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Abstract. We consider the problem of estimating the perimeter of a smooth domain in the plane based on a sample from the
uniform distribution over the domain. We study the performance of the estimator defined as the perimeter of the alpha-shape of the
sample. Some numerical experiments corroborate our theoretical findings.

Résumé. Nous considérons le problème de l’estimation du périmètre d’un domaine à bord lisse dans le plan basé sur un échantillon
tiré de la loi uniforme ayant pour support le domaine en question. Nous étudions la performance de l’estimateur défini par le
périmètre de la forme-alpha (« alpha-shape ») de l’échantillon. Des expériences numériques confirment notre théorie.
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1. Introduction

The problem of recovering topological and geometric information about the support of a distribution based on a sample
has received a considerable amount of attention in a number of fields, such as computational geometry, computer
vision, image analysis, clustering or pattern recognition. This includes, for example, estimating of the number of
connected components [2], the intrinsic dimensionality [17] and, more generally, the homology [5,6,20,30,37], the
Minkowski content [7], as well as the perimeter and area [3,29]. The estimation of the support or, more generally,
level sets of a density is itself a rich line of research [4,27,31,33–35]. A closely related topic is that of set estimation
[8,18]. We refer the reader to the classic book of [15], which treats a number of these topics.

We focus here on the problem of estimating the perimeter of the support. Concretely, we are given a set of points
Xn = {X1, . . . ,Xn}, which we assume are independently sampled uniformly at random from an unknown compact set
S ⊂R

2, and our goal is to estimate the perimeter of S, by which we mean the length of its boundary. Let ∂S denote the
boundary of a set S ⊂R

2, namely ∂S = S̄ ∩ Sc, where S̄ denotes the closure of S and Sc =R
2 \ S is the complement

of S.

1.1. Related work

[29] address this problem under the assumption that S is convex and estimate its perimeter by the perimeter of the
convex hull of the sample Xn. They obtain the precise rate of convergence in expectation, which is of order O(n−2/3)

when the boundary ∂S has bounded curvature. They also obtain an analogous result for the problem of estimating the
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area of S. [3] extend their results to other sampling distributions. See [28] for a review on more recent results on the
convex hull of a random sample.

There is a series of papers that consider the problem of estimating the surface area of the boundary of a more
general class of supports S but under a different sampling scheme where two samples are given, one from the uniform
distribution on S and another from the uniform distribution on G \ S, where G is a bounded set containing S. We
refer to this model as binary images. In that line, [7] aim at estimating the Minkowski content of ∂S, and introduce
an estimator that is proved to be consistent under weak assumptions on the set S. They obtain a convergence rate of
O(n−1/4) in dimension 2 when ∂S has bounded curvature – in which case the Minkowski content coincides with the
perimeter. [22,23] follow their work and propose a different estimator, which is very closely related to the one we
study here, obtaining an improved rate convergence of O(n−1/3) in dimension 2. Continuing this line of work, [13]
propose an estimator of the perimeter of S based on a Delaunay triangulation, which is shown to be consistent under
mild assumptions on S. Working with the same sampling scheme, but allowing for noise, [14] consider the estimation
of the length of the boundary of a horizon of the form {(x, y) ∈ [0,1]2 : y ≤ g(x)}, where g : [0,1] �→ [0,1] is a
function with Hölder regularity. We further comment on this paper in Section 6 in our discussion of the minimax
(sub)optimality of our estimator.

1.2. The r-rolling condition

A set S is said to fulfill the r-rolling condition if for any x ∈ ∂S there is a open ball with radius r , B , such that
B ∩ S =∅ and x ∈ ∂B . In this paper, we work under the assumption that S satisfies the following condition:

S is a compact subset of R2 such that both S and Sc satisfy the r-rolling condition.

From a geometrical point of view, we are assuming that a ball of radius r can roll inside S and Sc. This rolling
condition implies that, for any x ∈ ∂S, there are two open balls B+ and B− such that x ∈ ∂B+ ∩ ∂B−, B+ ⊂ S and
B− ⊂ Sc. In fact, it can be easily seen [21, Lemma A.0.1] that this is only possible if there is a (unique) unit vector
ηx (the unit normal vector at x pointing outward) such that B+ = B(x − rηx, r) and B− = B(x + rηx, r), where
B(a,α) denotes the open ball with radius α and center a ∈ R

2. See [36] for a comprehensive discussion, including a
relation to Serra’s regular model and mathematical morphology. The r-rolling condition is closely linked to the notion
of r-convexity. A set S is said to be r-convex if for any point x /∈ S̄ there is a open ball B of radius r such that x ∈ B

and B ∩ S̄ = ∅ [26,35]. It is known that, if both S and Sc satisfy the r-rolling condition, then S and Sc are r-convex;
see [21, Lemma A.0.8] and also [36].

The r-rolling condition is also connected with the idea of sets of positive reach introduced in the seminal paper
[12]. For a nonempty set S ⊂R

2 and x ∈ R
2, define

dist(x, S) = inf
{‖x − s‖ : s ∈ S

}
,

where ‖ · ‖ stands for the Euclidean norm. The reach of a set S, denoted ρ(S), is the supremum over r > 0 such
that there is a unique point realizing inf{‖x − s‖ : s ∈ S} on the set {x : dist(x, S) < r}. For twice differentiable
submanifolds (e.g., curves), the reach bounds the radius of curvature from above [12, Lem. 4.17]. Also, if S and Sc

satisfy the r-rolling condition then ρ(∂S) ≥ r ; see [21, Lemma A.0.6]. Conversely, using results in [9], it follows
easily that the converse is true if, in addition, S is equal to the closure of its interior.

1.3. The estimator

Our estimator for the perimeter of S is the perimeter of the α-shape of Xn, for some fixed 0 < α < r . The α-shape
of Xn is the polygon, denoted Cα(Xn), whose edges – which we call α-edges – are defined as follows [11]. A pair
(Xi,Xj ) forms an α-edge if there is an open ball B of radius α such that Xi,Xj ∈ ∂B and B ∩Xn = ∅. If α is large
enough, the α-shape coincides with the convex hull of the sample. For a smaller α, the α-shape is not necessarily
convex. See Figure 1 for an illustration. The α-shape is well known in the computational geometry literature for
producing good global reconstructions if the sample points are (approximately) uniformly distributed in the set S.
Moreover, it can be computed efficiently in time O(n logn). See [10] for a survey.

[9] estimate the perimeter of S by the outer Minskowski content of the r-convex hull of the sample, defined as the
smallest r-convex set that contains the sample. Since the boundary of that set is smooth except at a finite number of
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Fig. 1. The α-shape of a sample of size n = 500 from the uniform distribution of a thick S letter, for α = 1 (left), α = 0.06 (center) and α = 0.035
(right). Note that in the second case the α-shape is made of two disconnected closed curves.

points, the outer Minskowski coincides with the perimeter. See [1] for a broader correspondence between these two
quantities. [9] show that this estimator is consistent, but no convergence rate is provided. Note that, for large sample
sizes, both estimators are quite similar; see Proposition 2 for a formal statement. From the computational point of
view, the α-shape of the sample tends to be more stable with respect to the value of α, and is faster to compute over
a range of values of α – the latter can be done in O(n logn) time, since the α-shape changes a finite number of times
with α. The α-convex hull of the sample does not enjoy such properties.

1.4. Main results

Let λ denote the one-dimensional Hausdorff measure in R
2, normalized so that it equals 1 for a line segment of length

1, and let diam(A) = sup{‖x − y‖ : x, y ∈ A} denote the diameter of a set A ⊂R
2.

Theorem 1. Let Xn = (X1, . . . ,Xn) be an independent sample from the uniform distribution on a compact set
S ⊂ R

2 such that S and Sc satisfy the r-rolling condition. Fix α ∈ (0, r). There is a constant A depending only
on (α, r,diam(S)) and t0 > 0 depending only on (α, r) such that, for all 0 ≤ t ≤ t0,

P

(∣∣∣∣λ(Cα)

λ(∂S)
− 1

∣∣∣∣ > t

)
≤ An2 exp

(−nt3/2/A
)
. (1)

Remark 1. In particular, defining εn = (3A log(n)/n)2/3, with probability one,

(1 − εn)λ(∂S) ≤ λ
(
Cα(Xn)

) ≤ (1 + εn)λ(∂S),

eventually, by applying the Borel–Cantelli lemma. So, the convergence rate of λ(Cα(Xn)) as an estimator of λ(∂S) is,
up to a log factor, of order n−2/3.

Remark 2. We will argue later on that the same result holds also for the perimeter of the α-convex hull of the sample,
refining, thus, the convergence established in [9]. See the discussion in Section 6.

1.5. Content

The remaining of the paper is largely devoted to proving Theorem 1. In Section 2 we establish some auxiliary geo-
metrical results. Section 3 is dedicated to the study of α-edges. Theorem 1 is proved in Section 4. Some numerical
experiments are presented in Section 5. We discuss some extensions and open problems in Section 6.
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1.6. Notation and preliminaries

We start by introducing some notation and some general concepts. Let μ(A) denote the Lebesgue measure of a
measurable set A ⊂R

2. For a pair of distinct points x1, x2 ∈R
2, let (x1x2) denote the line passing through x1 and x2,

and let [x1x2] denote the line segment with endpoints x1 and x2. For a non empty set A ⊂R
2 and ε > 0, define

B(A,ε) = {
x ∈R

2 : dist(x,A) < ε
}
.

If A = {x} is a singleton we use the notation B(x, ε) (resp. B̄(x, ε)) instead of B({x}, ε) for denoting the open (resp.
closed) ball of radius ε > 0 and center x ∈ R

2. Let PA denote the metric projection onto a set A, i.e., PA(x) =
arg mina∈A ‖x − a‖, which is a singleton when dist(x,A) < ρ(A). For two nonempty sets C,D ⊂ R

2, let H(C,D)

denote their Hausdorff distance, defined as

H(C,D) = inf
{
ε > 0 : C ⊂ B(D,ε) and D ⊂ B(C, ε)

}
.

For a curve C ⊂ R
2 and x ∈ C, 
Cx denotes the tangent subspace of C at x when it exists. For two curves, C and D,

respectively differentiable almost everywhere and differentiable, and such that ρ(D) ≥ r and C ⊂ B(D, r), define the
deviation angle of C with respect to D as

∠(C,D) = sup
x∈C

∠( 
Cx, 
DPD(x)),

where ∠( 
Cx, 
DPD(x)) ∈ [0,π/2] denotes the angle between the tangent spaces of C and D at x and PD(x), respec-
tively [19]. Note that it is not symmetric in C and D.

Where they appear, α and r are fixed. Everywhere in the proof, a constant only depends (at most) on α, r and the
diameter of S. We will leave this dependence implicit most of the time.

We let n denote the sample size throughout. We say that an event holds with high probability if it happens with
probability at least 1 − Ae−n/A for some constant A > 0.

2. Some geometrical results

In this section we gather a few geometrical results that we will use later on in the paper.

Lemma 1. Let S ⊂ R
2 such that S and Sc satisfy the r-rolling condition. Any ball of radius α > 0 with center in S

contains a ball of radius 1
2 min{α, r} included in S.

Proof. Let 	 be a shorthand for ∂S. First, we will analyze the case α ≤ r . If z ∈ S satisfies dist(z,	) ≥ α, then
B(z,α) ⊂ S. Now, take z ∈ S such that dist(z,	) < α and let y be the metric projection of z onto 	, which is well-
defined since dist(z,	) < ρ(	). By the r-rolling property, there is an open ball B of radius r tangent to 	 at y that
contains z and B ⊂ S. Therefore B(z,α) ∩ B contains the ball of radius α/2 tangent to 	 at y that contains z. See
Figure 2 for an illustration. This concludes the proof for α ≤ r . If α > r , the ball of radius α contains the ball of radius
r with same center. By what we just did, that ball contains a ball of radius r/2 which belongs to S. �

Recall that μ denotes the Lebesgue measure on R
2.

Lemma 2. Let S ⊂ R
2 be measurable and such that S and Sc satisfy the r-rolling condition. For any α ≤ r , there is

a numeric constant A > 0 depending only on α such that, for any z /∈ S,

μ
(
B(z,α) ∩ S

) ≥ Amax
(
0, α − dist(z, ∂S)

)3/2
.

Proof. Let 	 be a shorthand for ∂S. It suffices to consider z /∈ S such that h = α − dist(z,	) > 0. Let y be the
metric projection of z onto 	, which is well-defined since dist(z,	) < α ≤ ρ(	), and let B be the open ball of
radius α tangent to 	 at y and contained within S. It is clear that μ(B(z,α) ∩ S) ≥ μ(B(z,α) ∩ B). The intersection
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Fig. 2. Illustrates the proof of Lemma 1. The thick, parabolic line represents a portion of 	 = ∂S.
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Fig. 3. Illustrates the proof of Lemma 2. The thick, parabolic line represents a portion of 	 = ∂S. The intersection of the two balls is the region of
interest.

B(z,α)∩B is the union of two spherical caps symmetric with respect to line joining the two points at the intersection
∂B(z,α)∩ ∂B . See Figure 3 for an illustration. If C denotes one of them, we therefore have μ(B(z,α)∩B) = 2μ(C),
with C a spherical cap of radius α and height h. Its area is equal to

μ(C) = 2α2
∫ acos(1−h/α)

0
sin2(t) dt.

Using the bound sin(t) ≥ 2t/π , valid for t ∈ [0,π/2], and the bound acos(1 − t) ≥ √
2t , valid for t ∈ [0,1], we obtain

2μ(C) ≥ Ah3/2 with A = 32
√

2α/(3π2). �

For the following result, we use some heavy machinery from the seminal work of [12]. For a set T ⊂R
2, let E(T )

denote its Euler–Poincaré characteristic, and recall that λ(T ) denotes its length.

Lemma 3. Suppose S ⊂ R
2 is compact, with both S and Sc satisfying the r-rolling condition. There are constants

A0,A1 > 0 depending only on r and diam(S) such that |E(∂S)| ≤ A0 and λ(∂S) ≤ A1.

Proof. Let 	 = ∂S and d = diam(S), and assume, without loss of generality, that S ⊂ B̄(0, d). For a given T such
that ρ(T ) ≥ r , let 
k denote the kth curvature measure associated with T , k ∈ {0,1,2}, as defined in [12, Def. 5.7].
In [12, Rem. 5.10] we find that

sup
{|
k|(T ) : T ⊂ B̄(0, d), ρ(T ) ≥ r

}
< ∞, (2)
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where |
k|(T ) is the total variation of 
k over T . Now, by [12, Rem. 6.14], 
1(	) coincides with the one-
dimensional Hausdorff measure, so that |
1|(	) = 
1(	) = λ(	). From this, we deduce the existence of A1. By
[12, Th. 5.19], 
0(	) coincides with E(	) and, by (2) for k = 0, we get that there is some constant A0 such that
|
0(	)| ≤ |
0|(	) ≤ A0. �

We define an ε-net of a set S as any subset of points x1, . . . , xm ∈ S such that ‖xj − xk‖ ≥ ε when j = k, and
that, for any x ∈ S, ‖x − xj‖ < ε for some j = 1, . . . ,m. Note that any bounded set S ⊂ R

2 admits an ε-net of finite
cardinality.

Lemma 4. For any bounded S ⊂ R
2, there is a constant A depending only on diam(S) such that, for any 0 < ε <

diam(S), any ε-net for S has cardinality bounded by Aε−2. If, in addition, both S and Sc satisfy the r-rolling condition,
then there is a constant A′ depending only on r and diam(S) such that any ε-net for ∂S has cardinality bounded by
A′ε−1.

Proof. Assume without loss of generality that S ⊂ B̄(0, d) where d = diam(S). Let x1, . . . , xm be an ε-net of S. Since
B(xj , ε/2) ∩ B(xk, ε/2) =∅ when j = k, we have

πd2 ≥
m∑

j=1

μ
(
B̄(0, d) ∩ B(xj , ε/2)

) ≥ mπ(ε/4)2,

using Lemma 1 in the last inequality. We therefore have m ≤ 16d2/ε2. This proves the first part.
For the second part, let 	 = ∂S. It is enough to show the results for ε ≤ 2r . Note that 2r ≤ d by the r-rolling

condition on S. Let y1, . . . , ym′ be an ε-net of 	. Since B(yj , ε/2) ∩ B(yk, ε/2) =∅ when j = k, we have

m′π
(

ε

2

)2

= μ

(
m′⋃

j=1

B

(
yj ,

ε

2

))
≤ μ

(
B

(
	,

ε

2

))
. (3)

By [12, Th. 5.6], we have

μ
(
B(	, ε/2)

) = ε
1(	) + π

4
ε2
0(	),

where 
1(	) = λ(	) [12, Rem. 6.14] and 
0(	) is the Euler–Poincaré characteristic of 	 [12, Th. 5.19]. By Lemma 3,
there are positive constants A0,A1 depending only on r and d such that λ(	) ≤ A1 and |
0(	)| ≤ A0, yielding

μ
(
B(	, ε/2)

) ≤ A1ε + A0
π

4
ε2 ≤ A2ε,

where A2 = A1 + A0(π/4)d , using the fact that ε ≤ d . Plugging this into (3), we conclude the proof of the second
part. �

Next, we establish some basic properties of a line segment joining two points on a circle which barely intersects a
set with smooth boundary.

Lemma 5. Let S ⊂ R
2 be such that both S and Sc satisfy the r-rolling condition. Fix α ∈ (0, r) and 0 < t ≤

min{α,2α2/r}. There is a constant A > 0 depending only on (r, α) such that, for any z /∈ S with 0 < α − dist(z, S) ≤
t/A and any x1, x2 ∈ ∂B(z,α) ∩ S, we have

[x1x2] ⊂ B(∂S, t), (4)

‖x1 − x2‖ ≤ √
t, (5)

∠
([x1x2], ∂S

) ≤ √
t . (6)

(The angle in (6) is well defined because of (4) and the bound t ≤ α < r .)
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Fig. 4. Illustrates the proof of Lemma 5. The thick, parabolic line represents a portion of 	 = ∂S.

Proof. Let 	 be a shorthand for ∂S. Define δ = α − dist(z, S), and let e1, e2 denote the canonical basis vectors of
R

2. Since p = dist(z,	) = dist(z, S) = α − δ < r , y = P	(z) is well-defined. Without loss of generality, assume that
y is the origin and that the tangent of 	 at y is the line spanned by e1. Note that the line (yz) is perpendicular to the
tangent at y, so that z is on the line defined by e2 and without loss of generality we assume z = −pe2. Let B be a
shorthand for B(z,α) and let B+ (resp. B−) be the open ball centered at re2 (resp. −re2) with radius r . Since S and
Sc satisfy the r-rolling condition, B+ ⊂ S and B− ⊂ Sc. Let x∗ = δe2. By construction x∗ belongs to (yz)∩∂B ∩B+.
See Figure 4 for an illustration.

For any point x ∈ B ∩ S,

dist(x,	) = dist
(
x,Sc) ≤ dist

(
x,B−) ≤ dist

(
x∗,B−) = δ.

Direct calculations show that ∂B ∩ ∂B− is given by the points ±ae1 − be2, where{
a2 + (r − b)2 = r2,

a2 + (p − b)2 = α2.

So, using the fact that p = α − δ, we have

0 < b = α2 − p2

2(r − p)
= (α − p)(α + p)

2(r − p)
≤ αδ

r − α
. (7)

To prove (4), take x ∈ [x1x2]. If x ∈ S, then x ∈ B ∩S and we saw that dist(x,	) ≤ δ. If x /∈ S, let C be the closure
of the intersection of B with the half-plane above the line Re1 −be2. Since B ∩Cc ⊂ B− and B− ∩S =∅, necessarily
x1, x2 ∈ C, which in turn implies that [x1x2] ⊂ C since C is convex. In particular, x ∈ C, so that dist(x, [−ae1, ae1]) ≤
max{b, δ}. And since dist([−ae1, ae1],B+) ≤ b (by symmetry), we conclude with the triangle inequality that

dist(x,	) = dist(x, S) ≤ dist
(
x,B+) ≤ 2 max{b, δ} ≤ A1δ, (8)

for A1 = 2 max{α/(r − α),1}. This is valid for any x ∈ [x1x2], and proves (4) for any A ≥ A1.
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To prove (5), we use the fact that x1, x2 ∈ B ∩S ⊂ B \B−, so that ‖x1 −x2‖ ≤ diam(B \B−), and diam(B \B−) =
2a when b ≤ p, which is the case since our assumptions that δ ≤ t/A and t ≤ 2α2/r imply δ ≤ (r − α)α/r , which
forces b ≤ p by (7). Continuing, we then have

a2 = r2 − (r − b)2 = b(2r − b) ≤ 2br ≤ A1rδ,

by (8). From this we get

‖x1 − x2‖ ≤ diam
(
B \ B−) = 2a ≤ √

A2δ, (9)

where A2 = 4A1r . This proves (5) for any A ≥ max{A1,A2}.
We turn to proving (6). We first note that ∠([x1x2],	) is well-defined. Indeed, by assumption δ ≤ t/A, with

A ≥ A1 ≥ 1, and t ≤ α, so that B([x1x2],	) ≤ α by (4), and we conclude with the fact that ρ(	) ≥ r > α. For any
x ∈ [x1x2] we can therefore compute the point y′ = P	(x). Using the triangle inequality for angles, we have

∠
([x1x2], 
	y′

) ≤∠
([x1x2], 
	y

) +∠(
	y, 
	y′) = θ1 + θ2. (10)

We first bound θ1. Direct trigonometric calculations show that

sin(θ1) ≤ a

α
≤

√
A2δ

2α
,

where the last inequality comes from (9). We use the fact that sin(θ) ≥ 2θ/π for all θ ∈ [0,π/2], we get θ1 ≤ A3
√

δ,
where A3 = π

√
A2/(4α). It remains to bound θ2 in (10). We have y = P	(x∗) and y′ = P	(x), and dist(x∗,	) = δ <

α by construction, and also dist(x,	) ≤ t ≤ α because of (4). Hence, by [12, Th. 4.8(8)], we get

∥∥y − y′∥∥ ≤ r

r − α

∥∥x − x∗∥∥.

Using the fact that x, x∗ ∈ B \ B−, and then (9), we have ‖x − x∗‖ ≤ √
A2δ. Now, if we denote by 
ηy and 
ηy′ the

outward pointing unit normal vector of 	 at y and y′ respectively, [35, Th. 1] ensures that

‖
ηy − 
ηy′ ‖ ≤ 1

r

∥∥y − y′∥∥.

Since 〈
ηy, 
ηy′ 〉 = 〈
	y, 
	y′ 〉 = cos θ2, we get

‖
ηy − 
ηy′ ‖ = √
2 − 2 cos θ2 = 2 sin(θ2/2).

We arrive at

sin(θ2/2) ≤
√

A2δ

2(r − α)
.

As before, this implies that θ2 ≤ A4
√

δ, where A4 = π
√

A2/(4(r − α)). We conclude that

∠
([x1x2], 
	y′

) ≤ (A3 + A4)
√

δ = √
A5δ,

which proves (6) for any A ≥ max{A1,A2,A5}. �

The following is a technical result involving two line segments, one on each of two intersecting circles of same
radius, and a line passing through these line segments.
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Fig. 5. Illustrating the proof of Lemma 6.

Lemma 6. Let x0, x
′
0 ∈ R

2 such that 0 < ‖x0 − x′
0‖ < 2α, and let x1, x2 ∈ ∂B(x0, α) \ B(x′

0, α) and x′
1, x

′
2 ∈

∂B(x′
0, α) \B(x0, α). Let L be any line intersecting both [x1x2] and [x′

1x
′
2]. Then there is a constant A > 0 depending

only on α such that

max
{
∠

(
(x1x2),L

)
,∠

((
x′

1x
′
2

)
,L

)} ≤ A
(∥∥x0 − x′

0

∥∥ + max
i,j∈{1,2}

∥∥xi − x′
j

∥∥)
.

Proof. Let B and B ′ be a shorthand for B(x0, α) and B(x′
0, α), respectively. Since the maximum above is bounded

by π/2, it is enough to prove the inequality when

a = ∥∥x0 − x′
0

∥∥ + max
i,j∈{1,2}

∥∥xi − x′
j

∥∥ < α.

Let T = (x0x
′
0), and let H and H̃ denote the two half-spaces defined by T . Let t denote the intersection point

(∂B \B ′)∩T , and define t ′ analogously. Let m denote the intersection point ∂B ∩∂B ′ ∩H , and define m̃ analogously.
See Figure 5 for an illustration.

We claim that, when a < α, the points x1, x2, x
′
1, x

′
2 are either all in H or all in H̃ . Indeed, when xi and x′

j are on
opposite sides of T , then either xi ∈ arc(mt) and x′

j ∈ arc(m̃t ′), or xi ∈ arc(m̃t) and x′
j ∈ arc(mt ′). (For two points

s, t ∈ ∂B , arc(st) denotes the shorter arc defined on ∂B by s and t .) The distance between a point in arc(mt) and a
point in arc(m̃t ′) is not smaller than the minimum of ‖t − m̃‖ ≥ √

2α and ‖m − m̃‖ ≥ √
3α, since 0 < ‖x0 − x′

0‖ < α.
Therefore, assume without loss of generality that x1, x2, x

′
1, x

′
2 ∈ H .

Let y be the point in H ∩ ∂B furthest from T , so the tangent of ∂B at y is parallel to T . Define y′ similarly, with
B ′ in place of B . We claim that x1, x2 ∈ B(y,

√
2a) and x′

1, x
′
2 ∈ B(y′,

√
2a). We prove this for x1, without loss of

generality, and consider the two possible cases:

• If x1 ∈ arc(ym), then

‖y − x1‖ ≤ ‖y − m‖ ≤ ∥∥y − y′∥∥ = ∥∥x0 − x′
0

∥∥ ≤ a.

• If x1 ∈ arc(ty), let us define h = ‖x1 − y‖, d = dist(x1, (yx0)) and z = P(yx0)(x1). By the Pythagoras theorem,

d2 + ‖y − z‖2 = h2,

d2 + (
α − ‖y − z‖)2 = α2.

From this we get d2 = h2(1 − h2/(4α2)) ≥ h2/2, where the inequality is due to s ≤ dist(t, y) = √
2α. But d ≤

maxi,j∈{1,2} ‖xi − x′
j‖ ≤ a. Hence, h ≤ √

2a, as claimed.

By the fact that B is convex, the angle between (x1x2) and T is bounded from above by the maximum angle
between T and the tangent of ∂B at any point in arc(x1x2). Moreover, by direct calculations, similar to that on
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Lemma 5, for any point on x ∈ ∂B such that ‖y − x‖ ≤ √
2α, the angle between T and the tangent of ∂B at x is

bounded by 2 asin(‖y − x‖/(2α)) ≤ π‖y − x‖/(2α). Hence, by the fact that x1, x2 ∈ B(y,
√

2a) ⊂ B(y,
√

2α), we
have

∠
(
(x1x2), T

) ≤ π

2α
max

{‖y − x1‖,‖y − x2‖
} ≤ π

2α

√
2a = πa√

2α
.

Similarly,

∠
((

x′
1x

′
2

)
, T

) ≤ πa√
2α

.

By an analogous convexity argument, coupled with the fact that all the action is in half-space H , ∠(L,T ) is
bounded from above by the maximum of any angle between T and a tangent of ∂B at any point in arc(x1x2), or any
angle between T and a tangent of ∂B ′ at any point in arc(x′

1x
′
2). Hence, as before, we get

∠(L,T ) ≤ πa√
2α

.

All the bounds combined, together with the triangle inequality, yield

∠
(
(x1x2),L

) ≤ ∠
(
(x1x2), T

) +∠(T ,L) ≤ 2πa√
2α

,

and similarly for (x′
1x

′
2). �

The following result is useful when comparing the length of two curves in terms of their Hausdorff distance and
their deviation angle.

Lemma 7 (Th. 43 in [19]). Let 	 be a compact curve in R
2 such that ρ(	) ≥ r and let C be another curve in R

2,
differentiable almost everywhere, such that C ⊂ B(	, r) and P	 is one-to-one on C. Then

cos∠(C,	)

1 + 1
r
H(C,	)

≤ λ(	)

λ(C)
≤ 1

1 − 1
r
H(C,	)

.

Proof. The result is an immediate consequence of [19, Th. 43] and the fact that the reach bounds the radius of
curvature from above [12, Lem. 4.17]. �

3. Some properties of α-edges

Our standing assumption in this section is the following:

() The data points Xn = {X1, . . . ,Xn} are independently sampled from a uniformly distribution with compact sup-
port S ⊂R

2 such that both S and Sc satisfy the r-rolling condition.

For any pair of distinct data points within distance 2α from each other, there are only two circles of radius α passing
through them, symmetric with respect to the line joining the two points. In the special case of an α-edge, at least one
of the two circles is empty of data points inside. The following result implies that, with probability tending to one, the
center of such a circle lies outside of S.

Proposition 1. Assume (). For any α > 0, there is a constant A > 0 depending only on (α, r,diam(S)) such that,
with probability at least 1 − Ae−n/A, there are no open balls of radius α with center in S empty of data points.
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Proof. Let d = diam(S) and assume without loss of generality that S ⊂ B̄(0, d). We will focus on the case α ≤ r . The
case α > r can be analyzed similarly. By Lemma 1, if there is a ball of radius α with center in S empty of data points,
then there is a ball of radius α/2 included within S that is empty of data points. By Lemma 4, there is an (α/5)-net of
S, denoted z1, . . . , zm, satisfying m ≤ A1, where A1 depends only on d and α. By the triangle inequality any ball of
radius α/2 included within S contains a ball of the form B(zk,α/5). Hence,

P

(∃z ∈ S :Xn ∩ B(z,α) =∅
) ≤ P

(∃k = 1, . . . ,m : Xn ∩ B(zk,α/5) =∅
)

≤
m∑

k=1

P

(
Xn ∩ B(zk,α/5) =∅

)

=
m∑

k=1

[
1 − μ(B(zk,α/5))

μ(S)

]n

≤ A1
[
1 − (

α/(5d)
)2]n

,

where in the second inequality we used the union bound and in the third we used the fact that m ≤ A1 and S ⊂ B̄(0, d).
Therefore the result holds with A = max{A1,−1/ log[1 − (α/(5d))2]}. �

Remark 3. We say that a data point is α-isolated if there are no other data points within distance 2α from it. Suppose
that Xi is α-isolated so that B(Xi,2α)∩Xn = {Xi}. By the r-convexity of Sc, there is an open ball B ⊂ S with radius
α such that Xi ∈ B , which in particular satisfies B ⊂ B(Xi,2α) ∩ S. Let B ′ ⊂ B be an open ball of radius α/2 such
that Xi /∈ B ′. By construction, B ′ is included within S and is empty of data points. We conclude by Proposition 1 that,
under (), with high probability, there are no α-isolated data points.

Proposition 2. Take α > 0 and finite set of points X ⊂ R
2 such that there are no α-isolated points. Then the vertices

of the α-shape of X and the vertices of the α-convex hull of X coincide.

Proof. Let C and H denote the α-shape of X and the α-convex hull of X , respectively. Note in particular that
H = ⋂

B∈B Bc where B is the set of open balls of radius α that do not intersect X . First, take x ∈ X such that x ∈ ∂H .
By [9, Prop. 2], there is a open ball B of radius α such that x ∈ ∂B but B ∩X = ∅. Let B pivot on x. Since x is not
α-isolated, the ball will eventually hit another data point, denoted x′. Then x and x′ belong to the boundary of an open
ball B ′ of radius α that does not contain any other data point by construction – for otherwise the ball would have hit
that another data point before x′ – so [xx′] forms an α-edge. This implies that x is a vertex of C. By definition of H

above, B ′ ⊂ H c. Therefore x ∈ B ′ ⊂ H c, and since x ∈ H , we have x ∈ H ∩ H c = ∂H . �

The next proposition bounds the expected number of α-edges.

Proposition 3. Assume (). For any α ∈ (0, r), there is a constant A > 0 depending only on (α, r,diam(S)) such that
the expected number of α-edges is bounded by An1/3.

Proof. Let N
shape
α and Nhull

α denote the number of vertices of the α-shape and α-convex hull, respectively, and let

F denote the event that there are no α-isolated points. By Proposition 2, N
shape
α = Nhull

α on F , so that N
shape
α ≤

Nhull
α 1F + n1F c , and consequently

E

(
N

shape
α

) ≤ E

(
Nhull

α

) + nP
(
F c).

On the one hand, P(F c) = 1 −P(F ) ≤ A1e
−n/A1 for some constant A1, by Proposition 1 and Remark 3. On the other

hand, by [25, Th. 3], E(Nhull
α ) ≤ A2n

1/3, for some constant A2. From this, we conclude. �
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Remark 4. For i < j , let Gij be the event that [XiXj ] forms an α-edge. By the fact that the points are iid, P(Gij )

is independent of i < j . Hence, the expected number of α-edges
(
n
2

)
P(Gij ) and Proposition 3 implies that P(Gij ) ≤

An−5/3 for some constant A.

The next result ensures that, with high probability, for each connected component of ∂S there is at least one α-edge
within distance α.

Proposition 4. Assume (). For any α ∈ (0, r), there is a constant A > 0 depending only on (α, r,diam(S)) such that,
with probability at least 1 − Ae−n/A, for any connected component of ∂S, there is an α-edge with an endpoint within
distance α of that component.

Proof. Suppose that all the open balls of radius α/2 centered at a point in S intersect the sample. By Proposition 1 this
happens with probability at least 1−Ae−n/A for some constant A > 0. We saw in Remark 3 that this implies that there
are no α-isolated data points. Let 	k be a connected component of 	 = ∂S. Fix y ∈ 	k and let η denote the normal
unit vector of 	k at y pointing away from S. For s ≥ 0, define ys = y + sη and let s∗ = inf{s > 0 : B(ys,α)∩Xn =∅}.
Notice that B(yα,α) ⊂ Sc and, therefore, it is empty of data points. Hence, s∗ < α. Moreover, we also have s∗ > 0,
since we are assuming that B(y0, α/2) contains at least one data point (since y0 = y ∈ S). By construction, there
exists a data point Xi ∈ ∂B(ys∗ , α). Now, pivot the ball B(ys∗ , α) on Xi as we did in the proof of Proposition 2.
Since Xi is not α-isolated, the ball will eventually hit another data point, denoted Xj , and [XiXj ] will form an α-
edge. And, since ‖Xi − ys∗‖ = α and ys∗ ∈ Sc (remember 0 < s∗ < α), there is z ∈ [Xiys∗ ] such that z ∈ 	. We
now use the fact that B(ys∗ , α) ∩ 	 is contractible [12, Rem. 4.15], and since B(y∗

s , α) ∩ 	k = ∅, we must have
B(ys∗ , α) ∩ 	 = B(ys∗ , α) ∩ 	k , which in turn implies that z ∈ 	k and, therefore, dist(Xi,	k) < α. �

Next, we prove some quantitative results about α-edges. In plain English, we show that, with probability tending
to one, α-edges are near the boundary of S, have small length and their deviation angle with the boundary of S is
small.

Proposition 5. Assume (). For i < j , let Gij denote the event that [XiXj ] is an α-edge, and for t > 0, let Hij,t

denote the event that

[XiXj ] ⊂ B(∂S, t), ‖Xi − Xj‖ ≤ √
t and ∠

([XiXj ], ∂S
) ≤ √

t . (11)

For any α ∈ (0, r), there is a constant A > 0 depending only on (α, r,diam(S)) such that, for any 0 < t ≤
min{α,2α2/r}, P(Gij ∩ H c

ij,t ) ≤ Ae−nt3/2/A.

Proof. Let 	 be a shorthand for ∂S. For any two distinct points x, x′ ∈ R
2 such that ‖x − x′‖ < 2α, define

ζ±(
x, x′) = x + α�±θ

(
x′ − x

‖x′ − x‖
)

,

where θ = acos(‖x − x′‖/(2α)) and �θ denotes the rotation at angle θ . By construction, x, x′ ∈ ∂B(ζ±(x, x′), α),
and ζ±(x, x′) are the only two points with this property. Let ζ±

ij be short for ζ±(Xi,Xj ), if ‖Xi − Xj‖ < 2α, and

(ζ+
ij , ζ−

ij ) = (Xi,Xj ), otherwise.
Let E be the event that there are no open balls of radius α with center in S empty of data points. We studied this

event in Proposition 1. With A1 denoting the constant of Lemma 5, we have

H c
ij,t ∩ Gij ∩ E ⊂ {∃ε ∈ {−,+} :Xn ∩ B

(
ζ ε
ij , α

) =∅, ζ ε
ij /∈ S and dist

(
ζ ε
ij , S

)
< α − t/A1

}
.

Therefore, the union bound gives

P

(
H c

ij,t ∩ Gij ∩ E
) ≤

∑
ε=±

P
(
Xn ∩ B

(
ζ ε
ij , α

) =∅, ζ ε
ij /∈ S and dist

(
ζ ε
ij , S

)
< α − t/A1

)
.
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With A2 denoting the constant of Lemma 2, for any deterministic point ζ /∈ S such that dist(ζ, S) < α − t/A1, we
have

P
(
Xn−2 ∩ B(ζ,α) =∅

) =
(

1 − μ(S ∩ B(ζ,α))

μ(S)

)n−2

≤
(

1 − A2t
3/2

A
3/2
1 πd2

)n−2

≤ A3e
−nt3/2/A3 ,

for some constant A3 which depends only on α, r and d := diam(S). Hence, conditioning on (Xi,Xj ), we have

P
(
Xn ∩ B

(
ζ ε
ij , α

) =∅, ζ ε
ij /∈ S and dist

(
ζ ε
ij , S

)
< α − t/A1

) ≤ A3e
−nt3/2/A3 .

Together with Proposition 1, we arrive at

P

(
H c

ij,t ∩ Gij

) ≤ P

(
H c

ij,t ∩ Gij ∩ E
) + P

(
Ec) ≤ A4e

−nt3/2/A4,

for some constant A4, again depending only on (α, r, d). �

The next two results combined imply that, with high probability, the α-edges form a simple polygon in one-to-one
correspondence with ∂S. The first result shows that, with high probability, two distinct points in the union of all α-
edges do not project on the same point on ∂S. We also show that α-edges are all one-sided in the sense that at least
one of the two open balls of radius α that circumscribes an α-edge contains a data point.

Proposition 6. Assume (). For any α ∈ (0, r), there is a constant A > 0 depending only on (α, r,diam(S)) such that,
with probability at least 1 − Ae−n/A: (i) all α-edges are one-sided; and (ii) the metric projection onto ∂S is injective
on the union of all α-edges.

Proof. Let 	 be a shorthand for ∂S and d = diam(S). Assume there are no balls of radius α with center in S empty of
data points and that, for t fixed (and chosen small enough in what follows), all the α-edges satisfy (11). Both events
happen together with probability at least 1 − Ae−n/A, for some constant A > 0, by Propositions 1 and 5.

We first show that, if t is small enough, all α-edges are one-sided. Let [x1x2] (x1 = Xi1, x2 = Xi2 ) be an arbitrary
α-edge. Let xm = (x1 +x2)/2 be the midpoint of that α-edge and ρ = (α2 −‖x1 −xm‖2)1/2. If there is a ball of radius
α, B , such that x1, x2 ∈ ∂B , then the center of B is either ze = xm + ρu or zs = xm − ρu, where u is the unit vector
orthogonal to (x1x2) such that 〈u,η〉 > 0, η being the outward pointing unit normal vector at ym = P	(xm), which
is well-defined when t < r . Notice that the vector u is well defined when

√
t < π/2, since in that case (x1x2) is not

orthogonal to 	. We will prove that, for t even smaller, zs ∈ S and therefore B(zs,α) is not empty of sample points.
Define cs = ym − ρη and c = ym − rη. By the r-rolling property, B(c, r) ⊂ S. By the triangle inequality and (11), we
have

‖zs − cs‖ ≤ ‖xm − ym‖ + ρ‖u − η‖ ≤ t + α‖u − η‖,
with, for t small enough,

‖u − η‖2 = 2
(
1 − 〈u,η〉) ≤ 2

(
1 − cos∠

([x1x2],	
)) ≤ 2t,

using (11) (i.e., ∠([x1x2],	) ≤ √
t ) and the fact that cos(a) ≥ 1 − a2 for any a ∈R. Using the triangle inequality and

(11), again, we get

‖zs − c‖ ≤ ‖zs − cs‖ + ‖cs − c‖ ≤ t + α
√

2t + r −
√

α2 − (
√

t)2 < r,

for t small enough, in which case zs ∈ B(c, r) ⊂ S.
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Now we prove that the metric projection onto 	 is injective on the union of all α-edges. Indeed, assume that this
is not the case, so there are two distinct points belonging to some (necessarily distinct) α-edges, x ∈ [Xi1Xi2] and
x′ ∈ [Xi′1Xi′2], with the same metric projection onto 	, denoted y = P	(x) = P	(x′). Let η be the outward pointing
unit normal vector at y. For short, let x1 = Xi1 , x2 = Xi2 , x′

1 = Xi′1 , x′
2 = Xi′2 . By the triangle inequality and the fact

that ‖x − x′‖ ≤ dist(x,	) + dist(x′,	), and then (11), we have

max
i,j∈{1,2}

∥∥xi − x′
j

∥∥ ≤ ∥∥x − x′∥∥ + ‖x1 − x2‖ + ∥∥x′
1 − x′

2

∥∥ ≤ 2t + 2
√

t ≤ 3
√

t, (12)

when t is small enough. Also by the triangle inequality for angles and (11),

∠
(
(x1x2),

(
x′

1x
′
2

)) ≤∠
(
(x1x2), 
	y

) +∠
(
	y,

(
x′

1x
′
2

)) ≤ 2
√

t . (13)

Let B and B ′ denote the open balls of radius α circumscribing [x1x2] and [x′
1x

′
2], respectively, and empty of data

points. Since all α-edges are one-sided, these balls are uniquely defined. Also, define z′
e and z′

s analogously to ze and
zs above, but based on x′

1 and x′
2, instead of x1 and x2. Using the same notation as above, we have B = B(ze,α) and

B ′ = B(z′
e, α) and

∥∥ze − z′
e

∥∥ ≤ ∥∥xm − x′
m

∥∥ + ∥∥ρu − ρ′u′∥∥. (14)

Reasoning as in (12) above, we have ‖xm − x′
m‖ ≤ 3

√
t . Also,

∥∥ρu − ρ′u′∥∥2 = ρ2 + (
ρ′)2 − 2ρρ′〈u,u′〉.

Using (11), ρ2 = α2 − ‖x1 − xm‖2 ≥ α2 − t and, similarly, (ρ′)2 ≥ α2 − t . Moreover, by (13) and using again the
inequality cos(a) ≥ 1 − a2 for any a ∈R, we get 〈u,u′〉 ≥ 1 − 4t . Hence,

∥∥ρu − ρ′u′∥∥2 ≤ 2α2 − 2
(
α2 − t

)
(1 − 4t) ≤ (

8α2 + 2
)
t.

Hence, the bound in (14) leads to ‖ze − z′
e‖ ≤ 3

√
t + (8α2 + 2)1/2√t = A1

√
t when t is small enough, where A1 is a

constant. Combining this bound with that in (13), and applying Lemma 6, we obtain that

max
{
∠

((
xx′), (x1x2)

)
,∠

((
xx′), (x′

1x
′
2

))} ≤ A2
√

t,

where A2 is a constant. By the fact that (xx′) is parallel to η [12, Th. 4.18(12)] and using (11), we also have

max
{
∠

((
xx′), (x1x2)

)
,∠

((
xx′), (x′

1x
′
2

))} ≥ π

2
− √

t .

We therefore have a contradiction when t is small enough that all the derivations above apply and, in addition,
√

t <

π/(2A2 + 2). �

Remark 5. Any one-sided α-edge shares each one of its endpoints with another α-edge. Indeed, suppose [x1x2] is an
α-edge, so that there exists ζ such that x1, x2 ∈ ∂B(ζ,α) and Xn ∩ B(ζ,α) =∅. In that case, let B(ζ,α) pivot on x2,
as we did in the proof of Proposition 4 away from x1. Let x3 denote the first data point that the ball hits. Then [x2x3]
is an α-edge by construction. If x2 is not shared with any other α-edge, then the ball pivots on x2 away from x1 until
it touches x1 from the other side. That (open) ball is empty of data points inside, and together with the ball we started
with, makes [x1x2] two-sided.

Proposition 7. Assume (). For any α ∈ (0, r), there is a constant A > 0 depending only on (α, r,diam(S)) such that,
with probability at least 1 − Ae−n/A, the union of all α-edges is in one-to-one correspondence with ∂S via the metric
projection onto ∂S.
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Proof. Let 	 be a shorthand for ∂S and d = diam(S), and let Cα denote the union of all α-edges. Since 	 is a
(compact) one dimensional manifold [36], it is well-known that each connected component of 	 is a closed curve
homeomorphic to the unit circle, see [16, Thm. 5.27]. We prove that this is also the case for each connected component
of Cα . We assume that the metric projection onto 	, meaning P	 , is injective on Cα , that all α-edges are one-sided,
that Cα ⊂ B(	,α) – so that P	 is well-defined on Cα – and that Cα ∩ B(	k,α) =∅ for any connected component 	k

of 	. This event happens with probability at least 1 − Ae−n/A for some constant A > 0, by Propositions 5, 4 and 6.
We prove that, under these circumstances, Cα is in one-to-one correspondence with 	 via P	 . Indeed, let 	k be a
connected component of 	. Let [x1x2] be an α-edge such that [x1x2] ∩ B(	k,α) = ∅. By assumption, there is a data
point x3 such that [x2x3] is also an α-edge. Having constructed [xa−1xa], let xa+1 be a data point such that [xaxa+1]
is an α-edge. Since Cα ⊂ B(	,α) = ⊔

� B(	�,α) – where the union is of disjoint sets by [12, Rem. 4.15, (1)] – and
the polygon

⋃
a[xaxa+1] is connected, necessarily,

⋃
a[xaxa+1] ⊂ B(	k,α). Also, since the sequence (xa : a ≥ 1) is

made of finitely many data points, and xa = xa+1 for all a, there is a, b ≥ 1 such that xa = xa+b+1, and we further
may assume that xa, . . . , xa+b are all distinct. Therefore, by construction, C = [xaxa+1] ∪ · · · ∪ [xa+b−1xa+b] is a
simple polygon made of α-edges such that C ⊂ B(	k,α). In particular, the latter implies that P	(C) ⊂ 	k , and since
C is homeomorphic to the unit circle and P	 is continuous and injective on C, P	(C) is also homeomorphic to the
unit circle. This forces P	(C) = 	k , due to 	k being homeomorphic to the unit circle too. Since all this is true for any
k, meaning any connected component of 	, we conclude therefore that P	 : Cα → 	 is not only injective, but also
surjective. �

4. Proof of Theorem 1

We are now in a position to prove the main result, meaning, Theorem 1. Let 	 be a shorthand for ∂S and let Cα denote
the union of all α-edges.

By Proposition 5 together with the union bound, and then Proposition 7, for any 0 < t ≤ min{α,2α2/r}, with
probability at least 1 − A1n

2e−nt3/2/A1 , for some constant A1 > 0 depending only on (α, r,diam(S)), Cα is in one-to-
one correspondence with 	 via the metric projection onto 	, and satisfies Cα ⊂ B(	, t) and ∠(Cα,	) ≤ √

t . Note that,
because Cα and 	 are in one-to-one correspondence, Cα ⊂ B(	, t) implies that 	 ⊂ B(Cα, t), so that H(Cα,	) ≤ t .
We now apply Lemma 7, combined with the simple bounds cosa ≥ 1 − a2/2, for a > 0, and (1 − a)−1 ≤ 1 + 2a,
valid when 0 < a ≤ 1/2. Assuming t ≤ 1, this yields

λ(Cα)

λ(	)
≤ 1 + 1

r
H(Cα,	)

cos(∠(Cα,	))
≤ 1 + t/r

1 − t/2
≤ (1 + t/r)(1 + t) ≤ 1 + (1 + 2/r)t

and

λ(Cα)

λ(	)
≥ 1 − 1

r
H(Cα,	) ≥ 1 − t/r.

We get∣∣∣∣λ(Cα)

λ(	)
− 1

∣∣∣∣ ≤ (1 + 2/r)t.

Hence, if t ≤ t0 := min{α/2,2α2/r,1}, we have

P

(∣∣∣∣λ(Cα)

λ(	)
− 1

∣∣∣∣ > (1 + 2/r)t

)
≤ A1n

2 exp
(−nt3/2/A1

)
.

Then a change of variable concludes the proof of Theorem 1.

5. Numerical experiments

In order to numerically check the conclusions of Theorem 1 we performed a small simulation study. For the set S

we chose the corona {x ∈ R
2 : 0.25 ≤ ‖x‖ ≤ 1}. In this case the value of r is equal to 0.25 (the radius of the hole)
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Fig. 6. Plot of error versus sample size, in log-log scale. The error corresponding to α = r = 0.25 does not converge to zero. For values of α < r ,
the plots show asymptotic slopes which are all very close to −2/3, as Theorem 1 predicts.

and λ(∂S) = 2π(0.25 + 1). The selected sample sizes were n = 1000,5000,10,000,30,000,40,000,50,000. For each
sample size n, we simulated M = 1000 samples from the uniform distribution on S and calculated the α-shape for
each sample. The values of α were 0.05,0.1,0.15,0.2,0.24, and the limit case α = r = 0.25. Given n, α, and sample
m ∈ {1, . . . ,M}, we computed the sample α-shape, denoted Cn,m

α , using the R-package alphahull of [24], and
then its perimeter λ(Cn,m

α ). We estimated the expected error and bias by

eα(n) = 1

M

M∑
m=1

∣∣λ(
Cn,m

α

) − λ(∂S)
∣∣ and bα(n) = 1

M

M∑
m=1

λ
(
Cn,m

α

) − λ(∂S),

respectively. Let sα(n) denote the sample standard deviation of {λ(Cn,m
α ),m = 1, . . . ,M}.

• Among the α’s that we tried, the estimator performs best at α = 0.2. It does not seem that, asymptotically, the best
α converges to r . For instance, the ratio e0.24(n)/e0.2(n) is around 6.7 for n ≥ 30,000.

• Figure 6 shows the error versus sample size in log-log scale for α = 0.1,0.2,0.24,0.25. It can be seen that the
error corresponding to α = r does no go to zero whereas α = 0.2 always outperform the other considered values
of α. The trend for large values of n is clearly linear and the slope is close to −2/3 as Theorem 1 predicts. This is
particularly true when α = 0.2 (our best choice), where fitting a line by least squares yields a slope of −0.67, with
(Student) 95%-confidence interval of (−0.73,−0.62), and an R-squared exceeding 0.99.

• For the limit case α = r , the bias, bα(n) does not go to zero as the sample size increases. The error er(n) is
approximately equal to 0.18; see Figure 6. This shows, from the numerical point of view, that the perimeter of the
α-shape is not a consistent estimator of the λ(∂S) for α = r . The main problem here is that the length of the α-edges
does not go to zero, as Proposition 5 states for α < r .

• The convergence rate of the standard deviation seems to be higher that −2/3. In fact, we have reasons to believe that
the slope is of order n−5/6. This is confirmed numerically. Indeed, if we fit a line to the log-log plot of s0.2(n), we
get a slope with (Student) 95%-confidence interval of (−0.86,−0.82). So, asymptotically, it seems that the error is
dominated by the bias. This suggests that reducing the bias of the estimator could lead to improve the convergence
rate of the method.

• The random variable λ(Cα) seems to be asymptotically normal. For the greatest considered n = 50,000, the sample
{λ(Cn,m

α ),m = 1, . . . ,M} passes the Shapiro–Wilks normality test for several values of α. For instance, for α = 0.2,
we got a p-value of 0.82.

6. Discussion

We discuss a number of extensions and open problems.
Extensions. Our arguments extend more or less trivially to other sampling distributions. It is completely straight-

forward to see that Theorem 1 applies verbatim to a sampling distribution which has a density with respect to the
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uniform distribution which is bounded away from zero near the boundary of S. A little less obvious is an extension to
the case where this density converges to zero at some given rate near the boundary, which ends up impacting the rate
of convergence of our estimator. In any case, our estimator remains consistent. The same results carry over to the case
where ∂S has a finite number of ‘kinks’, i.e., points where the reach is infinite.

Choice of tuning parameter. The estimator depends on knowledge of r , or at least a lower bound on r , since any α ∈
(0, r) fixed appears to yield the convergence rate in n−2/3. Choosing α automatically, therefore, requires an estimate
on the size of r . This is done in recent work by [32]. Suppose we have an estimator r̂n such that r/2 ≤ r̂n ≤ 3r/2
with high probability. We speculate that the convergence bound obtained in Theorem 1 with α chosen equal to r̂n/4
remains valid, albeit with a different multiplicative constant.

Finer asymptotics. [3] were able to compute the exact asymptotic expected value and variance of the perimeter of
the convex hull of a sample, and also to show an asymptotic normal limit. An open problem would be to do the same
here. Our numerical experiments lead us to speculate that our estimator is also normal in the large-sample limit.

Minimax rate. We conjecture that the rate that our estimator achieves, i.e., Õ(n−2/3), is not minimax optimal, not
even in the exponent. (The notation Õ hides a poly-logarithmic factor.) Indeed, we learn in [15, Chapter 8] that for
the problem of estimating the area under a Hölder-2 horizon in the context of binary images (see the Introduction),
an estimator obtained from computing the area of an optimal set estimator (for the symmetric difference metric) only
achieves the rate Õ(n−2/3), while the optimal rate is Õ(n−5/6). The same is true for the estimation of the perimeter as
[14] prove. In fact, we speculate that the minimax rate they obtain for Hölder-2 periodic horizons, which is Õ(n−5/6),
is the same in our context.

Bias correction. [15] in the context of area estimation, and then [14] in the context of perimeter estimation, propose
a plugin estimator followed by bias correction to achieve the minimax rate (within a polylog factor). The strategy is
essentially the same and tailored to the setting of horizons in binary images. In particular, it relies heavily on function
estimation is not easily adapted to our setting, which is rather based on set estimation.1 Our estimator is also a
form of plugin and we speculate that correcting for bias achieves the minimax rate. This is in line not only with the
theory developed in [14,15] but also with our numerical experiments in Section 5. A bias correction based on sample
splitting – as implemented in these previous works – seems viable, although we are still investigating this possibility.

Higher dimensions. Our setting is that of a set S in two dimensions. How about higher dimensions? The problem
would be to estimate the (d −1)-volume of the boundary of a set S ⊂R

d , under the same conditions, and the estimator
would be the (d − 1)-volume of the α-shape of Xn, which is the union of all the α-faces. We say that Xi1, . . . ,Xid

form an α-face if they are affine-independent and there is an open ball B of radius α such that Xi1, . . . ,Xid ∈ ∂B and
B ∩Xn =∅. Most of the auxiliary lemmas and propositions can be extended to the general framework. However, we
have no idea how to extend Proposition 7.

The α-convex hull. Our results apply to the α-convex hull of the sample. This is because, with high probabil-
ity, it shares the same vertices as the α-shape (by Proposition 2). When this is the case, the former is the union
of arcs of radius α with base the α-edges. In particular, if an α-edge is of length �, then the length of that arc is
2α sin−1(�/(2α)) = �+ O(�3). By Proposition 5 and an application of the union bound, the largest α-edge is of order
OP (log(n)/n)2/3. We conclude that the ratio between the perimeters of the α-convex hull and of the α-shape is of
order 1+OP (log(n)/n)4/3. We note, however, that the perimeter of the r-convex hull is consistent while the perimeter
of the r-shape is not necessarily so. Our results require α < r .
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