
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2017, Vol. 53, No. 1, 493–502
DOI: 10.1214/15-AIHP733
© Association des Publications de l’Institut Henri Poincaré, 2017

Nonexistence of Lyapunov exponents for matrix cocycles

Xueting Tian

School of Mathematical Science, Fudan University, Shanghai 200433, People’s Republic of China. E-mail: xuetingtian@fudan.edu.cn

Received 25 July 2015; revised 16 November 2015; accepted 20 November 2015

Abstract. It follows from Oseledec Multiplicative Ergodic Theorem (or Kingman’s Sub-additive Ergodic Theorem) that the
Lyapunov-irregular set of points for which the Oseledec averages of a given continuous cocycle diverge has zero measure with
respect to any invariant probability measure. In strong contrast, for any dynamical system f : X → X with exponential specifi-
cation property and a Hölder continuous matrix cocycle A : X → GL(m,R), we show here that if there exist ergodic measures
with different Lyapunov spectrum, then the Lyapunov-irregular set of A is residual (i.e., containing a dense Gδ set). Here we point
out that exponential specification is introduced and plays critical role, and it is still unknown whether specification is enough. The
above result can be used not only for all mixing hyperbolic systems but also for some non-hyperbolic systems.

Résumé. Le théorème ergodique multiplicatif d’Oseledets (ou le théorème ergodique sous-additif de Kingman) implique que
l’ensemble Lyapounov-irrégulier (les points pour lesquels la moyenne d’Oseledets d’un cocycle continu donné diverge) est de me-
sure nulle pour toute mesure de probabilité invariante. Par contraste avec ce fait, nous montrons que pour tout système dynamique
f : X → X satisfaisant la spécification exponentielle, et pour tout cocycle de matrices A : X → GL(m,R) Hölder continu, s’il
existe des mesures ergodiques avec des spectres de Lyapounov distincts, alors l’ensemble Lyapounov-irrégulier de A est résiduel
(i.e., il contient un Gδ-dense). Nous mettons donc en évidence le rôle critique de la spécification exponentielle. Il n’est pas connu
si cette propriété est suffisante. Notre résultat s’applique à tous les systèmes hyperboliques mélangeants et à certains systèmes
non-hyperboliques.
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1. Introduction

In page 264 of his book [15], Ricardo Mañé wrote: “In general, (Lyapunov) regular points are very few from the
topological point of view – they form a set of first category.” One could try to formalize the enigmatic statement in
different ways. For example, Theorem 3.14 of [1] by Abdenur, Bonatti and Crovisier is one such kind formaliza-
tion, where Mañé’s statement is made precise by interpreting “in general” as “for C1-generic diffeomorphisms.” In
this paper, we aim to give another formalization of Mañé’s statement, considering Hölder continuous cocycle over
dynamics with exponential specification (particularly considering derivative cocycle over hyperbolic dynamics), see
Theorems 1.4 and 1.7 below. Before stating our main results, let us introduce some basic notions and facts.

1.1. Lyapunov exponents

Let f be an invertible map of a compact metric space X and let A : X → GL(m,R) be a continuous matrix function.
One main object of interest is the asymptotic behavior of the products of A along the orbits of the transformation f ,
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called cocycle induced from A: for n > 0

A(x,n) := A
(
f n−1(x)

) · · ·A(
f (x)

)
A(x),

and

A(x,−n) := A
(
f −n(x)

)−1 · · ·A(
f −2(x)

)−1
A

(
f −1(x)

)−1 = A
(
f −nx,n

)−1
.

Definition 1.1. We say x ∈ X to be (forward) Lyapunov-regular for A, if there exist numbers χ1 < χ2 < · · · < χl

(l ≤ m), and an A-invariant decomposition of Rm

R
m
x = G1(x) ⊕ G2(x) ⊕ · · · ⊕ Gl(x)

such that for any i = 1, . . . , l and any 0 �= v ∈ Gi(x) one has

lim
n→+∞

1

n
log

∥∥A(x,n)v
∥∥ = χi.

Otherwise, x is called to be Lyapunov-irregular for A. Let LI(A,f ) denote the space of all Lyapunov-irregular points
for A.

Remark 1.2. There are many definitions for Lyapunov-regularity, e.g., Barreira and Pesin’s book [4] and Mañé’s book
[15]. Definition 1.1 of Lyapunov-regular point is similar as the one in [15], which was originally defined for derivative
cocycle. For the definition of Barreira and Pesin, see [4] for more details.

If x is Lyapunov-regular for cocycle A, it is easy to see that the limit λ(A,x, v) := limn→+∞ 1
n

log‖A(x,n)v‖
exists for all vector v ∈ R

m \ {0}.

Oseledec Multiplicative Ergodic Theorem ([4, Theorem 3.4.4] (or see [17])). Let f be an invertible ergodic
measure-preserving transformation of a Lebesgue probability measure space (X,μ). Let A be a measurable cocy-
cle whose generator satisfies log‖A±(x)‖ ∈ L1(X,μ). Then there exist numbers

χ1 < χ2 < · · · < χl,

an f -invariant set Rμ with μ(Rμ) = 1, and an A-invariant decomposition of Rm for x ∈Rμ,

R
m
x = Eχ1(x) ⊕ Eχ2(x) ⊕ · · · ⊕ Eχl

(x)

with dimEχi
(x) = mi , such that for any i = 1, . . . , l and any 0 �= v ∈ Eχi

(x) one has

lim
n→±∞

1

n
log

∥∥A(x,n)v
∥∥ = χi

and

lim
n→±∞

1

n
log detA(x,n) =

l∑
i=1

miχi.

Definition 1.3. The numbers χ1, χ2, . . . , χl are called the Lyapunov exponents of measure μ for cocycle A and the
dimension mi of the space Eχi

(x) is called the multiplicity of the exponent χi . The collection of pairs

Sp(μ,A) = {
(χi,mi) : 1 ≤ i ≤ l

}
is the Lyapunov spectrum of measure μ. Rμ is called the Oseledec basin of μ and the decomposition R

m = Eχ1 ⊕
Eχ2 ⊕ · · · ⊕ Eχl

is called the Oseledec splitting of μ.
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Note that for any ergodic measure μ, all the points in the set Rμ are Lyapunov-regular. By Oseledec Multiplicative
Ergodic Theorem and Ergodic Decomposition Theorem, the set

� :=
⋃

μ∈Me
f (X)

Rμ

is a Borel set with total measure, that is, � has full measure for any invariant Borel probability measure, where
Me

f (X) denotes the space of all ergodic measures. In other words, the Lyapunov-irregular set is always of zero
measure for any invariant probability measure. This does not mean that the set of Lyapunov-irregular points, where
the Lyapunov exponents do not exist, is empty, even if it is completely negligible from the point of view of measure
theory. One such interesting result is from [8] that for any uniquely ergodic system, there exists some matrix cocycle
whose Lyapunov-irregular set can be “large” as a set of second Baire category (also see [12,19] for similar discussion).

1.2. Results

Recall that Y is called residual in X, if Y contains a dense Gδ subset of X. The notion of residual set is usually used
to describe a set being “large” in the topological sense.

Theorem 1.4. Let f : X → X be a homeomorphism of a compact metric space X with exponential specification. Let
A : X → GL(m,R) be a Hölder continuous matrix function. Then either all ergodic measures have same Lyapunov
spectrum or the Lyapunov-irregular set LI(A,f ) is residual in X.

Remark 1.5. In [8, Theorem 4] Furman proved that some smooth cocycles over irrational rotations (which were
previously studied by Herman) have a residual set of Lyapunov-irregular points.

Remark 1.6. If m = 1, the Lyapunov exponent can be written as Birkhoff ergodic average

lim
n→+∞

1

n

n−1∑
j=0

φ
(
f j (x)

)
,

where φ(x) = log‖A(x)‖ is a continuous function. If all ergodic measures have same Lyapunov spectrum, then by
Ergodic Decomposition Theorem so do all invariant measures and thus by compactness of the weak∗ topology, the
limit limn→+∞ 1

n

∑n−1
j=0 φ(f j (x)) should exist at every point x ∈ X and equal to the given spectrum. Moreover, the

case of m = 1 is in fact to study Birkhoff ergodic average and it has been studied for systems with specification or its
variants by many authors, see [2,3,13,14,16] and reference therein.

As a particular case of Theorem 1.4 we have a consequence for the derivative cocycle of hyperbolic systems. Let
LI(f ) := LI(Df,f ). It is called Lyapunov-irregular set of system f .

Theorem 1.7. Let f be a C1+α diffeomorphism of a compact Riemannian manifold M and X ⊆ M be a topologically
mixing locally maximal hyperbolic invariant subset. Then either all ergodic measures supported on X have same
Lyapunov spectrum or the Lyapunov-irregular set LI(f ) is residual in X.

We point out that for a diffeomorphism, exponential specification does not imply hyperbolicity, see Example 2.4.

Remark 1.8. From [20] (or [10]) we know that for a C1+α diffeomorphism, the Lyapunov exponents of a hyperbolic
ergodic measure can be approximated by ones of periodic measures. Note that every ergodic measure supported
a hyperbolic set is hyperbolic. Thus for the statements of Theorem 1.7, “all ergodic measures supported on X have
same Lyapunov spectrum” can be replaced by “all periodic measures supported on X have same Lyapunov spectrum.”

Recently we also consider the topological entropy of Lyapunov-irregular set for cocycles over hyperbolic systems,
which may carry full entropy. In this process, another concept called exponential shadowing is introduced and plays
important role, see [18] for precise details.
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2. Specification and Lyapunov metric

2.1. Specification and exponential specification

Now we introduce (exponential) specification property. Let f be a continuous map of a compact metric space X.

Definition 2.1. f is called to have specification property, if the following holds: for any δ > 0 there exists an integer
N = N(δ) > 0 such that for any k ≥ 1, any points x1, x2, . . . , xk ∈ X, any integers a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk

with aj+1 − bj ≥ N (1 ≤ j ≤ k − 1), there exists a point y ∈ X such that

d
(
f i(y), f i(xj )

)
< δ, aj ≤ i ≤ bj ,1 ≤ j ≤ k.

Remark that the specification property introduced by Bowen [5] (or see [7,11]) required that the shadowing point
y is periodic. That is, for any p ≥ bk − a1 + N , the chosen point y in above definition further satisfies f p(y) = y. We
call this to be Bowen’s specification property.

Definition 2.2. f is called to have exponential specification property with exponent λ > 0 (only dependent on the
system f itself), if specification property holds and the inequality in specification can be shadowed exponentially, i.e.,

d
(
f i(xj ), f

i(y)
)
< δe−λmin{i−aj ,bj −i}, aj ≤ i ≤ bj ,1 ≤ j ≤ k.

If further the tracing point y is periodic with f p(y) = y, then we say f has Bowen’s exponential specification
property.

For convenience, we say the orbit segments x,f x, . . . , f nx and y,fy, . . . , f ny are exponentially δ close with
exponent λ, meaning that

d
(
f i(x), f i(y)

)
< δe−λmin{i,n−i}, 0 ≤ i ≤ n.

Remark 2.3. It is not difficult to see that

(Bowen’s) specification + Local product structure

⇒ (Bowen’s) exponential specification.

Recall that every locally maximal hyperbolic set has local product structure and every topologically mixing locally
maximal hyperbolic set has Bowen’s specification property [5] (or see [7,11]). So every topologically mixing locally
maximal hyperbolic set has exponential specification property. As a particular case, every transitive Anosov diffeo-
morphism has exponential specification property, since it is known that every transitive Anosov diffeomorphism is
topologically mixing. If a homeomorphism f is topologically conjugated to a homeomorphism g satisfying (Bowen’s)
exponential specification property with some exponent β > 0, and the inverse conjugation is γ -Hölder continuous,
then it is not difficult to see that f has (Bowen’s) exponential specification property with exponent βγ > 0.

Example 2.4. Some non-hyperbolic systems with exponential specification:

(1) From [9] there is some non-hyperbolic diffeomorphism f with C1+Lip smoothness such that f is conjugated to
a transitive Anosov diffeomorphism, the conjugation and its inverse is Hölder continuous. By Remark 2.3 this
example satisfies Bowen’s exponential specification property.

(2) The time-1 map of a geodesic flow of compact connected negative curvature manifolds is a partially (non-
hyperbolic) hyperbolic dynamical system. Its exponential specification property can be deduced from the local
product structure and specification property of the flow which is naturally hyperbolic, see [6]. Here we remark
that the shadowing point may be not periodic with respect to the time-1 map because the shadowing of flow has a
small time reparameterization.
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2.2. Lyapunov exponents and Lyapunov metric

In this section let us recall some Pesin-theoretic techniques, which are mainly from [10] (also see [4]).
Suppose f : X → X to be an invertible map on a compact metric space X and A : X → GL(m,R) to be a contin-

uous matrix function. For an ergodic measure μ, let χ1 < χ2 < · · · < χl be the Lyapunov exponents of μ, Rμ be the
Oseledec basin of μ and the decomposition R

m = Eχ1 ⊕ Eχ2 ⊕ · · · ⊕ Eχl
be the Oseledec splitting of μ. We denote

the standard scalar product in R
m by 〈·, ·〉. For a fixed ε > 0 and a point x ∈ Rμ, the ε-Lyapunov scalar product (or

metric) 〈·, ·〉x,ε in R
m is defined as follows.

Definition 2.5. For u ∈ Eχi
(x), v ∈ Eχj

(x), i �= j we define 〈·, ·〉x,ε = 0. For i = 1, . . . , l and u,v ∈ u ∈ Eχi
(x), we

define

〈·, ·〉x,ε = m
∑
n∈Z

〈
A(x,n)u,A(x,n)v

〉
exp

(−2χin − ε|n|).

Note that the series in Definition 2.5 converges exponentially for any x ∈ Rμ. The constant m in front of the
conventional formula is introduced for more convenient comparison with the standard scalar product. Usually, ε will
be fixed and we will denote 〈·, ·〉x,ε simply by 〈·, ·〉x and call it the Lyapunov scalar product. The norm generated by
this scalar product is called the Lyapunov norm and is denoted by ‖ · ‖x,ε or ‖ · ‖x .

Let us recall some important properties of the Lyapunov scalar product and norm. For any x ∈ Rμ and any u ∈
Eχi

(x)

exp
(
nχi − ε|n|)‖u‖x,ε ≤ ∥∥A(x,n)u

∥∥
f nx,ε

≤ exp
(
nχi + ε|n|)‖u‖x,ε ∀n ∈ Z, (1)

exp
(
nχ − ε|n|) ≤ ∥∥A(x,n)u

∥∥
f nx←x

≤ exp
(
nχ + ε|n|) ∀n ∈ Z, (2)

where χ = χl and ‖ · ‖f nx←x is the operator norm with respect to the Lyapunov norms. It is defined for any matrix B

and any points x, y ∈Rμ as follows:

‖B‖y←x = sup
{‖Bu‖y,ε · ‖u‖−1

x,ε : 0 �= u ∈ R
m
}
.

It should be emphasized that, for any given ε > 0, Lyapunov scalar product and Lyapunov norm are defined only
for x ∈ Rμ. They depend only measurably on the point even if the cocycle is Hölder. Therefore, comparison with the
standard norm becomes important. The uniform lower bound follow easily from the definition:

‖u‖x,ε ≥ ‖u‖.
The upper bound is not uniform, but it changes slowly along the orbits of each x ∈ Rμ: there exists a measurable
function Kε(x) defined on the set Rμ such that

‖u‖ ≤ ‖u‖x,ε ≤ Kε(x)‖u‖ ∀x ∈Rμ,∀u ∈R
m, (3)

Kε(x)e−εn ≤ Kε

(
f nx

) ≤ Kε(x)eεn ∀x ∈ Rμ,∀n ∈ Z. (4)

For any matrix B and any x, y ∈ Rμ inequalities (3) and (4) yield

Kε(x)−1‖B‖ ≤ ‖B‖y←x ≤ Kε(y)‖B‖. (5)

When ε is fixed it is usually omitted and write K(x) = Kε(x). For any l > 1 we also define the following subsets
of Rμ

Rμ
ε,l = {

x ∈Rμ : Kε(x) ≤ l
}
. (6)

Note that

lim
l→∞μ

(
Rμ

ε,l

) → 1.
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Without loss of generality, we can assume that the set Rμ
ε,l is compact and that Lyapunov splitting and Lyapunov

scalar product are continuous on Rμ
ε,l . Indeed, by Luzin’s theorem we can always find a subset of Rμ

ε,l satisfying these
properties with arbitrarily small loss of measure (for standard Pesin sets these properties are automatically satisfied).

3. Norm estimate of cocycles and generic property of Lyapunov-irregularity

3.1. Estimate of the norm of Hölder cocycles

The maximal (or largest) Lyapunov exponent (or simply, MLE) of A : X → GL(m,R) at one point x ∈ X is defined
as the limit

χmax(A,x) := lim
n→∞

1

n
log

∥∥A(x,n)
∥∥,

if it exists. In this case x is called to be (forward) Max-Lyapunov-regular. Otherwise, x is Max-Lyapunov-irregular.
By Kingman’s Sub-additive Ergodic Theorem, for any ergodic measure μ and μ a.e. point x, MLE always exists and
is constant, denoted by χmax(A,μ). From Oseledec Multiplicative Ergodic Theorem (as stated above), it is easy to see
that χmax(A,μ) = χl where χ1 < χ2 < · · · < χl are the Lyapunov exponents of μ. Let MLI(A,f ) denote the set of all
Max-Lyapunov-irregular points. Then it is of zero measure for any ergodic measure and by Ergodic Decomposition
Theorem so does it for all invariant measures.

Now let us recall a general estimate of the norm of A along any orbit segment close to one orbit of x ∈ Rμ [10].

Lemma 3.1 ([10, Lemma 3.1]). Let A be an α-Hölder cocycle (α > 0) over a continuous map f of a compact metric
space X and let μ be an ergodic measure for f with the maximal Lyapunov exponent χmax(A,μ) = χ . Then for any
positive λ and ε satisfying λ > ε/α there exists c > 0 such that for any n ∈ N, any point x ∈Rμ with both x and f nx

in Rμ
ε,l , and any point y ∈ X such that the orbit segments x,f x, . . . , f nx and y,fy, . . . , f n(y) are exponentially δ

close with exponent λ for some δ > 0 we have
∥∥A(y,n)

∥∥
f nx←x

≤ eclδα

en(χ+ε) ≤ e2nε+clδα∥∥A(x,n)
∥∥

f nx←x
(7)

and
∥∥A(y,n)

∥∥ ≤ leclδα

en(χ+ε) ≤ l2e2nε+clδα∥∥A(x,n)
∥∥. (8)

The constant c depends only on the cocycle A and on the number (αλ − ε).

Lemma 3.2. Let A be an α-Hölder cocycle (α > 0) over a continuous map f of a compact metric space X and let
μ be an ergodic measure for f with the maximal Lyapunov exponent χmax(A,μ) = χ . Then for any positive λ and ε

satisfying λ > ε/α there exists δ > 0 such that for any n ∈ N, any point x ∈ Rμ with both x and f nx in Rμ
ε,l , and any

point y ∈ X, if the orbit segments x,f x, . . . , f nx and y,fy, . . . , f n(y) are exponentially δ close with exponent λ, we
have

∥∥A(y,n)
∥∥ ≤ lelen(χ+ε) ≤ l2ele2nε

∥∥A(x,n)
∥∥. (9)

Proof. For Lemma 3.1, let δ > 0 small enough such that

cδα < 1.

Then the estimate (9) is obvious from Lemma 3.1. �

Another lemma is to estimate the growth of vectors in a certain cone K ⊆ R
m invariant under A(x,n) [10]. Let

χ1 < χ2 < · · · < χl be the Lyapunov exponents of μ. Let x be a point in Rμ
ε,l and y ∈ X be a point such that the orbit

segments x,f x, . . . , f nx and y,fy, . . . , f ny are exponentially δ close with exponent λ. We denote xi = f ix and
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yi = f iy, i = 0,1, . . . , n. For each i we have orthogonal splitting R
m = Ei ⊕ Fi with respect to the Lyapunov norm,

where Ei is the Lyapunov space at xi corresponding to the maximal Lyapunov exponent χ = χl and Fi is the direct
sum of all other Lyapunov spaces at xi corresponding to the Lyapunov exponents less than χ . For any vector u ∈ R

m

we denote by u = u′ + u⊥ the corresponding splitting with u′ ∈ Ei and u⊥ ∈ Fi ; the choice of i will be clear from the
context. To simplify notation, we write ‖ · ‖i for the Lyapunov norm at xi . For each i = 0,1, . . . , n we consider cones

Ki = {
u ∈R

m : ∥∥u⊥∥∥
i
≤ ∥∥u′∥∥

i

}
and K

η
i = {

u ∈R
m : ∥∥u⊥∥∥

i
≤ (1 − η)

∥∥u′∥∥
i

}

with η > 0. Note that for u ∈ Ki ,

‖u‖i ≥ ∥∥u′∥∥
i
≥ 1√

2
‖u‖i . (10)

If all Lyapunov exponent of A with respect to μ are equal to χ (that is, l = 1), one has Fi = {0}, K
η
i = Ki = R

m, in
this case let

ε0(μ) = λα. (11)

If not all Lyapunov exponent of A with respect to μ are equal to χ (that is, l > 1), let σ < χ be the second largest
Lyapunov exponent of A with respect to μ, that is, σ = χl−1. In this case set

ε0(μ) = min
{
λα, (χ − σ)/2

}
. (12)

For 0 < ε < ε0(μ), from [10] we know the following.

Lemma 3.3 ([10, Lemma 3.3]). In the notation above, for any set Rμ
ε,l , there exist η, δ > 0 such that if x,f nx ∈ Rμ

ε,l

and the orbit segments x,f x, . . . , f nx and y,fy, . . . , f n(y) are exponentially δ close with exponent λ, then for every
i = 0,1, . . . , n − 1 we have A(yi)(Ki) ⊆ K

η
i and ‖(A(yi)u)′‖i+1 ≥ eχ−2ε‖u′‖i for any u ∈ Ki .

3.2. Residual property of maximal Lyapunov-irregularity

Now let us show a residual result for MLI(A,f ).

Theorem 3.4. Let f : X → X be a continuous map of a compact metric space X with exponential specification. Let
A : X → GL(m,R) be a α-Hölder continuous function for some α > 0. Suppose that

inf
μ∈Me

f (X)
χmax(A,μ) < sup

μ∈Me
f (X)

χmax(A,μ).

Then the Max-Lyapunov-irregular set MLI(A,f ) is residual in X.

In other words, either all ergodic measures have same maximal Lyapunov exponent or Max-Lyapunov-irregular set
MLI(A,f ) is residual in X.

Proof of Theorem 3.4. Take two ergodic measures ν and ω such that

χmax(A, ν) > χmax(A,ω).

If let a = χmax(A, ν) and b = χmax(A,ω), we can choose τ > 0 such that a − 2τ > b + 2τ .
Let C = maxx∈X{‖A(x)‖,‖A−1(x)‖} and let λ be the positive number in the definition of exponential specification.

Take ε ∈ (0,min{ 1
2τ, ε0(ν), ε0(ω)}) satisfying λ > ε/α, where ε0(μ) is the number w.r.t. measure μ defined in (11)

or (12). For the measures ν and ω, take l large enough such that

ν
(
Rν

ε,l

)
> 0, ω

(
Rω

ε,l

)
> 0.
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Define

On :=
{
p

∣∣∣ ∃n1, n2 > n s.t.
1

n1
log

∥∥A(p,n1)
∥∥ > a − τ and

1

n2
log

∥∥A(p,n2)
∥∥ < b + τ

}
.

By continuity of A(x,n), On is open. It is straightforward to check that
⋂
n≥1

On ⊆ MLI(A,f ).

So we only need to prove that for any n ≥ 1, On is dense in X. Fix x0 ∈ X, n ≥ 1 and t > 0, we will show On ∩
B(x0, t) �=∅.

More precisely, firstly take η > 0, δ > 0 small enough such that Lemma 3.3 applies to both measures ν and ω.
Secondly we reduce δ so that δ ∈ (0, t) and that Lemma 3.2 applies to both measures ν and ω. For δ,λ, by assumption
there is some integer N > 0 such that the exponential specification of Definition 2.2 holds.

By Poincaré recurrence theorem, there exist two points x ∈ Rν
ε,l , z ∈ Rω

ε,l and two increasing sequences

{Hi}, {Li} ↗ ∞ such that f Hi (x) ∈ Rν
ε,l , f Li (z) ∈Rω

ε,l . Take H = Hi � max{N,n} such that

1√
2l

eH(a−2ε) > CNe(H+N)(a−τ)

and take L = Lj � H + N large enough such that

leleL(b+ε)CH+2N < e(b+τ)(L+H+2N).

Now let us consider three orbit segments

{x0},
{
x,f x, . . . , f H x

}
,

{
z, f z, . . . , f Lz

}
(hint: a1 = b1 = 0, a2 = N , b2 = a2 + H , a3 = b2 + N , b3 = a3 + L) for the exponential specification. Then there
is y0 ∈ X such that d(y0, x0) < δ, the orbit segments x,f x, . . . , f H x and y,fy, . . . , f H y are exponentially δ close
with exponent λ where y = f Ny0, and simultaneously the orbit segments z, f z, . . . , f Lz and y′, fy′, . . . , f Ly′ are
exponentially δ close with exponent λ where y′ = f H+2Ny0.

Firstly let us consider the orbit segments x,f x, . . . , f H x and y,fy, . . . , f H y. By Lemma 3.3 (in this estimate
χ = a, being the maximal Lyapunov exponent of ν), for any u ∈ K0 with ‖u‖ = 1,

∥∥(
A(y,H)u

)′∥∥
H

≥ eH(a−2ε)
∥∥u′∥∥

0.

Together with (3) and (10), we have

∥∥A(y,H)
∥∥ ≥ ∥∥A(y,H)u

∥∥ ≥ 1

l

∥∥A(y,H)u
∥∥

H
≥ 1

l

∥∥(
A(y,H)u

)′∥∥
H

≥ 1

l
eH(a−2ε)

∥∥u′∥∥
0

≥ 1√
2l

eH(a−2ε)‖u‖0 ≥ 1√
2l

eH(a−2ε)‖u‖ = 1√
2l

eH(a−2ε) > CNe(H+N)(a−τ).

Then
∥∥A(y0,H + N)

∥∥ ≥ m
(
A(y0,N)

) · ∥∥A(y,H)
∥∥

≥ C−N · ∥∥A(y,H)
∥∥ > e(H+N)(a−τ), (13)

where m(B) = ‖B−1‖−1.
Secondly let us consider the orbit segments z, f z, . . . , f Lz and y′, fy′, . . . , f Ly′. By the first estimate in (9) of

Lemma 3.2 (in this estimate χ = b, being the maximal Lyapunov exponent of ω) we have
∥∥A

(
y′,L

)∥∥ ≤ leleL(b+ε).
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Then

∥∥A(y0,L + H + 2N)
∥∥ ≤ ∥∥A

(
y′,L

)∥∥ · ∥∥A(y0,H + 2N)
∥∥

≤ leleL(b+ε)CH+2N < e(b+τ)(L+H+2N). (14)

Take n1 = H +N and n2 = L+H + 2N , then (13) and (14) imply y0 ∈ On. Recall d(y0, x0) < δ and δ < t so that
y0 ∈ B(x0, t). So we complete the proof. �

3.3. Proof of Theorems 1.4 and 1.7

For a cocycle A and an ergodic measure μ, let λ1 ≥ λ2 ≥ · · · ≥ λm (counted with their multiplicities) denote the
Lyapunov exponents of μ for A. Let

�A
i (μ) =

i∑
j=1

λj .

Then it is easy to see that: for any two ergodic measures μ,ν ∈Me
f (X),

Sp(μ,A) = Sp(ν,A) ⇔ �A
i (μ) = �A

i (ν) ∀i. (15)

Let us consider cocycle
∧i

A(x,n) induced by cocycle A(x,n) on the i-fold exterior powers
∧i

R
m. For an ergodic

measure μ, it is standard to see that for any 1 ≤ i ≤ m

χmax
( i∧

A,μ
) =

i∑
j=1

λj = �A
i (μ). (16)

Proof of Theorem 1.4. Assume that there are two ergodic measures with different Lyapunov spectrum. By (15), there
is some 1 ≤ i ≤ m such that

inf
μ∈Me

f (X)
�A

i (μ) < sup
μ∈Me

f (X)

�A
i (μ).

By (16), one has

inf
μ∈Me

f (X)
χmax

( i∧
A,μ

)
< sup

μ∈Me
f (X)

χmax
( i∧

A,μ
)
.

Then we can apply Theorem 3.4 to the cocycle
∧i

A(x,n) and obtain that the Max-Lyapunov-irregular set of
∧i

A,
MLI(

∧i
A,f ), is residual in X. Note that LI(A,f ) ⊇ MLI(

∧i
A,f ), since a point Lyapunov-regular for A should

be also Lyapunov-regular for
∧i

A. So LI(A,f ) is also residual in X. Now we complete the proof. �

Proof of Theorem 1.7. From Remark 2.3 we know f |X has exponential specification. Applying Theorem 1.4 for
cocycle A(x,n) = Dxf

n, one ends the proof. �
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