Since ∂t θt (y) = −b(θt (y)), we finally get

	t(x, y) = (Lx − ∂t )p
0
t (x, y)

= (
a(x) − a(y)

) 1

td/α+1ad/α+1(y)

(
L(α)g(α)

)( θt (y) − x

t1/αa1/α(y)

)

+ 1

t (d+1)/αa(d+1)/α(y)

(
b
(
θt (y)

) − b(x),
(∇g(α)

)( θt (y) − x

t1/αa1/α(y)

))

=: 	1
t (x, y) + 	2

t (x, y). (3.20)

Since b is bounded, we have |θt (y) − y| ≤ ct . Similarly to (3.17) we have∣∣a(x) − a(y)
∣∣ ≤ c

(∣∣θt (y) − x
∣∣κ ∧ 1

) + ctκ . (3.21)

Then using (3.9), (3.3) and (3.4), we get

∣∣	1
t (x, y)

∣∣ ≤ Ct−1+κ/α

(∣∣∣∣θt (y) − x

t1/α

∣∣∣∣
κ

∧ t−κ/α

)
1

td/α
G(α)

(
θt (y) − x

t1/α

)

+ Ct−1+κ 1

td/α
G(α)

(
θt (y) − x

t1/α

)

= Ct−1+κ/αQ
(κ)
t (x, y) + Ct−1+κQ

(0)
t (x, y).

For 	2 we have, since b(x) is Lipschitz continuous,

∣∣	2
t (x, y)

∣∣ ≤ Ct−d/α

∣∣∣∣θt (y) − x

t1/α

∣∣∣∣
∣∣∣∣(∇g(α)

)( θt (y) − x

t1/αa1/α(y)

)∣∣∣∣.
Thus, using (3.7) and (3.3)–(3.5), we derive

∣∣	2
t (x, y)

∣∣ ≤ CQ
(0)
t (x, y).

Combining the above estimates, we arrive at (3.2). �

3.2. Convergence of the parametrix series and the estimate for the residue term

To estimate the convolution powers 	
�k
t (x, y), k ≥ 1, inductively we first slightly modify the upper bound for 	

obtained in Lemma 3.1. For λ ∈ [0, α), define

H
(λ)
t (x, y) :=

((∣∣∣∣ω(t, y) − x

t1/α

∣∣∣∣
λ

∨ 1

)
∧ t−λ/α

)
1

td/α
G(α)

(
ω(t, y) − x

t1/α

)
. (3.22)

Clearly,

Q
(λ)
t (x, y) ≤ H

(λ)
t (x, y),

and therefore a (weaker) analogue of (3.1) with Q
(κ)
t (x, y), Q

(0)
t (x, y) replaced by H

(κ)
t (x, y), H

(0)
t (x, y) holds true.

The reason for us to modify (in fact, to weaken) estimate (3.2) in that way is that this form is well designed for further
inductive estimation of convolution powers of 	; see the detailed discussion of this point in Remark 3.1 below. For
possible further reference, we first develop this calculation in a general form, and then apply it for the particular
function 	t(x, y) and kernels H

(λ)
t (x, y).
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Definition 3.1. A non-negative kernel {Ht(x, y), t > 0, x, y ∈R
d} has a sub-convolution property, if for every T > 0

there exists a constant CH,T > 0 such that

(Ht−s ∗ Hs)(x, y) ≤ CH,T Ht (x, y), t ∈ (0, T ], s ∈ (0, t), x, y ∈ R
d . (3.23)

The kernel {Ht(x, y), t > 0, x, y ∈ R
d} has a super-convolution property if the sign “≤” in (3.23) is changed to “≥.”

Lemma 3.2. Suppose that the function 	t(x, y) satisfies

∣∣	t(x, y)
∣∣ ≤ C	,T

(
t−1+δ1H 1

t (x, y) + t−1+δ2H 2
t (x, y)

)
, t ∈ (0, T ], x, y ∈ R

d, (3.24)

with some δ1, δ2 ∈ (0,1) and some non-negative kernels H 1
t (x, y), H 2

t (x, y). Assume also that the kernels Hi
t (x, y),

i = 1,2, satisfy the sub-convolution property with constant CH,T , and

H 1
t (x, y) ≥ H 2

t (x, y). (3.25)

Then for every t ∈ (0, T ], x, y ∈R
d , the statements below hold true.

(a) For k ≥ 1,

∣∣	�k
t (x, y)

∣∣ ≤ C1C
k
2

�(kζ )
t−1+(k−1)ζ

(
tδ1H 1

t (x, y) + tδ2H 2
t (x, y)

)
, (3.26)

where

C1 = (
3(T ∨ 1)CH,T

)−1
, C2 = 3(T ∨ 1)C	,T CH,T �(ζ ), and ζ = δ1 ∧ δ2; (3.27)

(b) The series
∑∞

k=1 	
�k
t (x, y) is absolutely convergent and

∣∣∣∣∣
∞∑

k=1

	
�k
t (x, y)

∣∣∣∣∣ ≤ C
(
t−1+δ1H 1

t (x, y) + t−1+δ2H 2
t (x, y)

); (3.28)

(c)

∣∣∣∣∣
(

H 1 �
∞∑

k=1

	�k

)
t

(x, y)

∣∣∣∣∣ ≤ Ctζ H 1
t (x, y). (3.29)

Proof. Using the sub-convolution property of Hi
t (x, y) and (3.25), we get

(
H 1

t−s ∗ H 1
s

)
(x, y) ≤ CH,T H 1

t (x, y),(
H 1

t−s ∗ H 2
s

)
(x, y) ≤ CH,T H 1

t (x, y),(
H 2

t−s ∗ H 2
s

)
(x, y) ≤ CH,T H 2

t (x, y),

(3.30)

for every t ≤ T , s < t .
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Observe that (3.26) with k = 1 coincides with (3.24). Next, we suppose that (3.26) holds for k ≥ 1, and show that
it also holds for k + 1. Using (3.24), (3.26), (3.30), and the sub-convolution property for H 1

t (x, y), we get

∣∣	�(k+1)
t (x, y)

∣∣ =
∣∣∣∣
∫ t

0

(
	

�k
t−s ∗ 	s

)
(x, y) ds

∣∣∣∣
≤ C1C

k
2C	,T

�(kζ )

{∫ t

0
(t − s)−1+(k−1)ζ (t − s)δ1s−1+δ1

(
H 1

t−s ∗ H 1
s

)
(x, y) ds

+
∫ t

0
(t − s)−1+(k−1)ζ (t − s)δ1s−1+δ2

(
H 1

t−s ∗ H 2
s

)
(x, y) ds

+
∫ t

0
(t − s)−1+(k−1)ζ (t − s)δ2s−1+δ1

(
H 2

t−s ∗ H 1
s

)
(x, y) ds

+
∫ t

0
(t − s)−1+(k−1)ζ (t − s)δ2s−1+δ2

(
H 2

t−s ∗ H 2
s

)
(x, y) ds

}

≤ (T δ1∨δ2−ζ ∨ 1)3C	,T C1C
k
2CH,T

�(kζ )
B(kζ, ζ )t−1+kζ

(
tδ1H 1

t (x, y) + tδ2H 2
t (x, y)

)

≤ (1 ∨ T )3C	,T C1C
k
2CH,T

�(kζ )
B(kζ, ζ )t−1+kζ

(
tδ1H 1

t (x, y) + tδ2H 2
t (x, y)

)

= C1C
k+1
2

�((k + 1)ζ )
t−1+kζ

(
tδ1H 1

t (x, y) + tδ2H 2
t (x, y)

)
, (3.31)

which proves (3.26). By (3.26), the series
∑∞

k=2 	
�(k)
t (x, y) converge absolutely and

∣∣∣∣∣
∞∑

k=2

	
�k
t (x, y)

∣∣∣∣∣ ≤ Ct−1+ζ
(
tδ1H 1

t (x, y) + tδ2H 2
t (x, y)

)
, (3.32)

which gives (3.28). Finally, (3.29) follows from (3.24), (3.28) and (3.30). �

In the following proposition we collect the properties of the kernels H
(λ)
t (x, y), λ ≥ 0 which we require to complete

the proof of Theorem 2.1. We defer the proof of this proposition to Appendix B.

Proposition 3.3. In each of the cases A–C, for every λ ∈ [0, α), T > 0 the kernel H
(λ)
t (x, y) satisfies

c ≤
∫
Rd

H
(λ)
t (x, y) dy ≤ C, t ≤ T , (3.33)

and possesses the sub- and super-convolution properties.

Remark 3.1. Now we can explain why it is convenient to replace in (3.2) the kernels Q
(κ)
t (x, y). For λ > 0 the kernel

Q
(λ)
t (x, y) is equal to zero when x = ω(t, y), and using this observation we can easily verify that Q

(λ)
t (x, y) does not

satisfy the sub-convolution property. On the contrary, by Proposition 3.3 the kernels H
(λ)
t (x, y), λ ≥ 0, possess the

sub-convolution property, hence we can easily derive the bounds for the convolutions powers 	�k using Lemma 3.2.
We remark that the sub- and super-convolution properties for the kernels H

(λ)
t (x, y), λ ≥ 0 are, in a sense, inherited

from the convolution identity for the transition probability density of a symmetric α-stable process, which is just the
Chapman–Kolmogorov equation for this process:∫

Rd

g
(α)
t−s(z − x)g(α)

s (y − z) dz = g
(α)
t (y − x), 0 < s < t.
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An easier, but less precise way to estimate 	
�k
t (x, y), k ≥ 1, dates back to [36], where the kernels Q

(κ)
t (x, y)

were bounded from above by C
td/α G(α−κ)(

y−x

t1/α ). These modified kernels possess the sub-convolution property as well.
However, their “tails” are heavier than those of the α-stable density, and therefore such an estimate does not lead to
a precise bound for the residue. The latter weak point was resolved in [10], where the (mixed) kth convolutions of
Q

(κ)
t (x, y) and Q

(0)
t (x, y), k ≥ 1, were estimated directly, although in a rather cumbersome way. Our way to estimate

the convolutions is motivated by both approaches, and inherits their advantages: by using the sub-convolution property
we make the overall proof reasonably transparent, and because the “tails” of the auxiliary kernels H

(κ)
t (x, y) and

Q
(κ)
t (x, y) are the same, our upper bounds on 	

�k
t (x, y) coincide with those obtained in [10].

Proof of statements 1 and 3 of Theorem 2.1. We have∣∣	t(x, y)
∣∣ ≤ C	,T

(
t−1+κ/αH

(κ)
t (x, y) + t−1+δH

(0)
t (x, y)

)
, (3.34)

which is just (3.2) modified as we have explained above. Then we apply Lemma 3.2 with δ1 = κ/α, δ2 = δ, H 1
t (x, y) =

H
(κ)
t (x, y) and H 2

t (x, y) = H
(0)
t (x, y), and get

∣∣	�k
t (x, y)

∣∣ ≤ C1C
k
2

�(kζ )
t−1+(k−1)ζ

(
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

)
, (3.35)

∣∣
t(x, y)
∣∣ ≤ C

(
t−1+κ/αH

(κ)
t (x, y) + t−1+δH

(0)
t (x, y)

)
, (3.36)

where ζ = δ ∧ (κ/α). In addition, we have p0
t (x, y) 
 H

(0)
t (x, y), and therefore by (2.8) and (3.29)

∣∣rt (x, y)
∣∣ ≤ C

(
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

)
. (3.37)

This completes the proof of statement 1. Since

H
(κ)
t (x, y) =

⎧⎪⎨
⎪⎩

H
(0)
t (x, y), |ω(t, y) − x| ≤ t1/α,

|ω(t,y)−x|κ
tκ/α H

(0)
t (x, y), t1/α ≤ |ω(t, y) − x| ≤ 1,

t−κ/αH
(0)
t (x, y), |ω(t, y) − x| ≥ 1,

this also implies (2.16) and completes the proof of statement 3. �

The proof of statement 2 is postponed to the next subsection, where the continuity issues are treated in a unified
way.

3.3. Continuity properties of pt (x, y) and Pt

Proof of statement 2 of Theorem 2.1. In each of the cases A–C, one can verify directly and easily that the function
p0

t (x, y) and the corresponding 	t(x, y) are continuous in (t, x, y) ∈ (0,∞) × R
d × R

d . We show by induction the
continuity of the functions 	

�k
t (x, y), k ≥ 2.

Suppose that 	
�(k−1)
t (x, y) is continuous on (0,∞) ×R

d ×R
d . Denote

IR(t, s, x, y) :=
∫

B(0,R)

	
�(k−1)
t−s (x, z)	s(z, y) dz, (3.38)

where B(0,R) is the ball in R
d centered at 0 with radius R. By the induction assumption, the function under the

integral is continuous in t , x, y for 0 < s < t .
Fix R0 > 0, τ > 0, T > τ , and ε ∈ (0, τ ). Then the expression under the integral is uniformly continuous in t , x,

y for s ∈ [ε, t − ε], t ∈ [τ, T ], x ∈ B(0,R0), y ∈ B(0,R0), which by the dominated convergence theorem implies the
continuity of IR(t, s, x, y) in the same domain, if R > R0.
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Denote

I (t, s, x, y) =
∫
Rd

	
�(k−1)
t−s (x, z)	s(z, y) dz,

and observe that

∣∣I (t, s, x, y) − IR(t, s, x, y)
∣∣ ≤

∫
Rd\B(0,R)

∣∣	�(k−1)
(t−s) (x, z)	s(z, y)

∣∣dz → 0, R → ∞, (3.39)

uniformly in s ∈ [ε, t − ε], t ∈ [τ, T ], x ∈ B(0,R0), y ∈ B(0,R0). Indeed, for R large enough and z ∈ R
d \ B(0,R),

y ∈ B(0,R0), we have |z − ω(s, y)| 
 |z|, because the function ω(s, y) is bounded. This implies by (3.34)∣∣	s(z, y)
∣∣ ≤ C(ε)|z|−d−α+κ

for s ∈ [ε, t − ε], t ∈ [τ, T ], z ∈ R
d \ B(0,R), y ∈ B(0,R0). Since for such s, t , x and z∣∣	�(k−1)

t−s (x, y)
∣∣ ≤ C(ε),

convergence (3.39) follows by the dominated convergence theorem. This gives that I (t, s, x, y) is continuous in t ,
x, y.

Since

	
�k
t (x, y) =

∫ t

0
I (t, s, x, y) ds = lim

ε→0+

∫ t−ε

ε

I (t, s, x, y) ds, (3.40)

the same argument yields continuity of 	
�k
t (x, y). Namely, proceeding in the same way as in (3.31), we derive that

for t ∈ [τ, T ]
∣∣I (t, s, x, y)

∣∣ =
∣∣∣∣
∫
Rd

	
�(k−1)
t−s (x, z)	s(z, y) dz

∣∣∣∣
≤ c(t − s)−1+(k−1)ζ s−1+ζ

(
H

(κ)
t (x, y) + H

(0)
t (x, y)

)
≤ C(t − s)−1+(k−1)ζ s−1+ζ , ζ = δ ∧ (κ/α). (3.41)

Hence for every ε > 0 the integral in the right hand side of (3.40) is continuous by the dominated convergence theorem.
Convergence in (3.40) is uniform on compacts in (0,∞) × R

d × R
d ; one can easily prove this using (3.41) and the

expressions for H(κ),H (0). This completes the proof of continuity of 	
�k
t (x, y).

Since the series
∑∞

k=1 	
�k
t (x, y) converges uniformly on compact subsets of (0,∞) × R

d × R
d , the function


t(x, y) is continuous, as well. Continuity of

rt (x, y) = (
p0 � 


)
t
(x, y) = pt(x, y) − p0

t (x, y)

follows by the same argument as that for 	
�k
t (x, y). �

In the rest of the section we derive the basic properties of the family of the operators Pt , t > 0, defined by (2.21).
This is used in the further analysis of the function pt (x, y) obtained via the parametrix construction.

Recall that p0
t (x, y) = H

(0)
t (x, y), hence by (3.37) and (3.33), for every T > 0∫

Rd

pt (x, y) dy ≤ C, t ∈ (0, T ], x ∈R
d . (3.42)

Then the family Ptf (x), t > 0, is well defined by (2.21) for any bounded function f . We also put P0f = f . In order
to show that each Pt maps C∞(Rd) into itself and the family {Pt , t ≥ 0} is strongly continuous at the point t = 0, we
need the following proposition.
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Proposition 3.4. In each of the cases A–C, for every f ∈ C∞(Rd)

lim|x|→∞

∫
Rd

p0
t (x, y)f (y) dy = 0, t > 0, (3.43)

sup
x∈Rd

∣∣∣∣
∫
Rd

p0
t (x, y)f (y) dy − f (x)

∣∣∣∣ → 0, t → 0. (3.44)

We defer the proof of this proposition to Appendix B.

Lemma 3.3. In each of the cases A–C of Theorem 2.1, the following properties hold true.

1. For every t > 0, Pt is a bounded operator in C∞(Rd).
2. For every f ∈ C∞(Rd) we have limt→0+ ‖Ptf − f ‖∞ = 0.

Proof. 1. The proof of continuity of Ptf is repeats the proof of continuity of pt (x, y), and thus is omitted.
To prove that Ptf (x) vanishes as |x| → ∞, we use the representation for pt (x, y), estimate (2.16) on rt (x, y), and

(3.43):∣∣∣∣
∫
Rd

pt (x, y)f (y) dy

∣∣∣∣ =
∣∣∣∣
∫
Rd

(
p0

t (x, y) + rt (x, y)
)
f (y)dy

∣∣∣∣
≤ C

∫
Rd

p0
t (x, y)

∣∣f (y)
∣∣dy → 0, |x| → ∞.

Hence Pt maps C∞(Rd) to C∞(Rd). Clearly, this operator is linear and bounded (its norm is bounded by the constant
C from (3.42)).

2. By (3.37) and (3.33),

sup
x

∣∣∣∣
∫
Rd

rt (x, y)f (y) dy

∣∣∣∣ ≤ C
(
tκ/α + tδ

)‖f ‖∞ → 0, t → 0. (3.45)

Together with (3.44) this gives the required statement. �

4. Proofs of Theorem 2.2 and Theorem 2.3

If we knew that the function pt(x, y), constructed in Theorem 2.1, is a fundamental solution to the Cauchy problem
for ∂t − L, then the properties of Pt stated in Theorem 2.2 could be obtained in a standard way based on the positive
maximum principle, which holds true for the operator L, see [32, Theorem 4.5.13]. We refer to [17, Chapter 4] for
the definition and the general results on the positive maximum principle. However, on this way we meet substantial
difficulties already when we try to prove that Lx can be applied to pt(x, y). Recall that the domain of L is C2∞(Rd).
On the other hand, for the function p0

t (x, y) we have the following bounds, which can be derived from Proposition 3.2,
but yet it seems that they can not be improved:

∣∣∇xp
0
t (x, y)

∣∣ ≤ Ct−1/αH
(0)
t (x, y),

∣∣∇2
xxp

0
t (x, y)

∣∣ ≤ Ct−2/αH
(0)
t (x, y). (4.1)

Hence the spatial derivatives of p0
t (x, y) have non-integrable singularities in t near 0, and such a behaviour of p0

t (x, y)

makes it unclear why pt(x, y) should belong to the domain of Lx .
This difficulty is rather typical. In what follows, we develop an approach which we believe to be well applicable in

various situations similar to those explained above. The keystone of this approach is that we use certain approximate
solution to the Cauchy problem for ∂t − L instead of the exact one.
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4.1. Approximate fundamental solution: Construction and basic properties

For ε > 0 we introduce the auxiliary function

pt,ε(x, y) := p0
t+ε(x, y) +

∫ t

0

∫
Rd

p0
t−s+ε(x, z)
s(z, y) dz ds, (4.2)

and define

Pt,εf (x) :=
∫
Rd

pt,ε(x, y)f (y) dy, t > 0, x ∈ R
d, f ∈ C∞

(
R

d
)
. (4.3)

The additional time shift by positive ε removes the singularity at the point s = t , and this is the main reason why
pt,ε(x, y) possesses the following properties:

(i) p·,ε(x, y) ∈ C1(0,∞) for any fixed ε > 0, x, y ∈ R
d ;

(ii) pt,ε(·, y) ∈ C2∞(Rd) for any fixed ε > 0, t > 0, y ∈ R
d ;

(iii) for any 0 < τ < T we have pt,ε(x, y) → pt (x, y) as ε → 0, uniformly in (t, x, y) ∈ [τ, T ] ×R
d ×R

d ;
(iv) for any 0 < τ < T we have

qt,ε(x, y) := (∂t − Lx)pt,ε(x, y) → 0, ε → 0,

uniformly in (t, x, y) ∈ [τ, T ] ×R
d ×R

d .

We do not give the detailed proof of these properties, because everywhere below (with the only exception of the
proof of Proposition 2.1) we will need the analogues of these properties for Pt,εf , see Lemma 4.1 and Lemma 4.2;
the proofs of (i)–(iv) above are completely analogous and omitted.

Properties (iii), (iv) motivate the name approximate fundamental solution we use for pt,ε(x, y): it approximates
pt (x, y) and “satisfies” (2.2) in the approximate sense.

Lemma 4.1.

1. For every f ∈ C∞(Rd), ε > 0 the function Pt,εf (x) belongs to C1(0,∞) as a function of t and to C2∞(Rd) as a
function of x.

2. For every f ∈ C∞(Rd), T > 0,

‖Pt,εf − Ptf ‖∞ → 0, ε → 0, (4.4)

uniformly in t ∈ [0, T ], and for every ε > 0

Pt,εf (x) → 0, |x| → ∞ (4.5)

uniformly in t ∈ [0, T ].
3. For f ∈ C∞(Rd) we have

lim
t,ε→0+‖Pt,εf − f ‖∞ = 0.

In the proof of this lemma we use the following proposition.

Proposition 4.1.

1. The derivative ∂tp
0
t (x, y) exists, and is continuous in (t, x, y) ∈ (0,∞) ×R

d ×R
d .

2. There exists C > 0 such that∣∣∂tp
0
t (x, y)

∣∣ ≤ C
(
t−1 ∨ t−1/α

)
H

(0)
t (x, y), t > 0, x, y ∈R

d .
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The proof follows directly from the definition of p0
t (x, y), the properties of g(α)(x) (cf. Proposition 3.2), and the

definition of ω(t, y) in the expression for p0
t (x, y).

Proof of Proposition 4.1. Statement 1 can be easily derived by using the upper bound (3.36) on 
t(x, y), the upper
estimates on p0

t (x, y), its space derivatives (4.1), time derivatives (see Proposition 4.1), and the dominated conver-
gence theorem.

To prove statement 2, we first observe that the function

[0, T ] � t �→
∫
Rd

p0
t (·, y)f (y) dy ∈ C∞

(
R

d
)

is continuous: the continuity at the point t = 0 is provided by Proposition 3.4, and the continuity at all the other points
easily follows from the continuity of p0

t (x, y). Then∫
Rd

p0
t+ε(x, y)f (y) dy →

∫
Rd

p0
t (x, y)f (y) dy, ε → 0,

uniformly in t ∈ [0, T ], x ∈ R
d . This together with estimate (3.36) and the dominated convergence theorem implies

statement 2.
The proof of statement 3 is a slight variation of the proof of statement 2 in Lemma 3.3. Namely, by (3.44) we have

sup
x∈Rd

∣∣∣∣
∫
Rd

p0
t+ε(x, y)f (y) dy − f (x)

∣∣∣∣ → 0, t, ε → 0.

Hence it is sufficient to show that

sup
x

∣∣∣∣
∫ t

0

∫
Rd

∫
Rd


t−s+ε(x, z)p0
s (z, y)f (y) dy dzds

∣∣∣∣ → 0, t, ε → 0. (4.6)

Using (3.36), the identity p0
t (x, y) = H

(0)
t (x, y) and the properties of H

(κ)
t (x, y), H

(0)
t (x, y), one can verify this

relation similarly to (3.45). �

Denote

Qt,εf (x) = (∂t − Lx)Pt,εf (x), f ∈ C∞
(
R

d
)
. (4.7)

Lemma 4.2. For any f ∈ C∞(Rd) we have

1.

Qt,εf (x) → 0, ε → 0, (4.8)

uniformly in (t, x) ∈ [τ, T ] ×R
d for every τ > 0, T > τ ;

2. ∫ t

0
Qs,εf (x) ds → 0, ε → 0, (4.9)

uniformly in (t, x) ∈ [0, T ] ×R
d for any T > 0.

Proof. We have

LPt,εf (x) = Lx

∫
Rd

p0
t+ε(x, y)f (y) dy + Lx

∫ t

0

∫
Rd

∫
Rd

p0
t−s+ε(x, z)
s(z, y)f (y) dy dzds; (4.10)
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note that Pt,εf and both integrals in the right hand side are C2∞-functions in x (see Lemma 4.1 for the first term; the
argument for the second integral is the same). Hence the operator Lx in (4.10) is well applicable. We would like to
interchange Lx with the integrals in (4.10), i.e. to write

LPt,εf (x) =
∫
Rd

Lxp
0
t+ε(x, y)f (y) dy +

∫ t

0

∫
Rd

∫
Rd

Lxp
0
t−s+ε(x, z)
s(z, y)f (y) dy dzds. (4.11)

Recall that L is an integro-differential operator given by (1.2), and observe that the argument based on the dominated
convergence theorem allows us to interchange the “differential part” (b(x),∇) of this operator with the integrals in
(4.10). To do the same with the “integral part” a(x)L(α), recall that

L(α)f (x) = lim
ε→0+L(α,ε)f (x), L(α,ε)f (x) :=

∫
|u|>ε

(
f (x + u) − f (x)

) cα

|u|d+α
du,

and we interchange a(x)L(α,ε) with the integrals just using the Fubini theorem. On the other hand,

∣∣L(α)f (x) − L(α,ε)f (x)
∣∣ =

∣∣∣∣
∫

|u|≤ε

(
f (x + u) − f (x) − 1|u|≤1(u,∇f )

) cα

|u|d+α
du

∣∣∣∣
≤ C sup

x∈Rd

∣∣∇2f (x)
∣∣ ∫

|u|≤ε

|u|2 cα

|u|d+α
du.

The integrals in (4.10) and the expressions under these integrals belong to C2∞(Rd) in x and their second derivatives
admit explicit bounds, cf. (4.1) and Lemma 4.1. Hence if we put in the right hand side of (4.10) operators(

b(x),∇x

) + a(x)L(α,ε)
x ,

instead of Lx , we get the expressions which tend to the original expressions as ε → 0. The same is true for (4.11), and
since we already have proved that we can interchange (b(x),∇x) + a(x)L

(α,ε)
x with the integrals, we finally obtain

(4.11).
Similarly, using the differentiability of p0

t (x, y) in t and the upper estimate on the respective derivatives (see
Lemma 4.1 above), we derive

∂tPt,εf (x) =
∫
Rd

∂tp
0
t+ε(x, y)f (y) dy +

∫ t

0

∫
Rd

∫
Rd

∂tp
0
t−s+ε(x, z)
s(z, y)f (y) dy dzds

+
∫
Rd

∫
Rd

p0
ε (x, z)
t (z, y)f (y) dy dz. (4.12)

Since

(Lx − ∂t )p
0
t (x, y) = 	t(x, y),

combining (4.11) and (4.12) we derive

Qt,εf (x) =
∫
Rd

∫
Rd

p0
ε (x, z)
t (z, y)f (y) dy dz −

∫
Rd

	t+ε(x, y)f (y) dy

−
∫ t

0

∫
Rd

∫
Rd

	t−s+ε(x, z)
s(z, y)f (y) dy dzds. (4.13)

Since the function 
 satisfies the equation

	t(x, y) = 
t(x, y) −
∫ t

0

∫
Rd

	t−s(x, z)
s(z, y) dz ds,



Parametrix construction of the transition probability density of the solution to an SDE driven by α-stable noise 121

we can rewrite Qt,εf (x) as follows:

Qt,εf (x) =
∫
Rd

(∫
Rd

p0
ε (x, z)
t (z, y) dz − 
t+ε(x, y)

)
f (y)dy

+
∫
Rd

(∫ t+ε

t

∫
Rd

	t−s+ε(x, z)
s(z, y) dz ds

)
f (y)dy

=: Q1
t,εf (x) + Q2

t,εf (x).

By the uniform continuity of 
 on compact subsets of (0,∞) ×R
d ×R

d and estimate (3.36), we have

sup
t∈[τ,T ],x∈Rd

∣∣∣∣
∫
Rd


t+ε(x, y)f (y) dy −
∫
Rd


t (x, y)f (y) dy

∣∣∣∣ → 0, ε → 0.

Using again the uniform continuity of 
 on compact subsets of (0,∞)×R
d ×R

d , relation (3.44) and estimate (3.36),
we obtain

sup
t∈[τ,T ],x∈Rd×Rd

∣∣∣∣
∫
Rd

p0
ε (x, z)
t (z, y) dz − 
t(x, y)

∣∣∣∣ → 0, ε → 0,

sup
t∈[τ,T ],x∈Rd

∣∣∣∣
∫
Rd

∫
Rd

p0
ε (x, z)
t (z, y)f (y) dz dy −

∫
Rd


t (x, y)f (y) dy

∣∣∣∣ → 0, ε → 0.

This proves (4.8) with Q1
t,εf (x) instead of Qt,εf (x). By (3.36) we have∣∣Q1

t,εf (x)
∣∣ ≤ Ct−1+ζ , ζ = δ ∧ (κ/α),

hence (4.9) for Q1
t,εf (x) easily follows from (4.8).

By (3.34), (3.36) and inequality H(0) ≤ H(κ), we obtain in the same way as in (3.31)∫ t+ε

t

∫
Rd

∣∣	t−s+ε(x, z)
s(z, y)
∣∣dzds

≤ CH
(κ)
t+ε(x, y)

∫ t+ε

t

(
(t + ε − s)s

)−1+ζ
ds

≤ CH
(κ)
t+ε(x, y)t−1+ζ

∫ t+ε

t

(t + ε − s)−1+ζ ds ≤ Cεζ t−1+ζ H
(κ)
t+ε(x, y). (4.14)

This immediately gives (4.8) and (4.9) with Q2
t,εf (x) instead of Qt,εf (x): we multiply (4.14) by |f (y)| and integrate

it either with respect to dy (for (4.8)), or with respect to dy ds (for (4.9)). �

4.2. Positive maximum principle, applied to the approximate fundamental solution. Proof of Theorem 2.2

The proof of Theorem 2.2 follows from Lemmae 4.3–4.5 given below.

Lemma 4.3. The operator Pt defined in (2.21) is positivity preserving, i.e. Ptf ≥ 0 if f ≥ 0.

Proof. Take f ∈ C∞(Rd), f ≥ 0, and suppose that

inf
t,x

Ptf (x) < 0. (4.15)

Then there exists T > 0 such that

inf
t≤T ,x∈Rd

Ptf (x) < 0.
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Then by (4.4) there exist η > 0, θ > 0, ε1 > 0 such that

inf
t≤T ,x∈Rd

(
Pt,εf (x) + θt

)
< −η, ε < ε1.

Denote

uε(t, x) = Pt,εf (x) + θt,

and note that by (4.5)

uε(t, x) → θt > 0, |x| → ∞,

uniformly in t ∈ [0, T ]. Hence the above infimum is in fact attained at some point in [0, T ] ×R
d ; in what follows we

fix one such a point for each ε, and denote it by (tε, xε).
Since f (x) ≥ 0, by statement 2 of Lemma 4.1 there exist ε0 > 0, τ > 0 such that

Pt,εf (x) + θt ≥ −η

2
, t ≤ τ, ε < ε0, x ∈R

d .

Since

uε(tε, xε) = min
t∈[0,T ],x∈Rd

uε(t, x) < −η < −η

2
,

we have tε > τ as soon as ε < ε0.
The operator L satisfies the positive maximum principle; that is, if whenever f ∈ D(L), and f (x0) ≥ 0 where

x0 = arg maxf (x), then Lf (x0) ≤ 0, cf. [17, Chapter 4.2]. Therefore

Lxuε(t, x)|(t,x)=(tε,xε) ≥ 0.

In addition, for ε < ε0 we always have

∂tuε(t, x)|(t,x)=(tε,xε) ≤ 0,

where the sign “<” may appear only if tε = T .
Then

(∂t − Lx)uε(t, x)|(t,x)=(tε,xε) ≤ 0. (4.16)

On the other hand, since tε ∈ [τ, T ], ε < ε0, we have by the first statement of Lemma 4.2

(∂t − Lx)uε(t, x)|(t,x)=(tε,xε) = θ + Qtε,εf (xε) → θ > 0, ε → 0.

This gives a contradiction and shows that (4.15) fails. �

Lemma 4.4. The family of operators possesses the semigroup property: Pt+s = PsPt .

Proof. The proof is based on the same argument as the proof of Lemma 4.3, hence we just sketch it. Take f ∈ C∞(Rd)

and assume, for instance, that

Pt+sf (x) − PtPsf (x) < 0 (4.17)

for some s, t > 0, x ∈R
d . Fix this s, and observe that then for some η > 0, θ > 0, T > 0 the function

uε(t, x) = Pt+s,εf (x) − Pt,εPsf (x) + θt
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satisfies

inf
t≤T ,x∈Rd

uε(t, x) < −η.

In addition, uε(t, x) → θt, |x| → ∞, hence the infimum is attained at some point (tε, xε). Finally, uε(t, x) → 0,
t, ε → 0 and therefore there exist τ > 0, ε0 > 0 such that tε > τ , provided that ε ∈ (0, ε0). Then, on one hand, (4.16)
holds, and on the other hand

(∂t − Lx)uε(t, x)|(t,x)=(tε,xε) = Qtε+s,εf (xε) − Qtε,εPsf (xε) + θ → θ > 0, ε → 0.

This gives a contradiction and proves that (4.17) is impossible. Changing f to −f , we see that inequality (4.17) with
“>” instead of “<” is impossible as well, which completes the proof. �

Lemma 4.5. We have

(a) Ptf (x) − f (x) =
∫ t

0
PsLf (x)ds, f ∈ C2∞

(
R

d
); (4.18)

(b) Pt1 = 1.

Proof. We apply the same argument as in the above lemmas. Take f ∈ C2∞(Rd), and assume that for every t > 0,
x ∈ R

d ,

Ptf (x) < f (x) +
∫ t

0
PsLf (x)ds. (4.19)

Then repeating the above argument, we obtain the functions

uε(t, x) = Pt,εf (x) − f (x) −
∫ t

0
Ps,εLf (x)ds + θt, ε > 0

and the points (tε, xε), in which these functions attain their minima on [0, T ] ×R
d , such that for some τ > 0, ε0 > 0

we have tε > τ , provided before ε ∈ (0, ε0).
On one hand, for these functions we have (4.16). On the other hand,

(∂t − Lx)uε(t, x) = Qt,εf (x) + Lf (x) − Pt,εLf (x) +
∫ t

0
LPs,εLf (x)ds + θ

= Qt,εf (x) + Lf (x) − Pt,εLf (x) +
∫ t

0

(
∂sPs,εLf (x) − Qs,εLf (x)

)
ds + θ

= Qt,εf (x) −
∫ t

0
Qs,εLf (x)ds + θ.

Then by Lemma 4.2

(∂t − Lx)uε(t, x)|(t,x)=(tε,xε) → θ > 0, ε → 0,

which gives a contradiction to (4.16) and disproves (4.19). Changing f to −f , we complete the proof of statement
(a).

To prove statement (b), take f ∈ C2∞(Rd) such that f ≡ 1 on the unit ball in R
d , and put fk(x) = f (k−1x). Then

fk(x) → 1, Lfk(x) → 0, k → ∞,

and both |fk| and |Lfk| are bounded by some constant, independent of k. Then using the equality p0
t (x, y) =

H
(0)
t (x, y), the estimate (2.16) on the remainder rr (x, y), and Proposition 3.3, we can apply the dominated con-

vergence theorem and pass to the limit in (4.18) as k → ∞ in (4.18) with fk instead f . This finishes the proof of
statement (b). �



124 V. Knopova and A. Kulik

Proof of Theorem 2.2. By Lemmas 4.3, 4.4 and the second statement of Lemma 4.5, the family {Pt , t ≥ 0}
forms a strongly continuous contraction semigroup on C∞(Rd), which is positivity preserving. Since the semigroup
{Pt , t ≥ 0} possesses the continuous transition probability density pt (x, y), the respective Markov process X is strong
Feller. Finally, the first statement of Lemma 4.5 implies that the restriction of the generator of {Pt , t ≥ 0} coincides
with L on functions from C2∞(Rd). �

4.3. The generator of the semigroup (Pt )t≥0: Proofs of Theorem 2.3 and Proposition 2.1

In Lemma 4.5 we proved that (L,C2∞(Rd)) is the restriction of (A,D(A)). Since A is a closed operator, this yields
that (L,C2∞(Rd)) is closable. Let us show that its closure coincides with (A,D(A)).

Take f ∈ C∞(Rd) ∩ D(A). Fix t > 0, and consider Ptf and Pt,εf . Since f ∈ D(A), then Ptf ∈ D(A), and

APtf = ∂tPtf. (4.20)

Recall that by statement 1 of Lemma 4.1 we have Pt,εf ∈ C2∞(Rd) and thus by Lemma 4.5 Pt,εf ∈ D(A). Hence,

APt,εf = LPt,εf = ∂tPt,εf.

Observe that

• By statement 2 of Lemma 4.1, one has Pt,εf → Ptf in C∞(Rd) as ε → 0;
• By statement 1 of Lemma 4.2, one has (∂t − L)Pt,εf → 0 in C∞(Rd) as ε → 0.

Assuming that we know

∂tPt,ε → ∂tPtf in C∞
(
R

d
)

as ε → 0, (4.21)

we derive

LPt,εf → APtf in C∞
(
R

d
)

as ε → 0,

which implies that Ptf belongs to the domain of the C∞(Rd)-closure of (L,C2∞(Rd)). Consequently, this closure
coincides with (A,D(A)).

We have proved Theorem 2.3 under the assumption (4.21). We verify this assumption in Lemma 6.4 below.
We also show in Lemma 6.4 that

∂tpt,ε(x, y) → ∂tpt (x, y), ε → 0, (4.22)

uniformly on compact subsets of (0,∞) × R
d × R

d . Using properties (i), (ii) and (iv) of pt,ε(·, y) ∈ C2∞(Rd) (cf.
Section 4.1), and applying to this function literally the same argument used in the case of Pt,εf (·), we derive that
pt (·, y) ∈ D(A), and pt (x, y) is a fundamental solution to the Cauchy problem for ∂t − A. �

5. Proof of Theorem 2.4

Let X be the canonical Markov process which corresponds to the semigroup constructed in Theorem 2.2. Using the
Markov property of X, it is easy to deduce from (4.18) and the semigroup property for pt(x, y) the following: For
given f ∈ C2∞(Rd), t2 > t1, and x ∈R

d , for any m ≥ 1, r1, . . . , rm ∈ [0, t1], and bounded measurable G : (Rd)m →R

the identity

Ex

[
f (Xt2) − f (Xt2) −

∫ t2

t1

hf (Xs) ds

]
G(Xr1, . . . ,Xrm) = 0
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holds true. Here and below Ex denotes the expectation with respect to the law of the underlying process, starting at
x ∈ R

d . This means that for every f ∈ C2∞(Rd) the process

M
f
t = f (Xt ) −

∫ t

0
hf (Xs) ds, t ≥ 0, (5.1)

is a Px -martingale for every x ∈R
d ; that is, P is a solution to the martingale problem for (L,C2∞(Rd)).

Operator (L,C2∞(Rd)) is dissipative, which follows from the positive maximum principle, see [17, Lemma 4.2.1],
or [32, Lemma 4.5.2]. Next, its closure equals to the generator A of C∞(Rd)-semigroup {Pt , t ≥ 0}, hence for every
λ > 0 the range of the resolvent (λ − L)−1 in C∞(Rd) is dense. Hence the required uniqueness of the solution to the
martingale problem (L,C2∞(Rd)) follows by [17, Theorem 4.4.1].

It follows from the Itô formula, that every weak solution to (1.3) is a solution to the martingale problem for
(L,C2∞(Rd)). Since we have already proved that this martingale problem is well posed, this immediately proves the
uniqueness of the weak solution to (1.3). The proof of the existence of a weak solution can be conducted in a standard
way, which we outline below.

• Consider the family of equations

dX
(n)
t = bn

(
X

(n)
t

)
dt + σn

(
X

(n)
t−

)
dZ

(α)
t (5.2)

with smooth coefficients bn and σn, approximating the coefficients b and σ of (1.3). We can choose the approxi-
mations bn and σn such that the functions an = (σn)

α , n ≥ 1 and bn, n ≥ 1 the constants satisfy (2.10) and (2.11)
with the same constants. Since the coefficients in (5.2) are smooth, there exists a (strong) solution X

(n)
t to (5.2).

This solution is a strong Markov process, admitting the transition probability density p
(n)
t (x, y). Note that under

our assumption on the coefficients the upper bound for the residue term in Theorem 2.1 can be achieved uniformly
in n, and consequently

p
(n)
t (x, y) ≤ C

td/α
g(α)

(
ωn(t, y) − x

t1/α

)
, t ∈ (0, T ], x, y ∈ R

d, (5.3)

where the constant C > 0 is independent of n, and ωn(t, y) is given by (2.15) with b replaced by bn, and the flow
θt replaced by the corresponding flow.

• We show that

Ex

[∣∣(X(n)
t+s ,Z

(α)
t+s

) − (
X

(n)
t ,Z

(α)
t

)∣∣β |Ft

] ≤ ρ(s), (5.4)

where Ft := σ {Z(α)
s , s ≤ t}, the non-random function ρ(s) tends to 0 as s → 0, β ∈ (0, α) is some constant. By

Theorem 8.6 and Remark 8.7 from [17, Chapter 3] we deduce that the sequence (X(n),Z(α)) is weakly compact in
D(R+, (Rd)2).

Using the inequality (u+ v)β ≤ 2β−1(uβ + vβ) for positive u, v and β , and the Markov property of (X
(n)
t ,Z

(α)
t )

we derive

Ex

[∣∣(X(n)
t+s ,Z

(α)
t+s

) − (
X

(n)
t ,Z

(α)
t

)∣∣β |Ft

]
= E

(X
(n)
t ,Z

(α)
t )

[∣∣(X(n)
s ,Z(α)

s

) − (
X

(n)
0 ,Z

(α)
0

)∣∣β]
= E

(X
(n)
t ,Z

(α)
t )

[(∣∣X(n)
s − X

(n)
0

∣∣2 + ∣∣Z(α)
s − Z

(α)
0

∣∣2)β/2]
≤ 2β/2−1(

E
X

(n)
t

[∣∣X(n)
s − X

(n)
0

∣∣β] +E
Z

(α)
t

[∣∣Z(α)
s − Z

(α)
0

∣∣β])
≤ C sup

x

∫
Rd

|y − x|β 1

sd/α
g(α)

(
ωn(s, y) − x

s1/α

)
dy + C

∫
Rd

|z|β 1

sd/α
g(α)

(
z

s1/α

)
dz.
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We have∫
Rd

|z|β 1

sd/α
g(α)

(
z

s1/α

)
dz = csβ/α.

On the other hand, we can decompose y − x = (ωn(s, y) − x) − (ωn(s, y) − y), and use the inequality |ωn(s, y) −
y| ≤ Cs, since the sequence bn(·), n ≥ 1 is uniformly bounded. Now simple calculation finally gives (5.4) with
ρ(s) = C(sβ/α + sβ).

• By the weak compactness of the sequence (X(n),Z(α)), there exists a weak limit (X̃, Z̃(α)) of (X(n),Z(α)). By [41,
Theorem 2.2, Remark 2.5], this weak limit is a weak solution to (1.3).

6. Time derivative of pt(x,y). Proof of Theorem 2.6

6.1. Outline

Our goal in this section is to prove the existence of the time derivative ∂tpt (x, y), and to give estimates for this
derivative. We begin with the outline of our approach, and indicate the main difficulties.

We would like to extend the properties of p0
t (x, y) stated in Proposition 4.1 to similar properties of pt(x, y). We

have the integral representation

pt (x, y) = p0
t (x, y) +

∫ t

0

∫
Rd

p0
t−s(x, z)
s(z, y) dz ds,

which is just another form of (2.9); cf. (2.8). However, for the required extension we cannot use this representation,
because the upper bound for |∂tp

0
t−s(x, z)| has a non-integrable singularity (t − s)−1 ∨ (t − s)−1/α at the point s = t .

Therefore we rewrite the integral representation for pt(x, y) in the following way:

pt (x, y) = p0
t (x, y) +

∫ t/2

0

∫
Rd

p0
t−s(x, z)
s(z, y) dz ds +

∫ t/2

0

∫
Rd

p0
s (x, z)
t−s(z, y) dz ds. (6.1)

Using this representation, we avoid the annoying singularities related to p0
t (x, y), but instead we have to establish the

differential properties of 
 with respect to the time variable. For this we proceed in the way similar to that used in
Section 3.2: first we establish the required properties for 	, then for its convolutions, and finally for 
 . The minor
difficulty which arises is that in case C the function b(x) is not supposed to be from the class C1

b(Rd), and therefore
	t(x, y) is not continuously differentiable in t . This difficulty is of completely technical nature, and is resolved by
choosing a suitable formulation for differentiability property of 	t(x, y) and its convolutions. �

6.2. Time derivatives of 	, 	�k and 
 . Proof of the convergence in (4.21) and (4.22)

Consider first the following “smooth” case.

Lemma 6.1. Assume that either one of cases A or B of Theorem 2.1 holds true, or case C of Theorem 2.1 holds true
with an additional assumption b ∈ C1

b(Rd). Then the statements below hold true.

1. Function 	t(x, y) defined by (2.5) possesses the derivative ∂t	t (x, y), which is continuous on (0,∞) ×R
d ×R

d .
2. For any κ ∈ (0, η ∧ α) and T > 0, the derivative ∂t	t (x, y) possesses the bound

∣∣∂t	t (x, y)
∣∣ ≤ C

(
t−1 ∨ t−1/α

)(
t−1+κ/αH

(κ)
t + t−1+δH

(0)
t (x, y)

)
, t ∈ (0, T ], x, y ∈ R

d . (6.2)

Proof. We give the calculations for the case C only; the other cases are similar and simpler. Statement 1 follows
directly from the explicit formula (3.20). To prove statement 2 we estimate separately the derivatives of 	1

t (x, y),
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	2
t (x, y) in (3.20). We have

∣∣∂t	
1
t (x, y)

∣∣ ≤ C
∣∣a(x) − a(y)

∣∣{ 1

td/α+2

∣∣∣∣(L(α)g(α)
)( θt (y) − x

t1/αa1/α(y)

)∣∣∣∣
+ 1

td/α+1+1/α

∣∣∣∣(∇L(α)g(α)
)( θt (y) − x

t1/αa1/α(y)

)∣∣∣∣
+ 1

td/α+2

∣∣∣∣(∇L(α)g(α)
)( θt (y) − x

t1/αa1/α(y)

)∣∣∣∣
∣∣∣∣θt (y) − x

t1/α

∣∣∣∣
}
,

because ∂t θt (y) = −b(θt (y)), which is bounded. Applying (3.21) with κ ∈ (0, η ∧ α), we get by (3.9), (3.10), and
(3.3)–(3.5) the estimates

∣∣∂t	
1
t (x, y)

∣∣ ≤ C
∣∣a(y) − a(x)

∣∣( 1

td/α+2
+ 1

td/α+1+1/α

)
g(α)

(
θt (y) − x

t1/αa1/α(y)

)

≤ C
(
t−2 + t−1−1/α

)(
tκ/αH

(κ)
t (x, y) + tκH

(0)
t (x, y)

)
≤ C

(
t−1 ∨ t−1/α

)(
t−1+κ/αH

(κ)
t (x, y) + t−1+κH

(0)
t (x, y)

)
.

Similarly,

∣∣∂t	
2
t (x, y)

∣∣ ≤ Ct−d/α−1/α

∣∣∣∣(∇g(α)
)( θt (y) − x

t1/αa1/α(y)

)∣∣∣∣
+ Ct−d/α−1/α−1

∣∣b(
θt (y)

) − b(x)
∣∣∣∣∣∣(∇g(α)

)( θt (y) − x

t1/αa1/α(y)

)∣∣∣∣
+ Ct−d/α−1/α−1

∣∣b(
θt (y)

) − b(x)
∣∣∣∣∣∣(∇2g(α)

)( θt (y) − x

t1/αa1/α(y)

)∣∣∣∣
∣∣∣∣θt (y) − x

t1/α

∣∣∣∣
+ Ct−d/α−2/α

∣∣b(
θt (y)

) − b(x)
∣∣∣∣∣∣(∇2g(α)

)( θt (y) − x

t1/αa1/α(y)

)∣∣∣∣,
where we have used that ∇b and ∂t θt (y) are bounded. Therefore, using the Lipschitz condition for b and (3.7), (3.8),
we can write a shorter (and less precise) estimate∣∣∂t	

2
t (x, y)

∣∣ ≤ C
(
t−1 ∨ t−1/α

)
H

(0)
t (x, y), t ∈ (0, T ], x, y ∈ R

d,

which combined with the estimate for 	1
t (x, y) completes the proof. �

Lemma 6.2. Under the condition of Lemma 6.1, the following statements hold true.

1. The functions 	
�k
t (x, y) and 
t(x, y), defined by (2.5) have derivatives

∂t	
�k
t (x, y), ∂t
t (x, y), t > 0, x, y ∈R

d,

continuous on (0,∞) ×R
d ×R

d .
2. For any κ ∈ (0, η ∧ α) and T > 0 there exist constants C3,C4 and C5 such that

∣∣∂t	
�k
t (x, y)

∣∣ ≤ C3C
k
4

�(kζ )

(
t−1 ∨ t−1/α

)
t−1+(k−1)ζ

(
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

)
, (6.3)

∣∣∂t
t (x, y)
∣∣ ≤ C5

(
t−1 ∨ t−1/α

)(
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

)
, (6.4)

for all t ∈ (0, T ], x, y ∈R
d .
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Proof. Since the proof is similar to that of Lemma 3.2, we only sketch the argument. Let C1,C2 be that same as in
(3.35) (see also (3.27)). We show that (6.3) holds true with

C3 = C�(ζ )

C4
∨ CC1

C	,T

∨ C1

�(ζ )
, C4 = 9

(
2 ∨ 21/α

)
(T ∨ 1)C	,T CH,T �(ζ ),

where the constant C > 0 is the one from (6.2).
Split

	
�(k+1)
t (x, y) =

∫ t/2

0

∫
Rd

	
�k
t−s(x, z)	s(z, y) dz ds +

∫ t/2

0

∫
Rd

	�k
s (x, z)	t−s(z, y) dz ds. (6.5)

By induction, it can be shown that each 	
�k
t (x, y) is continuously differentiable in t , and

∂t	
�(k+1)
t (x, y) =

∫ t/2

0

∫
Rd

(
∂t	

�k
)
t−s

(x, z)	s(z, y) dz ds +
∫ t/2

0

∫
Rd

	�k
s (x, z)(∂t	)t−s(z, y) dz ds

+
∫
Rd

	
�k
t/2(x, z)	t/2(z, y) dz. (6.6)

Observe that

(t − s)−1 ∨ (t − s)−1/α ≤ (
2 ∨ 21/α

)(
t−1 ∨ t−1/α

)
, s ∈ (0, t/2).

Using this inequality and pulling out from the integrals the term (2 ∨ 21/α)(t−1 ∨ t−1/α), we get by the induction
assumption

∣∣∣∣
∫ t/2

0

∫
Rd

(
∂t	

�k
)
t−s

(x, z)	s(z, y) dz ds

∣∣∣∣
≤ C3C

k
4C	,T (2 ∨ 21/α)

�(ζk)

(
t−1 ∨ t−1/α

)

×
∫ t

0

∫
Rd

(t − s)−1+(k−1)ζ
(
(t − s)κ/αH

(κ)
t−s(x, z) + (t − s)δH

(0)
t−s(x, z)

)
× (

sκ/αH(κ)
s (z, y) + sδH (0)

s (z, y)
)
dzds

≤ 3(T ∨ 1)C3C
k
4C	,T CH,T (2 ∨ 21/α)

�(ζk)

(
t−1 ∨ t−1/α

)
B(ζ k, ζ )t−1+kζ

(
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

)

= 3(T ∨ 1)C3C
k
4C	,T CH,T (2 ∨ 21/α)�(ζ )

�(ζ(k + 1))

(
t−1 ∨ t−1/α

)
t−1+kζ

(
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

)

≤ C3C
k+1
4

3�(ζ(k + 1))

(
t−1 ∨ t−1/α

)
t−1+kζ

(
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

)
.

In the same fashion, it can be shown that

∣∣∣∣
∫ t/2

0

∫
Rd

	�k
s (x, z)(∂t	)t−s(z, y) dz ds

∣∣∣∣
≤ C3C

k+1
4

3�((k + 1)ζ )

(
t−1 ∨ t−1/α

)
t−1+kζ

(
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

)
.
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For the third term we have by (3.35)∣∣∣∣
∫
Rd

	
�k
t/2(x, z)	t/2(z, y) dz

∣∣∣∣
≤ C1C

k
2C	,T CH,T

�(kζ )

(
t

2

)−1+(k−1)ζ

×
{(

2

(
t

2

)κ/α+δ

+
(

t

2

)2κ/α)
H

(κ)
t (x, y) +

(
t

2

)2δ

H
(0)
t (x, y)

}

≤ 3(T ∨ 1)C1C	,T CH,T Ck
2

�(kζ )
t−1+kζ 21−ζ

(2ε)kζ

{
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

}
.

From the inequality uζ ≤ e(1−ε)u, u > 0, ε ∈ (0,1), we get the estimate

�
(
(k + 1)ζ

) =
∫ ∞

0
e−uu(k+1)ζ−1 du ≤ ε−kζ �(ζk).

Without loss of generality we assume that ε > 1/2; then (2ε)−ζk ≤ 1. Therefore, we arrive at∣∣∣∣
∫
Rd

	
�k
t/2(x, z)	t/2(z, y) dz

∣∣∣∣ ≤ C1C
k+1
4

3�(ζ )�((k + 1)ζ )
t−1+kζ

{
tκ/αH

(κ)
t (x, y) + tδH

(0)
t (x, y)

}
.

Adding the obtained estimate, we get (6.3) with k + 1 instead of k.
In addition, for fixed y ∈ R

d each term in the sum has a derivative in t , continuous in (t, x) ∈ (0, T ] ×R
d , and by

(6.3) the series for the derivative is also uniformly convergent. Thus, 
 has a derivative in t , which is continuous with
respect to (t, x) ∈ (0,∞) ×R

d and satisfies (6.4). �

In the above proof, in the case C we differentiate in t the term

b
(
θt (y)

)
in the expression for 	2

t (x, y). If b does not belong to C1, this term may not be continuously differentiable. Never-
theless, it is possible to show that the above result extends in a certain sense to the case when b is only assumed to be
Lipschitz continuous.

Lemma 6.3. In case C of Theorem 2.1, the following statements hold true.

1. There exists a set ϒ ⊂ (0,∞) × R
d of zero Lebesgue measure such that the functions 	

�k
t (x, y), k ≥ 1, and


t(x, y) are differentiable in t for every x ∈ R
d and (t, y) /∈ ϒ .

2. For every (t, y) /∈ ϒ , the time derivatives ∂t	
�k
t (x, y), k ≥ 1, and ∂t
t (x, y) are continuous in x ∈ R

d and satisfy
(6.3), (6.4).

Proof. Recall that by the Rademacher theorem (cf. [13, Theorem VII.23.2]) the Lipschitz continuous function b has a
gradient a.e. with respect to the Lebesgue measure on R

d . Denote by ϒb the exceptional set of zero Lebesgue measure,
such that b is differentiable at every point outside ϒb. Since θt is a diffeomorphism of Rd (see Theorem I.2.3 and the
comment in Chapter I, Section 5 from [11]), the set ϒt,b = {y : θt (y) ∈ ϒb} is again of zero Lebesgue measure. Since
∂t θt (y) = −b(θt (y)), the derivative ∂tb(θt (y)) is well defined for every y ∈ ϒt,b. This derivative is given by

∂tb
(
θt (y)

) = −
d∑

j=1

∂j b
(
θt (y)

)
bj

(
θt (y)

)
,

where the partial derivatives ∂j b are now well defined on ϒb and bounded, because b is Lipschitz continuous. The
term b(θt (y)) comes in the expression for 	 in a multiplicative way, and all other terms have derivatives in t , and are
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continuous in (t, x, y). Hence, repeating the calculations from the proof of Lemma 6.1, we get the (part of) required
statements for 	, with the exceptional set

ϒ1 = {
(t, y) : y ∈ ϒt,b

}
.

Further, it is easy to get by induction the same statements for 	�k, k ≥ 2, with the exceptional set

ϒ = ϒ1 ∪
{
(0,∞) ×

{
y :

∫ ∞

0
1y∈ϒs,b

ds > 0

}}
.

Indeed, by (6.5)

	
�(k+1)
t+�t (x, y) − 	

�(k+1)
t (x, y)

�t
=

∫ t/2

0

∫
Rd

	
�k
t+�t−s(x, z) − 	

�k
t−s(x, z)

�t
	s(z, y) dz ds

+ 1

�t

∫ (t+�t)/2

t/2

∫
Rd

	
�k
t+�t−s(x, z)	s(z, y) dz ds

+
∫ t/2

0

∫
Rd

	�k
s (x, z)

	t+�t−s (z, y) − 	t−s(z, y)

�t
dz ds

+ 1

�t

∫ (t+�t)/2

t/2

∫
Rd

	�k
s (x, z)	t+�t−s(z, y) dz ds.

Observe that if (t, y) /∈ ϒ then the respective ratios under the first and the third integrals converge ds-a.e. to the deriva-
tives (∂t	

�k)t−s(x, z) and ∂t	t−s(z, y), and the functions 	
�k
t+�t−s(x, z) and 	t+�t−s(z, y) converge, respectively,

to 	
�k
t−s(x, z) and 	t−s(z, y). Then the convergence of the integrals follows from dominated convergence theorem and

estimates (6.3) and (3.35). Hence, the derivative ∂t	
�(k+1)
t (x, y) exists and admits representation (6.6). The bound

(6.3) for it follows by induction. Its continuity in x also follows by induction and the dominated convergence theorem.
Similarly, one can obtain the required statement for 
 . Recall that 
t(x, y) is given by the (uniformly convergent)

series, and for each term both its differentiability in t and the bound (6.3) are proved for (t, y) /∈ ϒ . Then by the
dominated convergence theorem we get the same properties for the whole sum. To get the continuity with respect to
x, we again use the dominated convergence theorem. �

The estimates on the derivatives we just obtained allow us to verify easily assertions (4.21), (4.22), which play the
crucial role in the proofs of Theorem 2.3 and Proposition 2.1.

Lemma 6.4.

1. For any f ∈ C∞(Rd),

‖∂tPt,εf − ∂tPtf ‖∞ → 0, ε → 0,

uniformly on compact subsets of (0,∞). Moreover, ∂tPtf (x) = ∫
Rd ∂tpt (x, y)f (y) dy.

2. Under the assumptions of Proposition 2.1,

∂tpt,ε(x, y) → ∂tpt (x, y) as ε → 0,

uniformly on compact subsets of (0,∞) ×R
d ×R

d ;

Proof. The proofs of both statements rely on decomposition (6.1). We prove the first statement; the proof of the
second statement is completely similar.
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Using (6.1) we have

∂t

∫
Rd

pt,ε(x, y)f (y) dy =
∫
Rd

∂tpt,ε(x, y)f (y) dy

=
∫
Rd

∂tp
0
t+ε(x, y)f (y) dy

+
∫ t/2

0

∫
Rd

∫
Rd

(
∂tp

0)
t−s+ε

(x, z)
s(z, y)f (y) dz dy ds

+
∫ t/2

0

∫
Rd

∫
Rd

p0
s+ε(x, z)(∂t
)t−s(z, y)f (y) dz dy ds

+
∫
Rd

∫
Rd

p0
t/2+ε(x, z)
t/2(z, y)f (y) dz dy. (6.7)

Note that for every positive t0 < t1

p0
t+ε(x, y) → p0

t (x, y), ∂tp
0
t+ε(x, y) → ∂tp

0
t (x, y), ε → 0,

uniformly in t ∈ [t0, t1], x, y ∈R
d . Now the required convergence follows from (6.7) and the bounds for p0, 
 , ∂tp

0,
∂t
 obtained above. �

6.3. Completion of the proof of Theorem 2.6

Now we can finalize the proof of Theorem 2.6. Again, we consider only the most cumbersome case C with b being
Lipschitz continuous.

By representation (6.1), the first two statements of the theorem follow from the statements given above on time
derivatives of p0

t (x, y) and 
t(x, y); the proofs are completely analogous to those of Lemma 6.3, and therefore are
omitted. To prove statement 3, note that the set ϒ constructed in Lemma 6.3 is such that for every fixed t > 0 the set
{y : (t, y) ∈ ϒ} has zero Lebesgue measure. Together with the bounds for ∂tpt (x, y) from statement 2, this makes it
possible to use the dominated convergence theorem and prove that for given t > 0 and f ∈ C∞(Rd)

Pt+�t f (x) − Ptf (x)

�t
→

∫
Rd

∂tpt (x, y)f (y) dy, �t → 0,

uniformly in x ∈ R
d , which gives statement 3. �

Remark 6.1. In the above proof of Theorem 2.6, which is based on (6.1) and the subsequent parametrix-type iteration
of convolutions, we are strongly motivated by the idea used in the proof of Theorem 3.1 in [37]. According to this
idea, we decompose the �-convolution in two parts in such a way, that after such a decomposition the time derivative
is applied to the “least singular” function under the integral, as it was done in (6.1)–(6.6). Unfortunately, we cannot
proceed in the same way with the derivative ∂x unless p0

t (x, y) depends on t and x − y only. It seems that in this
place in [37] there is a mistake hidden in the calculations, because in this part of the proof the respective (space)
convolutions are treated as if they only depend on the difference of space arguments, but in fact their structure is more
complicated. Therefore we do not use the above argument from [37] for the derivative ∂x , and develop another way to
justify the whole method.

7. Proof of Theorem 2.5

Since the function Vt(x) (cf. (2.17)) is bounded, the upper bound in (2.22) follows just by the definition of p
(0)
t (x, y)

and (2.4).
Let us prove the lower bound. First we observe that if we manage to prove the lower bound for some T > 0, then we

actually can do that for all T > 0. This follows directly from the super-convolution property of the kernel H
(0)
t (x, y)
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at the right hand side of (2.22) and the Chapman–Kolmogorov identity (that is, the convolution identity) for pt(x, y)

at the left hand side.
Note that for |ω(t, y) − x| ≤ t1/α we have by (3.37)∣∣rt (x, y)

∣∣ ≤ C
(
tκ/α + tδ

)
H

(0)
t (x, y). (7.1)

Therefore, by (2.4) and (7.1) we get

pt (x, y) 
 t−d/α, t ∈ (0, T ], ∣∣ω(t, y) − x
∣∣ ≤ t1/α. (7.2)

Further, by (2.16) and (2.17) there exists ρ ∈ (0,1) small, such that if t1/α ≤ |ω(t, y) − x| ≤ ρ then∣∣rt (x, y)
∣∣ ≤ 2−1p

(0)
t (x, y). (7.3)

This implies

pt (x, y) ≥ 2−1p
(0)
t (x, y), t ∈ (0, T ], t1/α ≤ ∣∣ω(t, y) − x

∣∣ ≤ ρ. (7.4)

Let us show that there exists c > 0 such that

pt (x, y) ≥ ct

|ω(t, y) − x|d+α
, t ∈ (0, T ], ∣∣ω(t, y) − x

∣∣ > ρ. (7.5)

Consider the set

D = {
(s, z) : ∣∣ω(t − s, y) − z

∣∣ < t1/α
} ⊂ [0,∞) ×R

d ,

and denote

τ = inf
{
s : (s,Xs) ∈ D

}
.

If τ ≤ t/2, then we have |ω(t − τ, y) − Xτ | ≤ t1/α , t − τ > t/2, hence by the strong Markov property and (7.2) we
have

pt (x, y) ≥ Ex

[
pt−τ (Xτ , y)1τ≤t/2

] ≥ ct−d/α
Px(τ ≤ t/2).

To estimate Px(τ ≤ t/2), we introduce another stopping time σ in the following way. Up to now, T > 0 was fixed but
arbitrary. Now we take another T1 > 0 small enough, so that

t1/α ≤ ρ

3
,

∣∣ω(t − s, y) − ω(t, y)
∣∣ <

ρ

3
, 0 ≤ s ≤ t ≤ T1, y ∈ R

d .

Here in the second inequality we have used that

∂tω(t, y) =

⎧⎪⎨
⎪⎩

0, in case A,

−b(y), in case B,

−b(θt (y)), in case C,

(7.6)

and thus ∂tω(t, y) is bounded. Define

σ = inf

{
s : |Xs − x| ≥ ρ

3

}
∧

(
t

2

)
,

then σ ≤ t/2, and if t ≤ T1 for every s < σ we have

∣∣ω(t, y) − x
∣∣ ≤ ∣∣ω(t − s, y) − Xs

∣∣ + |Xs − x| + ∣∣ω(t, y) − ω(t − s, y)
∣∣ <

∣∣ω(t − s, y) − Xs

∣∣ + 2ρ

3
. (7.7)
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Since |ω(t, y) − x| > ρ, we have |ω(t − s, y) − Xs | > ρ/3 > t1/α , i.e. (s,Xs) /∈ D. Hence

{τ ≤ t/2} ⊃ {
(σ,Xσ ) ∈ D

}
. (7.8)

Take f ∈ C2∞(Rd) such that f (z) ∈ [0,1],

f (z) =
{

1, |z| ≤ 2−1t−1/α,

0, |z| > t−1/α,

and for a fixed t ≤ T1, y ∈ R
d consider the function F(s, z) = f (ω(t, y) − z). Then by the Itô formula and Doob’s

optional sampling theorem applied to the bounded stopping time σ , we have

ExF (σ,Xσ ) = F(0, x) +Ex

∫ σ

0

(
LxF(s,Xs) + F ′

s(s,Xs)
)
ds,

where

F ′
s(s,Xs) = (∇f

(
ω(t − s, y)

)
, ∂sω(t − s, y)

)
,

see (7.6) for the formula for ∂tω(t, y). Now we recall that

(i) F ≤ 1, and F(σ,Xσ ) = 0 if (σ,Xσ ) /∈ D;
(ii) for every s < σ , |Xσ − x| < ρ/3, and therefore by the calculation (7.7) we have |ω(t − s, y) − Xs | > t1/α , which

yields that

F(s,Xs) = 0, ∇xF (s,Xs) = 0, F ′
s(s,Xs) = 0.

Hence by (7.8) we have

Px(τ ≤ t/2) ≥ Ex

∫ σ

0
a(Xs)L

(α)
x F (s,Xs) ds

= Ex

[∫ σ

0
a(Xs)

∫
|ω(t−s,y)−(Xs+u)|≤t1/α

cα

|u|d+α
duds

]

≥ cEx

∫ σ

0

td/α

|ω(t − s, y) − Xs |d+α
ds.

Observe that by (7.7) |ω(t − s, y) − Xs | ≥ 3−1|ω(t, y) − x|, hence

Px(τ ≤ t/2) ≥ Ctd/α+1

|ω(t, y) − x|d+α
Px

(
σ >

t

4

)
.

It is easy to verify that by choosing T1 small enough we can ensure that Px(σ > t/4) > 1/2 for t < T1, x ∈ R
d .

Summarizing all the calculations above we get the required bound (7.5).

Appendix A: Proof of Proposition 3.2

Estimate (3.6) for the α-stable transition probability density is well known, see, for example, [49–52,56]; see also [57]
for the asymptotic behaviour of an α-stable distribution density in the one-dimensional case.

Inequality (3.7) was proved in [5, Lemma 5]. The proof therein is based on the subordination argument, i.e. on the
representation of Z(α) as a Brownian motion with a time change performed by an independent one-sided α/2-stable
process. The same approach can be applied to the proof of (3.8); since the proof follows literally the proof of (3.7) in
[5, Lemma 5], we omit the details.
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Let us show (3.9) and (3.10). Recall that g
(α)
t (y − x) = 1

td/α g(α)(
y−x

t1/α ) is the transition probability density of Z(α),
and therefore

L(α)g
(α)
t (x) = ∂tg

(α)
t (x) = − d

αtd/α+1
g(α)

(
x

t1/α

)
− 1

αt(d+1)/α+1

(
x,∇g(α)

(
x

t1/α

))
. (A.1)

Now (3.9) follows from (3.6), (3.7) and (A.1) with t = 1. Differentiating (A.1) in x, taking t = 1, and applying (3.7)
and (3.8), we get (3.10). �

Appendix B: Proofs of Propositions 3.3 and 3.4

Proof of Proposition 3.3. We prove the sub-convolution property, only: the proof of the super-convolution property
is completely analogous and is omitted.

Recall that H
(λ)
t (x, y) is defined in (3.22), where ω(t, y) is given in (2.15) for each of the cases A–C. In what

follows, we fix λ ∈ [0, α), and omit it in the notation, i.e. write Ht(x, y) instead of H
(λ)
t (x, y). We keep the same

notation Ht(x, y) for each of the cases A–C, but have in mind, that it is defined according to (2.15).
Define

Kt(x) :=
((∣∣∣∣ x

t1/α

∣∣∣∣
λ

∨ 1

)
∧ t−λ/α

)
1

td/α
G(α)

(
x

t1/α

)
. (B.1)

Case A. Note that in case A the kernel Ht(x, y) depends on the difference y − x only, which immediately gives
(3.33). Let us show the sub-convolution property.

Note that

Kt(x) ≤ 1

td/α
G(α−λ)

(
x

t1/α

)
, (B.2)

and

Kt(x) = 1

td/α
G(α−λ)

(
x

t1/α

)
if |x| ≤ 1. (B.3)

On the other hand, by (3.6) we have 1
td/α G(α−λ)( x

t1/α ) 
 g
(α−λ)

t1−λ/α (x). Since the function g
(α−λ)
t (y − x) is the transi-

tion probability density of an (α − λ)-stable process Z(α−λ), it possesses the convolution property; see Remark 3.1.
Therefore, if |x| ≤ 1, we have

(Kt−s ∗ Ks)(x) ≤ CK(t−s)1−λ/α+s1−λ/α (x)

with the constant C > 0 depending on α,λ, and d only. Observe that

t1−λ/α ≤ (t − s)1−λ/α + s1−λ/α ≤ 2t1−λ/α, 0 ≤ s ≤ t.

Thus, it follows from the explicit representation for G(α−λ)(x), (3.3) and (B.3), that

(Kt−s ∗ Ks)(x) ≤ CKt(x), |x| ≤ 1.

Consider now the case |x| > 1. Split

(Kt−s ∗ Ks)(x) ≤
(∫

|z|≥|x|/2
+

∫
|x−z|≥|x|/2

)
Kt−s(z)Ks(x − z) dz.

Note that Kt(x) is a monotone function of |x|. In addition, it depends on |x| in a piece-wise power-type way, and
therefore possesses the same property formulated in statement 1 of Proposition 3.1 for the function G(λ). Then

Kt−s(z) ≤ Kt−s(x/2) ≤ cKt−s(x), |z| ≥ |x|/2.
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For |x| ≥ 1 we have Kt(x) = t1−λ/α|x|−d−α , and thus

Kt−s(x) = (t − s)1−λ/α|x|−d−α ≤ (t − s)1−λ/αt−1+λ/αKt (x) ≤ Kt(x), |x| ≥ 1.

Then for |x| ≥ 1∫
|z|≥|x|/2

Kt−s(z)Ks(y − z) dz ≤ cKt (x)

∫
|z|≥|x|/2

Ks(y − z) dz

≤ cKt (x)

∫
Rd

Ks

(
z′)dz′ ≤ CKt(x),

where in the last inequality we used (B.2) and (3.36). Similarly,∫
|y−z|≥|x|/2

Kt−s(z)Ks(y − z) dz ≤ CKt(x), |x| ≥ 1.

Summarizing the estimates proved above, we derive the required sub-convolution property for Ht(x, y).
Case B. Denote for q ∈ [0,1]

K
(q)
t (x, y) = Kt

(
y − qb(x)t − (1 − q)b(y)t − x

)
,

where Kt(x) is defined in (B.1). Observe that now Ht(x, y) = K
(0)
t (x, y).

Let us prove the following statement: For a given T > 0 there exist c,C such that for every q ∈ [0,1]

cK
(q)
t (x, y) ≤ Kt

(
y − tb(y) − x

) ≤ CK
(q)
t (x, y), t ∈ (0, T ]. (B.4)

We prove only the first inequality, the proof of the second one is completely analogous. Consider two cases: |x − y| >
2Bt and |x − y| ≤ 2Bt , where B = supx |b(x)|. In the first case, we have

∣∣y − x − b(y)t
∣∣ ≥ 1

2
|y − x|, ∣∣y − x − qb(x)t − (1 − q)b(y)t

∣∣ ≤ 3

2
|y − x|. (B.5)

Then by the analogue of (3.3) for Kt(x) we get the first inequality in (B.4).
Consider the case |x − y| ≤ 2Bt . Then we have∣∣b(x) − b(y)

∣∣ ≤ ctγ . (B.6)

Since in case B we have 1 + γ > 1/α, by the triangle inequality we get

∣∣∣∣y − z − tb(y)

t1/α

∣∣∣∣
λ

∨ 1 ≤ C

(∣∣∣∣y − z − tb(y) − qt (b(x) − b(y))

t1/α

∣∣∣∣
λ

∨ 1

)
+ C

≤ C

(∣∣∣∣y − z − tb(y) − qt (b(x) − b(y))

t1/α

∣∣∣∣
λ

∨ 1

)
, t ≤ T .

Note that for any C ≥ 1, A ≥ 0

(CA) ∨ t−1/α ≤ C
(
A ∨ t−1/α

)
,

hence we can finalize the above estimate in the following way:

K
(0)
t (x, y)

K
(q)
t (x, y)

≤ C
g(α−λ)(v)

g(α−λ)(u)
,
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where

u = y − x − b(y)t

t1/α
, v = y − x − qb(x)t − (1 − q)b(y)t

t1/α
.

Note that the logarithmic derivative of g(α−λ)(x) is bounded; see (3.6), (3.7). Then

g(α−λ)(v)

g(α−λ)(u)
≤ ec|u−v|, u, v ∈ R

d, (B.7)

which implies

K
(0)
t (x, y)

K
(q)
t (x, y)

≤ C exp
[
cq

∣∣b(x) − b(y)
∣∣t−1/α+1]. (B.8)

Since for |x − y| ≤ 2Bt we have (B.6), we can estimate the right-hand side of (B.8) by C exp[ct−1/α+1+γ ], which is
bounded for t ∈ [0, T ] since α > (1 + γ )−1. This completes the proof of (B.4).

Now we can finalize the proof in case B. By (B.4) with q = 1,∫
Rd

Ht−s(x, z)Hs(z, y) dz =
∫
Rd

K
(0)
t−s(x, z)K(0)

s (z, y) dz

≤ C

∫
Rd

K
(1)
t−s(x, z)K(0)

s (z, y) dz = C

∫
Rd

Kt−s

(
z − x′)Ks

(
y′ − z

)
dz, (B.9)

where

x′ = x + (t − s)b(x), y′ = y − sb(y).

The sub-convolution property of the kernel Kt(y − x) was actually shown in the proof of case A, hence∫
Rd

Ht−s(x, z)Hs(z, y) dz ≤ CKt

(
y′ − x′) = CK

(1−s/t)
t (x, y). (B.10)

Applying (B.4) with q = 1 − s/t , we complete the proof of the required sub-convolution property for Ht(x, y) in
case B. Finally, applying (B.4) with q = 1 we get estimates (3.33).

Case C. The scheme of the proof in this case is similar to that one in the case B. Denote for q ∈ [0,1]
K̃

(q)
t (x, y) = Kt

(
χqt

(
θt (y)

) − χqt (x)
)
.

Observe that K̃
(0)
t (x, y) ≡ Kt(θt (y) − x) is equal to the kernel Ht(x, y) in the case C. As in the case B, let us show

that

cK̃(q)(x, y) ≤ Kt

(
θt (y) − x

) ≤ CK̃(q)(x, y), t ∈ (0, T ]. (B.11)

Suppose first that b ∈ C1
b(Rd). In this case, every χt (x) is differentiable in x, and the derivative Dt(x) := ∇xχt (x)

satisfies the following linear ODE (cf. [11, Chapter I, (7.12)–(7.14)])

d

dt
Dt (x) = B(t, x)Dt (x), B(t, x) := (∇b)

(
χt (x)

)
.

In addition, D0(x) is the identity matrix. Similar relations hold true for the inverse flow, since θt is the solution to
(2.13), which differs from (2.12) by the sign “−.” Then ∇xθt (x) = D−1

t (x), where D−1
t (x) is the inverse matrix of

Dt(x), and

d

dt
D−1

t (x) = B̃(t, x)D−1
t (x), B̃(t, x) := −(∇b)

(
θt (x)

)
.
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Hence, we have the following bounds for the matrix norms of Dt(x) and D−1
t (x):

∥∥Dt(x)
∥∥ ≤ Cb,T ,

∥∥(
Dt(x)

)−1∥∥ ≤ Cb,T , t ∈ (0, T ]. (B.12)

Note that the constant Cb,T depends only on T and on the supremum of the matrix norm of ∇b. Using these inequal-
ities, we derive

C−1
b,T

∣∣θt (y) − x
∣∣ ≤ ∣∣χqt

(
θt (y)

) − χqt (x)
∣∣ ≤ Cb,T

∣∣θt (y) − x
∣∣, q ∈ [0,1], t ∈ (0, T ].

Then since θt (y) − x = (χqt (θt (y)) − χqt (x))|q=0, we derive (B.11) by the property of Kt (cf. the explanation in the
case A). Note that

θs(y) − χt−s(x) = χt−s

(
θt (y)

) − χt−s(x) = χ(1−s/t)t

(
θt (y)

) − χ(1−s/t)t (x).

Then we derive (B.9) and (B.10) with K̃
(q)
t−s(·, ·) instead of K

(q)
t (·, ·), with q = 0,1 and 1 − s/t , respectively, and

x′ = χt−s(x), y′ = θs(y).

Then applying finally (B.11) with q = 1 − s/t we derive the sub-convolution property of Ht(x, y). Applying (B.11)
with q = 1 we get (3.33), which finalized the proof of the proposition in case C if b ∈ C1(Rd).

To handle the Lipschitz case one can approximate b uniformly by a sequence of functions bn ∈ C1
b(Rn) in such a

way that the matrix norms of ∇bn remain uniformly bounded. �

Proof of Proposition 3.4. (a) Without loss of generality assume that f ∈ C∞(Rd) is non-negative. Then in case A
we have∫

Rd

g
(α)
t (y − x)f (y) dy =

∫
Rd

g
(α)
t (z)f (z + x)dz → 0, |x| → ∞.

In case B we have by (B.4)

∫
Rd

g
(α)
t

(
y − tb(y) − x

)
f (y)dy ≤ C

∫
Rd

g
(α)
t

(
y − tb(x) − x

)
f (y)dy

= C

∫
Rd

g
(α)
t (z)f

(
z + x + tb(x)

)
dz → 0, |x| → ∞, (B.13)

since b(·) is bounded, and f ∈ C∞(Rd).
Analogously, in case C we have

∫
Rd

g
(α)
t

(
θt (y) − x

)
f (y)dy ≤ C

∫
Rd

g
(α)
t

(
y − χt (x)

)
f (y)dy

= C

∫
Rd

g
(α)
t (z)f

(
z + χt (x)

)
dz → 0, |x| → ∞,

because |χt (x)| = |x + ∫ t

0 b(χs(x)) ds| → ∞, |x| → ∞, since the function b(·) is bounded.

(b) In case A the statement follows from the fact that g
(α)
t (y −x) is the fundamental solution to the Cauchy problem

for ∂t − L(α), in particular,

sup
x∈Rd

∣∣∣∣
∫
Rd

g
(α)
t (y − x)f (y) dy − f (x)

∣∣∣∣ → 0 as t → 0. (B.14)
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In case B we have∣∣∣∣
∫
Rd

g
(α)
t

(
y − tb(y) − x

)
f (y)dy − f (x)

∣∣∣∣
≤ C

∫
Rd

∣∣g(α)
t

(
y − tb(y) − x

) − g
(α)
t

(
y − tb(x) − x

)∣∣dy

+
∣∣∣∣
∫
Rd

g
(α)
t

(
y − x − tb(x)

)
f (y)dy − f (x)

∣∣∣∣
=: J1(t, x) + J2(t, x). (B.15)

Note that by (3.7)

∣∣g(α)
t

(
y − tb(y) − x

) − g
(α)
t

(
y − tb(x) − x

)∣∣
≤ t

∫ 1

0

∣∣∣∣ (b(y) − b(x))

t1/α

1

td/α

(∇g(α)
)(y − x − tb(x) − st (b(y) − b(x))

t1/α

)∣∣∣∣ds

≤ Ct

∫ 1

0

|y − x|γ
t1/α

1

td/α
G(α+1)

(
y − x − tb(x) − st (b(y) − b(x))

t1/α

)
ds

≤ Ct
|y − x|γ

t1/α

1

td/α
G(α+1)

(
y − x − tb(x)

t1/α

)
,

where in the last line we used that the estimate (B.4) also holds true for 1
td/α G(α+1)( ·

t1/α ) instead of Kt(·). Using the
triangle inequality, (3.4) and (3.6), we derive

∣∣g(α)
t

(
y − tb(y) − x

) − g
(α)
t

(
y − tb(x) − x

)∣∣
≤ C

(
t1+γ−1/α + t1−1/α+γ /α

)
g

(α)
t

(
y − x − tb(x)

)
.

Since in case B we assumed that α > (1 + γ )−1, we have α > 1 − γ . Thus,

sup
x

J1(t, x) ≤ C
(
t1+γ−1/α + t1−1/α+γ /α

) → 0, t → 0.

For J2(t, x) we have under the additional assumption that f ∈ C1∞(Rd)

J2(t, x) =
∣∣∣∣
∫
Rd

g
(α)
t (z)

(
f

(
z + x + tb(x)

) − f (x)
)
dy

∣∣∣∣ ≤ Ct → 0, t → 0,

uniformly in x. The general case f ∈ C∞(Rd) follows by the approximation argument. This completes the proof in
case B.

In case C the argument is similar. We split∣∣∣∣
∫
Rd

g
(α)
t

(
θt (y) − x

)
f (y)dy − f (x)

∣∣∣∣
≤ C

∫
Rd

∣∣g(α)
t

(
θt (y) − x

) − g
(α)
t

(
y − χt (x)

)∣∣dy

+
∣∣∣∣
∫
Rd

g
(α)
t

(
y − χt (x)

)
f (y)dy − f (x)

∣∣∣∣
=: J1(t, x) + J2(t, x). (B.16)
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Using (3.7), (3.6) and (B.11), we get∣∣g(α)
t

(
θt (y) − x

) − g
(α)
t

(
y − χt (x)

)∣∣
≤ t

∫ 1

0

∣∣∣∣b(χqt (θt (y))) − b(χqt (x))

t1/α

1

td/α

(∇g(α)
)(χqt (θt (y)) − χqt (x)

t1/α

)∣∣∣∣dq

≤ Ctg
(α)
t

(
y − χt (x)

)
,

which implies that supx J1(t, x) → 0 as t → 0.
For J2(t, x) we have by the same argument as in case B

J2(t, x) =
∣∣∣∣
∫
Rd

g
(α)
t (z)

(
f

(
z + χt (x)

) − f (x)
)
dy

∣∣∣∣ → 0, t → 0,

uniformly in x. This finishes the proof in case C. �
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