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Abstract. We introduce here a class of stochastic partial differential equations defined on a graph and we show how they are
obtained as the limit of suitable stochastic partial equations defined in a narrow channel, as the width of the channel goes to zero.

Résumé. Nous introduisons ici une classe d’équations aux dérivées partielles stochastiques définies sur un graphe et nous montrons
comme ils sont obtenus sous la limite d’équations aux dérivées partielles stochastiques appropriées définies dans un canal étroit,
lorsque la largeur du canal tend vers zéro.
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1. Introduction

Let G be a bounded domain in R
2, having a smooth boundary ∂G. We consider here the following stochastic partial

differential equation (SPDE) in G, with Neumann boundary conditions{
∂uε

∂t
(t, x, y)= 1

2
∂2uε

∂x2 (t, x, y)+ 1
2ε2

∂2uε

∂y2 (t, x, y)+ b(uε(t, x, y))+ ∂wQ

∂t
(t, x, y),

∂uε

∂νε
(t, x, y)= 0, (x, y) ∈ ∂G, uε(0, x, y)= u0(x, y).

(1.1)

Here wQ(t) is a cylindrical Wiener process in L2(G) and νε = νε(x, y) is the unit interior conormal at ∂G, corre-
sponding to the second order differential operator

Lε = 1

2

∂2

∂x2
+ 1

2ε2

∂2

∂y2
.

The functions b and u0 and the noise wQ(t) are assumed to be regular enough so that equation (1.1) admits a unique
mild solution for every ε > 0 (see below for all details).

After an appropriate change of variables, equation (1.1) can be obtained from the equation{
∂vε

∂t
(t, x, y)= 1

2�vε(t, x, y)+ b(vε(t, x, y))+√ε ∂wQε

∂t
(t, x, y), (x, y) ∈Gε,

∂vε

∂ν̂ε
(t, x, y)= 0, (x, y) ∈ ∂Gε, vε(0, x, y)= u0(x, y/ε),

(1.2)
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where Gε is the narrow domain {(x, y) ∈ R
2 : (x, y/ε) ∈ G} and ν̂ε(x, y) is the inward unit normal vector at ∂Gε .

Reaction-diffusion equations of the same type as (1.2), with or without additional noise, arise, for example, in models
for the motion of molecular motors. Actually, one of the possible ways to model Brownian motors/ratchets is to de-
scribe them as particles traveling along a designated track, and the designated track along which the molecule/particle
is traveling can be viewed as a tubular domain with many wings added to it. To this purpose, see e.g. [4] and [5].

In this paper, we are interested in the limiting behavior of the solution uε of equation (1.1), as ε ↓ 0. For this
purpose, suppose for a moment that the noisy term ∂wQ/∂t is replaced by a regular enough function h(t, x, y) and,
for the sake of brevity, assume b(u)= 0. If (Xε(t), Y ε(t)) is the diffusion process in G∪ ∂G governed by the operator
Lε inside G and undergoing instantaneous reflections at ∂G, with respect to the co-normal associated with Lε , then,
as is well known (see, for example, [3]), the solution of (1.1) can be written in the form

uε(t, x, y)= Sε(t)u0(x, y)+
∫ t

0
Sε(t − s)h(s, ·)(x, y) ds, (1.3)

where, for any ϕ ∈ Bb(G),

Sε(t)ϕ(x, y)= E(x,y)ϕ
(
Xε(t), Y ε(t)

)
.

The process (Xε(t), Y ε(t)) has a slow component Xε(t) and a fast component Y ε(t), if 0 < ε� 1. This means
that, before Xε(t) changes a little, the y-component of the process hits the boundary many times. This leads to an
additional drift in the limit of the x-component of the process, due to the changing width of the domain and to the
averaging of the function h(s,Xε(t − s), Y ε(t − s)). Moreover, for a given x, the intersection of the domain G with
the vertical line containing (x,0) can consist of several connected components (see e.g. the intervals l1(x) and l2(x)

in Figure 1). This leads to the fact that the slow component of the process (Xε(t), Y ε(t)) lives on the graph � (see
again Figure 1).

This graph, actually, counts all normalized ergodic invariant measures of the two-dimensional process (X̂(t), Ŷ (t))

in G∪ ∂G, where X̂(t)= X̂(0)= x and Ŷ (t) is the one-dimensional Wiener process with instantaneous reflection on
∂G. The process (X̂(t), Ŷ (t)), up to a time change, is our non perturbed system. Thus, the slow component of the
perturbed system (the process (Xε(t), Y ε(t)) on G∪ ∂G) is the projection �ε(t)=�(Xε(t), Y ε(t)) of (Xε(t), Y ε(t))

on the simplex of normalized invariant measures of the perturbed system. Moreover, the graph � parametrizes extreme
points of the simplex and any point of the simplex is a linear convex combination of the extreme points.

Fig. 1. The domain G and the graph �.
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In [6] it has been proven that the process �ε(t) converges, as ε ↓ 0, to a continuous Markov process Z̄(t) on the
graph �. More precisely, it has been proven that for any z ∈ G and any bounded and continuous functional F on
C([0, T ];�), with T > 0,

lim
ε→0

EzF
(
�ε(·))= Ē�(z)F

(
Z̄(·)). (1.4)

Notice that in [6] the generator L̄ of the Markov process Z̄(t) is explicitly described in terms of certain second order
differential operators Lk , acting in the interior of each edge Ik of �, and of suitable gluing conditions, given at the
vertices of �.

Since in (1.3) the solution uε of equation (1.1), with ∂wQ/∂t replaced by the regular function h, has been repre-
sented in terms of the process (Xε(t), Y ε(t)), one would like to be able to use (1.4) to study the limiting behavior of
uε on [0,+∞)×�, as ε ↓ 0. As a matter of fact, we have shown that for any ϕ ∈ C(Ḡ), z ∈G and 0 < τ < T , it holds

lim
ε→0

sup
t∈[τ,T ]

∣∣Ezϕ
(
Xε(t), Y ε(t)

)− Ē�(z)ϕ
∧(Z̄(t)

)∣∣= 0, (1.5)

where

ϕ∧(x, k)= 1

lk(x)

∫
Ck(x)

ϕ(x, y) dy, (x, k) ∈ �,

and lk(x) is the length of the connected component Ck(x) of the section C(x) = {(x, y) ∈G}, corresponding to the
edge Ik .

As a consequence of (1.5), we have obtained that for any ϕ ∈C(Ḡ)

lim
ε→0

sup
t∈[τ,T ]

∣∣Sε(t)ϕ − S̄(t)∨ϕ
∣∣
L2(G)

= 0, (1.6)

where S̄(t) is the Markov transition semigroup associate with L̄ and, for any A ∈ L(L2(G)),

A∨ϕ(x, y)=Aϕ∧
(
�(x,y)

)
, (x, y) ∈G.

In particular, due to (1.6), we have shown that

lim
ε→0

sup
t∈[τ,T ]

∣∣uε(t)− ū(t) ◦�
∣∣
L2(G)

= 0,

where ū is the solution of the partial differential equation on �

∂ū

∂t
(t, x, k)= L̄ū(t, x, k)+ h∧(t, x, k), ū(0, x, k)= u∧0 (x, k), (1.7)

endowed with suitable gluing conditions at the vertices of �.
We would like to stress the fact that (1.5) is not a straightforward consequence of (1.4). Actually, (1.5) is a conse-

quence of the following two limits

lim
ε→0

sup
t∈[τ,T ]

∣∣Ez

[
ϕ
(
Zε(t)

)− ϕ∧
(
�ε(t)

)]∣∣= 0, (1.8)

and

lim
ε→0

sup
t∈[τ,T ]

∣∣Ezϕ
∧(�ε(t)

)− Ē�(z)ϕ
∧(Z̄(t)

)∣∣= 0. (1.9)

Limit (1.9) would be an immediate consequence of (1.4), if for any ϕ ∈ C(Ḡ), the function ϕ∧ were a continuous
function on �̄. Unfortunately, in general ϕ∧ is not continuous at the internal vertices of �, so that the proof of (1.9)
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requires a thorough analysis, which also involves a few estimates of the exit times of the process Zε(t) from suitable
small neighborhoods of the points (x, y) ∈ ∂G where ν2(x, y)= 0.

Concerning limit (1.8), it follows from an averaging argument, but its proof requires a suitable localization in time
in the same spirit of Khasminski’s paper [7]. Here the localization procedure is more delicate than in the classical
setting considered by Khasminski, as it involves a stochastic differential equation with reflection and hence requires
suitable estimates for the time increments of the local time of the process (Xε(t), Y ε(t)) at the boundary of G.

Now, once we have obtained (1.6), we go back to the original problem, where equation (1.1) is perturbed by a
cylindrical Wiener process wQ(t) given by

wQ(t, x, y)=
∞∑

k=1

(Qek)(x, y)βk(t).

Here Q is a bounded linear operator in L2(G), {ek}k∈N is a complete orthonormal system in L2(G), and {βk(t)}k∈N
is a sequence of mutually independent Brownian motions. Under standard conditions on b and Q (see e.g. [2] for all
details), for any ε > 0 equation (1.1) admits a unique mild solution uε . More precisely, there exists a unique adapted
process uε in Lp(�,C([0, T ];L2(G))), for any T > 0 and p ≥ 1, such that

uε(t)= Sε(t)u0 +
∫ t

0
Sε(t − s)b

(
uε(s)

)
ds +

∫ t

0
Sε(t − s) dwQ(s).

In fact, here we assume the stronger condition that the covariance QQ� of the cylindrical Wiener process wQ(t) is
a trace class operator in L2(G), so that wQ(t) ∈L2(�;L2(G)). In view of this, we have that the process

w̄Q(t) :=wQ(t)∧ =
∞∑

k=1

(Qek)
∧βk(t), t ≥ 0,

is well defined in L2(�;L2(�, ν)), where ν is the invariant measure associated with the process Z̄(t). Thus, as S̄(t)

is a contraction in L2(�, ν), the process

w̄L̄(t) :=
∫ t

0
S̄(t − s) dw̄Q(s), t ≥ 0,

belongs to Lp(�;C([0, T ];L2(�, ν))), for any T > 0 and p ≥ 1. In particular, this implies the following SPDE on
the graph �

dū(t)= [L̄ū(t)+ b
(
ū(t)

)]
dt + dw̄Q(t), ū(0)= u∧0 , (1.10)

is well posed in Lp(�;C([0, T ];L2(�, ν))).
Once we have obtained the well posedness of equation (1.10), we have shown that, as in the deterministic case, ū

can be obtained as the limit of the solution uε of equation (1.1), as ε ↓ 0. To this purpose, we have first shown that

lim
ε→0

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
Sε(t − s) dwQ(s)− w̄L̄(t) ◦�

∣∣∣∣
L2(G)

= 0.

Then, as b is assumed to be Lipschitz-continuous, we have shown that this implies that, for any 0 < τ < T ,

lim
ε→0

E sup
t∈[τ,T ]

∣∣uε(t)− ū(t) ◦�
∣∣
L2(G)

= 0.

Finally, we would like to mention that some special class of SPDEs on graphs have been studied in the paper [1].

2. Some notations and a preliminary result

In this section we introduce some notations and recall some important results from [6].
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2.1. The domain G, the narrow channel Gε and the graph �

Let G be a bounded open domain in R
2, having a smooth boundary ∂G (of class C3), and for any (x, y) ∈ ∂G let

ν(x, y) denote the unit inward normal vector at the point (x, y). In what follows, we shall assume that G satisfies
the uniform exterior sphere condition, that is there exists r0 > 0 such that for any z ∈ ∂G there exists z′ ∈ R

2 with
|z− z′| = r0 and B(z′, r0)∩G=∅. As a consequence of this assumption, there exists some constant κ0 ≥ 0 such that
for any z ∈ ∂G and z′ ∈ Ḡ

〈
z− z′, ν(z)

〉− κ0
∣∣z− z′

∣∣2 ≤ 0 (2.1)

(for a proof see [8]).
Now, for every ε > 0 we introduce the narrow channel associated with G

Gε :=
{
(x, y) ∈R

2 : (x, ε−1y
) ∈G

}
,

and we denote by νε(x, y) the unit inward normal vector at the point (x, y) ∈ ∂Gε . Notice that

νε(x, εy)= cε(x, y)
(
εν1(x, y), ν2(x, y)

)
, (x, y) ∈ ∂G, (2.2)

for some function cε : ∂G→[1,+∞), such that

sup
(x,y)∈∂G

ε>0

cε(x, y)= c <∞.

In what follows, we shall assume that the region G satisfies the following properties.

I. There are only finitely many x ∈R for which ν2(x, y)= 0, for some (x, y) ∈ ∂G.
II. For every x ∈ R, the cross-section C(x) = {(x, y) ∈ G} consists of a finite union of intervals. Namely, when

C(x) �=∅, there exist N(x) ∈N and intervals C1(x), . . . ,CN(x)(x) such that

C(x)=
N(x)⋃
k=1

Ck(x).

III. If x ∈R is such that ν2(x, y) �= 0, then for any k = 1, . . . ,N(x) we have

lk(x)= ∣∣Ck(x)
∣∣> 0.

If we identify the points of each connected component Ck(x) of each cross section C(x), we obtain a graph �,
with a finite number of vertices Oi , corresponding to the connected components containing points (x, y) ∈ ∂G such
that ν2(x, y)= 0, and with a finite number of edges Ik , connecting the vertices. On our graph there are two different
types of vertices, exterior ones, that are connected to only one edge of the graph, and interior ones, that are connected
to two or more edges. See Figure 1.

On the graph � a distance can be introduced in the following way. If y1 = (x1, k) and y2 = (x2, k) belong to the
same edge Ik , then d(y1, y2)= |x1 − x2|. In the case y1 and y2 belong to different edges, then

d(y1, y2)=min
{
d(y1,Oi1)+ d(Oi1,Oi2)+ · · · + d(Oin, y2)

}
,

where the minimum is taken over all possible paths from y1 to y2, through every possible sequence of vertices
Oi1 , . . . ,Oin , connecting y1 to y2.

Now, any point z on the graph � can be uniquely identified by two coordinates, the horizontal coordinate x and
the integer k which denotes the edge Ik the point z belongs to. Notice that if z is one of the interior vertices Oi ,
this second coordinate may not be chosen in a unique way, as there are two or more edges having Oi as their end-
point.



870 S. Cerrai and M. Freidlin

In what follows, we shall denote by � : G→ � the identification map of the domain G onto the corresponding
graph �. For any vertex Oi on the graph �, we denote by Ei the set �−1(Oi) consisting of points (x, y) ∈ ∂G such
that ν2(x, y)= 0. The set Ei can be one point, several points or an interval. In what follows, we shall assume that G

satisfies the following condition:

IV. For each vertex Oi , either ν1(x, y) > 0, for all (x, y) ∈Ei , or ν1(x, y) < 0, for all (x, y) ∈Ei .

2.2. A limiting result

For each ε > 0 and z = (x, y) ∈ G, we consider the stochastic system with reflecting boundary conditions on the
domain G{

dXε(t)= dB1(t)+ ν1(X
ε(t), Y ε(t)) dφε(t), Xε(0)= x,

dY ε(t)= 1
ε
dB2(t)+ 1

ε2 ν2(X
ε(t), Y ε(t)) dφε(t), Y ε(0)= y.

Such a system can be rewritten as

dZε(t)=√σε dB(t)+ σεν
(
Zε(t)

)
dφε(t), Zε(0)= z ∈G, (2.3)

where σε is the matrix defined by

σε =
(

1 0
0 ε−2

)
. (2.4)

Here B(t) is a 2-dimensional standard Brownian motion defined on some stochastic basis (�,F, {Ft }t≥0,P) and
φε(t) is the local time of the process Zε(t) on ∂G, that is the Ft -adapted process, continuous with probability 1,
non-decreasing and increasing only when Zε(t) ∈ ∂G. More precisely, we have the following

Definition 2.1. The random pair (Zε(t), φε(t)), t ≥ 0, is a solution of problem (2.3) if Zε(t) is a Ḡ-valued {Ft }t≥0
semi-martingale and φε(t) is a non-decreasing continuous process, such that

Zε(t)= z+√σεB(t)+
∫ t

0
σεν

(
Zε(s)

)
dφε(s), φε(t)=

∫ t

0
I{Zε(s)∈∂G} dφε(s).

For the well posedness of the equation above, we refer to the monography [3] and the paper [8]. In [6], it has been
studied the limiting behavior, as ε ↓ 0, of the (non Markov) process �(Zε(t)), t ≥ 0, in the space C([0, T ];�), for
any fixed T > 0 and z ∈G. Namely, it has been shown that the process �(Zε(t)), which describes the slow motion of
the process Zε(t), converges, in the sense of weak convergence of distributions in the space of continuous �-valued
functions, to a diffusion process Z̄ on �.

The process Z̄ has been described in terms of its generator L̄, which is given by suitable differential operators L̄k

within each edge Ik = {(x, k) : ak ≤ x ≤ bk} of the graph and by certain gluing conditions at the vertices Oi of the
graph. More precisely, for each k, the differential operator L̄k has the form

L̄kf (x)= 1

2lk(x)

d

dx

(
lk

df

dx

)
(x), ak < x < bk, (2.5)

and the operator L̄, acting on functions f defined on the graph �, is defined as

L̄f (x, k)= L̄kf (x), if (x, k) is an interior point of the edge Ik.

The domain D(L̄) is defined as the set of continuous functions on the graph �, that are twice continuously differen-
tiable in the interior part of each edge of the graph, such that for any vertex Oi = (xi, k1)= · · · = (xi, kNi

) there exist
finite

lim
(x,kj )→Oi

L̄f (x, kj ),
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the following one-sided limits exist

lim
x→xi

lk(x)
df

dx
(x, kj ),

along any edge Ikj
ending at the vertex Oi = (xi, kj ) and the following gluing condition is satisfied

Ni∑
k=1

(
± lim

x→xi

lk(x)
df

dx
(x, k)

)
= 0, (2.6)

where the sign + is taken for right limits and the sign − for left limits. In the case of an exterior vertex Oi , the gluing
condition (2.6) reduces to

lim
x→xi

lk(x)
df

dx
(x, k)= 0, (2.7)

along the only edge Ik terminating in Oi .
In [6, Theorem 1.1] it has been proven that for any domain G satisfying properties I, II and III, there exists a

continuous Markov process Z̄(t), t ≥ 0, on the graph � having L̄ as its generator. In what follows we shall denote by
P̄(x,k) and Ē(x,k) the probability and the expectation associated to the process Z̄(t), starting from the point (x, k) ∈ �.
Moreover, we shall denote by S̄(t), t ≥ 0, the transition semigroup associated with Z̄(t), defined by

S̄(t)f (x, k)= Ē(x,k)f
(
Z̄(t)

)
, t ≥ 0, (x, k) ∈ �,

for any f : �→R Borel and bounded.
As we mentioned above, in [6, Theorem 1.2] it has also been proven that the process �(Zε) is weakly convergent

to Z̄ in C([0, T ];�), for any T > 0 and z ∈G. Namely, for any bounded and continuous functional F on C([0, T ];�)

and z ∈G it holds

lim
ε→0

EzF
(
�
(
Zε(·)))= Ē�(z)F

(
Z̄(·)). (2.8)

3. Functions and operators on the graph �

In what follows, for every ε > 0 we denote Hε := L2(Gε). In the special case ε = 1, we denote H1 =:H . Moreover,
we shall denote by H̄ the space of measurable functions f : �→R such that

N∑
k=1

∫
Ik

∣∣f (x, k)
∣∣2lk(x) dx <+∞

(here N is the total number of edges in the graph �). The space H̄ turns out to be a Hilbert space, endowed with the
scalar product

〈f,g〉H̄ =
N∑

k=1

∫
Ik

f (x, k)g(x, k)lk(x) dx.

Notice that, if we denote by ν the measure on � defined by

ν(A)=
N∑

k=1

∫
Ik

IA(x, k)lk(x) dx, A ∈ B(�), (3.1)

we have that H̄ = L2(�, ν).
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Now, for any u ∈H we define

u∧(x, k)= 1

lk(x)

∫
Ck(x)

u(x, y) dy, (x, k) ∈ �, (3.2)

and for any f ∈ H̄ we define

f ∨(x, y)= f
(
�(x,y)

)
, (x, y) ∈G.

For any f ∈ H̄ and u ∈H we have〈
u∧, f

〉
H̄
= 〈u,f ∨

〉
H

, (3.3)

as

〈
u∧, f

〉
H̄
=

∞∑
k=1

∫
Ik

1

lk(x)

∫
Ck(x)

u(x, y) dyf (x, k)lk(x) dx =
∞∑

k=1

∫
Ik

∫
Ck(x)

u(x, y)f ∨(x, y) dy dx.

Moreover, for any f ∈ H̄ we have(
f ∨
)∧ = f. (3.4)

Actually, for any (x, k) ∈ � we have

(
f ∨
)∧

(x, k) = 1

lk(x)

∫
Ck(x)

f ∨(x, y) dy

= 1

lk(x)

∫
Ck(x)

f
(
�(x,y)

)
dy = 1

lk(x)

∫
Ck(x)

f (x, k) dy = f (x, k).

In particular, from (3.3) and (3.4), we get that for any f,g ∈ H̄〈
f ∨, g∨

〉
H
= 〈(f ∨)∧, g

〉
H̄
= 〈f,g〉H̄ . (3.5)

This implies the following result.

Lemma 3.1. If {fn}n∈N is an orthonormal system in H̄ , then the family of functions {f ∨n }n∈N is an orthonormal
system in H .

Moreover, we have the following result.

Lemma 3.2. The mapping f ∈ H̄ �→ f ∨ ∈H is an isometry and the mapping u ∈H �→ u∧ ∈ H̄ is a contraction.

Proof. Due to (3.5), we have∣∣f ∨∣∣2
H
= 〈f ∨, f ∨

〉
H
= 〈f,f 〉H̄ = |f |2H̄ .

Moreover, as a consequence of the Hölder inequality, we have

∣∣u∧∣∣2
H̄
=

N∑
k=1

∫
Ik

∣∣∣∣ 1

lk(x)

∫
Ck(x)

u(x, y) dy

∣∣∣∣
2

lk(x) dx

≤
N∑

k=1

∫
Ik

1

lk(x)

∫
Ck(x)

∣∣u(x, y)
∣∣2 dylk(x) dx =

N∑
k=1

∫
Ik

∫
Ck(x)

∣∣u(x, y)
∣∣2 dy dx = |u|2H .

�
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Remark 3.3. If f ∈ C(�̄), then clearly f ∨ ∈ C(Ḡ). On the other hand, if ϕ ∈ C(Ḡ), it is not true, in general, that
ϕ∧ ∈ C(�̄). Actually, ϕ∧ may fail to be continuous in correspondence of the interior vertices.

Now, let {fn}n∈N be a complete orthonormal system in H̄ . In what follows, we will denote by K1 := 〈f ∨n 〉n∈N and
by K2 :=K⊥

1 , so that H =K1⊕K2. This means that any u ∈H can be written as u1+ u2, with ui ∈Ki , for i = 1,2.

Lemma 3.4. We have

u ∈K2 ⇐⇒ u∧ = 0. (3.6)

Moreover,

u ∈K1 ⇐⇒ (
u∧
)∨ = u. (3.7)

Proof. Thanks to (3.3), for any n ∈N we have〈
u∧, fn

〉
H̄
= 〈u,f ∨n

〉
H

.

Since {fn}n∈N is a complete orthonormal system in H̄ , this implies (3.6).
Next, if u ∈K1, then due to (3.3) and (3.4)

u∧ =
∞∑

j=1

〈
u,f ∨j

〉
H

(
f ∨j
)∧ = ∞∑

j=1

〈
u,f ∨j

〉
H

fj .

Therefore, we get

(
u∧
)∨ = ∞∑

j=1

〈
u,f ∨j

〉
H

f ∨j = u.
�

Now, for any Q ∈ L(H) and f ∈ H̄ , we define

Q∧f = (Qf ∨
)∧

. (3.8)

Due to Lemma 3.2, it is immediate to check that Q∧ ∈ L(H̄ ) and∥∥Q∧∥∥
L(H̄ )

≤ ‖Q‖L(H).

Moreover, thanks again to Lemma 3.2, if {fn}n∈N is a complete orthonormal system in H̄ , we have

∞∑
n=1

∣∣Q∧fn

∣∣2
H̄
=

∞∑
n=1

∣∣(Qf ∨n
)∧∣∣2

H̄
≤

∞∑
n=1

∣∣Qf ∨n
∣∣2
H

,

so that, thanks to Lemma 3.1, we have the following result

Lemma 3.5. If Q ∈ L2(H), then Q∧ ∈ L2(H̄ ) and∥∥Q∧∥∥
L2(H̄ )

≤ ‖Q‖L2(H).

Next, for any A ∈ L(H̄ ) and u ∈H we define

A∨u= (Au∧
)∨

. (3.9)
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Due to Lemma 3.2, we have that A∨ ∈ L(H) and∥∥A∨∥∥L(H)
≤ ‖A‖L(H̄ ).

Moreover, we have(
A∨
)∧ =A. (3.10)

Actually, due to (3.4), for any f ∈ H̄ we have(
A∨
)∧

f = (A∨f ∨
)∧ = ((A(f ∨)∧)∨)∧ =Af,

so that (3.10) follows. Notice that in general (Q∧)∨ �=Q, for Q ∈ L(H), as in general (u∧)∨ �= u, for u ∈H . Actually,
as a consequence of Lemma 3.4, we have(

Q∧)∨ =Q ⇐⇒ KerQ⊆K2, ImQ⊆K1.

4. An approximation result

We assume here that the domain G has the special form

G= {(x, y) ∈R
2 : h1(x)≤ y ≤ h2(x), x ∈R

}
,

for some functions h1, h2 ∈ C3
b(R), such that

h2(x)− h1(x)=: l(x)≥ l0 > 0, x ∈R. (4.1)

In this case we have

∂G= {(x,h1(x)
) : x ∈R

}∪ {(x,h2(x)
) : x ∈R

}
,

and, for any x ∈R,

ν
(
x,hi(x)

)= (1+ ∣∣h′i (x)
∣∣2)−1/2(

(−1)ih′i (x), (−1)i+1), i = 1,2.

The corresponding graph � consists of just one edge I1 =R and the projected process �(Zε(t)) is (Xε(t),1). More-
over, the limiting process Z̄(t), described in Section 2, is the solution of the stochastic equation

dZ̄(t)= 1

2

l′(Z̄(t))

l(Z̄(t))
dt + dB(t), Z̄(0)= x.

Lemma 4.1. There exists ε0 > 0 such that for any ε ≤ ε0, z ∈G and 0≤ r < t

φε(t)− φε(r)≤ cε2(1+ (t − r)
)+ ε2

∣∣∣∣
∫ t

r

F
ε,z
1 (s) dB1(s)

∣∣∣∣+ ε

∣∣∣∣
∫ t

r

F
ε,z
2 (s) dB2(s)

∣∣∣∣+ c(t − r), (4.2)

where F
ε,z
1 (t) and F

ε,z
2 (t) are two adapted processes such that

sup
ε>0,z∈G,t≥0

(∣∣Fε,z
1 (t)

∣∣+ ∣∣Fε,z
1 (t)

∣∣)=:M <∞, P-a.s.

Proof. By proceeding as in [6, Section 3], we denote by u(x, y) the solution of the problem⎧⎪⎪⎨
⎪⎪⎩

∂2u

∂y2 (x, y)=− 1
l(x)

(

√
1+ |h′1(x)|2 +

√
1+ |h′2(x)|2), (x, y) ∈G,

∂u
∂y

(x,h1(x))=
√

1+ |h′1(x)|2, ∂u
∂y

(x,h2(x))=−
√

1+ |h′2(x)|2,
u(x,h1(x))= 0, x ∈R.

(4.3)
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It is easy to compute explicitly u and it turns out that u ∈C2
b(G). As a consequence of the Itô formula, we have

u
(
Zε(t)

)− u
(
Zε(r)

) = ∫ t

r

∂u

∂x

(
Zε(s)

)
dB1(s)+ 1

ε

∫ t

r

∂u

∂y

(
Zε(s)

)
dB2(s)

+
∫ t

r

[
∂u

∂x

(
Zε(s)

)
ν1
(
Zε(s)

)+ 1

ε2

∂u

∂y

(
Zε(s)

)
ν2
(
Zε(s)

)]
dφε(s)

+ 1

2

∫ t

r

[
∂2u

∂x2

(
Zε(s)

)+ 1

ε2

∂2u

∂y2

(
Zε(s)

)]
ds,

so that, thanks to (4.3), we obtain

u
(
Zε(t)

)− u
(
Zε(r)

) = ∫ t

r

∂u

∂x

(
Zε(s)

)
dB1(s)+ 1

ε

∫ t

r

∂u

∂y

(
Zε(s)

)
dB2(s)

+
∫ t

r

∂u

∂x

(
Zε(s)

)
ν1
(
Zε(s)

)
dφε(s)+ 1

2

∫ t

r

∂2u

∂x2

(
Zε(s)

)
ds − 1

ε2

∫ t

r

α
(
Xε(s)

)
ds

+ 1

ε2

(
φε(t)− φε(r)

)
,

where

α(x)= 1

l(x)

(√
1+ ∣∣h′1(x)

∣∣2 +√1+ ∣∣h′2(x)
∣∣2).

This implies

φε(t)− φε(r) = ε2(u(Zε(t)
)− u

(
Zε(r)

))
− ε2

∫ t

r

∂u

∂x

(
Zε(s)

)
dB1(s)− ε

∫ t

r

∂u

∂y

(
Zε(s)

)
dB2(s)

− ε2
∫ t

r

∂u

∂x

(
Zε(s)

)
ν1
(
Zε(s)

)
dφε(s)− ε2

2

∫ t

r

∂2u

∂x2

(
Zε(s)

)
ds +

∫ t

r

α
(
Xε(s)

)
ds,

and then

φε(t)− φε(r) ≤ cε2(1+ (t − r)
)+ ε2

∣∣∣∣
∫ t

r

∂u

∂x

(
Zε(s)

)
dB1(s)

∣∣∣∣+ ε

∣∣∣∣
∫ t

r

∂u

∂y

(
Zε(s)

)
dB2(s)

∣∣∣∣
+ cε2(φε(t)− φε(r)

)+ ∫ t

r

α
(
Xε(s)

)
ds.

In particular, if we take ε0 = 1/
√

c2, we can conclude that

φε(t)− φε(r) ≤ cε2(1+ (t − r)
)+ c(t − r)

+ ε2
∣∣∣∣
∫ t

r

∂u

∂x

(
Zε(s)

)
dB1(s)

∣∣∣∣+ ε

∣∣∣∣
∫ t

r

∂u

∂y

(
Zε(s)

)
dB2(s)

∣∣∣∣, ε ≤ ε0,

and this yields (4.2). �

Now, for any ε, γ > 0, we consider the stochastic Skorokhod problem{
dZε,γ (t)=√σ̂ε dB(t)+ σ̂εν(Zε,γ (t)) dφε,γ (t), t ∈ [kγ, (k + 1)γ ),

Zε,γ (kγ )=Zε(kγ ),
(4.4)
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where

σ̂ε =
(

0 0
0 ε−2

)
. (4.5)

Clearly, for any t ∈ [kγ, (k + 1)γ ) the variable Zε,γ (t) lives in the random interval

C
(
Xε(kγ )

)= [h1
(
Xε(kγ )

)
, h2

(
Xε(kγ )

)]
.

Moreover, for any t ∈ [kγ, (k + 1)γ ) we have that Zε,γ (t)= (Xε(kγ ),Y ε,γ (t)), where Y ε,γ solves the problem{
dY ε,γ (t)= 1

ε
dB2(t)+ 1

ε2 ν2(X
ε
z(kγ ),Y ε,γ (t)) dφε,γ (t), t ∈ [kγ, (k + 1)γ ),

Y ε,γ (kγ )= Y ε
z (kγ ).

Lemma 4.2. For any p ≥ 1 there exists cp > 0 such that for any ε, γ > 0, k ∈N and t, s ∈ [kγ, (k + 1)γ )

sup
z∈G

Ez

∣∣φε,γ (t)− φε,γ (s)
∣∣p ≤ cp

(
γ p + εpγ p/2 + ε2p

)
. (4.6)

Proof. We have that(
Zε,γ (t + kγ ),φε,γ (t + kγ )

)∼ (Zε
1(t), φ

ε
1(t)

)
, t ∈ [0, γ ),

where{
dZε

1(t)=
√

σ̂ε dB1(t)+ σ̂εν(Zε
1(t)) dφε

1(t), t ∈ [0, γ ),

Zε
1(0)=Zε(kγ ),

(4.7)

for some 2-dimensional Brownian motion B1(t) such that Zε(kγ ) is independent of B1(t), for t ≥ 0. Moreover, we
have (

Zε
1(t), φ

ε
1(t)

)∼ (Z2
(
t/ε2), ε2φ2

(
t/ε2)),

where{
dZ2(t)=

√
σ̂1 dB̃(t)+ σ̂1ν(Z2(t)) dφ2(t), t ∈ [0, γ /ε2),

Z2(0)=Zε(kγ ),
(4.8)

for some Brownian motion B̃(t) such that Zε(kγ ) is independent of B̃(t), for t ≥ 0. In particular, this implies that for
any t, s ∈ [kγ, (k + 1)γ )

Ez

∣∣φε,γ (t)− φε,γ (s)
∣∣p = ε2p

Ẽ
∣∣φ2
(
(t − kγ )/ε2)− φ2

(
(s − kγ )/ε2)∣∣p. (4.9)

Now, if u is the same function introduced in (4.3), from Itô’s formula we have

u
(
Z2(t)

)− u
(
Z2(s)

) = 1

2

∫ t

s

∂2u

∂y2

(
Z2(r)

)
dr

+
∫ t

s

∂u

∂y

(
Z2(r)

)
ν2
(
Z2(r)

)
dφ2(r)+

∫ t

s

∂u

∂y

(
Z2(r)

)
dB̃(r)

= −
∫ t

s

α
(
Xε(kγ )

)
dr +

∫ t

s

∂u

∂y

(
Z2(r)

)
dB̃(r)+ φ2(t)− φ2(s).

This implies

Ẽ
∣∣φ2(t)− φ2(s)

∣∣p ≤ cp

(|t − s|p + |t − s|p/2 + 1
)
,
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so that, thanks to (4.9), we can conclude

Ez

∣∣φε,γ (t)− φε,γ (s)
∣∣p ≤ cpε2p

( |t − s|p
ε2p

+ |t − s|p/2

εp
+ 1

)
≤ cp

(
γ p + εpγ p/2 + ε2p

)
. �

Now, we can prove the main result of this section.

Theorem 4.3. Assume that

G= {(x, y) ∈R
2 : h1(x)≤ y ≤ h2(x), x ∈R

}
,

for some h1, h2 ∈ C3
b(R), such that

inf
x∈Rh2(x)− h1(x) := l0 > 0.

Then, there exists κ1 > 0 such that, if we set γε = ε2 log ε−κ1 , for any T > 0 it holds

lim
ε→0

sup
z∈G

sup
t∈[0,T ]

Ez

∣∣Zε(t)−Zε,γε (t)
∣∣2 = 0. (4.10)

Proof. In what follows, for the sake of simplicity, we shall denote

Ŷ ε(t) := Y ε,γε (t), Ẑε(t) := Zε,γε (t), φ̂ε(t) := φε,γε (t), ε > 0.

As we are assuming the domain G to be a smooth and bounded open sets of R2, by proceeding as in [8] we can
introduce an extension � ∈ C1

b(R2) of the distance function d(·, ∂G), which is defined on the restriction to G of a
neighborhood of ∂G, such that

∇�(x,y)= ν(x, y), (x, y) ∈ ∂G. (4.11)

Then, for each ε > 0 we define

Hε(t) := exp

(
− 1

α

[
�
(
Zε(t)

)+�
(
Ẑε(t)

)])
, t ≥ 0,

where α > 0 is some constant to be chosen later. Notice that, as � is bounded, for any α > 0 there exists cα > 0 such
that

cα < Hε(t) <
1

cα

, t ≥ 0. (4.12)

It is immediate to check that

{
d(Zε − Ẑε)(t)= σ dB(t)+ σεν(Zε(t)) dφε(t)− σ̂εν(Ẑε(t)) dφ̂ε(t), t ∈ [kγε, (k + 1)γε),

(Zε − Ẑε,γ )(kγε)= 0,

where

σ =√σε −
√

σ̂ε =
(

1 0
0 0

)
.
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Then, if we set �Yε(t)= Y ε(t)− Ŷ ε(t), for t ≥ 0, thanks to (2.3), (4.4) and (4.11), as a consequence of Itô’s formula
we obtain that for any k ∈N and t ∈ [kγε, (k + 1)γε)

Hε(t)
∣∣�Yε(t)

∣∣2
= 2

ε2

∫ t

kγε

Hε(s)
[
�Yε(s)ν2

(
Zε(s)

)
dφε(s)−�Yε(s)ν2

(
Ẑε(s)

)
dφ̂ε(s)

]
ds

− 1

α

∫ t

kγε

Hε(s)
∣∣�Yε(s)

∣∣2[〈∇�
(
Zε(s)

)
,
√

σε dB(s)
〉+ 〈∇�

(
Ẑε(s)

)
,
√

σ̂ε dB(s)
〉

+ 〈∇�
(
Zε(s)

)
, σεν

(
Zε(s)

)〉
dφε(s)+ 〈∇�

(
Ẑε(s)

)
, σ̂εν

(
Ẑε(s)

)〉
dφ̂ε(s)

+ 1

2
Tr
[
D2�

(
Zε(s)

)
σε

]
ds + 1

2
Tr
[
D2�

(
Ẑε(s)

)
σ̂ε

]
ds

]

+ 1

α2

∫ t

kγε

Hε(s)
∣∣�Yε(s)

∣∣2 1

ε2

∣∣ν1
(
Zε(s)

)+ ν1
(
Ẑε(s)

)∣∣2∣∣ν2
(
Zε(s)

)+ ν2
(
Ẑε(s)

)∣∣2 ds. (4.13)

Now, we have

1

ε2
�Yε(s)ν2

(
Zε(s)

)− 1

2α

∣∣�Yε(s)
∣∣2〈∇�

(
Zε(s)

)
, σεν

(
Zε(s)

)〉
= 1

ε2

〈
Zε(s)− Ẑε(s), ν

(
Zε(s)

)〉− 1

ε2

(
Xε(s)− X̂ε(s)

)
ν1
(
Zε(s)

)
− 1

2α

(∣∣Zε(s)− Ẑε(s)
∣∣2 − ∣∣Xε(s)− X̂ε(s)

∣∣2)(ν2
1(s)+ 1

ε2
ν2

2(s)

)

≤ 1

ε2

(〈
Zε(s)− Ẑε(s), ν

(
Zε(s)

)〉− 1

2α

∣∣Zε(s)−Zε(s)
∣∣2)

− 1

ε2

(
Xε(s)− X̂ε(s)

)
ν1
(
Zε(s)

)+ c

2αε2

∣∣Xε(s)− X̂ε(s)
∣∣2,

last inequality following from the fact that for any z ∈G and ε ∈ (0,1)

c

ε2
:= 1

ε2

(
1+ ∣∣h′2∣∣2∞)−1 ≤ ν2

1(z)+ 1

ε2
ν2

2(z)≤ 1

ε2
.

Then, thanks to (2.1), there exists α > 0 such that we have

1

ε2
�Yε(s)ν2

(
Zε(s)

)
dφε(s)− 1

2α

∣∣�Yε(s)
∣∣2〈∇�

(
Zε(s)

)
, σεν

(
Zε(s)

)〉
dφε(s)

≤ 1

ε2

(
1

2α

∣∣Xε(s)− X̂ε(s)
∣∣2 − (Xε(s)− X̂ε(s)

)
ν1
(
Zε(s)

))
dφε(s). (4.14)

In the same way, we have

− 1

ε2
�Yε(s)ν2

(
Ẑε(s)

)
dφ̂ε(s)− 1

2α

∣∣�Yε(s)
∣∣2〈∇�

(
Ẑε(s)

)
, σ̂εν

(
Ẑε(s)

)〉
dφ̂ε(s)

≤ 1

ε2

(
1

2α

∣∣Xε(s)− X̂ε(s)
∣∣2 + (Xε(s)− X̂ε(s)

)
ν1
(
Ẑε(s)

))
dφ̂ε(s). (4.15)
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Thus, if we use (4.14) and (4.15) in (4.13), thanks to (4.12) we get

∣∣�Yε(t)
∣∣2 ≤ c

ε2

∫ t

kγε

(∣∣Xε(s)− X̂ε(s)
∣∣2 + ∣∣Xε(s)− X̂ε(s)

∣∣)(dφε(s)+ dφ̂ε(s)
)

+
∣∣∣∣
∫ t

kγε

Hε(s)
∣∣�Yε(s)

∣∣2[〈∇�
(
Zε(s)

)
,
√

σε dB(s)
〉+ 〈∇�

(
Ẑε(s)

)
,
√

σ̂ε dB(s)
〉]∣∣∣∣

+ c

ε2

∫ t

kγε

∣∣�Yε(s)
∣∣2 ds,

so that

∣∣�Yε(t)
∣∣2 ≤ c

ε2

∫ t

kγε

∣∣�Yε(s)
∣∣2 ds

+ c

ε2
sup

s∈[kγε,(k+1)γε]
(∣∣Xε(s)− X̂ε(s)

∣∣2 + ∣∣Xε(s)− X̂ε(s)
∣∣)

× [(φε
(
(k + 1)γε

)− φε(kγε)
)+ (φ̂ε

(
(k + 1)γε

)− φ̂ε(kγε)
)]

+
∣∣∣∣
∫ t

kγε

Hε(s)
∣∣�Yε(s)

∣∣2[〈∇�
(
Zε(s)

)
,
√

σε dB(s)
〉+ 〈∇�

(
Ẑε(s)

)
,
√

σ̂ε dB(s)
〉]∣∣∣∣.

This implies,

Ez

∣∣�Yε(t)
∣∣4 ≤ c

ε4

(
γε + ε2)∫ t

kγε

Ez

∣∣�Yε(s)
∣∣4 ds

+ c

ε4
�ε

(
Ez

∣∣φε
(
(k + 1)γε

)− φε(kγε)
∣∣2 +Ez

∣∣φ̂ε
(
(k + 1)γε

)− φ̂ε(kγε)
∣∣2),

where

�ε := Ez sup
s∈[kγε,(k+1)γε]

(∣∣Xε(s)− X̂ε(s)
∣∣4 + ∣∣Xε(s)− X̂ε(s)

∣∣2).
Therefore, thanks to (4.2) and (4.6), we get

Ez

∣∣�Yε(t)
∣∣4 ≤ c

ε4

(
γε + ε2)∫ t

kγε

Ez

∣∣�Yε(s)
∣∣4 ds +�ε

[
1+

(
γε

ε2

)2]
,

and, since ε2/γε ≤ c, the Gronwall lemma gives

Ez

∣∣�Yε(t)
∣∣4 ≤ c�ε

[
1+

(
γε

ε2

)2]
exp

[
c

(
γε

ε2

)2]
. (4.16)

Now, for any s ∈ [kγε, (k + 1)γε] we have

Xε(s)− X̂ε(s)= B1(s)−B1(kγε)+
∫ s

kγε

ν1
(
Xε(r), Y ε(r)

)
dφε(r),

so that, thanks to (4.2), for any p ≥ 2

Ez sup
s∈[kγε,(k+1)γε]

∣∣Xε(s)− X̂ε(s)
∣∣p ≤ cpγ p/2

ε + cpEz

∣∣φε
(
(k + 1)γε

)− φε(kγε)
∣∣p ≤ cpγ p/2

ε .
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This implies �ε ≤ cγε , so that from (4.16) we get

Ez

∣∣�Yε(t)
∣∣4 ≤ cγε

[
1+

(
γε

ε2

)2]
exp

[
c

(
γε

ε2

)2]

= cε2 log ε−κ1
(
1+ (log ε−κ1

)2)
exp

(
c log ε−κ1

)
.

Therefore, if we take κ1 < c/2, we can conclude that (4.10) holds true. �

5. The Neumann problem associated with the operator Lε

For any ε > 0, we define

Lεu(x, y)= 1

2

(
∂2u

∂x2
+ 1

ε2

∂2u

∂y2

)
(x, y)= 1

2
div(σε∇u)(x, y), (x, y) ∈G. (5.1)

For any ε > 0, the uniformly elliptic second order differential operator Lε , endowed with the co-normal derivative
boundary condition

∇u · σεν|∂G
= 0,

generates a strongly continuous analytic semigroup Sε(t), t ≥ 0, in the Hilbert space H and in the Banach space C(Ḡ).
The generator of Sε(t) will be denoted by Lε . For a proof of all these results see e.g. [9]. Moreover, the Lebesgue
measure on G is invariant for the semigroup Sε(t), so that Sε(t) is a contraction on H .

In the present section we consider the Cauchy linear problem associated with Lε{
∂ρε

∂t
(t, x, y)= Lερε(t, x, y), (x, y) ∈G, t > 0,

∇ρε(t, x, y) · σεν(x, y)= 0, (x, y) ∈ ∂G, ρε(0, x, y)= ϕ(x, y), (x, y) ∈G.
(5.2)

It is well known (for a proof see e.g. [3, Theorem 2.5.1]) that the solution ρε(t) to problem (5.2) has a probabilistic
representation in terms of the solution of the stochastic equation with reflection (2.3). Namely, it holds

ρε(t, z)= Sε(t)ϕ(z)= Ezϕ
(
Zε(t)

)
, t ≥ 0, z= (x, y) ∈G.

Our aim here is studying the limiting behavior of ρε(t), as ε ↓ 0.
To this purpose, we first introduce some notation (see [6] for all details). For any edge Ik = {(x, k) : ak ≤ x ≤ bk}

on the graph � and for any ak ≤ a < b ≤ bk , we denote

Gk(a, b) := {(x, y) ∈�−1(Ik) : a < x < b
}
, Gk[a, b] := {(x, y) ∈�−1(Ik) : a ≤ x ≤ b

}
,

and for any δ > 0 we define

G(δ) :=
N⋃

k=1

Gk[ak + δ, bk − δ].

For any vertex Oi = (xi, k1)= · · · = (xi, ksi ) and a < xi < b we denote

G(Oi, a, b) :=
si⋃

j=1

{
(x, y) ∈�−1(Ikj

) : x ∈ (a, b)
}
.

Finally, for any vertex Oi and edge Ik , having Oi = (xi, k) as one of its endpoints, and for any δ > 0 we denote

Cik(δ) :=
{
(x, y) ∈�−1(Ik) : x = xi ± δ

}
,
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and then we set

C(δ) :=
⋃
i,k

Cik(δ).

Notice that if 0 < δ′ < δ, then

Cik

(
δ′
)⊂G(Oi, xi − δ, xi + δ).

Next, for any ε, δ, δ′ > 0, with 0 < δ′ < δ, we introduce the following sequence of stopping times

σε,δ,δ′
n =min

{
t ≥ τ ε,δ,δ′

n :Zε(t) ∈G(δ)
}
, τ ε,δ,δ′

n =min
{
t > σ

ε,δ,δ′
n−1 :Zε(t) ∈C

(
δ′
)}

,

with τ
ε,δ,δ′
0 = 0. For any fixed ε > 0 we have that

lim
n→∞ τ ε,δ,δ′

n = lim
n→∞σε,δ,δ′

n =∞, P-a.s.

and for any n ∈N

Zε
(
τ ε,δ,δ′
n

) ∈ C
(
δ′
)
, Zε

(
σε,δ,δ′

n

) ∈C(δ).

Moreover, if Zε(0) ∈G(δ), we have that σ
ε,δ,δ′
0 = 0 and τ

ε,δ,δ′
1 is the first time the process Zε(t) touches C(δ′).

Lemma 5.1. If G satisfies assumptions I–IV, then, for any 0 < τ < T and for any ϕ ∈C(Ḡ) and z ∈G

lim
ε→0

sup
t∈[τ,T ]

∣∣Ez

(
ϕ∧
)∨(

Zε(t)
)− Ē�(z)ϕ

∧(Z̄(t)
)∣∣= 0. (5.3)

Proof. As a consequence of limit (2.8) (whose proof can be found in [6, Theorem 1.2]) and of the Skorokhod embed-
ding theorem, we have that for any ψ ∈C(�̄)

lim
ε→0

sup
t∈[0,T ]

∣∣Ezψ
∨(Zε(t)

)− Ē�(z)ψ
(
Z̄(t)

)∣∣= 0. (5.4)

Thus, if ϕ∧ were continuous on �̄, then (5.3) would follow from (5.4). Unfortunately, if ϕ ∈ C(Ḡ) in general ϕ∧ is
not continuous on �̄, so that we cannot use (5.4) directly and we have to use an approximation argument.

If ϕ ∈ C(Ḡ), it is immediate to check that ϕ∧ is everywhere continuous but at the interior vertices of the graph �.
However, for any δ > 0 there exists ψδ ∈C(�̄) such that

‖ψδ‖∞ ≤
∥∥ϕ∧∥∥∞, ψδ ≡ ϕ∧ on �

(
G(δ/2)

)
.

In correspondence of each δ > 0, we have

Ez

(
ϕ∧
)∨(

Zε(t)
)− Ē�(z)ϕ

∧(Z̄(t)
)

= Ez

[(
ϕ∧
)∨(

Zε(t)
)−ψ∨δ

(
Zε(t)

)]+ [Ezψ
∨
δ

(
Zε(t)

)− Ē�(z)ψδ

(
Z̄(t)

)]+ Ē�(z)

[
ψδ

(
Z̄(t)

)− ϕ∧
(
Z̄(t)

)]
=: I ε,δ

1 (t)+ I
ε,δ
2 (t)+ I δ(t).

If we can show that for any δ > 0 there exists some εδ > 0 such that

lim
δ→0

sup
ε∈(0,εδ)

sup
t∈[τ,T ]

∣∣I ε,δ
1 (t)

∣∣= 0, (5.5)

and

lim
δ→0

sup
t∈[τ,T ]

∣∣I δ(t)
∣∣= 0, (5.6)
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then for any η > 0 we can find δη > 0 and εη > 0 such that

sup
t∈[τ,T ]

∣∣Ez

(
ϕ∧
)∨(

Zε(t)
)− Ē�(z)ϕ

∧(Z̄(t)
)∣∣≤ η+ sup

t∈[τ,T ]
∣∣I ε,δη

2 (t)
∣∣, ε ≤ εη. (5.7)

Since ψδ ∈ C(�̄), due to (5.4) we have

lim
ε→0

sup
t∈[τ,T ]

∣∣I ε,δη

2 (t)
∣∣= 0,

and then, due to the arbitrariness of η, from (5.7) we can conclude that (5.3) holds.
In order to prove (5.5), we write

I
ε,δ
1 (t)= Ez

(
�ε,δ(t); t ∈

⋃
n∈N

[
τ

ε,δ,δ/2
n , σ

ε,δ,δ/2
n

))+Ez

(
�ε,δ(t); t ∈

⋃
n∈N

[
σ

ε,δ,δ/2
n , τ

ε,δ,δ/2
n+1

))
,

where

�ε,δ(t) :=
(
ϕ∧
)∨(

Zε(t)
)−ψ∨δ

(
Zε(t)

)
.

Recalling that ϕ∧ ≡ψδ on �(G(δ/2)), this yields

I
ε,δ
1 (t) = Ez

(
�ε,δ(t); t ∈

⋃
n∈N

[
τ

ε,δ,δ/2
n , σ

ε,δ,δ/2
n

))

=
∑
n∈N

Ez

(
�ε,δ(t)I{τε,δ,δ/2

n ≤t}I{σε,δ,δ/2
n >t}

) :=∑
n∈N

J
ε,δ
1,n(t).

Due to the strong Markov property,

∣∣J ε,δ
1,n(t)

∣∣ ≤ Ez

(
I{τε,δ,δ/2

n ≤t}
∣∣E

Zε(τ
ε,δ,δ/2
n )

(
�ε,δ(t);σε,δ,δ/2

0 > t
)∣∣)

≤ Pz

(
τ

ε,δ,δ/2
n ≤ t

)
�ε,δ(t)≤ et

Ez

(
e−τ

ε,δ,δ/2
n

)
�ε,δ(t), (5.8)

where

�ε,δ(t) := sup
z∈C(δ/2)

∣∣Ez

(
�ε,δ(t);σε,δ,δ/2

0 > t
)∣∣.

Now, in [6, Lemma 3.10] it is proven that if τ ε = τ ε(ak + δ′, bk − δ′) is the first time the process Xε(t) leaves the
interval (ak + δ′, bk − δ′), then for any λ > 0

lim
δ→0

1

δ
lim
δ′→0

lim
ε→0

E(ak+δ,y)

(
1− exp

(−λτε
))

> 0,

and

lim
δ→0

1

δ
lim
δ′→0

lim
ε→0

E(bk−δ,y)

(
1− exp

(−λτε
))

> 0,

uniformly with respect to the points (ak + δ, y) and (bk − δ, y) in �−1(Ik). This implies that there exist 0 < δ′1 < δ1,
ρ̄ < δ−1

1 and ε1 > 0 such that for every ε ≤ ε1, δ ≤ δ1 and 0 < δ′ < δ′1 ∧ δ

sup
z∈C(δ)

Ez exp
(−τ

ε,δ,δ′
1

)≤ (1− ρ̄δ).
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Due to the strong Markov property, this yields

sup
z∈G

Ez exp
(−τ ε,δ,δ′

n

)≤ (1− ρ̄δ)n, (5.9)

for every ε ≤ ε1, δ ≤ δ1 and 0 < δ′ < δ′1 ∧ δ. This implies in particular that

∣∣I ε,δ
1 (t)

∣∣≤ et�ε,δ(t)
∑
n∈N

(1− ρ̄δ)n ≤ eT �ε,δ(t)
1

δρ̄
, t ∈ [0, T ]. (5.10)

Moreover, in [6, Lemma 6.2] it is proven that, for some δ2 > 0, for every 0 < δ ≤ δ2 there exists εδ > 0 such that
for all ε ∈ (0, εδ] and all z ∈G(Oi, xi − δ, xi + δ), with i = 1, . . . ,N , we have

Ezτ
ε
(
G(Oi, xi − δ, xi + δ)

)≤ 5δ2, (5.11)

where τ ε(G(Oi, xi − δ, xi + δ)) is the first exit time of Zε
z from G(Oi, xi − δ, xi + δ).

Therefore, if we set δ̄ := δ1 ∧ δ2, then for any δ ≤ δ̄, there exists εδ > 0 such that

�ε,δ(t)≤ 2

t

∥∥ϕ∧∥∥∞ sup
z∈G(Oi,xi−δ,xi+δ)

Ezσ
ε,δ,δ/2
0 ≤ c

τ
‖ϕ‖∞δ2, t ∈ [τ, T ].

This, together with (5.10), implies (5.5).
Now, for any δ > and t ≥ 0, we have∣∣I δ(t)

∣∣≤ 2‖ϕ‖∞P̄�(z)

(
Z̄(t) ∈�

(
G(δ/2)

)c)≤ 2‖ϕ‖∞Ē�(z)

(
fδ

(
Z̄(t)

))
,

for some fδ ∈ C(�̄) such that I�(G(δ/2))c ≤ fδ ≤ 1 and fδ ≡ 0 on �(G(δ)). This yields∣∣I δ(t)
∣∣≤ 2‖ϕ‖∞

∣∣Ē�(z)fδ

(
Z̄(t)

)−Ezf
∨
δ

(
Zε(t)

)∣∣+ 2‖ϕ‖∞
∣∣Ezf

∨
δ

(
Zε(t)

)∣∣.
According to (5.5), for any η > 0 there exists δη, εη > 0 such that

sup
t∈[τ,T ]

∣∣Ezf
∨
δ

(
Zε(t)

)∣∣< η, ε ≤ εη.

Then, for any ε ≤ εη

sup
t∈[τ,T ]

∣∣I δ(t)
∣∣≤ 2‖ϕ‖∞η+ 2‖ϕ‖∞ sup

t∈[τ,T ]
∣∣Ē�(z)fδ

(
Z̄(t)

)−Ezf
∨
δ

(
Zε(t)

)∣∣,
so that, due to (5.4) and the arbitrariness of η, we get (5.6). �

Now we can prove the main result of this section.

Theorem 5.2. If the domain G satisfies assumptions I–IV, then for any ϕ ∈ C(Ḡ) and z ∈G and for any 0 < τ ≤ T

we have

lim
ε→0

sup
t∈[τ,T ]

∣∣Ezϕ
(
Zε(t)

)− Ē�(z)ϕ
∧(Z̄(t)

)∣∣= 0. (5.12)

Proof. In Lemma 5.1 we have proven that for any τ > 0 and z ∈G

lim
ε→0

sup
t∈[τ,T ]

∣∣Ez

(
ϕ∧
)∨(

Zε(t)
)− Ē�(z)ϕ

∧(Z̄(t)
)∣∣= 0.

Thus, in order to prove (5.12), it is sufficient to show that

lim
ε→0

sup
t∈[τ,T ]

∣∣Ez

(
ϕ
(
Zε(t)

)− (ϕ∧)∨(Zε(t)
))∣∣= 0. (5.13)
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In what follows we can assume that ϕ ∈ Lip(Ḡ). Actually, for any ϕ ∈ C(Ḡ) there exists {ϕn}n∈N ⊂ Lip(Ḡ) such
that

lim
n→∞‖ϕn − ϕ‖∞ = 0.

As this implies

lim
n→∞

∥∥(ϕ∧n )∨ − (ϕ∧)∨∥∥∞ = 0,

we obtain that

lim
n→∞ sup

t∈[τ,T ]
(∣∣Ez

(
ϕ
(
Zε(t)

)− ϕn

(
Zε(t)

))∣∣+ ∣∣Ez

((
ϕ∧
)∨(

Zε(t)
)− (ϕ∧n )∨(Zε(t)

))∣∣)= 0,

uniformly with respect to ε > 0. Hence, for any η > 0 there exists nη ∈N such that

sup
t∈[τ,T ]

∣∣Ez

(
ϕ
(
Zε(t)

)− (ϕ∧)∨(Zε(t)
))∣∣≤ η+ sup

t∈[τ,T ]
∣∣Ez

(
ϕnη

(
Zε(t)

)− (ϕ∧nη

)∨(
Zε(t)

))∣∣.
For any fixed t > 0, we can assume that the partition introduced in (4.4) and in the proofs of Lemma 4.2 and of

Theorem 4.3, where we have defined the approximating process Ẑε = Ẑε,γε , is such that

t =
(

kε
t +

1

2

)
γε,

where γε is the positive constant defined in Theorem 4.3 and kε
t ∈ N. Notice that we can take ε > 0 small enough so

that γε < τ and hence, as t ≥ τ ,

t

2
< kε

t γε < t. (5.14)

Moreover, with the notations introduced in Section 4, we have

Ẑε(t)= (Xε
(
kε
t γε

)
, Y ε,γε (t)

)
,

and, because of the way Y ε,γε (t) has been defined, we have

Zε
(
kε
t γε

)= (Xε
(
kε
t γε

)
, Y ε

(
kε
t γε

)) ∈G(δ)  ⇒ Ẑε(t) ∈G(δ).

In the proof of (5.13) we will proceed in two steps.
Step 1. We show that for some 0 < δ̄′ < δ̄ and any δ ≤ δ̄ and δ′ < δ̄′ ∧ δ there exists εδ > 0 such that for any z ∈G

and ε ≤ εδ it holds

∣∣Ez

(
ϕ
(
Zε(t)

)− (ϕ∧)∨(Zε(t)
))∣∣≤ ceT

(‖ϕ‖∞
τ

δ + 1

δ
Lε

δ,δ′(t)

)
, t ∈ [τ, T ], (5.15)

where

Lε
δ,δ′(t) := sup

z∈C(δ)

∣∣Ez

(
ϕ
(
Zε(t)

)− (ϕ∧)∨(Zε(t)
); τ ε,δ,δ′

1 > kε
t γε

)∣∣. (5.16)

If we define

�ε(t) := ϕ
(
Zε(t)

)− (ϕ∧)∨(Zε(t)
)
,
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for any 0 < δ′ < δ and ε > 0 we have

Ez

(
ϕ
(
Zε(t)

)− (ϕ∧)∨(Zε(t)
))

= Ez

(
�ε(t); kε

t γε ∈
⋃
n∈N

[
τ ε,δ,δ′
n , σ ε,δ,δ′

n

))+Ez

(
�ε(t); kε

t γε ∈
⋃
n∈N

[
σε,δ,δ′

n , τ
ε,δ,δ′
n+1

))

=
∑
n∈N

Ez

(
I{τε,δ,δ′

n ≤kε
t γε}I{σε,δ,δ′

n >kε
t γε}�ε(t)

)+∑
n∈N

Ez

(
I{σε,δ,δ′

n ≤kε
t γε}I{τε,δ,δ′

n+1 >kε
t γε}�ε(t)

)

=:
∑
n∈N

J
ε,δ,δ′
1,n (t)+

∑
n∈N

J
ε,δ,δ′
2,n (t).

As a consequence of the strong Markov property, for each n ∈N we have

J
ε,δ,δ′
1,n (t)= Ez

(
I{τε,δ,δ′

n ≤kε
t γε}EZε(τ

ε,δ,δ′
n )

(
�ε(t);σε,δ,δ′

0 > kε
t γε

))
. (5.17)

Thanks to (5.11), for any δ > 0 sufficiently small there exists εδ > 0 such that for any ε ∈ (0, εδ)∣∣E
Zε(τ

ε,δ,δ′
n )

(
�ε(t);σε,δ,δ′

0 > kε
t γε

)∣∣≤ 2‖ϕ‖∞
kε
t γε

sup
z∈G(Oi,xi−δ,xi+δ)

Ezσ
ε,δ,δ′
0 ≤ 10‖ϕ‖∞

kε
t γε

δ2.

Therefore, due to (5.17), we have

∣∣J ε,δ,δ′
1,n (t)

∣∣≤ 10‖ϕ‖∞
kε
t γε

δ2
Pz

(
τ ε,δ,δ′
n ≤ kε

t γε

)≤ 10‖ϕ‖∞ekε
t γε

kε
t γε

δ2
Ez exp

(−τ ε,δ,δ′
n

)
. (5.18)

As in the proof of Lemma 5.1, according to (5.18) and (5.14), estimate (5.9) implies that for any 0 < δ′ < δ

sufficiently small, there exists εδ > 0 such that for any ε ≤ εδ

∑
n∈N

∣∣J ε,δ,δ′
1,n (t)

∣∣≤ c‖ϕ‖∞ekε
t γε

kε
t γε

δ2
∑
n∈N

(1− ρ̄δ)n ≤ c‖ϕ‖∞et

t

δ

ρ̄
≤ c‖ϕ‖∞ eT

τ
δ. (5.19)

Now, let us study J
ε,2
n (t). From the strong Markov property, we have∣∣J ε,δ,δ′

2,n (t)
∣∣ ≤ Ez

(
I{σε,δ,δ′

n ≤kε
t γε}

∣∣E
Zε(σ

ε,δ,δ′
n )

(
�ε(t); τ ε,δ,δ′

1 > kε
t γε

)∣∣)
≤ Pz

(
σε,δ,δ′

n ≤ kε
t γε

)
Lε

δ,δ′(t)≤ et
Ez exp

(−τ ε,δ,δ′
n

)
Lε

δ,δ′(t),

where Lε
δ,δ′(t) is the function defined in (5.16). Hence, thanks to (5.9), we get

∑
n∈N

∣∣J ε,δ,δ′
2,n (t)

∣∣≤∑
n∈N

(1− ρ̄δ)neT Lε
δ,δ′(t)≤

eT

δρ̄
Lε

δ,δ′(t),

for every ε ≤ ε1, δ ≤ δ1 and 0 < δ′ < δ′1 ∧ δ. This, together with (5.19), implies (5.15).
Step 2. For any 0 < δ′ < δ, it holds

lim
ε→0

sup
t∈[τ,T ]

Lε
δ,δ′(t)= 0. (5.20)

For any ε > 0 we have

ϕ
(
Zε(t)

)− (ϕ∧)∨(Zε(t)
) = [

ϕ
(
Zε(t)

)− ϕ
(
Ẑε(t)

)]
+ [ϕ(Ẑε(t)

)− (ϕ∧)∨(Ẑε(t)
)]+ [(ϕ∧)∨(Ẑε(t)

)− (ϕ∧)∨(Zε(t)
)]

=:
3∑

i=1

I ε
i (t).
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If we denote by hz the integer such that z ∈�−1(Ihz), we have

Ez

(∣∣I ε
1 (t)

∣∣; τ ε,δ,δ′
1 > kε

t γε

) = Ez

(∣∣I ε
1 (t)

∣∣; τ ε,δ,δ′
1 > kε

t γε, τ
ε,δ,δ′/2
1 >

(
kε
t + 1/2

)
γε

)
+Ez

(∣∣I ε
1 (t)

∣∣; τ ε,δ,δ′
1 > kε

t γε, τ
ε,δ,δ′/2
1 ≤ (kε

t + 1/2
)
γε

)
≤ Ez

(∣∣I ε
1 (t)

∣∣;Zε(t), Ẑε(t) ∈Ghz

(
ahz + δ′/2, bhz − δ′/2

))
+ 2‖ϕ‖∞Pz

(
τ

ε,δ,δ′
1 > kε

t γε, τ
ε,δ,δ′/2
1 ≤ (kε

t + 1/2
)
γε

)
.

Now, according to Theorem 4.3, since we are assuming ϕ ∈ Lip(Ḡ), we have that

lim
ε→0

sup
z∈C(δ)

sup
t∈[τ,T ]

Ez

(∣∣I ε
1 (t)

∣∣;Zε(t), Ẑε(t) ∈Ghz

(
ahz + δ′/2, bhz − δ′/2

))= 0. (5.21)

Moreover,

Pz

(
τ

ε,δ,δ′
1 > kε

t γε, τ
ε,δ,δ′/2
1 ≤ (kε

t + 1/2
)
γε

)
≤ Pz

(∣∣Xε
(
τ

ε,δ,δ′/2
1

)−Xε
(
kε
t γε

)∣∣≥ δ′/2, τ
ε,δ,δ′
1 > kε

t γε, τ
ε,δ,δ′/2
1 ≤ (kε

t + 1/2
)
γε

)
≤ Pz

(∣∣Xε
(
t ∧ τ

ε,δ,δ′/2
1

)−Xε
(
kε
t γε ∧ τ

ε,δ,δ′/2
1

)∣∣≥ δ′/2
)

≤
(

2

δ′

)2

Ez

∣∣Xε
(
t ∧ τ

ε,δ,δ′/2
1

)−Xε
(
kε
t γε ∧ τ

ε,δ,δ′/2
1

)∣∣2.
Since

Xε
(
t ∧ τ

ε,δ,δ′/2
1

)−Xε
(
kε
t γε ∧ τ

ε,δ,δ′/2
1

)

= B1
(
t ∧ τ

ε,δ,δ′/2
1

)−B1
(
kε
t γε ∧ τ

ε,δ,δ′/2
1

)+ ∫ t∧τ
ε,δ,δ′/2
1

kε
t γε∧τ

ε,δ,δ′/2
1

ν1
(
Xε(s), Y ε(s)

)
dφε(s),

from (4.2) we get

E
∣∣Xε

(
t ∧ τ

ε,δ,δ′/2
1

)−Xε
(
kε
t γε ∧ τ

ε,δ,δ′/2
1

)∣∣2 ≤ cγε,

so that

Pz

(
τ

ε,δ,δ′
1 > kε

t γε, τ
ε,δ,δ′/2
1 ≤ (kε

t + 1/2
)
γε

)≤ c
γε

(δ′)2
.

This, together with (5.21), implies that

lim
ε→0

sup
z∈C(δ)

sup
t∈[τ,T ]

Ez

(∣∣I ε
1 (t)

∣∣; τ ε,δ,δ′
1 > kε

t γε

)= 0. (5.22)

As (ϕ∧)∨ is continuous in G(δ), for any δ > 0, we can repeat the same arguments used for I ε
1 (t) to prove that

lim
ε→0

sup
z∈C(δ)

sup
t∈[τ,T ]

Ez

(∣∣I ε
3 (t)

∣∣; τ ε,δ,δ′
1 > kε

t γε

)= 0. (5.23)

Now, it remains to study

Ez

(
I ε

2 (t); τ ε,δ,δ′
1 > kε

t γε

)
.
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As a consequence of the Markov property, we have

Ez

(
I ε

2 (t); τ ε,δ,δ′
1 > kε

t γε

)= Ez

(
ψ
(
γε/2,Zε

(
kε
t γε

)); τ ε,δ,δ′
1 > kε

t γε

)
,

where

ψ(s, x, y)= E(x,y)ϕ
(
x,Y ε

1,(x,y)(s)
)− ϕ∧(x,h(x,y)),

h(x,y) is the integer defined by (x, y) ∈�−1(Ih(x,y)
), and Y ε

1,(x,y)
(s) is the process defined, as in (4.7), by the equation

dY ε
1,(x,y)(s)=

1

ε
dB(s)+ 1

ε2
ν2
(
x,Y ε

1,(x,y)(s)
)
dφε

1(s), s ∈ [0, γε), Y
ε
1,(x,y)(0)= y.

Now, by proceeding as in the proof of Lemma 4.2, we have that

ψ(s, x, y)= Ẽ(x,y)ϕ
(
x,Y2,(x,y)

(
s/ε2))− ϕ∧(x,h(x,y)),

where Y2,(x,y)(s) is defined, as in (4.8), by the equation

dY2,(x,y)(s)= dB̃(s)+ ν2
(
x,Y2,(x,y)(s)

)
dφ2(t), s ∈ [0, γε/ε

2), Y2,(x,y)(0)= y.

Notice that, due to our assumptions on the domain G, for any δ > 0 and k = 1, . . . ,N ,

Gk(ak + δ, bk − δ)= {(x, y) ∈R
2 : h1,k(x)≤ y ≤ h2,k(x), x ∈ (ak + δ, bk − δ)

}
,

for some smooth functions h1,k(x) and h2,k(x), and, if lk(x) is the length of the cross-section Ck(x) = {(x, y) ∈
Gk(ak + δ, bk − δ)}, we have

inf
x∈(ak+δ,bk−δ)

lk(x)= inf
x∈(ak+δ,bk−δ)

(
h2,k(x)− h1,k(x)

)=: lk,δ > 0.

For any (x, y) ∈Gk(ak + δ, bk − δ), the process Y2,(x,y)(s) lives in the interval [h1,k(x), h2,k(x)]. Because of the way
the process Y2,(x,y)(s) has been defined, for any f ∈C([h1,k(x), h2,k(x)]) we have

Ẽ(x,y)f
(
Y2,(x,y)(s)

)= ∞∑
j=0

e−sαk,j (x)
〈
f, ex

k,j

〉
ex
k,j , y ∈ [h1,k(x), h2,k(x)

]
,

where

ex
k,0(y)= 1√

lk(x)
, ex

k,j (y)=
√

2

lk(x)
cos

(
jπ

lk(x)

(
y − h1,k(x)

))
, j = 1,2, . . . ,

and

αk,0(x)= 0, αk,j (x)=−
(

jπ

lk(x)

)2

, j = 1,2, . . . .

Recalling how ϕ∧ is defined, this implies

ψ(s, x, y)=
∞∑

j=1

e−(s/ε2)αk,j (x)
〈
ϕ(x, ·), ex

k,j

〉
ex
k,j (y),
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so that for any ρ > 1/2 we have

∣∣ψ(s, x, y)
∣∣2 ≤ 2

lk(x)

∞∑
j=1

e−(2s/ε2)αk,j (x)
∞∑

j=1

∣∣〈ϕ(x, ·), ex
k,j

〉∣∣2 ≤ cρ‖ϕ‖2∞
(

s

ε2

)−ρ ∞∑
j=1

αk,j (x)−ρ

= cρ

(
lh(x,y)

(x)

π

)ρ

‖ϕ‖2∞
(

s

ε2

)−ρ ∞∑
j=1

k−2ρ ≤ cρ‖ϕ‖2∞
(

s

ε2

)−ρ

.

Therefore, we can conclude that∣∣Ez

(
I ε

2 (t); τ ε,δ,δ′
1 > kε

t γε

)∣∣ ≤ Ez

(∣∣ψ(γε/2,Zε
(
kε
t γε

))∣∣; τ ε,δ,δ′
1 > kε

t γε

)
≤ cρ‖ϕ‖∞

(
ε2

γε

)ρ/2

.

As we are assuming that ε2/γε → 0, as ε→ 0 (see Theorem 4.3), we can conclude that

lim
ε→0

sup
t∈[τ,T ]

Ez

(
I ε

2 (t); τ ε,δ,δ′
1 > kε

t γε

)= 0,

and, together with (5.22) and (5.23), this yields (5.20).
Conclusion. Due to (5.15), for any η > 0 we can fix 0 < δ′η < δη and εη > 0 such that for any ε ≤ εη

∣∣Ez

[
ϕ
(
Zε(t)

)− (ϕ∧)∨(Zε(t)
)]∣∣≤ η+ 1

δη

Lε
δη,δ′η (t), t ∈ [τ, T ].

Thus, according to (5.20), due to the arbitrariness of η we can conclude that (5.13) holds true, and (5.12) follows. �

In Sections 2 and 3, we have introduced the semigroups S̄(t) and Sε(t), associated respectively with the operators
L̄ and Lε . With these notations, as a consequence of (2.8), we have that for any f ∈C(�̄), z ∈G and t > 0

lim
ε→0

Sε(t)f
∨(z)= (S̄(t)f

)∨
(z). (5.24)

Now, in view of Theorem 5.2 we get also the following limit result.

Corollary 5.3. Under Hypotheses I–IV for the domain G, for any 0≤ τ < T , ϕ ∈C(Ḡ) and z ∈G, we have

lim
ε→0

sup
t∈[τ,T ]

∣∣Sε(t)ϕ(z)− S̄(t)∨ϕ(z)
∣∣= 0. (5.25)

Moreover, for any ϕ ∈H

lim
ε→0

sup
t∈[τ,T ]

∣∣Sε(t)ϕ − S̄(t)∨ϕ
∣∣
H
= lim

ε→0
sup

t∈[τ,T ]
∣∣(Sε(t)ϕ

)∧ − S̄(t)ϕ∧
∣∣
H̄
= 0. (5.26)

Proof. Since S̄(t)∨ϕ = (S̄(t)ϕ∧)∨, limit (5.25) is an immediate consequence of (5.12). Moreover, as

sup
z∈G

sup
t∈[τ,T ]

∣∣Sε(t)ϕ(z)
∣∣= sup

z∈G

sup
t∈[τ,T ]

∣∣Ezϕ
(
Zε(t)

)∣∣≤ ‖ϕ‖∞,

and

sup
z∈G

sup
t∈[τ,T ]

∣∣(S̄(t)ϕ∧
)∨

(z)
∣∣ = sup

(x,k)∈�

sup
t∈[τ,T ]

∣∣S̄(t)ϕ∧(x, k)
∣∣

= sup
(x,k)∈�

sup
t∈[τ,T ]

∣∣Ē(x,k)ϕ
∧(Z̄(t)

)∣∣≤ ‖ϕ∧‖∞ ≤ ‖ϕ‖∞,
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by the dominated convergence theorem, from (5.25) we get (5.26) for any ϕ ∈ C(Ḡ). Now, if ϕ ∈H , for any η > 0
we can find ϕ̄ ∈ C(Ḡ) such that |ϕ − ϕ̄|H ≤ η/4. This implies

∣∣Sε(t)ϕ − S̄(t)∨ϕ
∣∣
H
≤ ∣∣Sε(t)(ϕ − ϕ̄)− S̄(t)∨(ϕ − ϕ̄)

∣∣
H
+ ∣∣Sε(t)ϕ̄ − S̄(t)∨ϕ̄

∣∣
H

≤ η

2
+ ∣∣Sε(t)ϕ̄ − S̄(t)∨ϕ̄

∣∣
H

,

so that we can find εη > 0 such that

∣∣Sε(t)ϕ − S̄(t)∨ϕ
∣∣
H
≤ η

2
, ε ≤ εη.

Due to the arbitrariness of η, this implies (5.26) for a general ϕ ∈H . �

As the Lebesgue measure on G is invariant for the semigroup Sε(t), for any ε > 0 and ϕ ∈C(Ḡ)∫
G

Sε(t)ϕ(z) dz=
∫

G

ϕ(z) dz, t ≥ 0.

Now, due to (5.25) and the dominated convergence theorem, when we take the limit as ε goes to zero we get∫
G

S̄(t)∨ϕ(z) dz=
∫

G

ϕ(z) dz, t ≥ 0. (5.27)

Now, if we take f ∈ C(�̄), we have that f ∨ ∈ C(Ḡ), so that, thanks to (5.27) and (3.4), we get∫
G

(
S̄(t)f

)∨
(z) dz=

∫
G

(
S̄(t)

(
f ∨
)∧)∨

(z) dz=
∫

G

f ∨(z) dz. (5.28)

Moreover, thanks to (3.3), if ν is the measure defined in (3.1), for any g ∈ H̄ we have∫
G

g∨(z) dz= 〈g∨,1
〉
H
= 〈g,1〉H̄ =

∫
�

g dν.

Thus, according to (5.28), we can conclude∫
�

S̄(t)f dν =
∫

�

f dν, t ≥ 0.

This implies the following fact.

Theorem 5.4. The measure ν is invariant for the semigroup S̄(t). Hence S̄(t) extends to a contraction semigroup on
Lp(�, ν), for every p ≥ 1, and in particular on H̄ = L2(�, ν).

As S̄(t) extends to a contraction semigroup on H̄ , due to Lemma 3.2 we have that for any u ∈H

∣∣S̄(t)∨u
∣∣
H
= ∣∣(S̄(t)u∧

)∨∣∣
H
= ∣∣S̄(t)u∧

∣∣
H̄
≤ ∣∣u∧∣∣

H̄
≤ |u|H . (5.29)

Moreover, L̄ turns out to be symmetric in H̄ .

Lemma 5.5. For any f,g ∈D(L̄), it holds

〈L̄f, g〉H̄ = 〈f, L̄g〉H̄ .
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Proof. This is an immediate consequence of the boundary conditions imposed on functions in D(L̄) and of the
definition of the scalar product in H̄ . Actually, if f,g ∈D(L̄) we have

〈L̄f, g〉H̄ =
N∑

k=1

∫
Ik

Lkf (x, k)g(x, k)lk(x) dx = 1

2

N∑
k=1

∫
Ik

1

lk(x)

(
lkf

′)′(x, k)g(x, k)lk(x) dx

= 1

2

N∑
k=1

lkf
′g|∂Ik

− 1

2

N∑
k=1

∫
Ik

lk(x)f ′(x, k)g′(x, k) dx = 〈f, L̄g〉H̄ .
�

6. From the SPDE on the narrow channel Gε to the SPDE on the domain G

We are here interested in the following stochastic reaction diffusion equation in the narrow channel Gε{
∂vε

∂t
(t, x, y)= 1

2�vε(t, x, y)+ b(vε(t, x, y))+√ε ∂wQε

∂t
(t, x, y), (x, y) ∈Gε,

∂vε

∂νε
(t, x, y)= 0, (x, y) ∈ ∂Gε, vε(0, x, y)= u0(x, yε−1),

(6.1)

where ∂/∂νε denotes the normal derivative at the boundary of Gε . Here we assume that b : R→ R is a Lipschitz-
continuous function and u0 ∈ C(Ḡ). Moreover, we assume that wQε(t) is a cylindrical Wiener process taking values
in Hε = L2(Gε), having covariance operator Q�

εQε ∈ L+1 (Hε), that is, for any t, s ≥ 0 and u,v ∈Hε

E
〈
wQε(t), u

〉
Hε

〈
wQε(s), v

〉
Hε
= (t ∧ s)

〈
QεQ

�
εu, v

〉
Hε

. (6.2)

In particular, there exist some complete orthonormal system {eε
k}k∈N in Hε and some sequence of independent standard

Brownian motions {βε
k (t)}k∈N, all defined on the same stochastic basis, such that

wQε(t)(x, y)=
∞∑

k=1

Qεe
ε
k(x, y)βε

k (t), t ≥ 0.

For any ε1, ε2 > 0 and f ∈Hε1 , we define

Jε2,ε1f (x, y)=
√

ε1

ε2
f
(
x, ε1ε

−1
2 y

)
, (x, y) ∈Gε2 .

Clearly, Jε2,ε1 maps Hε1 into Hε2 , and for every ε1, ε2, ε3 > 0, we have

Jε3,ε2 ◦ Jε2,ε1 = Jε3,ε1 .

In particular, J−1
ε2,ε1

= Jε1,ε2 . Moreover

〈Jε2,ε1u,Jε2,ε1v〉Hε2
= 〈u,v〉Hε1

. (6.3)

Lemma 6.1. Let us fix ε1, ε2 > 0. Then, if {ek}k∈N is a complete orthonormal basis in Hε1 , we have that {Jε2,ε1ek}k∈N
is a complete orthonormal basis in Hε2 .

Proof. For any h, k ∈N, we have

〈Jε2,ε1ek, Jε2,ε1eh〉Hε2
= ε1

ε2

∫ ∫
Gε2

ek

(
x, ε1ε

−1
2 y

)
eh

(
x, ε1ε

−1
2 y

)
dx dy

=
∫ ∫

Gε1

ek(x, y)eh(x, y) dx dy = 〈ek, eh〉Hε1
= δk,h.



SPDEs on narrow domains and on graphs 891

Moreover, as

〈f,Jε2,ε1ek〉Hε2
= 〈Jε1,ε2f, ek〉Hε1

,

if {ek}k∈N is a complete system in Hε1 , we have

〈f,Jε2,ε1ek〉Hε2
= 0, ∀k ∈N ⇐⇒ Jε1,ε2f = 0 ⇐⇒ f = 0.

This implies the completeness of the system {Jε2,ε1ek}k∈N. �

Now, for any ε1, ε2 > 0 and Q ∈ L(Hε1), we define

Iε2,ε1Q= Jε2,ε1 ◦Q ◦ Jε1,ε2 ∈ L(Hε2).

Lemma 6.2. For every ε1, ε2 > 0, the operator Iε2,ε1 is an isometry from L(Hε1) into L(Hε2) and from L2(Hε1) into
L2(Hε2).

Proof. Due to (6.3), for any f ∈Hε1 we have

|Jε2,ε1f |Hε2
= |f |Hε1

,

so that Iε2,ε1 maps L(Hε1) into L(Hε2) as an isometry. Moreover, if {eε2
k }k∈N is a complete orthonormal system in

Hε2 , according to Lemma 6.1 we have

‖Iε2,ε1Q‖2
L2(Hε2 ) =

∞∑
k=1

∣∣(Iε2,ε1Q)e
ε2
k

∣∣2
Hε2
=

∞∑
k=1

∣∣Jε2,ε1Q
(
Jε1,ε2e

ε2
k

)∣∣2
Hε2

=
∞∑

k=1

∣∣Q(Jε1,ε2e
ε2
k

)∣∣2
Hε1
= ‖Q‖2

L2(Hε1 ).

This proves that Iε2,ε1 is an isometry from L2(Hε1) into L2(Hε2). �

With the above notations, if vε is a solution of equation (6.1) and if we define

uε(t, x, y)= 1√
ε
(J1,εvε)(t, x, y)= vε(t, x, εy), t ≥ 0, (x, y) ∈G,

we have that

∂uε

∂t
(t, x, y)= Lεuε(t, x, y)+ b

(
uε(t, x, y)

)+ ∂(J1,εw
Qε)

∂t
(t, x, y), (6.4)

where Lε is the uniformly elliptic second order differential operator defined in (5.1).

Lemma 6.3. Assume that there exists some Q ∈ L2(H) such that

Qε = Iε,1Q, ε > 0. (6.5)

Then J1,εw
Qε(t)∼wQ(t).

Proof. According to (6.2) and (6.3), for any t, s ≥ 0 and u,v ∈H we have

E
〈
J1,εw

Qε(t), u
〉
H

〈
J1,εw

Qε(s), v
〉
H
= E

〈
wQε(t), Jε,1u

〉
Hε

〈
wQε(s), Jε,1v

〉
Hε

= (t ∧ s)
〈
QεQ

�
εJε,1u,Jε,1v

〉
Hε
= (t ∧ s)

〈
J1,εQεQ

�
εJε,1u,v

〉
H

= (t ∧ s)
〈
(I1,εQε)(I1,εQε)

�u, v
〉
H

.
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As we are assuming (6.5), this allows to conclude that J1,εw
Qε(t)∼wQ(t). �

Remark 6.4. If Q ∈ L2(H), then there exist a sequence {λk}k∈N and a complete orthonormal system {ek}k∈N in H

such that

Qek = λkek, k ∈N.

Then, since in (6.5) we assume Qε = Iε,1Q, we have

Qεf
ε
k = λkf

ε
k , k ∈N,

where {f ε
k }k∈N is the complete orthonormal system of Hε , defined by f ε

k = Jε,1ek , for any k ∈N.

Concerning the boundary conditions satisfied by uε we have the following result.

Lemma 6.5. For any ε > 0, we have

∇vε · νε|∂Gε
= 0 ⇐⇒ ∇uε · σεν|∂G

= 0. (6.6)

Proof. According to (2.2), for any (x, y) ∈ ∂G and ε > 0, we have

∇uε(t, x, y) · σεν(x, y) = ∂uε

∂x
(t, x, y)ν1(x, y)+ 1

ε2

∂uε

∂y
(t, x, y)ν2(x, y)

= ∂vε

∂x
(t, x, εy)ν1(x, y)+ 1

ε

∂vε

∂y
(t, x, εy)ν2(x, y)

= 1

εcε(x, y)
∇vε(t, x, εy) · νε(x, εy).

This implies (6.6). �

As a consequence of (6.4) and Lemmas 6.3 and 6.5, we can conclude that if vε is a solution of problem (6.1), then
uε coincides in distribution with the solution of the problem{

∂uε

∂t
(t, x, y)= Lεuε(t, x, y)+ b(uε(t, x, y))+ ∂wQ

∂t
(t, x, y), (x, y) ∈G,

∇uε(t, x, y) · σεν(x, y)= 0, (x, y) ∈ ∂G, uε(0, x, y)= u0(x, y).
(6.7)

In what follows, we shall assume that the non-linearity b :R→R is Lipschitz-continuous. In particular, this means
that the mapping

B :H →H, u ∈H �→ B(u)= b ◦ u ∈H,

is well defined and Lipschitz-continuous. Notice that, in the same way, we have that B : H̄ → H̄ is well defined and
Lipschitz-continuous.

Definition 6.6. An Ft -adapted process uε ∈ Lp(�;C([0, T ];H)) is a mild solution for problem (6.7) if

uε(t)= Sε(t)u0 +
∫ t

0
Sε(t − s)B

(
uε(s)

)
ds +

∫ t

0
Sε(t − s) dwQ(s).

We are assuming here that Qε ∈ L2(Hε), then, according to Lemma 6.2, we have that Q ∈ L2(H). This implies that,
if we define

wε(t)=
∫ t

0
Sε(t − s) dwQ(s), (6.8)
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then wε ∈ Lp(�;C([0, T ];H)) (in fact this is true also under weaker conditions on Q). In particular, since the
mapping B :H →H is Lipschitz-continuous, as a consequence of a fixed point argument in Lp(�;C([0, T ];H)) we
can conclude that there exists a unique mild solution uε ∈ Lp(�;C([0, T ];H)) to equation (6.7).

7. From the SPDE on G to the SPDE on the graph �

In Section 6, by a suitable change of variable, from the stochastic reaction-diffusion equation (6.1) in the narrow
channel Gε we have obtained the following stochastic reaction diffusion equation in the fixed domain G{

∂uε

∂t
(t, x, y)= Lεuε(t, x, y)+ b(uε(t, x, y))+ ∂wQ

∂t
(t, x, y), (x, y) ∈G,

∇uε(t, x, y) · σεν(x, y)= 0, (x, y) ∈ ∂G, uε(0, x, y)= u0(x, y).
(7.1)

Our purpose here is to study the limiting behavior of its unique mild solution uε in the space Lp(�;C([0, T ];H)), as
ε→ 0.

To this purpose, let us consider the problem

∂ū

∂t
(t, x, k)= L̄ū(t, x, k)+ b

(
ū(t, x, k)

)+ ∂w̄Q

∂t
(t, x, k), ū(0, x, k)= u∧0 (x, k), (7.2)

where u0 ∈ C(Ḡ) and L̄ is the second order differential operator on �, defined in the interior part of each edge Ik of
� by the operators Lk , given in (2.5), and endowed with the gluing conditions described in (2.6) and (2.7). Here w̄Q

is the cylindrical Wiener process defined by

w̄Q(t)=
∞∑

j=1

(Qej )
∧βj (t), (7.3)

where {ej }j∈N is a complete orthonormal system in H and {βj (t)}j∈N is a sequence of independent standard Brownian
motions. Thanks to (3.3), this means that for any f,g ∈ H̄ and t, s ≥ 0

E
〈
w̄Q(t), f

〉
H̄

〈
w̄Q(s), g

〉
H̄
=

∞∑
j=1

〈
(Qej )

∧, f
〉
H̄

〈
(Qej )

∧, g
〉
H̄

(t ∧ s)

=
∞∑

j=1

〈
Qej ,f

∨〉
H

〈
Qej ,g

∨〉
H

(t ∧ s)= 〈QQ�f ∨, g∨
〉
H

(t ∧ s)

= 〈(QQ�f ∨
)∧

, g
〉
H̄

(t ∧ s)= 〈(QQ�
)∧

f,g
〉
H̄

(t ∧ s).

Notice that if we assume Q ∈ L2(H), then, due to Lemma 3.1, we have

∞∑
j=1

〈(
QQ�

)∧
ej , ej

〉
H̄
=

∞∑
j=1

〈
QQ�e∨j , e∨j

〉
H
≤ ‖Q‖2

L2(H) <∞,

so that the series in (7.3) is well defined in L2(�; H̄ ), for any t ≥ 0, and defines a H̄ -valued Wiener process, with
covariance operator (QQ�)∧.

As we have seen in Section 2, the operator L̄ is the generator of the Markov transition semigroup S̄(t) associated
with the limiting process Z̄(t) defined on the graph � and introduced in [6]. Thus, we can give the following definition.

Definition 7.1. An adapted process ū ∈ Lp(�;C([0, T ]; H̄ )) is a mild solution to equation (7.2) if

ū(t)= S̄(t)u∧0 +
∫ t

0
S̄(t − s)B

(
ū(s)

)
ds +

∫ t

0
S̄(t − s) dw̄Q(s).
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As we are assuming Q ∈ L2(H), then w̄Q(t) ∈ L2(�, H̄ ), for any t ≥ 0. Moreover, as S̄(t) is a contraction on H̄

(see Theorem 5.4), the process wL̄(t) defined by

wL̄(t) :=
∫ t

0
S̄(t − s) dw̄Q(s), t ≥ 0,

takes values in Lp(�;C([0, T ]; H̄ )), for any T > 0 and p ≥ 1. Therefore, as the mapping B : H̄ → H̄ is Lipschitz-
continuous, we have that for any T > 0 and p ≥ 1 there exists a unique mild solution ū ∈ Lp(�;C([0, T ]; H̄ )) to
equation (7.2).

Theorem 7.2. Assume that the domain G satisfies assumptions I–IV. Moreover, assume that the nonlinearity b :R→
R is Lipschitz-continuous and Q ∈ L2(H). Then, for any u0 ∈ C(Ḡ), p ≥ 1 and 0 < τ < T we have

lim
ε→0

E sup
t∈[τ,T ]

∣∣uε(t)− ū(t)∨
∣∣p
H
= lim

ε→0
E sup

t∈[τ,T ]
∣∣uε(t)

∧ − ū(t)
∣∣p
H̄
= 0, (7.4)

where uε and ū are the unique mild solutions of equations (7.1) and (7.2), respectively.

Before proving (7.4) in the full generality of Theorem (7.2), we prove (7.4) in the case B = 0 and u0 = 0.

Lemma 7.3. Under the same assumption of Theorem (7.2), for any T > 0 and p ≥ 1 we have

lim
ε→0

E sup
t∈[0,T ]

∣∣wε(t)−wL̄(t)∨
∣∣p
H
= 0, (7.5)

where wε(t) is the stochastic convolution defined in (6.8).

Proof. By using the stochastic factorization formula (see e.g. [2] for a proof), for any t ∈ [0, T ] and α ∈ (0,1/2), we
have

π

sinπα

(
wε(t)−wL̄(t)∨

)
=
∫ t

0
(t − s)α−1S̄(t − s)∨Y ε

α,1(s) ds +
∫ t

0
(t − s)α−1[Sε(t − s)− S̄(t − s)∨

]
Y ε

α,2(s) ds,

where

Y ε
α,1(s) :=

∫ s

0
(s − σ)−α

[
Sε(s − σ)− S̄(s − σ)∨

]
dwQ(σ),

and

Y ε
α,2(s) :=

∫ s

0
(s − σ)−αSε(s − σ)dwQ(σ).

Thanks to (5.29), we have that S̄(t)∨ is a contraction on H . Then, for any p ≥ 1/α it holds

E sup
t∈[0,t]

∣∣wε(t)−wL̄(t)
∣∣p
H
≤ cp,α(T )

∫ T

0
E
∣∣Y ε

α,1(s)
∣∣p
H

ds

+ cp,α(T )E sup
t∈[0,T ]

∫ t

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds. (7.6)

For any fixed s ≥ 0 and α ∈ (0,1/2), we have

E
∣∣Y ε

α,1(s)
∣∣p
H
= cp

( ∞∑
j=1

∫ s

0
σ−2α

∣∣Sε(σ )Qej − S̄(σ )∨Qej

∣∣2
H

dσ

)p/2

.



SPDEs on narrow domains and on graphs 895

As both Sε(σ ) and S̄(σ )∨ are contraction in H , we have

∞∑
j=1

∣∣Sε(σ )Qej − S̄(σ )∨Qej

∣∣2
H
≤ c

∞∑
j=1

|Qej |2H ,

and then, as Q ∈ L2(H), for any η > 0 we can find nη ∈N such that

∞∑
j=nη+1

∫ s

0
σ−2α

∣∣Sε(σ )Qej − S̄(σ )∨Qej

∣∣2
H

dσ < η. (7.7)

Once fixed nη, due to (5.26) and the dominated convergence theorem we have that

lim
ε→0

nη∑
j=1

∫ s

0

∣∣Sε(σ )Qej − S̄(σ )∨Qej

∣∣2
H

dσ = 0,

and this, together with (7.7), due to the arbitrariness of η implies that

lim
ε→0

∫ T

0
E
∣∣Y ε

α,1(s)
∣∣p
H

ds = 0. (7.8)

Next, for any 0 < τ < t ≤ T we have∫ t

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds

=
∫ t−τ

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds +
∫ t

t−τ

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds

≤
∫ t−τ

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds + c
√

τ

(∫ T

0

∣∣Y ε
α,2(s)

∣∣2p

H
ds

)1/2

.

Now, if for any δ > 0 we denote k(T , δ)= [T/δ], for any t ≤ T we have∫ t−τ

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds

≤ cp

k(T ,δ)∑
k=1

sup
s∈[τ,T ]

∣∣[Sε(s)− S̄(s)∨
]
Y ε

α,2(kδ)
∣∣p
H
+ cp

k(T ,δ)∑
k=1

∫ (k+1)δ

kδ

∣∣Y ε
α,2(s)− Y ε

α,2(kδ)
∣∣p
H

ds.

This implies that

E sup
t∈[0,T ]

∫ t

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds

≤ cp

k(T ,δ)∑
k=1

E sup
s∈[τ,T ]

∣∣[Sε(s)− S̄(s)∨
]
Y ε

α,2(kδ)
∣∣p
H
+ cp

k(T ,δ)∑
k=1

∫ (k+1)δ

kδ

E
∣∣Y ε

α,2(s)− Y ε
α,2(kδ)

∣∣p
H

ds

+ c
√

τ

(∫ T

0
E
∣∣Y ε

α,2(s)
∣∣2p

H
ds

)1/2

.

As Q ∈ L2(H), for any 0≤ r < s, ε > 0 and q ≥ 1, we have

E
∣∣Y ε

α,2(s)− Y ε
α,2(r)

∣∣q
H
= cq

( ∞∑
j=1

∫ s

r

σ−2α
∣∣Sε(σ )Qej

∣∣2
H

dσ

)q/2

≤ cq(s − r)(1−2α)q/2,
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so that

E sup
t∈[0,T ]

∫ t

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds ≤ cp(T )δ(1−2α)p/2 + cp(T )
√

τ

+ cp

k(T ,δ)∑
k=1

E sup
s∈[τ,T ]

∣∣[Sε(s)− S̄(s)∨
]
Y ε

α,2(kδ)
∣∣p
H

.

Therefore, if for any η > 0 if we pick δη, τη > 0 such that

cp(T )δ(1−2α)p/2
η + cp(T )

√
τη <

η

2
,

we have

E sup
t∈[0,T ]

∫ t

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds

≤ η

2
+ cp

k(T ,δη)∑
k=1

E sup
s∈[τη,T ]

∣∣[Sε(s)− S̄(s)∨
]
Y ε

α,2(kδη)
∣∣p
H

.

Thanks to (5.26) and the dominated convergence theorem, due to the arbitrariness of η > 0 this allows to conclude
that

lim
ε→0

E sup
t∈[0,T ]

∫ t

0

∣∣[Sε(t − s)− S̄(t − s)∨
]
Y ε

α,2(s)
∣∣p
H

ds = 0.

This, together with (7.8), thanks to (7.6) allows to get (7.5). �

Proof of Theorem 7.2. As we have seen in Section 6, since uε is a mild solution to equation (7.1), we have that uε

satisfied the following equation

uε(t)= Sε(t)u0 +
∫ t

0
Sε(t − s)B

(
uε(s)

)
ds +wε(t),

where

wε(t)=
∫ t

0
Sε(t − s) dwQ(s).

This implies that for any p ≥ 1 and T > 0∣∣uε(t)− ū(t)∨
∣∣p
H
≤ cp

∣∣Sε(t)u0 − S̄(t)∨u0
∣∣p
H

+ cpT p−1
∫ t

0

∣∣Sε(t − s)B
(
uε(s)

)− (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds

+ cp

∣∣wε(t)−wL̄(t)∨
∣∣p
H

. (7.9)

Now, for any ε > 0, p ≥ 1 and 0≤ s ≤ t , we have∣∣Sε(t − s)B
(
uε(s)

)− (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

≤ cp

∣∣Sε(t − s)
(
B
(
uε(s)

)−B
(
ū(s)

)∨)∣∣p
H

+ cp

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

≤ cp

∣∣B(uε(s)
)−B

(
ū(s)

)∨∣∣p
H
+ cp

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

.
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Since B(ū(s))∨ = B(ū(s)∨), we have

∣∣B(uε(s)
)−B

(
ū(s)

)∨∣∣p
H
≤ cp

∣∣uε(s)− ū(s)∨
∣∣p
H

,

and then∫ t

0

∣∣Sε(t − s)B
(
uε(s)

)− (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds

≤ cp

∫ t

0

∣∣uε(s)− ū(s)∨
∣∣p
H

ds

+ cp

∫ t

0

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds. (7.10)

Therefore, due to (7.9), we have

∣∣uε(t)− ū(t)∨
∣∣p
H
≤Rε

p(t)+ cp

∫ t

0

∣∣uε(s)− ū(s)∨
∣∣p
H

ds,

where

Rε
p(t) := cp

∣∣Sε(t)u0 − S̄(t)∨u0
∣∣p
H
+ cp

∣∣wε(t)−wL̄(t)∨
∣∣p
H

+ cp

∫ t

0

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds.

By comparison, this yields

∣∣uε(t)− ū(t)∨
∣∣p
H
≤
∫ t

0
ecp(t−s)Rε

p(s) ds + cpRε
p(t), (7.11)

so that

sup
t∈[τ,T ]

∣∣uε(t)− ū(t)∨
∣∣p
H
≤ cp(T )

∫ T

0
Rε

p(s) ds + cp sup
t∈[τ,T ]

Rε
p(t).

Now, for any 0 < τ < t ≤ T , we have

∫ t

0

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds

≤ cp

∫ t−τ

0

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds + cp

∫ t

t−τ

(
1+ ∣∣ū(s)

∣∣p
H̄

)
ds

≤ cp

∫ T

0
sup

r∈[τ,T ]
∣∣Sε(r)B

(
ū(s)

)∨ − (S̄(r)B
(
ū(s)

))∨∣∣p
H

ds + cp

√
τ

(∫ T

0

(
1+ ∣∣ū(s)

∣∣2p

H̄

)
ds

)1/2

.

This means that

E sup
t∈[0,T ]

∫ t

0

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds

≤ cp

∫ T

0
sup

r∈[τ,T ]
∣∣Sε(r)B

(
ū(s)

)∨ − (S̄(r)B
(
ū(s)

))∨∣∣p
H

ds + cp(T )E|ū|p
C([0,T ];H̄ )

√
τ .
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Hence, for any η > 0 we fix τη > 0 such that

E sup
t∈[0,T ]

∫ t

0

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds

≤ η

2
+ cp

∫ T

0
sup

r∈[τη,T ]
∣∣Sε(r)B

(
ū(s)

)∨ − (S̄(r)B
(
ū(s)

))∨∣∣p
H

ds.

As η is arbitrary, due to (5.26) we can conclude that

lim
ε→0

E sup
t∈[0,T ]

∫ t

0

∣∣Sε(t − s)B
(
ū(s)

)∨ − (S̄(t − s)B
(
ū(s)

))∨∣∣p
H

ds = 0.

This, together with (5.26) and (7.5), implies that

lim
ε→0

E sup
t∈[τ,T ]

Rε
p(t)= 0,

and due to (7.11) we can conclude our proof. �

8. From the SPDE on the graph � to the SPDE on the narrow channel Gε

Let us consider the equation

∂ū

∂t
(t, x, k)= L̄ū(t, x, k)+ b

(
ū(t, x, k)

)+ ∂wA

∂t
(t, x, k), ū(0, x, k)= f0(x, k), (8.1)

where f0 ∈ C(�) and L̄ is the second order differential operator on �, introduced in Section 2. Here wA(t) is a
cylindrical Wiener process defined by

wA(t)=
∞∑

j=1

Afjβj (t), t ≥ 0, (8.2)

where {fj }j∈N is a complete orthonormal system in H̄ , {βj }j∈N is a sequence of independent standard Brownian
motions, and A is a bounded linear operator on H̄ .

Due to (3.4) and (3.9), we have

Af = (A∨f ∨
)∧

, f ∈ H̄ .

Now, as we have seen in Section 3, any u ∈H can be written as u= u1 + u2, with u1 ∈K1 and u2 ∈K2. Therefore,
if we define

Qu=A∨u1, u ∈H,

we have that

|Qu|H =
∣∣A∨u1

∣∣
H
≤ ∥∥A∨∥∥L(H)

|u1|H ≤ ‖A‖L(H̄ )|u|H ,

so that Q ∈ L(H). Moreover if {gi}i∈N is a complete orthonormal system in K2, we have that {hk}k∈N := {f ∨j }j∈N ∪{gi}i∈N is a complete orthonormal system in H and then, thanks to Lemma 3.2, we have

‖Q‖2
L2(H) =

∑
k∈N
|Qhk|2H =

∑
j∈N

∣∣Qf ∨j
∣∣2
H

=
∑
j∈N

∣∣A∨f ∨j
∣∣2
H
=
∑
j∈N

∣∣(A∨f ∨j
)∧∣∣2

H̄
=
∑
j∈N

|Afj |2H̄ = ‖A‖2
L2(H̄ )

.
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This means that A ∈ L2(H̄ ) if and only if Q ∈ L2(H).
Thus, we can introduce the stochastic PDE in the fixed domain G{

∂uε

∂t
(t, x, y)= Lεuε(t, x, y)+ b(uε(t, x, y))+ ∂wQ

∂t
(t, x, y), (x, y) ∈G,

∇uε(t, x, y) · σεν(x, y)= 0, (x, y) ∈ ∂G, uε(0, x, y)= f ∨0 (x, y),
(8.3)

where wQ(t) is the H -valued Wiener process defined by

wQ(t)=
∞∑

k=1

Qhkβ
′
k(t)=

∞∑
j=1

Qf ∨j βj (t), t ≥ 0,

and {β ′k}k∈N := {βj }j∈N ∪ {β ′′i }i∈N, for some sequence {β ′′i (t)}i∈N of independent Brownian motions, independent of
the sequence {βj }j∈N.

Since for any i, j ∈N(
Qf ∨j

)∧ = (A∨f ∨j
)∧ =Afj , Qgi = 0,

we have that

wA(t)=
∞∑

k=1

(Qhk)
∧β ′k(t).

This means that we are exactly in the situation covered by Theorem 7.2 and we have that for any t > 0 and p ≥ 1

lim
ε→0

E
∣∣uε(t)− ū(t)∨

∣∣p
H
= lim

ε→0
E
∣∣uε(t)

∧ − ū(t)
∣∣p
H̄
= 0. (8.4)

It is important to notice that (8.4) follows directly from (2.8) and does not require all what we have done in
Sections 4 and 5.

Finally, if we set

vε(t, x, y)=√ε(Jε,1uε)(t, x, y)= uε(t, x, y/ε), (x, y) ∈Gε,

we have that vε satisfies the equation in the narrow channel Gε{
∂vε

∂t
(t, x, y)= 1

2�vε(t, x, y)+ b(vε(t, x, y))+√ε ∂wQε

∂t
(t, x, y), (x, y) ∈Gε,

∂vε

∂νε
(t, x, y)= 0, (x, y) ∈ ∂Gε, vε(0, x, y)= f ∨0 (x, yε−1),

(8.5)

where ∂/∂νε denotes the normal derivative at the boundary of Gε and Qε = Iε,1Q.
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