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Abstract. Let pN be a random degree N polynomial in one complex variable whose zeros are chosen independently from a
fixed probability measure μ on the Riemann sphere S2. This article proves that if we condition pN to have a zero at some fixed
point ξ ∈ S2, then, with high probability, there will be a critical point wξ at a distance N−1 away from ξ . This N−1 distance is

much smaller than the N−1/2 typical spacing between nearest neighbors for N i.i.d. points on S2. Moreover, with the same high
probability, the argument of wξ relative to ξ is a deterministic function of μ plus fluctuations on the order of N−1.

Résumé. Soit pN un polynôme aléatoire de degré N en une variable complexe tel que ses zéros sont distribués indépendamment
suivant une mesure de probabilité μ fixée et définie sur la sphère de Riemann S2. Cet article prouve que si nous conditionnons pN

pour avoir un zéro en un point fixé ξ ∈ S2, alors, avec grande probabilité, il y aura un point critique wξ à une distance N−1 de ξ .

Cette distance N−1 est beaucoup plus petite que l’espacement typique entre deux points voisins pour N points i.i.d. sur S2, qui
lui est d’ordre N−1/2. De plus, avec la méme grande probabilité, l’argument de wξ relativement à ξ est une fonction déterministe

de μ, plus des fluctuations d’ordre N−1.
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0. Introduction

This article concerns a surprising relationship between zeros and critical points of a random polynomial in one com-
plex variable. To introduce our results, consider Figure 1, which shows the zeros and critical points of p(z) = z9 − 1
and of q(z) = p(z)(z − ξ) for various ξ . While the zeros and critical points of p are quite far apart, most zeros of q

seem to have a unique nearby critical point. This effect becomes more pronounced for a polynomial whose zeros are
chosen at random as in Figure 2. What accounts for such a pairing? How close is a zero to its paired critical point?
Why does the pairing break down in some places? Why is there such a rigid angular dependence between a zero and
its paired critical point? We give in Section 1 intuitive answers to these questions using an interpretation of zeros and
critical points that relies on electrostatics on the Reimann sphere S2. This physical heuristic, in turn, guides the proofs
of our main results, Theorems 1 and 2.

There is a vast literature on the distribution of zeros of random polynomials, and we will not attempt to survey
it here. We simply mention that they have been studied from the point of view of random analytic functions (cf.
[18]); random matrix theory, where eigenvalues are zeros of characteristic polynomials of random matrices (cf. [2]);
and determinantal point processes (cf. [11]). Previous results specifically relating zeros and critical points of random
polynomials are much more limited, however. This is somewhat surprising because there are many interesting deter-
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Fig. 1. Figures from left to right display zeros (blue squares) and critical points (orange disks) of p(z) = z9 − 1 and of q(z) = p(z)(z − ξ) for
various ξ .

Fig. 2. Figures from left to right display zeros (blue squares) and critical points (orange disks) of a polynomial with 10,20,30 zeros each chosen
independently from the standard Gaussian measure on C.

ministic theorems that restrict the possible locations of critical points of a polynomial in terms of the locations of its
zeros. We recall two such results, and refer the reader to Marden’s book [13] for many more.

Theorem (Gauss–Lucas). The critical points of a polynomial in one complex variable lie inside the convex hull of
its zeros.

Theorem (Theorem 3.55 in [20]). Let f be a non-zero holomorphic function on a simply connected domain � ⊆C,
and take � to be a smooth closed connected component of the level set {|f (z)| = t} for some t . Write U = {|f (z)| < t}
for the open domain bounded by �. Then

#
{
f (z) = 0

} ∩ U =
(

#

{
d

dw
f (w) = 0

}
∩ U

)
+ 1.

We are aware of only three previous works concerning the sort of a pairing between zeros and critical points
discussed here. From the math literature, there are the author’s two articles [9,10] which study a large class of Gaus-
sian random polynomials called Hermitian Gaussian Ensembles (HGEs). The simplest HGE is the SU(2) or Kostlan
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ensemble:

p
SU(2)
N (z) :=

N∑
j=0

aj

√(
N

j

)
zj , aj ∼ N(0,1)C i.i.d. (0.1)

Even for the SU(2) ensemble, the pairing of zeros and critical points was a new result (see Figure 2). The proofs in
[9,10] are not elementary, however, because the distribution of zeros and critical points for HGEs is highly non-trivial
and is written in terms of so-called Bergman kernels. Moreover, most of the theorems in [9,10] do not discuss the
angular dependence between a zero and its paired critical point. The present article, in constrast, studies the simplest
possible ensembles of random polynomials from the point of view of the joint distribution of the zeros. Namely, we
fix some number of zeros and choose the others uniformly and independently from a fixed probability measure on S2.
In this situation, we are able to give the first completely elementary proof of the pairing of zeros and critical points
for a random polynomial.

The other article we are aware of is the heuristic work of Dennis and Hannay [5] from the physics literature. They
give an electrostatic explanation for why, for certain special kinds of random polynomials, zeros with a large modulus
should be paired to a critical point. In Section 1 we give a somewhat different and more flexible electrostatic argument
that explains the pairing of zeros and critical points. Our reasoning also predicts the distance from a zero to its paired
critical point as well as the existence of regions where such a pairing breaks down.

To conclude, let us mention the works of Kabluchko [12], Pemantle and Rivlin [16] and Subramanian [19], which
study the empirical measure of critical points for ensembles of random polynomials similar to the ones we consider
here. We also point the reader to the work of Nazarov, Sodin and Volberg [14] and the recent article of Feng [8], which
both concern the critical points of random holomorphic functions with respect to a smooth connection. Finally, for
recent results about double zeros of random real polynomials, which can thought of as a kind of extreme pairing of
zeros and critical points, see Do, Nguyen and Vu [6], Feldheim and Sen [7] and Peled, Sen and Zeitouni [15].

1. Electrostatic interepretation of zeros and critical points

The idea that zeros and critical points of a complex polynomials have an electrostatic interpretation goes back to
Gauss ([13], Preface and Section 2). And the observation that zeros with a large modulus should be paired to a critical
point in certain special kinds of random polynomials (and for certain random entire functions) was stated by Dennis
and Hanny in [5]. They give a heuristic explanation for this pairing, which is similar in spirit to ours, but does not use
that polynomials have a high multiplicity pole at infinity.

We begin by explaining Gauss’s proof of the Gauss–Lucas Theorem. Suppose pN is a degree N polynomial and
ξj , j = 0, . . . ,N − 1 are its zeros. The critical points of pN are solutions to

d

dw
pN(w) = 0 ←→ ∂ log

∣∣pN(w)
∣∣2 =

N−1∑
j=0

1

w − ξj

= 0.

A basic observation is that (z − ξj )
−1 is the electric field at z from a +1 charge at ξj . The sum ∂ log|pN(z)|2 is

therefore the complex conjugate of the total electric field EN(z) at z from positive point charges placed at each ξj .
This means

d

dw
pN(w) = 0 ←→ electric field satisfies EN(w) = 0.

Since all charges have the same sign, EN cannot vanish outside of their convex hull. Hence the Gauss–Lucas Theorem.
The preceeding argument relied very much on the particular coordinates on S2 (the convex hull is not a coordinate-

free notion). However, the electrostatic interpretation of critical points can itself be done in a coordinate invariant way.
We start by viewing pN as a meromorphic function on S2. Then

� log|pN |2 = Div(pN) = −Nδ∞ +
∑

pN(ξ)=0

δξ ,
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where we’ve written � = i
2π

∂∂ for the Laplacian, and the equality is in the sense of distributions. This means that

EN(w) = ∂ log
∣∣pN(w)

∣∣2

is a one-form that at any w ∈ S2 gives the (complex conjugate of the) electric field at w from charge distributed
according to Div(pN). Gauss’s choice of coordinates makes ∞ infinitely far way and so the contribution to EN from
the −N charges at infinity was zero. To get a true electric field, we need to covert EN to a vector field using a metric.
However, the points where EN vanishes (i.e. the critical point of pN ) are independent of such a choice.

This point of view is closely related to the classical notion of a polar derivative of a complex polynomial ([13],
Section 3), which can be used to prove some coordinate free versions of the Gauss–Lucas Theorem such as Laguerre’s
Theorem ([13], p. 49). That it should imply a pairing of zeros and critical points never seems to have been observed,
however.

It is precisely the charge of size N at ∞ that clarifies why zeros and critical points come in pairs. To see this,
let us consider the case of a degree N polynomial pN,ξ that has a zero at a fixed point ξ ∈ S2, while its remaining
zeros ξ1, . . . , ξN−1 are chosen independently from the uniform measure μ on S2. We must explain why, with high
probability, there is a point wξ near ξ at which the electric field EN(wξ ) vanishes. In the holomorphic coordinate w

centered at ∞, we have

pN,ξ (w) = 1

wN
(w − ξ)

N−1∏
j=1

(w − ξj ), ξj ∼ μ i.i.d. (1.1)

Thus,

EN(w) = −N

w
+ 1

w − ξ
+

N−1∑
j=1

1

w − ξj

. (1.2)

The first term in (1.2) is the contribution from the −N charges at ∞, while the second comes from the +1 charge at
ξ , which is also of order N if |w − ξ | ≈ N−1. The third term is a sum of i.i.d. random variables. It is equal to zero on
average (cf. (3.1)). Hence, heuristically, it is should be on the order of N1/2 by the central limit theorem. Therefore,
to leading order in N , the electric field near ξ is very close to its average

EN(w) ≈ E
[
EN(w)

] = −N

w
+ 1

w − ξ
. (1.3)

As long as ξ /∈ {0,∞} (here 0 is the antipodal point on S2 to ∞) there will be a unique solution

wN,ξ = ξ

(
1 − 1

N

)−1

(1.4)

to

E
[
EN(w)

] = 0

in the regime where the approximation (1.3) is valid. Note that the distance from w to wξ is on the order of N−1. The
true critical point of pN will, by Rouché’s Theorem, therefore be a small perturbation of wN,ξ . Note that wξ is a bit
farther away from ∞ than ξ and hence is closer to 0 as shown in Figures 1–4. The condition that ξ /∈ {0,∞} is not an
artifact of our reasoning. Figures 1–4 clearly show the existence of regions where the pairing of critical points breaks
down: at ξ = 0, the contribution to EN from the charges at ∞ precisely cancels by symmetry. Near 0 the field EN is
controlled by the nearby zeros whose statistical fluctuations cannot be ignored.

Now let us suppose that the zeros ξ1, . . . , ξN−1 are still uniformly distributed but now according to an arbitrary
probability measure μ on S2. There will still be a pairing of zeros and critical points, but the pairs will no longer
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Fig. 3. Zeros (black disks) and critical points (blue squares) for a degree 50 SU(2) polynomial p (defined in (0.1)) displayed on the left in
coordinates C∼= S2 \ {∞} and on the right directly on S2. The colored lines are gradient flow lines for −|p(z)|2. Lines of the same color terminate
at the same point. The origin is denoted by a red asterisk in both figures.

Fig. 4. Zeros (black disks) and critical points (blue squares) for pKac
50 . The colored lines are gradient flow lines for |pKac

50 (z)|2. Lines of the same
color terminate at the same point.

necessarily align with ∞. Indeed, the main difference in this case is that instead of (1.3), the electric field near ξ will
have a non-zero contribution from the average of the third term in (1.2). To leading order in N , we have

EN(w) ≈ E
[
EN(w)

] ≈ N

(
− 1

w
+ φμ(w)

)
+ 1

w − ξ
, (1.5)
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where

φμ(w) =
∫
C

dμ(ζ )

w − ζ
(1.6)

is the (complex conjugate of the) average electric field at w from a zero distributed according to μ. To ensure a unique
point wN,ξ where the right-hand side of (1.5) vanishes that is near ξ we must ask that ξ /∈ Sμ, where

Sμ :=
{
w ∈C

∣∣∣ − 1

w
+ φμ(w) ∈ {0,∞}

}
. (1.7)

Expilcitly,

wN,ξ = ξ

(
1 − 1

N
· 1

φμ(ξ) · ξ − 1

)
(1.8)

plus an O(N−2) error and

arg(wN,ξ − ξ) = arg(ξ) − arg

(
1

ξ
− φμ(ξ)

)
+ O

(
N−1).

Before stating the rigorous results of this article, we remark that the heuristic argument given here does not make
strong use of the i.i.d. nature of the zeros of pN . It does crucially rely on the assumption that they are well-spaced and
not too correlated, however.

2. Main result

Our main result, Theorem 1, can be stated loosely as follows. Consider a degree N polynomial pN , viewed as a
meromorphic function on S2. Suppose pN has a zero at a fixed point ξ , while its other zeros are randomly and
independently selected. Then, we are likely to observe a critical point wξ of pN a distance about N−1 away from ξ .

Note that if we choose N independent points at random from the uniform measure on S2, then the typical spacing
between nearest neighbors is on the order of N−1/2, which is much larger than the N−1 spacing between a zero and
its paired critical point. Observe also that Theorem 1 is genuinely probabilistic and does not hold for polynomials of
the form zN − RN . Nonetheless, as explained in the Introduction, multiplying z9 − 1 by a single linear factor already
makes the zeros and critical points of the resulting polynomial come in pairs (see Figure 1).

Let us write PN for the space of polynomials of degree at most N in one complex variable. Since the zeros and
critical points of pN ∈ PN are unchanged after multiplication by a non-zero constant, we study zeros and critical
points of a random polynomial by putting a probability measure directly on the projectivization P(PN) as follows.

Definition 1. Fix ξ ∈ S2 and a probability measure μ with a bounded density with respect to the uniform measure
on S2. Define [pN,ξ ] to be a random element in P(PN) with a (deterministic) zero at ξ and N − 1 (random) zeros
{ξ1, . . . , ξN−1} distributed according to the product measure μ⊗(N−1) on (S2)N−1.

Slightly abusing notatoin, will hencefore write pN,ξ for any representative of [pN,ξ ]. We also identify once and for
all polynomials with meromorphic functions on S2 that have a pole at the distinguished point ∞ ∈ S2, and we will
write 0 for the antipodal point to ∞. With w denoting the usual holomorphic coordinate on S2 centered at ∞, pN,ξ is
given by (1.1).

Let Sμ be defined as in (1.7). For each ξ ∈ S2 \Sμ, we define wξ,N to be the unique solution to the averaged critical
point equation

E
[
∂w log

∣∣pN,ξ (w)
∣∣2] = 0 (2.1)

whose distance from ξ is on the order of N−1. The point wN,ξ is therefore a point whose distance from ξ is approxi-
mately N−1 where the electric field is expected to vanish. See (1.8) for an asymptotic formula for wξ,N .
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Theorem 1 (Pairing of single zero and critical point). Let μ be any probability measure on S2 that has a bounded
density with respect to the uniform measure, and fix ξ ∈ S2 \ Sμ, where Sμ is defined in (1.7). Consider pN,ξ as in
Definition 1. Fix r > 0, and write �N for the geodesic circle of radius rN−1 centered at wN,ξ . Suppose that ξ /∈ �N

for all N . Then, for any δ ∈ (0,1), there exists C = C(r, δ) > 0 so that for all N

P

(
∃!w inside �N s.t.

d

dw
pN,ξ (w) = 0

)
≥ 1 − C · N−δ.

Remark 1. The conclusion of Theorem 1 is actually true for any simple closed contour �N,ξ with winding number 1
around wξ,N that does not pass through ξ and satisfies:

(i) There exists c1 > 0 so that

inf
w∈�N,ξ

∣∣E[
∂ log

∣∣pN,ξ (w)
∣∣2]∣∣ ≥ c1 · N.

(ii) There exists c2 > 0 so that for all N

sup
w∈�N,ξ

dS2(w, ξ) ≤ c2 · N−1,

where dS2 is the usual distance function on S2.

2.1. Generalizations of Theorem 1

Theorem 1 can be generalized in many different ways. A particularly simple extension concerns the simultaneous
pairing of Nα zeros and critical points for any α ∈ [0,1). To give an exact statement, consider for each N a finite
collection of at most N points �N ⊆ S2 \ Sμ. Define pN,�N

to be a random degree N polynomial that vanishes at
each ξ ∈ �N and whose other zeros are chosen independently from μ. As above, this defintion actually specifies an
equivalence class [pN,�N

] in P(PN) all of whose representatives have the same zeros and critical points.

Theorem 2 (Pairing of Nα zeros and critical points). Fix α ∈ [0,1) and δ ∈ (0,1 − α). For every N ≥ 1, choose an
integer n(N) between 1 and Nα and a collection of n(N) points �N ⊆ S2 \ Sμ satisfying

(A) There exists ε ∈ (0,1) so that for every N and every pair of distinct point ξ1, ξ2 ∈ �N we have |ξ1 − ξ2| >

N−1/2+ε/2.

Define pN,�N
as above, and for each N and every ξ ∈ �N , let �N,ξ be the geodesic circle of radius rN−1 centered

at wN,ξ . If ξ /∈ �N,r,ξ for all N , then there exists C = C(α, δ, ε, r) > 0 so that

P

(
∀ξ ∈ �N ∃! w inside �N,ξ s.t.

d

dw
pN,�N

(w) = 0

)
≥ 1 − C · N−δ.

Remark 2. The conclusion of Theorem 2 is satisfied if �N,ξ is any contour satisfying (A) and conditions (i), (ii) from
Remark 1.

There are other directions in which Theorem 1 could perhaps be extended. We indicate some of them here.

(1) The assumption that μ has a bounded density with respect to Haar measure ensures that typical spacings between
the random zeros are like N−1/2. The intuitive electrostatic argument in Section 1 for why zeros and critical points
are paired used only that zeros are weakly correlated and spaced more than N−1 apart, however. This suggests
that perhaps μ can be taken to be any measure satisfying a finite energy condition∫

S2

∫
S2

log
(
dS2(z,w)

)
dμ(w)dμ(z) < ∞,

which rules out μ having an atom or being supported on a curve.
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(2) The 1 − CδN
−δ estimate from Theorem 1 is sharp in the sense that with probability on the order of N−1 there

exists a j so that |ξj − ξ | ≤ N−1. Such a zero will disrupt the local pairing of zeros and critical points. However, if
one studies ensembles of polynomials for which zeros repel one another, then the N−δ estimates can be improved.
For instance, in [9,10] the author studied such ensembles and showed that the probability of pairing is like N−3/2.
Zeros will always repel for polynomials whose coefficients relative to a fixed basis are taken to be i.i.d. since
the change of variables from coefficients to zeros involves a Vandermonde determinant. It should therefore be
possible to generalize the results in this paper to the case when zeros are distributed like a Coulomb gas.

(3) Theorem 1 will not be true as stated for polynomials whose zeros tend to be N−1 apart. Consider, for example,
the Kac polynomials pKac

N (z) = ∑N
j=0 aj z

j with aj ∼ N(0,1)C i.i.d. The zeros are well-known to approximately

equidistribute on the unit circle S1. Nonetheless it is plausible from Figure 4 that most zeros are still paired to a
unique critical point. A general family of such ensembles was introduced by Shiffman and Zelditch in [17] and
further studied by Bloom in [3] and Bloom and Shiffman in [4].

3. Proof of Theorem 1

We prove Theorem 1 when μ is the uniform measure on S2 since the argument for general μ is identical and only
involves carrying along various factors of φμ(w). For the uniform measure, the average electric field at any fixed w

from one of the random zeros vanishes. To see this, note that in any holomorphic coordinate ζ on S2, we have

dμ(ζ ) = idζ ∧ dζ

2π(1 + |ζ |2)2
.

Thus, in polar coordinates around w:

φμ(w) =
∫

S2

dμ(ζ )

w − ζ
=

∫
C

1

ζ ′ · idζ ′ ∧ dζ ′
2π(1 + |ζ ′|2)2

=
∫ ∞

0

(
1 + r2)−2

dr ·
∫ 2π

0
e−iθ dθ = 0. (3.1)

We therefore have

Sμ = {0,∞}.

We work in the holomorphic coordinate w centered at ∞ and fix ξ ∈ S2 \ Sμ. In our coordinates, pN,ξ is given by
(1.1) and wξ,N , which we shall henceforth abbreviate wξ , is given by (1.4). Write as in Section 1

EN(w) = −N

w
+

N−1∑
j=0

1

w − ξj

,

and recall that critical points of pN,ξ are solutions to EN = 0. The contour �N satisfies

(i) There exists c1 = c1(r, ξ) > 0 so that

inf
w∈�N

∣∣∣∣−N

w
+ 1

w − ξ

∣∣∣∣ ≥ c1 · N.

(ii) There exists c2 = c2(r, ξ) > 0 so that

sup
w∈�N

|w − ξ | ≤ c2 · N−1,



1506 B. Hanin

which are precisely the conditions from Remark 1. Write

ẼN (w) := EN(w) −E
[
EN(w)

] =
N−1∑
j=1

1

w − ξj

,

and fix δ ∈ (0,1). We will show that there exists γ = γ (c1, c2, δ) > 0 and C3 = C3(c1, c2, δ) so that

P

(
sup

w∈�N

∣∣ẼN(w)
∣∣ ≤ N1−γ

)
≥ 1 − C3 · N−δ. (3.2)

The relation (3.2), Rouché’s theorem, and (i) would then imply that pN,ξ has a unique critical point inside �N with
probability at least 1 − C3 · N−δ , as desired. The proof of (3.2) is elementary but somewhat technical. Before giving
the details we give a brief outline for the argument.

Step 1. Estimating the supremum of the random function ẼN(w) restricted to �N is not simple to do directly. The
basic reason is that ẼN (w) fluctuates rather wildly (it does not even have a finite variance at a point). So instead we
estimate separately the fluctuations of ẼN (w) − ẼN(wξ ) and of ẼN(wξ ).

Step 2. To estimate ẼN(w) − ẼN(wξ ) we use that |w − wξ | ≈ N−1 to throw away the contribution to ẼN(w) −
ẼN(wξ ) coming from zeros that are far from ξ (and hence from w and wξ as well). Specifically, by condition (ii),
there exists K1 = K1(c2, δ) so that for all N

sup
w∈�N

∣∣∣∣ ∑
|ξj −ξ |>N−1/2+δ/2

(
1

w − ξj

− 1

wξ − ξj

)∣∣∣∣ ≤ sup
w∈�N

∑
|ξj −ξ |>N−1/2+δ/2

|wξ − w|
|w − ξj ||wξ − ξj |

≤ K1 · N1−δ.

Step 3. Writing

ẼN (w, δ) :=
∑

|ξ−ξj |≤N−1/2+δ/2

1

w − ξj

,

relation (3.2) now follows once we show that there exists γ = γ (c1, c2, δ) > 0 as well as K2 = K2(c1, c2, δ) > 0 and
K3 = K3(c1, c2, δ) > 0 such that

P

(
sup

w∈�N

∣∣ẼN(wξ , δ) − ẼN(w, δ)
∣∣ ≥ N1−γ

)
≤ K2 · N−δ (3.3)

and

P
(∣∣ẼN(wξ )

∣∣ ≥ N1−γ
) ≤ K3 · N−δ. (3.4)

Step 4. There are essentially two reasons that the events whose probabilities we seek to bound in (3.3) and (3.4)
occur. First, if |ξ − ξj | ≈ N−1 for some j , then ẼN(w), ẼN(wξ ) will both be on the order of N because of the single
term involving ξj . Second, if there are many more than Nδ zeros ξj for which |ξj − ξ | ≤ N−1/2+δ/2, then each term
in ẼN(wξ , δ) will be large enough that their sum could well be on the order of N . However, both of these events
themselves have small probability. To quantify this, we write for ζ ∈ S2

Z(ζ,R) := #
{
j = 1, . . . ,N | dS2(ξj , ζ ) ≤ R

}
,

where as before dS2 is the usual distance function on S2 and prove the following lemma.

Lemma 1. Fix η ∈ (0, 1
2 ), κ > 0. There exist K = K(η) > 0 and K ′ = K ′(κ, δ) > 0 so that

P
(
Z

(
wξ ,N

−1+η
) ≥ 1

) ≤ K · N−1+2η (3.5)
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and

P
(
Z

(
wξ ,N

− 1
2 + δ

2
) ≥ Nδ+κ

) ≤ K ′ · N−δ−2κ .

Step 5. Finally, note that the variance of ẼN(w) is

E
[∣∣ẼN(w)

∣∣2] =
N−1∑
j=1

E

[
1

|w − ξj |2
]
,

which is infinite. However, the conditional variance given Z(w,N−1+η) = 0 is fairly small and allows us to get a
good estimate on the tail probability in (3.4). This is the content of the following lemma.

Lemma 2. Fix η ∈ (0, 1
2 ), and write A for the event that

N−1∑
j=1

1

|wξ − ξj |2 > N2−2η.

There exists K = K(η) such that

P(A) ≤ K · N−1+2η logN. (3.6)

We now turn to the details.

Proof of Lemma 1. The estimate (3.5) is true since there is a constant K = K(η) > 0 so that for every w ∈ S2,

P
(
Z

(
w,N−1+η

) ≥ 1
) ≤ E

[
Z

(
w,N−1+η

)] = K1 · N−1+2η.

Next, there is a constant K ′ so that for any w ∈ S2, the random variable Z(w,N− 1
2 + δ

2 ) has a binomial distribution
with number of trials N − 1 and success probability p not exceeding K · N−1+δ . Therefore,

Var
[
Z

(
w,N− 1

2 + δ
2
)] ≤ K2 · Nδ.

Hence, by Chebyshev’s inequality,

P
(
Z

(
w,N− 1

2 + δ
2
) ≥ Nδ+κ

) ≤ K2 · N−δ−2κ ,

as claimed. �

Proof of Lemma 2. Define the event

B = {
Z

(
wξ ,N

−1+η
) = 0

}
.

Computing in polar coordinates around wξ , we find that there exists C > 0 satisfying

E

[
N−1∑
j=1

1

|wξ − ξj |2
∣∣∣∣ B

]
≤ C · N

∫ ∞

N−1+η

dr

r(1 + r2)2
≤ C(1 − η) · N logN. (3.7)

By Lemma 1, there is a constant c = c(η) so that

P(B) ≥ 1 − c · N−1+2η. (3.8)
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Therefore,∣∣P(A) − P(A | B)
∣∣ ≤ c · N−1+2η.

Combining Markov’s inequality with (3.7), we find that there exists C = C(η) for which

P(A | B) ≤ 2C(1 − η)N−1+2η logN,

completing the proof. �

We are ready to show (3.3). We estimate the modulus of

ẼN (wξ , δ) − ẼN(w, δ) =
∑

|ξ−ξj |≤N−1/2+δ/2

w − wξ

(ξ − ξj )(w − ξj )

by using the constant c2 from assumption (ii), to find that for all w ∈ �N∣∣ẼN(w, δ) − ẼN(wξ , δ)
∣∣ ≤ c2 · N−1

∣∣∣∣ ∑
|ξ−ξj |≤N−1/2+δ/2

1

(wξ − ξj )(w − ξj )

∣∣∣∣.
Adding and subtracting (wξ − ξj )

−2 inside the absolute values, we find that the right-hand side of the previous line is
bounded above by

c2
2 · N−2

∣∣∣∣ ∑
|ξ−ξj |≤N−1/2+δ/2

1

(wξ − ξj )2(w − ξj )

∣∣∣∣ + c2 · N−1
∣∣∣∣ ∑
|ξ−ξj |≤N−1/2+δ/2

1

(wξ − ξj )2

∣∣∣∣. (3.9)

Continuing in this way, for every l ≥ 1, we may write

∣∣ẼN(w, δ) − ẼN(wξ , δ)
∣∣ ≤ cl

2N
−l ·

∣∣∣∣ ∑
|ξ−ξj |≤N−1/2+δ/2

1

(wξ − ξj )l(w − ξj )

∣∣∣∣ (3.10)

+
l−1∑
k=1

ck
2N

−k

∣∣∣∣ ∑
|ξ−ξj |≤N−1/2+δ/2

1

(wξ − ξj )k+1

∣∣∣∣. (3.11)

The key point is that w appears only in (3.10), while (3.11) involves only wξ . Choose l large enough so that

δ <
l + 1

l + 5
. (3.12)

Lemma 1 shows that there exists C = C(δ) > 0 so that with probability at least 1 − C · N−δ ,

Z
(
wξ ,N

− 1
2 − δ

2
) = 0 and Z

(
wξ ,N

− 1
2 + δ

2
) ≤ N2δ.

Hence, using assumptions (i) and (ii), there exists C′ = C′(c1, c2, δ) and C′′ = C′′(δ) > 0 so that with probability
1 − C′′ · N−δ

N−l
∑

|wξ −ξj |≤N−1/2+δ/2

∣∣∣∣ 1

(wξ − ξj )l(w − ξj )

∣∣∣∣ ≤ C′ · N1−(l+1−2δ−(l+1)( 1+δ
2 )).

Using (3.12), we have γ := l + 1 − 2δ − (l + 1)( 1+δ
2 ) > 0, which shows that the right-hand side of (3.10) is bounded

by N1−γ with probability at least 1 − C′′ · N−δ . To bound (3.11), we apply Lemma 2 for some fixed η ∈ ( 1−δ
2 , 1

2 ) to
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find that there exists C = C(δ) and C′ = C′(c1, c2, δ) so that

l−1∑
k=1

ck
2N

−k

∣∣∣∣ ∑
|wξ −ξj |≤N−1/2+δ/2

1

(wξ − ξj )k+1

∣∣∣∣ ≤
l=1∑
k=1

ck
2N

−k

( ∑
|wξ −ξj |≤N−1/2+δ/2

1

|wξ − ξj |2
) k+1

2

≤ C′ ·
l−1∑
k=1

N−k+(1−η)(k+1)

≤ C′(l − 1) · Nδ

with probability at least 1 − C · N−δ , proving that (3.3) holds. Finally, we show (3.4). Set η = 1
2 (1 − δ) and recall the

event B from Lemma 2. Observe that

E
[∣∣ẼN(wξ )

∣∣2 | B] = E

[
N−1∑
j,k=1

(
1

wξ − ξj

)
·
(

1

wξ − ξk

) ∣∣∣∣ B

]
= E

[
N−1∑
j=1

1

|wξ − ξj |2
∣∣∣∣ B

]
.

Using (3.8), Markov’s inequality and (3.7), we have that for all γ ∈ (0, 1−δ
2 ) there exists C = C(δ),C′ = C′(γ ),C′′ =

C′′(γ, δ) so that

P
(∣∣ẼN(wξ )

∣∣ > N1−γ
) ≤ P

(∣∣ẼN(wξ )
∣∣ > N1−γ | B) + C · N−δ

≤ N−2+2γ ·E
[

N−1∑
j=1

1

|wξ − ξj |2
∣∣∣∣ B

]
+ C · N−δ

= C′ · N−1+2γ logN + C · N−δ

≤ C′′ · N−δ.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

Fix α, ε,�N as in the statement of Theorem 2 as well as δ ∈ (0, α). Fix ξ ∈ �N and write ZN = p−1
N,�N

(0). We have

ẼN,ξ (w) =
∑

ξ∈ZN\{ξ}

1

w − ξ

=
∑

ξ∈�N\{ξ }

1

w − ξ
+

∑
ξ∈ZN\�N

1

w − ξ
. (4.1)

By the same argument as in the proof of Theorem 1 (see (3.2)), there exists γ > 0 and C = C(δ) so that

P

(
sup

w∈�N,ξ

∣∣∣∣ ∑
ξ∈ZN\�N

1

w − ξ

∣∣∣∣ > N1−γ

)
≤ C · N−δ. (4.2)

Note that C is independent of ξ . To estimate the first term in (4.1), note that the well-spacing assumption (A) implies
that

#�N ∩ {
w ∈C | jN−1/2 < |w − ξ | ≤ (j + 1)N−1/2} ≤ 2π(j + 1)N−ε/2,
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which corresponds to the case when the zeros are on the outer circumference of the annulus. Therefore,

sup
w∈�N,ξ

∑
ξ∈�N\{ξ}

1

|w − ξ | ≤
∑

ξ∈�N\{ξ}
|ξ−ξ |≤Nε/4

1

|w − ξ | +
∑

ξ∈�N\{ξ}
|ξ−ξ |>Nε/4

1

|w − ξ |

≤
Nε/4+1/2∑

j=1

2π(j + 1)N−ε/2 · N1/2

j
+ N1−ε/4

≤ 5π · N1−ε/4.

A simple union bound now shows that there exists C = C(α, δ, ε) > 0 so that

P

(
sup

ξ∈�N

sup
w∈�N,ξ

∣∣ẼN(w)
∣∣ > N1−γ

)
≤ C · Nα−δ,

completing the proof.
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