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Abstract. Pólya trees form a popular class of prior distributions used in Bayesian nonparametrics. For some choice of parameters,
Pólya trees are prior distributions on density functions. In this paper we carry out a frequentist analysis of the induced posterior
distributions in the density estimation model. We investigate the contraction rate of Pólya tree posterior densities in terms of the
supremum loss and study the limiting shape distribution. A nonparametric Bernstein–von Mises theorem is established, as well as
a Bayesian Donsker theorem for the posterior cumulative distribution function.

Résumé. Les arbres de Pólya constituent une classe de lois a priori très utilisée en bayésien non-paramétrique. Pour certains
choix de paramètres, les arbres de Pólya induisent des lois à densité. Nous menons une analyse fréquentiste des lois a posteriori
bayésiennes correspondantes dans le modèle d’estimation de densité. La concentration a posteriori des densités–arbre de Pólya est
étudiée en terme de la norme–sup et nous déterminons la loi a posteriori limite après renormalisation. Un théorème de Bernstein–
von Mises non-paramétrique est établi, ainsi qu’un théorème de Donsker bayésien pour la fonction de répartition a posteriori.
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1. Introduction

Pólya trees are a class of random probability distributions that are commonly used as prior distributions in the Bayesian
nonparametrics study of infinite-dimensional statistical models. The name ‘Pólya tree’ appears in works by Mauldin et
al. [34] and Lavine [30] and it has been used since then, although the object and related ones such as tail-free processes
already appear in works by Freedman [13,14], Kraft [29], and Ferguson [12]. It should be noted that the name ‘Pólya
tree’ is also used for a different object, not considered in the present work, in the literature on trees, where it refers
to a rooted unordered tree. The origin of the name in the statistical literature comes from a beautiful connection with
Pólya urns, themselves named after the 1930 article [37] by George Pólya in Annales de l’Institut Henri Poincaré. It
was indeed shown in [34] that Pólya trees are de Finetti measures of certain exchangeable sampling schemes defined
from a tree of Pólya urns.

In Bayesian nonparametric statistics, the starting point is the construction of a prior distribution, a probability mea-
sure that ‘samples at random’ the parameter to be estimated. If the parameter is itself a distribution, one needs to build
a ‘distribution on distributions.’ A popular distribution on probability measures is the Dirichlet process introduced by
Ferguson [11], see [15] for a review of its use in the statistics literature. The Dirichlet process, as we recall below, is
actually a special case of Pólya tree for certain choices of parameters. However, the resulting measure is not directly
suited for modelling a smooth object such as a density function, as draws from the Dirichlet process are discrete
almost surely. On the contrary, different choices of parameters of the Pólya tree lead to a probability measure that is
absolutely continuous with respect to Lebesgue measure, and hence admits a density. In this paper we focus on this
type of ‘density Pólya trees.’
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Let X = X(n) = (X1, . . . ,Xn) be a sample from an unknown distribution P on the interval [0,1], and suppose that
P admits a density f with respect to Lebesgue measure, denoting P = Pf . Following a Bayesian approach, we view
P as random and put an a priori distribution � on P , equal to a Pólya tree distribution. The data X1, . . . ,Xn are viewed
as, given P , i.i.d. from P . From this one forms the posterior distribution, the conditional law P |X1, . . . ,Xn, that we
denote �[· |X1, . . . ,Xn] = �[· |X]. To study the convergence of this random (it depends on the data) distribution
as n → ∞, we undertake a so-called frequentist analysis of the Bayesian procedure: we assume that the data has
actually been generated i.i.d. from a fixed distribution P0 = Pf0 , for some density f0 on [0,1], and are interested
in the convergence of the posterior �[· |X(n)] in probability under Pf0 , as n → ∞. A natural question is: does the
posterior �[· |X(n)] converge to δP0 , a Dirac mass at the ‘true’ distribution? If so, this is the so-called consistency
property of the posterior at P0. Further, what can be said about the rate of convergence, and, perhaps, the form of the
limit after rescaling?

General conditions for consistency of posterior distributions were given in Schwartz [40], and the theory was fur-
ther developed among others in [1]. For Pólya trees, posterior consistency in density estimation in the weak topology
follows from results in [31], see also [16], and consistency in the Hellinger topology was obtained in [1], whose con-
ditions where further refined in [43]. A next natural step once consistency is obtained is to investigate the convergence
rate of the posterior distribution. This has been the object of much attention in the last 15 years, with fundamental
contributions such as [17,18,41], where general sufficient conditions on model and prior are given ensuring posterior
convergence towards the true distribution at some rate.

Yet, to the best of our knowledge, there has been no study so far of posterior convergence rates when the prior
distribution is a Pólya tree. One reason may be that density Pólya trees are often perceived as relatively ‘rough’
objects: it can be shown for instance that the corresponding density has jumps at a countable number of points almost
surely. From this it could seem as if Pólya trees are just ‘smooth enough’ for consistency, not for rates. One first result
in the paper implies that for well-chosen parameters, Pólya trees are able to model smooth functions and to induce
posterior distributions with optimal convergence rates in the minimax sense for a range of Hölder regularities. Here we
will follow a multiscale approach to obtaining rates and limiting shape results, introduced in [5–7], with connections
to semiparametric functionals [8].

In the Bayesian nonparametrics literature, there has been a recent interest in Pólya trees and related constructions.
Wong and Ma [44] introduce optional Pólya trees, where the tree is cut using stopping times in a data-driven way.
The work [36] studies Rubbery Pólya trees, an extension of Pólya trees that enables some dependence in the tree
while keeping its essential properties unchanged. Quantile pyramids [24] reverse the construction of the measure by
fixing the probabilities but making the interval lengths random. As a way to ‘smooth’ Pólya trees, one can consider
mixtures, as in [2,22]. We also note that Pólya trees are particular cases of the more general class of tail-free processes,
introduced in [10,13]; mixtures of such processes were recently considered in [27].

An in-depth introduction to Pólya trees, including their construction as well as the proofs of many useful properties,
can be found in the forthcoming book by Ghosal and van der Vaart [19]. The present work directly benefited from
their exposition on the subject.

1.1. Definition

First let us introduce some notation relative to dyadic partitions. For any fixed indexes (k, l), 0 ≤ k < 2l , l ≥ 0, the
rational number r = k2−l can be written in a unique way as ε(r) := ε1(r) . . . εl(r), its finite expression of length l

in base 1/2 (note that it can end with one or more ‘0’). That is, εi ∈ {0,1} and k2−l = ∑l
i=1 εi(r)2−i . Let E :=⋃

l≥0{0,1}l ∪ {∅} be the set of finite binary sequences. We write |ε| = l if ε ∈ {0,1}l and |∅| = 0.
Let us introduce a sequence of partitions I = {(Iε)ε:|ε|=l , l ≥ 0} of the unit interval. Here we will consider regular

partitions, as defined below. This is mostly for simplicity of presentation, and other partitions, based for instance on
quantiles of a given distribution, could be considered as well. Set I∅ = [0,1) and, for any ε ∈ E such that ε = ε(l, k)

is the expression in base 1/2 of k2−l , set

Iε :=
[

k

2l
,
k + 1

2l

)
=: I l

k.

For any l ≥ 0, the collection of all such dyadic intervals is a partition of [0,1).
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Fig. 1. Indexed binary tree with levels l ≤ 2 represented. The nodes index the intervals Iε . Edges are labelled with random variables Yε .

A random probability measure P follows a Pólya tree distribution PT (A) with parameters A= {αε, ε ∈ E} on the
sequence of partitions I if there exist random variables 0 ≤ Yε ≤ 1 such that,

1. the variables Yε0 for ε ∈ E are mutually independent and Yε0 follows a Beta(αε0, αε1) distribution.
2. for any ε ∈ E , we have Yε1 = 1 − Yε0.
3. for any l ≥ 0 and ε = ε1 · · · εl ∈ {0,1}l , we have

P(Iε) =
l∏

j=1

Yε1···εj
. (1)

This construction can be visualised using a tree representation, see Figure 1: to compute the random mass that P

assigns to the subset Iε of [0,1], one follows a dyadic tree along the expression of ε: ε1, ε1ε2, . . . , ε1ε2 · · · εl = ε. The
mass P(Iε) is a product of Beta variables whose parameters depend on whether one goes ‘left’ (εj = 0) or ‘right’
(εj = 1) along the tree:

P(Iε) =
l∏

j=1;εj =0

Yε1···εj−10 ×
l∏

j=1;εj =1

(1 − Yε1···εj−10). (2)

This construction uniquely defines a random probability distribution on distributions on [0,1]. For details we refer to
Ferguson [12] and Lavine [30].

The corresponding object, the class of Pólya tree distributions, is quite flexible: as will be seen in the results
below, different behaviours of the sequence of parameters {αε} give a Pólya tree with different properties. A standard
assumption is that the parameters {αε} only depend on the depth |ε|, so that

αε = al, ∀ε : |ε| = l, (3)

for any l ≥ 1 and a sequence (al)l≥1 of positive numbers, which will be assumed henceforth.
The class of Pólya trees contains as special cases several important distributions used in Bayesian nonparametrics.

A distinguished special case is the Dirichlet process [11], which corresponds to the choice αε = 2−|ε|, or more gen-
erally MG(Iε) for some M > 0 and a given distribution function G. It can be shown that the corresponding random
probability measure is discrete almost surely and in particular does not provide a prior on densities. On the other hand,
if al goes to ∞ fast enough with l, more precisely if∑

l≥1

a−1
l < ∞ (4)

one can show, see [29] or [35], that a Pólya tree distribution on the canonical dyadic partition has a.s. a density with
respect to Lebesgue measure. As we are interested in random density priors, we shall work under that assumption.
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The reader familiar with random multifractal structures will certainly have noticed the similarity of the previous
object with random multiplicative cascades, as introduced by Mandelbrot and further studied in [28] and many others
since then. In random cascades, the variables Yε are assumed to be i.i.d., and conservative cascades are those for
which Yε1 = 1 − Yε0, as we assumed above. An important difference between (density) Pólya trees random measures
and standard cascades is that for Pólya trees the variables Yε0 along the tree are not assumed i.i.d.: they are still
independent, but their distribution may depend on the level |ε| = l in the tree: this is in fact necessary under the
assumed (4). Not only al → ∞ fast enough guarantees the existence of a density, but the faster al increases with l, the
more ‘regular’ the corresponding density. This is particularly important for the approximation ability of the prior and
the statistical properties considered in the present paper.

Despite this differences, and although we do not use properties of cascades in the present paper, one may expect that
some properties or techniques for cascades could be of interest in the study of Pólya trees. We note that, for instance,
the authors in [38] carry out a wavelet analysis of conservative cascades. In the present paper, such a multiscale
analysis of the random measure at stake will also be central, but with two important differences: the variables Yε0 are
not i.i.d. and, more importantly, we do not study the Pólya tree above in itself (we shall use it as prior distribution),
but rather the posterior distribution, so the random measure we analyse also depends on the data X1, . . . ,Xn and this
dependence is crucial for the statistical properties considered here.

1.2. Function spaces and wavelets

We briefly introduce some standard notation appearing in the statements below.
Haar basis. The Haar wavelet basis is {ϕ,ψlk,0 ≤ k < 2l , l ≥ 0}, where ϕ = 1[0,1] and, for ψ = −1(0,1/2]+1(1/2,1],

ψlk(·) = 2l/2ψ
(
2l · −k

)
, 0 ≤ k < 2l , l ≥ 0.

In this paper our interest is in density functions, that is nonnegative functions g with
∫ 1

0 gϕ = ∫ 1
0 g = 1, so that their

first Haar-coefficient is always 1. So, we will only need to consider the basis functions ψlk and will simply write
slightly informally {ψlk} for the Haar basis.

Function classes. Let L2 = L2[0,1] denote the space of square-integrable functions on [0,1] relative to Lebesgue
measure equipped with the ‖ · ‖2-norm. For f,g ∈ L2, denote 〈f,g〉2 = ∫ 1

0 fg. Let L∞ = L∞[0,1] denote the space
of all measurable functions on [0,1] that are bounded up to a set of Lebesgue-measure 0, equipped with the (essential)
supremum norm ‖ · ‖∞.

The class Cα[0,1], α ∈ (0,1], of Hölder functions on the interval [0,1] is the set of functions g on [0,1] such
that supx �=y∈[0,1] |g(x) − g(y)|/|x − y|α is finite. Let us recall that if a function g belongs to Cα , α ∈ (0,1], then the
sequence of its Haar-wavelet coefficients 〈g,ψlk〉2 satisfies

sup
0≤k<2l ,l≥0

2l( 1
2 +α)

∣∣〈g,ψlk〉2
∣∣ < ∞. (5)

For a given α > 0, and n ≥ 1, define

ε∗
n,α =

(
logn

n

) α
2α+1

.

This is the minimax rate for estimating a density function in a ball of α-Hölder functions, when the supremum-norm
is considered as a loss, see [23] and [26].

1.3. Outline

In Section 2, we state our main results. Posterior rates of convergence for the density f are considered first. Next, a
Donsker-type theorem is established for the cumulative distribution function, as well as a more general nonparametric
Bernstein–von Mises theorem. Section 3 gathers the proofs of Theorems 1 and 3. The second proof uses some inter-
mediate results obtained in the first one. Section 3.3 gives some technical results used in the proofs, including two
lemmas on Beta variables that are of independent interest.
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2. Main results

2.1. Posterior convergence rates

Our first result shows that, in the problem of density estimation, if a Pólya tree is used as a prior distribution on
the density, the optimal minimax convergence rate with respect to the supremum norm is attained by the posterior
distribution, provided the parameters of the tree are well chosen. Note that the choice (6) in the Theorem satisfies the
summability condition

∑
l a

−1
l in (4) above, which ensures that the prior distribution has a density. The notation � is

used for the distribution on densities induced by the considered Pólya tree.
We also note that the ‖·‖∞-norm in the result is, as defined above, the essential supremum with respect to Lebesgue

measure on [0,1]: the proof of the result is based on a Haar-wavelet analysis of the posterior density f , which identifies
f Lebesgue-almost everywhere. Let, for any reals a, b, denote a ∧ b = min(a, b) and a ∨ b = max(a, b).

Theorem 1. Let X(n) = (X1, . . . ,Xn) be i.i.d. from law P0 with density f0. Let f0 belong to Cα[0,1], for α ∈ (0,1]
and suppose f0 is bounded away from 0 on [0,1]. Let � be the prior on densities generated by a Pólya tree random
measure with respect to the canonical dyadic partition of [0,1] with parameters A = {αε, ε ∈ E} chosen as αε =
a|ε| ∨ 8 for any ε ∈ E , with

al = l22lα, l ≥ 0. (6)

Then as n → ∞, for any Mn → ∞, it holds

En
f0

�
[
f : ‖f − f0‖∞ ≤ Mnε

∗
n,α |X(n)

] → 1.

This result implies that for the considered prior, most of the mass of the posterior distribution concentrates in
a ‖ · ‖∞ ball around f0 of radius the minimax rate of convergence. It immediately implies rates for all Lq -norms,
1 ≤ q < ∞, that are minimax optimal up to a logarithmic factor. The choice of parameters (6) realises an adequate
‘bias-variance’ trade-off for which the optimal minimax rate ε∗

n,α is attained.
Theorem 1 assumes that logf0 is bounded. This is for simplicity of presentation and could be improved, though

it would not add to the ideas we want to expose here: we preferred to keep a simple condition to make proofs more
transparent.

We also have the following result.

Proposition 1. Under the same assumptions as in Theorem 1, let � a Pólya tree prior � defined in the same way
except that one now sets

al = l22lδ, l ≥ 0, (7)

for some δ ∈ (0,1] possibly different from the Hölder-regularity α of f0. Set

ε∗
n,α,δ =

(
logn

n

) α∧δ
2δ+1

.

Then as n → ∞, for any Mn → ∞, it holds

En
f0

�
[
f : ‖f − f0‖∞ ≤ Mnε

∗
n,α,δ |X(n)

] → 1.

The proof of these results can be adapted to handle different choices of parameters; we do not elaborate on this in
details here but only note that

1. the presence of the factor l in (6) corresponds to the fact that we looked for a sharp optimal minimax rate (up to
a constant) in the supremum norm. Removing this factor in the choice of al leads to a rate (logη n)ε∗

n,α for some
η > 0, with an extra logarithmic term, instead of ε∗

n,α as above (something similar happens in the Gaussian white
noise model with series priors, see [21] and [5]). On the other hand, the presence of an ‘l’ or not does not affect
results for most smooth functionals, as will be seen below.



Polya tree posteriors 2079

2. results for truncated priors can be obtained similarly, for instance the choice

α−1
ε =

{
1 if |ε| = l and l ≤ ln,

0 if |ε| = l and l > ln,
(8)

where ln is defined in (12) below with δ = α, and with the convention that Beta(∞,∞) is the Dirac mass δ1/2
distribution, leads to the same posterior contraction rate as in Theorem 1. The proof is similar, though easier, as
one truncates high frequencies. However, it is a n-dependent prior; in contrast the prior (6) is canonical, in the
sense that it does not depend on n. We discuss this further in Section 2.4 below.

So far, only a few results on posterior convergence in the supremum norm have been obtained, see e.g. [5,21] and
[25]. In [5] we suggested a possible approach to obtain such results. One of the starting points for the present paper
is a question of a referee of [5], who asked whether some results for non-n-dependent priors in density estimation
could be obtained. The proof of Theorem 1 gives another illustration of the approach in [5] and answers the question
positively.

2.2. Donsker-type theorem

Let us now consider the behaviour of the cumulative distribution function F(x) = ∫ x

0 f (t) dt induced by the posterior
distribution when a Pólya tree is used as prior. Given data X1, . . . ,Xn, let Fn denote the empirical distribution function

Fn(t) = 1

n

n∑
i=1

1Xi≤t .

For δ > 0, define a sequence αε = a|ε| ∨ 8 for ε ∈ E , where

al = 22lδ, l ≥ 0 or al = l22lδ, l ≥ 0. (9)

For a prior � on densities induced by a Pólya tree distribution with parameters as in (9), let f̄n denote the posterior
mean

∫
f d�(f |X) and let F̄n(t) = ∫ t

0 f̄n(u) du denote its distribution function. In the next result, L(G) denotes
the law of a process G, and L(F |X) denotes the induced posterior distribution on F . Also, on a metric space S,
such as the space of C[0,1] continuous functions on [0,1] equipped with the supremum norm, we denote by βS the
bounded-Lipschitz metric on S, which metrises weak convergence on S. The definition of βS is recalled in (27) in the
Appendix, where more details can be found.

Theorem 2 (Donsker’s theorem for Pólya tree posteriors). Let X = (X1, . . . ,Xn) be i.i.d. from law P0 with density
f0. Let f0 belong to Cα[0,1], for some α ∈ (0,1] and suppose f0 is bounded away from 0 on [0,1]. Let � be a Pólya
tree PT(A) with parameters A= {αε, ε ∈ E} such that αε = a|ε| for all ε ∈ E , with (al) is as in (9) for some δ > 0.

Let GP0 be a P0-Brownian bridge GP0(t), t ∈ [0,1]. For any parameters α ∈ (0,1], δ > 0, as n → ∞,

βC[0,1]
(
L

(√
n(F − F̄n) |X)

,L(GP0)
) →Pf0 0.

Furthermore, for any α ∈ (0,1] and δ such that δ < 1/2 + α, as n → ∞,

βL∞[0,1]
(
L

(√
n(F − Fn) |X)

,L(GP0)
) →Pf0 0.

In particular, the last display holds true if δ ≤ 1/2, regardless of the value of α.

This result parallels Lo’s result [33] for the Dirichlet process, here in a regime where the Pólya tree as well as the
true law P0 have a density. A few results of this type have been obtained in the literature since then, mostly for priors
whose realisations are discrete measures, like the Dirichlet process, see the introduction of [7] for some references.

A possible route for proving such a result is a direct analysis of the induced posterior on F(·). Here we use the
approach proposed in [7] and obtain it as a fairly direct consequence of a more general result on the shape of the
posterior distribution stated in the next section.
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2.3. Limiting shape of the posterior distribution

We focus now on limiting shape results for (aspects of) the posterior density f . For this we follow the approach
to nonparametric Bernstein–von Mises (BvM) theorems introduced in [7]. The idea is to formulate convergence in
distribution of the posterior density to a Gaussian process in a large enough space M0 defined below that enables
convergence at rate

√
n. Once convergence in distribution on M0 is obtained, it will typically be possible to deduce

results via continuous mapping for continuous functionals ψ : M0 → Y for some given space Y .
First we need a sequence of ‘weights’ w := {wl}l≥0, such that wl/

√
l ↑ ∞. The space M0 =M0(w) is defined as

the multiscale sequence space

M0 =
{
x = {xlk} : lim

l→∞ max
k

|xlk|
wl

= 0

}
, (10)

equipped with the norm ‖x‖lk := supl maxk |xlk|/wl . It is a separable Banach space. A (possibly generalised) function
f is said to belong to M0 if the sequence of its wavelet coefficients 〈f,ψlk〉 over the Haar basis {ψlk} belongs to M0.

Now we define the limiting process. For P a given probability distribution on [0,1], let GP be the Gaussian process
indexed by the Hilbert space L2(P ) ≡ {f : [0,1] →R : ∫ 1

0 f 2 dP < ∞} with covariance function

E
[
GP (g)GP (h)

] =
∫ 1

0
(g − Pg)(h − Ph)dP.

We call GP the P -white bridge process. It can be checked, see [7], that GP , provided wl/
√

l ↑ ∞, is a tight Borel
Gaussian variable in M0.

The first statement in Theorem 3 automatically recenters the posterior distribution around the posterior mean.
Typically, one may wish to center instead around a ‘canonical’ centering, in that its definition does not depend on the
posterior. This can be achieved by comparing f̄n, for instance, to a smoothed version of the empirical measure. Let Pn

denote the empirical measure n−1 ∑n
i=1 δXi

associated to the observed data X and let, for Ln defined in (13) below,

〈Tn,ψlk〉 =
{

〈Pn,ψlk〉 if l ≤ Ln,

0 if l > Ln,
(11)

and Tn is a tight random variable in M0. For a given δ > 0, let jn = jn(δ) and ln = ln(δ) be the largest integers such
that

2jn ≤ n
1

2δ+1 , 2ln ≤
(

n

logn

) 1
2δ+1

, (12)

and set, in slight abuse of notation, either

Ln = jn (∀n ≥ 1) or Ln = ln (∀n ≥ 1). (13)

As before, let f̄n denote the posterior mean
∫

f d�(f |X).
In the next result, βM0(w) denotes the bounded-Lipschitz metric on M0(w), see (27) in the Appendix for a defini-

tion.

Theorem 3. Let X = (X1, . . . ,Xn) be i.i.d. from law P0 with density f0. Let f0 belong to Cα[0,1], for some α ∈ (0,1]
and suppose f0 is bounded away from 0 on [0,1]. Let � be a Pólya tree PT(A) with parameters A= {al, l ≥ 1}, where
al is as in (9) for some δ > 0.

Let τf̄n
: f → √

n(f − f̄n) and let z = {zl}l be a weighting sequence such that zl/
√

l ↑ ∞. For any parameters
α ∈ (0,1], δ > 0, as n → ∞,

βM0(z)

(
�(· |X) ◦ τ−1

f̄n
,GP0

) →Pf0 0.
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If δ ≤ α, if Tn is given by (11) and τTn : f → √
n(f − Tn), then as n → ∞,

βM0(z)

(
�(· |X) ◦ τ−1

Tn
,GP0

) →Pf0 0.

This result has several applications relevant for statistics. One application, that we only mention, is the construc-
tion of confident credible bands for fixed regularities, see [7], Section 4.2. Another application is the derivation of
Bernstein–von Mises theorems for semiparametric functionals via the continuous mapping theorem. A prototypical
example is the map f → ∫ ·

0 f = F(·), leading to a Donsker-type result for the distribution function F , as stated in
the previous section. Indeed, it has been shown in [7] that the map f → F is continuous from M0(w) to C[0,1].
Theorem 2 then essentially follows from Theorem 3 combined with Theorem 4 in [7], see Section 3.3 for a detailed
proof. Results for smooth linear functionals also fairly directly follow from Theorem 3. For details on this and several
other examples of functionals, we refer to [6,7].

2.4. Discussion

First let us address two natural questions about the results.
Are Pólya trees not too ‘rough’ as a prior to obtain nontrivial posterior rates of contraction? A reason to ask is

that one can show that any version of the posterior density Pólya tree has a jump at any point of the subdivisions of
[0,1] corresponding to the successive partitions, that is at all the dyadic rationals for regular dyadic partitions. But
this of course does not prevent the object to have good approximation properties, similar to the fact that histograms
can be used to approximate e.g. Lipschitz functions (note that Pólya tree densities are not histograms though), and
our results show that this is indeed the case. Even more, it can be checked that at any non-dyadic point x0 of [0,1],
the density induced by a Pólya tree with parameters is locally α-Hölder at point x0. This is of course in line with the
result of Theorem 1 that for such choice of al the posterior has optimal concentration around α-Hölder functions.

Is the choice al = 22lα , or l22lα , reasonable in practice? Indeed, one may think that such an increase in the Beta-
parameters, that is exponential, could be ‘hard to fit’ in practice. The theoretical results show good behaviour of the
posterior for this choice though, and we claim that this exponential behaviour is the ‘correct one’ if one whishes to
model all frequencies. Indeed, the exponential growth corresponds to the exponentially fast decrease of the width of
dyadic intervals Iε . It is simply that wavelet coefficients, which here are modelled through products of Beta variables,
naturally decrease exponentially fast for Hölder classes, see Equation (5). Similarly, in regression, typical Gaussian
processes used as prior distributions have variances decreasing as a power of 2−l , which is exponentially fast, too. Of
course, one may also consider priors that truncate high frequencies as in Equation (8), in which case the contraction
rate is essentially driven by the cut-off point, not so much by the individual variance parameters, similar to what has
been noted e.g. in [39].

The results are also part of a more general programme linked to obtaining Bernstein–von Mises results, as well as
posterior contraction in strong losses such as the supremum norm. For instance, the results are of interest for

1. Bernstein–von Mises theorems for ‘smooth’ functionals. In [8], we obtained limiting posterior shape results on a
family of random histograms. One may note that the truncated version of the Pólya tree defined by (8) is also a
random histogram, but with a quite different randomness in the weights. Similar to what is noted below Theorem 1,
Theorems 2 and 3 above can be checked to hold for this prior as well. The histograms in [8] can be seen as
histograms-projections of the Dirichlet process, giving Dirichlet weights. Here the weights are not Dirichlet, but
correspond to a tree-type product of Beta variables.

2. non-parametric BvM and posterior contraction in supremum norm. In [5–7], a multiscale approach was developed
and a programme to obtain results of this type was proposed. Only a few examples of priors have been investigated
within this framework so far, and investigating other classes of prior distributions is of great interest. One may
note for instance that in the density estimation model, the priors considered in [5,7] were all n-dependent (note
that, in fact, there cannot be a non-n-dependent version of the random histograms as in [5,7], as the corresponding
underlying infinite dimensional prior would be a Dirichlet process, which has no density). The Pólya-tree class of
priors in the present paper precisely provides an example of such canonical prior.

We plan to study further properties of Pólya trees in future work. Among others one can mention two natural ques-
tions. First, adaptation: here we have studied the case where the Hölder regularity parameter β of f0 is given. Several
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constructions can be considered to build an adaptive prior, that automatically adapts to the unknown regularity β .
Second, results for higher regularities, that is β ≥ 1, would also be of interest.

Extensions to higher regularities. A first question is whether the analysis of the present paper could be carried
out, for the same Pólya tree prior, to higher regularities α > 1 using higher order wavelets. Indeed, one may think
that choosing al = l22lα may continue to lead to optimal rates even when α > 1. We believe this is not the case.
One indication why this is presumably not the case is that under the prior distribution, it can be checked that locally
around any point x0 ∈ [0,1], the density is not more than locally C1 even if α > 1 (as noted above, when α ≤ 1 the
prior density when al = l22lα is locally Cα at any non-dyadic point). The intuition is that having all Yε independent at
a same level l = |ε| creates ‘too much independence’ between values at different points to produce a highly smooth
density.

The second question is whether a different, cascade–like tree–induced scheme for sequentially defining random
masses P(Iε) of intervals could produce a random density with a given arbitrary smoothness level α possibly larger
than 1. Such a construction could for instance be inspired by the schemes defining wavelets bases {ψlk} that enable
to capture smoother regularities (e.g. Daubechies or boundary-corrected wavelets) compared to the Haar basis ψH

lk .
The point is to understand whether this is could be done while still preserving a form of conjugacy: here conjugacy
is obtained at a given level with a multinomial likelihood on the one hand (the data produce counts NX(Iε) on each
dyadic Iε) and a finite-tree prior of Beta distributions for interval probabilities on the other hand. It is thus quite
directly related to a definition of f via inner-products with indicators 〈f,1Iε 〉, which naturally leads to the Haar basis.
Would there exist a conjugate structure that would enable to define 〈f,ψlk〉 along a tree–like scheme? This will be
studied elsewhere.

3. Proofs

3.1. Preliminaries and notation

By the standard conjugacy property of Pólya trees, see [12,31], if P follows a PT (A) distribution, the posterior
distribution P |X1, . . . ,Xn follows a Pólya tree distribution PT (A∗) with respect to the same partition and with
updated parameters A∗ = {α∗

ε , ε ∈ E}, where

α∗
ε = αε + NX(Iε), (14)

with NX(Iε) = ∑n
i=1 I {Xi ∈ Iε}.

The following sets of notation will be used throughout the proofs.

1. Tilded notation, posterior distribution. We denote by P̃ a distribution sampled from the posterior distribution and
by Ỹ the corresponding variables Y in (1). In particular, the variable Ỹε0 is Beta(α∗

ε0, α
∗
ε1

) distributed.
2. Bar notation, posterior mean. Let f̄ = ∫

f d�(f |X) denote the posterior mean density and P the corresponding
probability measure. We use the notation Ȳ for the variables defining P via (1).

3. Paths along the tree. A given ε = ε1 · · · εl ∈ E gives rise to a ‘path’ ε1 → ε1ε2 → ε1ε2 · · · εl . We denote

I [i]
ε := Iε1···εi

,

for any i in {1, . . . , l}. Similarly, denote, with EX the expectation under the posterior distribution,

Ỹ [i]
ε = Ỹε1···εi

, Ȳ [i]
ε = EX

[
Ỹ [i]

ε

]
.

Conversely, any pair (l, k) with l ≥ 0 and k ∈ {0, . . . ,2l − 1} is associated with a unique ε = ε(l, k), the expression
of length l in base 1/2 of k2−l .

For a given distribution P with distribution function F and density f on [0,1], denote P(B) = F(B) = ∫
B

f , for
any measurable subset B of [0,1]. In particular under the ‘true’ distribution, we denote P0(B) = F0(B) = ∫

B
f0. In

the sequel C denotes a universal constant whose value only depends on other fixed quantities of the problem.
For a function f in L2, and Ln an integer, denote by f Ln the L2-projection of f onto the linear span of all

elements of the basis {ψlk} up to level l = Ln. Also, denote f Lc
n the projection of f onto the orthocomplement
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Vect{ψlk, l > Ln}. In the proofs, we shall use the decomposition f = f Ln + f Lc
n , which holds in L2 and L∞ under

prior and posterior: this follows from Lemma 7, which gives sufficient conditions in terms of the sequence (al) for
both L2 and L∞ statements. Both conditions of the Lemma are satisfied for (al) of the form (6) or (9).

3.2. Proof of Theorem 1

Proof of Theorem 1. Define Ln to be the integer such that

2Ln =
⌊
c0

(
n

logn

) 1
1+2α

⌋
, (15)

for c0 a small enough constant to be chosen below.
Step 0. Haar decomposition and an event B. First, we define an event B on the data space. For any integer l, set

�n(l)
2 := (l + Ln)n/2l . Recall the notation I l

k from Section 1.1. Define B as the event on which, simultaneously for
the countable family of indexes l ≥ 1,0 ≤ k < 2l , for M large enough to be chosen,

M−1
∣∣NX

(
I l
k

) − nF0
(
I l
k

)∣∣ ≤ �n(l) ∨ (l + Ln), (16)

where as before NX(I) is the number of data points in I . By Lemma 4, we have

P n
f0

(
Bc

) = o(1). (17)

Let us now decompose, using the notation above for the projection,

f − f0 = (
f Ln − f̄ Ln

) + (
f̄ Ln − f

Ln

0

) + f Lc
n − f

Lc
n

0 , (18)

which holds in L∞ (Lebesgue-almost surely) and in L2.
For any given l, k, for ε = ε(l, k) the expression in base 1/2 of k2−l , let us write Iε(l,k) = Iε0 ∪ Iε1. For P a

probability measure of density f and {ψlk} the Haar basis, by definition 〈f,ψlk〉2 = 2l/2(P (Iε1) − P(Iε0)). For a
function g, denote by glk its coefficients onto the Haar basis. If P follows a Pólya tree distribution with density f , we
thus have the equality in law

flk := 〈f,ψlk〉2 = 2l/2P(Iε)(1 − 2Yε0). (19)

To start with, let us note that

∥∥f
Lc

n

0

∥∥∞ =
∥∥∥∥ ∑

l>Ln,k

f0,lkψlk

∥∥∥∥∞

≤
∑
l>Ln

{
max

k
|f0,lk|

}∥∥∥∥∑
k

|ψlk|
∥∥∥∥∞

�
∑
l>Ln

2−lα � ε∗
n,α,

using that f0 is Hölder and the definition of Ln. We now focus successively on each of the remaining terms in the
decomposition (18), before putting the bounds together and concluding.

Step 1, term f̄ Ln − f
Ln

0 in (18). Given indexes l, k, and ε = ε(l, k),

f̄lk = 2l/2P̄ (Iε)(1 − 2Ȳε0)

as well as, with yε0 := F0(Iε0)/F0(Iε),

f0,lk = 2l/2P0(Iε)(1 − 2yε0).
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This leads to the expression

f̄lk − f0,lk = f0,lk

[
P̄ (Iε)

P0(Iε)
− 1

]
+ 2

l
2 +1P̄ (Iε)(yε0 − Ȳε0).

Combining Lemmas 1 and 2 and the fact that F0(Iε) � 2−l leads to, on B,

|f̄lk − f0,lk| � |f0,lk|
{

l∑
i=1

ai2i

n
+

√
Ln2l

n

}
+

(
2lal

n
|f0,lk| +

√
Ln

n

)

� |f0,lk|
{

al2l

n
+

√
Ln2l

n

}
+

√
Ln

n
.

From this deduce that, on the event B,

∥∥f̄ Ln − f
Ln

0

∥∥∞ �
Ln∑
l=0

2l/2 max
0≤k<2l−1

|f̄lk − f0,lk|

�
Ln∑
l=0

l2l(α+1)n−1 +
√

Ln2Ln

n

� 2−Lnα +
√

Ln2Ln

n
� ε∗

n,α,

where we have used al ≤ l22lα and |f0,lk| � 2−l(1/2+α).
Step 2, term f Ln − f̄ Ln in (18). We define an event A for which �[Ac |X(n)] = o(1). We aim at having each

variable Ỹε defining the posterior law not too far from its expectation. In terms of f , this means a control on∫
I

[i+1]
ε

f/
∫
I

[i]
ε

f for all admissible i, ε = ε(l, k) with l ≤ Ln. Let A be the measurable set of densities f on which,
simultaneously for all possible ε, i,

∣∣Ỹ [i]
ε − Ȳ [i]

ε

∣∣ =
∣∣∣∣
∫

I
[i]
ε

f
/∫

I
[i−1]
ε

f −
∫ [∫

I
[i]
ε

f
/∫

I
[i−1]
ε

f

]
d�

(
f |X(n)

)∣∣∣∣
≤ M

√
Ln

nF0(I
[i]
ε )

=: r [i]
ε . (20)

Let us check that the complement of A has small posterior probability. By definition Ỹ
[i]
ε follows a Beta distribution of

parameters ϕi = ai +NX(Iε1···εi
) and ψi = ai +NX(Iε1···(1−εi )). So ϕi ∧ψi ≥ ai ≥ 8 and ϕi +ψi = 2ai +NX(I

[i−1]
ε ).

Also, one has Ȳ
[i]
ε = ϕi/(ϕi + ψi). By Lemma 2, this ratio is bounded below by a constant times F0(I

[i]
ε )/F0(I

[i−1]
ε ),

for n large enough. Indeed, the remainder term in Lemma 2 is a o(1) for our choices of al , Ln and using the regularity
of f0. So ϕi/(ϕi + ψi) is bounded away from 0 and 1.

Now one can apply Lemma 6, with x = ML
1/2
n /2 and M a constant to be chosen below. First one checks that

ϕi + ψi ≥ NX

(
I [i−1]
ε

) ≥ NX

(
I [i]
ε

)
≥ nF0

(
I [i]
ε

) −
√

2Lnn2−i

≥ nF0
(
I [i]
ε

)
/2,
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as nF0(I
[i]
ε )/2 � n2−i and

√
2Lnn2−i = o(n2−i ) uniformly in i ≤ Ln. Thus for n large enough, for x = ML

1/2
n /2,

using Remark 1,

P

[∣∣Ỹ [i]
ε − Ȳ [i]

ε

∣∣ >
x√

nF0(I
[i]
ε )

]
≤ De−x2/4.

A union bound leads to, for A defined by (20) and d a small enough constant,

�
[
Ac |X(n)

]
�

∑
l≤Ln

2le−dM2 logn,

which tends to 0 for M a large enough constant. Now

flk − f̄lk = 2l/2P̄ (Iε)

[
P̃ (Iε)

P̄ (Iε)
(1 − 2Ỹε0) − (1 − 2Ȳε0)

]

= 22l/2P̄ (Iε)(Ȳε0 − Ỹε0) + 2l/2P̄ (Iε)

[
P̃ (Iε)

P̄ (Iε)
− 1

][
1 − 2Ȳε0 + 2(Ȳε0 − Ỹε0)

]

= 22l/2P̄ (Iε)(Ȳε0 − Ỹε0) +
[
P̃ (Iε)

P̄ (Iε)
− 1

][
f̄lk + 22l/2P̄ (Iε)(Ȳε0 − Ỹε0)

]
,

where by definition

P̃ (Iε)

P̄ (Iε)
− 1 =

l∏
j=1

Ỹ
[i]
ε

Ȳ
[i]
ε

− 1.

By Lemma 2, the mean Ȳε0 is close to F0(Iε0)/F0(Iε) when l ≤ Ln, and similarly for Ȳε1. In particular it is bounded
away from 0 and 1. So on B, one can replace |Ỹ [i]

ε − Ȳ
[i]
ε | in (20) by |Ỹ [i]

ε /Ȳ
[i]
ε − 1| up to multiplying the upper bound

r
[i]
ε in (20) by a universal constant. The conditions of Lemma 3 are satisfied, as Ln2Ln/n is a o(1). Deduce that on A

and on the event B,

∣∣∣∣ P̃ (Iε)

P̄ (Iε)
− 1

∣∣∣∣ �
l−1∑
i=0

r [i]
ε �

√
Ln2l

n
.

On the other hand, we directly have with (20) that |Ȳε0 − Ỹε0| �
√

Ln2l/n. Conclude that for any f in A and on the
event B,

|flk − f̄lk| � |f̄lk|
√

Ln2l

n
+ 2l/2P̄ (Iε)

[√
Ln2l

n
+ Ln2l

n

]

� |f̄lk|
√

Ln2l

n
+

√
Ln

n
,

using that, on B, the mean P̄ (Iε) is within a constant of 2−l . By the triangle inequality |f̄lk| ≤ |f̄lk − f0,lk| + |f0,lk|.
Now it suffices to notice that the terms induced by f̄lk − f0,lk and f0,lk respectively have already been dealt with in
Step 1 above. Deduce that, on B, for f in A,

∥∥f Ln − f̄ Ln
∥∥∞ � ε∗

n,α +
√

Ln2Ln

n
� ε∗

n,α.
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Step 3, term f Lc
n in (18). For any R > 1 to be chosen, denoting by EX the expectation under the posterior distribu-

tion,

EX

∥∥f Lc
n
∥∥∞ ≤

∑
l>Ln

2l/2EX

[
max

k
|flk|

]

≤
∑
l>Ln

2l/2

[
2l−1∑
k=0

EX|flk|R
]1/R

,

where we have used Hölder’s inequality and bounded the max by the sum. From (19), with ε = ε(l, k), using inde-
pendence of Ỹ s given the data along a path in the tree,

EX|flk|R = 2lR/2EXP̃ (Iε)
REX|1 − 2Ỹε0|R. (21)

First we deal with the last expectation in (21). We apply Lemma 5 with a = al + NX(Iε0), d = NX(Iε0) − NX(Iε1)

and

R = Rn := log2 n.

To do so, we check that the condition 2|d| ≤ a is satisfied on the event B. Let Ml = M((ln/2l)1/2 ∨ l) be the constant
appearing in Lemma 4 when l ≥ Ln. Since Ỹε0 ∼ Beta(al + NX(Iε0), al + NX(Iε1)), we note that, on B,∣∣NX(Iε0) − NX(Iε1)

∣∣ ≤ n
∣∣F0(Iε0) − F0(Iε1)

∣∣ + Ml

� n2−l(1+α) + Ml � Ml,

where we have used that f0 is α-Hölder, that l > Ln and that

al + NX(Iε0) ≥ al + nF0(Iε0) − Ml

� al + n2−l − Ml,

so the condition is satisfied on B for l > Ln. Lemma 5 now implies that

EX

[|1 − 2Ỹε0|R
] ≤ (

C
∣∣NX(Iε0) − NX(Iε1)

∣∣/al

)R + (CR/al)
R/2

≤ (CMl/al)
R + (CR/al)

R/2 � (CR/al)
R/2

for n large enough so that R = Rn ≥ R0 ∨ M2. For the first expectation term in (21), the formula for the Rth moment
of a Beta variable leads to

EX

[
P̃ (Iε)

R
] =

l−1∏
i=0

R−1∏
r=0

QX,ε(i, r),

QX,ε(i, r) = ai + NX(I
[i+1]
ε ) + r

2ai + NX(I
[i]
ε ) + r

.

Let us distinguish the two regimes i ≤ Ln and Ln ≤ i ≤ l. Let us write NX(I
[i]
ε ) = nF0(I

[i]
ε ) + Mε(i). When i ≤ Ln

QX,ε(i, r) = F0(I
i+1
ε )

F0(I i
ε )

1 + n−1(ai + Mε(i + 1) + r)/F0(I
i+1
ε )

1 + n−1(2ai − Mε(i) + r)/F0(I i
ε )

≤ F0(I
i+1
ε )

F0(I i
ε )

[
1 + ai + Mε(i + 1) + r

nF0(I
i+1
ε )

][
1 + Mε(i)

nF0(I i
ε )

]
,
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where to obtain the last inequality we have bounded the denominator from below and used the inequality 1/(1 − x) ≤
1 + x for x < 1, as well as nF0(I

i
ε ) � n2−i and, for any i ≤ Ln, by definition of Ln,

Mε(i)
2i

n
≤ M

[√
i2i

n
∨ i2i

n

]
�

√
Ln2Ln

n
= o(1).

Deduce, for C3,C4 large enough constants,

QX,ε(i, r) ≤ F0(I
i+1
ε )

F0(I i
ε )

[
1 + C3

2iai + √
in2i/2 + 2iRn

n

][
1 + C3

√
in2i/2

n

]

≤ F0(I
i+1
ε )

F0(I i
ε )

[
1 + C4

2iai + √
in2i/2 + 2iRn

n

]
.

This implies that, for some C5 > 0,

Ln∏
i=0

QX,ε(i, r) ≤ F0
(
ILn+1
ε

) Ln∏
i=0

[
1 + C4

2iai + √
in2i/2 + 2iRn

n

]

� 2−Ln exp

{
C4

Ln∑
i=0

2iai + √
in2i/2 + 2iRn

n

}

� 2−Ln exp

{
C5

2LnaLn + √
Lnn2Ln/2 + 2LnRn

n

}
� 2−Ln,

where the last exponential term is bounded due to the definitions of Ln,αLn and Rn. Now in the regime Ln ≤ i ≤ l,

QX,ε(i, r) = ai(1 + NX(I
[i+1]
ε )

ai
+ r

ai
)

2ai(1 + NX(I
[i]
ε )

2ai
+ r

2ai
)

≤ 1

2

(
1 + NX(I

[i+1]
ε )

ai

+ r

ai

)
.

This implies that, on B, for some C6 > 0, with Mε(i) ≤ √
in2−i/2 + i,

l∏
i=Ln+1

QX,ε(i, r) ≤ 2−(l−Ln) exp

{
l∑

i=Ln+1

nF0(I
i+1
ε ) + Mε(i) + Rn

ai

}

≤ 2−(l−Ln) exp

{
C6

l∑
i=Ln+1

n2−i + √
in2−i/2 + i + Rn

ai

}

≤ 2−(l−Ln) exp

{
C6

(
n

Ln2Ln(1+2α)
+

√
n

√
Ln2Ln( 1

2 +2α)
+ 2Rn

22Lnα

)}

� 2−(l−Ln),

using again the definition of Ln. This leads to the bound

EX

[
P̃ (Iε)

R
]
�

R−1∏
r=0

(
C2−Ln2Ln−l

)
�

(
C2−l

)R
.
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Conclude that, with R = Rn = log2 n and some c > 0,

EX

∥∥f Lc
n
∥∥∞ ≤

∑
l>Ln

2l/2[2l2lR/2CR2−lR(CR/al)
R/2]1/R

�
∑
l>Ln

2cl/RnR
1/2
n a

−1/2
l �

∑
l>Ln

2
c l

log2 n

√
logn

l
2−lα

�
∑

Ln<l<log2 n

C2−lα +
∑

l>log2 n

2
( c

log2 n
−α)l

.

For n large we have c(log2 n)−1 ≤ να, for any fixed ν > 0. The first sum in the last display is less than a constant times
ε∗
n,α and the second sum is less than n−(1−ν)α . By choosing ν < (2α)/(2α + 1), the second sum is thus of smaller

order. Conclude that EX‖f Lc
n‖∞ � ε∗

n,α .
Now putting together the different bounds obtained, for any Mn → ∞, setting Tn := {f : ‖f − f0‖∞ ≤ Mnε

∗
n,α}

and using Markov’s inequality,

En
f0

�
[
T c

n |X] ≤ En
f0

�
[
T c

n |X]
1B + En

f0
�

[
T c

n |X]
1Bc

≤ En
f0

�
[
T c

n ∩A |X]
1B + En

f0
�

[
Ac |X] + o(1)

≤ M−1
n ε∗

n,α
−1

En
f0

EX

[
1f ∈A‖f − f0‖∞

]
1B + o(1)

� M−1
n + o(1) = o(1).

This concludes the proof of Theorem 1. �

Lemma 1. Let ε ∈ E with |ε| = l, for some l ≤ Ln and Ln defined by (15). Suppose, for any i ≤ l ≤ Ln, that ai ≤ i22αi .
Then, on the event B defined by (16), for c0 in (15) small enough, for n large enough,

∣∣∣∣ P̄ (Iε)

P0(Iε)
− 1

∣∣∣∣ ≤ C

[
l∑

i=1

ai2i

n
+

√
Ln2l

n

]
.

Proof. Notice that P̄ (Iε) and P0(Iε) can be written as the products
∏l

i=1 wi and
∏l

i=1 yi respectively, with

wi = ai + NX(I
[i]
ε )

2ai + NX(I
[i−1]
ε )

, yi = F0(I
[i]
ε )

F0(I
[i−1]
ε )

.

On the event B, we have NX(I
[i]
ε ) = nF0(I

[i]
ε ) + δi,ε where δi,ε is controlled below. That is,

wi = yi

1 + n−1(ai + δi,ε)/F0(I
[i]
ε )

1 + n−1(2ai + δi−1,ε)/F0(I
[i−1]
ε )

.

By definition of B, for l ≤ Ln we have |δi,ε| ≤ C
√

nLn2−i . Since Ln2Ln = o(n), this bound is always of smaller
order than n2−i � nF0(I

[i]
ε ), since f0 is bounded away from 0. So the denominator of the last expression is bounded

away from 0. Deduce, for any 1 ≤ i ≤ Ln,

∣∣∣∣wi

yi

− 1

∣∣∣∣ ≤ C

[
ai2i

n
+

√
Ln2i

n

]
.
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For large n and c0 in (15) small enough, the last display is smaller than 1. Also,

l∑
i=1

∣∣∣∣wi

yi

− 1

∣∣∣∣ ≤ C

[
l∑

i=1

ai2i

n
+

√
Ln2l

n

]
,

which remains bounded. An application of Lemma 3 completes the proof. �

Lemma 2. Let ε ∈ E with |ε| = l and Iε = I l
k , for some admissible indexes l, k. Then, on the event B defined by (16),

for any l ≤ Ln,∣∣∣∣Ȳε0 − F0(Iε0)

F0(Iε)

∣∣∣∣ ≤ C
2l/2

n

(
2lal+1|f0,lk| +

√
nLn

)
.

Proof. Similar to the proof of Lemma 1, let NX(Iε0) = nF0(Iε0) + δl+1,ε , so that∣∣∣∣ Ȳε0

yε0
− 1

∣∣∣∣ =
∣∣∣∣1 + (al+1 + δl+1,ε)/nF0(Iε0)

1 + (2al+1 + δl,ε)/nF0(Iε)
− 1

∣∣∣∣
≤ C

al+1

n

∣∣F0(Iε0)
−1 − 2F0(Iε)

−1
∣∣ + C

n

( |δl,ε|
F0(Iε)

+ |δl+1,ε|
F0(Iε0)

)

≤ C
22lal+1

n
2−l/2|f0,lk| + C

2l/2(nLn)
1/2

n
,

on B, where we have used the bound |δl,ε| + |δl+1,ε| ≤ C(nLn2−l )1/2. �

Lemma 3. Let {yi}1≤i≤L, {wi}1≤i≤L be two sequences of positive real numbers such that there are constants c1, c2
with

max
1≤i≤L

∣∣∣∣wi

yi

− 1

∣∣∣∣ ≤ c1 < 1,

L∑
i=1

∣∣∣∣wi

yi

− 1

∣∣∣∣ ≤ c2 < ∞.

Then there exists c3 depending on c1, c2 only such that∣∣∣∣∣
L∏

i=1

wi

yi

− 1

∣∣∣∣∣ ≤ c3

L∑
i=1

∣∣∣∣wi

yi

− 1

∣∣∣∣.
Proof. It suffices to bound eζ − 1 from above and below, where ζ = ∑

log(wi/yi). For the upper bound, one uses
log(1+u) ≤ |u| followed by e|v| −1 ≤ ec2 |v| for |v| ≤ c2. For the lower bound, one uses log(1+u) ≥ −(1− c1)

−1|u|
if |u| ≤ c1 < 1 followed by e−C|u| − 1 ≥ −C|u|. �

3.3. Proof of Theorem 3

Proof of Theorem 3. By Lemma 8, it is enough to check that finite-dimensional projections converge (28), and the
tightness-type property (29) at rate 1/

√
n.

Finite-dimensional projections. First, let us formulate the problem in terms of convergence for histograms.
The finite-dimensional subspace VJ is Vect{ϕ,ψlk,0 ≤ k < 2l , l ≤ J }. Note that, if K = J + 1, it coincides with

the space of all histograms on the dyadic regular grid of [0,1] of meshwidth 2−K . So, if Ji = ((i − 1)2−K, i2−K),
one also has VJ = Vect{2K1Ji

,1 ≤ i ≤ 2K } and πVJ
f has the explicit expression

πVJ
f = 2K

2K∑
i=1

(∫
Ji

f

)
1Ji

= 2K

2K∑
i=1

F(Ji)1Ji
.
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The distribution of πVJ
f can be equivalently specified by the joint distribution of (F (J1), . . . ,F (J2K )).

Below we show that if f is a draw from the posterior distribution �[· |X],(√
n

(∫
Ji

f − Pn(Ji)

))
1≤i≤2K

→ (GP01Ji
)1≤i≤2K , (22)

where the convergence is in distribution in R
2K

, in probability under P0, and Pn(I ) = NX(I)/n is the mass the
empirical measure associated to the data X1, . . . ,Xn puts on an interval I .

To prove (22), we exhibit a parametric model where the same distributions as in (22) arise, and where the conver-
gence holds under P0. Set � ≡ S2K = {(θ1, . . . , θ2K ) ∈ (0,1)2K

,
∑

i θi = 1} the interior of the unit simplex in R
2K

.
Consider the parametric model

P ≡PK =
{

P = Pg,g = 2K

2K∑
i=1

gi1Ji
, (g1, . . . , g2K ) ≡ θ ∈ �

}
.

It consists of positive densities that are regular histograms with 2K bins. As usual the unit simplex � can be identified
to the subset of R2K−1 consisting of (θ1, . . . , θ2K−1) such that 0 < θi < 1 for all 1 ≤ i ≤ 2K − 1 and

2K−1∑
i=1

θi < 1.

Define a prior distribution �K on � viewed as a subset of R2K−1 by ‘cutting’ the Pólya tree distribution at level K .
That is, define the joint law of (gi)1≤i≤2K as the joint law of (F (Ji))1≤i≤2K , where F is sampled from a Pólya tree
with the prescribed parameters.

The algebraic expression, given data X1, . . . ,Xn, of the induced posterior distribution on (F (J1), . . . ,F (J2K )) in
the original model with the original Pólya tree prior, and the posterior distribution of (g1, . . . , g2K ) in model PK

with prior �K , are the same: this follows by the conjugacy properties of the beta-distributions with respect to the
likelihood, which is of multinomial type. The posterior distribution has, under both models, a tree-type structure: the
posterior of F(Iε) has same law as a product of Ỹ

[i]
ε ’s, i ≤ K , which are Beta variables with updated parameters

α∗
ε = αε + NX(Iε). In particular, note that the joint posterior distribution of (F (J1), . . . ,F (J2K )) only depends on the

data through the counts NX(Ji), for 1 ≤ i ≤ 2K .
Now, the counts (NX(Ji),1 ≤ i ≤ 2K), have the same distribution under X ∼ Pf0 , the original true model, and

under X ∼ P
f

[K]
0

, where

f
[K]
0 = 2K

2K∑
i=1

F0(Ji)1Ji

is the L2-projection of f onto PK . This is because the counts are multinomially distributed with parameters F0(Ji) =
F

[K]
0 (Ji), both under Pf0 and P

f
[K]
0

.

Deduce that the induced posterior distribution on PK has same law under Pf0 as the posterior in model PK with
prior �K and under P

f
[K]
0

. To the latter distribution one can apply the parametric Bernstein–von Mises theorem,

as stated e.g. in [42], Chapter 10, and we now check the corresponding assumptions. The model PK is smoothly
parameterised, and in particular differentiable in quadratic mean. The testing condition (10.3) from [42] is easily
verified using Hellinger-type tests: denoting by Pθ an arbitrary element of PK , one checks that for any θ, θ ′ ∈ �,
the squared-Hellinger distance between Pθ and Pθ ′ verifies (θ − θ ′)2 � h2(Pθ ,Pθ ′) � (θ − θ ′)2. In this context, the
existence of appropriate Hellinger tests follows from the works by Le Cam [32] and Birgé [3], see e.g. [4], Corollary 1.
Finally, the prior �K has a positive density in a neighborhood of θ0, the element of the simplex corresponding to f

[K]
0 ,

since all parameters αε are strictly positive. Conclude that the posterior in model PK converges in the total variation
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distance∥∥�K [· |X] ◦ τ−1 − N(0,�K)
∥∥

TV →P
f

[K]
0 0,

where �K is the inverse Fisher information matrix in the model PK at θ0, the element of the simplex in R
2K

with
coordinates θ0,j = F0(Ji) (recall that one may identify the simplex � with a subset of R2K−1, dropping out the last
coordinate, as usual; also, (�K)i,j = θ0,i1i=j − θ0,iθ0,j ) and

τ : θ → √
n(θ − θ̂K),

with θ̂K := (NX(J1)/n, . . . ,NX(J2K−1)/n) = (Pn(J1), . . . ,Pn(J2K−1)).
Deduce that, in the model PK , for any real numbers b1, . . . , b2K , the posterior distribution of

√
n

2K∑
i=1

bi(θi − θ̂i ) = √
n

2K−1∑
i=1

(bi − b2K )(θi − θ̂i )

converges to (b· − b2K )T �K(b· − b2K ). This coincides with

EP0

(
GP0

2K∑
i=1

bi1Ji

)2

= VarP0

(
2K∑
i=1

bi1Ji

)
.

Indeed, rewriting the expression using 1 = ∑2K

i=1 1Ji
,

VarP0

(
2K∑
i=1

bi1Ji

)
= VarP0

(
2K−1∑
i=1

bi1Ji
+ b2K

(
1 −

2K−1∑
i=1

1Ji

))

=
∑

1≤i,j≤2K−1

(bi − b2K )(bj − b2K )CovP0(1Ji
,1Jj

),

where

CovP0(1Ji
,1Jj

) =
∫ (

1Ji
− P0(Ji)

)(
1Ji

− P0(Ji)
)
dP0

= 1i=j θ0,i − θ0,iθ0,j = (�K)i,j ,

recalling that here θ0 is the vector of θ0,i = F0(Ji) = P01Ji
, which leads to

VarP0

(
2K∑
i=1

bi1Ji

)
= (b· − b2K )T �K(b· − b2K ).

By Cramér-Wold, this shows that the left hand-side of (22) converges in distribution to a centered normal limit, with
the same covariance structure as that of the right-hand-side of (22), in P0-probability. This establishes (28), with
centering Tn given by (11). Instead of centering at the empirical counts, one can also center at the posterior mean, as
can be checked by a simple computation (this also follows from the bound on f̄lk − f̂lk obtained below and applied
for finite l ≤ J ).

Tightness. One now needs to check (29). We will exploit several intermediate results obtained along the proof of
Theorem 1. Those are obtained under a specific choice of al that depends on the regularity of f0. Nevertheless, it is
easy to check that most statements in that proof remain valid when al is one of the two sequences in (9), provided the
cut-off level Ln is redefined, for each choice as in (9), as in (12)–(13), namely

2Ln := Jn := ⌊
n

1
1+2δ

⌋
or 2Ln := Jn :=

⌊(
n

logn

) 1
1+2δ

⌋
,
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respectively. The events B on the data-space and A from the proof of Theorem 1 are redefined accordingly, using this
definition of Ln.

In particular, we will repeatedly use the bound, established in the proof of Theorem 1, on the set A and on B, for
any l ≤ Ln,

∣∣∣∣ P̃ (Iε)

P̄ (Iε)
− 1

∣∣∣∣ �

√
Ln2l

n
�

√
Ln2Ln

n
= o(1). (23)

Note that establishing this bound did not require any specific smoothness conditions on f0.
We apply Lemma 8 below. First we note that one can work with the posterior conditioned to the set A, that is

�[· |X,A]. This is allowed thanks to Remark 2 below Lemma 8. Along the proof, one can go back to the original
posterior by using �[· |X,A] = �[· ∩A |X]�[A |X]−1. As �[A |X] = 1 + oP (1), this does not affect the following
argument. To simplify the notation, in the sequel we omit the conditioning on A when writing posterior quantities.

The quantity under expectation on the left-hand side of (29) in Lemma 8 is ‖f − f̄ Ln‖M0(z), that we split into
‖f Ln − f̄ Ln‖M0(z) and ‖f Lc

n‖M0(z). We have, for say M > 1, and EX denoting expectation under the posterior,

EX

[√
nmax

l≤Ln

z−1
l max

k
|flk − f̄lk|

]

≤ M +
∫ ∞

M

�
[√

nmax
l≤Ln

z−1
l max

k
|flk − f̄lk| > u

∣∣ X
]
du

≤ M +
∑

l≤Ln,k

∫ ∞

M

�
[|flk − f̄lk| > uzl/

√
n

∣∣ X
]
du.

The difference flk − f̄lk can be bounded in terms of P̃ (Iε) and Y s: using the identities linking the function f to the
variables Y s obtained in the proof of Theorem 1, one obtains

|flk − f̄lk| ≤
∣∣∣∣1 +

[
P̃ (Iε)

P̄ (Iε)
− 1

]∣∣∣∣2l/2+1P̄ (Iε)|Ȳε0 − Ỹε0| +
∣∣∣∣ P̃ (Iε)

P̄ (Iε)
− 1

∣∣∣∣|f̄lk|

� 2−l/2|Ȳε0 − Ỹε0| +
∣∣∣∣ P̃ (Iε)

P̄ (Iε)
− 1

∣∣∣∣|f̄lk|

=: (a) + (b),

where to bound the first term we have used (23) and the fact that P̄ (Iε) � 2−l holds on B thanks to Lemma 1 (which,
again, holds for the adapted choices of (al) and Ln as above, and α in the statement replaced by δ). We now bound
(a) and (b) successively.

On the event B, the variable Ỹε0 is Beta-distributed, with parameters that are within constants of nF0(Iε0) and
nF0(Iε1) respectively. Both are thus bounded above and below by multiples of n2−|ε| = n2−l . It now follows from
Lemma 6 that, for u ≥ M > 1,

�

[
(a) ≥ zl

2
√

n
u

∣∣∣ X

]

≤ �

[
|Ỹε0 − Ȳε0| ≥ 2

l
2 zl

4
√

n
u + 2

l
2 zl

4
√

n

∣∣∣ X

]

≤ �

[
|Ỹε0 − Ȳε0| ≥ 2

l
2 zl

4
√

n
u + 2

n2−l

∣∣∣ X

]

� e−Cz2
l u

2
,

where the second inequality holds because zl � 8/(n2−l)1/2 uniformly in l ≤ Ln, for n large enough.
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We now deal with the term (b) and use the following intermediate bound obtained in the proof of Theorem 1, on B,

|f̄lk| ≤ |f0,lk|
{

2lal+1

n
+

√
Ln2l

n

}
+

√
Ln

n
.

Note that the last bound is always smaller than C2−l/2 for l ≤ Ln. So, when we evaluate the posterior probability

�

[∣∣∣∣ P̃ (Iε)

P̄ (Iε)
− 1

∣∣∣∣|f̄lk| > zl

2
√

n
u

∣∣∣ X

]
,

one can assume that u ≤ √
nc02−l/2z−1

l , for c0 an arbitrarily small fixed constant, otherwise the posterior probability
in the last display is 0 (recall that (23) implies that the term in factor of |f̄lk| in the last display goes to 0). Denote

Ai (u) =
{
f : ∣∣Ỹ [i]

ε (f ) − Ȳ [i]
ε

∣∣ ≤ uzl

√
2i

n

}
.

Denoting Pr as a shorthand for �[· |X],

Pr

(⋂
i≤l

Ai (u)

)
≤ Pr

(
f ∈

⋂
i≤l

Ai (u),
∑
i≤l

∣∣Ỹ [i]
ε (f ) − Ȳ [i]

ε

∣∣ ≤ C
2

l
2 zl

2
√

n
u

)

≤ Pr

(
f ∈

⋂
i≤l

Ai (u),
∑
i≤l

∣∣∣∣ Ỹ
[i]
ε (f )

Ȳ
[i]
ε

− 1

∣∣∣∣ ≤ C′ 2
l
2 zl

2
√

n
u

)

≤ Pr

(∣∣∣∣∣
l∏

i=1

Ỹ
[i]
ε (f )

Ȳ
[i]
ε

− 1

∣∣∣∣∣ ≤ C′ 2
l
2 zl

2
√

n
u

)
,

where we have used that Ȳ
[i]
ε is bounded away from 0 and 1, as follows from Lemma 2, and for the last inequality we

have used Lemma 3 together with the fact that uzl(2i/n)1/2 ≤ c0 can be made as small as desired for c0 small enough.
This implies, using again that |f̄lk| � 2−l/2, that

�

[
(b) >

zl

2
√

n
u

∣∣∣ X

]

≤ �

[∣∣∣∣ P̃ (Iε)

P̄ (Iε)
− 1

∣∣∣∣ >
2

l
2 zl

2
√

n
u

∣∣∣ X

]

≤
l∑

i=1

�
[
Ai (u)c |X] ≤ le−cz2

l u
2
,

as for the term (a) above.
Combining the obtained bounds on (a) and (b) leads to, for some c > 0,

EX

[√
nmax

l≤Ln

z−1
l max

k
|flk − f̄lk|

]

� M +
∑

l≤Ln,k

l

∫ ∞

M

e−cz2
l u

2
du

� M +
∑
l≤Ln

l2le−cz2
l M

2
.
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The last quantity is bounded as soon as M is chosen large enough (note that the previous bound holds in probability,
since we work on the event B and have restricted to the set A with �[A |X] = 1 + oP (1)).

Now we focus on bounding the part l > Ln. Proceeding as in the proof of Theorem 1, one can obtain bounds for
EX[maxk |flk|]. First, using Lemma 5,

EX

[|1 − 2Ỹε0|R
]
�

(
CR

al

)R
2 +

(
C

n2−l(1+α) + Ml

al

)R

.

From this via (21) and as in the proof of Theorem 1 it follows

EX

[
max

k
|flk|

]
� 2−l/2

[(
l

al

)1/2

+ n2−l(1+α) + Ml

al

]
2cl/ log2 n. (24)

We distinguish the two cases δ ≤ α and δ > α. In the undersmoothing case δ ≤ α, the first term in the last bracket
dominates, as n2−l(1+α) � Ml and Ml ≤ (lal)

1/2, since both δ ≤ α and l > Ln. From this we directly deduce that, on
the event B, when δ ≤ α, and for any {zl} with zl ≥ √

l,

EX

[√
n max

l>Ln

z−1
l max

k
|flk|

]

�
√

n
∑
l>Ln

z−1
l

√
l2−l/2a

−1/2
l 2cl/ log2 n

�
√

n
∑
l>Ln

2−l/2a
−1/2
l ,

which is bounded by 1 for both choices of (al) in (9) given our choice of Ln. Also, as EXflk = f̄lk and

√
n max

l>Ln

z−1
l max

k
|f̄lk| ≤ EX

[√
n max

l>Ln

z−1
l max

k
|flk|

]
,

the bound in the last but one display also holds with a different constant when flk is replaced by flk − f̄lk .
In the oversmoothing case δ > α, the first term in the bracket in (24) dominates if n2−l(1+α) + Ml = o(a

1/2
l ). This

is the case for l ≥ λn, for λn := C log2 n with C large enough. So for l ≥ λn, one can use the same argument as in the
case δ ≤ α. For Ln ≤ l ≤ λn, one should work with flk − f̄lk as a whole instead of separating both terms. It follows
from (19) that

flk − f̄lk = −2l/2+1P̃ (Iε)(Ỹε0 − Ȳε0) + 2l/2(P̃ (Iε) − P̄ (Iε)
)
(1 − 2Ȳε0)

= −2l/2+1P̃ (Iε)(Ỹε0 − Ȳε0) +
[
P̃ (Iε)

P̄ (Iε)
− 1

]
f̄lk

= (i) + (ii).

As Ȳε0 = EX[Ỹε0], the term (i) nearly coincides with flk , except that the bias has been substracted from Ỹε0, so one
can use (21) combined with the estimate of E|Y − EY |R obtained in Lemma 5. This leads to the same estimate as in
the undersmoothing case, that is

EX

[√
n max

l>Ln

z−1
l max

k

∣∣(i)∣∣] �
√

n
∑
l>Ln

2−l/2a
−1/2
l � 1.

For the term (ii), to control the term P̃ (Iε)/P̄ (Iε)− 1, one proceeds as in the proof of Theorem 1, extending the event
A to an event A′ on which, for T large enough to be chosen below,

∣∣Ỹ [i]
ε − Ȳ [i]

ε

∣∣ ≤ T
L

1/2
n√

nF0(I
[i]
ε ) + ai

=: ρ[i]
ε ,
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for any i ≤ |ε| and any ε such that |ε| ≤ λn. As in the proof of Theorem 1, one checks that, on the event B,

�
[(
A′)c |X]

�
∑
l≤λn

2le−CT 2 logn = o
(
e−cT 2 logn

)

for T large enough, as well as the fact that on A′ and on the event B,

∣∣∣∣ P̃ (Iε)

P̄ (Iε)
− 1

∣∣∣∣ �
l−1∑
i=0

ρ[i]
ε �

l−1∑
i=0

L
1/2
n√

n2−i + ai

�

√
Ln2Ln

n
,

since we are in the regime l > Ln (one also uses the fact that Ȳ
[i]
ε is bounded away from 0 and 1 for both i ≤ Ln and

i > Ln). Using the expression (ii) one deduces

EX

[√
n max

Ln<l<λn

z−1
l max

k

∣∣(ii)∣∣1A′
]

�
√

n

√
Ln2Ln

n
max

Ln<l<λn

z−1
l max

k
|f̄lk|

≤
√

Ln2LnEX

[
max

Ln<l<λn

z−1
l max

k
|flk|

]
.

Next one bounds the maximum in l by the sum and uses the general bound (24). This shows that the display is a o(1).
Finally, using the rough bound (ii) ≤ C2l ≤ C2λn and bounding probabilities and Ȳε by 1, one gets on B

EX

[√
n max

Ln<l<λn

z−1
l max

k

∣∣(ii)∣∣1A′c
]

�
√

n2λn�
[(
A′)c |X] = o(1)

as �[(A′)c |X] can be made an arbitrary large power of n−1 by choosing T large enough.
Gathering the bounds obtained for l ≤ Ln and l > Ln leads to (29) with centering at the posterior mean. This proves

the first assertion of Theorem 3.
To derive the second assertion of Theorem 3, first note that 〈Tn,ψlk〉 = 〈Pn,ψlk〉 equals f̂lk := 2l/2(F̂ (Iε1) −

F̂ (Iε0)) := 2l/2(NX(Iε1) − NX(Iε0)), for ε = ε(l, k) and l ≤ Ln. It suffices to show that ‖f̄ Ln − f̂ Ln‖M0(z) is a
oP (n−1/2).

Given indexes l, k, and ε = ε(l, k), we have f̄lk = 2l/2P̄ (Iε)(1 − 2Ȳε0). On the other hand,

f̂lk = 2l/2(F̂ (Iε1) − F̂ (Iε0)
) = 2l/2F̂ (Iε)

(
1 − 2

F̂ (Iε0)

F̂ (Iε)

)
.

One controls the difference f̄lk − f̂lk in a similar way as for f̄lk − f0,lk in the proof of Theorem 1. Similar con-
siderations as in Lemmas 1 and 2, but this time with F̄ (Iε) playing the role of P0(Iε), lead to, on the event B as
before,

|f̄lk − f̂lk| � 2l

n
al |f̄lk| + 2

l
2 F̂

(
I l
k

)
2

3l
2 nal+1

√
Ln

n

� 2l

n
al |f̄lk| +

(
2−l +

√
Ln

n

)
22l

n
al+1

√
Ln

n

� 2l

n
al |f0,lk| + 2l

n
al+1

√
Ln

n
,

where we have used that |f̄lk| � (2lal/n)|f0,lk| + √
Ln/n on B, as in the proof of Theorem 1.

Consider the case al = 22lδ , the case al = l22lδ being dealt with similarly. The last term in the above display
verifies,

max
l≤Ln

[
z−1
l

2l

n
al+1

√
Ln

n

]
≤ z−1

Ln

2Ln

n
aLn+1

√
Ln

n
= o

(
n−1/2).
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As |f0,lk| � 2−l(1/2+α), deduce, when δ ≤ α, on the event B,

∥∥f̄ Ln − f̂ Ln
∥∥
M0(z)

� max
l≤Ln

[
z−1
l

2l

n
22lδ2−l( 1

2 +δ)

]
� 2Ln( 1

2 +δ)

√
Lnn

= o
(
n−1/2). �

Appendix: Remaining proofs

A.1. Proof of Proposition 1

One follows the steps of the proof of Theorem 1. The cut-off is taken equal to the cut-off ln in (12). For low frequencies
l ≤ ln, one uses the same arguments as in the proof of Theorem 1 with the new cut-off, similar to what is done in the
proof of Theorem 3. For high-frequencies, one separates f

lcn
0 and f lcn . For the latter, one uses Lemma 5 and this time

both terms on the right-hand side of the inequality in Lemma 5 matter, depending on how large l is. The proof is
largely similar to that of Theorem 1, so details are left to the reader.

A.2. Proof of Theorem 2

Proof. One applies Theorem 4 in [7], in the space M0(z), where we take the sequence (zl) to be zl = 2l/2/l2, and
the centering Tn = f̂ Ln , with f̂ defined in the proof of Theorem 3 above. To do so, let us check that the conditions of
Theorem 4 in [7] are satisfied. By definition

∑
l zl2−l/2 is finite. Also, it follows from (the proof of) Theorem 3 that

the posterior recentered at f̄
Ln
n satisfies the Bernstein–von Mises theorem in M0(z). One now checks that, for the

above choice of zl , one has ‖f̄ Ln − f̂ Ln‖M0(z) = oP (1). This is done in a similar way as in the proof of Theorem 3.
The difference is in the estimate involving f0: the last estimate in that proof then becomes

max
l≤Ln

[
z−1
l

2l

n
22lδ2−l( 1

2 +α)

]
� 2Ln( 1

2 +δ)

n
L2

n2Ln(δ−α− 1
2 ).

As δ < α + 1/2, this bound is a oP (n−1/2), which leads to the first statement of Theorem 2. The second statement
follows from the fact that, by a direct computation one can show that

√
n‖F̂ Ln

n − Fn‖∞ is a oP (1) whenever δ <

α + 1/2, as in the proof leading to Remark 9 in [20]. �

A.3. An event of small probability

Let Bl be the collection of events defined by, for l ≥ 0 and a sequence Ln → ∞,

Bl =
{

max
0≤k<2l

∣∣NX

(
I l
k

) − nF0
(
I l
k

)∣∣ ≤ M

(√
l + Ln

√
n

2l
∨ (l + Ln)

)}
.

Lemma 4. Let X1, . . . ,Xn be i.i.d. of density f0 on [0,1], with f0 bounded away from 0 and infinity. Then for M

large enough and any Ln → ∞, as n → ∞,

P n
f0

[⋃
l≥0

Bc
l

]
= o(1).

Proof. For given fixed indexes k, l ≥ 1, Bernstein’s inequality applied to the variables 1{Xi∈I l
k} gives the bound, for

y > 0,

P n
f0

[∣∣NX

(
I l
k

) − nF0
(
I l
k

)∣∣ > ny
] ≤ 2 exp

(
− n2y2/2

nF0(I
l
k)(1 − F0(I

l
k)) + ny/3

)

≤ 2 exp

(
− Cny2

2−l + y

)
.
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Set ny = nyn to be the term appearing on the right hand side of the ≤ sign in the definition of Bl . There are two regimes
for the index l, depending on which one of the quantities in the maximum on the right hand side of the definition of
Bl dominates. In each of the regimes, the last display is bounded by C′e−CM(l+Ln), for any k. Conclude using that∑

l 2le−CM(l+Ln) = o(1) for large M . �

A.4. Lemmas on Beta variables

Lemma 5. There exist universal constants a0,R0, c1 such that, for any a ≥ a0, any integer R ≥ R0 and d a real
number such that |d| ≤ a/2, if Y follows a Beta(a, a + d) distribution,

E|1 − 2Y |R ≤ 2R−1
[∣∣∣∣EY − 1

2

∣∣∣∣
R

+ E|Y − EY |R
]

≤ (c1d/a)R + (c1R/a)R/2

Proof. The first inequality follows by convexity of u → uR on R
+. For the first term on the right hand side one uses

that by definition of Y , |2EY − 1| = d/(2a + d) ≤ d/(3a). For the second term, one writes

E|Y − EY |R = R

∫ ∞

0
P
[|Y − EY |R ≥ u

]
up−1 du

≤ R

(
2

2a + d

)R

+ R

∫ ∞
2

2a+d

P
[|Y − EY |R ≥ u

]
up−1 du.

The last integral is bounded by, using Lemma 6 below and 1/3 ≤ a/(2a + d) ≤ 1/2, and denoting s = 2a + d ,∫ ∞

0
P

[
|Y − EY |R ≥ w√

s
+ 2

s

](
w√
s

+ 2

s

)R−1
dw√

s

≤ 1√
s

∫ ∞

0

(
w√
s

+ 2

s

)R−1

De− w2
4 dw

≤ C2R

[
s− R

2

∫ w

0
wR−1e− w2

4 dw + s
1
2 −R

]
.

By the standard formula on absolute moments of normal variables,∫ w

0
wR−1e− w2

4 dw � �

(
R − 1

2

)
C

R
2 � (CR)

R
2 .

Combining the previous bounds leads to the result. �

Lemma 6. Let ϕ,ψ belong to (0,∞). Let Z follow a Beta(ϕ,ψ) distribution. Suppose, for some reals c0, c1,

0 < c0 ≤ ϕ/(ϕ + ψ) ≤ c1 < 1, (25)

ϕ ∧ ψ > 8. (26)

Then there exists D > 0 depending on c0, c1 only such that for any x > 0,

P

[∣∣Z − E[Z]∣∣ >
x√

ϕ + ψ
+ 2

ϕ + ψ

]
≤ De−x2/4.

Remark 1. The bound in Lemma 6 can be read as a sub-Gaussian bound on Beta variables with ‘balanced’ (ϕ and
ψ are roughly of the same order via (25)) and ‘large enough’ (via (26)) parameters. Under (26) and if x ≥ 1, which
is the case for the applications considered here, the term 2/(ϕ + ψ) can always be absorbed in the first term, up to a
change in the constants.
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Proof. The density of Z can be written eg/
∫ 1

0 eg , where for u ∈ (0,1),

g(u) = (ϕ − 1) logu + (ψ − 1) log(1 − u).

The mean of Z is E[Z] = ϕ/(ϕ + ψ) and its mode m is the mode of g on (0,1), noting that g has a unique maximum
on (0,1) if (26) is assumed. Solving g′(m) = 0 and simple algebra reveal that

∣∣E[Z] − m
∣∣ =

∣∣∣∣ ϕ − ψ

(ϕ + ψ − 2)(ϕ + ψ)

∣∣∣∣
≤ 2

ϕ + ψ

|ϕ − ψ |
ϕ + ψ

≤ 2

ϕ + ψ
.

That is, to prove the inequality, it is enough to bound

P
[|Z − m| > B

] =
∫
|u−m|>B

eg(u) du∫ 1
0 eg(u) du

,

where B ≡ B(x) = x/
√

ϕ + ψ . To do so, we bound numerator and denominator in the last expression by deriving two
bounds on g.

The first bound is g(u) − g(m) < −(ϕ + ψ)(u − m)2/4, for any u in (0,1), which follows from Taylor’s formula
together with the fact that

−g′′(u) = ϕ − 1

u2
+ ψ − 1

(1 − u)2
>

(ϕ + ψ)

2

(
u−2 ∧ (1 − u)2) >

ϕ + ψ

2
.

The second bound controls g close to m. First suppose m ≤ 1/2 and let us bound g on J := (m,m + 1/
√

ϕ + ψ). We
claim that J is contained in (c0/(1 + 8−1),3/4). The right boundary follows from combining m ≤ 1/2 and (26). The
left boundary is obtained from

m = ϕ + 1

ϕ + ψ + 2
≥ ϕ

ϕ + ψ

1

1 + 8−1
≥ c0

1 + 8−1
,

where the first bound uses (26) and the second bound uses (25). Now for any u in J , we may write g(u) = g(m) +
g′′(ζ )(u − m)2/2, for some ζ ∈ J . But∣∣g′′(ζ )

∣∣ ≤ (ϕ + ψ)
(
ζ−2 + (1 − ζ )−2).

Using the previous bounds on the endpoints of J , one deduces that∣∣g(u) − g(m)
∣∣ ≤ c, ∀u ∈ J,

where c depends on c0 only. In the case that m > 1/2, we instead bound g on J ′ := (m − 1/
√

ϕ + ψ,m). Using the
symmetric bound

m ≤ 1 − ψ

ϕ + ψ

1

1 + 8−1
≤ 1 − 1 − c1

1 + 8−1
,

one has J ′ ⊂ (1/4,1 − (1 − c1)/(1 + 8−1)) from which we deduce as before that |g(u) − g(m)| ≤ c′ for any u ∈ J ′,
where c′ depends on c1 only.

Combining the previous bounds, one obtains, in the case m ≤ 1/2,

P
[|Z − m| > B

] ≤
∫
|u−m|>B

e−(ϕ+ψ)(u−m)2/4 du∫
J

e−c du

≤ ec

∫
|v|>x

e−v2/4 dv ≤ De−x2/4,
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for D large enough, using the standard bound
∫ ∞
x

e−u2
du ≤ Ae−x2

, for any x > 0 and a universal constant A. The
case m > 1/2 follows similarly. �

A.5. Membership to L2 and L∞

Lemma 7. Let � be the distribution on densities generated by a Pólya tree with parameters αε = al , for any |ε| = l

and l ≥ 0, and some sequence (al)l≥0. Under condition (4), that is

∞∑
l=0

a−1
l < ∞,

a density f drawn from � belongs to L2[0,1], �-almost surely. In other words �[f : ∫ 1
0 f 2 < ∞] = 1. Under the

stronger condition that for some δ > 1/2,

∞∑
l=0

2lδ a
−1/2
l < ∞,

a density f drawn from � belongs to L∞[0,1], �-almost surely. Moreover, in this case, �-almost surely, f is also
(Lebesgue)-almost everywhere the sum of its Haar wavelet series. Also, all these statements hold under the posterior
distribution �[· |X] as well.

Proof. For convergence in L2, it is enough to check that the sequence (flk), with flk = 〈f,ψlk〉 the Haar wavelet
coefficients of f , is square integrable �-a.s., which is implied if

E

[∑
l,k

f 2
lk

]
< ∞,

where E denotes the expectation under the prior distribution. From the expression (19), for Iε = Iε(l,k) one gets
E(f 2

lk) = 2lE[P(Iε)
2]E(1 − 2Yε0)

2, and

E
[
P(Iε)

2] =
l−1∏
i=0

1

2

ai + 1

2ai + 1
= 2−2l

l−1∏
i=0

1 + a−1
i

1 + (2ai)−1
≤ 2−2le

∑l−1
i=0 a−1

i ,

as well as E(1 − 2Yε0)
2 = 4 Var(Yε0) = 1/(2al + 1). Deduce that the expectation at stake is finite as soon as (4) holds.

For the supremum norm, one first checks that the series

∑
l≥1

2l∑
k=1

flkψlk

is normally converging �-almost surely. For this it is enough to verify, as ‖∑
k |ψlk|‖∞ ≤ 2l/2, that, denoting by E

the expectation under the prior distribution,

E

[∑
l

2l/2 max
k

|flk|
]

< ∞.

Using Hölder’s inequality, and next bounding the maximum by the sum, this expectation is bounded, for some R > 1,
by

∑
l

2l/2

[
2l−1∑
k=0

E|flk|R
] 1

R

≤
∑

l

2l

[
2l−1∑
k=0

EP(Iε(l,k))
RE|1 − 2Yε(l,k)0|R

] 1
R

.
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The first expectation in the last display is bounded proceeding as for the L2 norm above, but using the formula for the
Rth moment of a Beta variable instead of the second. This yields

EP(Iε(l,k))
R =

l−1∏
i=0

R−1∏
r=0

αi + r

2αi + r
= 2−lR

R−1∏
r=0

l−1∏
i=0

1 + r/αi

1 + r/(2αi)

≤ 2−lR
R−1∏
r=0

e
∑l−1

i=0 r/αi ≤ 2−lReCR2
.

For the second expectation to evaluate, we use Lemma 5 with a = al and d = 0 to obtain E|1 − 2Yε(l,k)0|R ≤
(c1R/al)

R/2. Combining the previous bounds one obtains that the considered expectation is bounded by

∑
l

2l
(
2l2−lRecR2

(c1R/al)
R/2)1/R �

∑
l

2l/R ecR

a
1/2
l

√
R.

Taking R = C
√

l, the last sum converges by assumption, which shows normal convergence �-almost surely. Deduce
that the Haar-wavelet series of f �-a.s. converges in L∞, to an element say g ∈ L∞. As the wavelet series converges
in L2 to f by the first part of the proof, deduce that

∫
(f − g)2 = 0, so that f = g a.e. That is, f belongs to L∞

and coincides with the sum of its wavelet series almost everywhere, �-almost surely. Finally, the statement about
the posterior distribution follows from the fact that, under (4), the Pólya tree posterior is absolutely continuous with
respect to the prior, see e.g. [9]. �

A.6. Weak convergence and BvM phenomenon in M0(w)

Convergence in distribution of random variables Xn →d X in a metric space (S, d) can be metrised by metrising weak
convergence of the induced laws L(Xn) to L(X) on S. Here we work with the bounded-Lipschitz metric βS : Let μ,ν

be probability measures on (S, d) and define

βS(μ, ν) ≡ sup
F :‖F‖BL≤1

∣∣∣∣
∫

S

F (x)
(
dμ(x) − dν(x)

)∣∣∣∣, (27)

‖F‖BL = sup
x∈S

∣∣F(x)
∣∣ + sup

x �=y,x,y∈S

|F(x) − F(y)|
d(x, y)

.

Lemma 8 (Proposition 6 in [7]). Let πVJ
, J ∈ N, be the projection operator onto the finite-dimensional space

spanned by the ψlk’s with scales up to l ≤ J . Let f ∼ �(·|X), Tn = Tn(X), let �̃n denote the laws of
√

n(f − Tn)

conditionally on X. Assume that the finite-dimensional distributions converge, that is,

βVJ

(
�̃n ◦ π−1

VJ
,GP0 ◦ π−1

VJ

) →P0 0, as n → ∞, (28)

for all J ∈ N, and that for some sequence z = (zl) ↑ ∞, zl/
√

l ≥ 1,

E
[
sup

l

z−1
l max

k

∣∣〈f − Tn,ψlk〉
∣∣ ∣∣ X

]
= OP0

(
1√
n

)
. (29)

Then, for any w such that wl/zl ↑ ∞ we have, as n → ∞,

βM0(w)(�̃n,GP0) →P0 0.

Remark 2. The result still holds true if f ∼ �(·|X) is replaced by f ∼ �̄(· |X) for random measures �̄(· |X) s.t.

βM0

(
�̄(· |X),�(· |X)

) →P0 0
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as n → ∞. Likewise, the posterior can be replaced by the conditional posterior �(· |X,Dn) for any sequence of sets
Dn such that �(Dn |X) →P0 1.
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