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Abstract. Let Xd be a real or complex Hilbert space of finite but large dimension d, let S(Xd) denote the unit sphere of Xd , and
let u denote the normalized uniform measure on S(Xd). For a finite subset B of S(Xd), we may test whether it is approximately
uniformly distributed over the sphere by choosing a partition A1, . . . ,Am of S(Xd) and checking whether the fraction of points in
B that lie in Ak is close to u(Ak) for each k = 1, . . . ,m. We show that if B is any orthonormal basis of Xd and m is not too large,
then, if we randomize the test by applying a random rotation to the sets A1, . . . ,Am, B will pass the random test with probability
close to 1. This statement is related to, but not entailed by, the law of large numbers. An application of this fact in quantum statistical
mechanics is briefly described.

Résumé. Soit Xd un espace de Hilbert réel ou complexe de dimension finie mais grande d et soit S(Xd) la sphère unité de
X

d , on note u la mesure uniforme normalisée sur S(Xd). Pour un sous ensemble fini B de S(Xd), nous pouvons tester s’il est
approximativement uniformément distribué sur la sphère en choisissant une partition A1, . . . ,Am de S(Xd) et en vérifiant si la
fraction des points dans B qui se trouvent dans Ak est proche de u(Ak) pour tout k = 1, . . . ,m. Nous montrons que si B est
n’importe quelle base orthonormée de X

d et que si m n’est pas trop grand, alors si on randomise le test en appliquant une rotation
aléatoire aux ensembles A1, . . . ,Am, l’ensemble B va passer le test avec une probabilité proche de 1. Ce résultat est relié à la loi
des grands nombres. Une application de ce résultat en mécanique statistique quantique est décrite brièvement.

MSC: 60F05; 82B10; 28C10

Keywords: Law of large numbers; Haar measure on the orthogonal or unitary groups; Asymptotics in high dimension; Irreducible representations
of the orthogonal or unitary groups; random orthonormal basis

1. Introduction

Let Xd be a real or complex Hilbert space of finite but large dimension d , let S(Xd) be the unit sphere in X
d , and let

u = uS(Xd ) denote the uniform probability measure (i.e., normalized surface area) over S(Xd). Given a large number
of points on S(Xd), we may ask whether these points are approximately uniformly distributed over S(Xd). When
we are given an orthonormal basis of Xd , this provides us with d points on S(Xd), which may at first seem like too
small a number, given that S(Xd) has real dimension d − 1 or 2d − 1, for rendering meaningful the question whether
these points are approximately uniformly distributed. However, the question is meaningful in a suitably coarse-grained
sense of “approximately uniform,” viz., in the sense that for a partition A1, . . . ,Am of S(Xd) with m � d , the number
of points in Ak , divided by d , is close to u(Ak).
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One version of our result asserts that for a random orthonormal basis {b1, . . . , bd} with distribution uONB(Xd )

(the uniform (normalized) measure over all orthonormal bases of X
d , see below for more details), the empirical

distribution on S(Xd) of b1, . . . , bd is approximately uniform relative to the partition A1, . . . ,Am with probability
close to 1. Needless to say, for every fixed orthonormal basis {b1, . . . , bd} there exist partitions A1, . . . ,Am for which
the number of basis vectors in Ak , divided by d , is not at all close to u(Ak); for example, A1 = {b1, . . . , bd} and
A2 = S(Xd) \ A1.

Our result as just formulated follows once we have it for m = 2, i.e., for partitions consisting merely of a set A

and its complement. It therefore suffices to focus on the simpler statement that for any Borel set A ⊆ S(Xd) and a
uONB(Xd )-distributed orthonormal basis,

P

(
1

d
#
{
i ∈ {1 · · ·d} : bi ∈ A

} ≈ u(A)

)
≈ 1, (1.1)

where #S denotes the number of elements of a finite set S.
Here is a different way of phrasing our result. A good concept of “approximately uniformly distributed” should be

invariant under rotations (or unitary transformations) of Xd ; thus, if we claim of one orthonormal basis that it is ap-
proximately uniformly distributed, we should make this claim of every orthonormal basis. So let us regard {b1, . . . , bd}
as fixed and randomize A instead by considering the uniform distribution over all sets A′ congruent to A. To this end,
let G be the orthogonal group or unitary group of Xd , depending on whether Xd is real or complex, let uG be the
normalized uniform measure (i.e., the Haar measure) over G, and let R be a uG-distributed random element of G. Our
test set will be A′ = R(A) (i.e., a random rotation of A). Our result is that for every orthonormal basis {b1, . . . , bd}
and every Borel set A ⊆ S(Xd),

P

(
1

d
#
{
i ∈ {1 · · ·d} : bi ∈ R(A)

} ≈ u(A)

)
≈ 1. (1.2)

1.1. Precise formulation

Definition 1. Let ε, δ > 0. We say of a finite set B ⊆ S(Xd) that it is ε-δ-uniform on S(Xd) iff1 for every Borel set
A ⊆ S(Xd),

P

(∣∣∣∣#(B ∩ R(A))

#B
− u(A)

∣∣∣∣ ≤ δ

)
≥ 1 − ε. (1.3)

Theorem 1 (Version 1). For every ε, δ > 0 and every d ≥ 4 with d ≥ δ−2ε−1, every orthonormal basis B in X
d =R

d

or Cd is ε-δ-uniform on S(Xd).

Somewhat sloppily, we sometimes regard a basis as ordered (i.e., as a d-tuple) and sometimes as unordered (i.e.,
as a set). It does not matter which point of view we assume, and there are no bad consequences of switching the point
of view; we call a d-tuple ε-δ-uniform if the corresponding set (obtained by forgetting the order) is.

We use the notation Y ∼ μ for saying that the random variable Y has distribution μ. For example, in (1.3), R ∼ uG.
Version 2 of Theorem 1 (see below) provides an alternative formulation in terms of a random orthonormal basis.

The uniform distribution uONB(Xd ) can be defined as the distribution of the random orthonormal basis B obtained
from a fixed orthonormal basis B0 by applying a random rotation R ∼ uG, B = R(B0). The distribution of B is, in
fact, independent of the choice of B0. Alternatively, a uONB(Xd )-distributed basis {b1, . . . , bd} can be constructed as
follows: Choose b1 with distribution u from S(Xd); let b⊥

1 denote the orthogonal complement of b1 in X
d , and S(b⊥

1 )

the unit sphere in that subspace; choose b2 uniformly in S(b⊥
1 ); then choose b3 uniformly in S({b1, b2}⊥); and so on.

Theorem 1 can easily be seen to be equivalent to the following.

1This definition possesses a natural generalization to measures instead of finite sets: We say of a normalized measure μ on (the Borel σ -algebra of)

S(Xd ) that it is ε-δ-uniform on S(Xd ) iff for every Borel set A ⊆ S(Xd ), P(|μ(R(A)) − u(A)| ≤ δ) ≥ 1 − ε. The definition for a finite set B then
corresponds to the measure μ = (#B)−1 ∑

b∈B δb with δb the point mass at b, i.e., μ(A′) = #(B ∩ A′)/#B .
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Theorem 1 (Version 2). For every ε, δ > 0 and every d ≥ 4 with d ≥ δ−2ε−1, the following is true: Let Xd = Rd or
C

d and B ∼ uONB(Xd ). For every Borel set A ⊆ S(Xd),

P

(∣∣∣∣#(B ∩ A)

d
− u(A)

∣∣∣∣ ≤ δ

)
≥ 1 − ε. (1.4)

Corollary 1. For every ε, δ > 0, every m ∈N, and every d ≥ 4 with d ≥ mδ−2ε−1, the following is true: Let Xd =R
d

or Cd and B ∼ uONB(Xd ). For every partition A1, . . . ,Am of S(Xd) consisting of Borel sets,

P

(
∀k ∈ {1 · · ·m} :

∣∣∣∣#(B ∩ Ak)

d
− u(Ak)

∣∣∣∣ ≤ δ

)
≥ 1 − ε. (1.5)

In the real case X
d =R

d , the statements refer to orthonormal bases of both orientations (“left-handed” and “right-
handed”). Theorem 1 and Corollary 1 remain true when restricted to just one orientation, provided d ≥ 2mδ−2ε−1.
After all, if 99% of all orthonormal bases have a property p and 50% of all orthonormal bases are left-handed, then at
least 98% of all left-handed orthonormal bases must have the property p.

It is perhaps not surprising that the basis vectors are uniformly distributed, as their orthogonality will have the
“repulsive” effect that no two of them can be close to each other. On the other hand, one might have expected that in
order to obtain a uniformly distributed set, one has to use {±b1, . . . ,±bd}, while the basis vectors {b1, . . . , bd} alone
tend (one might have expected) to clump on one side of the sphere, as they all lie on a cone around b1 + · · · + bd ;
however, when d is large then the opening angle of this cone, 2 arccos(d−1/2), is approximately π − 2/

√
d and thus

close to π (or 180◦), so not very clumped after all.
The following version of Theorem 1 expresses the theorem in terms of test functions ϕ : S(Xd) → R rather than

test sets A ⊆ S(Xd). Let Eμ(f ) and Varμ(f ) denote the mean and variance of the function f : � → R relative to the
probability measure μ on �.

Theorem 1 (Version 3). For every ε, δ > 0, every d ≥ 4 with d ≥ 2δ−2ε−1, every orthonormal basis {b1, . . . , bd} of
X

d =R
d or Cd , R ∼ uG, and every test function ϕ ∈ L2(S(Xd), u,R),

P

(∣∣∣∣∣ 1

d

d∑
j=1

ϕ
(
R(bj )

) −Eu(ϕ)

∣∣∣∣∣ ≤ δ
√

Varu(ϕ)

)
≥ 1 − ε. (1.6)

With the same methods as in this paper, one can perhaps show also that, in high dimension d , the action of the
rotation (resp., unitary) group G on the unit sphere is weakly mixing, i.e., that for R ∼ uG and any two measurable
sets A,B ⊆ S(Xd), P(u(A ∩ R(B)) ≈ u(A)u(B)) ≈ 1.

A physical application of our result is outlined in Section 3.

1.2. Comparison to known results

Theorem 1 can be regarded as a typicality theorem, i.e., as a statement about the typical behavior of something, here
of orthonormal bases or sets congruent to a given set A ⊆ S(Xd). Well-known examples of typicality theorems about
spheres in high dimension include the following statements: (i) that in high dimension, most of the area of a sphere is
near the equator, (ii) that in high dimension, most of the volume of the unit ball is near the surface.

Theorem 1 is similar to an instance of the law of large numbers, i.e., of the statement that if X1, . . . ,Xn are in-
dependent identically distributed (i.i.d.) random variables then for sufficiently large n their empirical distribution is
arbitrarily close to the distribution of X1 with probability arbitrarily close to 1. Suppose b1, . . . , bd were independent
u-distributed random vectors on S(Xd), and let Ki be (in every realization) 1 or 0 depending on whether bi ∈ A or
not. Then the Ki are i.i.d. random variables with distribution P(Ki = 1) = u(A), P(Ki = 0) = 1 − u(A), and the law
of large numbers implies that (1.4) holds for sufficiently large d . Now in the situation of Version 2 of Theorem 1,
b1, . . . , bd are not independent (since they have to be exactly orthogonal to each other), but they are approximately
independent in the following sense: if we pick two independent random (uniformly distributed) vectors x, y on S(Xd)



704 S. Goldstein et al.

with large d , then they are anyhow, with high probability, approximately orthogonal. (Indeed, it follows from symme-
try considerations that their inner product 〈x|y〉 has expectation E〈x|y〉 = 0 and variance E|〈x|y〉|2 = 1/d , so 〈x|y〉
will typically be small like 1/

√
d .) So Version 2 of Theorem 1 can be regarded as saying that the weak dependence

between the basis vectors bi does not disturb the relation (1.4) provided by the law of large numbers. Other results
about how weak their dependence is can be found in [12–14].

Known theorems about uniformity (or equidistribution) are usually rather different in character from our result.
One type of theorem asserts that a certain sequence xn of points (e.g., xn = nα mod 1 for irrational α) is uniformly
distributed as n → ∞ in some set (e.g., the unit interval) [27]; another type concerns how uniformly certain paths
(e.g., billiard trajectories) fill the space they are in [1,2]. Another circle of questions closer to our result, described
in [2, Section 2], concerns quantifying how uniformly distributed a set {x1, . . . , xn} in (say) the unit interval [0,1] is
by comparing, for some test function ϕ : [0,1] → R, n−1 ∑n

i=1 ϕ(xi) to
∫ 1

0 dx ϕ(x). If the xi are chosen at random
(independently with uniform distribution), then the difference is (with high probability) of order n−1/2 for any ϕ ∈
L2([0,1]). However, if the xi are evenly spaced, xi = i/n, and ϕ is sufficiently smooth, then the difference is of order
n−1 or even smaller (see [2, Section 2] for a discussion). Thus, in a certain sense, some sets {x1, . . . , xn} are very
uniform. Our result can be expressed by saying that, for a random orthonormal basis {b1, . . . , bd}, d−1 ∑d

i=1 ϕ(bi)

is (with high probability) close to the mean of ϕ for any ϕ ∈ L2(S(Xd)) with typical error of order at most d−1/2,
see (1.6); we leave open the question whether, for sufficiently smooth functions, the error is smaller than that. The
question of testing whether a certain distribution on the unit sphere is approximately uniform was also raised in [4].

Further facts that are somewhat related to our result come from the field of geometric probability. Wendel [26] con-
sidered X1, . . . ,Xn independent u-distributed on S(Rd) and computed the probability that there exists a hemisphere
containing all n points. A result described in [22, p. 326] concerns random rotations R1, . . . ,Rn in X

d = R
3 that are

independent uG-distributed and provides a formula, for arbitrary convex sets A,A′ ⊆ S(R3), for the probability that
A′ ∩ R1(A) ∩ · · · ∩ Rn(A) �=∅. Further similar results (and open problems) are described in [22,23].

The phenomenon of concentration of measure [16,17], which can occur in a space Y equipped with both a metric
and a measure, refers to the situation that most points y ∈Y (in terms of the measure) are close (in terms of the metric)
to a certain set that is small in terms of the measure. For example, this occurs for Y = S(Rd) in high dimension d ,
where most points are close to the equator. As a consequence known as Levy’s lemma [17, p. 6], every 1-Lipschitz
function f : S(Rd) → R (i.e., with |f (x) − f (y)| ≤ distance(x,y)) is almost constant, i.e., is close to its median (or
mean, for that matter) at most points. Theorem 1 is somewhat similar, as it asserts (in Version 2) that the function fA

on the set ONB(Xd) of orthonormal bases of Xd defined by fA(B) = d−1#(B ∩ A) is almost constant for every A.
(More generally, every function f on ONB(Xd) of the form f (b1, . . . , bd) = ∑d

i=1 ϕ(bi) with ϕ ∈ L2(S(Xd)) is
almost constant, in the sense expressed in Version 3 of Theorem 1.)

A fact related to Theorem 1 and concentration of measure is Raz’s lemma [15,18,21], which roughly asserts the
following: Let A be a subset of S(Rd), and let 1 � k < d . For most k-dimensional subspaces U ⊆R

d , uU(A ∩ U) ≈
u(A), where uU is the normalized uniform measure on S(U).

1.3. Ideas of proof

Our proof of Theorem 1 is based on Theorem 2 below. Let Var(Y ) (and Cov(X,Y )) denote the variance (covariance)
of the random variable Y (variables X and Y ).

Theorem 2. Let d ≥ 4, let Xd =R
d or Xd =C

d , let {b1, . . . , bd} ∼ uONB(Xd ), and let ϕ ∈ L2(S(Xd), u,R). Then

∣∣Cov
(
ϕ(b1), ϕ(b2)

)∣∣ ≤ 1

d − 1
Varu(ϕ). (1.7)

The estimate is sharp in the sense that for every d there exists a ϕ for which equality holds.

Theorem 2 expresses the fact that the bi are weakly correlated. If they were independent, the covariance of ϕ(b1)

and ϕ(b2) would be zero; since each bi has distribution u, Var(ϕ(bi)) = Varu(ϕ), and (1.7) states that the correlation
coefficient of ϕ(b1) and ϕ(b2) is small (viz., no greater than 1/(d − 1)).

The proof of Theorem 1 (say, in Version 3) proceeds by noting that the random quantity d−1 ∑d
i=1 ϕ(R(bi)) has

expectation equal to the mean of ϕ and showing that it has small variance. The variance of a sum
∑

ϕ(R(bi)) is
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the sum of the variances Var(ϕ(R(bi))) plus the sum of the covariances Cov(ϕ(R(bi)), ϕ(R(bj ))) for i �= j ; the
variances can be computed, and the covariances can be estimated using Theorem 2. Chebyshev’s inequality then
yields Theorem 1.

The proof of Theorem 2 is, in turn, based on Theorem 3 below. Let x⊥ denote the subspace orthogonal to x ∈X
d ,

x⊥ = {
y ∈X

d : 〈x|y〉 = 0
}
, (1.8)

S(x⊥) the unit sphere in that subspace, and uS(x⊥) the normalized uniform measure over that sphere. In the following,
we use the double factorial notation

n!! =
{

1 · 3 · 5 · · · (n − 2) · n if n is odd,
2 · 4 · 6 · · · (n − 2) · n if n is even,

(1.9)

and 0!! = 1.

Theorem 3. Suppose d ≥ 4 and, again, Xd =Rd or Xd =Cd . The equation

(T ψ)(x) =
∫
S(x⊥)

uS(x⊥)(dy)ψ(y), (1.10)

defines a bounded, self-adjoint operator T : H → H on the (∞-dimensional, complex) Hilbert space H =
L2(S(Xd), u,C). Furthermore, T has pure point spectrum, and its eigenvalues are: for Xd =R

d ,

0,1, and (−1)
/2 (
 − 1)!!(d − 3)!!
(
 + d − 3)!! for 
 = 2,4,6, . . . , (1.11)

and for Xd =C
d ,

0,1, and (−1)

(


 + d − 2



)−1

for 
 = 1,2,3, . . . . (1.12)

For both X
d =R

d or Xd =C
d , the largest absolute eigenvalue of T is 1, with a 1-dimensional eigenspace formed by

the constant functions, and the second largest absolute eigenvalue of T is 1/(d − 1).

The operator T is related to the Radon transformation, the differences being that one integrates only over the unit
sphere, and that the only hyperplanes considered are those passing through the origin. In [15], this operator is called
the spherical Radon transformation.

A result very similar to Theorem 2 is Theorem 5.2 in [15], which, however, neither implies nor is implied by our
Theorem 2. To facilitate the comparison, we can express (1.7) in terms of the operator T introduced in (1.10) as∣∣∣∣〈ϕ|T ϕ〉 −

(∫
ϕ

)2∣∣∣∣ ≤ 1

d − 1

∥∥∥∥ϕ −
∫

ϕ

∥∥∥∥2

L2
(1.13)

(with
∫

ϕ = ∫
S(Xd )

u(dx)ϕ(x)), and in fact it follows from Theorem 3 that

∣∣∣∣〈χ |T ϕ〉 −
(∫

χ

)(∫
ϕ

)∣∣∣∣ ≤ 1

d − 1

∥∥∥∥χ −
∫

χ

∥∥∥∥
L2

∥∥∥∥ϕ −
∫

ϕ

∥∥∥∥
L2

. (1.14)

Theorem 5.2 in [15] provides a bound for the left-hand side of (1.14) in terms of the L∞ norms of χ and ϕ in case
these norms are not too large.

In Section 2, we provide proofs of Theorems 1–3 and Corollary 1; our proofs make repeated use of the rota-
tional/unitary symmetry of the problem. In Section 3, we briefly outline a physical application discussed in detail
in [8].
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2. Proofs

2.1. Proof of Theorems 1–2 and Corollary 1 from Theorem 3

Proof of Version 1 of Theorem 1 from Version 2. Suppose Version 2 is true. Fix ε, δ > 0, let d ≥ 4 and d ≥ δ−2ε−1,
and let B0 be any fixed orthonormal basis in X

d = R
d or Cd . Then a random orthonormal basis B with distribution

uONB(Xd ) can be thought of as obtained from B0 by applying a random rotation, B = R−1B0 with R ∼ uG (which
implies R−1 ∼ uG). Then

#
(
B0 ∩ R(A)

) = #
(
R−1(B0) ∩ A

) = #(B ∩ A), (2.1)

so (1.3) is equivalent to (1.4). �

Proof of Corollary 1 from Version 2 of Theorem 1. Let d ≥ 4, and let Ek,d denote the event that∣∣∣∣#(B ∩ Ak)

d
− u(Ak)

∣∣∣∣ ≤ δ. (2.2)

Version 2 of Theorem 1, with ε replaced by ε/m, yields that for any d ≥ mδ−2ε−1, P(Ek,d) ≥ 1 − ε/m, and thus
P(E1,d ∩ · · · ∩ Em,d) ≥ 1 − ε. �

Proof of Version 2 of Theorem 1 from Version 3. Let ϕ be the indicator function of A. Then ϕ lies in
L2(S(Xd), u,R), has mean u(A) and variance

Varu(ϕ) = u(A)
(
1 − u(A)

) ≤ 1

4
. (2.3)

If we think of B ∼ uONB(Xd ) again as obtained by applying a random rotation R ∼ uG to a fixed orthonormal basis
B0 = {b1, . . . , bd}, then

#(B ∩ A) = #
(
R(B0) ∩ A

) =
d∑

j=1

ϕ
(
R(bj )

)
. (2.4)

Thus, if we replace δ in Version 3 by 2δ, we obtain that Version 2 is true for d ≥ 1
2δ−2ε−1, and in particular for

d ≥ δ−2ε−1. (We dropped the factor 1
2 in Version 2 for the sake of simplicity.) �

Proof of Version 3 of Theorem 1 from Theorem 2. Let ε, δ > 0, and let Rj := R(bj ), so that {R1, . . . ,Rd} ∼
uONB(Xd ). Then

f (R) := 1

d

d∑
j=1

ϕ(Rj ) (2.5)

has mean (since each Rj is u-distributed)

Ef (R) = 1

d

d∑
i=1

Eϕ(Rj ) = Eu(ϕ) (2.6)

and variance (since the Rj are exchangeable)

Var
(
f (R)

) = 1

d2

(
d∑

i=1

Var
(
ϕ(Ri)

) +
d∑

i,j=1
i �=j

Cov
(
ϕ(Ri), ϕ(Rj )

))
(2.7)
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= 1

d2

(
d Var

(
ϕ(R1)

) + (
d2 − d

)
Cov

(
ϕ(R1), ϕ(R2)

))
(2.8)

≤ 1

d
Varu(ϕ) + d − 1

d

∣∣Cov
(
ϕ(R1), ϕ(R2)

)∣∣ (2.9)

≤ 2

d
Varu(ϕ) (2.10)

by (1.7) of Theorem 2 for d ≥ 4. Chebyshev’s inequality (see, e.g., [3, p. 65]) asserts that for any random variable X,

P
(|X −EX| ≥ η

) ≤ 1

η2
Var(X). (2.11)

Setting X = f (R) and η = δ
√

Varu(ϕ), we obtain that

P
(∣∣f (R) −Eu(ϕ)

∣∣ ≥ δ
√

Varu(ϕ)
) ≤ 1

δ2 Varu(ϕ)
Var

(
f (R)

)
(2.12)

≤ 2

δ2d
, (2.13)

which yields (1.6) if 2/(δ2d) ≤ ε, thus proving Version 3 of Theorem 1. �

Proof of Theorem 2 from Theorem 3. Since (1.7), when true, will remain true if ϕ is changed by adding a constant,
we can assume without loss of generality that ϕ has mean 0. Thus,

Varu(ϕ) =
∫
S(Xd )

u(dx)
∣∣ϕ(x)

∣∣2 = ‖ϕ‖2
H . (2.14)

Let |1〉 denote the constant 1 function in H . The property of mean 0 can be expressed as 〈1|ϕ〉 = 0, or ϕ ∈ |1〉⊥.
We can think of the joint distribution of b1 and b2 as follows: b1 is chosen uniformly on S(Xd), then b2 is chosen

uniformly on S(b⊥
1 ). Thus,

Cov
(
ϕ(b1), ϕ(b2)

) =
∫
S(Xd )

u(dx)

∫
S(x⊥)

uS(x⊥)(dy)ϕ(x)ϕ(y) (2.15)

= 〈ϕ|T ϕ〉 (2.16)

by Theorem 3, with 〈·|·〉 the inner product in H . Since, by Theorem 3, T is self-adjoint, and C|1〉 is the eigenspace of
T with eigenvalue 1, its orthogonal complement |1〉⊥ is mapped by T to itself. Since ϕ lies in |1〉⊥, we have by the
Cauchy–Schwarz inequality that∣∣〈ϕ|T ϕ〉∣∣ ≤ ‖ϕ‖‖T ϕ‖ (2.17)

≤ ‖T ‖|1〉⊥‖ϕ‖2 (2.18)

with ‖T ‖|1〉⊥ the operator norm of T on |1〉⊥. By Theorem 3 again, T has pure point spectrum, so the operator norm
of T on |1〉⊥ is the largest absolute non-1 eigenvalue, which is 1/(d − 1). Equality holds in (2.17) and (2.18) when ϕ

is an associated eigenfunction. We thus have (1.7) for d ≥ 4, including the statement that equality holds in (1.7) for
suitable ϕ, viz., for the eigenfunction with absolute eigenvalue 1/(d − 1). �

2.2. Proof of Theorem 3 in the real case

For the proof of Theorem 3, we need Lemma 2 below, for which we offer two different proofs, the first of which is
based on Lemma 1 below. Let S
 denote the group of permutations of {1, . . . , 
}.
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Lemma 1. Let d ≥ 3 and 
 ≥ 1. Suppose the rank-
 tensor A ∈ (Rd)⊗
 is symmetric,

Ai1···i
 = Aiσ(1)···iσ (
)
∀σ ∈ S
, (2.19)

and invariant under (the obvious action of) the orthogonal group O(d),

d∑
j1···j
=1

Mi1j1 · · ·Mi
j

Aj1···j


= Ai1···i
 ∀M ∈ O(d). (2.20)

If 
 is odd then A = 0, and if 
 is even then A is a multiple of Ã given by the symmetrization of δi1i2δi3i4 · · · δi
−1i
 ,

Ãi1···i
 = 1


!
∑
σ∈S


δiσ(1)iσ (2)
δiσ(3)iσ (4)

· · · δiσ(
−1)iσ (
)
, (2.21)

where δij is the Kronecker symbol (unit matrix).

Proof. The lemma can be translated into a statement about homogeneous polynomials P(x1, . . . , xd) of degree 
; the
translation is based on writing such a polynomial in the form

P(x1, . . . , xd) =
d∑

i1,...,i
=1

Ai1···i
xi1 · · ·xi
 , (2.22)

where the coefficients Ai1···i
 can be taken to be symmetric under permutation of the indices. Lemma 1 is thus equiv-
alent to the following:

Suppose the homogeneous polynomial P(x1, . . . , xd) of degree2 
 is O(d)-invariant. If 
 is odd then P = 0, and if

 is even then P is a multiple of (x2

1 + · · · + x2
d)
/2.

To see this, note that since P is O(d)-invariant, its restriction to S(Rd) must be constant. Since P is homogeneous

of degree 
, it must be of the form c|x|
, where |x| =
√

x2
1 + · · · + x2

d , and c is a constant. If 
 is odd, then invariance
under the matrix M ∈ O(d) with entries Mij = −δij implies that P = −P , so P = 0. �

Lemma 2. Suppose d ≥ 3 and 
 ≥ 1. Let P be a homogeneous real polynomial of degree 
 in d variables,

P(x1, . . . , xd) =
d∑

i1···i
=1

Ci1···i
xi1 · · ·xi
 (2.23)

with a symmetric tensor C. Then the average of P over the unit sphere is∫
S(Rd )

u(dx)P (x) =
{

0 if 
 odd,
α
,d

∑d
i1···i
/2=1 Ci1i1i2i2···i
/2i
/2 if 
 even (2.24)

with

α
,d = (
 − 1)!!(d − 2)!!
(
 + d − 2)!! . (2.25)

First proof of Lemma 2. By linearity, the average of P must be

d∑
i1···i
=1

Ai1···i
Ci1···i
 (2.26)

2Although a polynomial of degree 
 is usually taken to be non-zero, we include here the possibility P = 0.
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with

Ai1···i
 =
∫
S(Rd )

u(dx)xi1 · · ·xi
 . (2.27)

The tensor A is symmetric and O(d)-invariant. By Lemma 1, A = 0 for odd 
 and

A = α
,dÃ (2.28)

for even 
, with Ã as in Lemma 1 and some constant α
,d . Thus, for even 
, the average of P is given by (2.26) with
A replaced by α
,dÃ. Since C is symmetric, this value is equal to

α
,d

d∑
i1···i
=1

δi1i2δi3i4 · · · δi
−1i
Ci1···i
 . (2.29)

(That is, it is not necessary to symmetrize the product of the δs, since C is symmetric.) This proves (2.24).
To compute α
,d for even 
, it suffices to compare one nonzero component of A and Ã, say A11···1 (the average of

x

1) and Ã11···1 = 1. To compute A11···1, we use spherical coordinates (with r = 1), setting x1 = cos θ . Let

c(d) =
{

2 if d odd,
π if d even

(2.30)

and

g(n) =
n∏

k=1

c(k) = 2π2π2 · · ·︸ ︷︷ ︸
n factors of 2 or π

=
{

2(n+1)/2π(n−1)/2 if n odd,
(2π)n/2 if n even.

(2.31)

We note [19] that for n ≥ 2, we have

∣∣S(
R

n
)∣∣ = nπn/2

�(n/2 + 1)
= g(n)

(n − 2)!! (2.32)

for the surface area of S(Rn). Thus, for even 
,

α
,d =
∫
S(Rd )

x

1u(dx) (2.33)

= 1

|S(Rd)|
∫ π

0
dθ cos
 θ sind−2 θ

∣∣S(
R

d−1)∣∣ (2.34)

= (d − 2)!!
c(d)(d − 3)!!c(d)

(
 − 1)!!(d − 3)!!
(
 + d − 2)!! (2.35)

= (
 − 1)!!(d − 2)!!
(
 + d − 2)!! (2.36)

using ∫ π

0
dθ sinp θ cosq θ = c(p)

(q − 1)!!(p − 1)!!
(p + q)!! (2.37)

if q is even. This proves (2.25). �

Second proof of Lemma 2. This proof is based on Gaussianization (this strategy was suggested to us by B. Collins).
Let Y = (Y1, . . . , Yd) be a random vector consisting of d independent standard normal random variables, and let Z =
|Y| and X = Y/Z; then X and Z are independent, and X ∼ u. For P(x1, . . . , xd) = x

n1
1 · · ·xnd

d with n1 + · · ·+nd = 
,
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EP(Y) is, on the one hand, equal to EP(XZ) = E[Z
P (X)] = EZ
EP(X) (where the last factor is the quantity we
want to compute) and, on the other hand, equal to the product of the nj th moments of the standard normal distribution;
it is known that the nth moment is 0 if n is odd and (n−1)!! if n is even. Thus, EP(X) = 0 for odd 
. Since Z2 ∼ χ2(d),
we have that for even 
, EZ
 is the 
/2th moment of the χ2-distribution with d degrees of freedom, which is known
[5] to be (d + 
 − 2)!!/(d − 2)!!. Thus,∫

S(Rd )

u(dx)x
n1
1 · · ·xnd

d =
{

0 if any nj is odd,
(d−2)!!(n1−1)!!···(nd−1)!!

(d+
−2)!! if all nj are even, (2.38)

which is equivalent to Lemma 2. �

Proof of Theorem 3 in the real case X
d = R

d . We first show that the expression (1.10) defining T is well defined
for any ψ ∈ L2 = L2(S(Rd), u,C). In fact, it is well defined for any ψ ∈ L1 = L1(S(Rd), u,C). (Note L2 ⊂ L1 for
a finite measure space such as (S(Rd), u).) To see this, we use that u(dx)uS(x⊥)(dy) = u(dy)uS(y⊥)(dx); indeed, both
equal the unique rotation invariant measure on the subset where x ⊥ y. Now it follows that for ψ ∈ L1,∫

S(Xd )

u(dx)

∣∣∣∣
∫
S(x⊥)

uS(x⊥)(dy)ψ(y)

∣∣∣∣ ≤
∫
S(Xd )

u(dx)

∫
S(x⊥)

uS(x⊥)(dy)
∣∣ψ(y)

∣∣ (2.39)

=
∫
S(Xd )

u(dy)

∫
S(y⊥)

uS(y⊥)(dx)
∣∣ψ(y)

∣∣ (2.40)

=
∫
S(Xd )

u(dy)
∣∣ψ(y)

∣∣, (2.41)

so T ψ is well defined almost everywhere, lies in L1 again, has norm ‖T ψ‖1 ≤ ‖ψ‖1, and is independent of the
choice of representative in the equivalence class that is a vector in L1. Since L2 ⊂ L1, the integral formula (1.10) is
well defined also for any L2 function. To see that T ψ ∈ L2 for ψ ∈ L2, note that by the Cauchy–Schwarz inequality,
| ∫ μ(dx)f (x)|2 ≤ ∫

μ(dx)|f (x)|2 for any normalized measure μ, so

∣∣T ψ(x)
∣∣2 ≤

∫
S(x⊥)

uS(x⊥)(dy)
∣∣ψ(y)

∣∣2
, (2.42)

and thus∫
S(Xd )

u(dx)
∣∣T ψ(x)

∣∣2 ≤
∫
S(Xd )

u(dx)

∫
S(x⊥)

uS(x⊥)(dy)
∣∣ψ(y)

∣∣2 (2.43)

≤
∫
S(Xd )

u(dy)

∫
S(y⊥)

uS(y⊥)(dx)
∣∣ψ(y)

∣∣2 (2.44)

≤
∫
S(Xd )

u(dy)
∣∣ψ(y)

∣∣2
, (2.45)

so T ψ ∈ L2 for ψ ∈ L2 and ‖T ψ‖2 ≤ ‖ψ‖2, so T is bounded. To see that it is self-adjoint, note that

〈T ψ |χ〉 =
∫
S(Xd )

u(dx)

(∫
S(x⊥)

uS(x⊥)(dy)ψ(y)

)∗
χ(x) (2.46)

=
∫
S(Xd )

u(dx)

∫
S(x⊥)

uS(x⊥)(dy)ψ∗(y)χ(x) (2.47)

=
∫
S(Xd )

u(dy)

∫
S(y⊥)

uS(y⊥)(dx)ψ∗(y)χ(x) (2.48)

= 〈ψ |T χ〉. (2.49)
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Next, observe that T is O(d)-invariant,

U(M)T U(M)−1 = T ∀M ∈ O(d), (2.50)

where (U(M)ψ)(x) = ψ(Mx). For 
 = 0,1,2, . . . , let A
 be the set of all harmonic homogeneous polynomials of
degree 
 in d variables; for 
 = 0 and 1, A
 is just the set of homogeneous polynomials of degree 
, while for 
 ≥ 2,
the elements are of the form

P(x1, . . . , xd) =
d∑

i1···i
=1

Ci1···i
xi1 · · ·xi
 (2.51)

with traceless symmetric C, i.e.,

d∑
i=1

Ci1···i
−2ii = 0 (2.52)

for all i1, . . . , i
−2 ∈ {1, . . . , d}. Let H
 be the set of the restrictions of the A
 functions to S(Rd). The functions in
H
 form the d-dimensional analog of the spherical harmonics. It is known (e.g., [24,25]) that the H
 are irreducible
representation spaces of O(d), that they are pairwise inequivalent representations, that they are mutually orthogonal
in H , and that together they span H in the L2 norm,

H =
∞⊕


=0

H
. (2.53)

From this it follows by Schur’s lemma that T , since it is O(d)-invariant, is a multiple of the identity on each H
.
Thus, T has pure point spectrum, and each eigenspace must be either one of the H
 or the sum of several of the H
.
(This observation was made before in [15].)

To compute the eigenvalue τ
 of T on H
, it suffices to consider any P ∈ H
 and compare the average of P over the
equator S(Rd−1) = {x ∈ S(Rd) : xd = 0}, or T P (0,0, . . . ,1), with the value of P at the north pole, P(0, . . . ,0,1) =
Cddd···d .

By Lemma 2, the average of P(x) with traceless C over the equator is 0 for odd 
, while for even 
 ≥ 2 it is

∫
S(Rd−1)

ud−1(dx)P (x) = α
,d−1

d−1∑
i1···i
/2=1

Ci1i1i2i2···i
/2i
/2 (2.54)

= −α
,d−1

d−1∑
i2···i
/2=1

Cddi2i2···i
/2i
/2 (2.55)

= (−1)2α
,d−1

d−1∑
i3···i
/2=1

Cddddi3i3···i
/2i
/2 (2.56)

= (−1)
/2α
,d−1Cdd···d . (2.57)

Thus, the eigenvalue of the operator T on H
 is

τ
 =
{

0 if 
 odd,
(−1)
/2α
,d−1 if 
 ≥ 2 even.

(2.58)

We can now identify the largest absolute eigenvalues. Since, by (2.25),

α
+2,d = 
 + 1


 + d
α
,d < α
,d , (2.59)
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we have that

max

=2,4,6,...

α
,d = α2,d = 1

d
. (2.60)

Thus, 1 does not occur as an eigenvalue except for constant functions, and the largest absolute non-1 eigenvalue is
α2,d−1 = 1/(d − 1). �

2.3. Proof of Theorem 3 in the complex case

Lemmas 3 and 4 provide the complex analogs of Lemmas 1 and 2. Lemma 4 is equivalent to Theorem 18 in [6]; it is
proved there using Gaussianization and here in a different way using Lemma 3.

Lemma 3. Let d ≥ 2 and 
, 
′ ∈ {0,1,2, . . .}. Suppose the rank-(
 + 
′) tensor A ∈ (Cd)⊗(
+
′) is symmetric in the
first 
 indices and symmetric in the last 
′ indices,

Ai1···i
i′1···i′
′ = Aiσ(1)···iσ (
)i
′
σ ′(1)

···i′
σ ′(
′)

∀σ ∈ S
 ∀σ ′ ∈ S
′, (2.61)

and invariant under U(d), acting in the obvious way on the first 
 indices and in the conjugate way on the last 
′
indices,

d∑
j1···j
,j

′
1···j ′


′=1

Mi1j1 · · ·Mi
j

Mi′1j ′

1
· · ·Mi′
j ′


′
Aj1···j
j

′
1···j ′


′
= Ai1···i
i′1···i′
′ ∀M ∈ U(d). (2.62)

If 
 �= 
′ then A = 0, and if 
 = 
′ then A is a multiple of Ã given by the symmetrization of δi1i
′
1
δi2i

′
2
· · · δi
i

′



in either
the primed or the unprimed indices,

Ãi1···i
i′1···i′
 = 1


!
∑
σ∈S


δiσ(1)i
′
1
δiσ(2)i

′
2
· · · δiσ(
)i

′


. (2.63)

Proof. Also this lemma can be translated into a statement about polynomials. The relevant polynomials to consider
are the polynomials P(z1, . . . , zd , z1, . . . , zd) homogeneous of degree 
 in z and degree 
′ in z; they can be thought
of as complex polynomials in 2d complex variables, with the conjugates of z1, . . . , zd inserted as the last d variables;
they can be written as

P(z1, . . . , zd , z1, . . . , zd) =
d∑

i1,...,i
,i
′
1,...,i

′

′=1

Ai1···i
,i′1···i′
′ zi1 · · · zi
zi′1 · · · zi′

′
. (2.64)

The pair (
, 
′) is called the bi-degree3 of P . Lemma 3 can then be paraphrased as:
Suppose the bi-homogeneous polynomial P(z1, . . . , zd , z1, . . . , zd) of bi-degree (
, 
′) is U(d)-invariant. If 
 �= 
′

then P = 0, and if 
 = 
′ then P is a multiple of (|z1|2 + · · · + |zd |2)
.
Considering (2.62) for M = eiθ I with θ ∈ R and I the identity matrix, we obtain that ei(
−
′)θA = A, so for 
 �= 
′

we have that A = 0 (and P = 0). Now assume 
 = 
′. Since P is U(d)-invariant, its restriction to S(Cd) must be
constant. Since P(z, z) is real-homogeneous of degree 2
, it must be of the form c|z|2
, where c is a complex constant
and |z| = √|z1|2 + · · · + |zd |2. �

Lemma 4. Suppose d ≥ 2 and 
, 
′ ∈ {0,1,2, . . .}. Let P(z, z) be a bi-homogeneous polynomial of bi-degree (
, 
′),

P(z, z) =
d∑

i1···i
,i′1···i′
′=1

Ci1···i
i′1···i′
′ zi1 · · · zi
zi′1 · · · zi′

′

(2.65)

3Again, we include the possibility P = 0.
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with a complex tensor C that is symmetric in the primed and in the unprimed indices. Then the average of P over the
unit sphere is∫

S(Cd )

u(dz)P (z, z) =
{

0 if 
 �= 
′,
β
,d

∑d
i1···i
=1 Ci1···i
i1···i
 if 
 = 
′ ≥ 1 (2.66)

with

β
,d =
(


 + d − 1



)−1

. (2.67)

Proof. By linearity, the average of P must be

d∑
i1···i
,i′1···i′
′=1

Ai1···i
,i′1···i′
′ Ci1···i
,i′1···i′
′ (2.68)

with

Ai1···i
,i′1···i′
′ =
∫
S(Cd )

u(dz)zi1 · · · zi
zi′1 · · · zi′

′
. (2.69)

The tensor A is symmetric in the first 
 variables and symmetric in the last 
′ variables, and U(d)-invariant in the
sense of (2.62). Lemma 3 now yields A = β
,dÃ and thus (2.66) except for the value of the constant β
,d .

To compute β
,d , note that Ã1···11···1 = 1, so

β
,d = A1···11···1 (2.70)

=
∫
S(Cd )

u(dz)|z1|2
 (2.71)

=
∫
S(R2d )

u(dx)
(
x2

1 + x2
2

)
 (2.72)

=

∑

k=0

(



k

)∫
S(R2d )

u(dx)x2k
1 x

2(
−k)
2 (2.73)

[using (2.24) for P(x1, . . . , x2d) = x2k
1 x

2(
−k)
2 , which has Ci1···i2d

= (2

2k

)−1
if 2k of the ij are 1 and the others are 2,

and Ci1···i2d
= 0 otherwise, so the sum in (2.24) has

(


k

)
nonzero terms]

= α2
,2d


∑
k=0

(



k

)2 (
2


2k

)−1

(2.74)

= α2
,2d4


(
2





)−1

, (2.75)

where the last step can be obtained either from Gauss’s theorem about the hypergeometric function 2F1(a, b; c; z) at
z = 1 [11], or using Zeilberger’s algorithm [28]. One easily verifies that (2.74) is equal to (2.67).

Alternatively, starting from (2.72), we can evaluate this integral by noting that for x = (x1, . . . , xD) = (x(1),x(2)) ∈
R

D with x(1) = (x1, . . . , xn) and x(2) = (xn+1, . . . , xn+m) such that n + m = D, we have that for the D-dimensional
volume measure,

dx = dx(1) dx(2) (2.76)

= rn−1
1 d�(1) dr1r

m−1
2 d�(2) dr2 (2.77)

= ρrn−1
1 rm−1

2 d�(1) d�(2) dθ dρ, (2.78)
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where ri = |x(i)|, d�(i) is the solid angle for x(i)/ri , ρ = |x| =
√

r2
1 + r2

2 , cos θ = r1/ρ (0 ≤ θ ≤ π/2), so r2 = ρ sin θ .
This yields, for n = 2 and D = 2d ,

β
,d =
∫
S(R2d )

u(dx)
(
x2

1 + x2
2

)
 (2.79)

= 1

|S(R2d)|
∫ π/2

0
dθ cos2
 θ cos θ sin2d−3 θ2π

∣∣S(
R

2d−2)∣∣ (2.80)

= 2π
(2d − 2)!!g(2d − 2)

(2d − 4)!!g(2d)

∫ π/2

0
dθ sin2d−3 θ cos2
+1 θ (2.81)

= (2d − 2)
(2
)!!(2d − 4)!!
(2d + 2
 − 2)!! (2.82)

= (2
)!!(2d − 2)!!
(2d + 2
 − 2)!! (2.83)

using

∫ π/2

0
dθ sinp θ cosq θ = (q − 1)!!(p − 1)!!

(p + q)!! (2.84)

for odd q . One easily verifies that (2.83) is equal to (2.67). �

Proof of Theorem 3 in the complex case X
d = C

d . By the same reasoning as in the real case, involving (2.39)–
(2.49), T must be self-adjoint and bounded. Clearly, it is U(d)-invariant. For 
, 
′ ∈ {0,1,2, . . .}, let A

′ be the set
of all harmonic bi-homogeneous polynomials P(z1, . . . , zd , z1, . . . , zd) of bi-degree (
, 
′); for 
, 
′ ≥ 1, they are of
the form

P(z, z) =
d∑

i1···i
,i′1···i′
′=1

Ci1···i
i′1···i′
′ zi1 · · · zi
zi1 · · · zi′

′

(2.85)

with a tensor C that is symmetric in the sense of (2.61) and traceless in the sense that

d∑
i=1

Ci1···i
−1i,i
′
1···i′
′−1

i = 0 (2.86)

for all i1, . . . , i
−1, i
′
1, . . . , i

′

′−1 ∈ {1, . . . , d}. Let H

′ be the set of the restrictions of the A

′ functions to S(Cd). The

functions in H

′ form the complex analog of the spherical harmonics. It is known (e.g., [25, p. 296]) that the H

′
are irreducible representation spaces of U(d), that they are pairwise inequivalent representations [25, p. 296] that they
are mutually orthogonal [25, p. 293], and that together they span H in the L2 norm [25, p. 294],

H =
∞⊕


,
′=0

H

′ . (2.87)

By the same reasoning as in the real case, each eigenspace of T must be either one H

′ or the sum of several
ones.

To compute the eigenvalue τ

′ of T on H

′ , we consider any P ∈ H

′ and compare the average of P over the
equator S(Cd−1) = {z ∈ S(Cd) : zd = 0}, or T P (0,0, . . . ,1), with the value of P at the north pole, P(0, . . . ,0,1) =
Cd···dd···d .
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By Lemma 4, the average of P over the equator is 0 for 
 �= 
′, while for 
 = 
′ ≥ 1 it is

∫
S(Cd−1)

ud−1(dz)P (z, z) = β
,d−1

d−1∑
i1···i
=1

Ci1···i
,i1···i
 (2.88)

= −β
,d−1

d−1∑
i1···i
−1=1

Ci1···i
−1d,i1···i
−1d (2.89)

= (−1)
β
,d−1Cdd···d . (2.90)

Thus, the eigenvalue of the operator T on H

′ is

τ

′ =
{

0 if 
 �= 
′,
(−1)
β
,d−1 if 
 = 
′ ≥ 1.

(2.91)

For 
 = 
′ = 0, of course, H

′ = H00 consists of the constant functions, and the eigenvalue is τ00 = 1. We can now
identify the largest absolute eigenvalues. Since, by (2.67),

β
+1,d = 
 + 1


 + d
β
,d < β
,d , (2.92)

we have that

max

=1,2,3,...

β
,d = β1,d = 1

d
. (2.93)

Thus, 1 does not occur as an eigenvalue except for constant functions, and the largest absolute non-1 eigenvalue is
β1,d−1 = 1/(d − 1). �

3. Application

A physical application of our results, described in detail in [8], concerns quantum statistical mechanics, in particular
the distribution of the wave function in thermal equilibrium.

3.1. Setup

Consider any quantum system S weakly coupled to another system B with a large (but finite) number of particles;
B is called the “heat bath.” Suppose that the composite system S ∪ B is isolated, with Hilbert space

H = HS ⊗ HB (3.1)

and the Hamiltonian

H = HS ⊗ IB + IS ⊗ HB + HSB, (3.2)

where I denotes the identity operator, and the interaction term HSB is assumed to be small and will be neglected for
much of the reasoning. In correspondence to the physical assumption that S ∪ B is constrained to a finite volume of
3-space, we assume that H has pure point spectrum. Consider an energy interval [E,E + δE] that is small on the
macroscopic scale but large enough to contain many eigenvalues of H . Let the “micro-canonical” subspace Hmc of H
be the spectral subspace corresponding to [E,E+δE], i.e., Hmc is spanned by the eigenvectors of H with eigenvalues
between E and E + δE, and suppose that S ∪B is in a pure state ψ in Hmc. Without loss of generality, Hmc, HS , and
HB can be taken to have finite dimension, while dimHmc and dimHB should be large (like exp(1010)). Most wave
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functions ψ ∈ S(Hmc) (“most” relative to uS(Hmc)) represent states of thermal equilibrium. According to a fact known
as “canonical typicality” [7,10,20], most ψ ∈ S(Hmc) are such that, for dimHS � dimHmc,

ρ
ψ
S ≈ ρβ, (3.3)

where ρ
ψ
S denotes the reduced density matrix of S,

ρ
ψ
S := trB |ψ〉〈ψ |, (3.4)

and ρβ the “canonical” density matrix associated with inverse temperature β = 1/kT (k = Boltzmann’s constant, T =
temperature),

ρβ := 1

Z
e−βH (3.5)

with Z = tr e−βH ; the value of β is determined by E and the sizes of S and B .

3.2. Conditional wave function

As first pointed out in [9], it is also true for most ψ ∈ S(Hmc) that the “conditional wave function” ψS of system S (see
below) has a probability distribution that depends only on HS and β (and thus does not depend on HB , HSB if small
enough, or on the details of ψ ), called the “thermal equilibrium distribution of ψS .” This distribution is GAP(ρβ), the
Gaussian Adjusted Projected measure with covariance operator ρβ [9]. The mathematical proof [8] of this statement
of “GAP typicality” is where Theorems 1 and 2 are useful.

To explain this further, we first elucidate the concept of “conditional wave function.” Given an orthonormal basis
{b1, . . . , bd} of HB and a vector ψ ∈ S(H), the conditional wave function ψS is a random vector in S(HS), obtained
from ψ by means of the partial inner product,

ψS = 1

N 〈bJ |ψ〉B, (3.6)

with a random basis vector bJ , chosen with the Born-rule distribution

P(J = j) = ∥∥〈bj |ψ〉B
∥∥

HS
. (3.7)

(N is a normalizing factor, and the partial inner product φ = 〈b|ψ〉B is defined by the property 〈χ |φ〉HS
= 〈χ ⊗

b|ψ〉H .) Usually, ψS depends on ψ as well as on the basis {b1, . . . , bd}; however, in the special situation of thermal
equilibrium, the distribution does not depend on the choice of basis, nor (as already mentioned) on ψ (except through
HS and β).

A key to proving GAP typicality is this statement: If {b1, . . . , bd} is a random orthonormal basis of HB then, for
every ψ ∈ S(H), the distribution of ψS is close to GAP(ρ

ψ
S ) with probability near 1. To prove this statement, two

things are relevant: First, that when, for fixed ψ , the distribution of ψS on S(HS) is averaged over all orthonormal
bases {b1, . . . , bd}, the result is GAP(ρ

ψ
S ). And second, the result of the present paper. That is because the distribution

of ψS is actually of the form

1

d

d∑
i=1

ϕ(bi), (3.8)

where ϕ is a function on S(HB) that yields measures on S(HS) as values. Theorem 1 shows that the measure (3.8)
will, with high probability, be close to its average∫

S(HB)

u(dx)ϕ(x) = GAP
(
ρ

ψ
S

)
, (3.9)

as claimed.
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