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Abstract. We consider a system of independent random walks in a common random environment. Previously, a hydrodynamic
limit for the system of RWRE was proved under the assumption that the random walks were transient with positive speed (Electron.
J. Probab. 15 (2010) 1024–1040). In this paper we instead consider the case where the random walks are transient but with a
sublinear speed of the order nκ for some κ ∈ (0,1) and prove a quenched hydrodynamic limit for the system of random walks
with time scaled by n1/κ and space scaled by n. The most interesting feature of the hydrodynamic limit is that the influence of the
environment does not average out under the hydrodynamic scaling; that is, the asymptotic particle density depends on the specific
environment chosen. The hydrodynamic limit for the system of RWRE is obtained by first proving a hydrodynamic limit for a
system of independent particles in a directed trap environment.

Résumé. Nous considérons un système de particules indépendantes évoluant dans un milieu aléatoire commun. Auparavant, la
limite hydrodynamique de ce système de particules en milieu aléatoire a été obtenue quand les particules sont transientes avec
une vitesse positive (Electron. J. Probab. 15 (2010) 1024–1040). Dans cet article nous considérons le cas où les particules sont
transientes mais ont une vitesse sous-linéaire d’ordre nκ pour κ ∈ (0,1) et nous montrons l’existence d’une limite hydrodynamique
du système de particules avec une échelle du temps n1/κ et une échelle spatiale n. La propriété la plus intéressante de cette limite
hydrodynamique est que le milieu n’est pas moyenné par la limite ; c’est-à-dire, la densité asymptotique des particules dépend de
la réalisation du milieu choisi. La limite hydrodynamique du système de particules est déduite à partir de la limite hydrodynamique
d’un système de particules indépendantes dans un milieu aléatoire dirigé.

MSC: Primary 60K35; secondary 60K37
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1. Introduction

1.1. Overview and significance of the main results

In this section we give an informal discussion of the main results of this article in terms of a simple model. More
rigorous definitions and a more general setting can be found in subsequent sections.

Let us consider the following simple model of a random walk in random environment. We have two types of unfair
coins, A and B . Coins of type A have heads probability p > 1

2 and coins of type B have heads probability q < 1
2 .
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Initially we associate to each site of the lattice Z a coin of one of the types A and B with equal probability. Then we
run a simple random walk in the following way. When the walk is at site x, it flips the coin associated to x. It moves
to the right if the coin gets heads and to the left if the coin gets tails. Let us call (Xn)n≥0 the Markov chain obtained
in this way. It will be useful to introduce the parameters r = 1−p

p
and s = 1−q

q
. In [18], it is proved that (Xn)n≥1 is

transient to the right as soon as p + q > 1 (that is, rs < 1), and that the asymptotic speed of the chain is equal to
zero if r + s ≥ 2, see (2) below. When the walk is transient to the right with asymptotic speed zero (i.e., rs < 1 and
r + s ≥ 2), there exists a parameter κ ∈ (0,1) such that rκ + sκ = 2. If log r

log s
is irrational (the so-called non-lattice

condition), the scaling limit

lim
n→∞

Xn1/κ t

n

exists in the weak quenched sense, see [4,5,13,14]. The scaling limit is a process we call directed trap process. In
one sentence, the directed trap process is a Markov process in R generated by the (random) operator d

dσ
, where σ is

a realization of a κ-stable subordinator. The random subordinator σ can be understood as the weak scaling limit of
the random environment. Our aim in this article is to answer the following question: what can we say about a system
of independent random walks following the evolution described above on a common random environment? We will
prove that the hydrodynamic limit of this system of particles is given by the PDE

∂u

∂t
=− du

dσ
, (1)

where the right-hand side of (1) represents the operator d
dσ

applied to the function x �→ u(t, x) for t fixed. One of the
striking features of this hydrodynamic limit is the dependence of the limiting equation on the random environment (that
is, the operator d

dσ
appearing in the PDE is random). This features is not new in the literature; similar results have been

proved in [6,9], and our result is a natural follow-up. However, one important difference in terms of hydrodynamic
limits with [6,9] is that our limiting equation is hyperbolic, while the equations in [6,9] are diffusive. This is not evident
from the scaling exponents of the equations, but a closer look at the proofs of the hydrodynamic limits in [6,9] reveal
the use of tools commonly used in the proof of diffusive hydrodynamic limits. Somehow this is summarized by the
self-adjointness of the operators d

dx
d
dσ

, d
dσ

d
dx

with respect to suitable Hilbert spaces. Since the limiting equation in
the current paper is hyperbolic, the techniques from the previous papers do not seem applicable and we instead prove
a hydrodynamic limit by a series of couplings with progressively simpler systems of particles.

In proving the hydrodynamic limit of the system of independent particles, we need to establish various properties of
the limiting equation (1) which are interesting in their own right. The point is that it is not necessarily clear in which
sense the probability density function associated to the directed trap process satisfies the proposed hydrodynamic
equation. This is a delicate point which is of independent interest and we devote a considerable part of this article
to answer this question. The same problem is already present in [6,9] and the answer in these three cases (ours and
theirs) are different.

1.2. Transient random walks in random environment

The main object of study in this paper is a system of independent one-dimensional random walks in a common random
environment. First we recall the standard model of one-dimensional random walks in a random environment. In this
model an environment is a sequence ω= {ωx}x∈Z ∈ [0,1]Z =:�. For a fixed environment ω and any x ∈ Z, a random
walk in the environment ω started at x is a Markov chain (Xn)n≥0 with distribution P x

ω defined by

P x
ω(X0 = x)= 1, and P x

ω(Xn+1 = z |Xn = y)=
{

ωy if z= y + 1,
1−ωy if z= y − 1,
0 otherwise.

A RWRE is constructed by first choosing an environment ω according to some probability measure P on (�,F)

(where F is the natural Borel σ -field) and then generating a random walk in the environment ω as above. Oftentimes
we will be interested in the case X0 = 0 and so we will use the notation Pω instead of P 0

ω . The measure Pω of the
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random walk conditioned on the environment ω is called the quenched law of the RWRE. By averaging over the law
P on environments one obtains the averaged law P(·)=EP [Pω(·)].

A system of independent RWRE can be constructed as follows. First, let ω be chosen according to the fixed measure
on environments P . Then, for the fixed environment ω we can let {(Xx,j

n )n≥0}x∈Z,j≥1 be an independent family of

random walks in the environment ω such that X
x,j

0 = x for every x ∈ Z and j ≥ 1. In a slight abuse of notation we
will let Pω be the quenched joint distribution of all of the random walks. Also, at times we will be interested in the
path of a single random walk started from x and so we will use Xx

n instead of X
x,1
n in these cases.

While the above construction enables us to start infintely many random walks at every point, we will be interested
in the case where there are finitely many random walks started at every x ∈ Z. We will let χ0(x) denote the number
of random walks initially started at location x ∈ Z and will refer to χ0 = {χ0(x)}x∈Z as the initial configuration. If we
only follow the paths of these particles then the configuration after n steps χn = {χn(x)}x∈Z is given by

χn(x)=
∑
y∈Z

∑
j≤χ0(y)

1{Xy,j
n =x}.

For a fixed environment ω, if the initial configuration of particles χ0 has distribution μ ∈M1(Z
Z+), where M1(Z

Z+)

is the space of probability measures on Z
Z+, then we will denote the quenched law of the system of particles by

P
μ
ω . In much of what follows below we will be interested in cases where the measure on initial configurations de-

pends on the environment ω. That is, we will allow for μ = μ(ω) to be a measurable function from � to the space
M1(Z

Z+) equipped with the topology of weak convergence of probability measures. For such initial configurations
depending on the environment it makes sense to define the averaged measure on the system of random walks by
P

μ(·)=EP [P μ(ω)
ω (·)].

The main goal of the current paper will be to prove a hydrodynamic limit theorem for the system of independent
RWRE. In this paper we will make the following assumptions on the distribution P on the environment ω.

Assumption 1. The distribution P on the environment is such that ω= {ωx}x∈Z is an i.i.d. sequence.

Many of the properties of RWRE can be stated in terms of the distribution of the statistic ρx := 1−ωx

ωx
of the

environment. To this end, our second assumption is the following.

Assumption 2. EP [logρ0]< 0.

It is known that under Assumptions 1 and 2 the RWRE are transient to the right [18]. In addition, Solomon proved
in [18] the following result on the limiting speed of RWRE satisfying Assumptions 1 and 2.

P

(
lim

n→∞
Xn

n
= v0

)
= 1, where v0 =

{
1−EP [ρ0]
1+EP [ρ0] if EP [ρ0]< 1,
0 if EP [ρ0] ≥ 1.

(2)

In [12], the following hydrodynamic limit was proved under the additional assumption that the RWRE are ballistic
(that is, v0 > 0 or equivalently EP [ρ0]< 1).

Theorem 1.1 (Theorem 1.4 in [12]). Let Assumptions 1 and 2 hold, and additionally assume that EP [ρ0]< 1 so that
the limiting speed v0 > 0. Let C0 be the set of continuous functions on R with compact support. If there is a bounded
function u0(x) and a sequence of initial configurations {χn

0 }n≥1 such that

lim
n→∞

1

n

∑
x∈Z

χn
0 (x)φ

(
x

n

)
=
ˆ
R

u0(x)φ(x) dx, ∀φ ∈ C0, (3)

then for any fixed t > 0

lim
n→∞

1

n

∑
x∈Z

χn
nt (x)φ

(
x

n

)
=
ˆ
R

u0(x − tv0)φ(x) dx, ∀φ ∈ C0. (4)
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The limits (3) are either both almost sure limits under the averaged measure or limits in probability under the quenched
measure (for almost every environment ω).

In this paper we will be interested in studying systems of RWRE that are transient but with a sublinear speed (i.e.,
v0 = 0). As noted in (2) above, RWRE that are transient to the right have v0 = 0 if and only if EP [ρ0] ≥ 1, but for our
results we will need to assume the following slightly stronger assumption.

Assumption 3. There exists κ ∈ (0,1) such that EP [ρκ
0 ] = 1.

We will also need the following technical assumptions.

Assumption 4. logρ0 is a non-lattice random variable under the distribution P on environments, and EP [ρκ
0 logρ0]<

∞ where κ is the parameter from Assumption 3.

Remark 1.2. For RWRE that are transient to the right (i.e., EP [logρ0]< 0) the parameter κ > 0 defined by EP [ρκ
0 ] =

1 plays a major role in many of the known results (note that in some of these results the parameter κ ≥ 1). For instance,
κ determines the rates of decay of both the averaged and quenched large deviation slowdown probabilities [3,7], and
in the limiting distributions proved in [10] both the scaling and the type of limiting distribution are determined by the
parameter κ . For instance, Assumptions 1–4 imply that

lim
n→∞P

(
Xn

nκ
≤ x

)
= 1−Lκ

(
x−1/κ

)
, ∀x > 0,

where Lκ is the distribution function for a totally skewed to the right κ-stable random variable.

Remark 1.3. The technical conditions in Assumption 4 are needed to obtain certain precise tail asymptotics that are
needed for our results. These technical conditions were also needed for the averaged limiting distributions of transient
RWRE in [10] and also more recently for the results on the weak quenched limiting distributions in [4,5,13,14].

1.3. Hydrodynamic limits for systems of RWRE

For any environment ω, define

gω(x)= 1

ωx

(1+ ρx+1 + ρx+1ρx+2 + ρx+1ρx+2ρx+3 + · · ·). (5)

If the distribution on environments satisfies Assumptions 1 and 2, then it can be shown that gω(x)=Eω[∑n≥01{Xx
n=x}]

for P -a.e. environment ω – that is, gω(x) is the expected number of times the random walk started at x visits x (in-
cluding the visit at time 0). The functions gω are useful for constructing stationary distributions for the systems of
independent RWRE in the environment ω. To this end, for any α > 0 let μ̄α(ω) ∈M1(Z

Z+) be defined by

μ̄α(ω)=
⊗
x∈Z

Poisson
(
αgω(x)

)
.

It was shown in [12] (see also [2]) that μ̄α(ω) is a stationary distribution for the system of RWRE for any α > 0. That
is,

P μ̄α(ω)
ω (ηn ∈ ·)= P μ̄α(ω)

ω (η0 ∈ ·)= μ̄α(ω)(·), ∀n≥ 0,

for P -a.e. environment ω.
The hydrodynamic limit proved in this paper will describe the behavior of the system of particles when the initial

configurations are what may be considered “locally stationary”. For a continuous function u :R→[0,∞) and ω ∈�

and n≥ 1 fixed let μn
u(ω) ∈M1(Z

Z+) be the measure on configurations given by

μn
u(ω)=

⊗
x∈Z

Poisson

(
u

(
x

n

)
gω(x)

)
. (6)
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We call these configurations locally stationary because the distribution of the configuration in a small neighborhood
of x ≈ yn is approximately the same under μn

u(ω) and μ̄u(y)(ω).
If EP [ρ0] < 1 (equivalently κ > 1), then it follows from Assumption 1 that EP [gω(x)] = 1+EP [ρ0]

1−EP [ρ0] = v−1
0 <∞.

From this it is easy to see that if χn
0 is a sequence of initial configurations with χn

0 ∼ μn
u(ω), then the configurations

χn
0 satisfy the condition (3) for the hydrodynamic limit when EP [ρ0]< 1 (if κ > 1 then the limit holds in probability

with respect to the quenched measure; if κ > 2 then it can be shown that the limit holds almost surely with respect
to the averaged measure). Informally, this says that by scaling space by n and giving each particle a mass of n−1, the
empirical distribution of particles converges to the deterministic measure v−1

0 u(x)dx.
If κ ≤ 1 then EP [gω(x)] =∞, and so one can no longer hope for condition (3) to hold when the initial configura-

tions have distribution μn
u(ω). However, it will follow from our main results below that when κ ∈ (0,1),

lim
n→∞P

μn
u

(
1

n1/κ

∑
x

χ0(x)φ(x/n) ∈ ·
)
= P

(ˆ
R

u(x)φ(x)σW (dx) ∈ ·
)

, ∀φ ∈ C0, (7)

where σW = {σW(x)}x∈R is a two-sided κ-stable subordinator with distribution P.

Remark 1.4. In a slight abuse of notation, we will use σW(x) to denote a non-decreasing càdlàg function of x with
σW(0)= 0 and will use σW(dx) to denote the corresponding measure on R given by σW((a, b])= σW(b)−σW (a). We
explain briefly the notation σW used here and in the rest of the paper. Under the measure P, W is non-homogeneous
Poisson point process on R × (0,∞) with intensity measure λy−κ−1 dx dy for some λ > 0 and then the measure
σW(dx) is defined by σW(A)=˜

A×(0,∞)
y W(dx dy).

Remark 1.5. Note that (7) differs from (3) in two respects. First of all, the necessary scaling gives mass n−1/κ to
each particle, and secondly the limiting scaled empirical measure is a random measure u(x)σW (dx) instead of a
deterministic measure.

Remark 1.6. A proof of (7) can be obtained with a little bit of work using results from [4]. However, we will not give
this argument here since this will also follow from the proof of our main result below where we will show a similar
convergence for the empirical measure of the system of random walks as they evolve.

Our main result in this paper is a hydrodynamic limit for systems of RWRE when κ ∈ (0,1).

Theorem 1.7. Let Assumptions 1–4 hold with κ ∈ (0,1), and let u be a nonnegative, continuous function with compact
support on R. Then, for any function φ(t, x) on R+ ×R that is continuous with compact support,

lim
n→∞P

μn
u

(
1

n1/κ

ˆ ∑
x

χtn1/κ (x)φ

(
t,

x

n

)
dt ∈ ·

)
= P

(¨
uW(t, x)φ(t, x)σW (dx)dt ∈ ·

)
,

where σW is a two-sided κ-stable subordinator with distribution P and where the function uW(t, x) satisfies uW(0, ·)≡
u(·) and

− ∂

∂t
uW (t, x)=

{
limh→0−

uW (t,x+h)−uW (t,x)
σW (x+h)−σW (x)

if t = 0,

limh→0
uW (t,x+h)−uW (t,x)

σW (x+h)−σW (x)
if t > 0,

∀x ∈ JW, (8)

where JW = {x : σW(x)− σW(x−) > 0} is the set of the locations where σW has a jump.

Remark 1.8. Both uW and σW are defined in Section 2 in terms of a point process W =∑
k δ(xk,yk) on (0,∞)×R

(in the proof of Theorem 1.7 W will be a random Poisson point process with intensity measure λy−κ−1 dx dy).
The function σW in Theorem 1.7 is then identified with the atomic measure

∑
k ykδxk

on R with support JW =
{xk}k , and the function uW is defined probabilistically in (14) using a stochastic process which evolves on JW .
This probabilistic formulation defines uW(t, x) for all x ∈ R in such a way that it is càdlàg in x with jumps only
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Fig. 1. A simulation of the function uW (t, x) which appears in statement of Theorem 1.7 (and also in Theorem 2.8 below). The top left frame is
a Poisson point process W on R× (0,∞) with intensity measure y−κ−1 dy dx with κ = 0.7. The succeeding frames show the function uW (t, x)

at times t = 0,0.25,0.5,0.75, and 1.0, respectively, when the initial configurations are given by the function u(x)= x(1− x)1{x∈[0,1]} . For this
simulation, a truncated point process was simulated on R× [0.001,∞) and since this point process has only finitely many atoms a corresponding
approximation of uW can then be calculated by solving a finite system of ordinary differential equations related to the differentiability properties
of uW in (8).

at points x ∈ {xk}k = JW . Moreover, using this probabilistic formulation, it is shown in Section 3 that the size of
the jump uW(t, xk)− uW(t, xk−) is proportional to yk = σW(xk)− σW(xk−). A simulation of the function uW(t, x)

demonstrating these properties is shown in Figure 1.

Remark 1.9. The hydrodynamic limit in Theorem 1.7 is somewhat non-standard in that the limiting empirical mea-
sure of the particles is described by a random measure uW(t, x)σW (dx). As will be seen from the proof of the theorem,
the reason for this is that the effect of the environment ω does not “average out” in the hydrodynamic scaling. We note
that somewhat similar results in which the environment survives in the hydrodynamic limit were obtained previously
for systems of independent particles in the Bouchaud trap model [9] and also for the exclusion process with random
conductances [6].

Remark 1.10. Hydrodynamic limits of particle systems are typically described as solutions of some fixed PDE.
However, the differentiability properties of the function uW given in (8) suggest that the empirical configuration of
particles is asymptotically described by the solution to a random PDE of the form (1); the randomness in the PDE
comes from the Poisson point process W and is analogous to the randomness of the environment ω in which the
random walkers are moving in. Note that since uW(0, ·)= u(·) is continuous and σW(·) is discontinuous at points in
JW the right-hand side of (8) equals 0 in the case t = 0. We state (8) using a limit instead in this case to make the
connection with the PDE (1) more clear.

We suspect that the differentiability properties in (8), together with the initial condition uW(0, ·)≡ u(·) uniquely
characterizes the function uW(t, x). However, instead of characterizing the function uW as a solution to a PDE of
some sort we will define uW probabilistically in Section 2 using what we will call a directed trap process. The
differentiability properties in (8) will then be proved in Section 3. Finally, in Appendix A we show that if we also
assume that the function u(x) is of bounded variation then the function uW(t, x) is in fact the unique solution to a
random PDE which depends on the point process W .

We give now a brief outline of how we will prove Theorem 1.7. Several recent works [4,5,13,14] have shown
that the behavior of RWRE under Assumptions 1–4 are similar to the behavior of a much simpler process which we
will call a directed trap process. We define the directed trap process in Section 2 and state an analog of Theorem 1.7
for systems of independent particles in a common trap environment. Due to the simple nature of the directed trap
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processes, one would expect the proof of the hydrodynamic limit to follow easily. However, a difficulty arises in that
the natural limiting directed trap process has traps that are spatially dense in R. Thus, a bit of work is required to
properly define the function uW and to prove the corresponding differentiability properties like in (8). After proving
the differentiability properties of the function uW in Section 3 we then prove the hydrodynamic limit for directed
traps (Theorem 2.8) in Section 4. In Section 5 we recall some of the tools that were introduced in [13,14] for cou-
pling a RWRE with an associated directed trap process. These techniques are then adapted in Section 6 to couple
entire systems of independent RWRE in a common environment with an associated system of independent directed
trap particles in a common trap environment. This comes close to proving the hydrodynamic limit as stated in Theo-
rem 1.7, but the natural coupling of the RWRE system with a directed trap system leads to a system of RWRE that is
different from those in Theorem 1.7. In particular, the natural coupling requires both a change in the distribution P on
environments and initial configurations that are different from the locally stationary configurations μn

u(ω) defined in
(6). Proving that these two changes to the system of RWRE do not affect the hydrodynamic limit requires significant
technical effort and is accomplished in Section 7.

1.4. Notation and technical details

We close the Introduction by introducing some notation and discussing some technical details that will be used
throughout the remainder of the paper. Throughout this subsection, we will use � to denote a generic Polish space.

1.4.1. Functions
The set of functions f : � → R that are continuous with compact support will be denoted by C0(�), and C+0 (�)⊂
C0(�) will denote the subset of such functions that are also non-negative. In the case that � =R we will write C0 and
C+0 instead of C0(R) and C+0 (R), respectively.

If � has a metric d�(x, y) and f :�→R is a real-valued function on � , then we will use the notation

�(f ; δ)= sup
d�(x,y)≤δ

∣∣f (x)− f (y)
∣∣ (9)

for the modulus of continuity of f . The supremum in the definition of �(f ; δ) is of course restricted to x, y in the
domain of the function f . Note that we do not assume that the function f is continuous in defining the modulus of
continuity. However, recall that if f is uniformly continuous (for instance, if f ∈ C0) then �(f ; δ)→ 0 as δ→ 0.

1.4.2. Measures and point processes
The space of non-negative Radon measures on � will be denoted by M+(�) (recall that Radon measures are finite on
compact subsets). We will equip M+(�) with the usual vague topology. The reader is referred to [16] for more details
on the vague topology, but we simply recall here that a sequence of Radon measures μn converges to μ ∈M+(�) if
and only if limn→∞〈f,μn〉 = 〈f,μ〉 for all f ∈ C0(�), where here and throughout the paper we will use the notation

〈f,μ〉 =
ˆ

�

f (x)μ(dx)

to denote integration of f with respect to the measure μ. Also, we note that the vague topology is compatible with a
metric that makes M+(�) a Polish space.

If � is also locally compact, we will use Mp(�) ⊂M+(�) to denote the subset of M+ consisting of point
processes on �; that is purely atomic measures of the form

∑
i δxi

, where δxi
denotes the Dirac-delta measure at the

point xi ∈� . Since point processes are Radon measures, there are only finitely many atoms in each compact subset
of � , and since we have assumed that � is a locally compact Polish space we can conclude that any point process
only has countably many atoms. Therefore, we may (and will often) enumerate the atoms of the point process by
the set of integers Z. The only point processes that will appear in the remainder of the paper will be on the space
� = R× (0,∞]. Thus, for the remainder of the paper we will simply write Mp in place of Mp(R× (0,∞]). Note
that [−L,L] × [ε,∞] is a compact subset of R× (0,∞] and thus any point process M ∈Mp will have only finitely
many atoms in [−L,L] × [ε,∞].
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1.4.3. Path spaces
If I ⊂ R is a connected subset of R, a real-valued function x : I → R is called càdlàg if it is right continuous with
left limits. We will use the notation x(t−)= lims→t− x(s) for the value of the left limit at t ∈ I . The collection of all
càdlàg paths x : I →� will be denoted DI .

There are many topologies that can be placed on the path space DI (see [19]), and in this paper we will at times
use two different topologies: the Skorohod J1-topology3 and the uniform topology. When we wish to indicate that
a particular topology is being used we will use the notation DJ

I or DU
I to denote DI equipped with the Skorohod

J1-topology or the uniform topology, respectively. We refer the reader to [1] or [19] for the details of the Skorohod
J1-topology and the uniform topology, and will simply recall here some important properties of these topologies that
we will use.

• The Skorohod J1-topology is compatible with a metric that makes DJ
I into a Polish space.

• The uniform topology is stronger than the Skorohod J1-topology. However, if a sequence of paths xn → x in the
space DJ

I and the limiting path x is continuous, then it follows that xn→ x in DU
I as well.

1.4.4. Asymptotic notation
For sequences {fn}n and {gn}n of real numbers with gn > 0 for all n, we will use the following notation for comparing
the asymptotics of these sequences as n→∞.

• fn =O(gn) if lim supn→∞ |fn|/gn <∞.
• fn = o(gn) if limn→∞ fn/gn = 0.
• fn ∼ gn if limn→∞ fn/gn = 1.

2. Directed traps and systems of independent directed traps

The proof of the hydrodynamic limit in Theorem 1.7 will be obtained by comparing the system of RWRE with a
system of particles in a directed trap environment. In this subsection we will introduce the model of directed traps and
state a hydrodynamic limit for systems of independent particles in directed traps.

2.1. Directed traps

We begin by describing the model of directed traps. Recall that we are using the notation Mp for the space of point
processes on R× (0,∞]. A “trap environment” for a directed trap process is an element W =∑

k δ(xk,yk) ∈Mp . For
W fixed, we then wish to construct a directed trap process ZW with the following dynamics. When located at xk it
stays there for an Exp(1/yk) amount of time before moving to the next trap to the right. Of course, a complication
with this informal description arises if the set {xk}k of spatial trap locations is dense in R, for then there is no “next”
trap to the right. To account for this, we now define the following subset of Mp for which we can make the above
construction rigorous (including cases where the locations of the traps are dense in R).

Definition 1. The subset T ⊂Mp consists of all point processes W with the following properties:

1. W(R× {∞})= 0.
2. supx W({x} × (0,∞])= 1.
3. There exists an ε0 > 0 such that W((−∞,−L] × [ε0,∞))=W([L,∞)× [ε0,∞))=∞ for all L <∞.
4. For any fixed ε > 0 and L <∞,

¨
[−L,L]×(0,ε)

y W(dx dy)=
∑

k

yk1{|xk |≤L,yk<ε} <∞.

Point processes W ∈ T will be referred to as trap environments.

3There are several different Skorohod topologies, but the Skorohod J1-topology is the most commonly used and in fact is often just called the
Skorohod topology.
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Remark 2.1. We briefly explain the need for these three conditions in the definition of T . The first condition states
that there are no “infinite traps” and the second condition is that there is only one trap at each spatial location. The
final two conditions relate to the time it will take the process to cross an interval. The third condition ensures that there
are infinitely many traps larger than a fixed size in both spatial directions; thus the process will not be able to travel
an infinite distance in a finite amount of time. Finally, since there can be infinitely many “small traps” in an interval
[−L,L], the fourth condition will ensure that these traps are small enough so that the total time spent by the process
ZW in crossing the interval [−L,L] is finite.

Remark 2.2. Because there are (countably) infinitely many atoms (xk, yk) in a trap environment W ∈ T , we can
enumerate the trap environments by the index set Z. However, it should not necessarily be assumed that the atoms are
ordered with respect to this indicing. That is, we cannot necessarily assume that k < � implies that xk < x� (although
this will be the case for some trap environments we will consider later).

Definition 2. If W ∈ T is a trap environment, then we will define

JW =
{
x ∈R :W ({x} × (0,∞)

)
> 0

}
.

We will refer to JW as the set of trap locations for W .

Definition 3. If W ∈ T is a trap environment, then we will define the measure σW ∈M+(R) by

σW(A)=
¨

A×(0,∞)

y W(dx dy). (10)

We will refer to σW as the trap measure for W .

Remark 2.3. The fact that σW is a Radon measure for W ∈ T follows from the first and last properties in Definition 1.

We now show how to construct a directed trap process ZW for W ∈ T . Let {ζk}k∈Z be an i.i.d. family of Exp(1)
random variables, and let τW ∈M+(R) be the random measure on R given by

τW =
∑
k∈Z

ykζkδxk
.

Remark 2.4. The construction of τW above does not necessarily imply that τW ∈M+, but we claim that for almost
every instance of the exponential random variables {ζk} the construction does indeed give a Radon measure. To see
this, note that E[∑k∈Z ykζk1{|xk |≤L}] =∑

k yk1{|xk |≤L} = σW([−L,L]) <∞ for any L <∞. Therefore, it follows
that with probability one τW ([−L,L]) <∞ for all L <∞. That is, τW is indeed a non-negative Radon measure on
R. Therefore, we can define τW as above on a set of full probability and arbitrarily set τW to be Lebesgue measure on
the null set where the above construction does not give a Radon measure.

We are now ready to define the directed trap process ZW . The process ZW will move strictly to the right with speed
dictated by the measure τW in that τW (A) will be the total amount of time that the process ZW spends in the subset A.
To make this precise, for any x ∈R and t ≥ 0 we will define

ZW(t;x)= sup
{
x′ : τW

([
x, x′

))≤ t
}
. (11)

If the set JW , which marks to spatial locations of the traps, is nowhere dense in R then it is clear that {ZW(t;x)}t≥0
is a Markov process on the set JW which evolves in the manner described at the beginning of the section (i.e., waits
at xk for an Exp(1/yk) amount of time). On the other hand, if JW has limit points in R then it is more complicated to
prove that the construction (11) gives a Markov process. However, it is easy to see that this construction implies the
following fact which would correspond to an application of the strong Markov property.

ZW(t;x)=ZW

(
t + τW

([z, x)
); z), ∀z < x. (12)
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Additionally, the following properties of the process ZW follow easily from the definition in (11).

• For any fixed x ∈R, the process t �→ ZW(t;x) is non-decreasing and right continuous.
• The process ZW(t;x) starts at the “first trap” greater than or equal to x. That is,

ZW(0;x)= inf{y ≥ x : y ∈ JW }.

• The construction in (11) gives a natural coupling so that ZW(t;x)≤ ZW(t;y) whenever x ≤ y. Moreover, for any
fixed t > 0, ZW(t;x) is non-decreasing and left continuous in x.

An important special class of trap environments will be those trap environments with trap locations that are dense
in R.

Definition 4. The subset T ′ is the collection of all trap environments W ∈ T with the property that JW is dense in R.

The following additional properties are true for ZW when W ∈ T ′.
• If W ∈ T ′, then ZW(0;x)= x for all x ∈R.
• If W ∈ T ′, then ZW(t;x) is almost surely continuous in t for any fixed x. This follows from the fact that τW ([x, y))

is almost surely strictly increasing in y for any fixed x ∈R.

In addition to the directed trap process ZW defined above, we will also need to define an analogous process that
moves to the left instead. That is,

Z∗W(t;x)= inf
{
x′ : τW

((
x′, x

])≤ t
}
.

Of course similar properties that were stated above for ZW are also true for Z∗W . Similarly to (12), we have the
following strong Markov-like property.

Z∗W(t;x)=Z∗W
(
t + τW

(
(x, z]); z), ∀x < z. (13)

Other important properties which are slightly different from those for ZW are the following.

• For x ∈R fixed, Z∗W(t;x) is non-increasing and right continuous in t .
• Z∗W(0;x)= sup{y ≤ x : y ∈ JW }.
• For t > 0 fixed, Z∗W(t;x) is non-decreasing and right continuous in x.

The importance of the left-directed trap process Z∗W is that we will use it to define the function uW that appears in the
statement of Theorem 1.7 and also in the hydrodynamic limit for directed traps below. This function is defined by

uW(t, x)= E
[
u
(
Z∗W(t;x)

)]
. (14)

Clearly the above properties of Z∗W show that uW(0, x)= u(x) whenever W ∈ T ′. We will prove that uW(t, x) satisfies
the differentiability properties of (8) if W ∈ T ′ in Section 3 below.

2.2. Hydrodynamic limits for directed traps

The main goal of the current paper is to study systems of independent random walks in a common random environment
ω. In a similar manner, we will study systems of independent directed trap particles in a common trap environment
W . We will use notation that is similar to that which was used to define the systems of independent RWRE.

Let W ∈ T be a fixed trap environment, and fix an enumeration {(xk, yk)} of the atoms of W . Given this enumera-
tion of the traps let {(Zk,j

W (t))t≥0}k∈Z,j≥1 be an independent family of directed trap processes in the trap environment

W such that Z
k,j
W (·) Law= ZW(·;xk) for all k ∈ Z, j ≥ 1. As with the systems of RWRE, we will only start finitely

many particles at each xk , and we will use ηW
t to denote the configuration of particles at any time t ≥ 0. That is, we
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will fix a (random) initial configuration {ηW
0 (xk)}k∈Z according to a distribution that we will specify later. Then the

configuration ηW
t at any later time t > 0 will be given by

ηW
t (xk)=

∑
�∈Z

ηW
0 (x�)∑
j=1

1{Z�,j
W (t)=xk}, k ∈ Z, t ≥ 0.

We will be interested in proving a hydrodynamic limit for systems of independent directed trap processes in a
common trap environment. To obtain a limit, however, instead of re-scaling a fixed trap environment we will instead
assume that we have a sequence of trap environments Wn that converge to a trap environment W . Moreover, we will
assume that the limiting trap environment W is dense in R.

Assumption 5. {Wn}n≥1 ⊂ T is a sequence of point processes such that Wn →W ∈ T ′ as n→∞, where the con-
vergence is with respect to the vague topology on Mp(R× (0,∞]).

Remark 2.5. We will denote the atoms of Wn by {(xn
k , yn

k )}k∈Z to distinguish them from the atoms (xk, yk) of W .
That is, Wn =∑

k∈Z δ(xn
k ,yn

k ) and W =∑
k∈Z δ(xk,yk).

Since Wn ∈ T for every n≥ 1, the fourth condition in the definition of T implies that

lim
ε→0

¨
[−L,L]×(0,ε)

yWn(dx dy)= 0, ∀L <∞, n≥ 1.

However, we will need to assume the following uniform control on this convergence.

Assumption 6. The sequence {Wn}n≥1 of trap environments is such that

lim
ε→0

lim sup
n→∞

¨
[−L,L]×(0,ε)

y Wn(dx dy)= 0, ∀L <∞.

For a fixed sequence of trap environments Wn→W , we will use the notation ηn
t to denote the system of particles

in the trap environment Wn rather than the more cumbersome η
Wn
t . To obtain a hydrodynamic limit for the systems

of independent directed trap particles, we will need to make the following assumptions on the sequence of initial
configurations.

Assumption 7. There exists a sequence an→∞ and a function u ∈ C+0 such that for every n, the initial configuration
of the system ηn in the trap environment Wn =∑

k δ(xn
k ,yn

k ) is given by{
ηn

0

(
xn
k

)}
k∈Z is product Poisson with ηn

0

(
xn
k

)∼ Poisson
(
anu

(
xn
k

)
yn
k

)
. (15)

Remark 2.6. It can be seen that for any trap environment W =∑
k δ(xk,yk) and any α > 0 the configuration that is

product Poisson with η(xk)∼ Poisson(αyk) is a stationary configuration for the system of particles in the trap envi-
ronment W . Thus, the initial configurations given in (15) are analogous to the locally stationary initial configurations
μn

u for the systems of independent RWRE that were described above.

Remark 2.7. The sequence an is needed so that the number of particles in a fixed interval is unbounded as n→∞
and allows for a law of large numbers type result to be used. When we use Theorem 2.8 to prove results for systems
of RWRE the sequence an will be n1/κ .

We are now ready to state our main result for the hydrodynamics of systems of independent directed trap particles.

Theorem 2.8. Suppose that there are trap environments Wn→W ∈ T ′ as in Assumptions 5 and 6. Let the systems of
particles ηn in the trap environments Wn be constructed on a common probability space P so that the initial conditions
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given in Assumption 7 are satisfied for some u ∈ C+0 and some sequence an→∞. Then, for any φ ∈ C0(R+ ×R) we
have that

lim
n→∞

1

an

ˆ ∑
k∈Z

ηn
t

(
xn
k

)
φ
(
t, xn

k

)
dt =

ˆ ˆ
R

φ(t, x)uW (t, x)σW (dx)dt, in P-probability, (16)

where uW(t, x) is the function defined in (14).

Remark 2.9. The inner integral on the right-hand side in (16) is a Lebesgue integral. That is, using the representation
W =∑

k δ(xk,yk) we have
ˆ
R

φ(t, x)uW (t, x)σW (dx)=
∑
k∈Z

φ(t, xk)uW (t, xk)yk.

3. The function uW(t,x)

The main goal of this section will be to prove differentiability properties of the function uW(t, x) that arises in the
statement of the hydrodynamic limits in Theorems 1.7 and 2.8. Recall the definition of uW(t, x) in (14) for any trap
environment W ∈ T . The main goal of this section is to show some differentiability properties of uW , but we begin
with a few easy continuity properties.

Lemma 3.1. For any W ∈ T , the function uW(t, x) is right continuous with left limits in x for every t > 0 and
continuous in t for every x ∈R.

Proof. As noted above, it follows from the construction of the process Z∗W that

• t �→ Z∗W(t;x) is right continuous with left limits for any fixed x ∈R, and
• x �→ Z∗W(t;x) is right continuous with left limits for any fixed t > 0.

From these two facts and the bounded convergence theorem it follows that uW(t, x) is right continuous with left limits
in t for any fixed x and also right continuous with left limits in x for any fixed t .

To show that uW(t, x) is also left continuous in t , first note that (13) implies that

uW(t, x + h) = E
[
u
(
Z∗W(t;x + h)

)
1{τW ((x,x+h])>t}

]
+E

[
uW

(
t − τW

(
(x, x + h]), x)1{τW ((x,x+h])≤t}

]
. (17)

Since u (and thus also uW ) is bounded and τW ((x, x + h])→ 0 as h→ 0+, we can thus conclude from the Bounded
Convergence Theorem that

uW(t, x)= lim
h→0+

uW(t, x + h)= uW(t−, x),

where the first equality is from the right continuity in x that was proved above. This completes the proof that uW(t, x)

is continuous in t . �

Remark 3.2. If the trap environment W ∈ T ′, then the fact that uW(t, x) is continuous in t follows more easily from
the fact noted above that Z∗W(t;x) is continuous in t for any fixed x ∈R when W ∈ T ′.

Before proving the differentiability properties of uW , we need the following Lemma which gives a probabilistic
formulation for limh→0+ uW(t, x − h).

Lemma 3.3. Let Z◦W(t;x) = Z∗W(τW ({x}) + t;x). Informally, t �→ Z◦W(t;x) is the path of the (left) directed trap
process started just after leaving site x. Then,

u◦W(t, x) := E
[
u
(
Z◦W(t;x)

)]= lim
h→0+

uW(t, x − h), ∀t ≥ 0, x ∈R. (18)

Moreover, the function u◦W(t, x) is continuous in t for any fixed x ∈R.
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Remark 3.4. Note that if x /∈ JW , then τW ({x}) = 0 and so Z◦W(t;x) = Z∗W(t;x) and u◦W(t, x) = uW(t, x) for all
t ≥ 0.

Proof. The Markov-like property in (13) implies that

uW(t, x − h)= E
[
u
(
Z∗W

(
t + τW

((
x − h,x

]);x))].
The limit in (18) then follows from the Bounded Convergence Theorem along with the fact that τW ((x − h,x])→
τW ({x}) almost surely as h→ 0+ and Z∗W(·;x) is right continuous. If x /∈ JW , then it follows from Lemma 3.1 that
u◦W(t, x) is continuous in t since as noted in Remark 3.4 above u◦W(t, x) = uW(t, x) for all t ≥ 0 in this case. It
remains to show that u◦W(t, xk) is continuous in t for any fixed xk ∈ JW . However, for xk ∈ JW if we define the trap
environment W̃k =W − δ(xk,yk) (that is remove the trap at spatial location xk from the trap environment W ) then it
is easy to see that Z◦W(t, xk) = Z∗̃

Wk
(t, xk). Therefore, u◦W(t, xk) = uW̃k

(t, xk) and it follows from Lemma 3.1 that

u◦W(t, xk) is continuous in t . �

We are now ready to prove some differentiability properties of uW .

Proposition 3.5. For any W ∈ T , the function uW(t, xk) is differentiable in t for any xk ∈ JW and

∂

∂t
uW (t, xk)=− lim

h→0+
uW(t, xk)− uW(t, xk − h)

σW ((xk − h,xk]) , ∀xk ∈ JW, t ≥ 0. (19)

Moreover, if W ∈ T ′ then we also have

∂

∂t
uW (t, xk)=− lim

h→0+
uW(t, xk + h)− uW(t, xk)

σW ((xk, xk + h]) , ∀xk ∈ JW, t > 0. (20)

Proof. First of all, by conditioning on the value of τW ({xk})∼ Exp(1/yk) and recalling the definition of u◦W in (18)
we have that

uW(t, xk) = e−t/yku(xk)+
ˆ t

0

1

yk

e−s/yku◦W(t − s, xk) ds

= e−t/yku(xk)+ e−t/yk

ˆ t

0

1

yk

es/yku◦W(s, xk) ds. (21)

From this representation of uW(t, xk), and using the fact that u◦W(s, xk) is continuous in s, it is easy to conclude that
uW(t, x) is differentiable in t with derivative given by

∂

∂t
uW (t, xk)= −uW(t, xk)+ u◦W(t, xk)

yk

. (22)

The equality in (19) then follows from Lemma 3.3 and the fact that σW((xk − h,xk])→ yk as h→ 0+.
Before giving the proof of (20) when W ∈ T ′, we introduce some notation that will be convenient. For W and

xk ∈ JW fixed, let

τh = τW

(
(xk, xk + h])

and

σh = σW

(
(xk, xk + h]).

Since τh =∑
�:x�∈(xk,xk+h] y�ζ�, with ζ� i.i.d. Exp(1) random variables, it is easy to see that

E[τh] = σh and Var(τh)≤ σ 2
h . (23)
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Having introduced this notation, we now turn to evaluating the limit on the right-hand side of (20). To this end, we
first note that (17) implies

uW(t, xk + h)− uW(t, xk)

σh

= E[u(Z∗W (t;xk + h))1{τh>t}]
σh

− P(τh > t)uW (t, xk)

σh

−E
[
uW(t, xk)− uW(t − τh, xk)

σh

1{τh≤t}
]
. (24)

Since u and uW are uniformly bounded above, to show the first two terms on the right-hand side in (24) vanish as
h→ 0+ it is sufficient to note that

lim sup
h→0+

P(τh > t)

σh

≤ lim sup
h→0+

P(|τh − σh|> t − σh)

σh

≤ lim sup
h→0+

Var(τh)

σh(t − σh)2
= 0,

where in the last equality we used that Var(τh)≤ σ 2
h by (23) and that σh→ 0 as h→ 0+. It remains to show that the

last term on the right-hand side in (24) tends to− ∂
∂t

uW (t, xk) as h→ 0+. To this end, first note that (22) and the mean
value theorem imply that∣∣∣∣uW(t, xk)− uW(t − a, xk)

a

∣∣∣∣≤ 2‖u‖∞
yk

, for all a ∈ [0, t).

Since E[τh] = σh, we can conclude that∣∣∣∣E[uW(t, xk)− uW(t − τh, xk)

σh

1{τh≤t}
]
− ∂

∂t
uW (t, xk)

∣∣∣∣
=
∣∣∣∣E[uW(t, xk)− uW(t − τh, xk)

τh

τh

σh

1{τh≤t}
]
− ∂

∂t
uW (t, xk)E

[
τh

σh

]∣∣∣∣
≤ E

[∣∣∣∣uW(t, xk)− uW(t − τh, xk)

τh

− ∂

∂t
uW (t, xk)

∣∣∣∣ τh

σh

1{τh≤σ
1/2
h }

]
+ 4‖u‖∞

yk

E[τh1{τh>σ
1/2
h }]

σh

≤ sup
0<ε≤σ

1/2
h

∣∣∣∣uW(t, xk)− uW(t − ε, xk)

ε
− ∂

∂t
uW (t, xk)

∣∣∣∣+ 4‖u‖∞σ
1/2
h

yk

,

where in the last inequality we used that E[τh1{τh>σ
1/2
h }] ≤

E[τ2
h ]

σ
1/2
h

≤ 2σ
3/2
h . Since σh→ 0 as h→ 0+, both terms in the

last line above vanish as h→ 0+. Recalling (24), this completes the proof of (20). �

4. Proof of the hydrodynamic limit for directed traps

In this section we will give the proof of the hydrodynamic limit for the systems of independent directed trap particles
as stated in Theorem 2.8. As a first step toward the proof of the theorem, we prove the following lemma which helps
explain the appearance of the function uW(t, x).

Lemma 4.1. If W =∑
k δ(xk,yk) ∈ T is a trap environment and ηW

t is a system of independent trap particles with
initial configuration that is product Poisson with E[ηW

0 (xk)] = u(xk)yk , then for any t > 0 the configuration {ηW
t (xk)}k

is also product Poisson but with

E
[
ηW

t (xk)
]= uW(t, xk)yk.

Remark 4.2. Note that under the assumptions of Theorem 2.8 we have that

E
[
ηn

t

(
xn
k

)]= anuWn

(
t, xn

k

)
yn
k .

In this application we have replaced W by Wn and u(x) by anu(x).
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Proof. First of all, since the initial configuration is product Poisson and the particles all move independently then it is
a simple consequence of the thinning and superposition properties of Poisson random variables that the configuration
at any fixed later time is also product Poisson, so it only remains to prove the formula for E[ηW

t (xk)].
To this end, we first claim that the following time reversal property holds.

y�P
(
ZW(t;x�)= xk

)= ykP
(
Z∗W(t;xk)= x�

)
, if x� ≤ xk. (25)

Indeed, it is easy to see from the construction of the processes ZW and Z∗W that for any s ∈ [0, t],

P
(
ZW(t;x�)= xk|τW

(
(x�, xk)

)= s
)= ˆ t−s

0

1

y�

e−u/y�e−(t−s−u)/yk du,

and

P
(
Z∗W(t;xk)= x�|τW

(
(x�, xk)

)= s
) = ˆ t−s

0

1

yk

e−u/yk e−(t−s−u)/y� du

=
ˆ t−s

0

1

yk

e−(t−s−v)/yk e−v/y� dv,

where the last equality follows from the substitution v = t− s−u. Comparing these formulas and then averaging over
all possible values of τW ((x�, xk)) we obtain (25).

Next, since ηW
t (xk)=∑

�:x�≤xk

∑ηW
0 (x�)

j=1 1{Zj
W (t;x�)=xk}, by conditioning on the initial configuration it is easy to see

that

E
[
ηW

t (xk)
]= ∑

�:x�≤xk

E
[
ηW

0 (x�)
]
P
(
ZW(t;x�)= xk

)= ∑
�:x�≤xk

u(x�)y�P
(
ZW(t, x�)= xk

)
.

Applying (25) we then obtain that

E
[
ηW

t (xk)
]= ∑

�:x�≤xk

u(x�)ykP
(
Z∗W(t;xk)= x�

)= ykE
[
u
(
Z∗W(t;xk)

)]
,

which, recalling the definition of the function uW , is the claimed formula for the mean. �

Next we introduce some notation that we will use in the proof of Theorem 2.8. First of all, let

πn
t =

1

an

∑
k∈Z

ηn
t

(
xn
k

)
δxn

k

denote the re-scaled empirical measure of the particle configuration ηn
t . With this notation, the limit (16) in the state-

ment of Theorem 2.8 becomes

lim
n→∞

ˆ
R+

〈
φt ,π

n
t

〉
dt =

ˆ
R+

ˆ
R

φ(t, x)uW (t, x)σW (dx)dt, in P-probability, (26)

where on the left we use φt for the function φ(t, ·) for any t ≥ 0 fixed, and where 〈f,μ〉 denotes integration of a
function f with respect to a measure μ. One of the complicating factors in proving the limit in (26) is that since the
limiting trap environment W is dense in R there are infinitely many traps in every interval in the limit. We will get
around this difficulty by a standard truncation of the trap environment and then by controlling the error induced by
this truncation. To this end, for ε > 0 let

W(ε)
n =

∑
k∈Z

δ(xn
k ,yn

k )1{yn
k≥ε} and W(ε) =

∑
k∈Z

δ(xk,yk)1{yk≥ε}.
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We can then expand the measure P to also include systems of directed trap particles η
n,ε
t in the truncated environments

W
(ε)
n . The initial configurations for the systems in the truncated environments will again be product Poisson and

with η
n,ε
0 (xn

k )∼ Poisson(anu(xn
k )yn

k ) whenever the atom (xn
k , yn

k ) of Wn has yn
k ≥ ε, and the corresponding empirical

measure of the particle system will be denoted π
n,ε
t . We will use the truncated trap environments to prove Theorem 2.8

by first proving a hydrodynamic limit for the systems in the truncated trap environments. That is, we will show that

lim
n→∞

ˆ
R+

〈
φt ,π

n,ε
t

〉
dt =

ˆ
R+

ˆ
R

φ(t, x)uW(ε) (t, x)σW(ε) (dx) dt, in P-probability, (27)

for arbitrarily small ε > 0. In order to conclude that the corresponding limit (26) holds for the original sequence of trap
environments we then need to show that the errors introduced by the truncation of the trap environments are small.
That is, we will need to show that

lim
ε→0

sup
t≤T

∣∣∣∣ˆ
R

φ(t, x)uW(ε) (t, x)σW(ε) (dx)−
ˆ
R

φ(t, x)uW (t, x)σW (dx)

∣∣∣∣= 0, ∀T <∞, (28)

and that

lim
ε→0

lim sup
n→∞

P
(

sup
t≤T

∣∣〈φt ,π
n
t

〉− 〈φt ,π
n,ε
t

〉∣∣≥ δ
)
= 0, ∀δ > 0. (29)

In the proofs of (27)–(29), we will use that both u and φ have compact support. Thus, for the remainder of this
section we will fix constants L,T <∞ such that suppu⊂ [−L,L] and suppφ ⊂ [−L,L] × [0, T ] (clearly the limits
in (28) and (29) need only be proved for this choice of T ). Moreover, since W has only countably infinitely many
atoms we may choose the constant L so that W({−L,L} × (0,∞))= 0 (that is, there are no traps located at ±L in
W ).

4.1. Convergence for the truncated systems

In this subsection we will prove (27). The proof of (27) will follow from the following two lemmas.

Lemma 4.3. For almost every ε > 0,

lim
n→∞E

[ˆ
R+

〈
φt ,π

n,ε
t

〉
dt

]
=
ˆ
R+

ˆ
R

φ(t, x)uW(ε) (t, x)σW(ε) (dx) dt.

Lemma 4.4. For almost every ε > 0,

lim
n→∞Var

(ˆ
R+

〈
φt ,π

n,ε
t

〉
dt

)
= 0.

Proof of Lemma 4.3. First of all, let ε > 0 be such that W(R× {ε})= 0 (since W has countably many atoms, this
is true for all but countably many ε > 0). Therefore, by our above choice of L, the point process W does not have
any atoms on the boundary of [−L,L] × [ε,∞] and so the vague convergence of Wn to W implies that for all n large
enough the point process Wn has the same number of atoms in [−L,L] × [ε,∞] as W does and that the locations
of these atoms converge to the locations of the respective atoms in W (see [16, Proposition 3.13]). That is, letting
Nε,L =W([−L,L] × [ε,∞]) we can enumerate the atoms of Wn and W so that

W(ε)
n =

Nε,L∑
k=1

δ(xn
k ,yn

k ), W(ε) =
Nε,L∑
k=1

δ(xk,yk), and lim
n→∞

(
xn
k , yn

k

)= (xk, yk), ∀k ≤Nε,L. (30)

Moreover, we can choose the enumeration so that the traps are ordered spatially. That is

1≤ k < �≤Nε,L ⇒ xn
k < xn

� and xk < x�.
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Now, Lemma 4.1 (see also Remark 4.2) implies that

E
[ˆ

R+

〈
φt ,π

n,ε
t

〉
dt

]
=
ˆ
R+

E
[〈
φt ,π

n,ε
t

〉]
dt =

ˆ
R+

1

an

∑
k:yn

k≥ε

φ
(
t, xn

k

)
E
[
η

n,ε
t

(
xn
k

)]
dt

=
ˆ T

0

Nε,L∑
k=1

φ
(
t, xn

k

)
u

W
(ε)
n

(
t, xn

k

)
yn
k dt.

Also, note that

ˆ
R+

ˆ
R

φ(t, x)uW(ε) (t, x)σW(ε) (dx) dt =
ˆ T

0

Nε,L∑
k=1

φ(t, xk)uW(ε) (t, xk)yk dt.

Since φ is continuous, xn
k → xk , and yn

k → yk , we need only to show that

lim
n→∞ sup

t≤T

∣∣u
W

(ε)
n

(
t, xn

k

)− uW(ε) (t, xk)
∣∣= 0, ∀k ≤Nε,L. (31)

For convenience of notation, let vn
k (t)= u

W
(ε)
n

(t, xn
k ) and vk(t)= uW(ε) (t, xk). Then, it follows from Proposition 3.5

that the families of functions {vn
k }k≤Nε,L

and {vk}k≤Nε,L
are the solutions to the following systems of linear differential

equations.{
∂
∂t

vn
k (t)= vn

k−1(t)−vn
k (t)

yn
k

, k ≤Nε,L,

vn
k (0)= u(xn

k ), k ≤Nε,L,
and

{
∂
∂t

vk(t)= vk−1(t)−vk(t)

yk
, k ≤Nε,L,

vk(0)= u(xk), k ≤Nε,L,

where for convenience of notation we let vn
0 (t) ≡ v0(t) ≡ 0. Note that here we used the fact that we have ordered

the indices so that the traps are in increasing order and that the traps in the truncated environment are all separated
so that u◦W(t, xn

k ) = uW(t, xn
k−1). Since (xn

k , yn
k )→ (xk, yk) and the function u is continuous, the coefficients and

initial conditions of the system on the left-hand side converge to those for the system on the right-hand side. Thus, vn
k

converges uniformly to vk as n→∞ for each k ≤Nε,L, which is exactly what was to be shown in (31). �

Proof of Lemma 4.4. It follows from Lemma 4.1 that

Var
(〈
φt ,π

n,ε
t

〉) = Var
(

1

an

∑
k:yn

k≥ε

η
n,ε
t

(
xn
k

)
φ
(
t, xn

k

))

= 1

a2
n

∑
k:yn

k≥ε

Var
(
η

n,ε
t

(
xn
k

))
φ
(
t, xn

k

)2

= 1

an

∑
k:yn

k≥ε

u
W

(ε)
n

(
t, xn

k

)
yn
k φ
(
t, xn

k

)2 ≤ ‖u‖∞‖φ‖
2∞

an

σ
W

(ε)
n

([−L,L]).
Note that the last term on the right-hand side does not depend on t and vanishes as n→∞. Since

Var
(ˆ

R+

〈
φt ,π

n,ε
t

〉
dt

)
= Var

(ˆ T

0

〈
φt ,π

n,ε
t

〉
dt

)

=
ˆ T

0

ˆ T

0
Cov

(〈
φs,π

n,ε
s

〉
,
〈
φt ,π

n,ε
t

〉)
ds dt

≤ T 2
{

sup
t≤T

Var
(〈
φt ,π

n,ε
t

〉)}
,

this completes the proof of the lemma. �
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4.2. The error from truncating the limiting process

Here we will prove (28). To this end, first note that∣∣∣∣ˆ
R

φ(t, x)uW(ε) (t, x)σW(ε) (dx)−
ˆ
R

φ(t, x)uW (t, x)σW (dx)

∣∣∣∣
=
∣∣∣∣∑

k

ykφ(t, xk)
{
uW(ε) (t, xk)1{yk≥ε} − uW(t, xk)

}∣∣∣∣
≤
∑

k

yk

∣∣φ(t, xk)
∣∣∣∣uW(ε) (t, xk)− uW(t, xk)

∣∣1{yk≥ε} + ‖u‖∞
∑

k

yk

∣∣φ(t, xk)
∣∣1{yk<ε}

≤ ‖φ‖∞
∑

k:|xk |≤L

yk

∣∣uW(ε) (t, xk)− uW(t, xk)
∣∣1{yk≥ε} + ‖u‖∞‖φ‖∞

∑
k:|xk |≤L

yk1{yk<ε}.

Note that the last term on the right-hand side does not depend on t and vanishes as ε→ 0. Therefore, we need only to
show that

lim
ε→0

sup
t

sup
k:|xk |≤L

∣∣uW(ε) (t, xk)− uW(t, xk)
∣∣= 0.

To compare u
(ε)
W (t, xk) and uW(t, xk), we will couple the left-directed trap processes Z∗

W(ε) (t;xk) and Z∗W(t;xk) by
using the same exponential random variables ζk to generate the holding times at the traps with yk ≥ ε. Using this
coupling and the fact that suppu⊂ [−L,L] we have (recalling the notation � for the modulus of continuity from (9))
that ∣∣u(Z∗

W(ε) (t;xk)
)− u

(
Z∗W(t;xk)

)∣∣ ≤�
(
u; sup

t≤τ
W(ε) ((−L,xk])

∣∣Z∗
W(ε) (t;xk)−Z∗W(t;xk)

∣∣)
≤�

(
u; sup

t≤τ
W(ε) ((−L,L])

∣∣Z∗
W(ε) (t;L)−Z∗W(t;L)

∣∣). (32)

Now, let

τ
(L,ε)
W = τW

(
(−L,L])− τW(ε)

(
(−L,L])=∑

k∈Z
ykζk1{xk∈(−L,L],yk<ε},

so that τ
(L,ε)
W is how much less time it takes the process Z∗

W(ε) to cross from L to −L than it takes the process Z∗W to
do so. With the above coupling of Z∗W and Z∗

W(ε) it is then clear that

Z∗W
(
t + τ

(L,ε)
W ;L)≤ Z∗

W(ε) (t;L)≤Z∗W(t;L), ∀t ≤ τW(ε)

(
(−L,L]).

In particular, this implies that the supremum in (32) can be bounded by the maximum distance the process Z∗W(·;L)

travels during a time interval of length τ
(L,ε)
W before reaching −L. That is, using the notation

Z
(∗,L)
W (·)=max

{
Z∗W(·;L),−L

}
,

we have that∣∣u(Z∗
W(ε) (t;xk)

)− u
(
Z∗W(t;xk)

)∣∣≤�
(
u;�(Z(∗,L)

W ; τ (L,ε)
W

))
. (33)

Note that this bound is uniform over t and |xk| ≤ L. Therefore, it follows from (33) and the definition of the function
uW that

sup
t

sup
k:|xk |≤L

∣∣uW(ε) (t, xk)− uW(t, xk)
∣∣≤ E

[
�
(
u;�(Z(∗,L)

W ; τ (L,ε)
W

))]
. (34)
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Since τ
(L,ε)
W → 0 almost surely and since the process Z

(∗,L)
W is almost surely continuous (here we are using that

W ∈ T ′), decreasing, and bounded below we can conclude that

lim
ε→0

�
(
Z

(∗,L)
W ; τ (L,ε)

W

)= 0, P-a.s.

Then, since �(u; δ) is bounded and vanishes as δ→ 0, we can conclude by the bounded convergence theorem that
the right-hand side of (34) vanishes as ε→ 0. This finishes the proof of (28).

4.3. The error from the truncated systems

Here we will prove (29). First of all, we describe how we will couple the system ηn
t and η

n,ε
t . Clearly we can couple

the initial conditions by letting

η
n,ε
0

(
xn
k

)= {
ηn

0(xn
k ) if yn

k ≥ ε,
0 if yn

k < ε.

We will prove (29) by showing that the directed trap processes Z
k,j
Wn

and Z
k,j

W
(ε)
n

started at the locations with yk ≥ ε can

be coupled so that the differences are typically small, and then by showing that the number of particles in ηn
0 that start

at a trap with yn
k < ε do not contribute much to 〈φt ,π

n
t 〉 if ε > 0 is sufficiently small. As was done for the coupling of

Z∗W with Z∗
W(ε) in the previous section, we can couple Z

k,j
Wn

and Z
k,j

W
(ε)
n

by using the same exponential random variables

ζk to generate the waiting times at the traps with yn
k ≥ ε. With this coupling, then similarly to the proof of (34) in the

previous section we can show that

max
k:yn

k≥ε,|xn
k |≤L

E
[
sup

t

∣∣φ(t,Zk,j
Wn

(t)
)− φ

(
t,Z

k,j

W
(ε)
n

(t)
)∣∣]≤ E

[
�
(
φ;�(Z(L)

Wn
; τ (L,ε)

Wn

))]
,

where we use the notation

Z
(L)
Wn

(·)=min
{
ZWn(·;−L),L

}
and τ

(L,ε)
Wn

= τWn

([−L,L)
)− τ

W
(ε)
n

([−L,L)
)
.

Therefore, with this coupling of the two systems we have that

P
(

sup
t

∣∣〈φt ,π
n
t

〉− 〈φt ,π
n,ε
t

〉∣∣≥ δ
)

≤ P
(

1

an

∑
k:yn

k <ε

ηn
0

(
xn
k

)≥ δ

2‖φ‖∞
)

+ P

( ∑
k:yn

k≥ε

ηn
0 (xn

k )∑
j=1

sup
t

∣∣φ(t,Zk,j
Wn

(t)
)− φ

(
t,Z

k,j

W
(ε)
n

(t)
)∣∣≥ δan

2

)

≤ 2‖φ‖∞
δ

∑
k:yn

k <ε

u
(
xn
k

)
yn
k +

2

δan

∑
k:yn

k≥ε

E
[
ηn

0

(
xn
k

)]
E
[
�
(
φ;�(Z(L)

Wn
; τ (L,ε)

Wn

))]
≤ 2‖φ‖∞

δ

∑
k:yn

k <ε

u
(
xn
k

)
yn
k +

2

δ
E
[
�
(
φ;�(Z(L)

Wn
; τ (L,ε)

Wn

))] ∑
k:yn

k≥ε

u
(
xn
k

)
yn
k . (35)

Due to Assumption 6 and the fact that u is bounded and has compact support, the first term on the right-hand side will
vanish as n→∞ and then ε→ 0. For the second term on the right-hand side, note that Assumptions 5 and 6 imply
that

lim
ε→0

lim sup
n→∞

∑
k:yn

k≥ε

u
(
xn
k

)
yn
k =

ˆ
R

u(x)σW (dx) <∞.
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Therefore, the final sum on the right-hand side in (35) is uniformly bounded in ε and n, and so to finish the proof of
(29) we need only to show that

lim
ε→0

lim sup
n→0

E
[
�
(
φ;�(Z(L)

Wn
; τ (L,ε)

Wn

))]= 0.

To this end, since δ �→�(φ; δ) is uniformly bounded and vanishes as δ→ 0, it is enough to show that

lim
ε→0

lim sup
n→∞

P
(
�
(
Z

(L)
Wn
; τ (L,ε)

Wn

)
> δ′

)= 0, ∀δ′ > 0.

To prove this, note that for any ε′ > 0,

P
(
�
(
Z

(L)
Wn
; τ (L,ε)

Wn

)
> δ′

)≤ P
(
τ

(L,ε)
Wn

≥ ε′
)+ P

(
�
(
Z

(L)
Wn
; ε′)> δ′

)
. (36)

Since E[τ (L,ε)
Wn

] =∑
k yn

k 1{xn
k∈[−L,L),yn

k <ε}, it follows from Assumption 6 that the first term on the right-hand side in
(36) vanishes if we first let n→∞ and then ε→ 0 for any fixed ε′ > 0. For the last term on the right-hand side in
(36) we will need the following lemma whose proof we postpone for the moment.

Lemma 4.5. If Assumptions 5 and 6 hold, then Z
(L)
Wn

(·)=min{ZWn(·;−L),L} converges in distribution to Z
(L)
W (·)=

min{ZW(·;−L),L} in the space DU
R+ .

Since x �→�(x, ε′) is a continuous mapping from DU
R+ to R, it follows from Lemma 4.5 that

lim
n→∞P

(
�
(
Z

(L)
Wn
; ε′)> δ′

)= P
(
�
(
Z

(L)
W ; ε′)> δ′

)
,

and since Z
(L)
W (·) is almost surely continuous, the right-hand side can thus be made arbitrarily small by taking ε′ → 0.

This completes the proof of (29), pending the proof of Lemma 4.5.

Proof of Lemma 4.5. We claim that it is enough to show that

τWn

([−L, ·))�⇒ τW

([−L, ·)) on the space DJ[−L,L]. (37)

To see this, recall that the process ZWn(·;−L) was constructed by a time/space inversion of the process τWn([−L, ·)),
and note that this time/space inversion functional is continuous at paths that are strictly increasing (see [19, Corol-
lary 13.6.4]). Since the limiting trap environment W ∈ T ′, the process x �→ τW ([−L,x)) is strictly increasing and
then it follows from [19, Corollary 13.6.4] and (37) that Z

(L)
Wn

(·) converges in distribution to Z
(L)
W (·). Since the limit-

ing process Z
(L)
W (·) is continuous, this convergence can be taken with respect to the uniform topology.

To prove (37), first recall that for any ε > 0 such that W(R× {ε})= 0 (which is true for all but countably many
ε > 0) we can represent the truncated trap environments W

(ε)
n and W(ε) as in (30). From this representation it is easy

to see that for any such ε > 0 the process τ
W

(ε)
n

([−L, ·)) converges in distribution to the process τW(ε) ([−L, ·)) in the

space DJ[−L,L]. Since this is true for arbitrarily small ε > 0, (37) will follow if we can show that

lim
ε→0

sup
x∈[−L,L]

∣∣τW(ε)

([−L,x)
)− τW

([−L,x)
)∣∣= 0, in P-probability, (38)

and

lim
ε→0

lim sup
n→∞

P
(

sup
x∈[−L,L]

∣∣τ
W

(ε)
n

([−L,x)
)− τWn

([−L,x)
)∣∣≥ δ

)
= 0, ∀δ > 0. (39)

In both (38) and (39) we will couple τW(ε) with τW and τ
W

(ε)
n

with τWn by using the same exponential random variables
ζk at traps that are in both environments. In this way the supremum over x ∈ [−L,L] in both (38) and (39) is clearly
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achieved at x = L. From this coupling, it is clear that τW(ε) ([−L,L)) increases to τW ([−L,L)) as ε→ 0, P-a.s., and
thus (38) holds. To see that (39) holds, note that

P
(∣∣τ

W
(ε)
n

([−L,L)
)− τWn

([−L,L)
)∣∣≥ δ

)≤ 1

δ

∑
k

yk1{xn
k ∈[−L,L),yn

k <ε}.

Since Assumption 6 implies that this last sum vanishes as first n→∞ and then ε→ 0, this implies (39). �

5. The trap structure in RWRE

In this section we review how a trapping structure can be identified in the environment ω for a RWRE. This trapping
structure will then later be used to construct a system of independent particles in a directed trap environment that can
be effectively coupled with the system of independent RWRE. Several slightly different approaches have been used
recently to identify trapping structures within RWRE [4,5], but we will follow for the most part the approach and
terminology developed in [11,13–15] by the second author of the present paper.

We begin the identification of the trap structure of the environment by recalling the notion of the potential of the
environment, first introduced by Sinai in [17]. For any fixed environment ω, we can define the potential Vω : Z→ R

of the environment by

Vω(x)=
⎧⎨⎩
∑x−1

i=0 logρi if x ≥ 1,
0 if x = 0,
−∑−1

i=x logρi if x ≤−1.

Next, we will define a doubly-infinite sequence {νk}k∈Z that we will refer to as the ladder locations of the environment.
These will be defined by

ν0 = sup
{
x ≤ 0 : Vω(y) > Vω(x),∀y < x

}
,

νk = sup
{
x < νk+1 : Vω(y) > Vω(x),∀y < x

}
, ∀k ≤−1 (40)

νk = inf
{
x > νk−1 : Vω(x) < Vω(νk−1)

}
, ∀k ≥ 1.

The ladder locations of the environment serve to identify “traps” for the RWRE in the following manner. Since
EP [logρ0]< 0 by Assumption 2, the potential Vω of the environment is generally decreasing. However, there may be
atypical long intervals of the environment where the potential is instead increasing. Since a decreasing (or increasing)
potential indicates a local drift of the random walk to the right (or left), the atypical long intervals where the potential
is increasing act as barriers or traps that the random walk must overcome. The ladder locations νk are constructed so
that any interval where the potential is increasing must lie between two consecutive ladder locations νk and νk+1.

In order to prove the effective coupling of the RWRE with the related directed trap process, it is most convenient
to make a slight change in the law on environments that we are using. Let

Bk = (ωνk
,ωνk+1, . . . ,ωνk+1−1), k ∈ Z, (41)

be the “block” of the environment on the interval [νk, νk+1). It follows from the definition of the ladder locations and
Assumption 1 that {Bk}k∈Z is an independent sequence and that for any k �= 0 the block Bk has the same distribution
as

B̃0 = (ω0,ω1, . . . ,ων̃−1), where ν̃ = inf
{
x > 0 : Vω(x) < Vω(0)

}
. (42)

However, under the i.i.d. measure P on environments the block B0 containing the origin has a different distribution
than all the other blocks (this is an instance of the “inspection paradox”). We can make all the blocks between lad-
der locations have the same distribution by changing the distribution P on environments to the distribution Q on
environments defined by

Q(ω ∈ ·)= P
(
ω ∈ · | Vω(y) > 0,∀y < 0

)= P(ω ∈ · | ν0 = 0).
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The measure Q is stationary under shifts of the environment by the ladder locations in the following sense: if θ is the
natural left shift operator on environments so that (θyω)x = ωy+x for any y, x ∈ Z, then ω and θνkω have the same
distribution under Q for any k. The environment ω is no longer i.i.d. under the measure Q, but instead the blocks Bk

are i.i.d., all with the same distribution as B̃0 as defined in (42) (note that the distribution of B̃0 is the same under
the measures P and Q since the conditioning in the definition of Q only changes the environment to the left of the
origin).

Remark 5.1. The definition of the ladder locations given in (40) is slightly different from the one used in [11,13–15].
However, the distribution Q is the same as in those previous papers and under the measure Q the ladder locations are
the same in this paper as in the previous papers.

5.1. Coupling RWRE and directed traps

The coupling of the RWRE with a directed trap process is obtained through the hitting times of the processes. For a
RWRE Xn let the hitting times be defined by Tx = inf{n ≥ 0 : Xn = x} for any x ∈ Z. Since we expect the intervals
between ladder locations to serve as traps for the RWRE, to each such interval [νk, νk+1) we identify the (quenched)
expected crossing time as

βk = βk(ω)=Eνk
ω [Tνk+1], ∀k ∈ Z. (43)

Given an environment ω, we can thus use the parameters {βk(ω)}k∈Z and the ladder locations {νk}k∈Z to define a trap
environment. That is, we will define the point process B=B(ω) by

B=
∑
k∈Z

δ(νk,βk). (44)

Techniques were developed in [13,14] for coupling a random walk in the environment ω with a directed trap process in
the trap environment B (we will explain this more fully below). In this way, understanding the probabilistic structure
of the trap environment B is useful for analyzing the behavior of the RWRE. To this end, the following tail estimates
on the trap structure which were proved in [15, Theorem 1.4 and Lemma 2.2] are useful.

Q(β1 > x)∼ C1x
−κ , and Q(ν1 > x)≤ C2e

−C3x, (45)

for some constants C1,C2,C3 > 0. It follows from the tail estimate on ν1 that ν̄ :=EQ[ν1]<∞. Moreover, since the
sequence {νk+1 − νk}k∈Z is i.i.d. under the measure Q, we can conclude that

lim
n→∞

sup|k|≤n |νk − kν̄|
n

= 0, in Q-probability. (46)

The sequence {βk}k∈Z is stationary and ergodic under Q but not independent. Nonetheless, the sequence is close
enough to independent that the following result on the limiting structure of the trap environment was obtained in [13].

Lemma 5.2 (Lemma 5.1 in [13]). Let Wn =Wn(ω) be the point process on R× (0,∞] given by

Wn =
∑

k

δ
( kν̄

n
,

βk

n1/κ
)
.

There exists a constant λ > 0 such that under the measure Q on environments, Wn converges in distribution to a
Poisson point process with intensity measure λy−κ−1 dx dy.

Remark 5.3. Note that if the βk were in fact independent, the conclusion of Lemma 5.2 would follow from the tail
decay of β1 given in (45). Also, the convergence in [13] was actually proved for the point process with atoms at
(k/n,βk/n1/κ) instead of (kν̄/n,βk/n1/κ), but of course this only changes the value of the constant λ > 0 in the
intensity measure of the limiting Poisson point process.
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The Poissonian limit of the trap structure in Lemma 5.2 implies the following corollaries that we will use throughout
the remainder of the paper. The proofs of these corollaries will be given in Appendix B.

Corollary 5.4. For any environment ω, let the rescaled trap environment Wn be given by

Wn =
∑
k∈Z

δ
(

νk

n
,

βk

n1/κ
)
. (47)

There exists a constant λ > 0 such that under the measure Q the pair (Wn,σWn) converges in distribution on the space
Mp ×DJ

R
to (W,σW ) where W is a Poisson point process on R× (0,∞] with intensity measure λy−κ−1 dx dy and

σW is the corresponding trap measure defined in (10).

Corollary 5.5. Under the measure Q on environments, n−1/κ
∑
|k|≤n βk converges in distribution to a non-negative

κ-stable random variable.

Corollary 5.6. Under the averaged measure EQ[Pω(·)] for the directed trap process ZB, the rescaled crossing times
n−1/κτB([0, νn)) converge in distribution to a non-negative κ-stable random variable, and the rescaled directed trap
process {t �→ n−1ZB(tn1/κ ;0)} converges in distribution to the inverse of a κ-stable subordinator on the space DU

R+ .

Having given the Poissonian limit of the trap environment, we now turn to a review of the coupling of the random
walk in the environment ω with the directed trap process in the trap environment B. We will give a brief overview
of the nature of this coupling and refer the reader to [13,14] for more details. First of all, we expand the measure
Pω to contain an i.i.d. sequence of Exp(1) random variables {ζk}k∈Z. These exponential random variables are used
to generate the holding times of the directed trap process at each trap location. That is, the directed trap process ZB

waits at location νk for time βkζk before jumping to location νk+1. The coupling of this process with a random walk
in the environment ω is then obtained by coupling each crossing time Tνk+1 −Tνk

between successive ladder locations
with the time βkζk that it takes the directed trap process to cross the same distance. Without giving the details of
this coupling procedure, we simply note that this coupling is done so that the sequence of the coupled hitting times
{(Tνk+1 − Tνk

, βkζk)}k≥0 is independent under the measure Pω. Moreover, in [13, Lemma 4.4] it was shown that this
coupling can be done so that

lim
n→∞EQ

[
Pω

(
sup

k≤An

∣∣Tνk
− τB

([0, νk)
)∣∣≥ δn1/κ

)]
= 0, ∀δ > 0,A <∞. (48)

(Since under the Assumptions 1–4 the rescaled hitting times n−1/κTn converge in distribution with respect to the
averaged measure P [10], the above coupling is useful for comparing the asymptotic distributions of the hitting times
for the two processes.) We note that the coupling as constructed only couples the hitting times of the two processes.
The path of the random walk is then constructed by first determining the crossing times Tνk+1 − Tνk

via this coupling
and then by sampling the paths of the walk {Xi,Tνk

≤ i ≤ Tνk+1} between hitting times of successive ladder locations
with respect to the quenched measure conditioned on the values of the crossing times. Our next result shows that this
coupling procedure yields the following comparison of the locations of the random walk and the directed trap process.

Proposition 5.7. For any environment ω we can expand the quenched distribution Pω to give a coupling of the random
walk {Xn}n≥0 with a directed trap process {ZB(t;0)}t≥0 in the trap environment B in such a way that

lim
n→∞EQ

[
Pω

(
sup
t≤T

∣∣Xtn1/κ −ZB

(
tn1/κ ;0)∣∣≥ εn

)]
= 0, ∀T <∞, ε > 0.

Proof. For convenience of notation, in the proof of the proposition we will denote the directed trap process ZB(t;0)

by ZB(t) instead. Let X∗n =maxi≤n Xi be the running maximum of the random walk. It follows from [13, Lemma 6.1]
that supt≤T n−1(X∗

tn1/κ −X
tn1/κ ) converges to 0 in P-probability.4 Since the measure Q on environments is obtained

4In fact, the proof of Lemma 6.1 in [13] can be used to show that the convergence is P-a.s.
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by conditioning the measure P on an event of positive probability we can conclude that supt≤T n−1(X∗
tn1/κ −X

tn1/κ )

converges to 0 in probability with respect to the averaged measure EQ[Pω(·)] as well. Therefore, it is enough to show
that

lim
n→∞EQ

[
Pω

(
sup
t≤T

∣∣X∗
tn1/κ −ZB

(
tn1/κ

)∣∣≥ εn
)]
= 0, ∀T <∞, ε > 0.

We now couple the random walk with the directed trap process according the procedure outlined above prior to the
statement of Proposition 5.7. To use the control of the hitting times in (48) to obtain control on |X∗

tn1/κ −ZB(tn1/κ)|,
note that{

sup
k≤An

∣∣Tνk
− τB

([0, νk)
)∣∣< δn1/κ

}
∩
{

max
k≤An

(νk − νk−1)≤ εn

2

}

⊂
{
ZB

(
(t − δ)n1/κ

)≤X∗
tn1/κ ≤ ZB

(
(t + δ)n1/κ

)+ εn

2
, for all t ≤ τB([0, ν�An�))

n1/κ
− δ

}
. (49)

To see this, first of all note that t ≤ τB([0,ν�An�))
n1/κ − δ implies that ZB((t + δ)n1/κ)= νk for some k < �An�. Since the

process ZB is non-decreasing this implies that τB([0, νk+1)) > (t + δ)n1/κ , and then the control on the hitting times
in the first event in (49) implies that Tνk+1 > tn1/κ , or equivalently that

X∗
tn1/κ < νk+1 ≤ZB

(
(t + δ)n1/κ

)+ (νk+1 − νk).

This proves the upper bound on X∗
tn1/κ needed in the event on the right-hand side of (49). The corresponding lower

bound on X∗
tn1/κ is proved similarly.

Using (49) we can conclude that

EQ

[
Pω

(
sup
t≤T

∣∣X∗
tn1/κ −ZB

(
tn1/κ

)∣∣≥ εn
)]

≤EQ

[
Pω

(
sup

k≤An

∣∣Tνk
− τB

([0, νk)
)∣∣≥ δn1/κ

)]
+EQ

[
Pω

(
τB

([0, ν�An�)
)≤ (T + δ)n1/κ

)]
+EQ

[
Pω

(
sup
t≤T

ZB

(
(t + δ)n1/κ

)−ZB

(
(t − δ)n1/κ

)≥ εn

2

)]
+Q

(
max
k≤An

(νk − νk−1) >
εn

2

)
.

Equation (48) shows that the first term on the right-hand side vanishes as n→∞ for any fixed A <∞ and δ > 0, and
since the νk+1 − νk are i.i.d. with exponential tails the last term on the right-hand side vanishes for any fixed ε > 0.
The remaining two terms are handled by Corollary 5.6. The second term vanishes as we first take n→∞ and then let
A→∞ for any δ > 0 fixed, and since the process t �→ n−1ZB(tn1/κ) converges in distribution on DU

R+ to the inverse
of a κ-stable subordinator (which is a continuous, non-decreasing process), the third probability on the right-hand side
vanishes as n→∞ and then δ→ 0. �

6. Coupling the RWRE system with a directed trap system

In this section we will use the couplings of a RWRE with a directed trap process to give a coupling estimate on
systems of independent RWRE and systems of independent particles in a directed trap environment. Unfortunately
this will not quite be enough to give us the desired hydrodynamic limit for systems of independent RWRE as stated
in Theorem 1.7 since the systems of independent RWRE considered in this section differ in two ways from those in
the statement of Theorem 1.7.

• The environment ω will be chosen according to the distribution Q instead of the original distribution P on environ-
ments.
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• The initial configurations of particles χ0 will be different from the locally stationary initial configurations in The-
orem 1.7. In particular, in this section we will use initial configurations where all the particles start at some ladder
location νk of the environment.

These two difficulties will be resolved in the following section.
To describe the system of directed trap processes that we will couple with systems of RWRE we first need to

introduce some new notation for the law of the directed trap processes with certain initial configurations. If W =∑
k δ(xk,yk) ∈ T is a trap environment and u :R→ (0,∞) is a continuous function, we will let P u

W denote the law of
the system ηW

t of independent directed trap processes in the trap environment W with an initial configuration that is
product Poisson with ηW

0 (xk)∼ Poisson(u(xk)yk). We will be interested in systems of directed trap processes in the
trap environment B=∑

k δ(νk,βk) with initial conditions that are product Poisson with ηB0 (νk)∼ Poisson(u(νk/n)βk).
If we let un(·) = u(·/n) denote a rescaled modification of the function u, then P

un

B
is the law of such a system of

directed trap processes. The following Proposition shows how Theorem 2.8 can be used to give a hydrodynamic limit
for these systems of independent directed trap processes.

Proposition 6.1. There exists a constant λ > 0 such that for any u ∈ C+0 and φ ∈ C0(R+ ×R),

lim
n→∞EQ

[
P

un

B

(
1

n1/κ

ˆ ∑
k∈Z

ηB
tn1/κ (νk)φ(t, νk/n)dt ∈ ·

)]

= P
(¨

uW(t, x)φ(t, x)σW (dx)dt ∈ ·
)

,

where un(·)= u(·/n) and under the measure P, W is a Poisson point process on R× (0,∞) with intensity measure
λy−κ−1 dx dy.

Proof. Note that in the hydrodynamic limit we are trying to prove, we are rescaling space by n and time by n1/κ . This
rescaling can instead be incorporated into the trap environment. In particular, if we let Wn be the rescaled version of
B as defined in (47) then it is easy to see that

P
un

B

(
1

n1/κ

ˆ ∑
k∈Z

ηB
tn1/κ (νk)φ(t, νk/n)dt ∈ ·

)

= P n1/κu
Wn

(
1

n1/κ

ˆ ∑
k∈Z

η
Wn
t (νk/n)φ(t, νk/n)dt ∈ ·

)
.

The probabilities on the right-hand side are in the right format to apply Theorem 2.8 with an = n1/κ , but unfortunately
the point processes Wn do not converge almost surely to a fixed W ∈Mp . However, a consequence of Corollary 5.4
is that there exists a probability space with measure P containing a sequence of point processes W̃n such that W̃n has
the same distribution as Wn for every n ≥ 1, but for which (W̃n, σW̃n

) converges P-almost surely to a random pair

(W,σW ) where W is a Poisson point process with intensity measure λy−κ−1 dx dy. It follows that with probability
one the sequence W̃n satisfies Assumptions 5 and 6. Thus, applying Theorem 2.8 we can conclude that

lim
n→∞EQ

[
P

un

B

(
1

n1/κ

ˆ ∑
k∈Z

ηB
tn1/κ (νk)φ(t, νk/n)dt ≤ z

)]

= lim
n→∞E

[
P n1/κu

W̃n

(
1

n1/κ

ˆ ∑
k∈Z

η
W̃n
t (νk/n)φ(t, νk/n)dt ≤ z

)]

= P
(¨

uW(t, x)φ(t, x)σW (dx)dt ≤ z

)
for any z ∈R where the distribution function on the right-hand side is continuous at z. �
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Next we wish to couple the system of directed traps ηBt with a system of independent RWRE. Given an environment
ω and a function u ∈ C+0 , we will let ηBt have distribution P

un

B
. That is, the initial configuration ηB0 is product Poisson

with ηB0 (νk)∼ Poisson(u(νk/n)βk) for every k ∈ Z. The related system of independent RWRE χt will have an initial
configuration that is also product Poisson with

χ0(x)∼
{

Poisson(u(
νk

n
)βk) if x = νk for some k ∈ Z,

δ0, x /∈ {νk}k∈Z.
(50)

We will denote the law of this initial configuration by μ̂n
u so that the system of RWRE has quenched law denoted by

P
μ̂n

u
ω .

Note that we can obviously couple the initial configurations of these two systems so that ηB0 (νk)= χ0(νk) for all
k ∈ Z; that is the systems start with the same number of particles at each site. Next, we can couple the evolution of
the two systems by pairing each random walk particle with a corresponding directed trap particle at the same starting
location. Each of these couplings is performed independently and is done according to the method given in [13,14]
which is outlined above prior to Proposition 5.7. With this coupling of the systems of particles we can obtain the
following result.

Lemma 6.2. For every environment ω (with corresponding trap environment B) and every n ≥ 1, there exists a

coupling P
μ̂n

u,un

ω,B
of a system χ of independent RWRE in environment ω with a system ηB of directed trap particles in

the trap environment B such that χ and ηB have marginal distributions P
μ̂n

u
ω and P

un

B
, respectively. Moreover, this

coupling can be constructed so that

EQ

[
P

μ̂n
u,un

ω,B

(
sup
t≤T

∣∣∣∣∑
x∈Z

χtn1/κ (x)φ(t, x/n)−
∑
k∈Z

ηB
tn1/κ (νk)φ(t, νk/n)

∣∣∣∣≥ εn1/κ

)]
= 0, (51)

for any ε > 0, T <∞ and φ ∈ C0(R+ ×R).

Proof. Since the initial configurations χ0 = ηB0 are the same, we can match the j th particles at νk in each system and
then compare the systems at any later time by comparing the differences in these particles at this later time. That is,

∑
x∈Z

χtn1/κ (x)φ(x/n)−
∑
k∈Z

ηB
tn1/κ (νk)φ(νk/n)=

∑
k∈Z

ηB0 (νk)∑
j=1

{
φ

(
X

νk,j

tn1/κ

n

)
− φ

(
Z

k,j

B
(tn1/κ)

n

)}
.

Now, let φ ∈ C0(R+ × R) and ε > 0 be fixed and choose A <∞ (we will let A→∞ later). Since φ is uniformly
continuous, there exists a δ > 0 such that |φ(x, t)− φ(y, t)|< ε

2A
if |x − y|< δ and t ≤ T . Therefore, for this choice

of A and δ we have that

P
μ̂n

u,un

ω,B

(
sup
t≤T

∣∣∣∣∑
x∈Z

χtn1/κ (x)φ(t, x/n)−
∑
k∈Z

ηB
tn1/κ (νk)φ(t, νk/n)

∣∣∣∣≥ εn1/κ

)

≤ P
un

B

(∑
k

ηB0 (νk) > An1/κ

)

+ P
μ̂n

u,un

ω,B

(∑
k∈Z

ηB0 (νk)∑
j=1

1{supt≤T

∣∣Xνk,j

tn1/κ−Z
k,j

B
(tn1/κ )

∣∣≥δn} ≥
εn1/κ

4‖φ‖∞ ,
∑

k

ηB0 (νk)≤An1/κ

)

≤ P
un

B

(∑
k

ηB0 (νk) > An1/κ

)
+ 4‖φ‖∞A

ε
max|k|≤Ln

Pω,B

(
sup
t≤T

∣∣Xνk

tn1/κ −Zk
B

(
tn1/κ

)∣∣≥ δn
)
,

where L <∞ is such that suppu⊂ [−L,L] so that all particles are started at sites νk ∈ [−Ln,Ln]. (The last inequality
above is obtained by first conditioning on the initial configuration and applying Chebychev’s inequality.) We wish to
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show that the above terms are small when we take expectations with respect to the measure Q and then let n→∞. To

handle the first term, note that if the environment is such that
∑

k u(νk/n)βk ≤ An1/κ

2 then
∑

k ηB0 (νk) is stochastically

dominated by a Poisson( An1/κ

2 ) random variable under the measure P
un

B
. From this, we can obtain that

lim sup
n→∞

EQ

[
P

un

B

(∑
k

ηB0 (νk) > An1/κ

)]
≤ lim

n→∞Q

(∑
k

u

(
νk

n

)
βk >

An1/κ

2

)

= P
(ˆ

u(x)σW (dx) >
A

2

)
,

where the last equality follows from Corollary 5.4. Since this can be made arbitrarily small by taking A→∞, it
remains only to show that

lim
n→∞EQ

[
max|k|≤Ln

Pω,B

(
sup
t≤T

∣∣Xνk

tn1/κ −Zk
B

(
tn1/κ

)∣∣≥ δn
)]
= 0, ∀L <∞, δ > 0.

Of course, by the shift invariance of Q with respect to the ladder locations this is equivalent to showing that

lim
n→∞EQ

[
max

k∈[0,Ln]
Pω,B

(
sup
t≤T

∣∣Xνk

tn1/κ −Zk
B

(
tn1/κ

)∣∣≥ δn
)]
= 0, ∀L <∞, δ > 0. (52)

To control the probabilities inside the expectation above, fix δ′ > 0 and S <∞ and note that for any k ∈ [0,Ln],

Pω,B

(
sup
t≤T

∣∣Xνk

tn1/κ −Zk
B

(
tn1/κ

)∣∣≥ δn
)

≤ Pω,B

(
sup
t≤T

∣∣X0
Tνk
+tn1/κ −Z0

B

(
τB

([0, νk)
)+ tn1/κ

)∣∣≥ δn
)

≤ Pω,B

(
max

k∈[0,Ln]
∣∣Tνk

− τB
([0, νk)

)∣∣≥ δ′n1/κ
)
+ Pω

(
τB

([0, νLn)
)≥ Sn1/κ

)
(53)

+ Pω,B

(
sup

t≤T+S+δ′

∣∣X0
tn1/κ −Z0

B

(
tn1/κ

)∣∣≥ δn/2
)

(54)

+ Pω,B

(
sup

t≤T+S

Z0
B

((
t + 2δ′

)
n1/κ

)−Z0
B

(
tn1/κ

)≥ δn/2
)
. (55)

Since all of the probabilities in (53)–(55) do not depend on k ∈ [0,Ln], in order to prove (52) it will be sufficient to
control each of the terms in (53)–(55) when first taking expectations with respect to the measure Q on environments
and then letting n→∞. That the first term in (53) vanishes in this way is the content of (48) above. Proposition 5.7
shows that (54) vanishes when averaging over Q and then letting n→∞ for any S + T + δ′ <∞ and δ > 0.
Finally, for the second term in (53) and the term in (55), note that Corollary 5.6 implies that under the averaged
measure EQ[Pω(·)], the crossing time n−1/κτB([0, νLn)) converges in distribution to a κ-stable random variable Yκ

and {t �→ n−1ZB(tn1/κ)} converges in distribution to the inverse of a κ-stable subordinator {t �→ Z(t)}. Therefore,
we can conclude that

lim sup
n→∞

EQ

[
max

k∈[0,Ln]
Pω,B

(
sup
t≤T

∣∣Xνk

tn1/κ −Zk
B

(
tn1/κ

)∣∣≥ δn
)]

≤ P(Yκ ≥ S)+ P
(

sup
t≤T+S

Z
(
t + 2δ′

)−Z(t)≥ δ/2
)
.

The right-hand side vanishes as we first take δ′ → 0 and then let S→∞ (note that here we are using that Z is almost
surely a continuous process). This completes the proof of (52) and thus also the proof of the lemma. �
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7. Changing the initial configuration and the law on environments

The previous section comes close to proving a hydrodynamic limit for the system of RWRE, but as noted above the
system of RWRE studied in the previous section uses an initial configuration of particles that is concentrated on the
ladder locations only and the environment ω comes from the distribution Q instead of P . In this section we remove
these two difficulties. We will again use couplings of systems to be able to compare the behavior of two systems of
RWRE.

Some of the analysis in the current section requires a detailed analysis of the random environment. To this end
we will introduce notation that will help simplify things. Recall that ρx = 1−ωx

ωx
for any x ∈ Z. Many formulas for

quenched probabilities or expectations of interest involve sums of products of the ρx . To this end, we will let

�i,j =
j∏

x=i

ρx, Wj =
j∑

i=−∞
�i,j , and Ri =

∞∑
j=i

�i,j . (56)

Since we are assuming that the environment ω is i.i.d. with EP [logρ0] < 0, the infinite sums Wj and Ri converge
almost surely. We will also need notation for the partial sums which converge to Wj and Ri , and thus we will let

W�,j =
j∑

i=�

�i,j , and Ri,� =
�∑

j=i

�i,j . (57)

Before proceeding to the analysis of the systems of RWRE in the rest of this section, we mention briefly two important
places where this notation is useful. First of all, from the definition of the gω(x) in (5) it is clear that

gω(x)= 1

ωx

(1+Rx+1)= 1+Rx +Rx+1, ∀x ∈ Z. (58)

(For the second equality above we used that 1
ωx
= 1+ ρx .) Secondly, the quenched expectations for hitting times can

be derived from the fact that Ex
ω[Tx+1] = 1+ 2Wx for all x ∈ Z. In particular, we will use below that

EωTn = n+ 2
n−1∑
j=0

Wj = n+ 2
n−1∑
j=0

(W0,j +W−1�0,j )

= n+ 2
n−1∑
j=0

j∑
i=0

�i,j + 2W−1

n−1∑
j=0

�0,j . (59)

Another statistic of the environment that will be helpful in our analysis below is

Mk = sup{�νk,j : νk ≤ j < νk+1} = sup
{
eVω(x)−Vω(νk) : x ∈ (νk, νk+1]

}
, ∀k ∈ Z.

That is, Mk measures the maximal increase of the potential Vω of the environment between the ladder locations νk

and νk+1. Because Mk only depends on the environment between successive ladder locations, it follows that the
sequence {Mk}k∈Z is i.i.d. under the measure Q. When the expected crossing time βk between ladder locations is
large, typically the main contribution comes from Mk so that we can use Mk at times as an i.i.d. approximation of
the stationary sequence βk . Moreover, it will be important below that Mk has similar tail decay as βk . In particular, it
follows from [8] that there is a C > 0 such that

Q(M1 > x)∼ Cx−κ , as x→∞. (60)

7.1. Coupling different initial configurations

We begin by showing that the system with particles started only at the ladder locations as in the previous section
can be coupled with a system of particles with locally stationary initial configuration. Recall the definitions of the
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distributions μn
u and μ̂n

u on initial configurations in (6) and (50) respectively. The following proposition allows us to
compare the systems of independent RWRE with initial configurations μn

u and μ̂n
u, respectively.

Proposition 7.1. Let Assumptions 1–4 hold with κ ∈ (0,1) fixed, and let u ∈ C+0 . There exists a coupling P
μn

u(ω),μ̂n
u(ω)

ω

of two systems of particles {χn}n≥0 and {χ̂n}n≥0 such that the marginal distribution of {χn}n≥0 is P
μn

u(ω)
ω and the

marginal distribution of {χ̂n}n≥0 is P
μ̂n

u
ω , and such that for any φ ∈ C0(R+ ×R) and T <∞,

lim
n→∞EQ

[
P

μn
u(ω),μ̂n

u(ω)
ω

(
sup
t≤T

∣∣∣∣∑
x∈Z

(
χtn1/κ (x)− χ̂tn1/κ (x)

)
φ(t, x/n)

∣∣∣∣≥ δn1/κ

)]
= 0, ∀δ > 0.

The proof of Proposition 7.1 is most easily accomplished via yet another intermediate coupling. We will consider
a system of independent RWRE χ̄n that is constructed by taking the initial configuration χ̂0 and “spreading out” the
particles so that there are particles started at every x ∈ Z. In this way every particle in each system will be matched
with a corresponding particle in the other system and the difficulty will be in showing that for most of the matched
pairs of particles, the random walks can be coupled so that the distance of particles is not too far apart as the random
walks evolve. The next step will be to give a coupling of the system of random walks χ̄n with the system χn that has
the locally stationary initial configuration. In this step particles in the two systems will be matched to particles in the
other system but starting at the same site x ∈ Z. In this way, any two matched particles can be perfectly coupled for
all time, but the difficulty arises in that the initial configurations are slightly different and so it needs to be shown that
the number of unmatched particles between the two systems is not too large.

In order to introduce the intermediate system χ̄n and describe the couplings of the systems of RWRE we first need
to introduce some notation. For any x, k ∈ Z with x < νk+1 let bx,k = bx,k(ω) be defined by

bx,k = bx,k(ω)=Eνκ
ω

[Tνk+1−1∑
n=0

1{Xn=x}

]
.

The utility of the parameters bx,k will be that they will allow us to connect the parameters βk and gω(x) that are used
in the definitions of the initial configurations μn

u(ω) and μ̂n
u(ω). In particular, it is easy to see that

βk =
∑

x:x<νk+1

bx,k and gω(x)=
∑

k:x<νk+1

bx,k. (61)

With this notation we can define the distribution that will be used for the initial configuration of the system χ̄0. For
ω ∈� and u ∈ C0 fixed, let

πn
u (ω)=

⊗
x∈Z

Poisson

( ∑
k:x<νk+1

bx,ku

(
νk

n

))
.

Having introduced the necessary notation, we are now ready to approach the proof of Proposition 7.1. To make the
proof easiest to follow, we will state the intermediate couplings as two separate lemmas and then give the proofs of
these lemmas. Obviously Proposition 7.1 follows easily from these two lemmas.

Lemma 7.2. Let Assumptions 1–4 hold with κ ∈ (0,1) fixed, and let u ∈ C+0 . There exists a coupling P
μ̂n

u(ω),πn
u (ω)

ω of

two systems of particles {χ̂n}n≥0 and {χ̄n}n≥0 with marginal distributions P
μ̂n

u(ω)
ω and P

πn
u (ω)

ω , respectively, and such
that for any φ ∈ C0(R+ ×R) and T <∞,

lim
n→∞EQ

[
P

μ̂n
u(ω),πn

u (ω)
ω

(
sup
t≤T

∣∣∣∣∑
x∈Z

(
χ̂tn1/κ (x)− χ̄tn1/κ (x)

)
φ(t, x/n)

∣∣∣∣≥ δn1/κ

)]
= 0, ∀δ > 0.

Lemma 7.3. Let Assumptions 1–4 hold with κ ∈ (0,1) fixed, and let u ∈ C+0 . There exists a coupling P
μn

u(ω),πn
u (ω)

ω of

two systems of particles {χn}n≥0 and {χ̄n}n≥0 with marginal distributions P
μn

u(ω)
ω and P

πn
u (ω)

ω , respectively, and such
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that for any φ ∈ C0(R+ ×R) and T <∞,

lim
n→∞EQ

[
P

μn
u(ω),πn

u (ω)
ω

(
sup
t≤T

∣∣∣∣∑
x∈Z

(
χtn1/κ (x)− χ̄tn1/κ (x)

)
φ(t, x/n)

∣∣∣∣≥ δn1/κ

)]
= 0, ∀δ > 0.

Proof of Lemma 7.2. We begin by coupling the initial configurations of particles χ̂0 and χ̄0. Given the environment
ω, let {Bn

x,k}(x,k):x<νk+1 be a family of independent Poisson random variables with Bn
x,k ∼ Poisson(bx,ku(

νk

n
)). Using

the first equality in (61), it is easy to see that we can construct the initial configurations χ̂0 and χ̄0 by letting

χ̂0(νk)=
∑

x:x<νk+1

Bn
x,k, and χ̄0(x)=

∑
k:x<νk+1

Bn
x,k.

Given this coupling of the initial configurations, for each pair (x, k) with x < νk+1 we can couple Bn
x,k pairs of

particles started at x and νk . That is, for each such pair (x, k) and any j ≤ Bn
x,k we will let X̄

(x,k),j· and X̂
(x,k),j· be

two random walks started at x and νk , respectively. We will couple these walks in the following simple manner. If
x ≤ νk then the walk X̄

(x,k),j· will evolve independently until reaching νk , at which point it will trace the path of the
walk X̂

(x,k),j· . Conversely, if νk < x then the walk X̂
(x,k),j· will evolve independently until reaching x, at which point

it will trace the path of the walk X̄
(x,k),j· . Note that it is clear from this coupling procedure that

sup
n

∣∣X̂(x,k),j
n − X̄

(x,k),j
n

∣∣ ≤ {
inf{i ≥ 0 : X̄(x,k),j

i = νk} if x ≤ νk ,

inf{i ≥ 0 : X̂(x,k),j
i = x} if x > νk

(62)
Law=

{
T x

νk
if x ≤ νk ,

T
νk
x if x > νk ,

where in the last line we use the notation T x
y for the first hitting time of a site y ∈ Z by a RWRE started at x ∈ Z.

Having constructed the coupling of the systems of RWRE, we have that

∑
x∈Z

(
χ̂tn1/κ (x)− χ̄tn1/κ (x)

)
φ

(
t,

x

n

)
=

∑
|k|≤Ln

∑
x<νk+1

Bn
x,k∑

j=1

(
φ

(
t,

X̂
(x,k),j

tn1/κ

n

)
− φ

(
t,

X̄
(x,k),j

tn1/κ

n

))
,

where on the right-hand side we can restrict the first sum to |k| ≤ Ln since suppu⊂ [−L,L] implies that Bn
x,k = 0

if |k|> Ln. Next, we claim that in the hydrodynamic limit scaling, we can ignore all the coupled pairs (x, k) with k

such that Mk ≤ n1/κ/ logn. To see this, note that it was shown in the proof of Proposition 4 in [5] that

lim
n→∞

1

n1/κ

∑
|k|≤Ln

βk1{Mk≤ n1/κ

logn
} = 0, in Q-probability. (63)

Since Bn
x,k is Poisson with mean at most ‖u‖∞bx,k , it follows easily from (61) and (63) that

EQ

[
P

μ̂n
u(ω),πn

u (ω)
ω

( ∑
|k|≤Ln,Mk≤ n1/κ

logn

∑
x<νk+1

Bn
x,k ≥ δn1/κ

)]
= 0, ∀δ > 0. (64)

Therefore, to finish the proof of the lemma, it will be enough to show that

lim
n→∞EQ

[
P

μ̂n
u,πn

u
ω

( ∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x<νk+1

Bn
x,k∑

j=1

sup
t≤T

∣∣∣∣φ(t,
X̂

(x,k),j

tn1/κ

n

)
− φ

(
t,

X̄
(x,k),j

tn1/κ

n

)∣∣∣∣≥ δn1/κ

)]
= 0, (65)

for all δ > 0. We will prove (65) by showing the following.
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• If Mk ≥ n1/κ

logn
and x is close enough to νk , then we will be able to couple the two walks so that the difference is not

very large.
• There are relatively few coupled particles started at pairs x < νk+1 that are not close enough to have a good coupling.

In order to make this precise, we will need to identify an interval around each νk where the coupling works well. In

particular, for all k ∈ Z with Mk ≥ n1/κ

logn
we will identify intervals [an

k , cn
k ] around the respective ladder locations νk

with the following properties.

lim
n→∞

1

n1/κ

∑
|k|≤Ln

∑
x<an

k

bx,k1{Mk>
n1/κ

logn
} = 0, in Q-probability, (66)

lim
n→∞

1

n1/κ

∑
|k|≤Ln

∑
cn
k <x<νk+1

bx,k1{Mk>
n1/κ

logn
} = 0, in Q-probability, (67)

and for some ε > 0,

lim
n→∞Q

(
∃|k| ≤ Ln :Mk ≥ n1/κ

logn
,E

an
k

ω [Tcn
k
]> n1−2ε

)
= 0. (68)

Before defining these intervals properly, we first show how properties (66)–(68) allow us to prove (65). First of all, in
a similar manner as (63) was used to prove (64) we can use (66) and (67) to show

lim
n→∞EQ

[
P

μ̂n
u,πn

u
ω

( ∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x<νk+1

x /∈[an
k ,cn

k ]

Bn
x,k ≥ δn1/κ

)]
= 0, ∀δ > 0.

That is, the total number of pairs of particles corresponding to (x, k) with x /∈ [an
k , cn

k ] is negligible in the hydrody-
namic limit. Thus, to prove (65) we need only to control the coupling of the walks when x ∈ [an

k , cn
k ] and this will

be accomplished using (68). To this end, let {σ j
x,k}x,k,j be a family of independent random variables for k such that

Mk > n1/κ/ logn, x ∈ [an
k , cn

k ] and j ≤ Bn
x,k with σ

j
x,k having the same distribution as T

an
k

cn
k

for every j ≤ Bn
x,k . Due to

(62) we can couple the σ
j
x,k so that supn |X̂(x,k),j

n − X̄
(x,k),j
n | ≤ σ

j
x,k . Therefore,

∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x∈[an

k ,cn
k ]

Bn
x,k∑

j=1

sup
t≤T

∣∣∣∣φ(t,
X̂

(x,k),j

tn1/κ

n

)
− φ

(
t,

X̄
(x,k),j

tn1/κ

n

)∣∣∣∣≤ ∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x∈[an

k ,cn
k ]

Bn
x,k∑

j=1

�

(
φ; σ

j
x,k

n

)
,

from which we can conclude that

P
μ̂n

u,πn
u

ω

( ∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x∈[an

k ,cn
k ]

Bn
x,k∑

j=1

sup
t≤T

∣∣∣∣φ(t,
X̂

(x,k),j

tn1/κ

n

)
− φ

(
t,

X̄
(x,k),j

tn1/κ

n

)∣∣∣∣≥ δn1/κ

)

≤ P
μ̂n

u,πn
u

ω

( ∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x∈[an

k ,cn
k ]

Bn
x,k�

(
φ;n−ε

)≥ δn1/κ

2

)
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+ P
μ̂n

u,πn
u

ω

( ∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x∈[an

k ,cn
k ]

Bn
x,k∑

j=1

1{σ j
x,k>n1−ε} ≥

δn1/κ

4‖φ‖∞

)

≤ 2�(φ;n−ε)‖u‖∞
δn1/κ

∑
|k|≤Ln

βk + 4‖φ‖∞‖u‖∞
δn1/κ

∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x∈[an

k ,cn
k ]

bx,kPω

(
T

an
k

cn
k
≥ n1−ε

)
. (69)

For k with Mk > n1/κ/ logn, we have that Chebychev’s inequality and (61) imply that

∑
x∈[an

k ,cn
k ]

bx,kPω

(
T

an
k

cn
k
≥ n1−ε

)≤ 1

n1−ε

∑
x∈[an

k ,cn
k ]

bx,kE
an
k

ω [Tcn
k
] ≤ E

an
k

ω [Tcn
k
]

n1−ε
βk.

Therefore, we can conclude that (69) is bounded above by(
2

δn1/κ

∑
|k|≤Ln

βk

){
�
(
φ;n−ε

)‖u‖∞ + 2‖φ‖∞‖u‖∞
n1−ε

max|k|≤Ln

Mk>
n1/κ

logn

E
an
k

ω [Tcn
k
]
}
.

If we choose ε > 0 as in (68), then Corollary 5.4 together with (68) implies that this converges to 0 in Q-probability,
which in turn implies that (65) holds.

It remains now to show that we can choose the intervals [an
k , cn

k ] containing νk when Mk > n1/κ/ logn so that (66)–
(68) hold. First, fix a constant K > 1/(κν̄EP [− logρ0]), and let an

k = νk−�K logn�. With this definition of an
k , property

(66) follows from [5, Proposition 3]. To define the right endpoint cn
k , fix γ < 1 and for k ∈ Z with Mk ≥ n1/κ

logn
≥ nγ

(for n large enough) define

cn
k = inf

{
j > νk :�νk,j ≥ nγ

}
.

To verify (67) for this choice of cn
k , first note that

Q

( ∑
|k|≤Ln

∑
cn
k<x<νk+1

bx,k1{Mk>
n1/κ

logn
} ≥ δn1/κ

)

≤Q

( ∑
|k|≤Ln

1{Mk>
n1/κ

logn
} ≥ δ logn

)
+Q

(
∃|k| ≤ Ln :

∑
cn
k <x<νk+1

bx,k1{Mk>
n1/κ

logn
} ≥

n1/κ

logn

)

≤ 2Ln+ 1

δ logn
Q

(
M0 >

n1/κ

logn

)
+ (2Ln+ 1)Q

( ∑
cn

0<x<ν1

bx,0 ≥ n1/κ

logn
,M0 >

n1/κ

logn

)
. (70)

The tail asymptotics of M0 in (60) imply that the first term in (70) is O((logn)κ−1)= o(1). To control the probability
in the second term of (70), let T +x = inf{n≥ 1 :Xn = x} denote the first return time of the RWRE to x ∈ Z and note
that for 0≤ x < ν1

bx,0 = Ex
ω

[Tν1−1∑
n=0

1{Xn=x}

]
= 1

P x
ω(Tν1 < T +x )

= 1+Rx+1,ν1−1

ωx

= 1+Rx,ν1−1 +Rx+1,ν1−1

≤ 1+ 2ν1

(
max

x≤j<ν1
�x,j

)
.
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(The third equality is a standard calculation for hitting probabilities for reversible Markov chains, and can be deduced
for instance from [20, equation (2.1.4)].) Using this upper bound for bx,k we can conclude that (for n large enough)

Q

( ∑
cn

0<x<ν1

bx,0 ≥ n1/κ

logn
,M0 >

n1/κ

logn

)

≤Q
(
ν1 ≥ (logn)2)+Q

(
max

cn
0<i≤j<ν1

�i,j ≥ n1/κ

4(logn)5
,M0 ≥ n1/κ

logn

)
.

Since ν1 has exponential tails, in order to show that (70) vanishes as n→∞ we need only to show that the second
probability on the right-hand side above is o(n−1). This will be accomplished using some estimates from [11]. Let
J =max{j ∈ [1, ν1] :�0,j−1 =M0} be the (last) location in (0, ν1] where the potential achieves its maximum in that
interval. Then, define M− and M+ by

M− =min{�i,j : 0 < i ≤ j < J } ∧ 1 and M+ =max{�i,j : J < i ≤ j < ν} ∨ 1.

That is M− controls the amount the potential can decrease before J and M+ controls the amount the potential can
increase after J . With this notation it is easy to see that

�i,j ≤
{

M0
nγ M− if cn

0 < i ≤ J, j < ν1,
M+ if J ≤ i ≤ j < ν1,

and therefore

Q

(
max

cn
0<i≤j<ν1

�i,j ≥ n1/κ

4(logn)5
,M0 ≥ n1/κ

logn

)
≤Q

(
M+ ≥ n1/κ

4(logn)5
,M0 ≥ n1/κ

logn

)

+Q

(
M− ≤ n−γ /2,M0 ≥ n1/κ

logn

)

+Q

(
M0 ≥ n1/κ+γ /2

4(logn)5

)
. (71)

It follows from [11, Lemma 4.1] that the first two probabilities on the right-hand side are o(n−1), and the tail decay
of M0 in (60) implies that the third probability is also o(n−1).

We have shown that our choice of an
k and cn

k satisfy (66) and (67), and it only remains to show that (68) also holds.
To this end, it is clearly enough to show

Q

(
M0 ≥ n1/κ

logn
,E

an
0

ω [T0] ≥ n1−2ε

2

)
+Q

(
M0 ≥ n1/κ

logn
,E0

ω[Tcn
0
] ≥ n1−2ε

2

)
= o

(
n−1), (72)

for some ε > 0. For the first probability in (72), note that

Q

(
M0 ≥ n1/κ

logn
,E

an
0

ω [T0] ≥ n1−2ε

2

)
=Q

(
M0 ≥ n1/κ

logn

)
Q

(
E

an
0

ω [T0] ≥ n1−2ε

2

)
,

since M0 is independent of the environment to the left of 0 under the measure Q. Then, recalling that an
0 = ν−�K logn�

we have that

Q

(
E

an
0

ω [T0] ≥ n1−2ε

2

)
=Q

( −1∑
k=−�K logn�

βk ≥ n1−2ε

2

)
≤ �K logn�Q

(
β0 ≥ n1−2ε

2�K logn�
)

.
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Therefore, the tail decay of β0 and M0 imply that the first probability in (72) is o(n−1) as long as ε < 1/2. To control
the second term in (72), note that (59) implies that

Eω[Tcn
0
] = cn

0 + 2

cn
0−1∑
j=0

j∑
i=0

�i,j + 2W−1

cn
0−1∑
j=0

�0,j ≤ ν1 + 2ν2
1nγ + 2W−1ν1n

γ ,

where the last inequality follows from the fact that �i,j ≤�0,j ≤ nγ for any 0≤ i ≤ j < cn
0 < ν1. Thus, since ν1 and

W−1 have exponential tails under the measure Q we have that the second probability in (72) is bounded above by

Q

(
ν1 + 2ν2

1nγ + 2W−1ν1n
γ ≥ n1−2ε

2

)
= o

(
n−1), if 0 < ε <

1− γ

2
.

This completes the proof of (72), which in turn completes the proof of the lemma. �

Proof of Lemma 7.3. The key to the proof of Lemma 7.3 is to show that the initial configurations χ0 and χ̄0 can

be coupled under the measure EQ[P μn
u(ω),πn

u (ω)
ω (·)] so that there are typically much less than n1/κ particles that

are not coupled with a particle in the other system. That is, since we can perfectly couple for all time the first
min{χ0(x), χ̄0(x)} particles at each site x ∈ Z, we need only to show that

lim
n→∞EQ

[
P

μn
u(ω),πn

u (ω)
ω

(∑
x

∣∣χ0(x)− χ̄0(x)
∣∣≥ δn1/κ

)]
= 0, ∀δ > 0. (73)

For any θ1, θ2 > 0, it is a standard property of Poisson random variables that one can construct a coupling of random
variables Y1 ∼ Poisson(θ1) and Y2 ∼ Poisson(θ2) so that |Y1 − Y2| ∼ Poisson(|θ1 − θ2|). Indeed, if θ1 < θ2 then we
can let Z1 and Z2 be independent Poisson random variables with parameters θ1 and θ2 − θ1, respectively, and then
let Y1 = Z1 and Y2 = Z1 + Z2. Therefore, since gω(x) =∑

k:x<νk+1
bx,k we can construct a coupling of the initial

configurations so that {|χ0(x)− χ̄0(x)|}x∈Z are independent with

∣∣χ0(x)− χ̄0(x)
∣∣∼ Poisson

(∣∣∣∣ ∑
k:x<νk+1

bx,k

(
u

(
x

n

)
− u

(
νk

n

))∣∣∣∣).

From this it follows easily that

P
μn

u(ω),πn
u (ω)

ω

(∑
x

∣∣χ0(x)− χ̄0(x)
∣∣≥ δn1/κ

)

≤ 1

δn1/κ

∑
k∈Z

∑
x<νk+1

bx,k

∣∣∣∣u(x

n

)
− u

(
νk

n

)∣∣∣∣
≤ 1

δn1/κ

∑
|k|≤Ln

∑
x<νk+1

bx,k�

(
u; |x − νk|

n

)
+ ‖u‖∞

δn1/κ

∑
k>Ln

∑
x≤Ln

bx,k, (74)

where in the second inequality we use suppu⊂ [−L,L]. To control the second sum in (74), note that the definition
of bx,k implies that

∑
k>Ln

∑
x≤Ln

bx,k = E
ν�Ln�+1
ω

[ ∞∑
m=0

1{Xm≤Ln}

]

≤ E
ν�Ln�+1
ω

[ ∞∑
m=0

1{Xm≤ν�Ln�}

]
Law= Eω

[ ∞∑
m=0

1{Xm≤ν−1}

]
, (75)
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where the last equality indicated equality in law under the measure Q. Since this last quenched expectation is Q-a.s.
finite, it follows that the second term in (74) converges to 0 in Q-probability. We wish to show that the first term in
(74) also converges to 0 in Q-probability. To this end, note that for any ε ∈ (0,1) the first term in (74) is bounded
above by

�(u;n−ε)

δn1/κ

∑
|k|≤Ln

∑
x<νk+1

|x−νk |≤n1−ε

bx,k + 2‖u‖∞
δn1/κ

∑
|k|≤Ln

∑
x<νk+1

|x−νk |>n1−ε

bx,k

≤ �(u;n−ε)

δn1/κ

∑
|k|≤Ln

βk + 2‖u‖∞
δn1/κ

∑
|k|≤Ln

∑
x<νk+1

|x−νk |>n1−ε

bx,k.

Since �(u;n−ε)→ 0, Corollary 5.4 implies that the first term on the right-hand side converges to 0 in Q-probability.
To show that the second term also converges to 0 in Q-probability, we further decompose it as

2‖u‖∞
δn1/κ

∑
|k|≤Ln

Mk≤ n1/κ

logn

∑
x<νk+1

|x−νk |>n1−ε

bx,k + 2‖u‖∞
δn1/κ

∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x<νk+1

|x−νk |>n1−ε

bx,k

≤ 2‖u‖∞
δn1/κ

∑
|k|≤Ln

βk1{Mk≤ n1/κ

logn
} +

2‖u‖∞
δn1/κ

∑
|k|≤Ln

Mk>
n1/κ

logn

∑
x<νk+1

|x−νk |>n1−ε

bx,k. (76)

The first term in (76) converges to 0 in Q-probability by (63). For the second term in (76), recall the definition of
the intervals [an

k , cn
k ] containing νk when Mk > n1/κ/ logn that were given in the proof of Lemma 7.2 above. Since

an
k = νk−�K logn� and cn

k ∈ (νk, νk+1) we have that |x−νk|> n1−ε implies that x /∈ [an
k , cn

k ] unless νk+1−νk−�K logn� >

n1−ε . For n large enough we have

Q
(∃|k| ≤ Ln : νk+1 − νk−�K logn� > n1−ε

)≤ 3LnQ

(
ν1 >

n1−ε

2K logn

)
,

and since ν1 has exponential tails the right-hand side vanishes as n→∞. It follows from this, together with (66) and
(67), that the second term in (76) converges to 0 in Q-probability. Combined with our above estimates, this completes
the proof that (74) converges to 0 in Q-probability, and this is enough to prove that (73) holds. �

7.2. Changing the distribution on the environment

The results proved so far will be enough to prove a hydrodynamic limit of the form in Theorem 1.7 for a system
of independent RWRE with locally stationary initial configurations, but where the environment ω has distribution Q

instead of P as in the statement of Theorem 1.7. In this subsection, we complete the final comparison that will be
needed for the proof of Theorem 1.7 by giving a coupling of two systems of RWRE in different environments ω and
ω̃ where the environments ω and ω̃ have distribution P and Q respectively.

We begin by giving a coupling of the environments ω and ω̃. Recall the definition of the blocks Bk of the envi-
ronment between ladder locations from (41) and that the blocks {Bk}k �=0 are i.i.d. under the measure P , the blocks
{Bk}k∈Z are i.i.d. under Q, and B1 has the same distribution under both P and Q. Therefore, given an environment
ω with distribution P we can construct an environment ω̃ with distribution Q by simply removing the block B0 from
the environment ω. That is,

ω̃x =
{

ων1+x if x ≥ 0,
ων0+x if x < 0. (77)
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Having given this coupling of environments with distribution P and Q, respectively, we are now ready to state the
following Proposition which shows that changing the distribution on environments from Q to P does not affect the
hydrodynamic limit if we use the sequence of locally stationary initial configurations μn

u(ω).

Proposition 7.4. Let Assumptions 1–4 hold with κ ∈ (0,1) fixed, and let u ∈ C0. For any two environments ω, ω̃ ∈�

there exists a coupling P
μn

u(ω),μn
u(ω̃)

ω,ω̃
of two systems of random walks {χn}n≥0 and {χ̃n}n≥0 with marginal distributions

P
μn

u(ω)
ω and P

μn
u(ω̃)

ω̃
, respectively, and such that if P is the coupling of pairs of environments (ω, ω̃) ∈�2 as given in

(77) then

lim
n→∞EP

[
P

μn
u(ω),μn

u(ω̃)

ω,ω̃

(
sup
t≤T

∣∣∣∣∑
k∈Z

(
χtn1/κ (k)− χ̃tn1/κ (k)

)
φ(t, k/n)

∣∣∣∣≥ δn1/κ

)]
= 0, ∀δ > 0,

for any φ ∈ C0(R+ ×R) and T <∞.

In preparation for the proof of Proposition 7.4, we will first prove the following Lemma which will be used to show
that the distributions μn

u(ω) and μn
u(ω̃) on initial configurations are very similar when ω and ω̃ are coupled as in (77).

Lemma 7.5. Under the coupling (ω, ω̃) of the measures P and Q given in (77), with probability one,∑
x≤−1

∣∣gω(ν0 + x)− gω̃(x)
∣∣<∞.

Proof. Recall the definitions of the random variables �i,j , Wi , Ri , and Ri,� as given in (56) and (57). We will use
the notation �̃i,j , W̃i , R̃i and R̃i,� for the random variables as defined in (56) and (57) but corresponding to the
environment ω̃ instead of ω. Then, recalling (58), this notation gives that

gω̃(x)− gω(ν0 + x)= R̃x + R̃x+1 −Rν0+x −Rν0+x+1.

Next, note that

Rν0+x =Rν0+x,ν0−1 +�ν0+x,ν0−1Rν0, for x < 0.

A similar decomposition is true for R̃x , but using the coupling of ω and ω̃ given by (77) we get that

R̃x = R̃x,−1 + �̃x,−1R̃0 =Rν0+x,ν0−1 +�ν0+x,ν0−1Rν1, for x < 0.

Therefore, we obtain that

gω̃(x)− gω(ν0 + x)= (�ν0+x,ν0−1 +�ν0+x+1,ν0−1)(Rν1 −Rν0).

Note that this shows that the sign of gω̃(x)−gω(ν0+x) does not depend on x and is the same as the sign of Rν1−Rν0 .
Therefore, we can conclude that∑

x<0

∣∣gω̃(x)− gω(ν0 + x)
∣∣= (1+ 2Wν0−1)

∣∣Rν1 −Rν0

∣∣.
�

We now return to the proof of Proposition 7.4.

Proof of Proposition 7.4.
We begin by giving a brief overview of the outline of the proof. Recall that in coupling (ω, ω̃) defined in (77), the

site x in the environment ω̃ correspond to either ν0+ x if x < 0 or ν1+ x if x ≥ 0 in the environment ω; we will refer
to these as corresponding sites in the two environments. The coupling of the systems of RWRE that we will construct
will have two parts to it. First of all, we will create a coupling of the initial configurations so that the number of
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particles started at corresponding sites in the two environments are approximately the same. Secondly, we will couple
as many of the particles as possible in the system χ̃ to particles started at corresponding sites in the system χ , and
we will couple the paths of these random walks so that the difference between them is bounded for all time (for each
fixed pair of walks the bound will be a finite random variable).

Using the standard coupling of Poisson random variables with different parameters we can construct a coupling of
the initial configurations χ0 and χ̃0 with the required distributions so that∣∣χ̃0(x)− χ0(ν1 + x)

∣∣∼ Poisson

(
gω̃(x)

∣∣∣∣u0

(
x

n

)
− u0

(
ν1 + x

n

)∣∣∣∣), ∀x ≥ 0, (78)

∣∣χ̃0(x)− χ0(ν0 + x)
∣∣∼ Poisson

(∣∣∣∣gω̃(x)u0

(
x

n

)
− gω(ν0 + x)u0

(
ν0 + x

n

)∣∣∣∣), ∀x < 0, (79)

and such that all the above Poisson random variables are independent. (Note that in (78) we used that gω̃(x) =
gω(ν1 + x) for all x ≥ 0.) Given these initial configurations, let

γ (x)=
{

min{χ0(ν0 + x), χ̃0(x)} if x < 0,
min{χ0(ν1 + x), χ̃0(x)} if x ≥ 0.

That is, γ (x) gives the number of particles started at x in the environment ω̃ that are matched with a particle started at
the corresponding site in the environment ω (either ν0 + x if x < 0 or ν1 + x if x ≥ 0). The Poisson random variables
in (78) and (79) then give the unmatched particles at one of the corresponding sites in either ω or ω̃. In addition,
since the sites x ∈ [ν0, ν1) in the environment ω have no corresponding site in ω̃ all of the particles in [ν0, ν1) are also
unmatched. Therefore, the total number of unmatched particles in either system is

Un =
∑
x<0

∣∣χ̃0(x)− χ0(ν0 + x)
∣∣+∑

x≥0

∣∣χ̃0(x)− χ0(ν1 + x)
∣∣+ ∑

x∈[ν0,ν1)

χ0(x),

which is a Poisson random variable with mean that is bounded above by

∑
x<0

∣∣∣∣gω̃(x)u

(
x

n

)
− gω(ν0 + x)u

(
ν0 + x

n

)∣∣∣∣+∑
x≥0

gω̃(x)

∣∣∣∣u(x

n

)
− u

(
ν1 + x

n

)∣∣∣∣+ ν1−1∑
x=ν0

gω(x)u

(
x

n

)

≤
∑
x<0

gω̃(x)

∣∣∣∣u(x

n

)
− u

(
ν0 + x

n

)∣∣∣∣+∑
x≥0

gω̃(x)

∣∣∣∣u(x

n

)
− u

(
ν1 + x

n

)∣∣∣∣
+
∑
x<0

∣∣gω̃(x)− gω(ν0 + x)
∣∣u(ν0 + x

n

)
+

ν1−1∑
x=ν0

gω(x)u

(
x

n

)

≤�

(
u; ν1 − ν0

n

) ∑
|x|≤Ln

gω̃(x)+ ‖u‖∞
{∑

x<0

∣∣gω̃(x)− gω(ν0 + x)
∣∣+ ν1−1∑

x=ν0

gω(x)

}
.

We claim that the number of unmatched particles is negligible on the scale of the hydrodynamic limit. That is, we will
show that n−1/κUn converges to 0 in probability (under the averaged measure). Indeed, for any ε > 0 and A <∞,

EP
[
P

μn
u(ω),μn

u(ω̃)

(ω,ω̃)

(
UN ≥ εn1/κ

)] ≤ P(ν1 − ν0 ≥√n)+P
( ∑
|x|≤Ln

gω̃(x)≥An1/κ

)

+P
(∑

x<0

∣∣gω̃(x)− gω(ν0 + x)
∣∣+ ν1−1∑

x=ν0

gω(x)≥ n

)

+ P
(

Poisson

(
�

(
u; 1√

n

)
An1/κ + ‖u0‖∞n

)
≥ εn1/κ

)
, (80)
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where in the last line we use the notation Poisson(μ) to denote a Poisson random variable with mean μ. Since the
random variables in the first and third probabilities on the right-hand side do not depend on n (and are finite by
Lemma 7.5), clearly these probabilities vanish as n→∞. Also, since �(u;1/

√
n)→ 0 as n→∞, the Poisson

random variable in the fourth probability has a mean that is o(n1/κ). Thus, the fourth probability also vanishes as
n→∞ for any choice of A <∞ and ε > 0. For the second probability on the right-hand side above, we claim that

lim
A→∞ lim sup

n→∞
Q

( ∑
|x|≤Ln

gω(x)≥An1/κ

)
= 0. (81)

(Note that since the coupling measure P for (ω, ω̃) has marginal Q on ω̃, the probability in (81) is the same as the
second probability on the right-hand side in (80).) This can be proved using results from [4], but we will give a proof
using the techniques of the current paper instead. To this end, first note that

1

n1/κ

∑
|x|≤Ln

gω(x) = 1

n1/κ

∑
|x|≤Ln

∑
k:x<νk+1

bx,k

≤ 1

n1/κ

∑
|k|≤Ln+1

∑
x<νk+1

bx,k + 1

n1/κ

∑
k>Ln+1

∑
x≤Ln

bx,k

≤ 1

n1/κ

∑
|k|≤Ln+1

βk + 1

n1/κ

∑
k>Ln+1

∑
x≤Ln

bx,k.

Under the measure Q, the first sum in the last line converges in distribution to a κ-stable random variable by Corol-
lary 5.4 and (75) implies that the last sum converges to 0 in Q-probability, and from this (81) follows easily.

We have shown that the initial configurations can be coupled in such a way so that the number of unmatched
particles in the two systems is negligible on the hydrodynamic scale. It remains to show that for the matched particles,
we can couple the random walks in the different environments so that the difference between the particles remains
small enough (in fact we will show that the difference remains finite for each pair of coupled walks). We begin by
introducing some notation. We will use X

x,j· to denote the path of the j th random walk started at location x in the
environment ω and similarly X̃

x,j· will denote the path of the j th random walk started at x in the environment ω̃. For
any x ∈ Z and j ≤ γ (x) we will attempt to couple X̃

x,j
n with X

ν0+x,j
n or X

ν1+x,j
n depending on whether x < 0 or

x ≥ 0, respectively. For convenience of notation, we will let

X̄
x,j
n =

{
X

ν0+x,j
n if x < 0,

X
ν1+x,j
n if x ≥ 0,

so that our coupling will be for X̃
x,j
n and X̄

x,j
n . Given this notation, our goal will be to construct a coupling of the

walks so that

lim
n→∞EP

[
P

μn
u(ω),μn

u(ω̃)

ω,ω̃

(
sup
t≤T

∣∣∣∣∣∑
x

γ (x)∑
j=1

φ

(
t,

X̄
x,j

tn1/κ

n

)
− φ

(
t,

X̃
x,j

tn1/κ

n

)∣∣∣∣∣≥ εn1/κ

)]
= 0, (82)

for any ε > 0.
We now describe the coupling of X̃

x,j
n and X̄

x,j
n . We will couple the random walks so that on the mth visit to

corresponding sites, they both move in the same way. To make this precise, let U = {Ux,j
y,m}x,y∈Z,m,j≥1 be an i.i.d.

family of U(0,1) random variables. Then, given the environment ω and the family U of uniform random variables we
construct the random walks in environment ω as follows.

X
x,j

n+1 =X
x,j
n + 21{Ux,j

y,m≤ωy } − 1 if X
x,j
n = y and #

{
i ≤ n :Xx,j

i = y
}=m.
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To construct the coupled random walks in the environment ω̃ we will give a coupled family of uniform random
variables Ũ = {Ũ x,j

y,m}x,y∈Z,m,j≥1 by letting

Ũ
x,j
y,m =U

x̃,j

ỹ,m
, where x̃ =

{
ν0(ω)+ x if x < 0,
ν1(ω)+ x if x ≥ 0,

and ỹ =
{

ν0(ω)+ y if y < 0,
ν1(ω)+ y if y ≥ 0.

Then, given the environment ω̃ and the family Ũ of uniform random variables, the random walks in environment ω̃

are constructed by letting

X̃
x,j

n+1 = X̃
x,j
n + 21{Ũx,j

y,m≤ω̃y } − 1 if X̃
x,j
n = y and #

{
i ≤ n : X̃x,j

i = y
}=m.

Given the above coupling of the random walks, it is easy to see that the steps of the random walks are identical up
until the first time the random walk in environment ω reaches the interval [ν0, ν1) (or equivalently when the random
walk in ω̃ crosses the edge between −1 and 0 for the first time) and that upon each exit of this interval to the right the
steps of the random walk in ω match the steps of the random walk in ω̃ during excursions to the right of 0. Thus, the
difference in position of the two walks is bounded by their initial difference |X̄x,j

0 − X̃
x,j

0 | ≤ ν1 − ν0 plus the amount
of time the walk in ω spends to the left of ν1 after first reaching [ν0, ν1) and the amount of time the random walk in
ω̃ spends to the left of the origin after first reaching the origin. Note that since the random walks are transient to the
right, for any x ∈ Z and j ≥ 1 these quantities are stochastically dominated by the random variable D defined by

D= ν1 − ν0 +
∞∑

n=0

1{Xν0
n <ν1} +

∞∑
n=0

1{X̃0
n<0}. (83)

Therefore, we can expand the probability measure P
μn

u(ω),μn
u(ω̃)

ω,ω̃
to include an i.i.d. family of random variables

{Dx,j }x∈Z,j≥1 all with the same distribution a D in (83) and such that supn |X̄x,j
n − X̃

x,j
n | ≤Dx,j for every x ∈ Z

and j ≥ 1. Thus, we can conclude that

P
μn

u(ω),μn
u(ω̃)

ω,ω̃

(
sup
t≤T

∣∣∣∣∣∑
x

γ (x)∑
j=1

φ

(
t,

X̄
x,j

tn1/κ

n

)
− φ

(
t,

X̃
x,j

tn1/κ

n

)∣∣∣∣∣≥ εn1/κ

)

≤ P
μn

u(ω),μn
u(ω̃)

ω,ω̃

(∑
x

γ (x)∑
j=1

�

(
φ; Dx,j

n

)
≥ εn1/κ

)

≤ ‖u‖∞Eω,ω′ [�(φ; D
n

)]
εn1/κ

Ln∑
x=−Ln

gω̃(x). (84)

Since �(φ; D
n

) is bounded and converges to 0 almost surely under the averaged measure EP [Pω,ω̃(·)], it is easy to

see that Eω,ω′ [�(φ; D
n

)] converges to 0 in P-probability. Together with (81) this implies that (84) converges to 0 in
P-probability, and this in turn implies (82). �

Appendix A: A PDE characterization of uW

As mentioned in Remark 1.10, hydrodynamic limits are often described via a solution of some partial differential
equation. However, in our proof of the hydrodynamic limits in Theorems 1.7 and 2.8 we defined the function uW(t, x)

probabilistically instead of as a solution to some PDE. We showed certain differentiability properties of this function
uW(t, x) in Proposition 3.5, but it is not clear that these differentiability properties uniquely characterize the function
uW(t, x). Indeed, if we only require that (19) holds (differentiable in t with time derivative equal to the negative of the
left spatial derivative with respect to σW ), then it is easily seen that the function v(t, x)≡ u(x) for all t ≥ 0 satisfies
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(19). However, the function v(t, x) is different from uW(t, x) since v does not satisfy the second differentiability
property (20) (time derivative equal to the negative of the right spatial derivative with respect to σW ). We suspect
that the differentiability properties (19) and (20) together do uniquely characterize the function uW(t, x), but we are
currently not able to prove this. Instead, we will give a slightly different characterization of the function uW in the
case when u is a function of bounded variation.

Definition 5. A function f is of bounded variation on [a, b] if

V[a,b](f )= sup
a=x0<x1<···<xn=b

n∑
i=1

∣∣f (xi)− f (xi−1)
∣∣<∞.

(The supremum in the above definition is taken over all finite partitions of [a, b].) The total variation of a function on
all of R is

V (f )= lim
a→−∞
b→∞

V[a,b](f ).

The collection of all functions of bounded variation on R will be denoted by

BV(R)= {
f : V (f ) <∞}

.

Lemma A.1. If W ∈ T ′ and u ∈ C+0 ∩BV(R), then uW(t, x) is the unique function with the following properties.

• uW(0, x)= u(x) for all x ∈R.
• supt≥0,x∈R |uW(s, x)|<∞.
• For any fixed t > 0, the function x �→ uW(t, x) is right-continuous with left limits and also of bounded variation on

R. Moreover, the measure uW(t, dx) is absolutely continuous with respect to σW(dx).
• For any fixed xk ∈ JW , uW(t, xk) is differentiable with respect to t , with

− ∂

∂t
uW (t, xk)=

{
0 if t = 0,
duW (t,·)

dσW
(xk) if t > 0, (85)

and such that

sup
t≥0

ˆ
R

∣∣∣∣ ∂

∂t
uW (t, x)

∣∣∣∣σW(dx) <∞. (86)

Remark A.2. Note that (85) is equivalent to the statement that

uW(t, b)− uW(t, a)=
ˆ

(a,b]
− ∂

∂t
uW (t, x)σW (dx), ∀t > 0 and a < b.

Proof. We begin by proving that the function uW(t, x) has the properties claimed in the statement of the lemma.
The first two properties are immediate consequences of the definition (14). We have already shown in Section 3 that
uW(t, x) is right-continuous with left limits in x and is differentiable in t whenever x ∈ JW with

∂

∂t
uW (t, xk)= uW(t, xk−)− uW(t, xk)

yk

, ∀xk ∈ JW . (87)

Note that if we can show that uW(t, dx) is absolutely continuous with respect to σW , then (85) clearly follows from
(87). Thus, it remains to show (86) and that uW(t, dx) is absolutely continuous with respect to σW . To prove (86) we
will show that

ˆ
R

∣∣∣∣ ∂

∂t
uW (t, x)

∣∣∣∣σW(dx)=
∑

k

∣∣uW(t, xk)− uW(t, xk−)
∣∣≤ V (u) <∞, ∀t ≥ 0. (88)
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The first equality follows from (87). To prove the inequality in (88) recall from Lemma 3.3 that uW(t, xk−) =
u◦W(t, xk)= E[u(Z◦W(t;xk))] and thus∑

k

∣∣uW(t, xk)− uW(t, xk−)
∣∣ ≤∑

k

E
∣∣u(Z∗W(t;xk)

)− u
(
Z◦W(t;xk)

)∣∣
= E

[∑
k

∣∣u(Z∗W(t;xk)
)− u

(
Z◦W(t;xk)

)∣∣],
and since Z∗W(t;x�)≤Z◦W(t;xk)≤Z∗W(t;xk) for all x� < xk , the sum inside the expectation in the last line is always
bounded by V (u). We claim that a further consequence of (88) is that

uW(t, b)− uW(t, a)=
∑

xk∈(a,b]

(
uW(t, xk)− uW(t, xk−)

) ∀t > 0, and a < b. (89)

To see this, we first note that

uW(t, b)− uW(t, a) = E
[
u
(
Z∗W(t;b)

)− u
(
Z∗W(t;a)

)]
= E

[ ∑
xk∈(a,b]

u
(
Z∗W(t;xk)

)− u
(
Z◦W(t;xk)

)]
,

where the last equality above is justified by the fact that u is a function of bounded variation and that the half-
open intervals (Z◦W(t;xk),Z

∗
W (t;xk)] with xk ∈ (a, b] are disjoint and cover all but countably many points in

(Z∗W(t;a),Z∗W(t;b)]. Due to (88), we can interchange the expectation and summation in the last line above to obtain
(89). Combining (88) and (89), we see that uW(t, ·) is of bounded variation with V (uW (t, ·)) ≤ V (u) for all t > 0.
Since uW(t, ·) is a function of bounded variation, the finite Borel measure uW(t, dx) is well defined. (89) shows that
this measure agrees with a measure concentrated on JW for all subsets of the form (a, b]. Since the half-open intervals
(a, b] uniquely determine the Borel measures we can conclude that uW(t, dx) is absolutely continuous with respect
to σW(dx).

Having shown that uW(t, x) satisfies all of the claimed properties in the statement of the Lemma, we now turn to
the proof of the uniqueness. To this end, we first note that for any g ∈ C+0 ∩ BV(R) and any t > 0 we can define a
function f on [0, t] ×R by

f (s, x)= E
[
g
(
ZW(t − s;x)

)]
, s ∈ [0, t], x ∈R. (90)

Similarly to the above argument that uW satisfies the properties stated in the lemma, it can be shown that the function
f has the following properties.

• f (t, x)= g(x) for all x ∈R.
• f is uniformly bounded. That is, supx∈R,s∈[0,t] |f (s, x)|<∞.
• For any s ∈ [0, t) the function x �→ f (s, x) is left-continuous with right limits and of bounded variation on R.

Moreover, the measure f (s, dx) is absolutely continuous with respect to σW(dx).
• For any fixed xk ∈ JW , f (s, xk) is differentiable with respect to s ∈ [0, t], with

− ∂

∂s
f (s, xk)=

{
df (s,·)
dσW

(xk) if s ∈ [0, t),
0 if s = t ,

(91)

and such that

sup
s∈[0,t]

ˆ
R

∣∣∣∣ ∂

∂s
f (s, x)

∣∣∣∣σW(dx) <∞. (92)
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Now, suppose that u(t, x) is another function satisfying all of the properties in the statement of Lemma A.1. Let
g ∈ C+0 ∩BV(R) and t > 0 be fixed and let f be defined as in (90). Then,

ˆ
R

u(t, x)g(x)σW (dx)=
ˆ
R

u(t, x)f (t, x)σW (dx)

=
ˆ
R

u(0, x)f (0, x)σW (dx)+
ˆ
R

ˆ t

0

∂

∂s

(
u(s, x)f (s, x)

)
ds σW (dx)

=
ˆ
R

u(x)f (0, x)σW (dx)+
ˆ
R

ˆ t

0

(
f (s, x)

∂

∂s
u(s, x)+ u(s, x)

∂

∂s
f (s, x)

)
ds σW (dx)

=
ˆ
R

u(x)f (0, x)σW (dx)+
ˆ t

0

ˆ
R

(
f (s, x)

∂

∂s
u(s, x)+ u(s, x)

∂

∂s
f (s, x)

)
σW(dx)ds,

where the application of Fubini’s Theorem in the last equality is justified by (86), (92) and the boundedness of u and
f . To simplify the double integral in the last line above, note that for any s ∈ (0, t) it follows from (85) and (91) that

ˆ
R

(
f (s, x)

∂

∂s
u(s, x)+ u(s, x)

∂

∂s
f (s, x)

)
σW(dx)

=
ˆ
R

f (s, x)u(s, dx)+
ˆ
R

u(s, x)f (s, dx)= 0,

where the last equality follows from integration by parts since u and f are both of bounded variation, u(s, ·) is right
continuous and f (s, ·) is left continuous. We have shown that

ˆ
R

u(t, x)g(x)σW (dx)=
ˆ
R

u(x)f (0, x)σW (dx), ∀g ∈ C+0 ∩BV(R), t > 0.

Since this is also true for the function uW(t, x), we can conclude that u(t, xk)= uW(t, xk) for all t > 0 and xk ∈ JW .
However, since W ∈ T ′ then JW is dense in R and since u and uW are both right continuous in x it follows that
u(t, x)= uW(t, x) for all t ≥ 0 and all x ∈R. �

Appendix B: Weak convergence of the random trap environments

In this appendix, we will give the proof of the Poissonian limit of the trap structure as stated in Corollary 5.4 as well
as the proofs of Corollaries 5.5 and 5.6. All of these corollaries are a consequence of Lemma 5.2.

B.1. Poissonian limit for the trap structure

Proof of Corollary 5.4. We begin by showing that Wn converges in distribution to W . Since Lemma 5.2 implies that
Wn converges in distribution to W , we claim that it will be enough to show that

lim
n→∞Q

(∣∣〈φ,Wn〉 − 〈φ,Wn〉
∣∣≥ δ

)= 0, ∀δ > 0, φ ∈ C+0
(
R× (0,∞]). (93)

To see that (93) is sufficient, note that Mp is a Polish space under a metric dvague which is given by

dvague
(
M,M ′)= ∞∑

k=1

2−k
(
1− e−|〈φk,M〉−〈φk,M

′〉|), ∀M,M ′ ∈Mp,

where {φk}k≥1 is a certain fixed sequence of continuous functions with compact support. Clearly (93) then implies
that

lim
n→∞Q

(
dvague(Wn,Wn)≥ δ

)= 0, ∀δ > 0,
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from which it follows that Wn has the same limiting distribution as Wn.
To prove (93), first note that∣∣〈φ,Wn〉 − 〈φ,Wn〉

∣∣≤∑
k

∣∣∣∣φ(νk

n
,

βk

n1/κ

)
− φ

(
kν̄

n
,

βk

n1/κ

)∣∣∣∣.
Now, suppose that φ ∈ C+0 (R× (0,∞]) has support contained in [−L,L] × [ε,∞]. Since φ is uniformly continuous,
for any ε′ > 0 there exists a δ′ > 0 such that |φ(x, y)−φ(x′, y)|< ε′ if |x− x′|< δ′. Therefore, we can conclude that

Q
(∣∣〈φ,Wn〉 − 〈φ,Wn〉

∣∣≥ δ
) ≤Q

(
max|k|≤Ln

|νk − kν̄| ≥ δ′n
)
+Q

(
Ln∑

k=−Ln

1{βk≥εn1/κ } ≥
δ

ε′

)

≤Q
(

max|k|≤Ln
|νk − kν̄| ≥ δ′n

)
+ (2Ln+ 1)ε′

δ
Q
(
β1 ≥ εn1/κ

)
.

As noted in (46) above, the first probability on the right vanishes as n→∞ for any δ′ > 0. The tail decay of β1
implies that the second term on the right vanishes as first n→∞ and then ε′ → 0. This completes the proof of (93),
and thus we can conclude that Wn converges in distribution to W .

Next, recalling the notation M(ε) =M(· ∩R×[ε,∞]) for any point process M ∈Mp(R×R+), we claim that the
mapping M �→ σM(ε) from Mp(R×R+)→DJ

R
is continuous on the set

Aε =
{
M ∈Mp :M

(
R× {ε,∞})= 0

}
.

Indeed, let Mn → M ∈ Aε and fix L <∞ with the property that M({−L,L} × (0,∞]) = 0 (since M has only
countably many atoms, there are only countably many L for which this does not hold). Then for n sufficiently large
we can enumerate the point processes Mn and M so that

Mn

(· ∩ [−L,L] × [ε,∞])= K∑
k=1

δ(xn
k ,yn

k ), and M
(· ∩ [−L,L] × [ε,∞])= K∑

k=1

δ(xk,yk),

and

lim
n→∞max

k≤K

∣∣xn
k − xk

∣∣∨ ∣∣yn
k − yk

∣∣= 0.

(Of course, in the above notation K must be given by K =M([−L,L] × [ε,∞]) <∞.) It follows that for n suffi-
ciently large we have that

d
J1[−L,L](σM

(ε)
n

, σM(ε) )≤max

{
max
k≤K

∣∣yn
k − yk

∣∣, K∑
k=1

∣∣xn
k − yn

k

∣∣}.

From this we can conclude that d
J1[−L,L](σM

(ε)
n

, σM(ε) )→ 0 as n→∞ for almost every L <∞. This is enough to

conclude that σ
M

(ε)
n

converges to σM(ε) in DJ
R

.
Since the Poisson point process W satisfies P(W ∈Aε)= 1, the continuous mapping theorem and the fact that Wn

converges in distribution to W then imply that (Wn,σW
(ε)
n

) converges in distribution to (W,σW(ε) ). Since

sup
|x|≤L

∣∣σW(ε) (x)− σW(x)
∣∣≤ ˆ L

−L

ˆ ε

0
y W(dx dy)−→

ε→0
0,

it follows that σW(ε) → σW in DJ
R

, and thus to conclude that (Wn,σWn) converges in distribution to (W,σW ) we need
only to show that

lim
ε→0

lim sup
n→∞

Q
(

sup
|x|≤L

∣∣σ
W

(ε)
n

(x)− σWn(x)
∣∣≥ δ

)
= 0, ∀L <∞, δ > 0.
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Since

sup
|x|≤L

∣∣σ
W

(ε)
n

(x)− σWn(x)
∣∣≤ ˆ L

−L

ˆ ε

0
y Wn(dx dy)≤ 1

n1/κ

Ln∑
k=−Ln

βk1{βk≤εn1/κ },

this will follow from

lim
ε→0

lim sup
n→∞

Q

( ∑
|k|≤Ln

βk1{βk<εn1/κ } ≥ δn1/κ

)
= 0, ∀L <∞, δ > 0. (94)

However,

lim sup
n→∞

Q

( ∑
|k|≤Ln

βk1{βk<εn1/κ } ≥ δn1/κ

)
≤ lim sup

n→∞
2Ln+ 1

δn1/κ
EQ

[
β11{β1<εn1/κ }

]
= 2LC1κ

δ(1− κ)
ε1−κ ,

where the last equality follows from the tail decay of β1 in (45). Since κ ∈ (0,1), this is enough to prove (94). �

B.2. Stable limits in Corollaries 5.5 and 5.6

Proof of Corollary 5.5. It is known that if W =∑
k δ(xk,yk) is a Poisson point process with intensity measure

λy−κ−1 dx dy, then 〈y1{|x|≤a},W 〉 =∑
k yk1{|xk |≤a} is a κ-stable random variable for any a > 0. Since

1

n1/κ

∑
|k|≤n

βk =
〈
y1{|x|≤ν̄},Wn

〉
,

we would like to use Lemma 5.2 to conclude that the sum n−1/κ
∑
|k|≤n βk also converges in distribution to

〈y1{|x|≤ν̄},W 〉. Unfortunately, the mapping M �→ 〈y1{|x|≤ν̄},M〉 from Mp → R is not a continuous mapping. How-
ever, the mapping

M �→ 〈
y1{|x|≤ν̄,y≥ε},M

〉
is continuous on the set {M ∈Mp :M(R× {ε})=M({−ν̄, ν̄} × (0,∞])= 0}. Since for any ε > 0 the Poisson point
process W belongs to this set with probability 1, we can conclude from Lemma 5.2 that

1

n1/κ

∑
|k|≤n

βk1{βk≥εn1/κ } �⇒
〈
y1{|x|≤ν̄,y≥ε},W

〉
, as n→∞,

for any ε > 0. The proof of the corollary then follows from (94) and the fact that〈
y1{|x|≤ν̄,y≥ε},W

〉−→
ε→0

〈
y1{|x|≤ν̄},W

〉
,

with probability one. �

Proof of Corollary 5.6. Let Sn(t) = n−1/κτB([0, nt)) be the hitting time process for the directed traps. We claim
that both limiting distributions in the statement of the corollary will follow if we can show that the hitting time process
{Sn(t)}t≥0 converges in distribution to a κ-stable subordinator {S(t)}t≥0 on the space DJ

R+ . First, since νn/n→ ν̄,

Q-a.s., it follows that n−1/κτB([0, νn)) converges in distribution to S(ν̄), which is a κ-stable random variable. Next,
let D+u,↑ ⊂DR+ be the set of non-decreasing càdlàg functions x(t) with x(0) ≥ 0 and x(t)→∞ as t →∞ and let

I :D+u,↑ �→D+u,↑ be the space–time inversion operator given by

Ix(t)= sup
{
s ≥ 0 : x(s)≤ t

}
, t ≥ 0, x ∈D+u,↑.
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Note that the construction of the directed trap process ZB is such that n−1ZB(tn1/κ)= ISn(t). Since it is known that
the operator I is continuous on the subset D+u,↑↑ ⊂D+u,↑ of functions that are strictly increasing [19, Corollary 13.6.4],

the continuous mapping theorem then implies that {t �→ n−1ZB(tn1/κ)} converges in distribution to {IS(t)}t≥0.
Since the inverse of a κ-stable subordinator IS(t) is almost surely a continuous process, we can conclude that this
convergence in distribution is with respect to the uniform topology on DR+ .

It remains to prove the claimed convergence of the hitting time process Sn. Recall that the crossing time τB([0, nt))

for the directed trap process in the trap environment B is given by

τB
([0, nt)

)=∑
k

βkζk1{νk∈[0,nt)},

where {ζk}k is an i.i.d. sequence of Exp(1) random variables that is independent of B. We then construct the point
process

�n =
∑
k∈Z

δ
(

νk
n

,
βkζk

n1/κ
)

which is obtained by multiplying the y-coordinate of the atoms of Wn by the independent random variables ζk . It
then follows from Corollary 5.4 that �n converges in distribution to a Poisson point process � with intensity measure
λ′y−κ−1 dx dy, where λ′ = λ�(κ + 1) with λ as in Corollary 5.4. Now, note that t �→ S(t) = 〈y1{x∈[0,t)},�〉 is a
κ-stable subordinator and

Sn(t)= 1

n1/κ
τB

([0, nt)
)= 1

n1/κ

∑
k

βkζk1{νk∈[0,nt)} = 〈y1{x∈[0,t)},�n〉.

The mapping M �→ {〈y1{x∈[0,t)},M〉}t≥0 is not a continuous mapping from Mp to DJ
R+ , but for any ε > 0 the mapping

M �→ {〈y1{x∈[0,t),y≥ε},M〉}t≥0 is continuous on the set {M ∈Mp :M(R× {ε})= 0}. Then, similarly to the proof of
Corollary 5.5, we will be able to deduce the convergence of Sn to S if we can show that

lim
ε→0

lim sup
n→∞

EQ

[
Pω

(
nT∑
k=0

βkζk1{βkζk<εn1/κ } ≥ δn1/κ

)]
= 0, ∀T <∞, δ > 0. (95)

To see this, first note that the tail decay of β1 in (45) and the fact that ζ1 is independent of β1 can be used to show that

EQ

[
Pω(β1ζ1 ≥ x)

]∼ C1�(κ + 1)x−κ , as x→∞.

From this tail decay asymptotics, the proof of (95) follows in the same way as the proof of (94) above. This completes
the proof of the convergence of the hitting times process Sn(t), and thus also the proof of the Corollary. �
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