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Abstract. In this paper we show that the transfer operator of a Rauzy–Veech–Zorich renormalization map acting on a space of
quasi-Hölder functions is quasicompact and derive certain statistical recurrence properties for this map and its associated Teich-
müller flow. We establish Borel–Cantelli lemmas, Extreme Value statistics and return time statistics for the map and flow. Previous
results have established quasicompactness in Hölder or analytic function spaces, for example the work of M. Pollicott and T.
Morita. The quasi-Hölder function space is particularly useful for investigating return time statistics. In particular we establish the
shrinking target property for nested balls in the setting of Teichmüller flow. Our point of view, approach and terminology derive
from the work of M. Pollicott augmented by that of M. Viana.

Résumé. Dans cet article, nous démontrons que l’opérateur de transfert de l’application de renormalisation de Rauzy–Veech–
Zorich est quasi-compact sur l’espace des fonctions quasi-Hölder, et nous en déduisons plusieurs propriétés de récurrence statis-
tiques pour cette application et le flot de Teichmüller associé. Nous établissons des lemmes de Borel–Cantelli, des statistiques des
valeurs extrêmes et des temps de retour pour l’application et le flot. De précédents résultats ont établi la quasi-compacité dans des
espaces de fonctions Hölder ou analytiques, comme par exemple les travaux de M. Pollicott ou de T. Morita. L’espace fonctionnel
quasi-Hölder est particulièrement adapté pour analyser les propriétés de récurrence statistiques. En particulier, nous démontrons la
propriétés des cibles rétrécissantes pour des boules imbriquées dans le cadre du flot de Teichmüller. Notre point de vue, approche
et terminologie proviennent du travail de M. Pollicott ainsi que de celui de M. Viana.
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1. Background and notation

1.1. Dynamical Borel–Cantelli lemmas and other limit laws

Let T : X → X be a measure-preserving transformation of a probability space (X,μ). We assume X is also a metric
space equipped with a metric d . Dynamical Borel–Cantelli lemmas concern the following set of questions: suppose
(An) is a sequence of sets such that

∑
n μ(An) = ∞, does T n(x) ∈ An for infinitely many values of n for μ a.e.

x ∈ X? One special example of this is the case where (An) is a nested sequence of balls about a point, a setting which
is often called the shrinking target problem.
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We let Sn = ∑n−1
j=0 1Aj

◦ T j and En = ∫
X

Sn dμ = ∑n−1
j=0 μ(Aj ). The property limn→∞ Sn(x)

En
= 1 for μ a.e. x ∈ X

is often called the Strong Borel–Cantelli (SBC) property in contrast to the Borel–Cantelli (BC) property that Sn(x) is
unbounded for μ a.e. x ∈ X.

In the setting of uniformly hyperbolic systems pioneering work has been done by W. Philipp [48], Kleinbock and
Margulis [37], Chernov and Kleinbock [11] and Dolgopyat [13] (for uniformly partially hyperbolic systems).

More recently dynamical Borel–Cantelli results have been proved for certain non-uniformly hyperbolic systems
by example by Kim [36], Gouëzel [21], Gupta et al. [25] and Haydn et al. [27]. These works have also yielded
some interesting counterexamples. In the context of flows, Maucourant [43] has proved the analogous Borel Cantelli
property for nested balls in the setting of geodesic flows. Athreya [3] gives large deviation and quantitative recurrence
results for the Teichmüller geodesic flow.

Related to Borel–Cantelli lemmas are logarithmic laws for the shrinking target problem. These results concern the
asymptotic scaling behavior given by the limit

lim
r→0

τr (x, y)

μ(Br(y))
,

where τr (x, y) = min{n : d(T nx, y) < r} and Br(y) is a ball of radius r about y ∈ X.
Fundamental work on the ergodic theory of Teichmüller flow and interval exchange transformations include [10,

34,55,56,63]. Of particular relevance to our setting is work of Masur [42], who proved a logarithm type law for Te-
ichmüller geodesic flow on the moduli space of quadratic differentials and work of Galatolo and Kim [19] who obtain
Borel–Cantelli like results for generic interval exchange transformations. Marchese [39,40] also obtained related re-
sults on the shrinking target problem for the Rauzy–Veech–Zorich algorithm, with applications to a generalization
of the Khinchin theorem for interval exchange transformations. He also obtained logarithmic limit laws for returns
for Teichmüller flow on translation surfaces [40, Theorem 1.3]. These quantitative results apply under a logarithmic
scaling, unlike our results which apply to the unscaled flow.

Statistical properties of the Teichmüller flow and the Rauzy–Veech–Zorich map have been investigated thoroughly
in recent years. Avila, Gouëzel and Yoccoz [5] have shown that the decay of correlations for the flow is exponen-
tially fast for Hölder observables. The corresponding problem for the Rauzy–Veech–Zorich map has been studied by
Bufetov and Avila in [9] and [4], where the decay was proven to be exponential as well. The main ingredient of the
proof of the latter result was the construction of a Young Tower [60] with an exponential tail of return times. Building
upon this fact and work of Melbourne and Nicol [44], Pollicott [49] proved the almost sure invariance principle for
Hölder observables, both for the flow and the map. The almost sure invariance principle is a strong reinforcement of
the central limit theorem, which was previously established by Bufetov [9], and has several consequences, such as
the law of iterated logarithm and the arcsine law. The large deviations principle for Hölder observables follows also
directly from the existence of an exponential Young tower and results of Melbourne and Nicol [45].

We also establish recurrence statistics such as Poisson limit laws and Extreme Value Laws (EVLs) for Teichmüller
flow, but we leave the detailed description of these properties and results to Section 3. Related work on these distribu-
tional limits in a dynamical setting includes [24,30–32].

1.2. Interval exchange transformations

In this section we synthesize the basic model described by Viana in [57] with the framework developed by Pollicott
[49] (see also [47]). Pollicott’s short paper [49] is a very clear account of the Rauzy–Veech–Zorich induction and
renormalization from the viewpoint of hyperbolic dynamics. We begin by defining our dynamical systems. This starts
with interval exchange transformations, in particular focussing on the formalism described by Viana. We then move
to the Rauzy–Veech induction and renormalisation; the Zorich induction and renormalisation; and finally the Morita–
Pollicott renormalisation. We will point out the minor differences with Pollicott’s framework as we go along, but
broadly speaking, the difference here is that our induced maps are first returns. We relate these dynamical systems to
the Teichmüller flow on the space of translation surfaces later on.

Following [57, Chapter 1], let I ⊂ R be an interval and {Ia : a ∈ A} a partition of I into intervals indexed by
a finite alphabet A with d ≥ 2 symbols. An interval exchange transformation (IET) is a bijective map f = f(π,λ) :
I → I which is a translation of each subinterval Ia , preserves Lebesgue measure and is determined by the following
combinatorial and metric data:
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(a) A pair π = (π0,π1) of bijections πε : A → {1, . . . , d} which describe the ordering of the subintervals Ia before
and after the action of f :(

a0
1 a0

2 . . . a0
d

a1
1 a1

2 . . . a1
d

)
,

where aε
j = π−1

ε (j) for ε ∈ {0,1} and j ∈ {1,2, . . . , d}.
(b) A vector λ = (λa)a∈A of non-negative entries which represent the lengths of the subintervals (Ia)a∈A.

We have a more detailed description of the intervals Ia above which will be useful later: for ε ∈ {0,1}, let I
πε
a be

the interval of length λπε(a) in position πε(a) in the interval [0,
∑

a λa], where “position” means starting at zero and
counting to the right.

The transformation p := π1 ◦ π−1
0 is called the monodromy invariant of the pair π = (π0,π1). As Viana points

out, we can always change our pair π = (π0,π1) and rearrange the ordering of our lengths so that the resulting data
π ′ = (π ′

0,π
′
1) and λ′ = (λ′

a)a∈A represents the same IET as the one above, but with π0 = id. Indeed, this is what is
described in Pollicott’s notes: moreover he always assumes that

∑
a λa = 1. However, the setup described here gives

a slightly more complicated, but more flexible way for us to describe later dynamics.
The IET can now be described more explicitly as a translation. For a ∈A, define

wa :=
∑

{b:π1(b)<π1(a)}
λb −

∑
{b:π0(b)<π0(a)}

λb.

Then

f(π,λ)(x) = x +
∑
a

wa · 1Ia (x).

Later it will be useful to think of the translation vector wa as
∑

b∈AMabλb where the (a, b) entry of the matrix M
is defined by

Mab =
{+1 if π1(b) < π1(a) and π0(b) > π0(a),

−1 if π1(b) < π1(a) and π0(b) < π0(a),
0 otherwise.

1.3. Rauzy–Veech induction and renormalisation

As is common for families of dynamical systems with parabolic-type behaviour, one way to proceed is to define a
good renormalization scheme on the space of parameters. In this setting this was pioneered by Masur and Veech.
Given a representative (π,λ) of an IET, for ε ∈ {0,1}, let a(ε) denote the last symbol in the expression for πε , i.e.,
a(ε) = π−1

ε (d) = aε
d . Assuming the generic situation where Ia(0) and Ia(1) have different lengths, we say that

(π,λ) has

{
type 0 if λa(0) > λa(1),
type 1 if λa(0) < λa(1).

Now set

J =
{

I \ f(π,λ)(Ia(1)) if (π,λ) has type 0,
I \ Ia(0) if (π,λ) has type 1.

Then the Rauzy–Veech induction T̂0 is defined as the first return by f(π,λ) to J . Another way of viewing this, from
which we see that we obtain a new IET of the form we started with (although with shorter total length of our intervals),
is that T̂0(π,λ) = (π ′, λ′) where, if (π,λ) is type 0 then(

π ′
0

π ′
1

)
=

(
a0

1 · · · a0
k−1 a0

k a0
k+1 · · · · · · a(0)

a1
1 · · · a1

k−1 a(0) a(1) a1
k+1 · · · a1

d−1

)
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and λ′ = (λ′
a)a∈A for

λ′
a = λa for a 	= a(0), and λ′

a(0) = λa(0) − λa(1).

Similarly, if (π,λ) is type 1 then(
π ′

0
π ′

1

)
=

(
a0

1 · · · a0
k−1 a(1) a(0) a0

k+1 · · · a0
d−1

a1
1 · · · a1

k−1 a0
k a0

k+1 · · · · · · a(1)

)
and λ′ = (λ′

a)a∈A for

λ′
a = λa for a 	= a(1), and λ′

a(1) = λa(1) − λa(0).

Remark 1.1. This transformation on the set of lengths in R
A+ can be expressed in terms of a matrix � given in (1.9)

and (1.10) of [57] and which consists only of 0’s and 1’s: in fact λ′ = �−1∗(λ) where ∗ denotes the transpose. �−1 is
a non-negative matrix.

We are interested in the set of (π,λ) such that T̂0 is defined for all time. This occurs if and only if (π,λ) satisfies
the Keane condition, which assumes that

f n
(π,λ)(∂Ia) 	= ∂Ib for all n ≥ 1 and a, b ∈ A with π0(b) 	= 1,

where ∂Ia is the left endpoint of the subinterval Ia . Moreover, if (π,λ) satisfies the Keane condition then f(π,λ) is
minimal (every f(π,λ)-orbit is dense). A pair π = (π0,π1) is called reducible if there exists k ∈ {1, . . . , d − 1} such
that π1 ◦ π−1

0 ({1, . . . , k}) = {1, . . . , k}. In this case, f(π,λ) splits into two IETs with simpler combinatorics. If π is not
reducible, we say it is irreducible. It can be shown that if λ is rationally independent and π is irreducible then (π,λ)

satisfies the Keane condition. Keane conjectured that for fixed irreducible π , the map f(π,λ) was uniquely ergodic for
almost-every λ. This conjecture was proved independently by Masur [41] and Veech [55]. The method of proof of
Veech was based on a renormalization scheme.

Given a fixed d , as above, we define the Rauzy class R = R(π) of a pair π as the set of all pairs π ′ for which
there exist n ≥ 0, λ and λ′ with T̂ n

0 (π,λ) = (π ′, λ′). They form a partition of the set of all pairs π . Thus we think of

T̂0 acting on sets R × R
A+ . For d = 2 and d = 3 there is a unique Rauzy class, but for d ≥ 4 there is more than one.

Again we refer the reader to [57, Chapter 1] for a nice description of these.
The Rauzy–Veech renormalization map T0 is simply the transformation T̂0 renormalised so that the total length of

the resulting interval is 1: thus the multiplying factor is

1

1 − λa(1−ε)

when (π,λ) is type ε.

That is T0(π,λ) = (π ′, λ′′) where λ′′ = λ′
1−λa(1−ε)

. Thus T0 acts on the (d − 1) dimensional simplex

Δ = ΔA := {
λ = (λ1, . . . , λd) : λi > 0, λ1 + · · · + λd = 1

}
.

We define |λ| = ∑d
j=1 λj , then T0 has the form

T0(π,λ) =
(

π ′, �−1∗λ
|�−1∗λ|

)
,

where � is the matrix defined in Remark 1.1.
Setting

Δπ,ε := {λ ∈ ΔA : λa(ε) > λa(1−ε)} for ε ∈ {0,1}, (1)
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T0 : {π} × Δπ,ε �→ {π ′} × Δ is a bijection: a nice Markov property. This also implies that � is constant on each
{π} × Δπ,ε .

As in work of Veech [55] (see also Masur [41]), T0 has an absolutely continuous and invariant ergodic measure
(acim) μ0, which is infinite. T0 is not uniformly hyperbolic.

1.4. Zorich induction and renormalisation

Zorich produced accelerated versions of the Rauzy–Veech maps discussed above in order to improve the expansion
properties of the system and ultimately to find absolutely continuous invariant probability measures. For this subsec-
tion we fix a Rauzy class R. Now take π = (π0,π1) in this class and λ ∈ R

A+ satisfying the Keane condition. Then

for each k ≥ 1 write (πk, λk) = T̂ k
0 (π,λ) and let εk denote the type of (πk, λk) and ε denote the type of (π,λ). Then

n1 = n1(π,λ) is defined as the smallest k such that εk 	= ε and the Zorich induction is defined by

T̂1(π,λ) = T̂ n1
0 (π,λ).

Similarly, the Zorich renormalisation T1 :R× Δ →R× Δ is defined as T1 = T n1
0 . This map has a Markov partition

into countably many domains. Indeed, let

Δπ,ε,n := {
λ ∈ Δπ,ε : ε1 = · · · = εn−1 = ε 	= εn

}
.

Then for each π ∈ R, T1 : {π} × Δπ,ε,n �→ {πn} × Δπn,1−ε is a bijection. Moreover,

λn = cn�
−n∗(λ),

where cn > 0 and �−n∗ depends only on π , ε, n. Let also Δε = ⋃
π∈R Δπ,ε and Δ1−ε = ⋃

π∈R Δπ,1−ε .

Theorem 1.2 (Zorich). For a given Rauzy class R, T1 has an absolutely continuous invariant probability measure μ1.
Moreover, for ε ∈ {0,1},

T 2
1 : Δε → Δε

is mixing with respect to the restriction to Δε of the measure 2μ1. Similarly

T 2
1 : Δ1−ε → Δ1−ε

is mixing with respect to 2μ1 restricted to Δ1−ε .

As already noted above, T1(Δε) = Δ1−ε , so the absolutely continuous invariant probability measure (acip) μ1 is
not mixing, but has two cyclic classes.

1.5. Morita–Pollicott renormalisation

A common approach (see [5,47,49]) is to consider a map T2 derived from T1 further by inducing by first return times
on an element of a dynamical partition with compact closure in the parameter space. T2 has the advantage that it is a
multidimensional piecewise expanding map. The setup in Pollicott [49] is slightly different to that outlined here, but
for most practical purposes, it is identical.

Recalling the definition of Δπ,0, Δπ,1 from (1), let

P = {{π} × Δπ,0, {π} × Δπ,1 : π ∈ R
}

be the usual finite partition of R× Δ and define for n ≥ 1

Pn :=
n−1∨
k=0

T −k
1 P .
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Pollicott’s approach is to choose an nB > 1 and a partition element B ∈ PnB
such that B has compact closure B̄

contained in the open simplex R × Δ. In this case, B is the image of an inverse branch of T nB

1 which is a strict
contraction for the Hilbert metric (see also [57, Corollary 1.21]). Define n2(π,λ) to be the first return time of (π,λ) ∈
B to B under T1, i.e.

n2(π,λ) = inf
{
k > 0 : T k

1 (π,λ) ∈ B
}
.

Then T2 : B → B is defined as the induced first return time map under T1,

T2(π,λ) = T n2(λ,π)
1 (π,λ).

Remark 1.3. Note that for each element (π,λ) ∈R× Δ, with λ satisfying the Keane condition, we can find such a B

containing (π,λ).

The set B has a natural countable partition Q = {Bi}i∈I into sets on which n2(π,λ) is constant. The map T2 :
Bi → B is a diffeomorphism for each i ∈ I [47, Lemma 3.1]. B has a naturally defined T2-invariant measure, namely
μ2 := μ1|B

μ1(B)
. The density hB of μ2 with respect to Lebesgue measure on B is strictly positive [49, Lemma 2.3] and

analytic [49, Corollary 5.1.1]. Let Qn := ∨n−1
k=0 T

−k
2 Q.

We have the following expansion and distortion properties.

Proposition 1.4 ([49, Lemma 2.2]). There exist C > 1, θ > 1 and D1, D2 such that for any n ≥ 1 and any x, y in the
same element of Q ∈Qn:

(1) d(T n
2 x,T n

2 y) ≥ Cθnd(x, y);

(2) | log(
Jac(T n

2 )(x)

Jac(T n
2 )(y)

)| ≤ D1d(T n
2 x,T n

2 y);

(3) 1
D2

≤ μ2(A)| Jac(T n
2 )(x)| ≤ D2 for all x ∈ A ∈Qn;

(4) T n
2 : Q → B is a diffeomorphism.

Remark 1.5. Since there exists c > 0 such that c−1 ≤ hB ≤ c, we can also state the above point (3) using Lebesgue
measure m instead of μ2 (or more accurately, the product of the counting measure on R and Lebesgue measure on
Δ, even though we will always refer to this measure as Lebesgue).

1.6. Gibbs–Markov maps and their transfer operators

The previous subsection motivates a more in depth study of the following class of maps.
Let (Y, d) be a compact metric space endowed with a probability measure m with full support. Let T : Y → Y be

a non-singular measurable map.
We will say that T is a Gibbs–Markov map if there exists a countable measurable partition Q= {Yi}i∈I of Y such

that, if we denote by Qn = ∨n−1
k=0 T −kQ the dynamical partition of T n and by Jac(T n) the Jacobian of T n with respect

to m (i.e. m(T nA) = ∫
A

Jac(T n) dm for every subset A ⊂ Y on which T n is injective), we have

(1) T n : Q → Y is a bimeasurable bijection;
(2) d(T nx,T ny) ≥ Cθnd(x, y);
(3) | log Jac(T n)(x)

Jac(T n)(y)
| ≤ Dd(T nx,T ny);

for all n ≥ 1, all Q ∈Qn and all x, y ∈ Q, where C,D > 0 and θ > 1 depend only on the map T .
It is well known such maps admit a spectral gap for their transfer operators on the space of Hölder functions.

We will study spectral properties on a larger space which contains discontinuous functions, namely the quasi-Hölder
space, introduced by Keller [35] and Saussol [51]. We recall the relevant definitions and properties, and refer to the
aforementioned references for more details.

Let ε0 > 0, 0 < α < 1 and f : Y → R lie in L1
m(Y ). We define the oscillation of f on a Borel subset S ⊂ Y by

osc(f,S) = ess sup
S

f − ess inf
S

f.
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We define

|f |α := sup
0<ε≤ε0

ε−α

∫
Y

osc
(
f,Bε(x)

)
dm(x)

and let Vα(Y ) := {f ∈ L1
m(Y,R) : |f |α < ∞}. This space is strictly larger than the space of Hölder functions of

exponent α on Y and in particular contains characteristic functions of some measurable sets. If we define the
norm ‖ · ‖α := | · |α + ‖ · ‖L1

m
then Vα(Y ) is a Banach space. Since Y is compact, the space Vα(Y ) is compactly

embedded in L1
m(Y ). Furthermore, Vα(Y ) embeds continuously into L∞

m (Y ) and is a Banach algebra satisfying
|fg|α ≤ |f |α‖g‖∞ + ‖f ‖∞|g|α for all f,g ∈ Vα(Y ).

Note also that while ‖ · ‖α depends on the choice of ε0, the space Vα(Y ) does not, and two different ε0 give rise to
two equivalent norms on Vα .

Let P denote the transfer operator of T with respect to m. This is the L1 adjoint of T with respect to L∞, i.e.∫
Y

Pφψ dm = ∫
Y

φψ ◦ T dm for all φ ∈ L1
m(Y ) and ψ ∈ L∞

m (Y ).
The operator P has the form

Pφ(x) =
∑
i∈I

φ(xi)

Jac(T )(xi)
,

where xi ∈ Yi satisfies T xi = x.
We will prove that the transfer operator P of a Gibbs–Markov map T is quasi-compact and admits a spectral gap

on Vα(Y ), from which it will follow exponential decay of correlations for T , for observables in Vα(Y ). Our main
tool will be a Lasota–Yorke type inequality (Lemma 1.7) and Hennion’s theorem [29]. We refer to Baladi [7] for a
systematic exposition of this approach.

The next technical lemma will also prove useful later. In order to state it, we need some more notations. For
Q ∈ Qn, denote In,Q : Y → Q the inverse branch of the restriction of T n to Q. The transfer operator P n of T n has
the form

P nφ(x) =
∑

Q∈Qn

gn(In,Qx)φ(In,Qx),

where gn = 1
Jac(T n)

.

Denote by Mn,Q the operator defined on L1
m(Y ) by

Mn,Qφ(x) = gn(In,Qx)φ(In,Qx).

Lemma 1.6. There exists C > 0 such that for any n ≥ 1, Q ∈ Qn and φ ∈ Vα(Y ), we have ‖Mn,Qφ‖L1
m

= ∫
Q

|φ|dm

and ∫
Y

osc
(
Mn,Qφ,Bε(x)

)
dm(x) ≤ C

∫
Q

osc
(
φ,Bcn,Qε(x)

)
dm(x) + Cε

∫
Q

|φ|dm,

where cn,Q is the Lipschitz constant of In,Q : Y → Q.

Proof. The relation
∫
Y

|Mn,Qφ|dm = ∫
Q

|φ|dm follows from a change of variables.
Observe that osc(Mn,Qφ,Bε(x)) = osc(gnφ, In,QBε(x)). Using [51, Proposition 3.2(iii)], we have for all x ∈ Y ,

osc
(
Mn,Qφ,Bε(x)

) ≤ osc
(
φ, In,QBε(x)

)
ess sup
In,QBε(x)

gn

+ osc
(
gn, In,QBε(x)

)
ess inf

In,QBε(x)
|φ|.
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By the distortion control of assumption (3), we have ess supIn,QBε(x) gn ≤ Cgn(In,Qx) and, since |et −es | ≤ |t −s|et

for any t, s ∈R,

osc
(
gn, In,QBε(x)

) ≤ ess sup
y,z∈In,QBε(x)

∣∣exp loggn(y) − exp loggn(z)
∣∣

≤ ess sup
y,z∈In,QBε(x)

∣∣∣∣log
gn(y)

gn(z)

∣∣∣∣gn(y)

≤ Dgn(In,Qx) ess sup
y,z∈In,QBε(x)

d
(
T ny,T nz

)
≤ Cgn(In,Qx)ε

for some constant C > 0. We also have osc(φ, In,QBε(x)) ≤ osc(φ,Bcn,Qε(In,Qx)) and ess infIn,QBε(x) |φ| ≤
|φ(In,Qx)| for almost every x ∈ Y . Putting together all the above estimates, we get for almost every x,

osc
(
Mn,Qφ,Bε(x)

) ≤ C osc
(
φ,Bcn,Qε(In,Qx)

)
gn(In,Qx) + Cε

∣∣φ(In,Qx)
∣∣gn(In,Qx).

After integration over Y , a change of variables finishes the proof. �

With this lemma, we can prove a Lasota–Yorke type inequality for T .

Lemma 1.7. If ε0 is sufficiently small then there exist 0 < η < 1 and C,D > 0 such that if φ ∈ Vα(Y ) then for all
n ≥ 0,∥∥P nφ

∥∥
α

≤ Cηn‖φ‖α + D

∫
Y

|φ|dm.

Proof. Since P n is a contraction on L1
m(Y ) (see for instance Baladi [7]), it is sufficient to estimate |P nφ|α . We will

next apply Lemma 1.6 to this operator, first noting that by assumption (2), cn,Q ≤ Cθ−n ≤ C, where θ > 1. Writing
P n = ∑

Q∈Qn
Mn,Q and summing all the relations from Lemma 1.6, [51, Proposition 3.2(i)] then implies that∫

Y

osc
(
P nφ,Bε(x)

)
dm(x) ≤ C

∫
Y

osc
(
φ,BCθ−nε(x)

)
dm(x) + Cε‖φ‖L1

m

≤ Cεα
(
θ−αn|φ|α + ε1−α

0 ‖φ‖L1
m

)
for all 0 < ε ≤ ε0

C
= ε1, so that Cθ−nε ≤ ε0 and the bound∫

Y

osc
(
φ,BCθ−nε(x)

)
dm(x) ≤ Cεαθ−αn|φ|α

holds.
This shows ‖P nφ‖α,ε1 ≤ Cθ−αn‖φ‖α,ε0 + C‖φ‖L1

m
, where we put the subscript ε0 or ε1 in the notation for the

quasi-Hölder norm to emphasize the fact it was defined using either ε0 or ε1, and concludes the proof since the two
norms ‖ · ‖α,ε0 and ‖ · ‖α,ε1 are equivalent. �

Classical arguments then allow us to prove exponential decay of correlations in the quasi-Hölder norm:

Proposition 1.8. There exists an unique absolutely continuous probability measure μ which is T -invariant, and its
density h belongs to Vα(Y ). Furthermore, we have

(a) ‖P nφ − (
∫
Y

φ dm)h‖α ≤ Cθn‖φ‖α ;
(b) | ∫

Y
φψ ◦ T n dμ − ∫

Y
φ dμ

∫
Y

ψ dμ| ≤ Cθn‖φ‖α‖ψ‖L1
μ

;

for all n ≥ 1, for all φ ∈ Vα and ψ ∈ L1(μ), for some constants C > 0 and θ < 1 which depend only on the map T .
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Proof. Lemma 1.7 implies by Hennion’s theorem [29] that P is quasi-compact and has an essential spectral radius
strictly less than 1 when acting on the space Vα(Y ). To prove (a), it is then sufficient to prove that 1 is a simple
eigenvalue of P , and that there is no other eigenvalue on the unit circle. Let then φ ∈ Vα be an eigenvector of P for the
eigenvalue λ ∈ C with |λ| = 1. From standard results, see for instance Aaronson [1], we know that P has an essential
spectral radius strictly less than 1 when acting on the space of Lipschitz functions. This shows that φ is itself Lipschitz
continuous, and then φ is a multiple of h and λ = 1.

We now prove point (b):∫
Y

φψ ◦ T n dμ −
∫

Y

φ dμ

∫
Y

ψ dμ =
∫

Y

φhψ ◦ T n dm −
∫

Y

φ dμ

∫
Y

ψ dμ

=
∫

Y

(
P n(φh) −

(∫
Y

φhdm

)
h

)
ψ dm.

Then, | ∫
Y

φψ ◦ T n dμ − ∫
Y

φ dμ
∫
Y

ψ dμ| ≤ ‖P n(φh) − (
∫
Y

φhdm)h‖L∞
m

‖ψ‖L1
m

. By (a), we have that ‖P n(φh) −
(
∫
Y

φhdm)h‖L∞
m

≤ Cθn‖φ‖α since Vα(Y ) embeds into L∞
m and is a Banach algebra. On the other hand, ‖ψ‖L1

m
≤

c−1‖ψ‖L1
μ

where c = infh is strictly positive by Lemma 4.4.1 in [1]. This proves (b). �

2. Borel–Cantelli lemmas

2.1. Borel–Cantelli lemmas for Gibbs–Markov maps

We first investigate Borel–Cantelli lemmas for the map T2. From Proposition 1.4, we know T2 is a Gibbs–Markov
map, so we will present general results for this class of maps.

Our result for Gibbs–Markov maps is a fairly straightforward consequence of earlier work (see for example [36,
Theorem 2.1], [25, Proposition 2.6]) and the description of their transfer operators we give in the previous subsection.

Proposition 2.1. Let T be a Gibbs–Markov map on the compact metric space (Y, d), as in the previous subsection,
with absolutely continuous invariant measure μ. Let {φn} be a sequence of positive functions on Y such that there
exists a constant K > 0 with ‖φn‖α ≤ K for all n. Let En = ∑n

j=1 μ(φj ) and suppose En is unbounded. Then

lim
n→∞

1

En

n∑
j=1

φj ◦ T j (x) → 1

for μ a.e. x ∈ Y .

The proof of this proposition, given below, is an easy consequence of a Gal–Koksma type law. We formulate this
law as a proposition of W. Schmidt [52,53] as stated by Sprindzuk [54]:

Proposition 2.2. Let (�,B,μ) be a probability space and let fk(ω) (k = 1,2, . . .) be a sequence of non-negative μ

measurable functions and gk , hk be sequences of real numbers such that 0 ≤ gk ≤ hk ≤ 1 (k = 1,2, . . .). Suppose
there exists C > 0 such that∫ ( ∑

m<k≤n

(
fk(ω) − gk

))2

dμ ≤ C
∑

m<k≤n

hk (∗)

for arbitrary integers m < n. Then for any ε > 0∑
1≤k≤n

fk(ω) =
∑

1≤k≤n

gk + O
(
θ1/2(n) log3/2+ε θ(n)

)
for μ a.e. ω ∈ �, where θ(n) = ∑

1≤k≤n hk .
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Proof of Proposition 2.1. In Proposition 2.2 take fk = φk ◦ T k , gk = hk = μ(φk) and, using part (b) of Proposi-
tion 1.8, calculate∣∣∣∣∣

n∑
i=m

n∑
j=i+1

∫
φj ◦ T jφi ◦ T i dμ − μ(φj )μ(φi)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=m

n∑
j=i+1

∫
φj ◦ T j−iφi − μ(φj )μ(φi)

∣∣∣∣∣
≤

n∑
i=m

n∑
j=i+1

C1θ
j−i‖φj‖α‖φi‖L1

μ

≤ C2

n∑
i=m

‖φi‖L1
μ
.

The result follows immediately from Proposition 2.2. �

Remark 2.3. For any measurable set A ⊂ Y , we have ‖1A‖α ≤ m(A) + sup0<ε≤ε0
m(Bε(∂A))

εα . Hence, any sequence of
sets (An) such that for some 0 < α ≤ 1,

sup
n

sup
0<ε≤ε0

m(Bε(∂An))

εα
< ∞

and
∑

n μ(An) = ∞ will satisfy the strong Borel–Cantelli property. In particular, the sequence does not need to be
decreasing.

Remark 2.4. As a direct consequence, we get for the Morita–Pollicott renormalization map T2 : B → B the strong
Borel–Cantelli for any sequence of positive functions (fn) on B bounded in the space Vα(B) for some 0 < α ≤ 1, with∑

n

∫
fn dμ2 = ∞. Indeed, by Proposition 1.4, this map is Gibbs–Markov with respect to the partition Q = {Bi}i∈I .

This applies in particular to any sequences of balls (Brn(pn)) with
∑

n μ2(Brn(pn)) = ∞, since such sequences
satisfy the condition of Remark 2.3 for α = 1.

2.2. Borel–Cantelli lemmas for a class of non-uniformly expanding maps

We now turn to investigate Borel–Cantelli lemmas for the Rauzy–Veech–Zorich renormalization map T1.

Remark 2.5. Note that by Haydn et al. [27, Theorem 6.1] or by Galatolo [18, Lemma 6, Lemma 7] if {Un} is a sequence
of balls in Δπ,ε , ε ∈ {0,1}, satisfying μ1(Un) ≥ C

n
then T 2n

1 (p) ∈ Un i.o. for μ1 a.e. p ∈ Δπ,ε since (T 2
1 ,R× Δ,μ1)

has exponential decay of correlations for Lipschitz functions [4]. We are interested in obtaining quantitative rates for
this almost sure result.

We first proceed to identify a class of maps containing T1 for which such results hold.
Let (X,d) be a bounded, locally compact and separable metric space, with a Borel finite positive measure m. Let

T : X → X be a non-singular transformation for which m is ergodic.
Suppose there exists a compact subset Y ⊂ X with m(Y) > 0 (without loss of generality, we can assume m(Y) = 1)

and a countable measurable partition Q= {Yi}i∈I of Y such that the first return time

r(y) = inf
{
n ≥ 1 : T ny ∈ Y

}
of T to Y is constant on each Yi , and the first return map T̂ = T r : Y → Y is Gibbs–Markov with respect to the
partition Q. We also assume the first return time is integrable with respect to m:

∫
Y

r dm < ∞.
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We will refer to such systems as non-uniformly expanding maps, even though more general definitions exist in the
literature.

Under these assumptions, there exists an unique absolutely continuous with respect to m probability measure μ

which is T -invariant, and the system (X,T ,μ) is ergodic. The existence follows directly from the existence of such a
measure for the first return map T̂ and the integrability of r , while the uniqueness is ensured by [1, Theorem 1.5.6].

We will deduce a strong Borel–Cantelli property for decreasing sequences of functions supported in Y from our
result for Gibbs–Markov maps and the following result of Kim [36, Theorem 3.1]:

Theorem 2.6. Let (X,T ,μ) be an ergodic measure-preserving transformation, and let TE : E → E be the first return
map to a set E of positive μ-measure. Let (fn) be a decreasing sequence of non-negative functions supported in E

such that
∑

n

∫
fn dμ = ∞. If every subsequence (fnk

) with
∑

k

∫
fnk

dμ = ∞ is strong Borel–Cantelli with respect
to TE , then (fn) is strong Borel–Cantelli with respect to T .

As an immediate corollary of Proposition 2.1 and Theorem 2.6, we get:

Theorem 2.7. Let (X,T ,μ) be a non-uniformly expanding system as described above, with induced set Y . Then any
sequence (fn) of positive functions, supported in Y , bounded in Vα(Y ) for some 0 < α ≤ 1, with

∑
n

∫
Y

fn dμ = ∞,
satisfies the strong Borel–Cantelli property.

As seen in Section 1.5, the Rauzy–Veech–Zorich renormalization map is a non-uniformly expanding map, with
induced set B . Since by Remark 1.3, for any p∗ = (π,λ) satisfying the Keane condition, we can find a good induced
set B that contains p, we obtain:

Theorem 2.8. Let Un ⊂ R× Δ be a decreasing sequence of balls, shrinking to a point p∗ which satisfies the Keane
condition, such that En := ∑n

j=1 μ1(Uj ) diverges. Then, for μ1 almost every p ∈ R× Δ

1

En

n∑
j=1

1Uj
◦ T j

1 (p) → 1.

Proof. Set fn = 1Un . By the discussion above, for n large enough, fn will be supported in some fixed good induced
set B . Since, as in Remark 2.3, (fn) is bounded in Vα(B), it follows from Theorem 2.7 that (fn) is strong Borel–
Cantelli with respect to T1. �

Remark 2.9. This result remains true for any decreasing sequence of sets Un shrinking to a point p∗ as soon as the
boundaries of these sets are sufficiently regular to ensure the condition of Remark 2.3 is satisfied.

We now consider more general, non necessarily decreasing, sequences of functions supported in the induced set Y .
We will require additional properties for the non-uniformly expanding system, and we will see later they are satisfied
by the Rauzy–Veech–Zorich map.

We set Cn = {r = n} ⊂ Y . This set is a disjoint union of elements of Q: we have Cn = ⋃
i∈In

Yi , where In = {i ∈
I : r|Yi

≡ n}.
Definition 2.10. Let T be a non-uniformly expanding map. We say T is good if

(1) (X,T ,μ) is mixing;
(2) m(r > n) ≤ Cγ n;
(3) ci ≤ Cγ n, for all n ≥ 1 and i ∈ In;

for some C > 0 and γ < 1, where ci = c1,Yi
is the Lipschitz constant of Ii = I1,Yi

: Y → Yi , the inverse branch of T̂

restricted to Yi .

Note that (X,T ,μ) is mixing if and only if gcd{r|Yi
: i ∈ I} = 1, see e.g. [61].

Under these assumptions, we have the following result for the decay of correlations of (X,T ,μ) for observables
supported in Y :
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Theorem 2.11. If T is a good non-uniformly expanding map, there exist 0 < κ < 1 and C > 0 such that for all
φ ∈ Vα(Y ) and all ψ ∈ L1(μ) supported in Y ,∣∣∣∣∫

X

φψ ◦ T n dμ −
∫

X

φ dμ

∫
X

ψ dμ

∣∣∣∣ ≤ Cκn‖φ‖α‖ψ‖L1
μ
.

This theorem has the following corollary:

Corollary 2.12. Let T be a good non-uniformly expanding map. Suppose {φn} is a sequence of positive functions
with support in Y bounded in Vα(Y ) with En := ∑n

j=1 μ(φj ) divergent. Then

1

En

n∑
j=1

φj ◦ T j (x) → 1

for μ a.e. x ∈ X.

Proof. We will use Proposition 2.2. Take fk = φk ◦ T k and hk = gk = μ(φk). A rearrangement of terms shows that it
suffices to show

n∑
i=m

n∑
j=i+1

μ
(
φj ◦ T j−iφi

) − μ1(φj )μ(φi) ≤ C

n∑
i=m

μ(φi).

But |μ(φj ◦ T j−iφi) − μ(φj )μ(φi)| ≤ Cκj−i‖φi‖L1
μ

which yields the result as
∑

j>i κ
j−i is summable. �

To prove Theorem 2.11, we will use operator renewal theory, in the spirit of Sarig [50] and Gouëzel [20], even
though in our situation of exponential tails for the return time, the situation is easier. We will make use of the following
proposition:

Proposition 2.13 ([22, Proposition 3.4]). Let Q be a Banach space and suppose (Rn)n≥1 is a sequence of bounded
operators on Q. Assume that ‖Rn‖ = O(θn) for some 0 < θ < 1. Hence R(z) = ∑

Rnz
n and R′(z) = ∑

nRnz
n−1

are well-defined operators on Q for z in the unit complex disc D̄. Assume 1 is a simple isolated eigenvalue of R(1)

and the eigenprojector � satisfies �R′(1)� = γ� for some γ 	= 1 and that I − R(z) is invertible for all z ∈ D̄ \ {1}.
Let Vn = ∑∞

l=1
∑

k1+···+kl=n Rkl
◦ · · · ◦ Rk1 . Then Vn is a bounded linear operator on Q and ‖Vn − 1

γ
�‖ = O(κn)

for some 0 < κ < 1.

Let L be the transfer operator associated to the non-uniformly expanding map T : X → X, defined for φ ∈ L1(m)

by

Lφ(x) =
∑

Ty=x

φ(y)

Jac(T )(y)
.

Let P be the transfer operator associated to the first return map T̂ : Y → Y . By the results of Section 1.6, this
operator admits a spectral gap on the space Vα(Y ).

Let Rnφ := 1Y Ln(1Cnφ) and Vnφ := 1Y P n(1Y φ). The linear operator Rn corresponds to first returns to Y at time
n while Vn considers all points starting in Y which have returned to Y at time n, whether first return or not. The
following renewal equation holds:

Vn =
∞∑
l=1

∑
k1+···+kl=n

Rkl
◦ · · · ◦ Rk1 .

We will show these operators satisfy the three required conditions to apply Proposition 2.13. Recall the definition of
a good non-uniformly expanding map from Definition 2.10.
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Lemma 2.14. There exists 0 < θ < 1 and C > 0 such that ‖Rn‖ ≤ Cθn.

Proof. We have Rnφ = ∑
i∈In

φ(Iix)

Jac(T̂ )(Iix)
, whence Rn = ∑

i∈In
M1,Yi

. Thus, by Lemma 1.6, we have

‖Rnφ‖L1
m

≤
∑
i∈In

‖M1,Yi
φ‖L1

m
=

∑
i∈In

∫
Yi

|φ|dm =
∫

Cn

|φ|dm

≤ m(Cn)‖φ‖L∞
m

≤ Cm(Cn)‖φ‖α,

and ∫
osc

(
Rnφ,Bε(x)

)
dm(x) ≤

∑
i∈In

∫
osc

(
M1,Yi

φ,Bε(x)
)
dm(x)

≤ C

(∑
i∈In

∫
Yi

osc
(
φ,Bciε(x)

)
dm(x) + ε

∑
i∈In

∫
Yi

|φ|dm

)

≤ C

∫
Cn

osc
(
φ,Bc(n)ε(x)

)
dm(x) + Cε

∫
Cn

|φ|dm,

where c(n) = supi∈In
ci .

We have∫
Cn

osc
(
φ,Bc(n)ε(x)

)
dm(x) ≤

∫
B

osc
(
φ,Bc(n)ε(x)

)
dm(x) ≤ (

c(n)
)α

εα|φ|α

≤ (
c(n)

)α
εα‖φ‖α

and
∫
Cn

|φ|dm ≤ m(Cn)‖φ‖L∞
m

≤ Cm(Cn)‖φ‖α , whence

|Rnφ|α ≤ C
((

c(n)
)α + m(Cn)

)‖φ‖α

and similarly for ‖Rnφ‖α . Since c(n) and m(Cn) decay exponentially fast by assumption, one obtains that ‖Rn‖ =
O(θn) for some 0 < θ < 1. �

Lemma 2.15. R(1) admits 1 as a simple isolated eigenvalue, and the corresponding eigenprojector is given by

�φ =
(∫

Y

φ dm

)
hY

μ(Y )
,

where hY is the restriction to Y of the density h of the measure μ (and then hY

μ(Y )
is the density of the absolutely

continuous invariant probability for T̂ ).
Furthermore, we have �R′(1)� = �

μ(Y)
, so that γ in Proposition 2.13 is equal to 1

μ(Y )
.

Proof. We note that R(1) = P is the transfer operator of the Gibbs–Markov map T̂ . Consequently, 1 is a simple
isolated eigenvalue, and the corresponding eigenprojector is given by the desired formula.

We have

�R′(1)�φ =
(∫

Y
R′(1)hY dm

μ(Y )

)(∫
Y

φ dm

μ(Y )

)
hY ,

whence γ =
∫
Y R′(1)hY dm

μ(Y )
.
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Since Rnφ = 1Y Ln(1Cnφ) = 1Y P (1Cnφ) for any function φ, we have∫
Y

R′(1)hY dm =
∑
n

n

∫
Y

P (1CnhY ) dm =
∑
n

n

∫
Cn

hY dm

=
∑
n

nμ(Cn) =
∫

Y

r dμ = 1

by Kac’s lemma, and we get γ = 1
μ(Y )

. �

It remains to prove the aperiodicity condition:

Lemma 2.16. For all z ∈ D̄ \ {1}, I − R(z) is invertible on Vα(Y ).

Proof. We first establish a Lasota–Yorke inequality for the operator R(z). Remark that

R(z)k =
∑

n1,...,nk≥1

zn1+···+nkRnk
◦ · · · ◦ Rn1 ,

and that

Rnk
◦ · · · ◦ Rn1 =

∑
i1∈In1 ,...,ik∈Ink

Mk,QI1,...,Ik
,

where QI1,...,Ik
∈Qk is defined by QI1,...,Ik

= Yi1 ∩ T̂ −1Yi2 ∩ · · · ∩ T̂ −(k−1)Yik . Then, summing all the relations from
Lemma 1.6 and noticing that |z| ≤ 1 and n1 + · · · + nk ≥ k, we have ‖R(z)kφ‖L1

m
≤ C|z|k‖φ‖L1

m
and |R(z)kφ|α ≤

C|z|k(θ−αk|φ|α + ‖φ‖L1
m
), arguing as in the proof of Lemma 1.7.

This shows that the spectral radius of R(z) is less than |z|, while the essential spectral radius of R(z) is strictly less
than 1 if |z| = 1, by Hennion’s theorem [29]. Thus, the problem reduces to prove that the relation R(z)φ = φ, with
|z| = 1 and φ ∈ Vα(Y ) implies that z = 1 or φ = 0.

Let |z| = 1 and φ ∈ Vα(Y ) non-zero satisfying R(z)φ = φ, that is P(zrφ) = φ. By [46, Proposition 1.1], we deduce
that (

φ
hY

) ◦ T̂ = zr φ
hY

. Since (X,T ,μ) is mixing, and hence weakly mixing, by Proposition A.5 (see the Appendix),
we get that z = 1, concluding the proof. �

Proof of Theorem 2.11. By Lemmas 2.14, 2.15 and 2.16, we can apply Proposition 2.13 and get ‖Vn − μ(Y )�‖ ≤
Cκn, i.e.∥∥∥∥Vnφ −

(∫
Y

φ dm

)
hY

∥∥∥∥
α

≤ Cκn‖φ‖α

for all φ ∈ Vα(Y ).
Let φ ∈ Vα(Y ) and ψ ∈ L1(μ) supported in Y . We have∫

X

φψ ◦ T n dm =
∫

X

1Y Ln(1Y φ)ψ dm =
∫

Y

(Vnφ)ψ dm.

Since∣∣∣∣∫
Y

Vn(φ)ψ dm −
∫

Y

φ dm

∫
Y

ψ dμ

∣∣∣∣ =
∣∣∣∣∫

Y

[
Vnφ −

(∫
Y

φ dm

)
hY

]
ψ dm

∣∣∣∣
≤

∥∥∥∥Vnφ −
(∫

Y

φ dm

)
hY

∥∥∥∥
α

∫
Y

|ψ |dm

≤ Cκn‖φ‖α‖ψ‖L1
m
,
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we get∣∣∣∣∫
X

φψ ◦ T n dm −
∫

Y

φ dm

∫
Y

ψ dμ

∣∣∣∣ ≤ Cκn‖φ‖α‖ψ‖L1
m

≤ Cκn‖φ‖α‖ψ‖L1
μ
,

as ‖ψ‖L1
m

≤ ‖h−1
Y ‖L∞

m
‖ψ‖L1

μ
≤ C‖ψ‖L1

μ
, the density of μ being bounded from below on Y .

The theorem follows by taking φhY for φ, using the fact that ‖φhY ‖α ≤ ‖hY ‖α‖φ‖α ≤ C‖φ‖α . �

In order to apply Corollary 2.12 to the Rauzy–Veech–Zorich map, we need mixing, so we will rather consider the
map G = T 2

1 restricted to Δε , ε = 0,1, which admits μ̃1 = 2μ1(· ∩ Δε) as an invariant measure. If the good induced
set B is included in Δε , then T2 : B → B is the first return map of G to B , with associated return time ñ2 = n2

2 . It has
been shown by Avila and Bufetov [4] that the measure of the set {n1 = n} decays exponentially fast with n. To apply
Corollary 2.12, it remains to prove the condition on the Lipschitz constants:

Lemma 2.17. The Lipschitz constant ci = ci,Bi
of Ii : B → Bi decays exponentially fast with n: there exist 0 < γ < 1

and C > 0 such that ci ≤ Cγ n for all n ≥ 1 and all i ∈ In.

Proof. By Avila–Bufetov [4], m(Cn) decays exponentially fast. The map In : B → Yi is a composition of a linear map
λ → Aλ followed by Aλ → Aλ

|Aλ|1 . A is a non-negative matrix and λi

λj
is bounded for all λ = (λ1, . . . , λd) in B . Hence

1 ≥ |Aλ|
‖A‖ > C > 0 for all λ ∈ B (this is an observation of Avila and Bufetov [4, page 9]). Furthermore |Aλ′|1|Aλ|1 < C for

all λ,λ′ in B by Proposition 1.4. Thus the exponential decay of volume implies that at least one direction contracts

exponentially under In by a factor γ 1/d and hence all directions do, this implies Ln ≤ C(γ
1
d )n. �

We can then conclude:

Theorem 2.18. Suppose {φn} is a sequence of positive functions with support in B , bounded in Vα(B) with En :=∑n
j=1 μ̃1(φj ) divergent. Then

1

En

n∑
j=1

φj ◦ Gj(x) → 1

for μ1 a.e. x ∈ Δε .

This theorem applies in particular to sequences of characteristic functions of balls included in B .

3. Extreme Value Laws for T1 and T2

By expressing T2 as a multidimensional piecewise expanding map with exponential decay of correlations with respect
to a quasi-Hölder norm versus L1 we are able to apply results on Extreme Value statistics for such systems. Let
φ : B → R ∪ {+∞} be a function, strictly maximized at a point p0 ∈ B , which is sufficiently regular that for large u

the set {x ∈ B : φ(x) > u} corresponds to a topological ball centered at p0. Let

Mn(x) := max
{
φ(x),φ ◦ T2(x), . . . , φ ◦ T n

2 (x)
}
.

The aim is to show that we have a non-degenerate limit law for Mn, which we think of as a random variable. Since
almost surely Mn converges to φ(p0), since μ2 is ergodic, for such a law, we need to rescale our variable. To this
end, for each t we define scaling constants un(t) by nμ2(φ > un(t)) → t . For example, if φ(x) = − logd(x,p0) then
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un(t) = d−1[logC(d) + logn − log t] where C(d) is the constant giving the volume of the unit ball in d dimensional
Euclidean space (if d is the dimension of B). In fact we may always write un(t) in the form

un(t) = uT2
n (t) = g(t)

an

+ bn

for some function g(t) and sequence of constants an, bn. In our example an = d , g(t) = logC(d) − log t and bn =
1
d

logn, where d is the dimension of B . We say that we have an Extreme Value Law if the variable Mn under scaling
by un converges to some non-degenerate distribution. For the classical application of these ideas to i.i.d. processes,
see [38]. For more recent applications to dynamical systems, as we have here, see for example [12,15,32].

There is a close connection between rare events point processes (REPP), Extreme Value Laws and hitting times.
First we describe what we mean by a compound Poisson process. Let R be the ring of subsets of R+ generated by the
semi-ring of subsets of form [a, b) so that an element of J ∈ R has the form J = ⋃n

i=1[ai, bi).

Definition 3.1. Let X1,X2, . . . , be an i.i.d. sequence of random variables with common exponential distribution of
mean 1

θ
. Let D1,D2, . . . be another i.i.d. sequence of random variables, independent of Xi and with distribution

function η. We say that N is a compound Poisson process of intensity θ and multiplicity distribution function η if for
every J ∈ R

N(J ) =
∫

1J d

( ∞∑
i=1

DiδX1+···+Xi

)
,

where δt is the Dirac measure at t . If P(D1 = 1) = 1 then N is the standard Poisson distribution and for every t > 0
the random variable N([0, t)) has a Poisson distribution of mean θt .

Remark 3.2. In our applications η will follow a geometric distribution of parameter θ ∈ (0,1] and π(k) := P(D1 =
k) = θ(1 − θ)k for every integer k ≥ 0. In this case the random variable follows a Pólya–Aeppli distribution,

P
(
N

([0, t)
) = k

) = e−θt

k∑
i=1

θi(1 − θ)k−i (θ t)i

i!
(

k − 1
i − 1

)
.

Define v
T2
n (t) := μ2(φ > u

T2
n )−1 so that v

T2
n (t) ∼ n

t
. If J = ⋃n

i=1[ai, bi) ∈ R and γ > 0, define γ J =⋃n
i=1[γ ai, γ bi) ∈R.

We define the rescaled REPP N
T2
n as

NT2
n (J ) :=

∑
j∈v

T2
n J∩N0

1
(φ◦T j

2 >u
T2
n )

. (2)

EVLs and limit laws for N
T2
n for T2 follow directly from [6, Proposition 3.3]. We state them here:

Proposition 3.3. Suppose that p0 satisfies the Keane condition. (1) If p0 is not a periodic point for T2 then μ2{Mn ≤
un(t)} → e−t and the REPP N

T2
n converges in distribution to a standard Poisson process N of intensity 1.

(2) If p0 is a repelling periodic point of prime period k then μ2{Mn ≤ un(t)} → e−θt where θ = 1 −
| Jac(DT −k

2 )(p0)| and the REPP N
T2
n converges in distribution to a compound Poisson process N with intensity θ

and multiplicity distribution function η given by η(j) = θ(1 − θ)j for all integers j ≥ 0.

Now define u
T1
n (t) to be so that nμ1(φ > u

T1
n ) → t as n → ∞. Then setting v

T1
n (t) := μ1(φ > u

T1
n (t))−1, we can

define the REPP N
T1
n by changing all the appearances of T2 in (2) to T1. We then have the following corollary.

Corollary 3.4. Suppose that p0 satisfies the Keane condition. (1) If p0 is not a periodic point for T1 then μ1{Mn ≤
u
T1
n (t)} → e−t and the REPP N

T1
n converges in distribution to a standard Poisson process N of intensity 1.
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(2) If p0 is a repelling periodic point of prime period k then μ1{Mn ≤ un(t)} → e−θt where θ = 1 −
| Jac(DT −k

1 )(p0)| and the REPP N
T1
n converges in distribution to a compound Poisson process N with intensity θ

and multiplicity distribution function η given by η(j) = θ(1 − θ)j for all integers j ≥ 0.

Observe that p0 as above, that is the point where φ takes its maximum, we can choose our set B to contain p0, so
that the result in Proposition 3.3 applies to the corresponding first return map T2. The proof that we can always pass
from the result on the first return map (i.e., T2 here) to the original case (i.e., for T1), which is a simple generalisation
of the main result in [28], appears in [17]. Note that the second part was already proved in [16].

4. Return and hitting time statistics

In this section we consider a natural notion of recurrence which, as in [15], is analogous to the EVL perspective in the
previous section. Suppose p0 ∈ B and Un is a sequence of balls nested at p0. Let τ2,U (x) := min{n ≥ 1 : T n

2 (x) ∈ U}.
We say that T2 has hitting time statistics to {Un} with distribution H(t) if

lim
n→∞μ2

(
x ∈ B : τ2,Un(x) ≤ t

μ2(Un)

)
= H(t).

We say that T2 has return time statistics to {Un} with distribution H̃ (t) if

lim
n→∞

1

μ2(Un)
μ2

(
x ∈ Un : τ2,Un(x) ≤ t

μ2(Un)

)
= H(t).

There is a large body of literature on this topic: we refer the reader to [2,26] and references therein for further infor-
mation on this notion of asymptotic recurrence.

As in [15] sets of the form {x ∈ B : Mn ≤ un(t)} can be rewritten as {x ∈ B : τ2,Un(x) ≤ t
μ2(Un)

}, hence the basic
part of Proposition 3.3 can be written:

Proposition 4.1. Suppose that p0 satisfies the Keane condition. (1) If p0 is not a periodic point for T2 then

lim
n→∞μ2

(
x ∈ Un : τ2,Un(x) ≤ t

μ2(Un)

)
= 1 − e−t .

(2) If p0 is a repelling periodic point of prime period k then

lim
n→∞μ2

(
x ∈ Un : τ2,Un(x) ≤ t

μ2(Un)

)
= 1 − e−θt ,

where θ = 1 − | Jac(DT −k
2 )(p0)|

For typical points this was originally proved in [8, Theorem 2.1] and in the periodic case this follows by [16,
Corollary 4], but the full dichotomy, covering all points, comes from [6]. To convert the results of this proposition
from hitting time statistics to return time statistics, we use the main result of [26] which shows that these limits then
become (1 − θ) + θ(1 − e−θt ) (where we take θ = 1 in the non-periodic case, so nothing changes).

To convert the laws for T2 to T1 we use [28, Theorem 10.3]. To set up some of the notation here, we suppose that
rU is the first return time to U for the original dynamics, and rY,U is the first return time for the speeded up (first
return map) dynamics on Y and μU = μ|U/μ(U).

Theorem 4.2. Let (X,T μ) be an ergodic probability-preserving system and Y be a measurable set with μ(Y ) > 0.
Assume that (H�)� is a sequence of measurable sets in Y with μ(H�) → 0 as � → ∞ and that R̃ is a any random
variable with values in [0,∞]. Then

μY (H�)rY,H�

μH��⇒ R̃ as � → ∞
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iff

μ(H�)rH�

μH��⇒ R̃ as � → ∞.

Here
μH��⇒ means pointwise convergence at all continuity points of R̃ where the LHS is considered w.r.t. μH�

. So
for τ1,U (x) := min{n ≥ 1 : T n

1 (x) ∈ U}, the above result can be interpreted with τ2,U on H� being rY,H�
and τ1,U on

H� being rH�
, to obtain the statement of Proposition 4.1 for T1, μ1. As in the previous section, we may assume that

the domain B contains p0.

5. The Teichmüller flow on the space of translation surfaces

In this section we relate the dynamical structures we described in Section 1 to the Teichmüller flow on the space of
translation surfaces. We do not present any new results in this section. We will first introduce invertible versions R0,
R1 and R2 of the maps presented in Section 1. The key fact we use is that these maps are first return maps for the
flow to adapted cross sections, and give a clearer relation to the translation surfaces, which are represented as points
in their phase space.

5.1. Translation surfaces: The zippered rectangle construction

Given an irreducible pair π = (π0,π1) and a length vector λ ∈R
A+ , let T +

π denote the subset of vectors τ = (τa)a∈A ∈
R
A such that∑

π0(a)≤k

τa > 0 and
∑

π1(a)≤k

τα < 0

for 1 ≤ k ≤ d − 1. We say that τ has type 0 if the total sum
∑

a∈A τa is positive and type 1 if the total sum is negative.
Next we will use the matrices M and intervals I

πε
a defined in Section 1.2. Then given π and τ ∈ T +

π we define the
height data by h := −Mτ . One can check that τ ∈ T +

π implies that each element ha for a ∈A is strictly positive. Now
given (π,λ, τ ), for each a ∈ A we can define the rectangles R

π0
a = I

π0
a ×[0, ha] ⊂R

2 and R
π1
a = I

π1
a ×[0,−ha] ⊂R

2.
We can then form the translation surface M = M(π,λ, τ) by identifying the top of each rectangle R

π0
a with the

bottom of the corresponding rectangle R
π1
a and then “zipping up” by making a natural identification of pairs of

protruding sides of the rectangles: for more details see [57, Chapter 2.7], [59]. The area of M(π,λ, τ) can be defined
as area(π,λ, τ ) := λ · h = ∑

a∈A λaha . The structure here can be thought of as a Riemann surface with a non-zero
holomorphic 1-form or equivalently, as a flat Riemannian metric on a surface with finitely many singularities of
conical type and a parallel unit vector field.

Note that the underlying IET here is a first return map of the vertical flow on the translation surface to the interval
[0,

∑
a∈A λa].

Fix R a Rauzy class. Let

Ĥ = Ĥ(R) := {
(π,λ, τ ) ∈R×R

A+ × T +
π

}
.

We extend the Rauzy–Veech induction map T̂0 to a map R̂0 on Ĥ by R̂0(π,λ, τ ) = (π ′, λ′, τ ′), where (π ′, λ′) =
T̂0(π,λ) and τ ′ = �−1∗(τ ) (recall the description of � given in Remark 1.1). The height data h′ of (π ′, λ′, τ ′) can be
expressed as h′ = �(h). Moreover, setting

R
A
π,ε := {

λ ∈ R
A+ : (π,λ) has type ε

}
and Tπ,ε := {

τ ∈ T +
π : τ has type ε

}
,

it can be shown (see e.g. [57, Chapter 2.7]) that:

Proposition 5.1.

(a) �−1∗ sends T +
π injectively inside T +

π ′ .
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(b) (Markov) R̂0({π} ×RA
π,ε × T +

π ) = {π ′} ×RA+ × Tπ ′,1−ε .

(c) Every (π ′, λ′, τ ′) such that
∑

α∈A τ ′
α 	= 0 has a unique preimage by R̂0.

(d) If R̂0(π,λ, τ ) = (π ′, λ′, τ ′) then the areas of M(π,λ, τ) and M(π ′, λ′, τ ′) are equal.

5.2. Teichmüller flow

The Teichmüller flow on Ĥ is defined as the induced action T = (T t )t∈R : Ĥ → Ĥ of the diagonal subgroup(
et 0
0 e−t

)
for t ∈R,

given by T t (π,λ, τ ) = (π, etλ, e−t τ ). For c > 0 we define

Hc := {
(π,λ, τ ) ∈ Ĥ : |λ| = c

}
.

The trajectory of a point in Ĥ hits Hc precisely once. We are looking for transformations from Hc back to itself of
the form R̂0 ◦ T t for some t . Noticing that if (π ′, λ′) = R̂0(π,λ) and (π,λ) is of type ε, then |λ′| = |λ|(1 − λa(1−ε)

|λ| ),
we see that the relevant time t is

r0 = r0(π,λ) := − log

(
1 − λa(1−ε)

|λ|
)

, where (π,λ) is of type ε.

That is to say, we are interested in the map from Hc to itself given by

R0 = R̂0 ◦ T r0 : (π,λ, τ ) �→ R̂0
(
π, er0λ, e−r0τ

)
.

From now on we restrict ourselves to

H =H1.

Then we observe that the map above can actually be interpreted as an extension of the Rauzy–Veech renormalisation
map T0 since R0(π,λ, τ ) = (π ′, λ′′, τ ′′) = (T0(π,λ), τ ′′) where

(
π ′, λ′, τ ′) = R̂0(π,λ, τ ), λ′′ = λ′

1 − λa(1−ε)

, τ ′′ = τ ′(1 − λa(1−ε)).

The next result is [57, Corollary 2.24] and [57, Lemma 4.3].

Proposition 5.2. R0 : H → H is an (almost everywhere) invertible Markov map and preserves the area of the cor-
responding translation surfaces. The standard volume form mH = dπdλ1dτ , where dλ1 is the Lebesgue measure
induced on ΔA and dτ is the Lebesgue measure on T +

π , is invariant under R0.

From now on, we will only consider translation surfaces of area 1, i.e. elements of the set

Ĥ(1) := {
(π,λ, τ ) ∈ Ĥ : area(π,λ, τ ) = 1

}
.

This set is invariant under both the Teichmüller flow T = (T t )t∈R and the invertible Rauzy–Veech induction R̂0. We
also set H(1) := Ĥ(1) ∩H, which is invariant under the invertible Rauzy–Veech renormalization map R0.

We consider the pre-stratum obtained as the quotient of the fundamental domain {(π,λ, τ ) ∈ Ĥ(1) : 0 ≤ log |λ| ≤
r0(π,λ)} by the equivalence relation

T r0(π,λ)(π,λ, τ ) ∼R0(π,λ, τ ) for all (π,λ, τ ) ∈H(1).

Since R0 commutes with the flow, the latter induces a flow T = (T t )t∈R on the pre-stratum, that we also call Teich-
müller flow.
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The map R0 :H(1) → H(1) is then naturally identified with the Poincaré return map of this flow to the cross section
H(1). The volume form mH induces a volume form mH(1)

on H(1) which is still invariant under R0. The key fact is
that mH(1)

gives finite mass to H(1), a fact which was demonstrated by Veech [55].

5.3. Recoded Teichmüller flow and inducing

The moves described above mean that R0 can now be interpreted as the first return map of the Teichmüller flow
to H(1), and indeed it is convenient for us to redefine the flow as a suspension flow which is locally defined by
T t (π,λ, τ, s) = (π,λ, τ, t + s) on the space

Hr0
(1) := {

(π,λ, τ, s) ∈ H(1) ×R : 0 ≤ s ≤ r0(π,λ)
}
/ ∼,

where (π,λ, τ, r0(π,λ)) ∼ (π ′, λ′′, τ ′′,0) and R0(π,λ, τ ) = (π ′, λ′′, τ ′′). We refer to r0 as the roof function for this
suspension flow.

A key fact in Proposition 5.1(b) is that given (π,λ, τ ) ∈H(1), if (π,λ) is of type ε, then τ ′ is of type 1− ε. So if the
first k iterates (πj , λj , τ j ) for j = 1, . . . , k of R0 do not change the type of (πj , λj ), then the types of (πj , λj ) and
τ j are different (ε and 1 − ε) for j ∈ {1, . . . , k}. So the first time k that the types of (πk, λk) and τ k are the same is the
first time that (πk, λk) changes type. That is, exactly n1(π,λ). Therefore, setting Z := Z0 ∪Z1, where for ε ∈ {0,1},

Zε := {
(π,λ, τ ) ∈ H(1) : (π,λ) and τ both have type ε

}
,

we define R1 : Z → Z as the first return map by R0 to Z . (We can do this with R̂1 on Ĥ too.) This map can be seen
as an extension of the Rauzy–Veech–Zorich renormalisation map for the same reasons as for R0: if R1(π,λ, τ ) =
(π ′, λ′, τ ′), then T1(π,λ) = (π ′, λ′). Thus we can produce a new description of our Teichmüller flow.

We omit the description of this since we go straight to the description given by taking an adapted induced set
BH(1)

⊂ Z and the first return map R2 to BH(1)
by T . This map will also be the first return map of R0 to BH(1)

.
The choice of B in Section 1.5 was made in order to ensure uniform expansion for the first return map. Since we
are now dealing with an invertible map, we will also need uniform contraction in the stable direction. We follow
the construction of [5], and choose a good set B , which is the image of an inverse branch of T0. We refer to [5,
Section 4.1.3] for the precise definition of B . This set can be written as B = {π} × { ��λ

|��λ| : λ ∈ ΔA}, where � is a
finite product of the matrices mentionned in Remark 1.1.

We then set BH(1)
= (B × T +

B ) ∩H(1), where T +
B is defined by the relation ��T +

B = Tπ , and we consider the first
return map R2 of R0 to BH(1)

. This map can be written as a skew product over the first return map T2 of T0 to the set
B , i.e. R2(π,λ, τ ) = (π ′, λ′, τ ′), where (π ′, λ′) = T2(π,λ), and τ ′ depends on π,λ and τ .

The map R2 preserves the renormalised restriction mBH(1)
of mH(1)

to BH(1)
. By [5, Lemma 4.3], this map is

a hyperbolic skew product over the uniformly expanding Markov map T2, in the sense of [5, Definition 2.5], and
henceforth it admits exponential decay of correlations for Lipschitz observables: there exists C > 0 and 0 < α < 1
such that∣∣∣∣∫ φψ ◦Rn

2 dmBH(1)
−

∫
φ dmBH(1)

∫
ψ dmBH(1)

∣∣∣∣ ≤ Cαn‖φ‖Lip‖ψ‖Lip

for all φ,ψ ∈ Lip, see Young [60].
Since R0 is the Poincaré return map of the flow T to the section H(1), the map R2 is itself the Poincaré return map

of T to the section BH(1)
. This gives a roof function r2 : BH(1)

→ R+ defined almost everywhere. Clearly, the roof
function depends only on (π,λ), so we can reduce it to a roof function r2 : B → R+. We define the suspension

B
r2
H(1)

:= {
(π,λ, τ, s) ∈ BH(1)

×R : 0 ≤ s ≤ r2(π,λ)
}
/ ∼,

where (π,λ, τ, r2(π,λ)) ∼ (π ′, λ′′, τ ′′,0) and R2(π,λ, τ ) = (π ′, λ′′, τ ′′). Again, we can redefine the flow T as a sus-

pension flow on B
r2
H(1)

given by T t (π,λ, τ, s) = (π,λ, τ, t + s), which preserves the measure μT =
(mBH(1)

×m)|
B

r2
H(1)

(mBH(1)
×m)(B

r2
H(1)

)

where m is the Lebesgue measure on R.
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We now revert to a form which matches Pollicott’s [49] notes as well as corresponds to our sections above. Since
the roof function depends only on (π,λ), we can project into a semi-flow by removing the τ parameter: then the actual
flow can be reconstructed as the natural extension of what we have produced. Namely, we let

Br2 := {
(π,λ, s) ∈ B ×R : 0 ≤ s ≤ r2(π,λ)

}
/ ∼,

where (π,λ, r2(π,λ)) ∼ (π ′, λ′′,0) and T2(π,λ) = (π ′, λ′′). Clearly T2 is still a first return map to B . Later we will
simplify notation further and write simply x = (π,λ).

The notation we use for the semi-flow is Ft : Br2 → Br2 , defined locally by Ft (x, u) = (x,u+ t), with the relevant
identifications i.e. (x, r2(π,λ)) ∼ (T2(x),0).

The semi-flow F = {Ft }t∈R preserves the acip μF given by

μF = (μ2 × m)|Br2

(μ2 × m)(Br2)
= (μ2 × m)|Br2∫

r2 dμ2
,

where μ2 is the acip for T2 and m is the Lebesgue measure on R.

Remark 5.3. Since T2 is a first return map for T0, which in turn is a first return map for our Teichmüller semi-flow,
any small ball in Br2 is isomorphic to the corresponding ball in Br0 (Br0 being defined similarly to Br2 , with r0 as the
roof function). More precisely, this is true if our ball is contained in a strip {(x, t) : x ∈ Bk,0 ≤ t ≤ r2(x)} for some k.
Recall that Q= {Bi}i∈I is the natural partition of the map T2 defined in Section 1.5.

6. Statistical properties of the Teichmüller flow

In this section we extend our Borel–Cantelli Lemmas and EVLs to the Teichmüller flow.

6.1. Borel–Cantelli lemmas for the semi-flow

Here we will use ideas from the proof of [25, Theorem 2], primarily Step 1 of that proof. The main (obvious) difference
is that we are dealing with continuous time.

Given a family of sets U = (Us)s≥0 set ψ = (ψs)s≥0 where ψs := 1Us and Et(U) = Et(ψ) = ∫ t

0 (
∫

ψs dμF ) ds.
We say that U is a family of shrinking sets if s1 < s2 implies Us2 ⊂ Us1 . In this section we will prove that if U =
(Us)s≥0 is a family of shrinking sets with some monotonicity condition and limt→∞ Et(U) = ∞ then

lim
t→∞

1

Et(U)

∫ t

0
1Us ◦Fs(x, u) ds = 1 for μF -a.e. (x,u) ∈ Br2 .

This result is contained in Theorem 6.3; in particular, the smoothness condition is given there. We prove in the
following subsection that this condition is indeed satisfied for a natural family of sets, namely nested balls.

Recall that B is partitioned (almost everywhere) into sets {Bk}k . For i ∈ N0, define

Bi
k := {

(x, t) ∈ Bk ×R+ : i ≤ t < min
{
i + 1, r2(x)

}}
.

So we can write Br2 = ⋃
k

⋃
i B

i
k almost everywhere. We will restrict our Borel–Cantelli lemmas to these sets Bi

k ,
which will be sufficient to prove the general case. Indeed, we define the restricted indicator function

ψBi
k,s

:= 1Us∩Bi
k

and first study the recurrence properties of the family ψBi
k
= (ψBi

k,s
)s≥0. We do this by inducing, for which we need

the right time scale. Since μF is ergodic and
∫

r2 dμ2 < ∞, we immediately obtain the following lemma where
r̄2 := ∫

r2 dμ2.
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Lemma 6.1. For each ε > 0 there exists T ≥ 0 and a set Xε,T ⊂ Br2 such that (x,u) ∈ Xε,T and t ≥ T implies∣∣∣∣ t

#{s ∈ [0, t) : Fs(x, u) ∈ B} − r̄2

∣∣∣∣ < ε.

Moreover, μF (Xε,T ) → 1 as T → ∞.

Now, for each ε ∈R, we define the induced function on x ∈ B

ψ̄n,Bi
k,ε

(x) :=
∫ r2(x)

0
(1Un(r̄2+ε)+s

· 1Bi
k
) ◦Fs(x,0) ds, (3)

and denote the family as ψ̄Bi
k,ε

= (ψ̄n,Bi
k,ε

)n. Note that
∫

ψ̄n,Bi
k,ε

(x) dμ2 ≤ r̄2μF (Un(r̄2+ε) ∩ Bi
k) as μF = 1

r̄2
(μ2 ×

m)|Br2 . We will be able to compare the long-term behaviour of this function with different values of ε, and compare
them all to the long-term behaviour of the flow. This is necessary as we sample at discrete times, and the nested balls
are shrinking in continuous time.

We will use the following lemma, which is [25, Lemma 4.2].

Lemma 6.2. Suppose that g :R+ → R+ is decreasing and
∑∞

i=0 g(i) = ∞. Then,

(a) for all ε > 0 and all n ≥ 0,∫ (1+ε)n

0 g(t) dt∫ n

0 g(t) dt
≤ 1 + ε;

(b) lim
n→∞

∫ n

0 g(t) dt∑n−1
j=0 g(j)

= 1.

Theorem 6.3. Suppose that Bi
k is such that

lim
t→∞

∫ t

0
μF

(
Us ∩ Bi

k

)
ds = ∞,

i.e. limt→∞ Et(ψBi
k
) = ∞. If there exists K > 0 and 0 < α ≤ 1 such that ‖ψ̄n,Bi

k,0
‖α < K for all n ∈ N0, then

lim
t→∞

1

Et(ψBi
k
)

∫ t

0
1Us∩Bi

k
◦Fs(x, u) ds = 1 for μF -a.e. (x,u) ∈ Br2 .

Proof. We use the idea of Step 1 of the proof of [25, Theorem 2]. We will show

lim
t→∞

1

Et(ψBi
k
)

∫ t

0
1Us∩Bi

k
◦Fs(x,0) ds = 1 for μ2-a.e. (x,0) ∈ B,

as then the proof for μF -a.e. (x,u) ∈ Br2 follows.
We already know from Proposition 2.1 that for μ2-a.e. x ∈ B ,∑n−1

j=0 ψ̄j,Bi
k,0

(T j

2 x)

En(ψ̄Bi
k,0

)
→ 1 as n → ∞,

where En(ψ̄Bi
k,0

) := ∑n−1
j=0 μ2(ψ̄j,Bi

k,0
). Moreover the fact that En(ψ̄Bi

k,0
) → ∞ is equivalent to the divergence as-

sumption in the statement of our theorem, as the sets are shrinking. Lemma 6.2 controls the effect of this perturba-
tion in the limit when we switch on the ε parameter in one of the occurrences of ψn,Bi

k,ε
above which deals with
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the shrinking of the balls during the flow between returns to the base. Note that μ2(ψ̄n,Bi
k,ε

) ≤ μ2(ψ̄n,Bi
k,−ε) and

limε→0

μ2(ψ̄j,Bi
k
,ε

)

μ2(ψ̄j,Bi
k
,−ε

)
→ 1 uniformly in n. Thus

lim
ε→0

Eq(t,x)(ψ̄Bi
k,+ε)

Eq(t,x)(ψ̄Bi
k,−ε)

→ 1

uniformly in n. We will use these observations to squeeze

∫ r
q(t,x)
2 (x)

0 ψ
Bi

k
,s

◦Fs (x,0) ds

Eq(t,x)(ψ̄Bi
k
,0

)
between two corresponding conver-

gent scaled Birkhoff sums.
Given x ∈ B , define q(t, x) as the integer for which

r
q(n,x)

2 (x) ≤ t < r
q(n,x)+1
2 (x),

where rm
2 (x) = r2(x) + r2(T2x) + · · · + r2(T m−1

2 x). Observe that since the difference of the integral of 1Us∩Bi
k
◦

Fs(x, ·) between times r
q(t,x)

2 (x) and t is made up by at most one passage through Bi
k which integrates to at most the

length of Bi
k in the vertical direction, i.e., 1, we have

∫ t

0
ψBi

k,s
◦Fs(x,0) ds −

∫ r
q(t,x)
2

0
ψBi

k,s
◦Fs(x,0) ds ≤ 1.

Hence this difference is uniformly bounded independently of x and t .

Thus
∑q(t,x)−1

j=0 ψ̄j,Bi
k,ε

(T j

2 x) ≤ ∫ r
q(t,x)
2 (x)

0 ψBi
k,s

◦Fs(x,0) ≤ ∑q(t,x)−1
j=0 ψ̄j,Bi

k,−ε(T
j

2 x) + 1.
So by Lemma 6.1, for all small ε > 0,

(∑q(t,x)−1
j=0 ψ̄j,Bi

k,ε
(T j

2 x)

Eq(t,x)(ψ̄Bi
k,ε

)

)(Eq(t,x)(ψ̄Bi
k,ε

)

Eq(t,x)(ψ̄Bi
k,0

)

)

≤
∫ r

q(t,x)
2 (x)

0 ψBi
k,s

◦Fs(x,0) ds

Eq(t,x)(ψ̄Bi
k,0

)

≤
(∑q(t,x)−1

j=0 ψ̄j,Bi
k,−ε(T

j

2 x) + 1

Eq(t,x)(ψ̄Bi
k,−ε)

)(Eq(t,x)(ψ̄Bi
k,−ε)

Eq(t,x)(ψ̄Bi
k,0

)

)
.

Then Lemmas 6.1, 6.2 and the fact that

lim
ε→0

Eq(t,x)(ψ̄Bi
k,+ε)

Eq(t,x)(ψ̄Bi
k,−ε)

→ 1

imply that

lim
t→∞

∫ r
q(t,x)
2 (x)

0 ψBi
k,s

◦Fs(x,0) ds

Eq(t,x)(ψ̄Bi
k,0

)
= lim

t→∞

∫ t

0 ψBi
k,s

◦Fs(x,0) ds

Eq(t,x)(ψ̄Bi
k,0

)
= 1.

To complete the proof of the proposition, as in Step 2 of the proof of [25, Theorem 2], we show that

lim
n→∞

En(ψBi
k
)

E�n/r̄2�(ψ̄Bi
k,0

)
= 1.
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Notice that this is the one part where our proof is easier than theirs since the flow is a first return to the base (this also
accounts for the fact that Step 3 of that proof is unnecessary here).

By Lemma 6.1, q(n, x) ∼ � n
r̄2

�. Hence

E�n/r̄2�(ψ̄Bi
k,0

) =
� n

r̄2
�−1∑

j=0

∫
B

ψ̄j,Bi
k,0

(y) dμ2(y)

=
� n

r̄2
�−1∑

j=0

∫
B

∫ r2(y)

0
ψBi

k,j r̄2+s ◦Fs(y,0) ds dμ2(y)

∼
� n

r̄2
�−1∑

j=0

μF
(
Uj(r̄2) ∩ Bi

k

)
.

Applying Lemma 6.2 with a speeded up time variable, we obtain
∑� n

r̄2
�−1

j=0 μF (Uj(r̄2)∩Bi
k) ∼ ∫ n

r̄2
0 μF (Usr̄2 ∩Bi

k)r̄2 ds,

so a change of variables then gives E�n/r̄2�(ψ̄Bi
k,0

) ∼ En(ψBi
k
), thus completing the proof. �

6.2. An application of Theorem 6.3

One of the challenges in proving Borel–Cantelli lemmas when moving from the discrete system to the flow is that
the induced characteristic functions are not, in general, characteristic functions. In this subsection we prove that
characteristic functions of balls in the flow space induce observables which are sufficiently regular that we can apply
Theorem 6.3 to them. In fact the averaging in the flow direction regularizes functions. If (z, u) ∈ Br2 we let Bη(z,u)

denote a ball of radius η about (z, u) in the Euclidean metric d1((z, u), (z′, u′)) = [(u − u′)2 + ∑d
j=1(zj − z′

j )
2] 1

2 .
It is clear from our proof below other Euclidean metrics may be used, for example d2((z, u), (z′, u′)) = |u − u′| +∑d

j=1 |zj − z′
j |.

Theorem 6.4. Let δ(s) be a decreasing sequence. For μF -a.e. (z, u) ∈ Br2 setting Us = Bδ(s)(z, u), if

lim
t→∞Et(U) = ∞

then

lim
t→∞

1

Et(U)

∫ t

0
1Us ◦Fs(x, v) ds = 1 for μF -a.e. (x, v) ∈ Br2 .

Proof. As before we define

ψBi
k,s

:= 1Uδ(s)∩Bi
k
,

where

Bi
k := {

(x, t) ∈ Bk ×R+ : i ≤ t < min
{
i + 1, r2(x)

}}
.

For large s the ball Bδ(s)(z, u) lies inside a fixed Bi∗
k∗ for some specific k∗, i∗. Since we have freedom to induce on a

set B placed anywhere in Δ we need not worry about (z, u) lying on the boundary of a Bi
k .

For γ > 0 we also define the induced function

ψn := ψ
n,Bi∗

k∗ ,γ
(x) :=

∫ r2(x)

0
(1Un(r̄2+γ )+s

· 1
Bi∗

k∗ ) ◦F(x, s) ds.
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We have to show that there exists an α and a constant K such that ‖ψn‖α < K for all n.
It suffices to show that there exist α, K such that

ε−α

∫
B

osc
(
ψn,Bε(x)

)
dx < K

for all n.
If δ(n(r̄2)) ≤ ε then osc(ψn,Bε(x)) ≤ 2ε. This is because for each y ∈ Bε(x),∫ r2(x)

0
(1U(n(r̄2+γ )+s)

· 1Bi
k
) ◦F(x, s) ds ≤ δ

(∣∣n(r̄2)
∣∣) ≤ ε.

So we need only consider the supremum over small ε < δ(n(r̄2)). The ball Bδ(s)(z, u) ⊂ Bi∗
k∗ lies in a d + 1-

dimensional Euclidean space. Its projection onto the d-dimensional space B is a ball Bδ(s)(z) in Bk∗ . If the distance of
Bε(x) to Bδ(s)(z) is greater than 2ε then either Bε(x) is in the exterior of Bδ(s)(z) or B2ε(x) ⊂ Bδ(s)(z). In the first case∫
B

osc(ψn,Bε(x)) = 0 as the flow starting in Bε(x) does not meet Bδ(s)(z, u). In the second case i.e. Bε(x) is bounded
away from the boundary of Bδ(s)(z) by ε, then the two parts of the boundary of Bδ(s)(z, u) which project to Bε(x)

may be written locally as graphs over Bε(x), the “height” functions are given by s − u =
√

δ(s) − ∑d
j=1(tj − zj )2

and s − u = −
√

δ(s) − ∑d
j=1(tj − zj )2, respectively, where t = (t1, . . . , td) and z = (z1, . . . , zd) are Euclidean co-

ordinates in B . Here we are restricting to t satisfying
√∑n

j=1(tj − xj )2 < ε where x = (x1, . . . , xd) is the center of

Bε(x). Note that for both branches | ∂s
∂ti

| = 1
2 (δ(s) − ∑d

j=1(tj − zj )
2)− 1

2 (2|ti − zi |). In particular since t satisfying√∑n
j=1(tj − xj )2 < ε is bounded from the boundary of Bδ(s)(z) by ε, i.e.

√
(δ(s) − ∑d

j=1(tj − zj )2) > ε we have

| ∂s
∂ti

| ≤ C√
ε

for all i and hence the oscillation of ψn over Bε(x) is O(
√

ε). Finally if Bε(x) is within 2ε of the boundary

of Bδ(s)(z) then the oscillation of ψn over Bε(x) is O(1) but the μ2 measure of points x within a 2ε neighborhood of
the boundary of Bδ(s)(z) is O(ε).

Thus taking α = 1
2 there exists K such that

ε− 1
2

∫
B

osc
(
ψn,Bε(x)

)
dx < K

for all n. �

6.3. Borel–Cantelli lemmas for the Teichmüller flow

In this section, we prove Borel–Cantelli lemmas for the Teichmüller flow T seen as a suspension flow over the map
R2 : BH(1)

→ BH(1)
with roof function r2.

We first prove a similar result for the map R2. Recall that this map preserves the measure mBH(1)
and is a skew-

product over the map T2 : B → B , which preserves μ2. To simplify the notations, we set μ := μ2 and μ̂ := mBH(1)
.

Proposition 6.5. Let (Un) be a decreasing sequence of nested balls centered at a point (x, τ ) ∈ BH(1)
, with∑

n μ̂(Un) = ∞. Assume there exist C > 0 and γ > 0 such that μ̂(Un) ≥ Cn−γ and (logn)μ(Un) ≤ C for all n ≥ 0.
Then the sequence (Un) is strong Borel–Cantelli for R2.

Proof. We follow the proof of [62, Theorem 1.5]. Let fk = 1Uk
◦Rk

2. We denote by E(·) the expectation operator with
respect to μ̂. We trivialize BH(1)

to a product via the natural diffeomorphism BH(1)
→ B × PT +

B , where PT +
B is the

image of T +
B in the projective space PR

A. Let �x and �τ be the projections on the factors B and PT +
B respectively.

We denote by m1 the Lebesgue measure on each factor, and by m2 the product Lebesgue measure on B × PT +
B . The

measure μ̂ has a smooth density with respect to m2, which is bounded uniformly from above and below. Let E(·) be
the expectation operator with respect to the measure μ̂.
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For i < j , we calculate

E(fifj ) =
∫

1Ui
◦Ri

21Uj
◦Rj

2 dμ̂

=
∫

1Ui
1Uj

◦Rj−i

2 dμ̂

�
∫

Ui

1�xUi
1�xUj

◦ �x ◦Rj−i

2 dm2

� m1(�τUi)m1
(
�xUi ∩ T −(j−i)

2 �xUj

)
� m1(�τUi)μ

(
�xUi ∩ T −(j−i)

2 �xUj

)
� m1(�τUi)

(
μ(�xUi)μ(�xUj ) + Cθj−iμ(�xUj )

)
� m1(�τUi)

(
m1(�xUi)m1(�xUj ) + Cθj−im1(�xUj )

)
�

(
m2(Ui)

) 1
2
((

m2(Ui)
) 1

2
(
m2(Uj )

) 1
2 + Cθj−i

(
m2(Uj )

) 1
2
)

�
(
m2(Ui)

) 3
2 + θj−im2(Ui).

Throughout this calculation, we have used the fact that μ and μ̂ have a density with respect to m1 and m2 respectively
which are bounded uniformly from above and below, decay of correlations for T2 given by Proposition 1.8 and the

fact that there exists a constant K such that for all ball U , m1(U) ≤ K(m2(U))
1
2 .

So, using decay of correlations for R2 and Lipschitz observables, we have

n∑
j=i+1

(
E(fifj ) − E(fi)E(fj )

) ≤
(

i+a log i∑
j=i+1

+
∑

j>i+a log i

)[
E(fifj ) − E(fi)E(fj )

]
� (log i)

(
m2(Ui)

) 3
2 + m2(Ui)

+
∑

j>i+a log i

αj−i‖f̃i‖Lip‖f̃j‖Lip,

where a will be chosen later and f̃i is a Lipschitz approximation to fi , satisfying m2(|f̃i − fi |) � 1
i2 and ‖f̃i‖Lip � iκ

for some fixed κ . We are able to satisfy both conditions as m2(Ui) � i−γ for some γ > 0. We have (log i)(m2(Ui))
3
2 �

m2(Ui) and for a > 0 sufficiently large∑
j>i+a log i

αj−i‖f̃i‖Lip‖f̃j‖Lip � m2(Ui).

We have thus shown that

n∑
i=m

n∑
j=i+1

(
E(fifj ) − E(fi)E(fj )

)
�

n∑
i=m

E(fi)

which implies the strong Borel–Cantelli property by Proposition 2.2. �

Remark 6.6. Note that the proof above does not use the assumption that the balls are nested, nor that they are balls
just that they may be approximated by Lipschitz functions f̃i such that m2(|f̃i − fi |) � 1

i2 and ‖f̃i‖Lip � iκ for some
fixed κ .
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We now show that the SBC property for the map R2 implies the SBC property for nested balls Ut in the full
suspension flow.

Theorem 6.7. Let U = (Ut )t≥0 be a family of shrinking balls in B
r2
H(1)

, with μT (Ut ) � t−γ for some γ > 0 and

supt≥0(log t)μT (Ut ) < ∞. Assume that

Et := Et(U) =
∫ t

0
μT (Us) ds

diverges.
Then the family U is strong Borel–Cantelli for the flow: for μT a.e. p ∈ B

r2
H(1)

,

1

Et(U)

∫ t

0
1Us

(
T t (p)

)
ds → 1.

Proof. Note that the measure on the flow μT is the product of the base measure and Lebesgue measure in the flow
direction, so that dμT = dμ̂ × dt and that the projection �, say, via flow lines of the balls Ut in the suspension
flow is a t -parametrized sequence of nested “balls” Ct in the Poincaré section BH(1)

. The dynamics of the return
map to BH(1)

is given by the skew-product map R2 : BH(1)
→ BH(1)

. The flow (T t ) is rectifiable in a sufficiently

small neighborhood of the balls Ut . Let k̂(p) be the time that T t (p) returns to BH(1)
for the kth time under T , where

p ∈ BH(1)
or μ̂ a.e. p ∈ BH(1)

,

lim
k→∞

k̂(p)

k
=

∫
BH(1)

r2 dμ̂ := r̄2.

We fix an integer n and discretize Ct into disjoint sets Ct,j , j = 1 to n, of roughly equal μ̂ measure and define
Ũt,j := {q ∈ Ut : �q ∈ Ct,j }. Hence Ct,j lie in BH(1)

while Ũt,j lies in the full suspension flow B
r2
H(1)

.
We consider two sequences of sets Cα,t,j and Cβ,t,j in the suspension flow defined by flow lines through Ct,j of

constant length τ1(t, j) and τ2(t, j) such that for each Ũt,j , Cα,t,j ⊂ Ũt,j ⊂ Cβ,t,j and moreover for each j, t > 0,
μT (Cβ,t,j ) − μT (Cα,t,j ) ≤ e(n)μT (Ũt,j ) where e(n) → 0 as n → ∞. We can ensure this as the boundary of Ũt,j

consists of two manifolds, each a smooth graph over Ct,j . The role of the sequence of sets Cα,t,j , Cβ,j,t is to provide
discretized lower and upper bounds between which we can squeeze the continuous flow.

Hence μT (
⋃

j Cα,t,j ) ≤ μT (Ut ) ≤ μT (
⋃

j Cβ,t,j ) and μT (
⋃

j Cβ,t,j ) − μT (
⋃

j Cα,t,j ) ≤ e(n)μT (Ut ) where
e(n) → 0 as n → ∞.

Recall k̂(p) denotes the kth return time to BH(1)
of a point p ∈ BH(1)

under the flow T t so that T k̂(p) = Rk
2(p).

By the ergodic theorem given ε > 0 for μ̂ a.e. p there exists k∗(ε)(p) such that k(r̄2 − ε) ≤ k̂(p) ≤ k(r̄2 + ε) for all
k > k∗(ε).

We fix ε and n. We let [α] denote the integer part of the real number α. For each j , the sequences of sets, indexed
by k, (C[k(r̄2+ε)],j ) and (C[k(r̄2−ε)],j ) both have the (SBC) property for R2 : BH(1)

→ BH(1)
, i.e.

lim
k→∞

1

E(k,j,ε,+)

k∑
i=1

1C([i(r̄2+ε)],j)
◦Ri

2(p) = 1

for μ̂ a.e. p ∈ BH(1)
, where E(k,j,ε,+) := ∑k

i=1 μ̂(C[i(r̄2+ε)],j ) and similarly for (C([k(r̄2−ε)],j)). Indeed, this follows

from Proposition 6.5 since μ̂(C[k(r̄2+ε)],j ) ∼ μT (U[k(r̄2+ε)])1− 1
d as k → ∞, for fixed n and ε.

Note that k(r̄2 − ε) ≤ k̂ ≤ k(r̄2 + ε) and by the Lipschitz regularity of μ̂(Ct,j ) in t if k(r̄2 − ε) ≤ t ≤ k(r̄2 + ε) then
μ̂(C([k(r̄2+ε)],j)) − μ̂(C([k(r̄2−ε)],j)) ≤ ρ(ε)μ̂(C([k(r̄2+ε)],j)) where ρ(ε) → 0 as ε → 0.

Furthermore, for sufficiently large t , once Rk
2(p) enters Ct,j its trajectory spends a length of flow time between

τ1([k(r̄2 − ε)], j) and τ2([k(r̄2 + ε)], j) in the sets (Ũt,j ).
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Thus for μ̂ a.e. p, (recall n is fixed)

n∑
j=1

T∑
i=1

τ1
([

i(r̄2 − ε)
]
, j

)
μ̂(C([i(r̄2−ε)],j)) ≤

n∑
j=1

∫ T r̄2

0
μ̂(�Ũt,j )1Ut,j

◦ T t (p) dt

≤
n∑

j=1

T∑
i=1

τ1
([

i(τ1 + ε)
]
, j

)
μ̂(C([i(τ1+ε)],j)).

The sums L(T ,n) := ∑n
j=1

∑T
i=1 τ1([i(r̄2 − ε)], j)μ̂(C([i(r̄2−ε)],j)) and U(T ,n) := ∑n

j=1
∑T

i=1 τ1([i(τ1 + ε)], j) ×
μ̂(C([i(τ1+ε)],j)) are Riemann sums, and limT →∞ U(T ,n)

L(T ,n)
= κ(n) where κ(n) → 1 as n → ∞.

Using a change of variables

n∑
j=1

∫ T r̄2

0
μ̂(�Ũt,j )1Ut,j

◦ T t (p) dt ∼ 1

r̄2

n∑
j=1

∫ T

0
μ̂(�Ũt,j )1Ut,j

◦ T t (p) dt,

where H(T ) ∼ G(T ) means limT →∞ G(T )
H(T )

= 1.
Furthermore∣∣∣∣ 1

τ1

∑n
j=1

∫ T

0 μ̂(�Ũt,j )1Ut,j
◦ T t (p) dt∫ T

0 ν(Ut ) dt
− 1

∣∣∣∣ ≤ κ2(n),

where κ2(n) → 0 as n → ∞.
This proves the SBC property for nested balls in the full suspension flow. �

6.4. Extreme Value Laws for the flow

We have established EVLs for sufficient regular observations on the dynamical system (T2,B,μ2). We now consider
EVLs for the flow Fs : Br2 → Br2 . To do this we use [32, Theorem 2.6] which relates Extreme Value Theory for
functions on the suspension of a base transformation to the Extreme Value statistics of observations on the base.

We start with some preliminary notation. Let r̄2 = ∫
B

r2(x) dμ2. Let φ : Br2 → R ∪ {+∞} be a function, strictly
maximized at a point (x0, u0) ∈ Br2 , which is sufficiently regular that for large r the set {(x,u) ∈ Br2 : φ((x,u)) > r}
corresponds to a topological ball centered at (x0, u0). Let φ̄(x) = sup0≤u≤r2(x) φ((x,u)) and define un(t) by the
requirement that nμ2{φ̄ > un(t)} → t . Let MT (x, s) := max{φ(Fs(x,u)) : 0 ≤ s ≤ T }. As a consequence of [32,
Theorem 2.6]:

Proposition 6.8. Suppose when we write un(t) = g(t)
an

+ bn the normalizing constants an > 0 and bn satisfy:

lim
ε→0

lim sup
n→∞

an|b[n+εn] − bn| = 0, (4)

lim
ε→0

lim sup
n→∞

∣∣∣∣1 − a[n+εn]
an

∣∣∣∣ = 0. (5)

Then:

(1) If x0 is not a periodic point for T2 then μ{MT ≤ u[T/r̄2](t)} → e−t .
(2) If x0 is a repelling periodic point of prime period k then μ{MT ≤ u[T/r̄2](t)} → e−θt where θ = 1 −

| Jac(DT −k
2 )(p0)|.

The Extreme Value result for the Teichmüller flow T = (T t )t∈R holds from combining [23, Theorem 2.1] with [32,
Corollary 2.3] (note that the proof for Gibbs–Markov maps holds in any dimension as long as conformality holds) and
[32, Theorem 2.6].
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Appendix: Aperiodicity and weak mixing

Let (X,T ,μ) be an ergodic measure-preserving dynamical system.

Definition A.1. (X,T ,μ) is weakly mixing if f ◦T = eitf for some non-zero f ∈ L2(μ) and t ∈ [0,2π) implies that
t = 0 and f is constant.

Remark A.2. This definition is equivalent to the classical one, stating that

1

n

n−1∑
k=0

∣∣μ(
T −k(A) ∩ B

) − μ(A)μ(B)
∣∣ → 0

for any measurable sets A and B . See [58, Theorem 1.26] in the case where (X,T ,μ) is invertible, and [33, Theo-
rem 664] or [14, Theorem 2.36] for a proof of the equivalence valid in any case.

Let Y ⊂ X be a subset of positive μ-measure. We denote by τ(y) the first return time of y ∈ Y to Y :

τ(y) = min
{
n ≥ 1 : T ny ∈ Y

}
.

We then define the first return map T̂ : Y → Y by T̂ = T τ . It preserves the normalisation μY of the restriction to Y of
the measure μ and is ergodic with respect to it.

Definition A.3. We will say that the first return time is aperiodic if f ◦ T̂ = eitτ f for some non-zero f ∈ L2(μY ) and
t ∈ [0,2π) implies that t = 0 and f is constant.

Remark A.4. By [46, Proposition 1.1], the relation f ◦ T̂ = eitτ f is equivalent to L(eitτ f ) = f , where L is the
transfer operator of T̂ with respect to the measure μY .

Proposition A.5. The first return time is aperiodic if and only if (X,T ,μ) is weakly mixing.

Proof. Suppose first that the first return time is aperiodic and let f ∈ L2(μ) non-zero and t ∈ [0,2π) such that
f ◦ T = eitf . We easily verify that the restriction fY of f to Y satisfies fY ◦ T̂ = eitτ fY :

fY (T̂ y) = f
(
T τ(y)y

) = eitτ (y)f (y) = eitτ (y)fY (y).

fY is also non identically zero: otherwise, f would vanish on the set
⋃

n≥0 T −nY , which by ergodicity is equal to X

mod μ. Aperiodicity yields that t = 0, which means that f ◦ T = f . Ergodicity implies that f is constant.
Conversely, suppose that (X,T ,μ) is weakly mixing and that f ∈ L2(μY ) is non identically zero and satisfies

f ◦ T̂ = eitτ f . We first extend τ on the whole space X as being the first hitting time. By ergodicity, it is well defined
μ-a.e. We then define f̃ ∈ L2(μ) by f̃ = e−itτ f ◦ T τ . Since T τ(x)x belongs to Y for μ-a.e. x ∈ X by definition, f̃ is
well defined. Our assumption on f implies that f̃ and f coincide on Y , so that it is non identically zero.

Now, we verify that f̃ ◦ T = eit f̃ . Let x ∈ X with τ(x) > 1. Since τ is the first hitting time, we have τ(T x) =
τ(x) − 1. Hence, f̃ (T x) = e−itτ (T x)f (T τ(T x)T x) = eit e−itτ (x)f (T τ(x)x) = eit f̃ (x). If τ(x) = 1, which implies
T x ∈ Y , we have by definition of f̃ that f̃ (x) = e−it f (T x) = e−it f̃ (T x).

Weak mixing implies that t = 0 and f̃ is constant. Since the restriction of f̃ to Y is f , this shows that f is constant,
and concludes the proof. �

Acknowledgements

RA was supported by Conseil Régional Provence-Alpes-Côte d’Azur, by the ANR-project Perturbations, by the PICS
(Projet International de Coopération Scientifique), Propriétés statistiques des systèmes dynamiques déterministes et
aléatoires, with the University of Houston, n. PICS05968 and by the European Advanced Grant Macroscopic Laws



1400 R. Aimino, M. Nicol and M. Todd

and Dynamical Systems (MALADY) (ERC AdG 246953). Most of this work was done when RA was affiliated to
Aix Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France and Université de Toulon, CNRS, CPT,
UMR 7332, 83957 La Garde, France and Università di Roma (Tor Vergata), Roma, Italy. MN was partially supported
by NSF grant DMS 1101315 and by the French CNRS with a poste d’accueil position at the Center of Theoretical
Physics in Luminy. MT was partially supported by NSF grant DMS 1109587. RA and MN would like to thank Huyi
Hu for discussions on quasi-Hölder space and aperiodicity. MN would like to thank Mark Pollicott for interesting
and helpful discussions concerning Rauzy–Veech renormalization and Teichmüller flow. The authors wish to thank
Sandro Vaienti for helpful remarks, encouragement and many useful discussions concerning this work. They also wish
to thank the referees of this paper for important suggestions and comments.

References

[1] J. Aaronson. An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50. AMS, Providence, 1997. MR1450400
[2] M. Abadi and A. Galves. Inequalities for the occurrence times of rare events in mixing processes. The state of the art. Markov Process.

Related Fields 7 (2001) 97–112. MR1835750
[3] J. Athreya. Quantitative recurrence and large deviations for Teichmüller geodesic flow. Geom. Dedicata 119 (2006) 121–140. MR2247652
[4] A. Avila and A. Bufetov. Exponential decay of correlations for the Rauzy–Veech–Zorich induction map. In Partially Hyperbolic Dynamics,

Laminations, and Teichmüller Flow 203–211. Fields Inst. Commun. 51. Amer. Math. Soc., Providence, RI, 2007. MR2388696
[5] A. Avila, S. Gouëzel and J.-C. Yoccoz. Exponential mixing of the Teichmüller flow. Publ. Math. Inst. Hautes Etudes Sci. 104 (2006) 143–211.

MR2264836
[6] H. Aytaç, J. M. Freitas and S. Vaienti. Laws of rare events for deterministic and random dynamical systems. Trans. Amer. Math. Soc. 367

(2015) 8229–8278. MR3391915
[7] V. Baladi. Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics 16. World Scientific, River Edge,

2000. MR1793194
[8] H. Bruin, B. Saussol, S. Troubetzkoy and S. Vaienti. Return time statistics via inducing. Ergodic Theory Dynam. Systems 23 (2003) 991–1013.

MR1997964
[9] A. Bufetov. Decay of correlations for the Rauzy–Veech–Zorich induction map on the space of interval exchange transformations and the cen-

tral limit theorem for the Teichmüller flow on the moduli space of abelian differentials. J. Amer. Math. Soc. 19 (2006) 579–623. MR2220100
[10] A. I. Bufetov and B. M. Gurevich. Existence and uniqueness of a measure with maximal entropy for the Teichmüller flow on the moduli

space of abelian differentials. Mat. Sb. 202 (2011) 3–42. MR2857792
[11] N. Chernov and D. Kleinbock. Dynamical Borel–Cantelli lemmas for Gibbs measures. Israel J. Math. 122 (2001) 1–27. MR1826488
[12] P. Collet. Statistics of closest return for some non-uniformly hyperbolic systems. Ergodic Theory Dynam. Systems 21 (2001) 401–420.

MR1827111
[13] D. Dolgopyat. Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 (2004) 1637–1689. MR2034323
[14] M. Einsiedler and T. Ward. Ergodic Theory with a View Towards Number Theory. Graduate Texts in Mathematics 259. Springer, London,

2011. MR2723325
[15] A. C. M. Freitas, J. M. Freitas and M. Todd. Hitting time statistics and extreme value theory. Probab. Theory Related Fields 147 (2010)

675–710. MR2639719
[16] A. C. M. Freitas, J. M. Freitas and M. Todd. The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic

dynamics. Comm. Math. Phys. 321 (2013) 483–527. MR3063917
[17] A. C. M. Freitas, J. M. Freitas, M. Todd and S. Vaienti. Rare events for the Manneville–Pomeau map. Stochastic Process. Appl. 126 (11)

(2016) 3463–3479. MR3549714
[18] S. Galatolo. Dimension and hitting time in rapidly mixing systems. Math. Res. Lett. 14 (5) (2007) 797–805. MR2350125
[19] S. Galatolo and D. Kim. The dynamical Borel–Cantelli lemma and the waiting time problems. Indag. Math. (N.S.) 18 (3) (2007) 421–434.

MR2373690
[20] S. Gouëzel. Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139 (2004) 29–65. MR2041223
[21] S. Gouëzel. A Borel–Cantelli lemma for intermittent interval maps. Nonlinearity 20 (6) (2007) 1491–1497. MR2327135
[22] S. Gouëzel. Local limit theorem for nonuniformly partially hyperbolic skew-products and Farey sequences. Duke Math. J. 147 (2009) 192–

284. MR2495076
[23] C. Gupta. Extreme value distributions for some classes of non-uniformly partially hyperbolic dynamical systems. Ergodic Theory Dynam.

Systems 30 (2010) 757–771. MR2643710
[24] C. Gupta, M. Holland and M. Nicol. Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and

Lorenz-like maps. Ergodic Theory Dynam. Systems 31 (2011) 1363–1390. MR2832250
[25] C. Gupta, M. Nicol and W. Ott. A Borel–Cantelli lemma for non-uniformly expanding dynamical systems. Nonlinearity 23 (2010) 1991–2008.

MR2669635
[26] N. Haydn, Y. Lacroix and S. Vaienti. Hitting and return time statistics in ergodic dynamical systems. Ann. Probab. 33 (2005) 2043–2050.

MR2165587
[27] N. Haydn, M. Nicol, T. Persson and S. Vaienti. A note on Borel–Cantelli lemmas for non-uniformly hyperbolic dynamical systems. Ergodic

Theory Dynam. Systems 33 (2013) 475–498. MR3035294

http://www.ams.org/mathscinet-getitem?mr=1450400
http://www.ams.org/mathscinet-getitem?mr=1835750
http://www.ams.org/mathscinet-getitem?mr=2247652
http://www.ams.org/mathscinet-getitem?mr=2388696
http://www.ams.org/mathscinet-getitem?mr=2264836
http://www.ams.org/mathscinet-getitem?mr=3391915
http://www.ams.org/mathscinet-getitem?mr=1793194
http://www.ams.org/mathscinet-getitem?mr=1997964
http://www.ams.org/mathscinet-getitem?mr=2220100
http://www.ams.org/mathscinet-getitem?mr=2857792
http://www.ams.org/mathscinet-getitem?mr=1826488
http://www.ams.org/mathscinet-getitem?mr=1827111
http://www.ams.org/mathscinet-getitem?mr=2034323
http://www.ams.org/mathscinet-getitem?mr=2723325
http://www.ams.org/mathscinet-getitem?mr=2639719
http://www.ams.org/mathscinet-getitem?mr=3063917
http://www.ams.org/mathscinet-getitem?mr=3549714
http://www.ams.org/mathscinet-getitem?mr=2350125
http://www.ams.org/mathscinet-getitem?mr=2373690
http://www.ams.org/mathscinet-getitem?mr=2041223
http://www.ams.org/mathscinet-getitem?mr=2327135
http://www.ams.org/mathscinet-getitem?mr=2495076
http://www.ams.org/mathscinet-getitem?mr=2643710
http://www.ams.org/mathscinet-getitem?mr=2832250
http://www.ams.org/mathscinet-getitem?mr=2669635
http://www.ams.org/mathscinet-getitem?mr=2165587
http://www.ams.org/mathscinet-getitem?mr=3035294


Recurrence for IETs and the Teichmüller flow 1401

[28] N. T. Haydn, N. Winterberg and R. Zweimüller. Return-time statistics, hitting-time statistics and inducing. In Ergodic theory, Open Dynamics,
and Coherent Structures 217–227. Springer Proceedings in Mathematics & Statistics 70. Springer, New York, 2014. MRMR3213501

[29] H. Hennion. Sur un théorème spectral et son application aux noyaux lipschitziens. Proc. Amer. Math. Soc. 118 (1993) 627–634. MR1129880
[30] M. Hirata. Poisson limit law for Axiom-A diffeomorphisms. Ergodic Theory Dynam. Systems 13 (1993) 533–556. MR1245828
[31] M. Hirata, B. Saussol and S. Vaienti. Statistics of return times: A general framework and new applications. Comm. Math. Phys. 206 (1999)

33–55. MR1736991
[32] M. P. Holland, M. Nicol and A. Török. Extreme value distributions for non-uniformly hyperbolic dynamical systems. Trans. Amer. Math. Soc.

364 (2012) 661–688. MR2846347
[33] S. Kalikow and R. McCutcheon. An Outline of Ergodic Theory. Cambridge Studies in Advanced Mathematics 122. Cambridge University

Press, Cambridge, 2010. MR2650005
[34] M. Keane. Interval exchange transformations. Math. Z. 141 (1975) 25–31. MR0357739
[35] G. Keller. Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete 69 (1985)

461–478. MR0787608
[36] D. Kim. The dynamical Borel–Cantelli lemma for interval maps. Discrete Contin. Dyn. Syst. 17 (4) (2007) 891–900. MR2276480
[37] D. Kleinbock and G. Margulis. Logarithm laws for flows on homogeneous spaces. Invent. Math. 138 (1999) 451–494. MR1719827
[38] G. Lindgren, M. R. Leadbetter and H. Rootzén. Extremes and Related Properties of Random Sequences and Processes. Springer Series in

Statistics. Springer-Verlag, New York-Berlin, 1983. MR0691492
[39] L. Marchese. The Khinchin theorem for interval-exchange transformations. J. Mod. Dyn. 5 (2011) 123–183. MR2787600
[40] L. Marchese. Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow. Bull. Soc. Math. France 140

(2013) 485–532. MR3059848
[41] H. Masur. Interval exchange transformations and measured foliations. Ann. of Math. (2) 115 (1982) 169–200. MR0644018
[42] H. Masur. Logarithm law for geodesics in moduli space. In Mapping Class Groups and Moduli Spaces of Riemann Surfaces 229–245.

Comtemp. Math. 150. Amer. Math. Soc., Providence, RI, 1993. MR1234267
[43] F. Maucourant. Dynamical Borel–Cantelli lemma for hyperbolic spaces. Israel J. Math. 152 (2006) 143–155. MR2214457
[44] I. Melbourne and M. Nicol. Almost sure invariance principle for nonuniformly hyperbolic systems. Comm. Math. Phys. 260 (2005) 131–146.

MR2175992
[45] I. Melbourne and M. Nicol. Large deviations for nonuniformly hyperbolic systems. Trans. Amer. Math. Soc. 360 (2008) 6661–6676.

MR2434305
[46] T. Morita. A generalized local limit theorem for Lasota–Yorke transformations. Osaka J. Math. 26 (1989) 579–595. MR1021432
[47] T. Morita. Renormalized Rauzy inductions. Adv. Stud. Pure Math. 49 (2007) 263–288.
[48] W. Philipp. Some metrical theorems in number theory. Pacific J. Math. 20 (1967) 109–127. MR0205930
[49] M. Pollicott. Statistical properties of the Rauzy–Veech–Zorich map. Unpublished notes. Available at http://homepages.warwick.ac.uk/

~masdbl/teichmuller-asip.pdf.
[50] O. Sarig. Subexponential decay of correlations. Invent. Math. 150 (2002) 629–653. MR1946554
[51] B. Saussol. Absolutely continuous invariant measures for multidimensional expanding maps. Israel J. Math. 116 (2000) 223–248.

MR1759406
[52] W. Schmidt. A metrical theory in Diophantine approximation. Canad. J. Math. 12 (1960) 619–631. MR0118711
[53] W. Schmidt. Metrical theorems on fractional parts of sequences. Trans. Amer. Math. Soc. 110 (1964) 493–518. MR0159802
[54] V. G. Sprindzuk. Metric Theory of Diophantine Approximations. Scripta Series in Mathematics. V. H. Winston and Sons, Washington, D.C.,

1979. Translated from the Russian and edited by Richard A. Silverman. With a foreword by Donald J. Newman. MR0548467
[55] W. A. Veech. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2) 115 (1982) 201–242. MR0644019
[56] W. A. Veech. The Teichmüller geodesic flow. Ann. of Math. (2) 124 (1986) 441–530. MR0866707
[57] M. Viana. Dynamics of interval exchange maps and Teichmüller flows. IMPA, 2008. Available at http://w3.impa.br/~viana/out/ietf.pdf.
[58] P. Walters. An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79. Springer, New York-Berlin, 1982. MR0648108
[59] J.-C. Yoccoz. Continued fraction algorithms for interval exchange maps: An introduction. In Frontiers in Number Theory, Physics, and

Geometry. I 401–435. Springer, Berlin, 2006. MR2261103
[60] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. 147 (1998) 585–650. MR1637655
[61] L.-S. Young. Recurrence times and rates of mixing. Israel J. Math. 110 (1999) 153–188. MR1750438
[62] L. Zhang. Borel–Cantelli lemmas and extreme value theory for geometric Lorenz models. Nonlinearity 29 (1) (2016) 232–255. MR3460754
[63] A. Zorich. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents. Ann. Inst. Fourier (Grenoble) 46

(1996) 325–370. MR1393518

http://www.ams.org/mathscinet-getitem?mr=MR3213501
http://www.ams.org/mathscinet-getitem?mr=1129880
http://www.ams.org/mathscinet-getitem?mr=1245828
http://www.ams.org/mathscinet-getitem?mr=1736991
http://www.ams.org/mathscinet-getitem?mr=2846347
http://www.ams.org/mathscinet-getitem?mr=2650005
http://www.ams.org/mathscinet-getitem?mr=0357739
http://www.ams.org/mathscinet-getitem?mr=0787608
http://www.ams.org/mathscinet-getitem?mr=2276480
http://www.ams.org/mathscinet-getitem?mr=1719827
http://www.ams.org/mathscinet-getitem?mr=0691492
http://www.ams.org/mathscinet-getitem?mr=2787600
http://www.ams.org/mathscinet-getitem?mr=3059848
http://www.ams.org/mathscinet-getitem?mr=0644018
http://www.ams.org/mathscinet-getitem?mr=1234267
http://www.ams.org/mathscinet-getitem?mr=2214457
http://www.ams.org/mathscinet-getitem?mr=2175992
http://www.ams.org/mathscinet-getitem?mr=2434305
http://www.ams.org/mathscinet-getitem?mr=1021432
http://www.ams.org/mathscinet-getitem?mr=0205930
http://homepages.warwick.ac.uk/~masdbl/teichmuller-asip.pdf
http://www.ams.org/mathscinet-getitem?mr=1946554
http://www.ams.org/mathscinet-getitem?mr=1759406
http://www.ams.org/mathscinet-getitem?mr=0118711
http://www.ams.org/mathscinet-getitem?mr=0159802
http://www.ams.org/mathscinet-getitem?mr=0548467
http://www.ams.org/mathscinet-getitem?mr=0644019
http://www.ams.org/mathscinet-getitem?mr=0866707
http://w3.impa.br/~viana/out/ietf.pdf
http://www.ams.org/mathscinet-getitem?mr=0648108
http://www.ams.org/mathscinet-getitem?mr=2261103
http://www.ams.org/mathscinet-getitem?mr=1637655
http://www.ams.org/mathscinet-getitem?mr=1750438
http://www.ams.org/mathscinet-getitem?mr=3460754
http://www.ams.org/mathscinet-getitem?mr=1393518
http://homepages.warwick.ac.uk/~masdbl/teichmuller-asip.pdf

	Background and notation
	Dynamical Borel-Cantelli lemmas and other limit laws
	Interval exchange transformations
	Rauzy-Veech induction and renormalisation
	Zorich induction and renormalisation
	Morita-Pollicott renormalisation
	Gibbs-Markov maps and their transfer operators

	Borel-Cantelli lemmas
	Borel-Cantelli lemmas for Gibbs-Markov maps
	Borel-Cantelli lemmas for a class of non-uniformly expanding maps

	Extreme Value Laws for T1 and T2
	Return and hitting time statistics
	The Teichmüller ﬂow on the space of translation surfaces
	Translation surfaces: The zippered rectangle construction
	Teichmüller ﬂow
	Recoded Teichmüller ﬂow and inducing

	Statistical properties of the Teichmüller ﬂow
	Borel-Cantelli lemmas for the semi-ﬂow
	An application of Theorem 6.3
	Borel-Cantelli lemmas for the Teichmüller ﬂow
	Extreme Value Laws for the ﬂow

	Appendix: Aperiodicity and weak mixing
	Acknowledgements
	References

