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Abstract. Let X, X, ..., X, be i.i.d. Gaussian random variables with zero mean and covariance operator ¥ = E(X ® X) taking
values in a separable Hilbert space H. Let

(%)
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") = S

be the effective rank of X, tr(X) being the trace of ¥ and || X |0 being its operator norm. Let

n
Sp=n"1 Y (X @ X))
j=1

be the sample (empirical) covariance operator based on (X1, ..., X;). The paper deals with a problem of estimation of spectral
projectors of the covariance operator ¥ by their empirical counterparts, the spectral projectors of P (empirical spectral projectors).
The focus is on the problems where both the sample size n and the effective rank r(X) are large. This framework includes and
generalizes well known high-dimensional spiked covariance models. Given a spectral projector P corresponding to an eigenvalue
- of covariance operator ¥ and its empirical counterpart Py, we derive sharp concentration bounds for bilinear forms of empirical
spectral projector P; in terms of sample size n and effective dimension r(X). Building upon these concentration bounds, we prove
the asymptotic normality of bilinear forms of random operators P, — EP, under the assumptions that n — oo and r(X) = o(n). In
a special case of eigenvalues of multiplicity one, these results are rephrased as concentration bounds and asymptotic normality for
linear forms of empirical eigenvectors. Other results include bounds on the bias EP, — P, and a method of bias reduction as well
as a discussion of possible applications to statistical inference in high-dimensional Principal Component Analysis.

Résumé. Soient X, X1, ..., X, des vecteurs gaussiens a valeurs dans un espace de Hilbert séparable H, i.i.d. et centrés. Nous
définissons I’opérateur de covariance ¥ = E(X ® X) et le rang effectif de ¥

tr(X)
) =
M) = e

ou tr(X) est la trace of ¥ et || X ||oo est sa norme d’opérateur. Nous considérons

n
S ;=n*12(xj®xj)
j=1
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I’opérateur de covariance empirique construit a partir des observations (X1, ..., X;). Ce papier considere le probleme d’estimation
des projecteurs spectraux de 1’opérateur de covariance ¥ par les projecteurs spectraux empiriques, c’est-a-dire les projecteurs
spectraux de 3, Nous nous concentrons sur les problemes ot le nombre d’observations n et le rang effectif r(X) sont grands. Ce
cadre inclut et généralise les modeles de spiked covariance en grande dimension. Soient P un projecteur spectral correspondant
a une valeur propre p, de I’opérateur de covariance X et P, sa version empirique. Nous établissons des bornes de concentrations
fines sur les formes bilinéaires du projecteur empirique P, qui dépendent du nombre d’observations n et de la dimension effective
r(X). Nous exploitons ensuite ces bornes de concentration pour établir la normalité asymptotique des formes bilinéaires des
opérateurs aléatoires P —EP, sous les hypotheses que n — oo et r(X) = o(n). Dans le cas particulier des valeurs propres de
multiplicité 1, ces résultats sont reformulés en terme de bornes de concentration et de normalité asymptotique pour les formes
linéaires des vecteurs propres empiriques. Nous prouvons aussi de nouveaux résultats sur le biais EP, — P, incluant notamment
une méthode de réduction du bias. Finalement, nous discutons des applications possibles de ces résultats a I’inférence statistique
en grande dimension pour I’analyse en composantes principales.
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1. Introduction

Principal Component Analysis (PCA) is among the most popular methods of exploring the covariance structure of a
random process in a wide array of applications. It is of a particular interest in high-dimensional statistics as a tool of
dimension reduction and feature extraction.

Let X be a random vector in R? with zero mean and covariance matrix X. The classical PCA is based on estimating
the eigenvalues and the associated spectral projectors of X by the eigenvalues and the spectral projectors of the sample
covariance matrix %, based on n i.i.d. replications of X, that is, the sample (empirical) eigenvalues and the sample
(empirical) spectral projectors. Assessing the performance of the standard PCA raises naturally a question of how the
sample eigenvalues and sample spectral projectors deviate from their population counterparts. In the ‘standard setting,’
where p > 1 is fixed and n — 0o, Anderson [2] established the limiting joint distribution of the sample eigenvalues
and the associated sample eigenvectors (see also Theorem 13.5.1 in [3]). These results have been extended in [10] to
the case of i.i.d. data in infinite-dimensional Hilbert spaces (they have been used and further developed in numerous
papers that followed, see, e.g., [24]).

A number of authors considered a ‘high-dimensional setting,” where the dimension p = p,, is allowed to grow
with the sample size n. Marchenko and Pastur [23] derived the “limiting density” of the spectrum of 3, in the case
when ¥ = I, is the identity matrix and % — ¢ € (0,1] as n — oo (more precisely, they obtained the a.s. limit
of the empirical distribution of the eigenvalues). Under the same conditions, Johnstone [11] proved that the largest
empirical eigenvalue (properly normalized) converges in distribution to the Tracy—Widom law. The accuracy of this
approximation was studied in [13,21]. Assuming that the covariance matrix X is the sum of the identity matrix and
a small finite rank symmetric positive semi-definite perturbation, Baik, Ben Arrous and Peche [4] discovered a phase
transition effect where the sample versions of the non-unit eigenvalues satisfy different asymptotic properties that
depend on how far from 1 the non-unit eigenvalues are. Another line of research is a non-asymptotic theory of sample
covariance where the main goal is to obtain sharp non-asymptotic bounds on the operator norm || 30— 2lloo; a review
of these results can be found in [30].

Concerning the estimation of spectral projectors, Johnstone and Lu [12] proved that the classical PCA approach
could fail to produce a consistent estimator when % — ¢ > 0 as n — 00. To overcome this difficulty, several authors
proposed alternative estimators of the covariance matrix X and studied their performance under various sparsity
assumptions on X. See, for instance, [19,22,26,31] and the references cited therein.

We turn now to formulating the PCA problem in a general separable Hilbert space H. This framework includes
not only the classical high-dimensional setting, but also PCA for functional data (FPCA), see Ramsay and Silverman
[27], and kernel PCA (KPCA) in machine learning, see Scholkopf, Smola and Miiller [29], Blanchard, Bousquet and
Zwald [6].

It will be assumed that H is a real Hilbert space, but, in some cases (especially, when one has to deal with resolvents
of operators in H), it has to be extended to a complex Hilbert space H¢ := {u +iv : u, v € H} with a standard extension
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of the inner product. In what follows, (-, -) denotes the inner product of H with || - || being the corresponding norm.
With a little abuse of notation, we also denote by (-, -) the standard inner product in the space of Hilbert—Schmidt
operators acting in H, the corresponding Hilbert—Schmidt norm being denoted by || - ||2. The notation || - ||oc Will be

used for the operator norm of linear operators:

|Alloo := sup ||Aull, A:Hwr H.

lull <1

More generally, || - ||, p € [0, +00] denotes the Schatten p-norm. Given vectors u, v € H, u ® v is the tensor product
of u and v (that is, u ® v is an operator from H into H acting as follows: (¥ ® v)x = (v, x)u,x € H). If P is the
orthogonal projector on a subspace L C H, then P denotes the projector on the orthogonal complement L.

The following notations are used throughout the paper: for nonnegative By, By, B; < B, (equivalently, By = Bj)
means that there exists an absolute constant C > 0 such that B < CB;. If B] < B and B| = Bp, we will write
B1 < B,. Sometimes, the signs <, 2 and < will be provided with subscripts. For instance, B; <, B> would mean that
By < CBy, where C is a constant that might depend on a.

Let X, X1, ..., X, be ii.d. random vectors in H with mean zero and E| X ||> < +o0c. Denote by ¥ =E(X ® X) the
covariance matrix of X and let

A

n
E::ﬁ?nzzn_IZXj@)Xj
j=1

be the sample covariance based on the observations (X1, ..., X,). Since ¥ is a compact symmetric nonnegatively
definite operator (in fact, a trace class operator), it has the following spectral decomposition £ =Y 72 | u, P, where
wr = uy(X) are distinct strictly positive eigenvalues of X (to be specific, arranged in decreasing order) and P, are
the corresponding spectral projectors (orthogonal projectors in H). Clearly, m, := rank(P,) < +o0 is the multiplicity
of the eigenvalue w, in the spectrum o (X) of ¥ (in other words, it is the dimension of the eigenspace of X that
corresponds to ji,). It will be convenient in what follows to denote by o; = 0 (X), j > 1 the eigenvalues of X arranged
in a nonincreasing order and repeated with their multiplicities. Let A, := {j : 0j = u,}. Then card(A,) = m,. Of
course, the sample covariance > admits a similar spectral representation. Note that since the rank of 3 is at most
n, it has at most n non-zero eigenvalues. Denote by P, the orthogonal projector on the direct sum of eigenspaces of
) corresponding to the elgenvalues {oj (2) Jj € A}, Tt is well known (and it will be discussed in detail in the next
section) that as soon as 3 is close enough to X in the operator norm, the eigenvalues {U](Z) j € A} are in a small
neighborhood of 4, and all other eigenvalues of 3 are separated from this neighborhood. Thus, for each r, if n is
sufficiently large, there is a cluster {o; (), jeA}of elgenvalues of 3 and the corresponding spectral projector P,
is a natural estimator of P, (note that, in this case, rank(P,) =rank(P,) =m,).

We will be interested in asymptotic properties of the “empirical” spectral projector P, as an estimator of the true
spectral projector P,. The following assumption holds throughout the paper:

Assumption 1. Assume that X, X1, ..., X, are i.i.d. random variables sampled from a Gaussian distribution in H
with zero mean and covariance %.

We are especially interested in the case when not only the sample size n is large, but also the trace of matrix
¥, tr(2), is large as well (formally, one has to deal with a sequence of problems with covariances £ such that
tr(Z™) — oo as n — 00). This is a crucial difference with other literature on PCA in Hilbert spaces (such as [10])
where it is typically assumed that tr(X) is a constant. This is what makes our results closer to what has been studied in
the literature on PCA in high dimensions. To simplify the matter, we will assume that the individual eigenvalues in the
spectrum of ¥ are not large, so, the operator norm || X ||, Will be bounded by a constant. In this case, it makes sense
to characterize the dimensionality of the problem by the so called “effective rank™ of ¥ (which also tends to infinity).

Definition 1. The following quantity
tr(X)
120

will be called the effective rank of .

r(X):=
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Clearly, r(X) <rank(X). Our setting includes, in particular, a popular high-dimensional spiked covariance model
(see [11,12,25]) described in the following example.

Example 1 (Spiked covariance model). Suppose that {6} is an orthonormal basis in H and let S ==y ;" | s;{x6 be
a “signal,” s, j =1, ..., m being nonrandom positive real numbers and {j, j =1, ..., m being i.i.d. standard normal
random variables. Let W be a Gaussian white noise (a centered Gaussian r.v. with mean zero and identity covariance
operator) that could be informally written as W= > k=1 MOk, where {ni} are i.i.d. standard normal random variables
(independent also of {¢x}). Note that W is not a random vector in H, but the family of linear functionals (W, u), u € H
is well defined as an isonormal Gaussian process indexed by H, that is, a centered Gaussian process with covariance
function

E(W,u)(W,v) = (u,v), u,veH.

Thus, W is defined in a “weak sense” and it is well known that it can be also formally described as a random variable
in a proper extension H_ D H (often defined as a space of linear functionals on a dense linear subspace of H).
Suppose that S is observed in additive “white noise,” that is, the observation of S is X = S + o W. More precisely, we

will assume that the data consists of i.i.d. copies Xin), e X,S”) of a random vector X® ¢ H, where
. . p
XW=5+oW™,  WP=)"mb, p>m p=p,—oc0asn—oo.
k=1

It is easy to see that X" can be rewritten as

m Pn
X(n)zz S]2»+O’2§j9j +o Z Ej@j,
j=1 Jj=m+1

where &; are i.i.d. standard normal random variables. The covariance of X ™ jg

m
0 B(X © X) = 306} +0%)0) 80 + P,
j=1

where Py, ,, denotes the orthogonal projector on the linear span of vectors 0;, j =m +1,..., p,. Clearly, for a
fixed m,

m
tr(Z(”)) = Zsjz +02pp = pp— 00 asn— oo.
j=1

Estimation of the vectors 01, ...,0,, (the components of the “signal”) can be now viewed as a PCA problem for
unknown covariance ™.

Obviously, as it is usually done in the literature, one can also phrase the model of the above example as a sequence
of high-dimensional problems in spaces R”, p = p, (without an explicit embedding of R” into an infinite dimensional
Hilbert space H). In such a high-dimensional setting, the performance of the PCA is usually assessed by measuring
the “alignment” between the target eigenvector and its estimator. In [5], the authors considered the loss function
L(a,b):=2(1 —|{(a, b)|), where a, b € RP are unit vectors. It is closely related to the loss function

L'@,b):=lla®a—b®b|3=2(1—(a,b)?),

that is used, for instance, in [8,19,31]. For the spiked covariance model described above, where s > - -+ > s, > 0,
o?=1and m > 1 are fixed and f — 0 as n — oo, the following asymptotic representation of the risk of classical
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PCA was obtained in [5]:

. (p—m)A+s3H 1 (1+s2)(1+s7)
IE:L(@,&):[—’JF— ’—] 1+0(1)), Vi<j<m. (1.1)
VAR ns}* n}; (sjg_s]%)z ( o ) J=m

In [5], the authors also considered the setting 5 — ¢ > 0 as n — oo, where the classical PCA is known to produce
inconsistent estimators of the eigenvectors (see, for instance, [12]), and proposed a thresholding procedure related to,
but more refined than the diagonal thresholding of Johnstone and Lu [12] that achieves optimality in the minimax
sense for the loss L(-, -) under sparsity conditions on the eigenvectors of X.

The loss functions L and L’ are not suitable for the support recovery problem, that is, the estimation of the set

supp(6,) = {j : Or(j ) # 0} for an eigenvector 6,.. To the best of our knowledge, very few results on this problem are
available in the high-dimensional setting and they are obtained under very restrictive conditions on the covariance

. . . . . It] 0
structure. For instance, in [1], a spiked covariance model was considered, where ¥ = 51291 ® 01 + ( (;‘ T k), the
-

first k entries of ; € SP~! are equal to :I:ﬁ for some k > 1 and I',_ is symmetric positive semi-definite with
ITp—klloo < 1. The authors established an asymptotic support recovery result for the SDP-relaxation methodology
introduced in [9], assuming that k = O (log p) is known, that n > C(X)klog(p — k), where C(X) > 0 depends only
on X, and also assuming the existence of a rank one solution of the SDP optimization problem.

Asymptotics of eigenvectors of sample covariance in a high-dimensional spiked covariance model were studied by
Paul [25]. Namely, he considered a problem, where X ~ N, (0, ¥) with a spiked covariance matrix

p)) :diag(slz,s%,...,si, 1,..., 1)

and fixed s > --->s,;, > 1, m > 1. Let éj be the jth sample eigenvector and let éj = (éAﬂj, éB,j), where GAA’]- is

the subvector corresponding to the first m components and ég, j contains the remaining p —m components. Paul [25]

established that HZB J H is uniformly distributed in the unit sphere S” ! and is independent of ||9AB, ;1. In addition, if
B.j

L2 _ o= 0(#) with ¢ € (0, 1) and s% > 1 + 4/c, then also

n

Oy
Jﬁ(HéA’/H —e,-)—>N(0,2,-(s,-)) as n — 0o,
A’j

where

1 )?
z3]'(Sj)=(—) Z M(gk@)ek)a

1- C/(sz‘ - 12 1<k#j<m (5% _SJ2')2

and ¢y, is the kth vector of the canonical basis of R”.
The spiked covariance model is a special case of more general models discussed in the next example.

Example 2 (More general spiked models). Let ¥ be a symmetric nonnegatively definite bounded operator that admits
the following representation

m
E=Z/"LVPV+T7

r=1

where |, are distinct positive numbers, P, are projectors on mutually orthogonal finite dimensional subspaces of H
and Y : H +— H is a nonnegatively definite symmetric bounded operator such that P,Y =YP, =0,r =1,...,m.
Moreover, suppose that || Y ||ec < Minj<,<m ir (in which case the spectrum of X is the union of two separated sets,
{1, ..., ur} and the spectrum of the operator Y'). Note that since Y is not necessarily of trace class, it might not be
a covariance operator of a random vector in H with a bounded strong second moment, and the same applies to X.
However, ¥ and Y can be always viewed as covariance operators of “generalized random elements” (linear func-
tionals on dense linear subspaces of H), the same way as the identity operator is the covariance operator of the white
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noise W. Let Py, be the orthogonal projector on a finite-dimensional subspace L, C H. Suppose that dim(L,) — oo
asn — 0o, Un>] Ly isdenseinH and PHC L,,r =1, ..., m for all large enough n. Let X ™ pe g centered Gaus-
sian vector in H with covariance operator > = Py, ¥ Py, and let Xin), e, X,(ln) be i.i.d. copies of X Then the
problem becomes to estimate the principal spectral projectors P.,r =1, ..., m based on the sample (X i"), X ,(ln)),
which is again a PCA problem. If tr(Y) = oo, then also tr(X) = oo and tr(X™) — 0o as n — 00. One can go
even further and consider the case of more general covariance operators ©™ of the observations X Yl), e, X,(L”) that
converge in some sense (for instance, in the sense of strong convergence of operators) to a symmetric nonnegatively
definite operator X.

In this paper and in a related paper [17], we develop a general theory of the asymptotic behavior of spectral
projectors of the sample covariance operators that encompasses the spike covariance models described above as well
as more general models of covariance operators for observations in a separable Hilbert space. We are especially
interested in the case when r(Z®) = o(n), which is a necessary and sufficient condition for convergence of the
sample covariance 3, to the true covariance ¥ in the operator norm (and which, essentially, implies consistency
of eigenvalues and of spectral projectors of sample covariance as estimators of their population counterparts). More
specifically, our contributions include the following:

e In Section 2, we review recent moment bounds and concentration inequalities (see [18]) for ||ﬁ),, — Y||lco showing
that, in the Gaussian case, the size of this random variable is completely characterized by two parameters, the
operator norm || X[« and the effective rank r(X). This implies that ||2AJ,1 — Y|looc — 0 (a.s. and in the mean) if
and only if r(¥) = o(n). In the same section, we discuss several results in perturbation theory used throughout the
paper.

e In Section 3, we obtain basic concentration inequalities for bilinear forms of empirical spectral projectors P..In
particular, we show that the following representation holds:

P.—EP.=L,+R,,

where the main term L, is linear with respect to -3 and, thus, it can be represented as a sum of i.i.d. random
variables. The bilinear forms of the remainder term R, satisfy sharp Gaussian type concentration inequalities,
implying, in particular, that

‘(Rru, v)| = Op(,/ r(E)\/I)'
n n

If r(¥) = o(n), the bilinear forms (R,u, v) are of the order op(n~Y?) and asymptotic normality of the bilinear
forms ((P — EP,)u, v) can be easily deduced from the central limit theorem applied to the linear term (L, u, v).

e In Section 4, we derive an asymptotic representation for the bias EP, — P, of the empirical spectral projector P,
showing that its main term is an operator of the form P, W, P,, where ||W;| s = 0(@), and the remainder is of

the order O( r(E) \/%). This implies, in particular, that, in the case when m, = 1 (the case of simple eigenvalue)
the bias is proportlonal to the one-dimensional true spectral projector P, up to a higher order term (indicating that
a multiplicative correction can lead to a bias reduction).

e In Section 5 we derive the asymptotic distributions of bilinear forms of the empirical spectral projectors. In partic-
ular, we show that, under the assumption r(X) = o(n), the finite dimensional distributions of

ﬁ((ﬁr — IEISr)u, v), u,veH

converge weakly to the finite dimensional distributions of a Gaussian process. Our results show that the “variance
part” of the error ((f’r — Py)u, v) is relatively well-behaved and that its dominating part is “bias,” which might
require further attention in statistical applications.

e In Section 6, we study in more detail the case of spectral projectors corresponding to an isolated eigenvalue of
multiplicity m, = 1. In this case, we prove the asymptotic normality of properly centered and normalized linear
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forms (6,, u), u € H of the corresponding sample eigenvector 6. Namely, we prove the weak convergence of finite
dimensional distributions of stochastic processes

n'26, — 1+ b,6,,u), ucH

to the finite dimensional distributions of a Gaussian process for properly chosen “bias parameters” b,. We also
obtain non-asymptotic concentration bounds for the /,,-norm ||é, — /14+b:6,]l¢,. In addition, we propose an
estimator of the bias parameter b, that converges to the true parameter at a rate faster than n~'/2 and develop a
bias reduction method based on this estimator. At the end of Section 6, we briefly discuss potential applications of
these results, in particular, to the problem of support recovery of the eigenvector of interest as well as sparse PCA
estimation.

In a related paper [17], we obtained an asymptotic formula for the Hilbert—Schmidt norm risk E| P, — P, ||% of
empirical spectral projectors under the assumption that r(¥) = o(n). In a special case of spiked covariance model, it
implies representation (1.1). We also proved in [17] the asymptotic normality of a properly normalized sequence

{IlP = P15 —E| P, — P13}

2. Preliminaries

In this section, we review bounds on the operator norm || PO 5 llc and discuss several well known facts of pertur-
bation theory that will be frequently used in what follows.

2.1. Bounds on the operator norm || f)n — 2loo

It is well known (see [30]) that, for a sub—sub-Gaussian isotropic distribution (that is, in the case when X = 1)), with
probability at least 1 — ™’

A t t
IIEn—EIIOOSC<‘/£V£V,/—V—), (2.1)
n n n n

for some numerical constant C > 0 (see Theorem 5.39 and the comments after this theorem). The proof is based on an
e-net argument that does not yield an optimal bound for general (nonisotropic) sub—sub-Gaussian distributions. In [7,
20], similar results were derived for sub—sub-Gaussian distributions and low-rank covariance matrices. However the
bounds in the last two papers are suboptimal by a logarithmic factor (they are based on a noncommutative Bernstein
inequality).

The following theorems (see Koltchinskii and Lounici [18]) could be viewed as an extension of bound (2.1) to the
nonisotropic and infinite-dimensional case. These results show that in the Gaussian case, the size of the operator norm
||ﬁn — Y|l is completely characterized by the operator norm || X ||~ and the effective rank r(X). In particular, if
¥ = £® with || £™|» uniformly bounded, then ||, — £ ||o, — 0 a.s. as n — oo if and only if r(Z™) = o(n).

Theorem 1. Let X, Xy, ..., X, be i.id. centered Gaussian random vectors in H with covariance ¥ = E(X ® X).
Then, forall p > 1,

R [r(Z) v(Z)
EMM&-M&XMWMMM4 —, = } 2.2)

We will also need a concentration inequality for || I 5 [loo-

Theorem 2. Let X, Xy, ..., X, be i.i.d. centered Gaussian random vectors in H with covariance ¥ = E(X ® X).
Then, there exist a constant C1 > 0 such that for all t > 1 with probability at least 1 —e™!,

N ~ r(X) r ot
120 — Zlloe —ElIZh — Zlloe| < C1l1Zllso —— V1)V (2.3)

n n
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As a consequence of this bound and (2.2), with some constant C> > 0 and with the same probability

A r(x) rX) t ot
||En—2||oo§C2||E||oo|: TVTV ;V;:| 2.4)

Remark 1.

1. The notion of effective rank r(X) and the results of Theorems 1 and 2 can be extended to the case of Gaussian
random variables in separable Banach spaces, see [18].

2. The bound of Theorem 1 and bound (2.4) of Theorem 2 hold in a more general case, when X, X1, ..., X, are i.i.d.
centered sub-Gaussian vectors in Hl, that is, for some constant ¢ > 0,

X, u) ||2w2 <cE(X,u)?, ucH. 2.5)
Here || - ||y, is the Orlicz norm for y2(t) = e’ — 1,t > 0 (the Orlicz norm in the space of sub-Gaussian random
variables).

2.2. Several facts on perturbation theory

In this section, we discuss several useful results of perturbation theory (see Kato [14]) adapted for our purposes. Some
facts in the same direction can be found in Koltchinskii [16] and Kneip and Utikal [15].

Let ¥ : H+— H be a compact symmetric operator (in applications, it will be the covariance operator of a random
vector X in Hl). Let o (X) be the spectrum of X. It is well known that the following spectral representation holds

2:=Z/Lrpr
r>1

with distinct non-zero eigenvalues p, and spectral projectors P, and with the series converging in the operator norm.
We will also use notations o; = 0;(X), A,, m,, etc., already introduced in Section 1.
Define

gr =g (X):=pr —pry1>0, r=1

Let g, := g,(X) :=min(g,—1, g-) for r > 2 and g := g1. In what follows, g, will be called the rth spectral gap, or
the spectral gap of eigenvalue |, .

Let now % be another compact symmetric operator in H with spectrum o (%) and eigenvalues 6; = 0;(%),i > 1
(arranged in nonincreasing order and repeated with their multiplicities). Denote E := ¥ — %. According to well
known Lidskii’s inequality,

suplo; (2) — 0;(2)| < sup|oj(E)| = | Elloo.
j=1 Jj=1

This implies that, for all r > 1,

inf [0; — pur| > g —suplo; —oj| =& — | Elleo
JEA

r j>1
and
sup [0 — uy| = sup |6 — 0| < | E|lo-
JEA, JEA,
Suppose that
1Eleo < 2. 20

2
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Then, all the eigenvalues 6, j € A, are covered by an interval
(1r = IElloos ttr + 1 Elloo) C (ttr — & /2, itr + r/2)
and the rest of the eigenvalues of ¥ are outside of the interval
(1r — (& = IElloo), ttr + (& = I Ellc)) D [itr — &r /2, 1ar + & /21.

Moreover, if
1 L -
lElloc < — min g5 =:6,
4 1<s<r

then the set {0} (2):je Uiz, Ay} of the largest eigenvalues of ¥ will be divided into r clusters, each of them being
of diameter strictly smaller than 25, and the distance between any two clusters being larger than 2§,. In principle,
this allows one to identify clusters of eigenvalues of ¥ corresponding to each of the r largest distinct eigenvalues
Us,s=1,...,r of .

Denote P, the orthogonal projector on the direct sum of eigenspaces of 3 corresponding to the eigenvalues & i, ] €
A, (in other words, to the rth cluster of eigenvalues of ). Denote also

C, ::Z ]

sr MHr — Ks

Ps.

Lemma 1. The following bound holds:

. E
1B, — P loo < 41 Ele. @.7)
8r
Moreover,
P, — P, =L, (E)+ S,(E), (2.8)
where
L.(E):=C,EP.+ P.EC, (2.9)
and
IE 0o\
IS-(B)] < 14(—g ) : (2.10)
r

Proof. Assume first that || E|lo < g-/4. Denote by y; the circle in C with center w, and radius %-. Note that the

eigenvalues p, of ¥ and 6}, j € A, of ¥ are inside this circle while the rest of the eigenvalues of these operators are
outside. Combining these facts with the Riesz formula for spectral projectors (see, for instance, [14], p. 39), we get that

1

P Reonan
! zm}é, () dn

where R4 () = (A — nI)~! is the resolvent of an operator A in H.
The following computation is standard:

Rs(n) = Rsyg()=(S+E—nD™!
=[= =D +E-nD"E)]"
= (I+Rs(ME) ' Rs(n)

=S D[Rz E]‘Re(m). new. @.11)
k>0
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The series in the right-hand side converges absolutely in the operator norm since
2 1
|RsME| <||Rs| IElloo < g_”E”oo <5<l mney,
r

where we have used that || Ry (1) ||co < g_zr for any n € y,. Next, we get from (2.11) that

= ——f Rx(mdy— —yg S D RsE] Re(m)dn
Vi

T k=1

1
P, — 2—7§ Z( D[Rz E]* Re(n) dn,

where we again used the Riesz formula. Thus,

1 /2 /2 k
1P = Prlloo < 27 72—(—) ||E||OOZ<§||E||OO>

k=0
2| Elloo/&r
T 1 =2|Elloo/gr
Under the assumption || E||lc < gr/4, we get that
41E oo

1B — Prlloo < ——2,

r

50, (2.7) holds in this case. Since P,, P, are both orthogonal projectors, it is easy to see that || P, — Py ||oo < 1, implying
that (2.7) also holds when || E || > &r/4.

We turn to the proof of the remaining bounds. It is easy to check (using the orthogonality of operators
C,EP,, P,EC,) that

|Lr(E)| o, = ICrEP + PrEC,|loo < V2[ICrlloo | Ello < £||E||oo
Therefore,
- ~ V2
ISHE) | o= Pr = Pr = Li(E) || o S I1Pr = Prlloo + || Lr(E) ||, <1+ 7 1l (2.12)
Assuming that || E||s < g-/3, we have the following representation:
P, — P, =L.(E)+ S.(E), (2.13)

where
1
Li(E)=5 - fRz(mERz(n)dn
i J,
and

SUE) = —>— ¢ Y (=D [ReE]" Re(m) dn.
Vrk>2

As for the first order linear term L. (E), we use the spectral representation of the resolvent Rx (1),

Rs(m =Y

j=1

P.
wi—n "’
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(with the series convergent in operator norm uniformly in 7 € y;), to derive that

1
L.(E)= 2m?§ZM,—nPEZ den

=Y 5= M piEp,.

J1
w2 gy i = mGg, —m)

Note that, if j; =r, jo = s # r, then, by Cauchy formula,

1 dn 1 dn . 1
27i Sy, (wjy —mwj,—n)  2mi J, (n— ) —ps) e — s

Similarly, if j, =r, j| =s #r, then

! ?§ dn R
2mi Yr ('LL]I - 77)(#’]2 - n) MUy _/'L.S"

In all other cases,

1 ?g dn —0
27i J,, (wjy —m(mj, —m)

Therefore,

L(E)=Y" P,EP, +Z

S#Er Hr = Hs S#Er Hr

P,EPS =C,EP, + P,EC, = L,(E)

and, as a consequence, S, (E) = S,(E). Similarly to (2.7), it can be proved that, under the assumption || E ||oc < /3,

IS-(B)| ., < 12(” ”°°) . (2.14)
Bound (2.10) now easily follows from (2.14) and (2.12). O
We will state below a simple generalization of Lemma 1. Given I = {r;,r; + 1,...,mn} CN, 1 <r; <rp, denote

Ap:={j:oj=purrel}andlet P =) ; P, be the orthogonal projector on the direct sum of the eigenspaces of
> corresponding to the eigenvalues w,,r € I. Denote L; := i, — 4, and define

g1 = My — Lt =1 — ) iEr1 > 1 and  §pi=phyy —prn ifr = 1.

Finally, let Py be the orthogonal projector on the direct sum of the eigenspaces of % corresponding to the eigenvalues
oj,j € Ay. Note that, if || Ellcc < g7/2, then the set of eigenvalues {5, : j € A;} is covered by the interval (u,, —
81/2, by, + &1/2) and the rest of the eigenvalues of > are outside of the interval [r, — &1/2, pr, + g1/2]. Denote

Y = {T] eC: dlSt(nv [l‘(*rzy Mrl]) = gl/z}

In what follows, y; will be viewed as a counter-clockwise contour and in (2.17) below it can be replaced by an
arbitrary contour y that separates the eigenvalues {u, : r € I} from the rest of the spectrum of X.

Lemma 2. The following bound holds:

2L1>||E||oo

- (2.15)
T 81 81

1Pr = Prlleo < 4<1 +



Asymptotics and concentration of spectral projectors 1987

Moreover, the following representation holds
Pp — Pr=L(E)+ S1(E), (2.16)

where the linear part Lj(E) is given by

1
Li(E):= P Rs(mERs(n)dn (2.17)
Yi

and the remainder Sy (E) satisfies the bound

2
HSI(E)Hoof15<1+3§)<”E_”°"> . (2.18)
T8I 81

The proof of this lemma is quite similar to the proof of Lemma 1 and it will be skipped.

3. Concentration inequalities for bilinear forms of empirical spectral projectors

Let P, be the orthogonal projector on the direct sum of eigenspaces of by corresponding to the eigenvalues {o; (£),je
A} (in other words, to the rth cluster of eigenvalues of 3, see Section 2.2).

The goal of this section is to derive useful representations and concentration bounds for the bilinear forms (P, —
Pr)u, v), u, v € H of spectral projectors for a properly isolated eigenvalue 1. These results will be used in subsequent
sections to show asymptotic normality of the bilinear forms ((ﬁr — P;)u, v) under the assumption that r(X) = o(n).

In the results below, it will be assumed that, for some y € (0, 1),

=y

Elli—Ellmff. G.1)

In view of Theorem 1, this assumption implies that

\%

> » 2
||2||oo( rx) ,, o )>5g—s||z||oo.
n n 2

Hence, we have r(X) < n. Theorem 2 implies that for some constant C’ > 0 and for all ¢ > 1 with probability at least
1—e!

N N t t
15— Sl <E[S — z||oo+c’||z||oo<,/;v ;>.
t t g
C’||z||oo<,/—v —) < rer
n n 2

then P(| f),, — 2o < ‘%’) > 1— e ! It was pointed out in Section 2.2 that, in this case, the cluster {Uj(f)n) 1jeAN}
of eigenvalues of T is well separated from the rest of the spectrum of 3 and the spectral projector P, can be viewed
as an estimator of the spectral projector P, (in particular, these two projectors are of the same rank m,). It will be
shown below that, under assumption (3.1), the bilinear form ((ﬁ, — P)u, v) can be represented as a sum of a part that
is linear in ﬁ)n — X and a remainder that is smaller than the linear part, provided that r(X) = o(n). The linear part is
defined in terms of operator

If

n
L:=C(Z=)P+P(E=2)Cr=n"")Y (C,X;® PX;+ P X; ®C,X})
Jj=1
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and the remainder in terms of operator
Rr :Z(ﬁr_Pr)_E(ﬁr_Pr)_LrZﬁr_Eﬁr_Lw

Theorem 3. Suppose that, for some y € (0, 1), (3.1) is satisfied. Then, there exists a constant D,, > 0 such that, for
all u, v € H, the following bound holds with probability at least 1 — e

=12 )
(Reu,v)| < D, 1215 ” <\/r( \f )\/gnuunvu. (3.2)

Taking into account Theorem 2, note that, if ¥ = £ |Z® | = 0(1), g, = gﬁ”) is bounded away from zero
and r(X™) < c¢n for a sufficiently small ¢, then bound (3.2) implies that

(Ryu,v) = Op(n_l/z) asn — oo, u,v e H.
Moreover, if r(™) = o(n), it follows from (3.2) that
(Ryu,v) =op(n™'/?). (3.3)
Let
E(m,v) :=(X, Pv)(X,Cru), u,veH
and let
Ei(u,v) = (X;, Bbvy(X;,Cru), u,vel,j=1,...,n
be independent copies of £. Note that
E&(u,v) = E(X, P.v)E(X,C,u)=0
and
E&(u, v)§(u',v') = E(X, Pv)(X, PV )E(X, Cru)(X, Cru')
= (P, 2P, V)(C,ECru, i),

where it was used that Gaussian random variables (X, P,v), (X, C,u) are uncorrelated and, hence, independent. This
implies that the covariance function of the random field & (u, v) + &(v, u), u, v € H is given by

T (u, v, V) =E(Ew,v) +E@,w)(EW V) +E(V, W)
= <PrEPrv, v )(CrECru,u )+<Pr2Prv,u’)<CrZCru, v’)
+ (P, ZPru,u')CrECrv, V') + (P S Pru, V') Cr ZCrv, 1),

The bilinear forms

nl/z(L,u, V) = n~1/2 Z(Ej(u, v) + & (v, u)), u,veH
j=1

have the same covariance function I". Moreover, it is easy to see that, under proper assumptions, they are asymptoti-
cally normal. Thus, (3.3) implies the asymptotic normality of (13, —EPu, v), u, v € H. This result will be discussed
in detail in the next section.

The next statement immediately follows from Theorem 3 and Bernstein inequality for sums of i.i.d. subexponential
random variables &;(u, v), j =1, ..., n. In particular, it shows that, under the assumptions of Theorem 3,

(P, —EPu,v) = OP(n*]/z) asn — oo, u, v e H.



Asymptotics and concentration of spectral projectors 1989

Corollary 1. Under the assumption of Theorem 3, with some constants D, D,, > 0, for all u,v € H and for all t > 1
with probability at least 1 —e™",

A . 12l !
|(P, —EPu,v)| < D=2 = lull|v]|
8r n

(,/@v\ﬁﬂ)\ﬁnunnvn. (3.4)
n n n n

Remark 2. Notethat&;(u,v) =0, j=1,...,ninthe case when both u and v belong to the eigenspace corresponding
to the eigenvalue |, (since, in this case, Cyu = C,v = 0), or in the case when both u and v are in the orthogonal
complement of this space (since then P.u = P.v = 0). Therefore, for such u, v the first term in the righthand side of
(3.4) could be dropped and the bound reduces only to the second term.

+ D,

=12,
g2

We now turn to the proof of Theorem 3.

Proof of Theorem 3. Clearly, it will be enough to prove bound (3.2) for ||u|| < 1, ||v]| < 1. This will be assumed
throughout the proof. .
First note that L, = L, (E), where E := X — X. Since

EL, =EL,(E)=0,
we get that
R, = L.(E)+ S:(E) —E(L,(E) + S;(E)) — L,(E) = S5,(E) — ES,(E)

(recall Lemma 1).

Under condition (3.1), we have r(X) < n. Theorem 2 implies that with some constant C’ > 0 and for all ¢ > 1 with

probability at least 1 — e~

. ~ tot
X = Zllo <E[X _E”oo“‘C,”Z”oo(\/;V ;)-

If C’||E||oo(\/%\/ Ly< VT‘;’, then it is easy to see that t < n and, for some C > 0,

, t ot t
ClZlloo| /= V = | S ClZllooy/ =
n n n

We will first assume that

—
cuznoo\/; < Vf’ (3.5)

(the proof of the concentration bound in the opposite case will be much easier). Let

- t
8 (2) ::E||En_z||oo+c||z||oo\/;~ (3.6)

Clearly, P{||£ — Z|lo0o = 8n (1)} <e™".
The main part of the proof is the study of concentration of the random variable (S, (E)u, v) around its expectation.
To this end, we first study the concentration properties of “truncated” random variable

(S, (E)u, w(%),
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where, for some y € (0, 1), ¢ is a Lipschitz function with constant Lon Ri,0<¢(s)<lLe(s)=1,s<1,0(s) =0,
s > 14 y,and § > 0 1is such that || E||oc <8 with a high probability.

Our main tool is the following concentration inequality that easily follows from Gaussian isoperimetric inequality.

Lemma 3. Let X1, ..., X, be i.i.d. centered Gaussian random variables in H with covariance operator ¥. Let f :
H" > R be a function satisfying the following Lipschitz condition with some L > 0:

" 12
|f(x1,...,xn)—f(xi,...,x;l)‘§L<Z||xj—x}“2> , x1,...,xn,xi,...,x,/l€H.
j=1

Suppose that, for a real number M,
P{f(Xi,....X)) =M} >1/4 and P{f(Xi1,...,X,) <M} =>1/4
Then, there exists a numerical constant D > O such that for all t > 1,

P{|f(X1,....,Xn) = M| = DL|S| LV} <e™.

Lemma 3 will be applied to the function

Elloo

With a little abuse of notation, assume for now that X, ..., X, are nonrandom vectors in H. For X ’1 A X; c H,
denote

n
E =% -3, i’=n—lzx;®x;.
j=1

Let Isr’ be the orthogonal projector on the direct sum of eigenspaces of ol corresponding to its eigenvalues {o; ()
jen).

We have to check the Lipschitz condition for the function f. We will start with the following simple fact based on
perturbation theory bounds of Section 2.2.

Lemma 4. Let y € (0, 1) and suppose that

1-rsr

8 < . 3.7
T 14y 2 (3.7
Suppose also that
IElloo <(1+y)8 and |E'| <1+y)s. (3.8)
Then, there exists a constant C,, > 0 such that
8
Is/B) = 5. <€ 1 E - £ 39)
r
Proof. Note that, by the definition of S, (E),
S(E') = S,(E)= P, — P, — L,(E' — E). (3.10)

For f’r/ — Py, we will use decomposition of Lemma 2 that yields:

~

P~ P =L,(E —E)+S,(E' - E) (.11
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with
A 1
L, (E'—E)= —f Rs(m)(E' — E)Rs(n)dn
2wi J,
and

(3.12)

4 |Eles ) IE — E'||2,

S(E —E <15( 14+ —= = :
18/ )Mo = < 7% —20Ell) Gr — 211 E]o0)?

More precisely, we used Lemma 2 with 22 instead of ¥ and with %’ instead of %. Observe that the set of eigenvalues
{oj(X):j € A,} can be written as {u; (%) :i € I} for some I C N. Also, we have A; = A, Py = P, and P,’ =P
Finally, in our case L; < 2| E||» and

81 = 8r — 2| Ellce-

We could also replace the contour y; used in Lemma 2 by the circle y, since these two contours separate the same
part of the spectrum of X from the rest of the spectrum.
Note now that

“ 1
L, (E'-E)-L.,(E—E)= —l.yg (Rs(m) — Rz (m)(E'— E)Rg(n) dn

.

1 /
+ %?§ Re(m)(E' — E)(Rg(n) — Rx(m)) dn.

e

which implies the bound

A 1
(' =)~ L& = E) . < | 5 f [R50 = Re] [R5
Yr

1
*3r P IES IR0 - Rl an - F Gy
T Iy

Since || E|lco < §r/2, we get that, for all n € y,,

5 2
R —, R< == Aanztn °
I E(n)”oofgr I E(n)Hoo<gr—2||E||oo

Using respresentation (2.11) (with 3 instead of f]), we easily get that

Z k+1 k 2 (z/gr)”E”oo 4||E||oo
RA R R E —_ .
H 2(}7) = “OO = k>1 “ =) ”OO 1Eleo = & 1—(2/gn)Els 8r(&r — 2| Elleo)

Due to these bounds, it follows from (3.13) that

- 8|IE]|
HLr(E’—E)—Lr(E’—E)”oo—MWHE—E/UOO- (3.14)
We combine now (3.10), (3.11), (3.12) and (3.14) to get

I.E) — 5,(E)

oo

81 Elloo 4 |Ells IE — E'|I2
S RIS s|E—E'| o +15 1+—__2E __2E°°2
(& — 2 Elloo) 7T & —2Eloo/ (& — 21 Elloo)
8|1 Eloo 4 ||Elleo IElloo VI E oo
~ (g, —2||E 2||E_E/||oo+30 1+_- 21 E o, —21E 2” - /”oo
(&r IEloo) T 8r IEls / (8r 1E(00)
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To complete the proof, it is enough to use conditions (3.7), (3.8) that, in particular, imply

& —20Elloc =g —2(0+y)s>yg:r.

|
Lemma 5. Suppose that, for some y € (0,1/2),
1-2y ¢
§<-_ V8 (3.15)
1+2y 2
Then, there exists a constant D,, > 0 such that, for all X1, ..., X;, X/l, .o X, e H,
1/2 12 [0 1/2
8 |1 Z]lco +6 2
|fXi X)) = f(XL LX) | <Dy DX = X5]7) (3.16)
& v = '
Proof. Since w(%) =0if |E|lcc = (1 + y)§, bound (2.10) of Lemma 1 implies that
IElloo )82
£ X = (S By v =5 )| < 14014+ (3.17)
r

Using now bounds (3.9), (3.17) and the fact that ¢ bounded by 1 and Lipschitz with constant %, which implies that
the function ¢ — go(%) is Lipschitz with constant %, we easily get that, under the assumptions

IElloo < (1 +¥)8,  [E'| o <(+»)s, (3.18)

the following inequality holds:

o n{(5) i (£12)

14(14y)% 8
" (I'+y)

= 5B =5, (E) | L z2IE -l
141 +y)%\ 8
< (CV + &)_—ZHE —E|,. (3.19)
y )&

It remains to prove a similar bound in the case when
[Elloo = (14 )8, |E"| o > (A +)8

(when both norms are larger than (1 4 y)§, the function ¢ is equal to zero and the bound is trivial). First consider the
case when |E — E'|oc = ¥ 8. Then, in view of (3.17), we have

‘(Sr(E)u, W(%) (8, (Eu, v)w(%)'

[EA1ES

2 2

8 I
85 14 8r
Finally, if ||E — E'||cc < ¥8, we have that | E'|lcc < (1 4 2y)8§ and, taking into account assumption (3.15), we can

14(142y)?
Y

repeat the argument in the case (3.18) ending up with the same bound as (3.19) with constant C»,, + instead

2
of Cy + W in the right-hand side. Thus, with some constant L, > 0,

‘(Sr(E)u, W(%) —(S+(E")u, W(%)' < Lyé_%HE —E|. (3.20)
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We will now control ||E — E’||. Note that

|E-E= sup [(E—E)uv)]

lull<Lllvl<1

= sup
lull<L,llvlI<1

n—IZ(xj,m(Xj,u)—(x’ u)(X';, v)
j=1

n
'Y (X)X - X,
j=l

n
n! Z(X, — X; u)(X; v)
=1

n 1/2 n 1/2
< sup <n_1Z(Xj,u)2> sup (n_IZ(Xj —X},v)2>

(TS I

n 1/2 n 1/2
+ sup (nl Z(Xf — X; u)2> sup (nl Z(X; v)z)
=1

lull <1 =1 vl<1

< sup

lull<1,lvlI<1

v) + sup

lull<1,lvlI<1

1/2

1/2
||z||”2+||2|| !
< > ZHX -X57)

Clearly, it is enough to consider the case when at least one of the norms || E ||, || E’||co is not larger than 28. To be
specific, assume that || E ||« <28. Then

1/2 1/2

ISIL+ |2 <281l + | E- B <=1 +2v25 + |[E - E') 2.

Therefore,

1/2 172 n 1/2
20217 +2 IE—E'|
o=l s B (5, ) B ()
Jj=1

which easily implies

7

172 n
a L ATl 4425 ($ / 4 ,
|E-E| s === 2Ix; = X"} V-2 Ix;-x;" (321)
j=1

Now substitute the last bound in the right-hand side of (3 20) and also observe that, in view of (3.17), the left-hand
side of (3.20) can be also upper bounded by 28(1 + y)2 Z Therefore, we get that with some constant L;, >0,

o) ()

g nj=1 ! / v 82

1/2 172 n
EL;g[”E”;f(an—x’||) o(Eui-x s | 5
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Using an elementary inequality a A b < +/ab,a,b > 0, we get

1 “ 712 ) : 712
LS - x s < (S - x)
j=1 j=1

This allows us to drop the last term in the maximum in the right-hand side of (3.22) (since a similar expression is a
part of the first term). This yields bound (3.16). O

1/2

We set § := §,(t), where §,(¢) is defined by (3.6). Without loss of generality, we can assume that 7 > log4 and

e~ ! < 1/4 (the result can be extended to all # > 1 by adjusting the constants). Recall that, by Theorem 2, P{|| E||c0 >

8} <y 1 In addition, in view of (3.1) and (3.5), 8, (t) < (1 — Z)g’ = }_éy, & for some y’ € (0, 1/2). Thus the function
f(X1, ..., X,) satisfies the Lipschitz condition (3.16) with some constant D;, =D,

To complete the proof of Theorem 3, denote Med(n) a median of a random variable n, and let M :=

Med((S;(E)u, v)). Since f(X1,..., X,) = (S, (E)u, v) on the event {|| E||~0c <}, we have

Plf(X1,.... X)) =M} > P{f(X1,.... Xn) > M, | Ellc <3}
=P{(S,(E)u,v) > M, ||Elloc < 8} = P{(S:(E)u,v) > M} —P{| E||oc = 8} > 1/4

and, similarly,
P{f(X1.....X0) =M} 2 1/4.

It follows from Lemma 3 and Lemma 5 that with some constant D,, > 0, for all # > 1 with probability at least 1 — et

|f(X1,..., X)) —M| <D g—(||2||‘/2+51/2)||z||‘/2\/;

Therefore, under condition (3.5), we get that for all # > 1, with probability at least 1 — 2¢™*

2
(S (Eyu,v)— M| <C, "E_” (,/r(E \/7>\/7
2
||2|| ( ) |, > \f 3.23)
with some constant C, > 0.

We will now prove a similar bound in the case when (3.5) does not hold. Then,

12l \/> == (3.24)
8r

By bound (2.7),

||E_||oo 56”5;”00'

(S (Eyu,v)| < |S(E)|| o <18 = Prlloo + | Lr(E)|| o < 18 = Prlloc +2 ; ;
r r

We can now use the bounds of Theorems 1 and 2 combined with (3.24) to get that for all + > 1, with probability at
least 1 — ¢! that

(S (EYu, v)| < %(,/ re) \/Zv 5).
gr n n o n
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Note that the above display also holds for all # > log2 (possibly, with different constants in relationships <, <, ). For
t=log2,1— e ! =1/2 and it follows that

=012, (
s B )

Combining the last two displays, we get for all > 1, with probability at least 1 — e

IMwm@_mgﬂgF@mf'/— )

and using the condition (3.24), we easily extend (3.23) to all values of # > 1.
Integrating the tails of this exponential bound it is easy to see that, with some D, > 0,

2
|E(S- (E)u, v) — M| <E|(S,(E)u,v)— M| < D, ”E_!‘” (,/ re) v,/l v l),/1,
&; n n o n n

which, in turn, implies that one can replace M by the expectation E(S,(E)u, v) in the concentration bound and get
that with some D,, > 0 and with probability at least 1 — 2¢™"

s Bl ) =, P2 (T2 T )

—t

—t

By adjusting the constant D,,, we can replace 1 —2e¢~" by 1 —e
This completes the proof of the theorem. ]

4. A representation of the bias Eﬁ, - P,

In this section, we study the bias W, := EP, — P, of the empirical spectral projector P,. Under mild assumptions, we
show that

IEﬁr_Pr=PrVVrPr‘|‘Tr’

where the main term P, W, P, is a symmetric operator of rank m, such that

S r(Z
1P Wi Prlloo < [Wrlloo S | _EOO (%)
& n

“.1)

and the remainder term 7, satisfies the bound || 7 ||co = O (n~'/2). Moreover, in the case when r(Z) = o(n), we have
[T loo = 0(n™1/2).

Theorem 4. Suppose that, for some y € (0, 1), (3.1) is satisfied. Then, there exists a constant D,, > 0 such that

mww&r@)l
& Jn

Remark 3. Note that the operator P, W, P, does satisfy condition (4.1). This follows from bound (2.10) and Theorem 1.

IEB, — P, — P,W, Plloo < D 4.2)

Proof of Theorem 4. Note that, under assumption (3.1), Theorem 1 implies that r(X) < n. It is enough to prove
bound (4.2) in the case when r(X) > r), for an arbitrary , > 1 depending only on y. Indeed, by bound (2.10) and
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Theorem 1,

IEP, — P, — W, Prllco < IEPr — Prlloc + | Pr(BP, — PP

5 1113 r(2)
<2|EP; = Prlloc =2|ES,(B)| , S —5=—.

g& n
If r(X) <ry, this yields

ISIZ 1 - ml S [r(E) 1
2~ @ Vo

implying (4.2). In what follows, we assume that r(X) > r,, with r,, to be chosen later on. Let

logr(X)
8 = EllElloo + CIIZ ooy gT

with a constant C > 0 chosen so that

”Eﬁr _Pr - PrWrPr”oo ,Sy

P{IElloc = 81} < exp{—logr(D)} = (4.3)

(%)

(such a choice is possible due to Theorem 2). Assume first that

logr(¥) vyg
ClIZllosy/ gn >§3’. (4.4)

In view of Theorem 1 and condition (3.1), we also have that, for some constant C; > 0,

r(x) A g
CillZllooy/ — <EIZ-2=0- V)g—zr-

Therefore,
) . 21— ) logr(Z)
CillZllooy) == <EI$ — T £ C 222 ooy =2
n y n
implying that

()  Cr4(1-y?)
<= =Cy.
logr(X) ~ ¢? ¥

It is easy to see that the set {r > 1:
+

ogr = ¢y} is either empty (then set r), := 1), or it is an interval [ry, r;," ] for
some 1 < r, <ry <oo. In this case, set r), = r;‘ . Thus, if r(¥) > ry, condition (4.4) does not hold. In what follows,

assume that r(X) > r, and we have

logr(X) %
ClISlooy/ gn s%% 4.5)

This implies that 8, < (1 — y/2)%.
Consider the following representation

EP, — P, =E(L,(E) + S,(E)) =ES, (E)
=EP, S, (E)Py +E(P;" S, (E)P; + PrSp(E)P;" + P S (E)P) (I Elloo < 8n)
+E(P;"S,(E)P; + P:S,(E) P~ + P;S,(E) P ) I (|| E o > 81) (4.6)

and provide bounds for its relevant terms.
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Recall formula (2.11) and note that, under the assumption || E||oc < %, the series in the right-hand side converges
in the operator norm absolutely and uniformly in 1 € y,. Under this assumptlon

1
SHE)==3 ~— yg (—D R E]*Rs () dn. @.7)
k>2 Yr
Denote
Rs(n):= )" P;.
SEA, s —1
Then
1 -
Rs(m) = _nPr-l—Rz(fl)-

It is easy to check that

1
P}[Rz(mE]kRz(n)Pr:P#M —[Rs(E]“P,

1
= _)ZZ Ry(E)* ' PE(Rs(E) P,

I k
+ (Rx(E)" Py
Hr —n
To understand the last equality, note that, in each bracket of the expression

[RsE]" = [Rz(E]---[Rs)E],

Ry (n) can be replaced by the sum of two terms, ur—P’ and Ry (n). Index s in the sum is the number of the first
bracket where Mr—Pr is chosen. If s = 1, the corresponding term is equal to O since PJ-P = 0. The last term

corresponds to the case when Ry (n) is chosen from each of the brackets.
We can now write

1 -1p
PLS.(E)P=—) (-1 )"27” f [(u e Z (R E)' ™ P.E(Re(E)**

k>2

+

(Iéz(n)E)kP,:| dn. 4.8)
Hr =1

Since P, =) . A, (01 ® 6;), where {6; : 1 € A} is an arbitrary orthonormal basis of the eigenspace corresponding to
the eigenvalue u,, we get that, for all v € H],

(ReE) ™ P.E(RsE) " Pv= Y (RsE)" @ ® ) E(Re ) E)" ™ Prv 4.9)
leA,
= Y (E(RzE) " P )Rz D E)’ >Ry (n) E6. (4.10)
leA,
Clearly,

(ER=ME) " P, o) < | R | NEIE o],
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which implies that
k—s 2 2\ 2(k 1 2
E|(E(Rz(E)" " P, 6/)| " T(I Ellec < 8,) < <g—) St D o2, @.11)
r
We also have
(Rs(E)’ Rs(mEG = (Rs(E)’ *Re(m(E — )0,

n

= (ReE) " RemE0,=n""Y (X;.0)(Rs(NE) *Rx (X,

j=1
where we used the fact that
Rz ()26, = pr Rz (m6; =0.
It is easy to check that the random variables (Rx nE 2Ry, (mXj,j=1,...,n are functions of random variables
PsXj:s#r, j=1,...,n that are independent of (X;,6;),l € A,,j=1,...,n (recall that X, j =1,...,n areii.d.
Gaussian, and P, X;, j=1,...,nand P X; :s #r, j=1,...,n are uncorrelated and, hence, independent). Given

u € H, denote
i) =((Re(E) RemX,,u), j=1,....n

(which are complex valued random variables). Write ¢ (1) = C}l) u)+ic¢ ;2) (u), where ¢ ;1) w),¢ ]@ (u) are real valued.
Denote also

au) = a® W) +ia® W) :=((RsE)* > Rs () E6, u).

Then, conditionally on Py X :s #r, j=1,...,n, the random vector (a(l)(u), a® (1)) has the same distribution as
mean zero Gaussian random vector in R? with covariance

%(n_12§;k1)(u)§;k2)(u)>7 ki ko =1,2.

j=1
Note that
"Z|¢,<u)| Z|<(RE(U)E) "Ry )X u)|’
j=1
=(S(ReE) T Re(u. (ReE) >Ry ) < S lloo|| Re ) |22~V NENZ T2 u)?
(||z||oo||Rz(n>||2“ DIENZS= 4 | Re |25V IEIZ) ul.

Under the assumption §,, < 4, the following inclusion holds:

2
{I1Elloo < 8} {—1Z|¢,(u>| <2||z||oo< )

j=1

2(s—1)

5,%<S—2)||u||2} =:G.

Therefore, we have

E|((RsmE) > Rs (M E6, u) T (I1Ello < 8,)

<E[{(RsE)' " RN E6L u)|* I
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=EE(|((RsE) *Re(MEG, u)’ 16 | PXj,s #r,j=1,...,n)

n
_ %EE(n_l Sleiig | PXjs#rj=1...., ”)

j=1
n 2(s—1)
=P B Y e le < 2||2||ooﬂ(_3> 870 Ju 2. (4.12)
n o n \gr
By (4.11) and (4.12),
E(E(Rx D E) ™ Prv, 0)(ReE) > Re () E6r u)l (I Elloo < 84))|
< (B|(E(Rs(E)* ™" Prv, 6)|* T(I Elloo < 82)) > (E[((Rs D E)’ >Rz E6, u) T (11 Elloo < 8,))
k—1
< ﬁ%(z_‘g”) lull o] (4.13)

8r

1/2

and it follows from (4.10) and (4.13) that

E((Rs(E)’ ™' P, E(Rzm)E)k‘sPrv, W) (I|Elloo < 84)]

< Y [EE(ReME) " P, 6)(Rs(DE)’ > Re N E6, )1 (| Ello < 80)]
leA,

) 28, \ !
< ﬁmr—|| loo (—") lull ] 4.14)
NG 8r

Similarly, we also have

- Slloo 2 {28, \F7!
IE((Ry () E) Prv. u)| < ﬁmr%g—(_—> el ol (.15)

Now use (4.8), (4.14) and (4.15) to get (under assumption that §,, < (1 — y/Z)%’)

|[E(P S, (E) Pro,u)I (I Ello < 80)|

1
<Zzn7§ [w ,ﬂzZ\E Rs(E) ™ P.E(Rs(NE)' ™ Prv, u)l (I Elloo < 8]

k>2

1 -

o _,”IE<(Rz(n>E)kPrv,u>1(||E||oosan)qdn
- ? o Ele | (280)!

< -~ A~ = r

kg ( ) e (g) vl

k—1
—2m, 'Z”‘” k ol
S 2H(T)

1Z]co 2 25, 3272 12 1loo 8,
= Vam, = gr((l——r) )nunn 1= 2 e o,
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Therefore,

32f 1l 3
EPLS, (E)P (| Elloo < 8n < :
[ (EYPI(IE] Moo " In 2

Obviously, the same bound holds for ||EP, S, (E) Prll (Ellso < 6n)lloo- Moreover, similarly, it can be proved that

(4.16)

1 Zlloo 8n
EPLS, (E)PLI(|E < Ll 4.17
[ (EYPFI(IEllso <80, < cymr i 4.17)
with some constant ¢, > 0.
To complete the proof, note that
|E(PS-(E) Py + P S (E) P+ PS(E)P)I(IIE oo > 84) || o
<E| PSS, (E)YP, + P S (E)YP- + S (E) P | (I Elloo > 8)
<E[S,(E)| LI (IE ]I > ).
Next, using bound (2.10), Theorem 1 and bound (4.3), we get
JEIEIZ(IE oo > 8 w _ 14 EPIEISP I Elloo > 8}
E|S-(E)| (I Ellco > 8,) < 14 d x
g2 g?
LIS (1 )‘/2 _IZIE V) _ 1B [r) 1
~ogz on \r(® g’ n g? noJn
Consequently, we get that
=115 r<2> 1
|E(P-S,(E) P, + PrSy(E) P + PES(E)P)I (I Ello > 60) | o S —52 (4.18)
& NG
Bound (4.2) now follows from representation (4.6), bounds (4.16), (4.17) and (4.18). O

5. Asymptotics of bilinear forms of empirical spectral projectors

In this section, we study the asymptotic behavior of the bilinear forms
<(ﬁr — Eﬁr)u, v), u,velH

in the case when the sample size n and the effective rank r(X) are both large. To describe this precisely, one has
to deal with a sequence of problems in which the data is sampled from Gaussian distributions in H with mean zero
and covariance ¥ = X . This leads to the following asymptotic framework. Let X = X be a centered Gaussian
random vector in H with covariance operator £ = £ and let X| = X, ) s Xn=Xp ™) pe i.id. copies of X,
The sample covariance based on (X (m) , X ,(1")) is denoted by 3. Let a(E(”)) be the spectrum of X, ,u(") r>1
be distinct non-zero eigenvalues of E(") arranged in decreasmg order and P ,¥ > 1 be the corresponding spectral
projectors. As before, denote A(") ={j:oj (T™) = py )} and let P,(") be the orthogonal projector on the direct sum
of eigenspaces corresponding to the eigenvalues {o; (=), j€ Aﬁ")}.

The next assumption means that, for large enough 7, there exists a unique eigenvalue 1 of £ isolated inside
a fixed interval from the rest of the spectrum of £,

Assumption 2. There exists an interval («, B) C Ry and a number § > 0 such that, for all large enough n, the set
o (Z™) N (a, B) consists of a single eigenvalue p™ = ;LEZ) of =™ and

o (ZM)\ {u"} C RN (@ =8, B+9).
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Denote by P the spectral projector corresponding to the eigenvalue 11" and define the following sequence of
operators:

1
(n) ._ (n)
= Z M(")—/«L(n)PS :
" :

Consider the spectral measures associated with the covariance operators X :

oo
AL A) = (PPu, v)a(n™), u,veH, AeBRy),

r=1

where B(R) denotes the Borel o -algebra in R .

Assumption 3. For all u,v € H, the sequence of measures Af,’f,)j converges weakly to a measure Ay, in Ry. Also
assume that there exists u € H such that A, , ([, ]) > 0.

Denote

B
Iy, v) o= / Muo(@),  Talu,v) = / Aun(dh).
o R

gl (= 21)?

It will be shown in the proof of Theorem 5 that the limit covariance function I' of normalized bilinear forms

n2((P™W —EPMyu, v) of empirical spectral projectors PO .= A,(:) can be expressed in terms of functions I';

and I'; (see formula (5.3)). A step in this direction is the following lemma that provides the limits of bilinear forms
(P™y, v), (PWELM POy vy and (CW L™ C™y, v) under Assumptions 2 and 3.

Lemma 6. Under Assumptions 2 and 3, the following statements hold.
(1) There exists u € [a, B] such that

w™ > asn— oo.

(i) Forallu,v € H,
(P(”)u, v) — Au,v([a, ,3]) asn — oo.

(iii) Forall u,v € H,
(P(”)E(")P(")u, v) — T (u,v) asn— oo.

(iv) Forallu,v € H,
(C(")E(”)C(”)u, v) — Iy(u,v) asn— oo.

Proof. We start with proving (ii). In view of Assumption 2, for all §’ < §,
AP (@ = 85+ 8)) = AL () = (PWu, o)

We can choose 8’ such that « — 8’ and 8 + &’ are not atoms of A, ,. Therefore, by Assumption 3,
(P(")u, v> = Af{’fz)((a -8, B+ 8/)) — A,M((a -8, 8+ 8/)) asn — oo

for all such &". Note that the limit does not depend on §’. It is enough now to let ' — 0 to get (ii).
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To prove (iii), note that, for the same §’ as in the previous step,

B+’
A (dr) — / ANy o (dD),
a—4§

p+s'
(P ™ pmy, v):/ A

a—35'

and, again, it is enough to let 8’ — 0.
To prove (i), take v = u € H such that A, , ([«, B]) > 0. By (iii), we have

WPy, ) = (PO POy ) /’3 A y(dh)
@
and, by (ii),
<P(n)u, u) = Ayu(la. B1) > 0.
This implies that

[P A udn)
" Al B

M(n)

that clearly belongs to [«, 8] (and does not depend on the choice of u).
Finally, we prove (iv). To this end, note that, for all §’ < §,

(CMEMCmy, ) :/

AW @),
Ry\(@—8, 48 (W — )2 Y

Due to bilinearity, it will be enough to consider the case when v = u. Let §' < § and suppose that & — §', 8 + §' are
not atoms of A, . Since w™ — u and Assumption 2 holds,

A A
—
=32 (=)

asn— oo

uniformly in R4 \ (@ — &', B + 8’). Due to the weak convergence of Af,"z, to Ay y, it is easy to show that

A (d))

u,u

R \(a—8,p+5") (L — 1)

A
— ——— Nuuldh),
R \(a—8, 48" (L —2A)

and it remains to let 8’ — 0. |

It turns out that the following Assumption 4, which is somewhat easier to understand, implies Assumption 3 and
even its stronger version (stated in Proposition 1 below).

Assumption 4. Suppose the sequence of covariance operators £ with sup,>1 || Y| < 400 converges strongly
to a bounded symmetric nonnegatively definite operator ¥ : H +— H (that is, ¥™u — Zu as n — oo for all

u € H). Let £(-) be the resolution of the identity associated with £.> Suppose also that there exists u € H such
that (€ ([a, BDu, u) > 0.

3This means that £(-) is a projector valued measure on Borel subsets of R, such that £(A)E(A) = E(ANA"), ERy) =1 and = = fR+ AE(dR).
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The next proposition shows that the limit spectral measure A, , can be defined in terms of the limit resolution of
the identity &:

Au,v(A)=<5(A)M’ U), A EB(R+),M,UGH.

Proposition 1. Assumption 4 implies Assumption 3. Moreover, it implies that, for all u, v € H and for all sequences
Up — U, Vy — U as n — 00, the sequence of measures A,(fi),vn converges weakly to Ay .

Proof. Indeed, let £ (.) be the resolution of the identity associated with ¥ ™. Then A&”Z () = (ED (Yu, v). Tt is
well known (see, e.g., [28], Ch. IX, Section 134) that the uniform boundedness of || X" ||», and strong convergence

of operators £ to ¥ implies strong convergence of £ ([0, A]) to £([0, A]) for all A that do not belong to the point

spectrum of X, which easily implies the weak convergence of measures A,(ff,) vy 10 Ay . (]

We will also need the following simple proposition (its proof is elementary).

Proposition 2. Suppose Assumptions 2 and 4 hold. Suppose also that u™ is an eigenvalue of multiplicity 1. Then,
the corresponding spectral projector P =8™ ® 0™ where 8 is the eigenvector corresponding to u'"™> and, for
some 0 € H, 0™ — 9 asn — oo.

As a typical example where Assumption 4 holds, consider the case of £ = Py, > Py, for asequence of subspaces
L, C H with dim(L,) — oo and Un>1 L, being dense in H (see also the discussion of general spiked covariance
models in Section 1). -

We will now state the main result of this section.

Theorem 5. Suppose that

sup||2(”) HOO <00 (5.1)
n>1

and
r(2™)=o(m) asn— . (5.2)

Also, suppose that Assumptions 2 and 3 hold. Let P = f’,(:) Then, the finite dimensional distributions of stochastic
processes

WR(PY ~EPD)u). v eH

converge weakly as n — o0 to the finite dimensional distributions of the centered Gaussian process Y (u,v),u,v € H
with covariance function T defined as follows:

F(u, v, v/) = l"l(v, v/)l"z(u, u/) + Fl(v, u’)Fz(u, v/) + Fl(u, u’)Fz(v, v’) + l"l(u, v/)l"z(v, u’). (5.3)

If, in addition, Assumption 4 holds, then, for all ¢,,, Y, : H+— H such that ¢, (u) — u, ¥, (u) - u as n — oo for all
u € H, the finite dimensional distributions of stochastic processes

n1/2((13(n) _ ]Eﬁ(n))(pn W), Yn (v))’ u,vel
converge weakly as n — oo to the same limit.

Proof. We prove only the first claim. The modifications needed to establish the second claim are rather obvious. The
proof is based on the following representation of P — p(:

ﬁ(n) _ Eﬁ(") — L(n) (E(n)) + R(”)’ 54
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where
L(n)(E(n)) =pWEg®mc@) C(")E(")P("), EM®™ .— ﬁ:n 0

and where the remainder R will be controlled using Theorem 3.
In addition to this, to show the asymptotic normality of (L™ (E™)u, v), we rely on Lemma 6 and also on Lemma 7
below (both lemmas are based on Assumptions 2 and 3). Observe that

nALOED)u, ) =012 Y (€ (0 0) +67 @, 0). (5.5)
j=1

where S;")(u, V) = (X;."), P(”)v)(Xjn), C™u) are independent copies of random variable £ (u,v) := (X",
P®yy(X™WC™y). Recall also that Gaussian random variables (X", P™y), (X® C™y) are uncorrelated and,
hence, independent. Therefore, S(”)(u, v) is mean zero and, by Lemma 6, for all u, v, u’, v’ € H,

EE™ (u, v)E™ (u',v') =(PPW=® Py VY CPEDC"uu) - T(u,viu V) =Ty (v, v)Ta(u, o),
which implies

E(E™ u, v) + &7, ) (™ (', v') + 7 (v, ') = T (u, v u'').
Lemma 7. Under Assumptions 2 and 3, the sequence of finite dimensional distributions of

n'ALD(E™)u,v), u,vel

converges weakly as n — oo to the finite dimensional distributions of the centered Gaussian process Y (u, v),u,v € H
with covariance function T.

Proof. In view of (5.5), it is enough to show the convergence of finite dimensional distributions of the process
n~1/2 Z'}:l E;") (u, v), u, v € Hto the finite dimensional distributions of the centered Gaussian process Y (u, v), u, v €
H with covariance function . To this end, one has to check the Lindeberg condition, which reduces to

E|$(")(M, v)|21(|‘§(")(u, v)| > rﬁE1/2|§(")(”’ v)|2)
EIE® (u, v)|?

—0 asn—> o0

for all T > 0. Note that

EJ§ ™, v) P1(E® @, v)| = T/mE 2D @ v EE® @, )l
EJE® (u, v)|? ~ 2n(EIE™ (u, )22

Since

E|6 (u, v)[> = (P® £ 0y y)CW 500y y)
and

E|e™ u, v)|* = E(X®, PO E(X®, cu)t =9(PM 5™ pmy P (cM My, 4
(where we used the fact that, for a centered normal random variable g, Eg* = 3(Eg?)?), we get

E|&E™ (u, v)[* QPW T py 2(CM MMy, y)? 1
limsup — = lim — =0,
noo TER(EIE® (u, v)[2)2  (PMEM Py »)2(COTMCMy, y)2 n—>o0 12

and the result follows. O
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To complete the proof of Theorem 5, it is enough to use representation (5.4) and bound (3.2) of Theorem 3. Since
r(Z™) = o(n), it follows from bound (3.2) that

(R(")u, v) = oP(rfl/z),
and the result follows from Lemma 7. (I

Remark 4. Under the assumption

r(E(")) = o(nl/z) asn — 00, (5.6)
the finite dimensional distributions of stochastic processes

n]/z((ﬁ(”) — P("))u, v), u,veH

converge weakly as n — o0 to the finite dimensional distributions of Y . Indeed, by Theorem 4 and bound (4.1),

N ()
|EA™ — P(n)”oo=0<r( )) —o(n'12).
n
and the claim follows from Theorem 5.

6. Asymptotics and concentration bounds for linear forms of empirical eigenvectors corresponding
to a simple eigenvalue

We will discuss special versions of some of the results of the previous sections in the case of spectral projectors cor-
resonding to an isolated simple eigenvalue. In this case, it becomes natural to state the results in terms of eigenvectors
rather than spectral projectors.

Suppose u, is a simple eigenvalue of X, that is, u, is of multiplicity m, = 1 so that the spectral projector P, is of
rank 1: P, =6, ® 0,, where 0, is a unit eigenvector corresponding to p,. This implies that the projector P, is also of
rank 1 with a high probability (provided that E|| POy loo =1 — y)%’ which will be assumed in what follows). Let
f’r = ér ® é, and suppose that the sign of é, is chosen in such a way that (é,, 0,) > 0. Since the eigenvectors ér, 0, are
defined only up to their signs, there is no loss of generality in such an assumption.

Under the assumptions of Theorem 4,

IEﬁr=Pr‘i‘PrVVrPr“‘Tr,
where W, = Eﬁr — P — r is the bias of }3, and the remainder 7, satisfies bound (4.2):

IZl3 [r(2) 1

T, <D — .
1T loo = Dy 2 P

6.1)

Note that

(Pr Wy Pru,v) = (P W0, 0) (0, u) = (W, 0., 0,) (0, u) (0, v).
Therefore,

PW,.P. = (W,.0,,0,)(0, ®6,)=b, P,
and

EP, =(1+b)P + T, (6.2)
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where b, := (W,.0,, 6,) is a real number characterizing the bias of 13,. Note that

br = (Eﬁrgr, 0}") - (Prer, 6}’) = E<ér, Qr)z -1,
implying that b, € [—1, 0] (with b, = —1 being equivalent to é, 1 6, a.s. and b, = 0 being equivalent to ér =6, as.).
In what follows, we will often assume that b, is bounded away from —1 which would ensure that the bias is not too

large. In fact, it follows from bound (4.1) that, under the assumption that r(X) < n,

2
1 < IE I ) ©3)
g

n
s0, b, is small provided that % remains bounded and r(X) = o(n).
Theorem 6. Suppose that condition (3.1) holds for some y € (0, 1) and also that
1 +b > % (6.4)

Then, there exists a constant Cy, > 0 such that for all t > 1 with probability at least 1 — e™"

) t
6, - VTHB6m)] <, ] ”°°<,/ —)nun.
&r non

Proof. We need the following lemma that provides a representation of the linear functional (ér — 6, u) in terms of
bilinear form of operator P, — P,.

Lemma 8. Forall u € H,

G — 6. = (P, — P, u) — (\/l—i— — P.)6,,06,) — 1)(9,,u). 65)
U+ (B = P, 0,)
Proof. The following representation is obvious
(P = P60 =0, — 6, + (6, = 6,,0,)6; + {6r — 6,,6,) 0, — 6,)
and it implies that
6 — oy (P = PO ) = (6, = 0,,6,) 61 ) 66)
14 (6, —6,,6,)
For u =6, it yields
(0 — 0r.0)% + 200, — 6,.6,) = ((Pr — PO, 6,)
and, since (ér, 0,) > 0, we easily get that
6,6, \/1 (P, — Pr)6r, 0;).
Substituting this into (6.6) gives the result. (|

Denote

pr() :=((P; = (1 +b,) P,)6,, u).
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We can rewrite (6.5) as follows:

by (Or, u) + pr () — (V1 + by + 0-(0r) )0, u)

6r — 0, u) ==
VI+b,+pr )
_< 1+ b, ]> O
JT+b,+p, @) JT+b,+p, @)
1+b, pr(u)

= (/1+b, — 1), u) +<m \/1+b>(9r,u)+m
= (T = D)+ )

VT+b,+pr )

V1+b,

pr(er)wra M),

CVIHb, 40, O T b + 0,6 + T+ Dy)
which implies
A or(u)
0, —V1+b60,,u)=—--—-"-——
e rr ) VTI+b, +p,0r)

_ 1+ b,
VIFb, 4+ p,O@)(VT+b, + p,0,) +/T+D,)

Pr (0r)(6r, u). (6.7)

The next bound on p, (#) follows from Corollary 1 and from Theorem 4, and it holds with some constant D), > 1
and with probability at least 1 — e™':

IZlle /1 1Z1%, ( [r(D) rot\ [t
pr(w) < D=—=|—|lul + D) == ( |/ —= Vv /= vV = ) /= llull.
8r n g5 n n o n n

Recall that, under condition (3.1),

. r(®) 2
C1 1 Z oy 2 < &
n 2

with some constant C; > 1 and assume that also

t t o
Crlnznoo(,/—v—) - 6.8)
n n 2

Then we have

) t
lor)| < (D +C1 D, | g”""\/;nun. (6.9)

Assuming that

(D+CiD)IZ ﬁvf Y 6.10)
1y *WVn n)— 22 '

which, of course, implies condition (6.8), we get that, with probability at least 1 —e™", p,(6,) < %. As a consequence,
under condition (6.4), with the same probability,

1+ by + pr(6;) > %7



2008 V. Koltchinskii and K. Lounici

and it follows from (6.7) and (6.9) that with probability at least 1 — 2¢~’

by
6 —T556r10)| <, | "“\fn I

It remains to consider the case when condition (6.10) does not hold. In this case,

4D +C1Dy) 2o (\ﬁvg) 1,
14 8r non

and, under the assumption ||u|| < 1, we simply have

A o 8(D+C\D b)) t ot
|<9r—\/1+br9r,u)]§||9rll+\/1+br||9r||§2§ ( yl 24 _HOO<\/;V—>,

8r

implying the bound of the theorem. To complete the proof, it is enough to adjust the constants properly (to write the
probability bound as 1 — e™"). O

Remark 5. Inview of Remark 2 of Section 3, the bound on p,(6,) that appeared in the above proof could be improved

as follows: with probability at least 1 — e™",

1Z1%, [ [r(D) rot\ [t
|Pr(9r)|§Dy = ( —V _V_> -
&r n n o n n

This implies that with the same probability

2
16, —V1+b,6,.6,)| < C, "Z_Qm(\/r(z)v\ﬁvf)(\ﬁvi)- (6.11)
g n n o n n o n

Based on Theorem 6, it is easy to develop a simple /n-consistent estimator of the bias parameter b, and suggest
an approach to bias reduction in the problem of estimation of linear functionals of eigenvectors of X. Suppose, for
simplicity, that the sample size is an even number 2z and divide the sample (X7, ..., X2,) into two subsamples of size
n each (the first n observations and the rest). Let 3, be the sample covariance based on the first subsample and fl/ be
the sample covariance based on the second subsample. For a simple eigenvalue 1, with an eigenvector 6, denote by
6, the corresponding elgenvector of ¥, and by 9’ the corresponding eigenvector of 2/ Assume that their signs are

chosen in such a way that (9,, 0,) > (. Define

b= (0,.00) 1
and

0
0 = ——.
vV 1+ b,
Proposition 3. Under the assumptions and notations of Theorem 6, for some constant C,, > 0 with probability at

least 1 — e,

b <C||z||§o r(%) rot ot =
o= GV YR W Ve ) ©12

and, for all u € H,

; ISl ([t 1
6, =6, u)| <Cy _°°< —v—)nun. (6.13)
gr n n

>
~
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Proof. It follows from the definition of B, that
\br = byl = (0. 6) = (1 + b))
= V1 +b,6r — 1+ b,6,,6,) + 1+ b, — 1+ b,6,,6,)
RN (Y NN A |
< W1+b40, = VT+b:0:,0,) | + [V +b,(6] =V 1+ 5,6, 6)|
+ |6 =1+ 5,65, 6] — V1 +b,6,). (6.14)

By bound (6.11), with probability at least 1 — e~

. =13 > ot rot
|(9,—,/1+br9,,9,)|5cy” _!‘”(,/r( )y —v—></—v—>
&5 n n o n n o n

and with the same probability

5 IZ [ [r(E [t t [t ¢
|(91C - 1—i_brers 9r>| < Cy ” _!OO< & V. —V —)( -V —).
8r n n n n n

By Theorem 6, conditionally on the second sample, with probability at least 1 — e

6, — V1+b,6,,6 —1+b6,)|<C, ”i"w(\f >||9’ V1+b:6,|. (6.15)

—t

To bound the norm ||6Ar’ — /1 + b,6,]| in the right-hand side, note that

16, —V1+b,6.| <6, —6.] +1V1+b—1|

D |r|
S\/EHPI’/_P"HOQ 1+m— ”Pl Pr||oo+|br|v

where P/ := 6 ® 6/ and we used the bound

16, 6,7 =2-2(6,,6,) <2—2(0,,0,> =2 —2(B., P,)= | B, — P, |3 < 2| B/ — P.| %,

Using bounds (2.7), (6.3) and Theorem 2, it is easy to show that with probability at least 1 — e™’

16— /T 56| y||2_||oo(\/r(T\f )

Together with (6.15) this implies that, for some C,, > 0, with probability at least 1 —2e~*

0, = /T+5,6,,0, 1+b,9,)|§cy”z_”2 (/“T f )(\[ %)

It remains to deduce from (6.14) that (6.12) holds with probability at least 1 — 4e~". To write the probability bound as
1 — e, it is enough to adjust the constants.
Under the assumptions of Theorem 6, the proof of bound (6.13) is straightforward. (]

We turn now to asymptotic normality of empirical spectral projectors. It is easy to see that (6.2), bound (6.1) on
[T |lco and Theorem 5 yield the following corollary.
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Corollary 2. Suppose that

sup| =™ |, <+oo (6.16)
n>1

and
r(E(")) =o(n) asn— oo. (6.17)

Suppose also that Assumptions 2 and 3 of Section 5 hold. Finally, suppose that n = ,uﬁz) is an eigenvalue of £™

of multiplicity 1. Denote b = bf:l). Then, the finite dimensional distributions of stochastic processes
n1/2<(}3(") —(1+ b("))P("))u, v), w,veH

converge weakly as n — o0 to the finite dimensional distributions of centered Gaussian process Y (u, v), u, v € H with
covariance I'.

If, in addition, Assumption 4 holds, then, for all ¢, , ¥, : H+— H such that ¢, (u) — u, ¥,,(u) — u as n — oo for
all u € H, the finite dimensional distributions of stochastic processes

n1/2<(13(n) _ (1 + b("))P(”))gon(u), Wn(v)>» u,veH
converge weakly as n — oo to the same limit.

_ Note that under the assumptions of Corollary 2, {3(") = 0™ ® 60 and, with probability tending to 1, P —
6™ @ O™ for eigenvectors ™ of £ and 6™ of ¥,. We will be able to rephrase the corollary in terms of linear
forms of eigenvectors rather than bilinear forms of spectral projectors.

Theorem 7. Suppose that

sup| 2™ <+oo (6.18)
n>1

and
r(E(")) =o(n) asn— oo. (6.19)

Suppose also that Assumptions 2 and 4 hold and recall that, under these assumptions, 07 — 6 € H as n — oo.
Finally, assume that the sign of 0" is chosen to satisfy the condition (9" ,0™) > 0. Then, the finite dimensional
distributions of stochastic processes

nl/z(é(”) —V1+bme™, u), ueH

converge weakly as n — 0o to the finite dimensional distributions of centered Gaussian process Y (0, u), u € H.

Proof. Denote
PP () = p () = ((P™ — (1+b™)P™)0"™ u), ueH.

It follows from Corollary 2 and the fact that Y (6, 8) = 0 (see also Theorem 5 and the definition of the process Y and
its covariance) that the finite dimensional distributions of stochastic processes

n'2(p™ @), p™(6™)), ueH (6.20)
converge weakly to the Gaussian process (Y (6, u), 0), u € H. In particular, this implies that

p™(6™) = Op(n~"?) = op(1).
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Under the conditions of the corollary, we also have that

(n)
pm — 0(1'(2’:1 )> =o(1).

It follows from (6.7) that

W20 — 11 pme®™ y) = n'2p™ )

V1400 4 pm(pn)

V14 b0
V14b® 4+ pm @) (/1 + b + p (O™ 4 /14 p™)
x n'/2p™ (0™) (6™, u).

This representation, the convergence of finite dimensional distribution of the process (6.20) and the fact that
pM(O™) = op(1), b™ = o(1), imply the result. O

0]
OK
bW = (9 gy 1, 6™ g being empirical eigenvectors based on the first and on the second subsamples (of

size n each) of a sample of size 2n. As before, it is assumed that (9("), 6’ (”)) > (0. We state the result without proof.

It turns out that the asymptotic normality also holds for the estimator with bias correction 6 : where

Theorem 8. Under assumptions of Theorem 7, the finite dimensional distributions of stochastic processes
ﬁ(é(") —om, u), uecH

converge weakly to the finite dimensional distributions of stochastic process Y (6, u), u € H.

Suppose H =R” and let ey, ..., e, be an orthonormal basis of the space R”. For u € R?, let
lulles == max [(u,e;)| = max |u'].
e <jsp l<j=<p

We present now a non-asymptotic bound on 16, — 6, ¢, that immediately follows from Proposition 3.

Corollary 3. Suppose the assumptions of Theorem 6 hold. Then, with probability at least 1 — e,

~ 1= t+1o t+1lo
16, — B, lle, < Cp i LLavEaELIa)
8r n n

Example 3 (Eigenvector support recovery). Our goal is to recover the support of eigenvector 0, denoted by

Jr :=supp(6;) 1= {j :Or(j) * O}.

It follows from Corollary 3 that a simple hard-thresholding procedure can achieve support recovery. Define J, = {j :
50D
10| > Bu}, where

b= C 12 oo /t+logpvt+logp
" 4 g n n '

If p:=minjey, |9 | > 2y, then we can immediately deduce from Corollary 3 that P(J, = J,) > 1 —e™". It is well
known that the theoretical threshold to perform support recovery in the Gaussian sequence space model is B =<
t+10g )4

where o is the noise variance. The above threshold B,, in eigenvector support recovery is similar with the

P
noise variance o replaced by 121l “°° .



2012 V. Koltchinskii and K. Lounici

Example 4 (Sparse PCA oracle inequality). We propose a new estimator of 0, that satisfies a sparsity oracle inequal-
ity with sharp minimax l-norm rate (see [31] for more details about minimax rates in sparse PCA). This estimator is
computationally feasible and also adaptive in the sense that no prior knowledge about the sparsity of 6, is required.
Consider the estimator 6, € RP obtained by keeping all the components of 0, with their indices in J, and setting all
the remaining components equal to 0. We denote by |16, |, the number of non-zero components of 0. Combining the
above support recovery property with Corollary 3, we immediately get the following result.

Theorem 9. Let the conditions of Theorem 6 be satisfied. Assume in addition that p = min e, |9,(j )| > 2B,. Then,
with probability at least 1 — e™!

|2 t+1 t+1 2
16, — 6,117, < C3 == ” ” %6, ||IO( +o8p v< + ng) ) 6.21)
8 n n

Remark 6. The main focus of this paper was on concentration and asymptotic properties of bilinear forms of spectral
projectors, in other words, on their asymptotic properties in the weak topology in the space of bounded operators. In
this case, it was possible to show that the bilinear forms (centered with their expectations) are asymptotically normal
with the standard rate \/n. Such results do not hold in the case of strong operator topology. For instance, in the case
when the true spectral projector P, = 0, ® 0, is of rank 1, it is easy to deduce from the bounds of this section that

5 ; IZ13 r(2)
Ell Pru —EPru]® ~ = (6, u)* = =32 =26, u)?

s ooon

(under the assumptions that r(X) — oo and r(X) = o(n)) This means that, if (0, u) # 0, then E|| P u—EP u||2 and
E| Pou— Pou |? are essentially of the same order as E|| P.— P, ||2 (see[17] for the computation of the last quantity).
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