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Abstract. We prove that crossing probabilities for the critical planar Ising model with free boundary conditions are conformally
invariant in the scaling limit, a phenomenon first investigated numerically by Langlands, Lewis and Saint-Aubin (J. Stat. Phys. 98
(2000) 131–244). We do so by establishing the convergence of certain exploration processes towards SLE(3, −3

2 , −3
2 ). We also

construct an exploration tree for free boundary conditions, analogous to the one introduced by Sheffield (Duke Math. J. 147 (2009)
79–129).

Résumé. Nous prouvons que les probabilités de croisement pour le modèle d’Ising planaire critique avec conditions aux bords
libres sont invariantes conformes à la limite d’échelle, un phénomène initialement étudié numériquement par Langlands, Lewis et
Saint-Aubin (J. Stat. Phys. 98 (2000) 131–244). Pour ce faire, nous établissons la convergence de certains processus d’exploration
vers SLE(3, −3

2 , −3
2 ). Nous construisons également un arbre d’exploration pour les conditions aux bords libres, similaire à l’arbre

d’exploration introduit par Sheffield (Duke Math. J. 147 (2009) 79–129).
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1. Introduction

1.1. Definition of the Ising model

In this article, Z2 denotes the integer lattice {x = (x1, x2), x1, x2 ∈ Z}. Two vertices x and y of Z2 are neighbors if
‖x − y‖1 := |x1 − y1| + |x2 − y2| = 1. In such case, we write x ∼ y. Each subset G of Z2 can be seen as a graph by
considering the graph induced by Z

2 on the vertex set G: the edge-set EG of G consists of all edges of the lattice Z
2

that links two vertices of G together. Let us also consider the dual graph (Z2)∗ of Z2 whose vertices sit at the center
of faces of Z2, and whose edges are in one-to-one correspondence with edges in Z

2. We define the boundary of G to
be the set of edges ∂G = {e = (x, y), x ∼ y such that x ∈ G and y /∈ G}. We sometimes abusively identify a boundary
edge (x, y) with one of its endpoint.

For a domain � ⊂C – i.e. an open subset of the plane, we build its discrete approximation �δ of mesh size δ as the
‘big connected component’ of the graph � ∩ (δZ2) (for example �δ is the connected component containing a marked
interior point x0 ∈ �). Finally, define (�δ)∗ to be the subgraph of δ(Z2)∗ generated by vertices corresponding to faces
of δZ2 that are either included in or adjacent to a face of �δ .
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The Ising model is one of the most classical models in equilibrium statistical mechanics. A configuration of the
Ising model in a domain �δ is an element of {−1,1}�δ

– sometimes denoted by {−,+}�δ
, and the Ising model at

inverse-temperature β > 0 with free boundary condition is given by the probability measure

μfree
�δ,β

(σ ) = 1

Zfree(�δ,β)
exp

(
β

∑
x,y∈�δ

x∼y

σxσy

)
,

where the partition function Zfree(�δ,β) is defined so that μfree
�δ,β

is a probability measure. One may define an infinite-

volume measure μfree
β on {−1,1}δZ2

by taking the weak limit of finite-volume measures.
As was predicted by Kramers and Wannier [14], and shown by Onsager [20], a phase transition occurs at βc =

1
2 ln(1 + √

2):

• For β < βc , there exists τ = τ(β) > 0 such that for any δ > 0 and any x, y ∈ �δ ,

μfree
β (σxσy) ≤ exp

(−τ‖x − y‖1/δ
)
.

• For β > βc , there exists m = m(β) > 0 such that for any δ > 0 and any x, y ∈ �δ ,

μfree
β (σxσy) ≥ m.

The fine description of what happens at and near the critical point has been the subject of more than sixty years
of investigation. Two successful approaches enabled mathematicians and physicists to study this critical phase. On
the one hand, the exact solution led to many explicit formulae for spin–spin correlations and other thermodynamical
quantities; see [1,18,21] and references therein for further details. On the other hand, the scaling limit of the model
was conjectured to be conformally invariant using renormalization group arguments [8,9], a prediction which led to a
deep understanding of the critical phase, albeit non-rigorous. In recent years, conformal invariance of the Ising model
became the object of an intense mathematical effort. Chelkak and Smirnov [3,25] proved conformal invariance of
the so-called fermionic observable, a property which led to the proof of convergence of interfaces in domains with
Domain-Wall boundary conditions (or Dobrushin boundary conditions) to the so-called Schramm–Loewner evolution
(SLE) [5]. The spin–spin correlations were also studied [6]. This note belongs to this effort, and studies the probability
of crossing events (see definition below).

1.2. Main results

Crossing events are macroscopic observables describing the connectivity properties of a random configuration. For-
mally, let (�,a, b, c, d) be a topological rectangle, i.e. a simply connected Jordan domain � with four points on its
boundary, indexed in clockwise order. Note that a, b, c and d determine four arcs on the boundary denoted by [ab],
[bc], [cd] and [da]. Let aδ , bδ , cδ and dδ be the vertices of ∂�δ closest to a, b, c and d respectively. The rectangle
(�δ, aδ, bδ, cδ, dδ) is crossed in an Ising configuration σ if there exists a path of plusses going from [aδbδ] to [cδdδ],
i.e. if there exists a sequence of vertices v0, . . . , vn ∈ �δ such that

• vi and vi+1 are neighbors for any 0 ≤ i < n,
• v0 ∈ [aδbδ] and vn ∈ [cδdδ],
• σvi

= + for any 0 ≤ i ≤ n.

We denote such a crossing event by [aδbδ] � [cδdδ], and call its probability a crossing probability.
Let us define a slight variation of the previous event. Two vertices x and y of �δ are called �-neighbors if ‖x −

y‖∞ := max{|x1 − y1|, |x2 − y2|} = δ. With this definition, each vertex has eight neighbors instead of four. The
rectangle (�δ, aδ, bδ, cδ, dδ) is �-crossed if there exists a �-path of plusses going from [aδbδ] to [cδdδ]. The event is
denoted by [aδbδ] �� [cδdδ].

The first theorem of this paper yields that crossing probabilities for the critical Ising model with free boundary
conditions converge, when the mesh size tends to 0, to a conformally invariant limit.
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Theorem 1. There exists a function f from the set of topological rectangles to [0,1] such that

• for any topological rectangle (�,a, b, c, d),

lim
δ→0

μfree
�δ,βc

([
aδbδ

]
�

[
cδdδ

]) = lim
δ→0

μfree
�δ,βc

([
aδbδ

] ��
[
cδdδ

]) = f (�,a, b, c, d)

• f only depends on the conformal type, i.e. for any topological rectangle (�,a, b, c, d) and any conformal map
	 : � →C,

f
(
	(�),	(a),	(b),	(c),	(d)

) = f (�,a, b, c, d).

The first property guarantees that connectivity and �-connectivity are the same in the scaling limit. Let us also
mention that the result should extend to isoradial graphs, thus proving some sort of universality (see [7] for a precise
definition of isoradial graphs).

Crossing probabilities played a central role in the study of planar lattice models at criticality. The work of Lang-
lands, Pouliot and Saint-Aubin [15], who verified numerically Cardy’s formula [2] for percolation crossing probabili-
ties, constitutes one of the first direct evidences of full conformal invariance of lattice models. This formula was then
related non-rigorously by Schramm to SLE [17] and proved rigorously by Smirnov [25] for critical site percolation on
the triangular lattice. Let us stress out that this result was the crucial step towards the proof of conformal invariance
of percolation interfaces.

In the case of the Ising model, crossing probabilities with free boundary conditions were also investigated numeri-
cally by Langlands, Lewis and Saint-Aubin [16]. They concluded to the conformal invariance and the universality of
these probabilities.

Unlike in the percolation case, no prediction for the limiting value of crossing probabilities is currently available for
the Ising model with free boundary conditions. Indeed, the simplest generalization of Cardy’s formula in Conformal
Field Theory deals with crossing probabilities in topological rectangles (�δ, aδ, bδ, cδ, dδ) with spins fixed to be +
on [aδbδ] and [cδdδ], and − on [bδcδ] and [dδaδ], and was studied in [11].

While Theorem 1 does not give an explicit formula, the proof provides some information on the limiting probabili-
ties. Indeed, the crossing probabilities for the Ising model with free boundary conditions can be represented as hitting
probabilities for a discrete exploration process, which in words is the leftmost interface between + and −, bouncing
off the boundary in such a way that it can always reach [bδcδ] without crossing itself. Let us define it formally.

Consider a configuration σ ∈ {−1,1}�δ
, and two vertices u and v of ∂(�δ)∗. An exploration process γ δ :

{0, . . . , n} → (�δ)∗ from u to v is a path such that:

• γ δ
0 = u, γ δ

n = v, and γ δ
i ∼ γ δ

i+1 for any 0 ≤ i ≤ n.
• γ δ is non self-crossing. In particular, the vertex γ δ

j+1 is always in the connected component of (�δ)∗ \ γ δ[0, j ]
containing v.

• The vertex to the left of the oriented edge (γ δ
j , γ δ

j+1) is either outside of �δ or carries a + spin.

• The vertex to the right of the oriented edge (γ δ
j , γ δ

j+1) is either outside of �δ or carries a − spin.

Remark 2. Note that we could have chosen our exploration paths to let + spins on their right instead. Such an
exploration path from a to b would give, by time-reversal, an exploration path from b to a letting + spins on its left.

Let us also describe a specific choice of exploration that we will consider.

Definition 3. We denote by γ �,δ = γ
�,δ
u,v the leftmost free explorer from u to v, i.e. the leftmost of all exploration paths

with these endpoints. Such a path satisfies the property that, given γ �,δ[0, j ], the following step γ
�,δ
j+1 is always the

counterclockwisemost admissible step for an exploration process.

By construction, the leftmost explorer is a non self-crossing curve drawn on the dual lattice starting from u and
ending at v. On the boundary, it turns in such a way that it can always end at v without ever crossing itself. Inside the
domain, it is an interface between a path of + spins and a �-path of − spins, or equivalently it is an exploration that
turns left whenever there is an ambiguity.
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Similarly, one may construct the rightmost free explorer γ
r,δ
u,v by letting our explorer always make the clockwise-

most admissible turn. Note that any exploration process is sandwiched between γ �,δ and γ r,δ .
Define the Continuous Dipolar Explorer (CDE) in H from 0 to ∞ to be the SLE(3,− 3

2 ,− 3
2 ) process with driving

points 0− and 0+ (see next section for the definition of SLE(κ, ρ1, ρ2)). The CDE in a domain � from a boundary
point u to another boundary point v is then the image of the CDE in H from 0 to ∞ under any conformal bijection
from (H,0,∞) to (�,u, v).

Theorem 4. Let � be a simply connected Jordan domain, with two marked points u and v on its boundary. Consider
the critical Ising model on �δ with free boundary conditions. Any family of exploration processes (γ δ

uδ,vδ ) converges

in law (as the mesh size δ goes to 0) to the CDE from u to v in �. In particular, (γ
�,δ

uδ,vδ ) and (γ
r,δ

uδ,vδ ) converge to the
same limit.

In the previous theorem, the topology on curves used in the definition of the convergence in law is the supremum
norm up to time reparametrization. Specifically, for a simply-connected Jordan domain � with two marked boundary
points u and v, we work with the set C(�) of continuous curves γ : [0,1] → � considered up to time reparametriza-
tion. The distance between two such curves γ1 and γ2 is then defined as

d(γ1, γ2) := inf
ϕ

sup
t∈[0,1]

∣∣γ1(t) − γ2(ϕt )
∣∣,

where the infimum runs over all increasing (bicontinuous) bijections ϕ of [0,1] onto itself. A similar definition makes
sense if curves are parametrized by R

+ ∪ {∞} instead of [0,1].
The proof of Theorem 4 relies on recent results on Ising model [4,10] and on ideas found in [19,24].
We now state a corollary of Theorem 4 that itself implies Theorem 1.

Corollary 5. For any topological rectangle (�,a, b, c, d), the crossing probability is given by

f (�,a, b, c, d) := P
(
CDE hits [cd] before [bc]),

where the CDE goes from the point a to an arbitrary point v ∈ [bc].

1.3. Exploration tree

Discrete explorers allow one to build an exploration ‘tree’ analogous to the process defined by Sheffield [24]. This
object describes the exploration ‘arcs’ touching the boundary of a domain, and is defined as follows. For any couple
of boundary points u,v ∈ ∂(�δ)∗, consider the set �u,v ⊂ C(�) of all exploration paths (leaving + spins on their left)
from u to v. Define the discrete free arc ensemble by

Aδ :=
⋃

u,v∈∂(�δ)

{u} × {v} × �u,v ⊂ � × � × C(�).

The last theorem of this article deals with the convergence of this discrete free arc ensemble towards the Free Arc
Ensemble (FAE) the definition thereof we postpone to Section 6.

Theorem 6. Let � be a simply connected Jordan domain. Consider the critical Ising model on �δ with free boundary
conditions. The family (Aδ)δ>0 converges in law to the FAE, as the mesh size δ goes to 0.

The topology used in the convergence in law result will be given in Section 6.

Remark 7. The convergence in Theorem 6 is robust: the arguments we give hold for any family of discrete domains
�δ that converges towards � in the sense of convergence of their boundaries (as curves, for the topology of uniform
convergence up to reparametrization).
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1.4. Organization of the paper

The paper is organized as follows. In Section 2, we remind the definition of the Continuous Dipolar Explorer. We
state two useful results on the Ising model in Section 3. In Section 4, we prove Theorem 4. Section 5 is devoted to the
proof of Theorem 1. In Section 6 we define the Free Arc Ensemble and we discuss how to deduce Theorem 6 from
Theorem 4.

2. Definition of Schramm–Loewner evolutions driven by several points

2.1. Loewner chains

Loewner chains allow one to encode a growing compact set in the upper half-plane H := {z ∈ C : �m(z) > 0} by one
real-valued function. In particular, one can encode in this way simple curves between two boundary points of H. We
refer to [17] for a book on this subject.

Let (γs)s≥0 be a continuous curve in H such that γ0 = 0 and γs → ∞ as s → ∞. Let Hs be the unbounded
connected component of H \ γ [0, s]. Consider the conformal bijection gs : Hs → H normalized in such a way that

gs(z) = z + 2as

z
+ o

(
1

z

)

as z → ∞. In the situations we will consider, the half-plane capacity (h-capacity) as is a continuous increasing bijec-
tion of R+, and we can then reparametrize by t = as . For simplicity, we will reserve the notation t for parametrizations
such that t is the h-capacity of the hull at time t .

The sequence of functions (gt )t≥0 is then solution to the Loewner flow equation

∂tgt (z) = 2

gt (z) − Ut

,

g0(z) = z,

where Ut = gt (γt ) ∈R is the so-called driving function of the Loewner chain.
Conversely, any real-valued function (Ut )t≥0 defines, when solving the Loewner flow equation above, a Loewner

chain (gt : Ht → H)t≥0, where Ht can be recovered as the set of initial conditions z ∈ H for which the differential
equation does not blow up before time t . If (Ut )t≥0 is regular enough (see [17, Chapter 4.4] for a precise statement),
there exists a curve (γt )t≥0 such that Ht is the unbounded component of H \ γ [0, t] (and we call Kt = H \ Ht the
hull generated by γ [0, t]). In such case, the Loewner chain (gt )t≥0 is said to be generated by the curve (γt )t≥0, and
(Ut )t≥0 gives rise to a parametrized curve in H from 0 to ∞.

2.2. Loewner chains driven by a stochastic process

In [22], Schramm suggested to build random curves by looking at Loewner chains generated by certain random
driving functions. These random growing compact sets are called Schramm–Loewner evolutions. We now discuss
three important examples. In the following the process (Bt ) is always a standard one-dimensional Brownian motion.

2.2.1. SLE(κ)

Let κ > 0. The chordal SLE(κ) in H from 0 to ∞ is the Loewner chain driven by Ut := √
κBt .

2.2.2. SLE(κ, ρ)

Let κ > 0 and ρ ∈ R. The SLE(κ, ρ) in H starting from 0 with force point x ≥ 0 and observation point ∞ is the
Loewner chain driven by (Ut )t≥0, where (Ut ,Ot )t≥0 is the solution to the stochastic differential equation

dUt = √
κ dBt + ρ

Ut − Ot

dt, (2.1)

dOt = 2

Ot − Ut

dt, (2.2)
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with initial conditions U0 = 0 and O0 = x.
The SLE(κ, ρ) is a priori well-defined by the above equation until the first time when Ut = Ot . It is however

sometimes possible, depending on the values of the parameters (κ, ρ), to find a reasonable solution of this system of
SDEs defined for all times. Let us provide additional details.

Suppose (Ut ,Ot )t≥0 satisfies the system of SDEs (2.1)/(2.2) and let Xκ
t = Ot − Ut . Note that the rescaled process

Xt = Xκ
t /

√
κ satisfies the Bessel stochastic differential equation of dimension d = 1 + 2(ρ+2)

κ
:

dXt = −dBt + ρ + 2

κXt

dt. (2.3)

If moreover (Ut ,Ot )t≥0 comes from a Loewner chain, the geometry forces Xt to be non-negative, and instantaneously
reflected at 0 (i.e. the set of times at which Xt = 0 is of Lebesgue measure 0). One can check that – provided that
the dimension d is strictly positive – there is a unique1 non-negative process (Xt )t≥0, called the Bessel process of
dimension d , which is instantaneously reflected at 0 and which evolve according to (2.3) whenever this equation is
non-singular. Indeed, (2.3) characterizes the process of excursions of (Xt )t≥0 out of 0. The only degree of freedom we
could have is when glueing together the excursions to recover (Xt )t≥0. But there is at most one way to glue a given
ordered set of excursions to get an instantaneous reflected process. Now that we are in possession of (Xt )t≥0, let us
explain how we recover (Ut ,Ot )t≥0. When d > 1 (i.e. ρ > −2) the integral

∫ t

0

1

Xs

ds

is almost surely finite for any t ≥ 0. Let us define the process Ot = 1√
κ

∫ t

0
2

Xs
ds. The process Xt can be seen to solve

the Bessel equation (2.3) in its integral form

Xt = −Bt +
∫ t

0

ρ + 2√
κXs

ds = − Bt + (ρ + 2)Ot . (2.4)

If we let Ut = Ot − √
κXt , we get the unique solution (Ut ,Ot )t≥0 of the system of SDEs (2.1)/(2.2) such that O − U

is non-negative and instantaneously reflected at 0. Hence, when ρ > −2, we have a somehow unique notion of an
SLE(κ, ρ) defined for all time.

Remark 8. The Bessel process Xt of dimension d > 1, as Brownian motion, is α-Hölder for any α < 1
2 . The integral

process Ot inherits the same Hölder regularity by equation (2.4). Moreover, the Hausdorff dimension of the set of
zeroes of Xt is 2−d

2 = 1
2 − ρ+2

κ
.

2.2.3. SLE(κ, ρ1, ρ2)

Let κ > 0 and ρ1, ρ2 ∈ R. The SLE(κ, ρ1, ρ2) in H starting from 0 with force points � ≤ 0 and r ≥ 0 and observation
point ∞ is the Loewner chain driven by (Ut )t≥0, where (Ut ,O

L
t ,OR

t )t≥0 is the solution of the system of SDEs

dUt = √
κ dBt +

(
ρ1

Ut − OL
t

+ ρ2

Ut − OR
t

)
dt, (2.5)

dOL
t = 2

OL
t − Ut

dt, (2.6)

dOR
t = 2

OR
t − Ut

dt, (2.7)

and initial conditions U0 = 0, OL
0 = � and OR

0 = r . As before, the solution is a priori defined only for times when
OL

t < Ut < OR
t . Nevertheless, if ρ1, ρ2 > −2, Miller and Sheffield [19, Section 2.2] showed that there is a unique

reasonable solution to this system of SDEs, solution which is defined for all time.

1Uniqueness in law of (Xt ) is enough for what we need, but pathwise uniqueness would hold as well.
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More precisely, there is a unique (in law) triplet of processes satisfying the following properties:

P1 (Ut ,O
L
t ,OR

t )t≥0 satisfies the three equations above on the set of times t for which OL
t < Ut < OR

t , OL
t < Ut and

Ut < OR
t respectively.

P2 OL
t ≤ Ut ≤ OR

t for any t ≥ 0.
P3 The process Ut is instantaneously reflected off the force points, in the sense that the set of times t for which

Ut = OL
t or Ut = OR

t is of zero Lebesgue measure.
P4 The two equations (2.6) and (2.7) hold in their integral forms, namely

OL
t =

∫ t

0

2

OL
s − Us

ds, OR
t =

∫ t

0

2

OR
s − Us

ds.

Lemma 9. Under the assumption that the three properties P1–P3 hold, the last property P4 is equivalent to

P4′ The process (Ut )t≥0 is α-Hölder continuous for every α < 1/2.

Proof. On the one hand, the property P4′ holds for the unique solution of P1–P4 as explained in Remark 8.
In order to prove that P4′ implies P4, we can proceed as follow. Let us focus on the equation in P4. Issues may only

arise at positive times when OL = U . At these times, we necessarily have OR �= U . Hence, by the Girsanov theorem,
the term ρ2

Ut−OR
t

of (2.5) can be absorbed in the Brownian motion via a change of measure, and we can temporarily

forget the point OR . We are thus reduced to the setup of SLE(κ, ρ) as in Section 2.2.2. The process OL − U under
this change of measure is a Bessel process (up to multiplication by a constant). Let It = OL

t − ∫ t

0
2

OL
s −Us

ds. Thanks

to properties of the Bessel process (Remark 8) and the property P4′, we see that It is an α-Hölder process for any
α < 1/2 that is constant outside of a set of Hausdorff dimension 1

2 − ρ+2
κ

< 1
2 . Hence It identically vanishes. �

Remark 10. Let (�, s, l, r, o) be a simply-connected domain with four marked points on its boundary. The SLE(κ, ρ)

from s with force point l and observation point r and the SLE(κ,ρ, κ − 6 − ρ) from s with force points l and r and
with observation point o have the same law until the first disconnection time of r and o (see e.g. [23]). In particular,
the processes SLE(3, −3

2 ) and SLE(3, −3
2 , −3

2 ) are related.

2.3. Definition of the CDE

Definition 11. The CDE in (H,0,∞) is the process SLE(3, −3
2 , −3

2 ) from 0 with force points � = 0− and r = 0+ and
observation point ∞. Let (�,a, b) be a simply connected domain with two marked points a, b ∈ ∂�. The CDE in
(�,a, b) is the image under a conformal map from H onto � mapping 0 to a and ∞ to b.

Let us recall a simple property of the CDE, namely that it is independent of the observation point.

Proposition 12. Consider a domain � with three marked boundary points u, v1 and v2. There exists a coupling of a
CDE γ1 in (�,u, v1) with a CDE γ2 in (�,u, v2) such that the two curves coincide up to the first time when v1 and
v2 get disconnected by the trace of the curve.

3. Two results on the Ising model

In this section, we state two recent results about the Ising which used in an essential manner in this paper.

3.1. A result on convergence of interfaces

The first result states the convergence of certain interfaces in the Ising model.
Let (�,b, �, r) be a simply-connected Jordan domain with three marked points on its boundary (indexed in clock-

wise order). We consider the critical Ising model on discrete approximations of this domain, with boundary conditions
+ on the clockwise arc [bδ�δ], free on [�δrδ] and − on [rδbδ]. Call γ δ the leftmost explorer from bδ to �δ .
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Theorem 13 ([10, Theorem 1]). The law of the leftmost explorer γ δ until the first hitting time of [�δrδ] converges to
the law of an SLE(3, −3

2 , −3
2 ) from b to � until its first hitting time of [�r]. The convergence is moreover uniform in

the domain (see the original paper).

An alternative proof of this result was provided in [12].

3.2. A result on crossing probabilities

Let us recall a classical definition: for a topological rectangle (Q, a, b, c, d), the extremal length �Q([ab], [cd]) is
defined as

sup
ρ:�→[0,∞)

infp(
∫
p

ρ|dz|)2∫
Q ρ2 dx dy

,

where the infimum is taken over rectifiable paths p from [ab] to [cd].
We call a discrete topological rectangle a subgraph of δZ2 whose complement is connected, with four marked

vertices on its boundary.

Theorem 14 ([4, Corollary 1.7]). For each M > 0 there exists η = η(M) > 0 such that the following holds: for any
discrete topological rectangle (Q, a, b, c, d) with �Q([ab], [cd]) ≤ M ,

μmixed
Q,βc

([ab] � [cd]) ≥ η,

where mixed boundary conditions mean free on [ab] and [cd], and − on [bc] and [da].

4. Proof of Theorem 4 (convergence of explorers)

In this section, we fix a simply connected Jordan domain (�,u, v) and a conformal map 	 from (�,u, v) onto
(H,0,∞). We will first prove the convergence result of Theorem 4 for the leftmost explorer going from u to v.

For n ≥ 0, consider the slit domain �n, i.e. the subgraph of �δ constructed by removing all edges of �δ intersecting
in their middle the dual-edges of γ δ[0, n], and then taking the connected component of the new graph containing vδ .

The boundary of �n is composed of three arcs:

• the arc C+
n composed of vertices of ∂�n bordering γ δ[0, n] on its left, hence carrying + spins,

• the arc C−
n composed of vertices of ∂�n bordering γ δ[0, n] on its right, hence carrying − spins,

• the arc Cfree
n = ∂�n \ (C+

n ∪ C−
n ). Note that Cfree ⊂ ∂�δ .

Let Lδ
n (resp. Rδ

n) be the leftmost (resp. rightmost) point of ∂�δ reached by γ δ[0, n]. Note that C+
n = [γ δ

n Lδ
n],

C−
n = [Rδ

nγ
δ
n ] and Cfree

n = [Lδ
nR

δ
n].

The proof goes in two steps.

(1) We first prove that the discrete explorations (γ �,δ,Lδ,Rδ) form a tight family of random variables.
(2) Then, if (γ �,L,R) is any sub-sequential limit, we can consider the growing hull in H generated by 	(γ �), and

let (gt )t≥0 be the associated Loewner chain parametrized by h-capacity. We call (Ut )t≥0 its driving process.
Let OL

t = gt (	(Lt )) and OR
t = gt (	(Rt )). We show that (U,OL,OR) satisfies the conditions P1–P4′, thus

identifying γ � as being CDE.

This will prove the statement for the leftmost free explorer: since any sub-sequential limit is a CDE, the family of
curves (γ �,δ)δ>0 is convergent.

4.1. Step 1: Tightness of the law of the leftmost explorer

Proposition 15. The family (γ �,δ) is tight. Moreover, any sub-sequential limit γ � satisfies the following properties:

• γ � is almost surely a non-self-crossing curve.
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• γ � can be almost surely parametrized by the h-capacity of the hull K̂s of 	(γ �[0, s]).
• Consider (Kt )t≥0 the hull K̂ parametrized by its capacity. It is a Loewner chain with a driving process (Ut )t≥0

which is almost surely α-Hölder continuous for any α < 1/2.

Proof. Let us first fix some notation. Consider the family Qt of discrete topological rectangles Q ⊂ �δ \ γ �,δ[0, t]
such that the boundary arcs [bc] and [da] are on ∂(�δ \ γ �,δ[0, t]). Call Q avoidable if it does not disconnect γ

�,δ
t

from v. A sub-path γ �,δ[t0, t1] crosses Q if there exist t0 ≤ s0 ≤ s1 ≤ t1 such that γ
�,δ
s0 ∈ [ab] and γ

�,δ
s1 ∈ [cd].

The proposition is the conclusion of [13, Theorem 1.3]. Hence, using [13, Proposition 2.2 and Corollary 2.3], it
suffices to check that the following condition holds:

Condition C2. For any M > 0, there exists η > 0 such that for any δ > 0, any stopping time2 τ and any avoidable
discrete topological rectangle Q⊂Qτ with �Q([ab], [cd]) ≥ M ,

μfree
�δ,βc

((
γ

�,δ
t

)
t≥τ

crosses Q|γ �,δ[0, τ ]) ≤ 1 − η.

In order to prove that this condition is satisfied, fix δ > 0 and τ , as well as a realization of γ �,δ[0, τ ]. We also fix
an avoidable discrete topological rectangle Q with �Q([ab], [cd]) ≥ M .

The event that γ �,δ does not cross Q contains the event that Q is crossed from [bc] to [da] by a crossing of + spins
or a crossing of − spins. Since the discrete rectangle is avoidable, it cannot intersect both boundary arcs with + and −
boundary conditions (i.e. C+

τ and C−
τ ), since it would then disconnect γ �,δ

τ from v. Without loss of generality, assume
that it intersects only the arc with + and free boundary conditions (i.e. C+

τ and Cfree
τ ). The spatial Markov property (or

Gibbs property) of the Ising model together with monotonicity with respect to boundary conditions guarantee that

μfree
�δ,βc

((
γ

�,δ
t

)
t≥τ

does not cross Q|γ �,δ[0, τ ]) ≥ μmixed
Q,βc

([bc] � [da]), (4.1)

where the mixed boundary conditions are free on [bc] and [da], and − on [ab] and [cd]. Theorem 14 shows that the
right-hand side of (4.1) is larger than some positive quantity η(M). �

We will also need to keep track of the points Lδ and Rδ in the scaling limit. In order to do this, let us prove the
following property of subsequential limits of γ �,δ , which states that the scaling limit cannot touch the boundary when
the discrete explorer does not. We can assume that the curves γ �,δ almost surely converge towards a limit γ for the
uniform topology (i.e. we assume that all the curves are parametrized in a compatible way).

Lemma 16. Any time when γ � is on the boundary is a limit of boundary hitting times of γ �,δ .

Proof. The curve γ � can be parametrized by capacity (Proposition 15) hence it does not stay on the boundary. Any
time when γ � is on the boundary is hence in the closure of the set of boundary hitting times, and we can reduce to
proving the statement for such times.

Now, each time the explorer γ �,δ is inside the domain and gets close to the boundary we can use crossing estimates
(Theorem 14) to see that with high probability the explorer touches the boundary soon after (see Figure 1). We leave
the details of the previous claim, which are classical, to the reader. As there are countably many boundary hitting
times, this yields the claim. �

The previous results imply the following, where the topology used is the weak topology associated to uniform
convergence (up to common reparametrization) of the triplet of functions.

Corollary 17. On any subsequence such that γ �,δ converges, the triplet (γ �,δ,Lδ,Rδ) converges to (γ �,L,R) where
L (resp. R) is the leftmost (resp. rightmost) boundary point reached by γ �.

2A stopping time τ is a stopping time for the filtration generated by the curve (γ
�,δ
t ) parametrized by the number of steps.
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Fig. 1. With high probability, the rectangle to the left (resp. to the right) of γ δ contain a crossing of + (resp. −) between its orange boundaries (i.e.
those included in ∂� and in γ ). These crossings forces the explorer γ to touch the boundary ∂� in a neighborhood.

4.2. Step 2: Identification of the scaling limit of the leftmost explorer

Let γ � be a possible sub-sequential limit of (γ �,δ)δ>0. Recall that we defined OL (resp. OR) to be gt (	(Lt )) (resp.
gt (	(Rt ))) where 	 uniformizes (�,u, v) to the upper half-plane (H,0,∞), and where gt is the Loewner chain
associated with 	(γ �). We also denote by Ut the driving process of the Loewner chain 	(γ �). We now want to prove
that the triplet (U,OL,OR) satisfies the four properties P1, P2, P3 and P4′ that characterize SLE(3, −3

2 , −3
2 ).

Proof of Property P1. The curve γ � is the limit of discrete interfaces (γ �,δ)δ>0 which satisfy a spatial Markov
property. At any stopping time τ when γ �,δ is away from Lδ and Rδ , we are in the setup of Theorem 13 and hence
(γ �,δ)t≥τ is close to an SLE(3, −3

2 , −3
2 ) in the slit domain �τ = �δ \ γ �,δ[0, τ ]. In other words, if t is a time such that

OL
t < Ut < OR

t , the process (gt (γ
�
t+s))s≥0 up to the first hitting time of (−∞,OL

t ] ∪ [OR
t ,∞) is a SLE(3, −3

2 , −3
2 )

with force points OL
t and OR

t . Hence, the equation (2.5) is satisfied on the set of times t such that OL
t < Ut < OR

t .
Whenever OL

t < Ut , the point L is locally constant, hence OL
t = gt (	(Lt )) simply evolves according to the Loewner

flow equation (2.6). Same goes for OR and (2.7). �

Proof of Property P2. The second property follows from the geometry: OL
t is the leftmost point absorbed by the

Loewner chain. In particular, it always sits to the left of Ut . Same goes for OR
t . �

Proof of Property P3. We want the sets {t ≥ 0 : Ut = OL
t } and {t ≥ 0 : Ut = OR

t } to be (almost surely) of Lebesgue
measure 0. This is a deterministic property satisfied by any Loewner chain generated by a continuous driving function
(we refer to [19, Lemma 2.5]). �

Proof of Property P4′. The last property corresponds to the third property of Proposition 15. �

This concludes the proof of the convergence of the leftmost explorer towards CDE. The same argument works
as well for the rightmost explorer. The couple of discrete curves (γ

�,δ

uδ,vδ , γ
r,δ

uδ,vδ ) hence jointly converge to the same

limit γ . Indeed, on the one hand γ r is always to the right of γ �, but on the other hand, these two curves have the same
law.

Let us now focus on families of arbitrary exploration processes. Any exploration process γ δ from uδ to vδ is
squeezed between γ

�,δ

uδ,vδ and γ
r,δ

uδ,vδ and thus converges towards a curve γ̃ which is almost surely equals to γ . But this
argument actually only ensures that the traces of γ̃ and γ are the same. To deduce that γ̃ is a CDE, we need to prove
that it is a simple curve, or equivalently, that it cannot trace back its steps. This is implied by the following lemma.

Lemma 18. The set of edges that are used by both the leftmost and the rightmost explorers is dense on the leftmost
explorer trace in the scaling limit.
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Fig. 2. Crossing estimates ensure with high probability that the explorer is hairy.

Proof. Following the leftmost explorer, we apply crossing estimates in very thin rectangles (Theorem 14) at regularly
spaced intervals to get paths of minusses (or hairs) that start at the very right of the exploration and reach to a positive
distance (see Figure 2). The leftmost and the rightmost explorers being the same in the scaling limit, the rightmost
explorer cannot go around the hairs, and hence has to meet the leftmost explorer at the base of every hair, which we
just argued is a dense set in the scaling limit. �

Note that an edge used by both the leftmost and rightmost explorers needs to be used by any exploration with the
same endpoints, and moreover it constitutes a point of no-return for any such exploration. The fact that these edges
form a dense set ensures that no exploration can trace back its steps on a macroscopic scale. This concludes the proof
of the fact that arbitrary explorations between the same endpoints jointly converge towards the same CDE.

5. Proof of Theorem 1 (convergence of crossing probabilities)

Fix a topological rectangle (�,a, b, c, d). Let aδ, bδ, cδ and dδ on ∂�δ be discrete approximations of these points. Let
u be the boundary vertex of ∂(�δ)∗ corresponding to the dual edge immediately clockwise to aδ , and let v ∈ ∂(�δ)∗
be any boundary vertex adjacent to a vertex in [bδ, cδ]. Then

μfree
�δ,βc

(
γ �,δ
u,v hits

[
cδdδ

]
before

[
bδcδ

]) = μfree
�δ,βc

([
aδbδ

] ��
[
cδdδ

])
,

μfree
�δ,βc

(
γ r,δ
u,v hits

[
cδdδ

]
before

[
bδcδ

]) = μfree
�δ,βc

([
aδbδ

]
�

[
cδdδ

])
.

Since (γ
�,δ
u,v ) and (γ

r,δ
u,v) converge in law to the CDE from a to v, and thanks to Lemma 16, we have:

lim
δ→0

μfree
�δ,βc

([
aδbδ

] ��
[
cδdδ

]) = lim
δ→0

μfree
�δ,βc

([
aδbδ

]
�

[
cδdδ

]) = f (�,a, b, c, d),

where

f (�,a, b, c, d) := P
(
CDE hits [cd] before [bc]).

Note that the exact position of the point v ∈ [b, c] in the preceding argument does not matter. This is coherent with
the fact that, according to Proposition 12, the law of CDE until its first hitting time of [bc] is independent of the choice
of the observation point v ∈ [bc].

6. Proof of Theorem 6 (convergence of the arc ensemble)

6.1. Definition of the Free Arc Ensemble

We somehow follow Schramm [22] to describe the Free Arc Ensemble (FAE).
For a metric space X, let H(X) be the set of compact subsets of X equipped with the Hausdorff topology, i.e. the

topology induced by the distance

dH(X)

(
K,K ′) = max

x∈K
min
x′∈K ′

{
dX

(
x, x′),1

}
.
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Recall that for a Jordan domain � of the plane, we denote by C(�) the set of continuous maps from [0,1] to �

equipped with the topology of uniform convergence up to reparametrization.
The FAE is a random element of H(∂� × ∂� × C(�)). Its measure is supported in a specific subset of it: the FAE

can almost surely be written as

⋃
u,v∈∂�

(u, v, γu,v),

where γu,v is generically a simple path from u to v in � – or the degenerate path {u} when u = v. However, for
(countably many) exceptional couples of boundary points (u, v), γu,v is a set that consists of two simple paths from u

to v in � – or even of two simple loops rooted at u and of the degenerate path {u} when the boundary point u = v is
exceptional. Therefore, γu,v can also be the union of two or three curves instead of one.

Let us construct the FAE as follows:

(1) First, fix u ∈ ∂� and let (v1, . . . , vn, . . .) be a dense subset of ∂�. We construct the triplets (u, vi, γu,vi
) recur-

sively. Let γu,v1 be a CDE from u to v1. The exploration γu,vi
starts by following the previously built exploration

paths (γu,vj
, j < i) by choosing, at each branching point, to go in the region that contains vi on its boundary (see

Figure 3). At the first branching point for which there is no such possible choice, the path γu,vi
continues as a

CDE from u to vi would (this is possible thanks to Proposition 12).

Remark. The union of the traces of the γu,vi
for i ≥ 1 can be decomposed into countably many arcs (i.e. excur-

sions out of the boundary), which come with a natural orientation depending on the orientation of the γu,vi
. The

ends of these arcs form a countable (dense) subset E of the boundary ∂�.

(2) Let us now build γu,v for an arbitrary boundary point v on ∂�: simply take the limit of γu,vi
as vi → v, or

alternatively follow the tree composed of the (γu,vi
, i ≥ 1) heading systematically towards v.

(3) Let us describe how to build γu′,v′ for u′, v′ ∈ ∂� \ E. Consider the set of arcs disconnecting u′ from v′. It comes
with a natural ordering (that makes it isomorphic to Z). We call these arcs sideways arcs. The path γu′,v′ will go

Fig. 3. The coupling of γu,v1 (orange then green) and γu,v2 (orange then purple). The + and − show what the spins are on the boundary of the
subdomains.
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through all of the sideways arcs in order, and we now need to explain how it will go from one sideways arc to the
next.

Let α and α′ be two successive sideways arcs. Suppose the arc α crosses from left to right seen from u′, and
call [aa′] the right piece of boundary between α and α′ (where a is on α and a′ on α′). Choose also a boundary
point c on the left piece of boundary between α and α′. For any point d ∈ [aa′], let us call αd the largest arc
disconnecting c and d that still has its two endpoints on [aa′]. Between α and α′, the path γu′,v′ follows the arcs
αd in their order of appearance i.e. as d follows [aa′] from a to a′ (see Figure 3). One can easily check that γu′,v′
can follow these arcs with their natural orientation.

(4) Let us now build γu′,v′ whenever u′ and v′ are not the two ends of a common arc. Assume for instance that
u′ ∈ ∂� \ E and v′ is the end of an arc α (other situations can be handled similarly). Choose a point w ∈ ∂� \ E

that is disconnected from u′ by the arc α. By construction, γu′,w goes through v′, and so we let γu′,v′ be the
subpath of γu′,w going from u′ up to v′.

(5) We now explain how to build γu′,v′ when u′, v′ are the two ends of some arc α. If α goes from u′ to v′, then
simply let γu′,v′ = α. If the arc α is oriented from v′ to u′, then γu′,v′ is a set of two simple paths, one going to
the left of α, the other going to its right. The construction of these two simple paths is in the same spirit as above.
For example, the path going to the right of α can be build in the following way. Let us call [u′, v′] the part of
the boundary ∂� sitting to the right of the arc α. Choose also a boundary point c on the boundary arc to the left
of α. For all points d ∈ [u′, v′], let us call αd the largest arc disconnecting c and d that stays strictly to the right
of α. The right exploration path from u′ to v′ will follow the arcs αd in their order of appearance (i.e. as d follows
[u′v′] from u′ to v′).

(6) To finish our construction, we need to describe the (set of) path(s) γu′,u′ . One choice is the constant curve {u′}.
If moreover an arc α starts or ends at u′, γu′,u′ will moreover contain two simple loops that can be build by
concatenation of γu′,w and γw,u′ , where w is the other end of the arc α (one of these sets is a singleton and the
other a pair, which one is which depending on the orientation of the arc α).

Definition 19. The Free Arc Ensemble is the union FAE of triples (u, v, γu,v) coupled as described above, where u

and v run over all couples of boundary points and γu,v is the set of possible explorations from u to v (there can be
one, two or three such explorations).

It will be technically easier (for instance to get tightness) for us to use an alternate way to describe FAE, that we
call FAE′ until proven to be the same as FAE. The construction differs from the one of FAE only in its first step. We
choose a countable dense set of points P = {u1, u2, . . .} on ∂�. We couple all the paths γui ,uj

by induction.

(1a) Take γu1,u2 to be a CDE, and let γu2,u1 be given conditionally on γu1,u2 as follows (see Figure 4): it takes the same
sideways arcs. It goes from one arc to the next as conditionally independent SLE(3, −3

2 ) in each domain,3 where
the forced point starts at 0+ or 0− depending on boundary conditions which we recover from the orientation of
the path γu1,u2 .

(1b) Now, assume that γui ,uj
are constructed for every i, j < n. In the family of arcs already constructed, there is a

unique one, denoted by α, that separates un from all the other points ui . The path γui,un follows the exploration
tree starting from ui , until it takes the arc α. After α, all paths γui,un follow the same SLE(3, −3

2 ) in the connected
component of � \ α containing un. The paths γun,ui

all follow the same trajectory until the arc α, which can be
build as in (1a). Once the arc α has been crossed, there is a unique way to follow arcs that have already been
discovered in order to reach ui , and this is exactly how γun,ui

gets to its goal.

Proposition 20. The arc ensemble FAE′ is the closure of the set of paths with endpoints in P .

Proof. Both the fact that FAE′ is included in the closure of the set of paths with endpoints in P and the fact that FAE′
is closed can be checked from the definition of the arc ensemble FAE′, by considering the different cases. �

3The scaling limits of the discrete interfaces satisfy this property: it is a statement very similar to Theorems 13 and 4 and the proof would follow
the same lines.
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Fig. 4. The coupling of γu1,u2 (orange and green) and γu2,u1 (orange and purple). The purple curves represent SLE(3, −3
2 ) in each of the

subdomains cut up by the orange and green curves.

6.2. Proof of Theorem 6 (convergence of the arc ensemble)

The proof of Theorem 6 follows from:

Theorem 21. Let � be a simply connected Jordan domain. Consider the critical Ising model on �δ with free boundary
conditions. The family (Aδ)δ>0 converges in law (when the mesh size δ goes to 0) to the arc ensembles FAE and FAE′.

Corollary 22. The arc ensembles FAE and FAE′ have same law, which is moreover independent of the choice of
points made during their constructions.

The first step of the proof is a tightness lemma:

Lemma 23. The family (Aδ)δ>0 is tight.

Proof. Consider ε > 0 and let η = η(ε) > 0 to be chosen shortly. Choose a finite subset {u1, . . . , uN } of P that cuts
the boundary of the domain � in arcs of diameter less than η. The set of all leftmost and rightmost explorations
starting from and aiming at the points u1, . . . , uN form a tight family for the topology of uniform convergence up to
reparametrization (as each explorer is close to a CDE). By chosing N big enough, we can ensure that no boundary
point can be connected in � to points ε-inside the domain without crossing one of the finitely many excursions (thanks
to the behavior of CDE, and by Lemma 16).

Using Lemma 18, we see that with high probability, no exploration starting and ending at points of ∂�δ goes out
of the ε-neighborhood of the explorations starting and ending at points of {u1, . . . , uN }. The tightness then follows
from the tightness of single exploration paths. �

Proof of Theorem 21. Consider a sub-sequential limit A of (Aδ)δ>0. From the convergence of explorations The-
orems 4 and 13, we see that the explorations with endpoints in P have the same joint law as the corresponding
explorations in FAE′. By definition, A is closed, and hence FAE′ ⊂ A by Proposition 20. To prove the reverse in-
clusion A ⊂ FAE′, it is enough to show that almost surely, any path in A is in the closure of the set of paths with
endpoints in P . But this follows directly from the argument given for tightness.
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We can now show that FAE and FAE′ are the same object. Indeed, consider the limit of the discrete exploration tree
from a point u to a countable dense set vi . This is a subset of A, which has the same joint law as the exploration tree of
FAE. Moreover this tree contains all the arcs appearing in the set of paths of A with endpoints in P = {u,v1, v2, . . .}
and so the whole limit A = FAE′ can be rebuilt from the arcs of this exploration tree alone. In particular, the arc
ensembles FAE and FAE′ have the same law. �
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