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Abstract. We show that on groups generated by bounded activity automata, every symmetric, finitely supported probability mea-
sure has the Liouville property. More generally we show this for every group of automorphisms of bounded type of a rooted tree.
For automaton groups, we also give a uniform upper bound for the entropy of convolutions of every symmetric, finitely supported
measure.

Résumé. Nous démontrons que les groupes engendrés par les automates d’activité bornée ont la propriété de Liouville pour tout
choix d’une mesure de probabilité symétrique, de support fini. Plus généralement, nous montrons ce résultat pour tous les groupes
agissants sur un arbre enraciné par automorphismes de type borné. Dans le cas des groupes d’automate nous obtenons aussi une
borne supérieure uniforme pour l’entropie, qui ne dépend pas du choix de la mesure symétrique, de support fini.
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1. Introduction

Groups acting on rooted trees are a source of finitely generated groups with a number of interesting properties con-
cerning amenability, growth and random walks. An important special case are automata groups. These include the
Grigorchuk group of intermediate growth [15], Gupta and Sidki’s examples of finitely generated torsion p-groups
[17], the Hanoi Tower groups [14], the Basilica group [16] and iterated monodromy groups arising from holomorphic
dynamics: see [23,25] for a survey of the topic and literature.

One aspect of groups acting on rooted trees that has attracted some attention is the behaviour of random walks
on them, especially random walks with the Liouville property. (For the definition and preliminaries on the Liouville
property see Section 1.2.) On one hand, construction based on these groups have provided new examples of asymptotic
behaviours for the rate of escape and entropy of random walks in the sublinear range [2,9] and for the relationship
between the Liouville property and growth of groups [4,12]. On the other hand the Liouville property has turned out
to be a useful tool to prove amenability of several classes of groups acting on rooted trees [1,5,6,8,19]. The motivation
of this paper has its roots in these results, that we now outline.

The first result of this kind is due to Bartholdi and Virág [6], who used random walks to prove amenability of the
Basilica group. A key observation was that the Basilica group admits a special, so-called self-similar, non-degenerate
symmetric, finitely supported measure. From this, they deduce amenability of the group. Their method was later
generalized and simplified by Kaimanovich [19] who gave a general definition of a self-similar measure on a group
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acting on a rooted tree, and showed that any such measure has the Liouville property. In particular a group supporting
a non-degenerate self-similar measure is amenable. As noted in [19], existence of a finitely supported self-similar
measure is rare as it relies on strong combinatorial assumptions on the action on the tree.

These ideas were further developed and used to show amenability of a large class of automata groups, namely
groups generated by finite automata of bounded activity by Bartholdi, Kaimanovich and Nekrashevych [5] and groups
generated by finite automata of linear activity in [1] (see Section 2.4 for definitions regarding automata groups and
their activity degree). The idea of the proofs in [1,5] is to embed all such groups in a special family of groups called the
mother groups, and show that these admit a special generating measure with the Liouville property. Thus the mother
groups are amenable. Since amenability is inherited by subgroups, so are all groups generated by finite automata of
bounded and linear activity. The measure considered on the mother groups also has a certain self-similarity, weaker
than the self-similarity required in [19]. These results have been unified and are now part of a more general amenability
criterion due to Juschenko, Nekrashevych and de la Salle [18], which applies to a wider class of groups (and is not
concerned with the Liouville property).

The results and methods from [1,5,6,19] raise the following question: does the Liouville property hold for all
symmetric, finitely supported measures on the groups considered there? Note that the results above do not even imply
that every bounded or linear automaton group admits a symmetric, finitely supported, generating probability measure
with the Liouville property (see Section 1.2 for an account on open questions concerning the stability of the Liouville
property). A positive answer was conjectured in [1] for groups generated by finite automata of bounded, linear and
quadratic activity. It is shown in [3] that this does not hold in general for automata groups of polynomial activity of
degree at least 3, and it is not yet known if these groups are amenable as asked by Sidki [27].

1.1. Statement of results

The aim of this paper is to establish the Liouville property for a large class of random walks on groups acting on
rooted trees, that may lack self-similar properties. Our method combines ideas from papers cited above, together with
an analysis of the orbital Schreier graphs for the group action on the rooted tree. Our first result gives a partial answer
to the conjecture in [1], covering the case of bounded automata groups. In fact we do not need the assumption that the
groups are generated by a finite state automaton: our result applies to general groups of automorphisms of bounded
type (see Definition 2.4) of a spherically homogeneous rooted tree.

Theorem 1. Let G be a group of automorphisms of bounded type of a spherically homogeneous rooted tree of bounded
valencies. Then every symmetric, finitely supported probability measure μ on G has the Liouville property.

Amenability of general groups of automorphisms of bounded type of a rooted tree is a particular case of the result
of Juschenko, Nekrashevych and de la Salle [18] which answers a question of Nekrashevych [24]. Since the Liouville
property implies amenability, Theorem 1 also implies this result.

A key ingredient of the proof of Theorem 1 is recurrence of the orbital Schreier graphs for the action on the
boundary of the rooted tree [7,18]. More can be said in cases where the Schreier graphs have explicit descriptions. In
such cases a closer analysis of the Schreier graphs yields explicit upper bounds for the entropy of the convolutions
H(μ∗k) (see Section 3.2 for preliminaries regarding entropy and its relationship to the Liouville property).

We illustrate this with the principal group of directed automorphism M(A,B) (see Section 5.1 for the definition).
These groups were first defined and studied by Brieussel, who proved their amenability in [8] using random walks and
in [10] by exhibiting Følner sets. These are generalizations of the mother groups from [5]. In particular they contain as
subgroups all groups generated by finite-state automata with bounded activity (see Theorem 5.2 below). A particular
case of the group M(A,B) was also used in [2,9].

Theorem 2. Let M(A,B) be a group as in Definition 5.1 acting on a spherically homogeneous rooted tree Tm̄ with
bounded valencies m̄ = (mn). Then every symmetric, finitely supported measure μ on M(A,B) has the Liouville
property. Moreover there exists a constant C depending on supp(μ) only such that

H
(
μ∗k

) ≤ Ckα,

where α = logm∗/ log m2∗
m∗−1 and m∗ = max(m̄).



Liouville property for groups acting on rooted trees 1765

In [5] this bound was obtained in the case when M(A,B) is the mother group and μ is in a special class of
measures defined there. Note the support of μ need not generate all of M(A,B). Since every group generated by a
finite automaton of bounded activity is a subgroup of some group of the form M(A,B), we get the following corollary.

Corollary 1.1. Let G be a group generated by a finite automaton of bounded activity, and μ a symmetric, finitely
supported probability measure on G. Then H(μ∗k) ≤ Ckα , where α < 1 depends only on the group G and the constant
C depends only on the support of μ.

The exponent α can be explicitly determined from the structure of the automaton by following the argument in [5,
Theorem 3.3] to embed G in the mother group.

A comment on the linear and quadratic activity case in the conjecture in [1] seems in order. Can these cases be
attacked using the method of this paper? The ascension diagrams (see Definition 3.5) become more complicated. To
analyse them effectively, a more precise understanding of simple random walk on the Schreier graphs seems needed,
beyond the fact that the infinite graphs are recurrent. This task becomes harder together with the level of precision
required, as the graphs also become more complicated. We believe that this can be done to prove the conjecture in the
linear case. However this would require a considerably more complicated analysis relying on quantitative resistance
estimates. We do not know if there is any hope to apply our method to the quadratic case.

1.2. Preliminaries on the Liouville property

Given a probability measure μ on a countable group G, a function f : G → R is said to be μ-harmonic if f (g) =∑
h∈G f (gh)μ(h) for every g ∈ G. The measure μ is said to have the Liouville property if every bounded μ-harmonic

function on G is constant on the subgroup H = 〈supp(μ)〉. An equivalent formulation of the Liouville property is
triviality of the Poisson boundary of (H,μ) [20]. If moreover the measure μ is symmetric and has finite first moment
with respect to a word metric, the Liouville property is equivalent to the random walk with step measure μ having
0 asymptotic speed [21, Corollary 3]. Under the weaker assumption that μ has finite entropy, the Liouville property
is equivalent to vanishing of the asymptotic entropy h(μ) ([11,20]). The latter will be the characterisation of the
Liouville property that we use in this paper. See Section 3.2 for preliminaries regarding entropy.

Amenability of a countable group G is equivalent to the existence of a Liouville symmetric measure supported on
a generating set of G [20,26]. This measure may have infinite support, as in the well-known case of the Lamplighter
group over Z3, namely Z/2Z � Z3, see [20]. In some amenable groups it must even have infinite entropy, see [13].
Thus existence of a finitely supported Liouville symmetric measure whose support generates the group is strictly
stronger than amenability. The Liouville property depends on the choice of μ; however it is an important open question
whether it is a group property when one restricts to symmetric measures with finite generating support, and whether
it is inherited by subgroups for the same class of measures.

1.3. Structure of the paper and overview of the proofs

Section 2 contains preliminaries on groups acting on rooted trees.
Section 3 contains general facts on random walks on groups acting on rooted trees. Most of this section is based on

the connection between groups acting on rooted trees and random walks with internal degrees of freedom, introduced
by Kaimanovich [19]. A random walk with internal degrees of freedom on a group G with space of degrees Y is a
Markov chain on G×Y that can be described in terms of a random walk on a diagram: a finite graph with vertex set Y

where edges are labelled by probability measures on G. We revisit and slightly generalise ideas in [19] by considering
the ascension diagram (see Definition 3.5), a smaller diagram obtained by stopping the walker on the Schreier graph
when it visits a fixed subset of Y (rather than a single vertex as in previous works). We then prove an inequality linking
the asymptotic entropy of the random walk on the group with the ascension diagrams. In [1,5,19], random walk with
internal degrees of freedom arising from self-similar random walks were used, via explicit calculations using matrices
with entries in the group algebra. For random walks lacking of self-similarity properties, these calculations become
more complicated. To avoid these we take advantage of recurrence of the Schreier graphs through a simple fact proven
at the end of the section.
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In Section 4 we prove Theorem 1. The proof is based on the tools introduced in Section 3. A key observation is
that sections of elements in the support of μ at high enough levels of the tree belong either to a finite group of finitary
automorphisms or to a finite groupoid of directed automorphisms (a notion introduced in Section 2). Combined with
recurrence of the orbital Schreier graphs, this yields bounds on the asymptotic speed of random walks with internal
degrees of freedom determined by the ascension diagrams, which are used to bound the entropy of the original random
walk.

Finally, in Section 5 we prove Theorem 2. The additional ingredient needed is a analysis of the orbital Schreier
graphs for the action on the finite level of the tree using electric network theory. We give lower bounds on effective
resistances between certain points in the graph, and use them to get explicit entropy estimates through arguments
similar to Section 4.

2. Rooted trees and their automorphisms

2.1. Spherically homogeneous rooted trees and their automorphisms

Let m̄ = (mi)i≥1 be a bounded sequence of positive integers. The spherically homogeneous rooted tree Tm̄ is the tree
where each vertex at level k has mk+1 children in level k + 1. The tree Tm̄ has a root in level 0, which is denoted ∅.
A vertex at level k is naturally encoded by a word xkxk−1 · · ·x1, where xi ∈ Xmi

= {0, . . . ,mi − 1}. The children of v

are words of the form xv where x is a single letter. We denote by T
n
m̄ ⊂ Tm̄ the set of words of length n, i.e. the nth

level of the tree. Note that words are read from right to left.
We denote by Aut(Tm̄) the group of automorphisms of Tm̄ that fix the root. Note that for some sequences m̄ (in

particular the constant sequences) all automorphisms of Tm̄ fix the root. However, there are sequences for which the
tree has additional automorphisms which do not fix the root and so do not belong to Aut(Tm̄) in our notations. We
write actions of automorphisms on the right and use the notation

w �→ w · g
for w ∈ Tm̄ and g ∈ Aut(Tm̄). For w ∈ Tm̄, consider the sub-tree rooted at w. If w is at level n, then this sub-tree is
isomorphic to the spherically homogeneous rooted tree Tσnm̄, where σ denotes the shift operator

σ(m1,m2, . . .) = (m2,m3, . . .).

Automorphisms g ∈ Aut(Tm̄) preserve the levels of the tree, so that every word w ∈ Tm̄ is mapped by g to a word
w ·g of the same length, say n. Since the sub-trees above w and w ·g are canonically isomorphic, g induces a bijection
of the sub-trees rooted at w and w · g, which can be identified with a unique element of Aut(Tσnm̄). This element is
called the section of g at w and it is denoted g|w . Formally, the section is the unique element g|w ∈ Aut(Tσnm̄) such
that for every word v ∈ T

n
m̄,

vw · g = (v · g|w)(w · g),

where the parenthesis juxtaposition denotes concatenation of words. It immediately follows from the definition that
sections are multiplied and inverted according to the following rules

(gh)|w = g|wh|w·g; g−1|w = (g|w·g−1)
−1. (1)

Using an equivalent terminology, there is an isomorphism (a wreath recursion)

Aut(Tm̄) → Aut(Tσm̄) �Xm1
Sm1 = Aut(Tσm̄)Xm1 � Sm1,

g �→ (g|0, . . . , g|m1−1)σ,

where g|0, . . . , g|m1−1 are the first level sections of g and the permutation σ gives its action on the first level T1
m̄ =

Xm1 .
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Definition 2.1. Let G < Aut(Tm̄). For n ∈N we denote by G(n) the group of nth level sections of G, i.e. the subgroup
of Aut(Tσnm̄) generated by {g|w : g ∈ G,w ∈ T

n
m̄}.

Remark 2.2. If the group G is generated by the set S, the groups of sections G(n) are generated by the nth level
sections of elements in S, see (1).

The action of Aut(Tm̄) naturally extends to an action by homeomorphism on the boundary at infinity of the tree
∂Tm̄. The boundary ∂Tm̄ is the set of infinite geodesic rays starting from the root. In our notations it identifies with
the set of left-infinite sequences γ = · · ·x3x2x1 where xi ∈ Xmi

. The set ∂Tm̄ is endowed with the natural product
topology, which makes it homeomorphic to the Cantor set.

The Schreier graph associated with a group action is defined as follows. If a group G generated by a finite sym-
metric set S acts on a set Y , the Schreier graph has vertex set Y and edges (y, y · s) for y ∈ Y, s ∈ S. We admit that the
action of G on Y can be non-transitive and then the Schreier graph is disconnected. A connected component of the
Schreier graph is called an orbital Schreier graph.

In our setting, a finitely generated subgroup G < Aut(Td) naturally defines a sequence of finite Schreier graphs
arising from the action on the finite levels of the tree. It also defines a family of infinite graphs given by the orbital
Schreier graphs for the action of G on ∂Tm̄. The Schreier graph for level n + 1 covers the graph for level n.

2.2. Activity and automorphisms of bounded type

The activity function of an automorphism g ∈ Aut(Tm̄) is the function Γg : N → N that counts the number of level n

vertices v so that g|v �= e. By (1) the activity satisfies

Γgh(n) ≤ Γg(n) + Γh(n); Γg−1(n) = Γg(n).

This allows to define several subgroups of Aut(Tm̄) in terms of the activity function. For instance elements whose
activity function is bounded (respectively grows at most polynomially, respectively grows subexponentially) form a
subgroup of Aut(Tm̄).

Definition 2.3. An element g ∈ Aut(Tm̄) is called finitary if the sections g|v are non-trivial only for finitely many
vertices v ∈ Tm̄. We define the depth of g to be the smallest level n so that all sections at level n are trivial.

Finitary automorphisms of Tm̄ form a locally finite subgroup of Aut(Tm̄).
Automorphisms of bounded type are automorphims that have bounded activity in a strong sense, that we now

define.

Definition 2.4 (Automorphism of bounded type). An automorphism g ∈ Aut(Tm̄) is said to be of bounded type if
there exists a finite set of rays in ∂Tm̄, called the singular rays of g, and a K > 0 so that g|v is finitary with depth at
most K whenever v does not belong to a singular ray. The minimal such K is called the depth of g.

In other word automorphisms of bounded type are those that have non-trivial sections only in a bounded neigh-
bourhood of a finite set of rays. Obviously automorphisms of bounded type have bounded activity. In some special
cases the two notions coincide (for instance for automorphisms defined by a finite-state automaton, see Section 2.4).

Remark 2.5. It is easy to see from (1) that automorphisms of bounded type form a subgroup of Aut(Tm̄).

2.3. The groupoid of directed automorphisms of a rooted tree

A special case of automorphism of bounded type are the directed automorphisms.

Definition 2.6. An automorphism of bounded type g ∈ Aut(Tm̄) is said to be directed if it has at most one singular
ray γ ∈ ∂Tm̄. If there is such a ray, we say g is directed along γ . By convention we say that a finitary g is directed
along every ray.
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Unlike automorphisms of bounded type, directed automorphisms do not form a subgroup of Aut(Tm̄). However
we have the following properties (cf. the section multiplication rule (1)):

1. if g,h are directed along γ,η respectively and γ · g = η then gh is directed along γ ;
2. if g is directed along γ then g−1 is directed along γ · g.

These properties suggest that the set of directed automorphisms of Tm̄ form essentially a groupoid (up to some
ambiguity originated by finitary automorphisms). We shall now make this intuition precise.

Recall that any right action of a group G on a set X defines a groupoid, called the action groupoid and denoted
G = G(X,G). By definition G = X×G as a set; the product of two elements (x, g) and (y,h) in G is defined whenever
x ·g = y and in this case (x, g)(y,h) = (x, gh); the inverse of (x, g) is (x ·g,g−1). Elements of the form (x, e) ∈ G are
called units. A subgroupoid of G is a subset H ⊂ G which is closed under taking inverses and products (i.e. whenever
the product of two elements in H is defined in G, it belongs to H) and that contains all units (y, e) for y ∈ Y , where
Y ⊂ X is the projection of H to X (note that this is allowed to be a proper subset of X). The subgroupoid generated
by a family S ⊂ G is the smallest subgroupoid containing S .

The groupoid of directed automorphism of the rooted tree Tm̄ is the subgroupoid Dm̄ of the action groupoid
G(∂Tm̄,Aut(Tm̄)) which consists of couples (γ, g) ∈ ∂Tm̄ × Aut(Tm̄) such that g is directed along γ . We define the
depth of (γ, g) ∈Dm̄ to be the depth of g. There is a natural projection

Dm̄ → Aut(Tm̄),

(γ, g) �→ g,

which maps the groupoid product, whenever defined, to the usual group product.
Any non-finitary directed automorphism g ∈ Aut(Tm̄) has a unique pre-image in Dm̄. This allows to think of g

either as an element of Aut(Tm̄) or as an element of Dm̄. Finitary automorphisms however have several pre-images
and thus the groupoid Dm̄ cannot be properly identified with a subset of Aut(Tm̄).

Lemma 2.7. The groupoid Dm̄ is locally finite: every finite family S ⊂ Dm̄ generates a finite subgroupoid. Moreover
the cardinality of this finite subgroupoid has an upper bound which depends only on the cardinality of S , on the
maximal depth of elements in S , and on m∗.

Proof. It is a classical and elementary fact that the unrestricted infinite direct product of finite groups of bounded size
is locally finite, and the cardinality of the subgroup generated by a finite subset has an upper bound that only depends
on the size of the subset.

Given a ray γ = · · ·x3x2x1 ∈ ∂Tm̄ define the element hγ ∈ Aut(Tm̄) by the wreath recursion

hγ = (hσγ , e, . . . , e)(0x1),

where σγ = · · ·x3x2. This element is directed along the zero ray ρ = · · ·000, moreover ρ · hγ = γ . It is straight-
forward to check that if g is directed along γ with depth at most K , then hγ gh−1

γ ·g is directed along ρ, fixes ρ and
has depth at most K . The set of automorphisms of Aut(Tm̄) with these properties is isomorphic to an infinite direct
product of finite groups with bounded cardinalities.

It follows that if S ⊂ Dm̄ is finite and consist of elements with depth at most K , elements of the form
(ρ,hγ )(γ, s)(γ · s, h−1

γ ·s) where (γ, s) ∈ S belong to an infinite direct product of finite groups of bounded cardi-
nality. Let H ⊂ Dm̄ be the subgroupoid that they generate, which is in fact a group. The cardinality of H has an
upper bound that depends only on |S| and K . Now observe that the subgroupoid generated by S is contained in
�γ,η(γ,h−1

γ )H(ρ,h−1
η ) where γ,η run along singular rays of elements in S ∪ S−1. The conclusion follows. �

From now on we adopt the following notation: calligraphic letters (e.g. S) will always denote subsets (or sub-
groupoids) of the groupoid Dm̄, and we will sometimes denote with the corresponding capital letter (e.g. S) the
projection to the group Aut(Tm̄).
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2.4. Automata groups and their activity degree

We now recall some basic notions in the relevant particular case of automata groups acting on regular rooted trees.
These notions do not play an active role in the proofs, but this is the most relevant source of examples.

If the sequence m̄ is constant, equal to some positive integer m, the tree Tm is called the regular rooted tree of
degree m. It is indexed by the set of words in the alphabet X = {0, . . . ,m − 1}.

An important class of finitely generated groups acting on the tree Tm are groups generated by finite automata. An
invertible automaton over the alphabet X is a set A (the automaton state space) together with a pair of maps

A → Sm, A × X → A,

a �→ σa, (a, x) �→ ax.

Such an automaton acts on words in the alphabet X as follows: if the current state is a ∈ A, and the automaton receives
as input a letter x it outputs the letter x · σa , and switches to state ax . Given an initial state a ∈ A, any word input into
the automaton yields an output of equal length, and it is readily seen that for any initial state this action defines an
automorphism of Tm. This automorphism is as follows: a acts on the first level by the permutation σa ; its first level
section at vertex x is the automorphism defined by the state ax ∈ A. If a state defines the identity automorphism e of
Tm, it is said to be trivial.

Every automaton A generates a subgroup of Aut(Tm), generated by the automorphisms corresponding to all states.
An equivalent description is that we have a finite set A ⊂ Aut(Tm), so that for any g ∈ A and any v ∈ Tm we have
g|v ∈ A. Such a set naturally defines an automaton.

We shall always suppose that automata are reduced, i.e. two distinct states of A define distinct automorphisms of
the tree. Any automaton can be brought to a reduced form by identifying states with the same action on the tree.

If a is a state of an automaton A, the activity function Γa(n) (see Section 2.2) is determined in a simple manner
by the structure of the automaton as we shall now explain. First note that in the automaton case Γa(n) grows either
polynomially with some integer exponent da or exponentially (in which case da is set to be +∞). (This is since
these functions satisfy a linear recursion among themselves, and since A is finite.) The activity degree of A is defined
to be d = maxa∈A da . This invariant was introduced by Sidki in [27]. When d = 0 the automaton is said to be of
bounded activity. Some well-studied examples of groups acting on rooted trees belong to the class of bounded activity
automata groups, including the Grigorchuk group, the Basilica group and iterated monodromy groups of postcritically
finite polynomials (see [23]).

An automaton gives rise to a directed graph, possibly with loops and multiple edges, called the Moore diagram of
the automaton. The vertex set is A, and there is an oriented edge from a to ax for every x ∈ X. This directed edge
is labelled by (x, x · σa). The trivial state is a sink. For clarity, the loops based at the trivial state are usually omitted
from the Moore diagram. See Figure 1 in Section 3.4 for an example.

The activity degree can easily be computed by looking at the structure of the Moore diagram. A non-trivial simple
cycle (henceforth, just cycle) in the diagram is a closed oriented path visiting each vertex at most once which visits
states other than the trivial state. Note that a path is its set of edges, so that it is possible for two distinct cycles to
visit the same vertices, and even in the same order. The activity is exponential (d = +∞) if and only if some strongly
connected component of the Moore diagram contains more than one cycle (in particular d = +∞ whenever two
distinct cycles intersect). If this is not the case, then there is a partial order on the set of cycles: say that c → c′ if there
is an oriented path from some state in c to some state in c′. The activity degree is then equal to the largest d ≥ 0 for
which there are distinct cycles with cd → cd−1 → ·· · → c0.

It easily follows from this description that an automaton of bounded activity generates a group of automorphisms
of bounded type in the sense of Definition 2.4.

Another diagram associated to an automaton is the dual Moore Diagram, which is a special case of a Schreier
graph. This is the oriented graph that has the alphabet X as vertex set, and for every x ∈ X and a ∈ A there is an
oriented edge going from x to x · σa . Such an edge is labelled by (a, ax).

The nth iteration of the dual Moore diagram is defined to be the oriented graph that has as a vertex set the nth level
of the tree T

n
m and for every word w ∈ T

n
m and every state a ∈ A there is an edge going from w to w · a. Such an

edge is labelled by (a, a|w). The nth iteration of the dual Moore diagram is thus isomorphic as a graph to the Schreier
graphs of G = 〈A〉 acting on Tn

m with generating set A.
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3. Tools for random walks on groups acting on rooted trees

3.1. Random walk with internal degrees of freedom

Let G be a group and Y be a finite set. Consider a Markov chain with state space Y and transition probabilities given
by a stochastic matrix

P = (pxy)x,y∈Y .

We shall always suppose that this Markov chain is irreducible. Consider also a collection of probability measures on
G, denoted μxy for x, y ∈ Y . These are called edge measures, and we denote the collection by M = (μxy)x,y∈Y . Only
measures μxy for pairs with pxy �= 0 are used.

Note that our notation are different from those in [19] in that there M = (μxy) denotes a matrix of sub-probability
measures with total mass pxy and that equal our μxy only after renormalization.

Given such a pair (M,P ) we draw the following diagram: take the (oriented) graph with vertex set Y induced by
stochastic matrix P (with an edge (x, y) whenever pxy �= 0). Label the edge (x, y) by the pair (μxy,pxy). We will
hereinafter make no distinction between (M,P ) and the associated diagram.

Definition 3.1. The random walk with internal degrees of freedom corresponding to (M,P ) is the Markov chain
(gk,yk) on G × Y , defined as follows: yk performs a random walk on Y with transition probabilities given by P .
When yk crosses a given edge, the group element gk is multiplied on the right by a sample of the corresponding edge
measure. Formally, the transition probability from (h, x) to (g, y) is pxyμxy(h

−1g).

Recall that for a Markov chain with state space S and T ⊂ S, the induced Markov chain on T has transition
probabilities pxy = Px(Xτ = y) where τ = inf{n > 0 : Xn ∈ T }.

Definition 3.2 (Trace). Let (gk,yk) be a random walk with internal degrees of freedom on G × Y with diagram given
by (M,P ). For a non-empty W ⊂ Y , the induced Markov chain on G × W is called the trace over W of the original
random walk with internal degrees of freedom.

It is easy to see that the trace of a random walk with internal degrees of freedom is also a random walk with
internal degrees of freedom (MW,PW). In general, the measures making up MW can be much more complex than the
measures in M . For example, they may have infinite support even if measures of M have finite support. However, the
walks we study below are such that we retain some control over the support of the new edge measures.

Note that the diagram (MW,PW) of the trace does not depend on the initial distribution of (g0,y0). Hence taking
the trace might be seen as an operation on diagrams. The diagram (MW,PW) can be explicitly computed from the
diagram (M,P ) and formulae can be given in term of matrices with entries in the group algebra 
1(G), as shown in
[19].

3.2. Entropy and speed of random walks with internal degrees of freedom

Let ν be a probability measure on a countable space E. Recall that its entropy is the quantity

H(ν) = −
∑

ν(e)>0

ν(e) logν(e).

For a random variable X taking values in a countable space, the entropy H(X) is defined as the entropy of its distri-
bution. Let us recall some basic properties of entropy.

Proposition 3.3.

1. If X has finite support, then H(X) ≤ log | supp(X)|, and equality holds if and only if X is uniformly distributed on
supp(X).



Liouville property for groups acting on rooted trees 1771

2. Let Y,X1, . . . ,Xn be discrete random variables defined on the same probability space, and suppose that Y is a
function of X1, . . . ,Xn. Then

H(Y) ≤ H(X1, . . . ,Xn) ≤ H(X1) + · · · + H(Xn),

where the middle term denotes the entropy of the joint distribution of (X1, . . . ,Xn).
3. Let G be a group generated by a finite set S with the shortest word metric | · |. There exists a constant C, depending

only on |S|, such that if g is a random variable taking values in G, then

H(g) ≤ CE|g| + C.

Let μ be a probability measure on a group G, and (gk)k be the corresponding random walk. By (2) above and
sub-additivity, the following limit exists:

h(μ) = lim
k→∞

1

k
H

(
μ∗k

) = lim
k→∞

1

k
H(gk).

The limit is called the asymptotic entropy of μ. The asymptotic entropy is related to the Liouville property by the
following fundamental result:

Theorem 3.4 ([11,20]). Let μ have H(μ) < ∞. Then h(μ) = 0 if and only if (G,μ) has the Liouville property.

Another fundamental quantity associated to μ is the asymptotic speed. Let G be generated by a finite S and let | · |
be the associated word metric. The asymptotic speed with respect to S is the limit


S(μ) = lim
k→∞

1

k
E|gk|,

which exists by sub-additivity, provided μ has finite first moment (i.e.
∑ |g|μ(g) < ∞).

The definitions of asymptotic entropy and speed extend to the setting of random walks with internal degrees of
freedom. Namely let (gk,yk) be random walk with internal degrees of freedom on G × Y with diagram (M,P ).
Suppose that the initial distribution of (g0,y0) and all edge measures μxy have finite entropy. Then the asymptotic
entropy of the random walk with internal degrees of freedom is well defined and does not depend on the initial
distribution of (g0,y0) (hence it is a numerical invariant of the diagram):

h(M,P ) = lim
k→∞

1

k
H(gk,yk) = lim

k→∞
1

k
H(gk). (2)

Similarly the asymptotic speed 
S(M,P ) is well-defined whenever all edge measures and the starting point g0 have
finite first moment. Asymptotic speed and entropy are related by the inequality

h(M,P ) ≤ vS
S(M,P ) ≤ log |S|
S(M,P ), (3)

where vS = lim 1
n

log(|Sn|) ≤ log |S| is the exponential growth rate of the group G with generating set S. We will only
use that the asymptotic entropy has a linear upper bound in terms of the speed, with constant depending only on the
number of generators.

If (M,P ) is a random walk with internal degrees of freedom on G × Y , let ν be the stationary distribution of P ,
which is unique since we assume P is irreducible. If (MW,PW) is the trace over W , then the asymptotic entropies
satisfy the relation (see [19, Proof of Theorem 3.3]):

h(MW,PW) = 1

ν(W)
h(M,P ). (4)

Note that the fraction of time spent in a subset W converges a.s. to ν(W).
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3.3. Random walks with internal degrees of freedom and groups acting on rooted trees

Let μ be a probability measure on a group G < Aut(Tm̄) whose support generates G, and consider the associated
random walk (gk). Fix a level n ≥ 0, and recall that G(n) denotes the subgroup of Aut(Tσnm̄) generated by nth level
sections of elements in G (Definition 2.1).

Pick a vertex v ∈ T
n
m̄, and let O⊂ T

n
m̄ be its orbit under the action of G. Then (v · gk) is a Markov chain on O, and

a key observation made in [19] is that (gk|v, v · gk) is a random walk with internal degrees of freedom on G(n) × O

(restricting to an orbit assures the irreducibility condition for the marginal Markov chain). Let (M,P ) be its diagram.
It easily follows from the section multiplication rule (1) that (M,P ) has transition probabilities and edge measures

given for every v,w ∈ O by

pvw = μ{g : v · g = w},
(5)

μvw(h) = μ{g : v · g = w,g|v = h}/pvw whenever pvw �= 0.

Note moreover, that if μ is symmetric one has μvw = μ̂wv , where ν̂(g) = ν(g−1) denotes the reflected measure with
respect to group inversion. If μ is symmetric and finitely supported, the diagram (M,P ) is isomorphic as a graph to
the Schreier graph of G acting on O with generating set supp(μ). When G is an automaton group, this diagram might
also be seen as a weighted version of the dual Moore diagram of the nth iteration of the automaton.

Definition 3.5 (Ascension diagram). Let G < Aut(Tm̄), and μ be a probability measure on G supported on a gener-
ating set.

1. Let O ⊂ T
n
m̄ be a G-orbit. We denote by TO(μ) = (M,P ) the random walk with internal degrees of freedom on

G(n) ×O, whose transition probabilities and edge measures are given by (5).
2. More generally, let W ⊂O be non-empty. We denote by TW(μ) = (MW,PW) the trace over W of TO(μ).

We call TW(μ) the ascension diagram of measure μ with respect to vertex set W. The case when W coincides with the
whole orbit is seen as a particular case of the same definition.

The simplest case of the above construction is when W = {w} is a single point. In this case Tw(μ) is just a new
probability measure on G(n), that admits a clear interpretation: it is the step measure of the random walk on G(n) that
one sees by looking to the action on the subtree rooted at w at the times when w is stabilized (see [1,19]). In this case
Tw is an operator acting on measures and was called the ascension operator in [1]. The next theorem was stated and
proved in [19], in the above simpler situation and when the action of G on levels is transitive.

Theorem 3.6. Let G < Aut(Tm̄), and μ a measure on G with finite entropy. Let Tn
m̄ = O1 � · · · �Or be the partition

of the nth level of the tree into G-orbits. Consider a collection of non-empty subsets Wi ⊂Oi . Then

h(μ) ≤
∑

|Wi | · h
(
TWi

(μ)
)
.

Proof. Consider first the case that Wi = Oi for every i. The element gk is completely determined by its action
on the nth level and its sections at vertices of that level, hence by the data of (gk|v, v · gk) for every v ∈ T

n
m̄. By

Proposition 3.3(2)

H(gk) ≤
∑
v∈Xn

H(gk|v, v · gk) =
∑
v∈O1

H(gk|v, v · gk) + · · · +
∑
v∈Or

H(gk|v, v · gk).

The latter are random walks with internal degrees of freedom with diagrams TOi
(μ). Dividing by k and letting k → ∞

h(μ) ≤
r∑

i=1

|Oi | · h
(
TOi

(μ)
)
.

For general Wi ⊂ Oi the theorem follows from relation (4) and the observation that the stationary measure on each
orbit is the uniform measure on it. �
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Fig. 1. Left: the Moore diagram for the Hanoi automaton. Centre: The diagram for TOn
(μ) for n = 4. Here a, b, c, e denote delta measures at those

elements of the group. Every edge except the self-loops at vertices Wn is labelled (e,1/3). Right: the diagram for TWn
(μ).

3.4. An illustrative example: The Hanoi Tower group

Before turning to the proof of Theorem 1 in full generality, let us illustrate how the notions from the previous paragraph
are used in one particularly simple example – the Hanoi Tower group. This group is generated by a 4-state automaton
over the 3-elements alphabet, and it is related to the classical Hanoi Tower game on 3 pegs. Its Schreier graphs on the
levels of the tree are discrete approximation of the Sierpinski gasket (see for instance [14]).

The Hanoi group is the automaton group G < Aut(T3) generated by the three automorphisms of finite type a, b, c

defined by the wreath recursions

a = (a, e, e)(12), b = (e, b, e)(02), c = (e, e, c)(01).

Note that a2 = b2 = c2 = e. The Moore diagram of the automaton is shown in Figure 1.
One can prove that for every symmetric measure μ supported on any generating set of G, and for every single

vertex w ∈ T3, the ascension operator Tw(μ) is infinitely supported. In particular, G admits no finitely supported
self-similar measure in the sense of [19]. However the Liouville property can be shown as follows.

Consider the uniform measure μ on the standard generators {a, b, c}. The group G acts transitively on the levels of
the tree, so there is a single orbit. For every level n set Wn = {0n,1n,2n} ⊂ T

n
3 . The diagram of TWn

(μ) is a triangle
with self-loops. The self-similarity of the generators a, b, c (their sections are either themselves or trivial) yields that
TWn

(μ) has the same measures μxy on the edges for every n. Figure 1 also shows the ascension diagrams TOn
(μ)

with respect to the whole orbit On = T
n
3 and TWn

(μ) with respect to set Wn.
The diagrams TWn

(μ) differ only in the transition probabilities pn and qn (which satisfy 2pn + qn = 1). These can
be determined in turn by analysing simple random walk on the Schreier graphs of the group G acting on the levels of
the tree (shown in the left). It is easy to see that these Schreier graphs converge to an infinite recurrent graph (in the
local topology, rooted at a vertex of Wn). This implies that pn → 0. Since the generators are involutions, this roughly
tells us that the random walks with internal degrees of freedom TWn

(μ) get “lazier” as n grows. More precisely, using
(3) one can find a sequence of real numbers αn decreasing to zero and prove an a-priori upper bound h(TWn

(μ)) ≤ αn

(we can have αn = Cpn). Theorem 3.6 then yields

h(μ) ≤ 3h
(
TWn

(μ)
) ≤ 3αn → 0,

which implies a-fortiori that h(μ) = 0 (and also h(TWn
(μ)) = 0 for every n).

A similar argument actually applies to every symmetric and finitely supported measure on the Hanoi group G, with
a different choice of Wn. We omit further details, as this is a special case of Theorem 1.
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3.5. Groups acting on a rooted tree with recurrent Schreier graphs

We say that a finitely generated subgroup G of Aut(Tm̄) acts on ∂Tm̄ with recurrent Schreier graphs if every orbital
Schreier graph for the action of G on ∂Tm̄ is recurrent. Since recurrence is stable under rough isometries, this property
does not depend on the choice of the finite symmetric generating set of G, and more generally of a symmetric and
finitely supported probability measure μ on G, see [22, Theorem 2.17]. Recurrence of the Schreier graphs is related
to groups of automorphisms of bounded type by the following result.

Proposition 3.7 ([7,18]). Let G be a finitely generated group of automorphisms of bounded type of a spherically
homogeneous rooted tree Tm̄. Then G acts on ∂Tm̄ with recurrent Schreier graphs.

This fact was first proved by Bondarenko [7] for groups generated by bounded automata; see [18, Lemma 4.3] for
a more general version which includes groups of automorphisms of bounded type of a rooted tree.

Let G < Aut(Tm̄) be a finitely generated group acting on ∂Tm̄ with recurrent Schreier graphs, and endow it with a
symmetric finitely supported probability measure μ. Fix a starting ray γ = (v0, v1, . . .) ∈ ∂Tm̄.

If (gk)k∈N is the random walk on G driven by μ, then (vn · gk) is a Markov chain on level n of the tree. These
chains are naturally coupled, and the nth level Markov chain projects to the previous ones. The Markov chain on the
boundary of the tree (γ · gk)k∈N projects onto all of these. Consider a family of rays U∞ ⊂ ∂Tm̄ containing γ and
denote Un ⊂ T

n
m̄ the set of projections of rays in U∞ to the nth level of the tree. Let T∞ be the first positive return

time of (γ · gk) to U∞ and let Tn be the first positive return time of (vn · gk) to Un. Since the chains project onto each
other, we have

T1 ≤ T2 ≤ T3 ≤ · · · ≤ T∞.

By recurrence of (γ ·gk), the sequence (Tn) is bounded, and so is constant for n ≥ R for some random R. We therefore
have P(Tn �= Tm) ≤ P(R > m ∧ n) which yields the following proposition.

Proposition 3.8. With the notations above, the return times satisfy P(Tn �= Tm) → 0 as n,m → ∞ with n,m ∈
N∪ {∞}.

4. Proof of Theorem 1

Throughout this section we fix a finitely generated group G acting faithfully on Tm̄ by automorphisms of bounded
type, equipped with a finite, symmetric generating set S. We also let K > 0 be the maximal depth of a generator s ∈ S

(see Definition 2.4).

4.1. Deep level sections in groups of automorphisms of bounded type

The aim of this subsection is to construct generating sets for the groups of level n sections G(n) that have a special
form adapted to our purpose. For every level n, denote by Wn ⊂ T

n
m̄ the set of vertices w ∈ T

n
m̄ such that the section

s|w is non-trivial for some s ∈ S. Note that since each generator of s has finitely many singular rays, and non-trivial
sections are all within distance K of one of these rays, the size of Wn is uniformly bounded in n.

Denote by A∞ ⊂ ∂Tm̄ the finite set of rays of the tree which are singular for some generator s ∈ S (see Defini-
tion 2.4), and An its projection to level n of the tree. The other non-trivial sections are at vertices of Bn =Wn \An.

Remark 4.1. Observe that if n is large enough, rays in A∞ have distinct projections to level n. We assume henceforth
that n is large enough for this to hold. For any such n and every v ∈An we denote by γv ∈ ∂Tσnm̄ the continuation of
this ray above v, i.e. the unique ray of the shifted tree Tσnm̄ such that γvv ∈A∞.

For every v ∈ An and every s ∈ S the section s|v is either finitary or directed along γv . Therefore (γv, s|v) belongs
to the groupoid of directed automorphisms Dσnm̄. Let An < Dσnm̄ be the subgroupoid generated by (γv, s|v) when v

runs in An and s runs in S. By Lemma 2.7 the groupoid An is finite, moreover its cardinality is uniformly bounded in
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n since the cardinality of An is bounded (in fact, it is constant and equal to the cardinality of A∞ if n is large enough)
and all elements (γv, s|v) have depth at most K . Let An be the projection of An to the group Aut(Tσnm̄), i.e.

An = {
g : ∃γ such that (γ, g) ∈An

}
.

Consider now the case v ∈ Bn. Then for every s ∈ S the section s|v is finitary with depth at most K . All such
sections generate a finite group; let us denote it Bn. This finite group also has uniformly bounded cardinality.

Hence for every generator s and every v ∈ Wn the section s|v belongs to An ∪ Bn. It follows that the set Sn =
An ∪ Bn generates the group of sections G(n) (see Definition 2.1 and Remark 2.2).

We summarize the discussion above as a proposition:

Proposition 4.2. For every large enough n, the group of sections G(n) admits a finite, symmetric generating set Sn

whose cardinality is bounded uniformly in n and which can be written as a union Sn = An ∪ Bn, where:

• An is the projection to Aut(Tσnm̄) of a finite subgroupoid An of the groupoid Dσnm̄ of directed automorphisms of
Tσnm̄;

• Bn is a finite group of finitary automorphisms of Tσnm̄.

Moreover, for every s ∈ S we have that s|v ∈ An for v ∈ An, s|v ∈ Bn for v ∈ Bn, and s|v = e otherwise.

4.2. Vanishing of asymptotic entropy

We keep all notations introduced in the previous section: the vertex sets Wn,An,Bn, the set of rays A∞, and the
generating sets Sn = An ∪ Bn for the groups of sections. We consider a symmetric, finitely supported probability
measure μ on G with support S.

Fix a level n large enough so that Remark 4.1 applies. Take any orbit O ⊂ T
n
m̄ for the action of G and consider at

first the ascension diagram TO(μ) with respect to the orbit. Let (μvw)v,w∈O be the edge measures of this ascension
diagram. Proposition 4.2, with the definition of the edge measures (5) and their symmetry property μwv = μ̂vw imply
the following facts, which we summarize for later reference.

Claim 4.3.

1. If v,w ∈ An, then the measure μvw is supported in An. Moreover (γv, h) belongs to the groupoid An for any
h ∈ supp(μvw).

2. If v,w ∈ Bn, then the measure μvw is supported in the finite group Bn.
3. Otherwise, μvw is concentrated on the identity.

As a first consequence, observe that whenever the orbit O does not intersect Wn = An � Bn one has immediately
h(TOμ) = 0, since all edge measures of TO are trivial and the corresponding random walk with internal degrees of
freedom is just a finite Markov chain.

Suppose now that there are r = r(n) orbits in level n that have non-trivial intersection with Wn, and denote them
O1,n, . . . ,Or,n. Set Wi,n = Wn ∩ Oi,n, and consider the ascension diagram TWi,n

(μ). Note that the edge measure of
this diagram also satisfy Claim 4.3 (part 3 is vacuous here). Theorem 3.6 and the above observation that h(TO(μ)) = 0
whenever O∩Wn =∅ give

h(μ) ≤
r∑

i=1

|Wi,n| · h
(
TWi,n

(μ)
)
. (6)

To prove that h(μ) = 0 we estimate the asymptotic speed of the diagrams TWi,n
(μ):

Proposition 4.4. With the above notations, there exists a sequence an → 0 so that the speed of the diagrams TWi,n
(μ)

with respect to the generating set Sn satisfies


Sn

(
TWi ,n(μ)

) ≤ an,

for every i = 1, . . . , r(n).
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Let us explain how this concludes the proof of Theorem 1. Since the generating sets Sn have bounded cardinalities,
we deduce from (3) that h(TWi,n

(μ)) ≤ Can for a constant C that does not depend on n. Since the cardinalities of Wi,n

and r(n) are uniformly bounded, (6) implies that there exists C′ > 0 so that h(μ) ≤ C′an → 0. Hence h(μ) = 0. As
noted, this is equivalent to the Liouville property for (G,μ) (see [11,20]). The rest of this section contains the proof
of this speed estimate.

Proof of Proposition 4.4. Let (gk,vk) be a random walk with internal degrees of freedom with diagram TWi,n
(μ)

starting from (e, v), where v ∈Wi,n is arbitrary. Let | · | be the word metric on G(n) with respect to the generating set
Sn = An ∪ Bn. We shall prove that there exists a sequence an → 0 such that for every k ≥ 0 we have

E|gk| ≤ 1 + ank,

uniformly in i and the starting point v ∈ Wi,n. To simplify the notations we will henceforth omit the index i =
1, . . . , r(n), writing Wn,An,Bn for Wi,n,Ai,n,Bi,n.

Let h1, . . . ,hk be the increments hj = g−1
j−1gj . Recall that, conditionally to the positions of vj ,vj+1 the distribution

of the increment hj+1 is given by the edge measure μvj ,vj+1 of the diagram TWn
(μ), which satisfies Claim 4.3. We

consider two types of “bad events” that may happen at some times j ≥ 1.

Traverse: One of vj−1,vj belongs to An and the other to Bn.
Bad alignment: Both vj−1,vj belong to An and γvj−1 · hj �= γvj

. (Recall the notation γv from Remark 4.1.)

Let Nk be the total number of bad events of either type up to time k. We divide the proof of Proposition 4.4 into
three steps, given by Lemmas 4.5–4.7 below, stating that the word length is bounded by the number of bad events, and
that the propabiblity of the two types of bad events at each step is small.

Note that the probability of a bad event happening at the j th step conditionally to vj = v only depends on v and
on the diagram TWn

(μ). We prove that there exists a sequence an → 0 so that this conditional probability is bounded
above by an, uniformly in v ∈ Wn. This implies ENk ≤ cnk, concluding the proof of Proposition 4.4 by Lemma 4.5.
For both types of bad events, the proof of this bound is based on Proposition 3.8, which applies since G acts on ∂Tm̄

with recurrent Schreier graphs (see Proposition 3.7).

Lemma 4.5. The word metric |gk| is bounded above by 1 + Nk .

Proof. Let s < t be such that no bad event happens for j ∈ [s, t]. Then either vj ∈An for all j ∈ [s, t], or else vj ∈ Bn

for all j ∈ [s, t]. In the second case, the increment hj belongs to the finite group Bn, hence their product has length 1
with respect to the generating set Sn = An ∪Bn. In the first case, since there is no bad alignment, we have γvj−1 · hj =
γvj

for every j ∈ [s, t]. Assume that the second case holds. By Claim 4.3, for every j the couple (γvj−1,hj ) belongs to
the finite groupoid An. The condition that γvj−1 ·hj = γvj

guarantees that the product of two consecutive such couples
is defined in the groupoid, hence belongs to An. It follows that (γvs−1 ,hs) · · · (γvt−1 ,hj2) = (γvt ,hs · · ·ht ) ∈ An and
thus hj1+1 · · ·hj2 ∈ An has length 1.

We conclude that the word length of gk = h1 · · ·hk is bounded by one more than the total number of bad events. �

Recall that (μvw) and (pvw) denote the edge measures and the marginal transition probabilities of the ascension
diagram TWn(μ) = (M,P ).

Lemma 4.6. There exists a sequence a′
n → 0 so that

P(Bn,An) = P(An,Bn) :=
∑

v∈An,w∈Bn

pvw ≤ a′
n.

In particular the probability that a traverse happens at any time is bounded above by a′
n.

Proof. First, observe that the matrix P is symmetric, as it is the trace of a symmetric Markov chain on a recurrent
subset. Hence P(Bn,An) = P(An,Bn).
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We now argue this quantity is small. Fix some γ ∈ A∞, and let v ∈ An be the unique vertex that belongs to γ .
We shall prove that P(v,Bn) := ∑

w∈Bn
pvw tends to zero as n → ∞. This is sufficient, since there are finitely many

choices for γ .
Let (g̃j ) the random walk on the group G with step measure μ. Recall from the definition of the ascension diagram

(see Section 3.3) that P(v,Bn) is the probability that v · g̃t ∈ Bn, where t is the first return time of v · g̃j to Wn.
Consider simultaneously level n−K , and recall that (from the definition of K) the projection of Wn to this level is

contained in An−K . Let w ∈ An−K be the projection of v. Let Tn−K be the first return time of w · g̃j to An−K and Tn

be the first return time of v · g̃j to An. We now apply Proposition 3.8 to the family of rays A∞ with starting point γ .
Since w · g̃t is the projection of v · g̃t and the latter is in Wn it follows that w · g̃t ∈ An−K , and in particular Tn−k ≤ t.

Suppose v · g̃t ∈ Bn, then (v · g̃j ) returns to An strictly after time t. Hence Tn−K ≤ t < Tn. By Proposition 3.8 the
probability of this event tends to 0 as n → ∞, concluding the proof. �

Lemma 4.7. There exists a sequence a′′
n → 0, so that for every v ∈ An we have qv ≤ a′′

n , where

qv :=
∑

w∈An

pvwμvw{h : γv · h �= γw}

is the probability that a bad alignement event happens at the j th step conditioned on vj−1 = v.

Proof. This proof too is based on Proposition 3.8. Fix again γ ∈ A∞ and let v ∈ An be the unique vertex belonging
to γ . We assume that n is large enough so that Remark 4.1 applies. As before, it is enough to prove that qv tends to
zero as n → ∞ and v belongs to γ . Let (g̃j ) be the random walk on G with step measure μ and let t be the first return
time of v · g̃j to Wn. Let Tn (resp. T∞) be the return time of v · g̃j (resp. γ · g̃j ) to An (resp. A∞). Setting w := v · g̃t
the probability qv equals the probability that w ∈ An and γv · g̃t|v �= γw. If this event happens we have Tn = t, while
T∞ > t. Indeed, γ · g̃t = (γv · g̃t|v)w �= γww and hence γ · g̃t /∈ A∞ (since γ · g̃t contains w, but the unique ray in
A∞ that contains w is γww). This implies that Tn < T∞. The probability of this event tends to zero as n → ∞ by
Proposition 3.8. �

Setting an = a′
n + a′′

n we have ENk ≤ ank. This concludes the proof of Proposition 4.4, and thus the proof of
Theorem 1 as noted. �

5. Proof of Theorem 2

To make the proof of Theorem 1 quantitative, the key idea is to let the level n tend to infinity together with the time k,
at a carefully chosen rate. One needs an estimate on the rate of convergence to 0 of the probabilities from Lemmas 4.6
and 4.7. Such estimates can be obtained from a closer analysis of the Schreier graphs of the action of G on the finite
levels of the tree using electric network theory.

This section is organized as follows: In Section 5.1 we define principal groups of directed automorphisms, and in
Section 5.2 we study sections in such groups. Some simplifications occur in this setting, in particular the groupoid
An can be chosen to be a group, and the bad alignment events cannot occur. Then in Section 5.3 we calculate lower
bounds on the resistance in the relevant Schreier graphs, and finally in Section 5.4 we combine all ingredients to prove
Theorem 2.

5.1. Principal groups of directed automorphisms and the mother group

Let m̄ be a bounded sequence as before, and set m∗ = maxi mi . The 0-ray in Tm̄, consists of all vertices of the form
0n = 0 · · ·0. The neighbours of the zero ray in the tree are vertices of the form v = x0n, where x ∈ Xmi

is the only
non-zero letter in v. Let

Hm̄ < Aut(Tm̄) be the subgroup consisting of elements that are directed along the zero ray, fix the zero ray, and have
depth at most one (recall that this means that their sections can be non-trivial only on the zero ray or its neighbours).
Equivalently, an element h ∈ Hm̄ has a wreath recursion of the form

h = (
h′, τ1, . . . , τm1−1

)
ρ,
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where τ1, . . . , τm1−1 ∈ Sm2 are the sections at first-level vertices other than 0, the permutation ρ ∈ Sm1 is such that
0 · ρ = 0 and h′ ∈ Hσm̄. The group Hm̄ is locally finite.

We identify the symmetric group Sm1 with the subgroup of Aut(Tm̄) consisting of automorphisms that permute
vertices on the first level and have trivial sections on them. In the same way, Smn identifies with a subgroup of
Aut(Tσnm̄) for every n ≥ 0.

The following groups were defined and studied by Brieussel (see [8–10]). They are a generalization of the mother
group from [5].

Definition 5.1. Let A < Hm̄, B < Sm1 be finite subgroups. The principal group of directed automorphisms generated
by A and B is the group 〈A ∪ B〉 < Aut(Tm̄). We denote it by M(A,B).

Note that the term “principal group of directed automorphisms” should be taken as whole, in fact the group
M(A,B) is generated by directed automorphisms but also contains automorphisms that are not directed.

Many groups acting on Tm embed in a group of the form M(A,B), see Theorem 5.2 below and also [8, Section 9]
for a slight generalization. We shall omit A,B from the notation when there is no ambiguity, and write simply M for
M(A,B).

There is an important particular case of Definition 5.1. Take m̄ a constant sequence, and set B = Sm. For A we take
all elements h ∈ Hm for which the section at 0 is h itself: h|0 = h. Equivalently, A is the group of automorphisms that
admit a wreath recursion of the form

h = (h, τ1, . . . , τm−1)ρ,

where τ1, . . . , τm−1 ∈ Sm and ρ ∈ Sm is such that 0 · ρ = 0. It is easy to see that h is determined by ρ and the τi , and
that A is a finite group, isomorphic to Sm �X\{0} Sm−1. With these choices of A and B , the group M = M(A,B) is
generated by a bounded automaton, and is called the mother group of bounded activity over the m-element alphabet.

The mother group was first defined in [5] in the bounded activity case. An analogous generalization to higher
activity degrees was provided in [1]. Its significance relies on the fact that every polynomial activity automaton group
embeds in a mother group of the same activity degree, possibly acting on a bigger alphabet. We only use this result in
the bounded activity case:

Theorem 5.2 ([1,5]). Let G < Aut(Tm) be a group generated by a bounded activity automaton. Then there exists m′
such that G embeds isomorphically in the mother group of bounded activity over m′ elements.

Henceforth, we shall fix a sequence m̄ = (mn)n of natural numbers bounded by m∗ = maxn mn, as well as two
finite groups A < Hm̄ and B ⊂ Sm1 generating a principal group of directed automorphisms M = M(A,B). We also
fix a subgroup G < M , generated by a finite symmetric set S ⊂ M .

Furthermore, it will be useful to suppose that A contains the following elements. Let σ̄ = (σ1, . . . , σm∗) with σi ∈ Si

be a collection of permutations in the symmetric groups up to m∗ elements. Define hσ̄ ∈ Aut(Tm̄) to act on words as
follows. If the first non-zero letter of word w is at position i, then w · hσ̄ is equal to w except for the i + 1st letter
which is permuted by σmi+1 . It is easy to see that elements of the form hσ̄ are in Hm̄ and form a finite group. We shall
suppose that A contains this finite group. Adding any finite set of elements to A does not cause any loss of generality,
since the group Hm̄ is locally finite.

5.2. Sections in the principal groups of directed automorphisms

We now describe the sections of the generators s ∈ S of the group G. We will use notations analogous to those in
Section 4.1.

Definition 5.3.

• Let An = 〈a|0···0〉a∈A the finite subgroup of Hσnm̄ consisting of sections of elements of A at nth level along the zero
ray.
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• Let Bn = 〈a|x0···0〉a∈A,x∈Xmn\{0} = 〈a′|x〉a′∈An−1,x∈Xmn\{0} the subgroup of Smn generated by the nth level sections
of A at neighbors of the zero ray.

Note that An ∪ Bn generate the group of n level sections M(n). In particular, M(n) = M(An,Bn) is a principal
group of directed automorphisms of Tσnm̄.

As in Section 4.1 we denote by Wn ⊂ T
n
m̄ the set of nth level vertices w ∈ T

n
m̄ such that the section s|w is non-trivial

for some generator s ∈ S. We also keep the same definitions of the set of singular rays A∞ and the sets An,Bn. The
following lemma is a more explicit version of Proposition 4.2 in this setting.

Lemma 5.4. The set A∞ consists of rays ending with an infinite sequence of zeros. In particular there is an n0 and
set {w1, . . . ,wk} ⊂ Tm̄ independent of n, so that for n > n0, the sets An and Bn have the form

• An = {00 · · ·0wj },
• Bn = {x00 · · ·0wj : x ∈ Xmn \ {0}}.
Moreover for every generator s, we have s|w ∈ An (resp. s|w ∈ Bn) if w ∈An (resp. w ∈ Bn) and s|w = e otherwise.

Proof. We first show that for every h ∈ M there exist a nh such that for n ≥ nh all of its nth level sections are in the
generating set An ∪ Bn. From the definition of An and Bn, it suffices to prove this for n = nh. We do this by induction
on the word metric |h| associated to the generating set A ∪ B . For h ∈ A ∪ B the claim holds with nh = 0.

First of all, observe that if h is a product of two generators then its first level sections are in A1 ∪ B1, so that one
can take nh = 1. Indeed, if h = s1s2, with s1, s2 ∈ A then h ∈ A and its first level sections are in A1 ∪B1 by definition.
If s1 is in B then its sections are trivial, and from (1) we see that first level sections of h are those of s2 possibly in a
different order, and are in A1 ∪ B1. Similarly, this is the case if s2 ∈ B .

Generally, suppose that the conclusion holds for h, and consider g = hs. Then sections of g at level nh + 1 are first
level sections of products from Anh

∪ Bnh
. The case of a product of two generators applies, and the sections are in

Anh+1 ∪ Bnh+1, so ng = nh + 1 will do.
We deduce that for every large enough level n, the sections of every generator s ∈ S are in An ∪ Bn. To conclude

observe that elements of Bn are finitary and elements of An are directed along the zero ray. It follows that the singular
set A∞ of generators consists of rays ending with an infinite sequence of zeros, and that An and Bn have the claimed
form. �

5.3. Resistances in Schreier graphs

In this subsection we analyze effective resistances in the Schreier graphs of the group G acting on the levels of the
tree, with respect to the fixed generating set S. See [22, Chapter 2] for a general background on electric network
theory.

It is convenient to first consider the Schreier graph Λn for the whole group M acting on the nth level Tn
m̄, equipped

with the standard generating set A ∪ B . Call the vertex 0n ∈ T
n
m̄ the root. Vertices of the form x0n−1 ∈ T

n
m̄ with x �= 0

are called the anti-roots. The following proposition determines a lower bound for the asymptotics of resistance in Λn

between the root and any anti-root, as n → ∞. See also [2,3] for more on resistances in these graphs.

Lemma 5.5. There exists a constant c, not depending on n, such that for every x �= 0 we have the resistance bound

ResΛn

(
0n, x0n−1) ≥ c

n∏
i=1

mi

mi − 1
≥ c

(
m∗

m∗ − 1

)n

.

Proof. A word in T
n
m̄ can be mapped to a word in {0,∗}n, by substituting every non-zero letter with the symbol ∗.

The set of anti-roots is exactly the pre-image of ∗0n−1. The graph Λn projects to a graph Λ̂n with vertex set {0,∗}n
and multiple edges. By Rayleigh monotonicity, resistances in the projected graph are no larger than resistances in the
original graph.

The key observation is that Λ̂n is just a path with multiple edges, and some self loops. The root 0n and anti-root
∗0n−1 are the ends of the path. To see this, observe by looking to the action of the generators that there are only two
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kind of non-trivial moves on elements of {0,∗}n: changing the rightmost (first) letter (generators in B) or changing
the letter after the first appearance of ∗ from the right (generators in A). Moves of the second kind give loops for the
root 0n and the anti-root ∗0n−1, so these vertices have only one other neighbour. A connected multi-graph having all
vertices of degree two, except two vertices of degree 1, is a path with multiple edges and loops.

To get a bound on the resistances in Λn we need to find the edge multiplicities in Λ̂n. The degree of vertices in
Λn is bounded by some C, so the degree of a vertex x ∈ {0,∗}n is at most C times the number of vertices in T

n
m̄ that

project to x, i.e. it is bounded above by C
∏

i|xi=∗(mi − 1). Hence the total resistance is bounded below by

Res
Λ̂n

(
0n,∗0n−1) ≥

∑
{0,∗}n

C−1
∏

i|xi=∗

1

mi − 1
= C−1

n∏
i=1

mi

mi − 1
.

�

The Rayleigh monotonicity principle and rough invariance of resistances under quasi-isometries [22, Chapter 2]
allow us to deduce a similar consequence for the group G equipped with any symmetric generating set S. Fix a level
T

n
m̄ deep enough, and recall the definition of the vertex sets An and Bn from Lemma 5.4.

Recall that the resistance between two vertex sets A,B in a graph is defined as the resistance from ā to b̄ in the
graph where A and B have been collapsed to points ā, b̄ (this definition makes sense also for disconnected graphs).

Lemma 5.6. Consider a fixed generating set S of G, and let Γn be the (possibly disconnected) corresponding Schreier
graph of the action of G on T

n
m̄. There exists a constant c depending only on the generating set S such that for any

large enough n

ResΓn(An,Bn) ≥ c

n∏
i=1

mi

mi − 1
≥ c

(
m∗

m∗ − 1

)n

.

Moreover, the same holds if each s ∈ S has some conductance which applies to the corresponding edges in Γn.

Proof. Since An,Bn have uniformly bounded cardinalities, it is sufficient to prove that for any v ∈ An and w ∈ Bn,
the effective resistance between v and w in Γn satisfies the same bound (with a possibly larger constant). Consider the
larger generating set S̃ = S ∪ A ∪ B of M , and let Γ̃n be the corresponding Schreier graph of the action of M on T

n
m̄.

Then Γn and Λn are both subgraph of Γ̃n, and by Rayleigh monotonicity

ResΓn(v,w) ≥ ResΓ̃n
(v,w).

Next, note that the graph Γ̃n is roughly equivalent [22, p. 51] to the standard Schreier graph Λn with constants not
depending on n. Thus effective resistances of the graphs Γ̃n and Λn are equivalent up to multiplicative constants. With
Lemma 5.5, this implies that for every x �= 0

ResΓ̃n

(
0n, x0n−1) ≥ c′

n∏
i=1

mi

mi − 1

for some constant c′.
Finally, we shall show that there is some constant K , so that for v ∈An and w ∈ Bn, the distance in Γ̃n from 0n to v

(and similarly from x0n−1 to w) are at most K . Since resistance is bounded by distance and by the triangle inequality
for resistances we get

ResΓn(v,w) ≥ c′
n∏

i=1

mi

mi − 1
− 2K.

Taking n large enough, this completes the proof. Since Λn is a subgraph of Γ̃n it suffices to bound distances in Λn.
By Lemma 5.4 we have v = 0 · · ·0wi and w = x0 · · ·0wj where wi and wj are words in some fixed and finite

set. Not that there is an element g of length at most 2l − 1 such that 0l · g = wi , and g|0l = e, this is easy to see by
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induction on l using only the generators of B and hσ̄ (which we assumed to be in A). It follows that the distance from
0n to v is at most 2l − 1 for any n, and similarly for w and x0n−1.

If the elements of S have associated conductances, then these are bounded by some constant. By monotonicity, the
resistance is decreased by at most that constant. �

5.4. Entropy estimate

We keep notations from the previous section: μ is supported on the set S, and we denote by Γn the Schreier graph of
the action of G = 〈S〉 on the level set Tn

m̄ with generating set S. If the action is not transitive Γn is not connected, but
this is irrelevant in what follows. Let Vn = m1 · · ·mn be the volume of the level sets of the tree. With An and Bn as
above (Lemma 5.4), we shall consider two resistances:

Rn = ResΓn(An,Bn), Rμ
n = Res(Γn,μ)(An,Bn).

Here Rn is computed in the graph with all edge weights equal to 1, and R
μ
n is the resistance with edge weights given

by μ. Since μ(g) ≤ 1 for any g we have R
μ
n ≥ Rn.

We will use the following slight generalization of the classical formula for random walk hitting probabilities (in the
case when A = {a} is a singleton). We have not located a reference for this, but this is a reformulation of Exercise 2.45
in [22].

Lemma 5.7. Let Γ be a finite weighted graph (possibly disconnected) where each edge e has weight we. Set Q =∑
e we , the total weight of the graph. Consider the random walk (Xn)n≥0 started at its stationary measure ν(x) =

Q−1 ∑
e�x we. For a vertex set W ⊂ Γ denote the hitting time by TW = min{n ≥ 1 : Xn ∈ W }. Then for disjoint vertex

sets A,B

P(X0 ∈ A,TB < TA) = 1

2QRes(A,B)
.

The following proposition is a quantitative version of our previous proof.

Proposition 5.8. With the above notations, there exists a constant C depending only on m̄, on the ambient group
M(A,B) and on supp(μ) such that for every n and k we have

H
(
μ∗k

) ≤ C

(
Vn + k

Rn

)
.

Before proving Proposition 5.8, let us see how this implies Theorem 2 by an appropriate choice of the level n. Let
n = n(k) be the smallest integer such that k ≤ VnRn. Proposition 5.8 applied for this choice of n gives

H
(
μ∗k

) ≤ 2CVn = 2C

n∏
i=1

mi.

Recall that α = logm∗/ log m2∗
m∗−1 is as in the theorem and note that for m ≤ m∗ we have m ≤ ( m2

m−1 )α . Recall also
from Lemma 5.6 that Rn ≥ c

∏n
i=1(

mi

mi−1 ). Using these inequalities, we get

H
(
μ∗k

) ≤ 2Cm∗
n−1∏
i=1

mi ≤ 2Cm∗

(
n−1∏
i=1

m2
i

mi − 1

)α

= 2Cm∗

(
Vn−1

n−1∏
i=1

mi

mi − 1

)α

≤ 2Cm∗(Vn−1Rn−1)
α ≤ 2Cm∗kα,

where we used that Vn−1Rn−1 ≤ k by the choice of n.
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Proof of Proposition 5.8. Fix k and n big enough, and let gk be the kth step of a random walk on G with law μ∗k . We
have that gk is determined by its action σk on T

n
m̄ together with its sections at the vertices there, and we shall estimate

the entropy coming from each of these parts.
Consider the finite tree T̃n

m̄ consisting of all vertices up to and including level n, and let Ṽn ≤ 2Vn be its cardinality.
An automorphism of T̃n

m̄ is determined by the permutation associated to each of its vertices, that give the action on
the children (this is called the portrait of the automorphism). Hence the set of automorphisms of the finite tree has
cardinality at most (m∗!)Ṽn ≤ CVn , where C depends only on m. It follows that σk has at most CVn possible values,
and by Proposition 3.3(1) we have

H(σk) ≤ CVn

for some C depending only on m.
To make the next estimates cleaner it is convenient to add randomness in the form of an independent uniform

automorphism ε of T̃n
m̄. As for σk , we have H(ε) ≤ CVn. We then have

H(gk) ≤ H(gk, ε) = H
(
σk, ε, (gk|v)v∈Tn

m̄

) = H
(
σk, ε, (gk|ε(v))v∈Tn

m̄

)
≤ H(σk) + H(ε) +

∑
v∈Tn

m̄

H(gk|ε(v)).

The first two terms here are at most CVn. The advantage of using ε independent of gk is that ε(v) is uniform in T
n
m̄,

and in particular all terms in the last sum are now equal and the sum equals VnH(gk|v), where v is a uniform random
vertex of Tn

m̄. (Alternatively, this could be achieved with an ε with smaller entropy logVn, by taking a random power
of some fixed cyclic permutation of Tn

m̄.)
To estimate H(gk|v) we note that (gi |v,v · gi ) is a random walk with internal degrees of freedom with state space

T
n
m̄, and that the edge measures are supported on the finite groups An and Bn when v · gi is at An and Bn respectively,

and on the identity otherwise (Claim 4.3). It follows from Proposition 3.3(3) that H(gk|v) ≤ CE|gk|v| + C, where the
length |gk|v| is measured w.r.t. the generating set An ∪ Bn, and the constant C depends only on the cardinalities of
these groups (hence on M(A,B) only).

Let 
 be the number of times the walk (v · gi ) moves from An to Bn and back to An up to time k. Then we have
|gk|v| ≤ 2
 + 2, and so we need to estimate E
. Say that a traverse begins at time i if v · gi ∈ An and if the walk then
visits Bn before returning to An. Note that we do not care whether the visit to Bn or the return to An occur before or
after time k. We now use Lemma 5.7, which applies since v · gi is stationary. The total weight of edges leaving each
vertex is 1, and so (recalling that R

μ
n ≥ Rn)

P(a traverse begins at time i) = 1

2VnR
μ
n

≤ 1

2VnRn

.

Thus E
 ≤ k
2VnRn

, and so

H(gk|v) ≤ CE(2
 + 2) ≤ Ck

VnRn

+ 2C,

and

H(gk) ≤ C′
(

Vn + k

Rn

)
. �
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