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Abstract. We consider a matrix-valued Gaussian sequence model, that is, we observe a sequence of high-dimensional M × N

matrices of heterogeneous Gaussian random variables xij,k for i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}, M and N tend to infinity and k ∈ Z.
For large |k|, the standard deviation of our observations is ε|k|s for some ε > 0, ε → 0 and a given s ≥ 0, case that encompasses
mildly ill-posed inverse problems.

We give separation rates for the detection of a sparse submatrix of size m × n (m and n tend to infinity, m/M and n/N tend
0) with active components. A component (i, j) is said active if the sequence {xij,k}k has mean {θij,k}k within a Sobolev ellipsoid

of smoothness τ > 0 and total energy
∑

k θ2
ij,k

larger than some r2
ε . We construct a test procedure and compute rates that involve

relationships between m,n,M , N and ε, such that the asymptotic total error probability tends to 0. We also show how these rates
can be made adaptive to the size (m,n) of the submatrix under some constraints.

We prove corresponding lower bounds under additional assumptions on the relative size of the submatrix in the large matrix of
observations. Our separation rates are sharp under further assumptions. Lower bounds for hypothesis testing problems mean that
no test procedure can distinguish between the null hypothesis (no signal) and the alternative, i.e. the minimax total error probability
for testing tends to 1.

Résumé. Nous considérons un modèle de suites de matrices de taille M × N dont les entrées sont des variables aléatoires Gaus-
siennes hétérogènes, xij,k , i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}, avec M et N qui tendent vers l’infini et k ∈ Z. Pour |k| grand, nous
supposons l’écart-type de xij,k de l’ordre de ε|k|s pour ε > 0 tel que ε → 0 et avec s > 0 connu; notre modèle permet donc
d’inclure le cadre des problèmes inverses modérément mal-posés.

Nos résultats sont des vitesses de séparation dans le problème de détection d’une sous-matrice significative de taille m × n,
avec m et n qui tendent vers l’infini et parcimonieuse, c-à-d m/M et n/N tendent vers 0. Une composante (i, j) est dite active si la
suite {xij,k}k a une espérance {θij,k}k qui appartient à une ellipsoide de Sobolev de régularité τ > 0 et une énergie totale

∑
k θ2

ij,k

supérieure à r2
ε . Nous construisons une procédure de test pour laquelle nous obtenons des vitesses de séparation impliquant des

relations entre m,n,M , N et ε, de sorte que l’erreur totale de test tende vers 0. Nous montrons comment rendre ces vitesses de
tests adaptatives en (m,n), la taille des sous-matrices significatives.

En faisant une hypothèse supplémentaire sur la taille relative des sous-matrices à détecter, nous prouvons les bornes inférieures
correspondantes, ce qui assure qu’aucune procédure de test n’est capable de distinguer l’hypothèse nulle de l’alternative avec des
vitesses « meilleures » que celles obtenues par notre procédure de test. Dans certains cas, nous obtenons des vitesses de séparation
exactes.
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1. Introduction

We study here a collection of signals observed in Gaussian white noise models, doubly indexed by i from 1 to M and
by j from 1 to N . We say that a component (i, j) is active if there is some signal at these coordinates, otherwise we
assume that we observe only noise. We propose a procedure to test whether a smaller submatrix only contains active
components, that is smooth signal with some given smoothness and significant energy (measured by its L2-norm).
This step should be taken as a preliminary step to estimation methods designed for the sparse case.

Our model combines two problems with various applications to real-life data: on the one hand, cluster and bi-
cluster detection in large matrices which are frequently used e.g. in genomics, signal theory, medical statistics and, on
the other hand, sparse additive models which are very popular in machine learning.

Clusters’ detection in spatial data was treated in the Bernoulli model by [25], and in the Gaussian model by [2]
where the authors mention applications in biosurveillance, sensor arrays, digital images. Bi-clustering in large matri-
ces are applied to genomics (DNA microarray data), biology (detecting groups of drugs and proteins that interact),
computer science (detecting malware with similar signatures), marketing (detecting groups of clients with similar
tastes for commercial products). These data can be functional (over time in biosurveillance or medical imaging, for
example) and turned into signals, hence our model.

In other areas, signals are the object of interest and detection of activity in a sparse submatrix can arise naturally
like in video surveillance, environment monitoring (transport of hazardous materials, detection of biological and
chemical species). Sparse additive models are extensively used in learning theory, see [20] and references therein.
These models correspond to the vector case. However, [20] mention that the more general functional ANOVA should
allow interactions of order 2 and higher than 2, but that their computational complexity is too involved to be studied.
Our problem can be used to detect sparse interactions of order 2 in the functional ANOVA model. The submatrix
structure is only natural for the sparsity as the interactions propagate.

This problem can be stated equivalently in the Gaussian sequence model of coefficients of the signals (say Fourier
coefficients), indexed by integer numbers k. We propose to deal with the Gaussian sequence model, as it is easier for
our computations and discuss later on the alternative interpretation as signal detection. We also consider heterogeneous
Gaussian observations in order to include the setup of indirect observations.

More precisely, we consider the following Gaussian sequence model

xij,k = ξij θij,k + εσkηij,k, i ∈ I = {1, . . . ,M}, j ∈ J = {1, . . . ,N}, k ∈ Z, (1.1)

where {ηij,k}i∈I,j∈J,k∈Z is a sequence of independent standard Gaussian random variables, σk > 0 and ε > 0 are
known. The M × N -matrix ξ = [ξij ](i,j)∈I×J , is deterministic (unknown) and has elements in {0,1}.

In what follows, the standard deviations σk are supposed to be the same for all components of the matrix, that is
they do not depend on (i, j) in I × J . We assume throughout the paper that, for some fixed given s ≥ 0,

σk ∼ |k|s , for large enough integer values of |k|.

On the one hand, the case s = 0 reduces to the case of direct observations of the signal. In that case, we could
generalize our results to unknown (but constant) variance σ . On the other hand, the case s > 0 corresponds to signals
observed in inverse problems like convolution with some independent noise, tomography etc.

The polynomial behaviour of σk as k grows to infinity corresponds to mildly ill-posed inverse problems. We refer
to Cavalier et al. [5] for more discussion on the relation between the sequence model with increasing variance and
inverse problems in the Gaussian white noise model.

The matrix-valued sequence θ = [ξij {θij,k}k∈Z](i,j)∈I×J is the quantity of interest. We want to detect from obser-
vations in the model (1.1) whether there is only noise or whether there are active components in θ , corresponding to
(i, j) where ξij = 1. When a component (i, j) is active, we assume that the corresponding sequence {θij,k}k belongs
to a Sobolev ellipsoid and has significant total energy, i.e., {θij,k}k ∈ Σ(τ, rε), τ > 0, rε > 0, where

Σ(τ, rε) =
{
θ ∈ l2(Z) : (2π)2τ

∑
k∈Z

|k|2τ θ2
k ≤ 1;

∑
k∈Z

θ2
k ≥ r2

ε

}
. (1.2)
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In this paper, we assume that ξ has a specific structure, i.e., it belongs to

TM,N(m,n) = {ξ matrix of size M × N : ∃Aξ ⊆ I,#Aξ = m and ∃Bξ ⊆ J,#Bξ = n

such that ξij = 1
(
(i, j) ∈ Aξ × Bξ

)}
,

where the non-null elements form a submatrix with m rows and n columns (m and n are known) and with the notation
#C for the cardinality of a set C. From now on, we shall denote by Aξ and Bξ those rows and columns where the
matrix ξ ∈ TM,N(m,n) has non-null elements.

The testing problem of interest is the following

H0 : θ = 0,

H1(τ, rε) : θ ∈ ΘM,N(τ, rε,m,n),

where, for τ, rε > 0 and for m,n,M and N large, such that m ≤ M and n ≤ N , we define

ΘM,N(τ, rε,m,n) = {θ = [ξij {θij,k}k∈Z
]
(i,j)∈I×J

: ξ ∈ TM,N(m,n),

and for all (i, j) ∈ Aξ × Bξ , {θij,k}k ∈ Σ(τ, rε)
}
.

The alternative hypothesis consists of matrices of size M × N containing mainly noise, except for elements in some
submatrix of size m×n containing sequences of Fourier coefficients of signals with Sobolev smoothness τ and energy
(L2 norm) significantly large (larger than rε ).

The aim of this paper is to derive asymptotic detection boundaries, that is, asymptotic conditions allowing us to
distinguish the hypotheses and separation rates, as defined later in Section 1.2, for alternatives ΘM,N(τ, rε,m,n), and
also to determine statistical procedures ψ which achieve these separation rates; such test procedures are said to be
asymptotically minimax.

Remark 1.1. We may also assume that the matrix ξ has entries either 0 or 1, such that
∑

(i,j)∈I×J ξij = m × n. That
means that we know the number of non-null elements of the matrix ξ since we know m and n but they can be found
anywhere in the matrix. This case reduces exactly to the vector case previously studied by Gayraud and Ingster [7]
under the sparsity condition that the number of active components mn satisfies mn = (MN)1−b , where b ∈ (0,1)

corresponds to the sparsity index.

Section 1.1 explains how this model is related to the multivariate Gaussian white noise model and how the inverse
problem reduces to heterogeneous observations in our Gaussian sequence model. In Section 1.2 we give more notation
and definitions.

1.1. Sparse high-dimensional signal detection

Let us see that the previous problem arises in some classical statistical models and hence, it has a different interpreta-
tion. When dealing with high-dimensional data, we model functions of many variables with additive models. For many
situations where additive models are employed see Stone [23] and references therein. Let us consider the multivariate
Gaussian white noise model

dX(t) = f (t) dt + ε · dW(t), t ∈ [0,1]d , d ∈N, (1.3)

ε > 0 and W(t) is the Wiener process. When estimating f in a nonparametric model, the curse of dimensionality
makes the rates exponentially slow for large dimension d . Additive models, where f (t) =∑d

j=1 fj (tj ), tj ∈ [0,1]
and

∫ 1
0 fj = 0 for all j from 1 to d , are estimated with much faster rates, but the global estimation risk still grows

in a linear way with d . It is assumed in Gayraud and Ingster [7] that the univariate signal functions fj belong to a

class S(τ, rε), i.e., they have Sobolev smoothness τ and total energy
∫ 1

0 |fj |2 larger than r2
ε . A function f is Sobolev
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smooth if it belongs to L2([0,1]) such that
∫ |f̃ (u)|2(2π |u|)2τ du ≤ 1 (where f̃ is the characteristic function of a

function f ) and τ is called its smoothness parameter.
If we need to cope with very high dimension d , sparsity assumptions help to reduce the dimension. In Gayraud

and Ingster [7], it was assumed that only d1−b for some 0 < b < 1 coordinates are significantly active, i.e., f (t) =∑d
j=1 ξjfj (tj ), ξj ∈ {0,1} for all j from 1 to d such that

∑
j ξj = d1−b. They solved the following test problem:

H0 : all ξj = 0 (no signal is detected in data),

H1(τ, rε) : there exists d1−b values of j where ξj = 1 and fj ∈ S(τ, rε).

Different sharp detection rates were obtained along the values of 0 < b < 1, but the setup of heterogeneous variables
was not studied.

In our paper, we assume a sparse matrix structure for our additive model:

f (t) =
M∑
i=1

N∑
j=1

ξij fij (tij ), tij ∈ [0,1] and ξ ∈ TM,N(m,n), (1.4)

such that
∫ 1

0 fij = 0 for all i, j . We call the component (i, j) active if ξij = 1 and, in that case, we suppose that the
signal in that coordinate belongs to the class S(τ, rε).

Let us reduce the sparse additive model (1.3) such that (1.4) holds for our initial model. Consider {ϕk}k∈Z the
Fourier orthonormal basis of L2[0,1] and recall that ϕ0 ≡ 1. Define the multivariate orthonormal family, for t ∈
[0,1]M×N ,

Φij,k(t) = ϕk(tij ) ·
∏

(l,h)
=(i,j)

ϕ0(tlh) = ϕk(tij ).

Then, project the signal in (1.3) on these functions:

xij,k :=
∫

[0,1]M×N

Φij,k(t) dX(t)

=
∫

[0,1]M×N

Φij,k(t)f (t) dt + ε ·
∫

[0,1]M×N

Φij,k(t) dW(t)

= ξij

∫ 1

0
ϕk(tij )fij (tij ) dtij + ε · ηij,k,

where {ηij,k} are i.i.d. standard Gaussian random variables.

We get our initial model for θij,k = ∫ 1
0 ϕkfij and σk ≡ 1. Indeed, following Tsybakov [24], we know that fij

belongs to S(τ, rε) if and only if {θij,k}k belongs to Σ(τ, rε). Then, our test problem can be written:

H0 : all ξij = 0 (no signal is detected in data),

H1(τ, rε) : there exists ξ ∈ TM,N(m,n) and for ξij = 1 it holds that fij ∈ S(τ, rε),

i.e., there exists a matrix ξ in TM,N(m,n) such that the signal in active coordinates (i, j) has Sobolev smoothness τ

and total energy larger than r2
ε .

The variance ε2σ 2
k of our observations is allowed to increase with k, since σk ∼ |k|s , s ≥ 0. Indeed, let us suppose

that our additive model is observed in an inverse problem. That means that we observe

dX(t) = Kf (t) dt + ε · dW(t), t = [tij ]i,j ∈ [0,1]M×N (1.5)

for some linear operator K , with f given as in (1.4) and such that
∫ 1

0 Kfij = 0.
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Take, for example, the convolution model. In this case, the signal is observed with an additive independent noise
having density g. Then the operator K acts as a convolution operator with the density g and writes Kf (t) = ∫ f (t −
u)g(u)du.

We suppose that K∗K is a compact operator having eigenvalues σ−2
k decreasing polynomially to 0 as k tends to

infinity. This corresponds to mildly ill-posed inverse problems. Whereas, in the case of well-posed inverse problems,
σ 2

k ≤ σ 2 form a bounded sequence.
Then, we consider a singular value decomposition of K , that is families of orthonormal functions {ϕk}k and {ψk}k

such that Kϕk = σ−1
k ψk and K∗ψk = σ−1

k ϕk . Therefore, let ψk ≡ 1 and Ψij,k(t) = ψk(tij ), and project (1.5) on this
family:

yij,k :=
M∑
l=1

N∑
h=1

ξlh

∫
[0,1]M×N

Ψij,k(t)Kflh(tlh) dtlh + ε ·
∫

[0,1]M×N

Ψij,k(t) dW(t)

= ξij

∫ 1

0
ψk(u)Kfij (u) du + ε · ηij,k.

Note, moreover, that
∫ 1

0 ψk · Kfij = ∫ 1
0 K∗ψk · fij = σ−1

k

∫ 1
0 ϕk · fij = σ−1

k θij,k . Then, let xij,k = σkyij,k to get the
model (1.1).

Note that Butucea and Ingster [4] studied the particular case where θij,k = a1(k = 0) and the variance of the noise
is a given fixed σ . The asymptotic rates for testing were given in terms of n,m,N and M . Here, we replace the
constant elements with arbitrary signals having a given amount of smoothness. Moreover, we add here the case of
heterogeneous variables which include mildly ill-posed inverse problems.

1.2. Notation and definitions

Denote by P0 and Pθ the distributions under the null and the alternative, respectively. Denote also by E0, Var0 and
Eθ , Varθ the expected values and variances with respect to P0 and Pθ , respectively. Set θ ij = {θij,k}k∈Z; indices of
probabilities, expectations or variances which are expressed in terms of non-overlined subsequences of θ mean that
they correspond to active components.

For any test procedure ψ , that is, any measurable function with respect to the observations, taking values in [0,1],
set ω(ψ) = E0(ψ) its type I error probability and β(ψ,ΘM,N(τ, rε,m,n)) = supθ∈ΘM,N (τ,rε ,m,n)Eθ (1 − ψ) its maxi-
mal type II error probability over the set ΘM,N(τ, rε,m,n). Let us denote by

γ
(
ψ,ΘM,N(τ, rε,m,n)

)= ω(ψ) + β
(
ψ,ΘM,N(τ, rε,m,n)

)
the total error probability of ψ and denote by γ the minimax total error probability over ΘM,N(τ, rε,m,n) which is
defined by

γ := γ
(
ΘM,N(τ, rε,m,n)

)= inf
ψ

γ
(
ψ,ΘM,N(τ, rε,m,n)

)
,

where the infimum is taken over all test procedures. We can not distinguish H0 and H1(τ, rε) if γ → 1 and we say
that we can distinguish the hypotheses if there exists ψ such that γ (ψ,ΘM,N(τ, rε,m,n)) → 0.

By (asymptotic) separation rates or minimax rates of testing, we mean a sequence r̃ε such that

{
γ → 1 if rε

r̃ε
→ 0,

γ (ψ,ΘM,N(τ, rε,m,n)) → 0 if rε
r̃ε

→ +∞.

By (asymptotic) sharp separation rates or sharp minimax rates of testing, we mean a sequence r̃ε such that

{
γ → 1 if lim sup rε

r̃ε
< 1,

γ (ψ,ΘM,N(τ, rε,m,n)) → 0 if lim inf rε
r̃ε

> 1.
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The asymptotics for model (1.1) are given when ε → 0 and, as we are mainly interested in high-dimensional
settings, when

m,n,M and N → +∞, p = m

M
→ 0, q = n

N
→ 0. (1.6)

Here and later asymptotics and symbols o, O , ∼ and 
 are considered under ε → 0 and m,n,M and N such
that (1.6) holds. Recall that, given sequences of real numbers u and real positive numbers v, we say that they are
asymptotically equivalent, u ∼ v, if limu/v = 1. Moreover, we say that the sequences are asymptotically of the same
order, u 
 v, if there exist two constants 0 < c ≤ C < ∞ such that c ≤ lim infu/v and lim supu/v ≤ C.

Nonparametric tests in the minimax setup were introduced by Ingster [8], [9] and [10] and intensively studied ever
since. In the context of inverse problems, minimax testing was considered by Butucea [3] in the density model, Ingster
et al. [13] in the Gaussian sequence model and [12] for a problem related to the Radon transform. A non-asymptotic
study of minimax rates in inverse problems was given in Laurent et al. [19]. Other minimax testing rates in multivariate
setups were given by Ingster and Stepanova [14,15] and Laurent et al. [18].

Detection of sparse vectors was treated by Ingster [11], Ingster and Suslina [16] and Donoho and Jin [6]. Detection
of sparse matrices was studied by Butucea and Ingster [4]. As we already mentioned, Gayraud and Ingster [7] consider
multivariate functions depending only on a small number of coordinates. In this paper, we assume that the sparse
coordinates have a submatrix structure. Moreover, in this setup we include the setup of inverse problems. Detection
of sparse objects has not been considered before in inverse problems to the best of our knowledge.

The plan of the paper is as follows. In Section 2 we define the test procedure and give sufficient conditions such
that its total error probability tends to 0. The construction of our test procedure involves solving an optimization
problem, which determines the construction of the minimax test procedure. Section 3 presents the lower bounds for
our problem. In Section 4 we give related results: first, particular cases where our separation rates write in a simpler
form, then we make our procedure universal with respect to the separation parameter rε and, finally, in Section 4.3 we
show that the separation rates are still attained uniformly over a set of values (m,n). Proofs are given in Section 5 and
the Appendix.

2. Testing procedures and their asymptotic behaviour

Consider the following family of weighted χ2-type statistics: for (i, j) in I × J

tij,w =
∑
k∈Z

wk

((
xij,k

εσk

)2

− 1

)
, (2.1)

where (wk)k is a sequence of weights such that wk ≥ 0 for all k ∈ Z and
∑

k∈Z w2
k = 1/2.

In order to define the weights {w�
k}k∈Z that will appear in the optimal test procedure, we solve the following

extremal problem. Recall that Σ(τ, rε) denotes the Sobolev ellipsoid defined in (1.2), with τ > 0 and rε > 0, and
{σk}k∈Z is a sequence of positive real numbers. We define the sequences {w�

k}k∈Z and {θ�
k }k∈Z as solutions to the

following optimization program:

∑
k∈Z

w�
k

(
θ�
k

εσk

)2

= sup
{(wk)k∈l2(Z):wk≥0;∑k w2

k= 1
2 }

inf{θk}k∈Σ(τ,rε)

∑
k∈Z

wk

(
θk

εσk

)2

. (2.2)

Let us denote by a(rε) :=∑k∈Z w�
k(θ

�
k /(εσk))

2, the value of the optimization problem (2.2) at the optimal point.
Let us discuss heuristically why we need to solve this problem, before giving the solution. Note that under the

null hypothesis our statistic becomes tij,w =∑k∈Z wk(η
2
ij,k − 1) and it is a standard random variable (due to the

normalization
∑

k∈Z w2
k = 1/2). Under the alternative,

Eθ ij
(tij,w) =

∑
k∈Z

wk

(
θij,k

εσk

)2

. (2.3)



1570 C. Butucea and G. Gayraud

In order to distinguish the alternative from the null at best, we need to consider the worst parameter θ ij under the
alternative and then maximize over possible weights wk ≥ 0 verifying the normalization constraints

∑
k w2

k = 1/2.

Proposition 2.1. Let {σk}k∈Z be a sequence of positive real numbers such that σk ∼ |k|s as |k| large enough, for a
given s > 0. Then, the optimization problem (2.2) has the following solution:

(
θ�
k

)2 = vσ 4
k

√
2

(
1 −

( |k|
T

)2τ)
+

and w�
k = (θ�

k )2

2ε2σ 2
k a(rε)

,

where (x)+ = max(0, x), with

T ∼
(

κ1

κ2

)1/(2τ)

r−1/τ
ε , v = 1

κ1

(
κ2

κ1

)(4s+1)/(2τ)

r2+(4s+1)/τ
ε and a(rε) ∼ c(τ, s)ε−2r2+(4s+1)/(2τ)

ε ,

where the asymptotics are taken as k → ∞ and as rε → 0 and the constants are given by

c(τ, s)2 = 2

(
κ1

κ2

)−(4s+1)/(2τ)
κ3

κ2
1

, κ1 = 4
√

2τ

(4s + 1)(4s + 2τ + 1)
,

κ2 = 4
√

2τ(2π)2τ

(4s + 2τ + 1)(4s + 4τ + 1)
and κ3 = 1

4s + 1
− 2

4s + 2τ + 1
+ 1

4s + 4τ + 1
.

Moreover, we have supk w�
k ≤ r

1/(2τ)
ε → 0.

The proof of Proposition 2.1 is postponed to the Appendix. Note that w� = {w�
k}k∈Z and θ� = {θ�

k }k∈Z check the
constraints in (2.2), that is,

∑
k(w

�
k)

2 = 1
2 ,
∑

k(θ
�
k )2 = r2

ε (1 + o(1)) and
∑

k(2πk)2τ (θ�
k )2 = 1 + o(1), as rε → 0. It

is worthwhile to note that, due to Proposition 2.1 and relation (2.3), we have

1

2

∑
k

(θ�
k )4

ε4σ 4
k

= a2(rε), (2.4)

inf
θ ij ∈Σ(τ,rε)

Eθ ij
(tij,w�) = a(rε) (2.5)

and note also that the sequences w� and θ� have a finite number T of non-null elements, but T grows to infinity as
rε → 0.

Define the test procedures,

ψχ2 = 1
(
tχ

2
> H

)
, with tχ

2 = 1√
MN

∑
(i,j)∈I×J

tij,w�, (2.6)

ψ scan = 1
(
t scan > K

)
, with t scan = max

ξ∈TM,N (m,n)

1√
mn

∑
(i,j)∈Aξ ×Bξ

tij,w�, (2.7)

where K2 = 2(1 + δ) log
((

N
n

)(
M
m

))
for some small δ > 0 and H is a positive number, depending on s and τ , on

ε,m,n,M and N , to be correctly chosen in the following theorem.
Under the assumption (1.6), we can check that

log

((
M

m

)
·
(

N

n

))
∼ m · log

(
p−1)+ n · log

(
q−1).

The following theorem gives the upper bounds for the testing rates of the previously defined procedures. We denote
by Φ the c.d.f. of a standard Gaussian distribution.
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Theorem 2.1. Assume (1.6). Suppose that rε → 0 and recall that

a(rε) ∼ c(τ, s)ε−2r2+(4s+1)/(2τ)
ε .

1. The linear test statistics ψχ2
defined by (2.6) has the following properties.

Type I error probability: if H → ∞, then ω(ψχ2
) = Φ(−H) + o(1).

Maximal type II error probability: if

a2(rε)mnpq → +∞, (2.8)

choose H such that H ≤ c · a(rε)
√

mnpq , for some 0 < c < 1, then β(ψχ2
,ΘM,N(τ, rε,m,n)) = o(1).

2. The scan test statistic ψ scan defined by (2.7) has the following properties.
Suppose that K2r

1/τ
ε /(mn) = o(1).

Type I error probability: ω(ψ scan) = o(1).
Maximal type II error probability: if

lim inf
a2(rε)mn

2(m · log(p−1) + n · log(q−1))
> 1, (2.9)

then β(ψ scan,ΘM,N(τ, rε,m,n)) = o(1).

Let us note that the condition K2r
1/τ
ε /(mn) = o(1) is pretty mild on the size of the submatrix. Indeed, as we assume

that rε → 0, it comes down to assume that log(p−1)/n + log(q−1)/m = o(rτ
ε ). This condition allows us to tune K

at its smallest possible value by Lemma 5.1 so that the type II error probability tends to 0 under the sharp condition
(2.9).

As a consequence of Theorem 2.1, we have the following result.

Corollary 2.1. Assume (1.6). Suppose that rε → 0. Consider ψ the test procedure which combines ψχ2
and ψ scan as

follows

ψ = max
(
ψχ2

,ψ scan).
The test procedure ψ with H and K chosen as in Theorem 2.1 is such that γ (ψ,ΘM,N(τ, rε,m,n)) = o(1) as soon
as either (2.8) or (2.9) hold.

3. Minimax total error probability

We prove here optimality results for the rates attained by the previous test procedure ψ . However, the optimality is
attained under additional hypothesis requiring an ‘almost’ squared matrix in the sense that the relative sizes of the
submatrix should be of the same order in both directions (rows and columns sizes). More precisely, these additional
hypotheses are that

log log(p−1)

log(q−1)
→ 0,

log log(q−1)

log(p−1)
→ 0, (3.1)

m · log
(
p−1)
 n · log

(
q−1) (3.2)

and

m · log(p−1) + n · log(q−1)

mn
= o(1)ε−2/(2τ+2s+1). (3.3)
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Theorem 3.1. Assume (1.6) and (3.1)–(3.3). If rε is such that the following conditions are satisfied

a2(rε) · mnpq → 0, (3.4)

lim sup
a2(rε) · mn

2(m · log(p−1) + n · log(q−1))
< 1, (3.5)

then infψ γ (ψ,ΘM,N(τ, rε,m,n)) → 1.

The proof of Theorem 3.1 is given in Section 5.3.

Remark 3.1. Theorems 2.1 and 3.1 together say that, under assumptions (1.6), (3.1), (3.2) and (3.3) our test procedure
ψ in Corollary 2.1 is asymptotically minimax, it achieves the lower bounds.

Let us insist on the complementarity of the conditions on rε such that, on the one hand, the test procedure ψ has
total error probability tending to 0 and that, on the other hand, no test procedure can distinguish the two hypotheses.
Our results provide separation rates between these cases and they are defined through a(rε). Indeed, the detection
boundary a(r̃ε) satisfies the following relations

a2(r̃ε) · mnpq 
 1, a2(r̃ε) · mn ∼ 2
(
m · log

(
p−1)+ n · log

(
q−1)).

Therefore, the detection boundary can be written

a(r̃ε) 
 min

{
1√

mnpq
,

√
2(m · log(p−1) + n · log(q−1))

mn

}
, (3.6)

and they are sharp if 2(m·log(p−1)+n·log(q−1))
mn

≤ 1
mnpq

, that is when the scan statistic detects. By Proposition 2.1, we

have that a(r̃ε) ∼ c(τ, s)ε−2(r̃ε)
2+(4s+1)/(2τ) as ε → 0 and r̃ε → 0 and it implies that ε2a(r̃ε) → 0.

Remark 3.2. Note that for the test procedure ψχ2
we show separation rates, while for ψ scan we show sharp separation

rates. This is intrinsic to the model. More refined results can be stated in order to get sharp separation rates for the
linear procedure. In particular, following [13], which is based on [17], we have (for one-dimensional signal) that, if

a2(rε) 
 1 and sup
k

wk = o(1),

then the minimax total error probability is such that

γ
(
Θ1,1(τ, rε,1,1)

)= 2Φ

(
−1

2
a(rε)

)
+ o(1).

Obtaining analogous results for the sparse matrix case is beyond the scope of our paper.

4. Related results

In this section, we discuss various results. We start by giving the rates in some particular cases, some of them are
already known. Then we go back to our testing procedure and show how to make it universal with respect to the rate
rε . In the penultimate part, we make the procedure adaptive to the size of the submatrix (m,n) varying in some set
KM,N , without loss in the separation rate, under some constraints on the set. Finally, we add a comment on how we
could implement our test procedures.
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4.1. Particular cases

In this section we discuss how our results connect with known cases and how they write in particular examples.
One-dimensional signal. We can recover from these results the separation rates for one-dimensional sequences

(i.e. M = N = m = n = 1). In this case (3.6) requires that a(r̃ε) is asymptotically constant, which means r̃ε ∼
(c−1(τ, s)ε2)2τ/(4τ+4s+1) and that is the minimax rate for testing one-dimensional signal with Sobolev smoothness τ ,
see Ingster et al. [13].

Polynomially sparse submatrix. Let us consider the particular case where m = M1−b1 and n = N1−b2 with the
sparsity indices b1 and b2 in (0,1). Suppose that MC 
 N with some positive C, then assumption (3.2) is satisfied
provided that (1 − b1) = C(1 − b2). The particular choice of C = 1 is discussed in details later.

For any positive C, note that assumption (1.6) is reduced to M → ∞. Moreover, assumption (3.1) is trivially
satisfied and condition (3.3) becomes Mb1−1 = o(ε−2/(2τ+2s+1)). Then, the detection boundary, namely a(r̃ε) in
(3.6), satisfies

a2(r̃ε) 
 min
{
M4b1−2,2(b1 + Cb2) log(M)Mb1−1}.

Due to Proposition 2.1, we can deduce separation rates which are reported in Table 1; those separation rates are
different according to the values of (b1, b2) in the open square ]0,1[× ]0,1[. It is worthwhile to note that for 0 < b1 <

1/2 and 0 < b2 < min(1, (1 − 2b1)/C), the separation rate corresponds to the one obtained in the M2-dimensional
Gaussian white noise model when the sparsity is moderate (see Gayraud and Ingster [7]). This seems reasonable as
the linear statistic detects the submatrix in those cases and its behaviour does not depend on the vector or matrix setup.
Note that our results generalize the previous rates for the more general model including ill-posed inverse problems.

Squared polynomially sparse submatrix. Now, the choice C = 1 in the previous case, which leads to b1 = b2 := b

and hence M 
 N , corresponds to the case of a sparse squared submatrix in a squared matrix. In this case, the
separation rates, reported in Table 2 are different according to the values of b. Here the cut-off is b = 1/3 and again
the separation rate corresponds to the one obtained in the M2-dimensional Gaussian white noise model when the
sparsity is moderate (see Gayraud and Ingster [7]).

Sparse high-dimensional vector. Let us assume n = N = 1 and m = M1−b , with b ∈ (0,1) the sparsity index. It is
obvious that conditions (3.1) and (3.2) are not satisfied, but the upper bounds hold and they give the separation rates

r̃ε 
 min
{(

c−2(τ, s)ε4M2b−1)τ/(4τ+4s+1)
,
(
2bc−2(τ, s)ε4 log(M)

)τ/(4τ+4s+1)}
.

Note that the rate is (c−2(τ, s)ε4M2b−1)τ/(4τ+4s+1) when b < 1/2 and it is (2bc−2(τ, s)ε4 log(M))τ/(4τ+4s+1) when
b > 1/2. Again, in the moderately sparse case we find the separation rates of Gayraud and Ingster [7] in the more
general setup of inverse problems. However, the highly-sparse vector case should be reconsidered in the case of
inverse problems.

Table 1
Separation rates r̃ε

b1 ∈ (0,1/2) b1 ∈ [1/2,1)

0 < b2 < min(1,
1−2b1

C
) (c−2(τ, s)ε4M4b1−2)τ/(4τ+4s+1) (

2(b1+Cb2)ε4

c2(τ,s)
Mb1−1 log(M))τ/(4τ+4s+1)

1−2b1
C

< b2 < 1 (
2(b1+Cb2)ε4

c2(τ,s)
Mb1−1 log(M))τ/(4τ+4s+1) (

2(b1+Cb2)ε4

c2(τ,s)
Mb1−1 log(M))τ/(4τ+4s+1)

Table 2
Detection boundary

b ∈ (0,1/3] b ∈ (1/3,1)

a2(r̃ε ) M4b−2 4b log(M)Mb−1

r̃ε (c−2(τ, s)ε4M4b−2)τ/(4τ+4s+1) (4bc−2(τ, s)ε4Mb−1 log(M))τ/(4τ+4s+1)
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4.2. Universal test procedure

Recall that the test statistics tχ
2

and t scan depend on tij,w� and hence on rε through the sequence w� (see Proposi-

tion 2.1); it means that tχ
2

as well as t scan are different for two distinct rε (given by the alternative hypotheses). One
may be interested in dealing with test statistics free of rε in a range where either (2.8) or (2.9) hold. In this part, we

describe such a procedure. Denote by r̃
χ2

ε and r̃scan
ε

r̃χ2

ε = (mnpq)−1/2ε2c−1(τ, s) and r̃scan
ε = √

2

(
m logp−1 + n logq−1

mn

)−1/2

ε2c−1(τ, s),

where c(τ, s) is defined in Proposition 2.1. Then define the test procedures ψ̃χ2
and ψ̃ scan as follows:

ψ̃χ2 = 1
(
t̃ χ

2
> H̃

)
, with t̃ χ

2 = 1√
MN

∑
(i,j)∈I×J

t
ij,w∗(r̃χ2

ε )
,

ψ̃ scan = 1
(
t̃ scan > K

)
, with t̃ scan = max

ξ∈TM,N (m,n)

1√
mn

∑
(i,j)∈Aξ ×Bξ

tij,w∗(r̃scan
ε ),

where H̃ is a positive constant such that H̃ → ∞ and recall that K2 = 2(1 + δ) log
((

N
n

)(
M
m

))
for small positive δ.

Lemma 3.1 in Ingster and Suslina [17] implies that t̃ χ
2

is asymptotically standard Gaussian under H0 and hence
the type I error probability of ψ̃χ2

is asymptotically zero. Acting exactly as for ψ scan, the type I error probability of
ψ̃ scan can be proved to vanish asymptotically under the condition K(r̃scan

ε )1/(2τ)/
√

mn = o(1).

To control the maximal type II error probability of ψ̃χ2
and ψ̃ scan over the set ΘM,N(τ, rε,m,n), when rε satisfied

either (2.8) or (2.9) reduces to bound from below, uniformly over Σ(τ, rε), the term Eθ ij
(tij,w�(r̃ε )), where r̃ε stands

for either r̃
χ2

ε or r̃scan
ε .

Note that due to Proposition 2.1, relations (2.8) and (2.9) are respectively equivalent to rε/r̃
χ2

ε → +∞ and
lim inf rε/r̃scan

ε > 1. Without loss of generality, let us suppose that rε is equal to Br̃ε , with B > 1. Therefore, it suffices
to bound from below Eθ ij

(tij,w�(r̃ε )) uniformly over Σ(τ,Br̃ε) under the condition B → ∞ and B > 1 respectively.

Now fix H̃ = B/2.
Applying Proposition 4.1 in Gayraud and Ingster [7] gives that for any θ ij ∈ Σ(τ,Br̃ε) with B ≥ 1, one has

Eθ ij
(tij,w�(r̃ε )) ≥ B2a(r̃ε),

which leads to prove that the type II error vanishes asymptotically since B − H̃ → ∞ and 2(m log(p−1) +
n log(q−1))(B2 − (1 + δ)) → ∞ for δ small enough.

4.3. Adaptation

We shall consider here adaptation of our test procedure to the size of the submatrix (n,m).
Following Butucea and Ingster [4], we introduce a set of indices KM,N ⊆ I × J such that the following conditions

hold:

sup
(m,n)∈KM,N

(
1

m
+ 1

n
+ m

M
+ n

N

)
→ 0 and sup

(m,n)∈KM,N

(
logM

m log(p−1)
+ N

n log(q−1)

)
→ 0.

For each (m,n) ∈ KM,N , consider the same statistic ψχ2
as defined in (2.6), but a slightly modified version of (2.7),

namely the test

ψ̃ scan
MN = 1

(
max

(m,n)∈KM,N

t̃ scan
mn > 1

)
,
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with the statistic

t̃ scan
mn = max

ξ∈TM,N (m,n)

1

K
√

mn

∑
(i,j)∈Aξ ×Bξ

tij,w�,

and K2 = K2
mn = 2(1 + δ)[(m · log(p−1) + n · log(q−1)) + log(MN)]. The following theorem gives necessary condi-

tions and a test procedure which adapts to the size (m,n) of the submatrix unknown within a given subset KM,N .

Theorem 4.1. If rε → 0 and if, for each (m,n) ∈KM,N , we have amn(rε) such that either

min
(m,n)∈KM,N

a2
mn(rε)mnpq → ∞

or

lim inf min
(m,n)∈KM,N

a2
mn(rε)

2(m · log(p−1) + n · log(q−1))
> 1

then the test ψ̃ = max{ψχ2
, ψ̃ scan

MN }, with H = HMN → ∞ such that HMN < c min(m,n)∈KM,N
am,n(rε)

√
mnpq for

some 0 < c < 1 and Kmn such that max(m,n)∈KM,N
K2

mnr
1/τ
ε /(mn) → 0, then γ (ψ̃,

⋃
(m,n)∈KM,N

ΘM,N(τ, rε,m,

n)) → 0.

Note that the separation rates are the same as in the nonadaptive case. Therefore, adaptive lower bounds are an
immediate consequence of the non-adaptive lower bounds under the same additional conditions (and uniform in
(m,n) over KM,N ).

The test statistics tχ
2

and t̃ scan
mn can be made free of rε by following the same procedure as in the previous section.

They still achieve the same separation rates as in the case of known size (m,n).

4.4. Implementation of the test procedures

The linear procedure ψχ2
is rather simple to implement. However, there are difficulties for implementing the scan

procedure ψ scan. Indeed, computing the scan statistic t scan implies computing standardized sums over all submatrices
of size m × n in the large matrix M × N . This is computationally infeasible for large values of M,N,m and n.
However, a heuristic algorithm can be implemented as in Butucea and Ingster [4], following Sun and Nobel [21] and
Shabalin et al. [22], which is a random procedure finding local maxima. It was observed by numerical simulations in
[4] that with a sufficiently large choice of random initial values, the algorithm actually finds the global maximum that
we aim at.

5. Proofs

Let us start with a preliminary result that gives an approximation of the moments generating function of tij,w� defined
in (2.1) under H0.

Lemma 5.1. For any real number λ such that λ supk w�
k = o(1),

E0
(
exp(λtij,w�)

) = exp

(
λ2

2

(
1 + o(1)

))
, ∀(i, j) ∈ I × J .

The proof of Lemma 5.1 is postponed in the Appendix.
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5.1. Proof of Theorem 2.1

Observe that under H0, tij,w are i.i.d. random variables with zero mean and unit variance. Indeed, one gets
Var0(tij,w) =∑k w2

k Var(η2
ij,k)/σ

2
k = 2

∑
k w2

k = 1. Under the alternative, for all θ ij ∈ Σ(τ, rε),

Eθ ij
(tij,w) =

∑
k

wk

θ2
ij,k

σ 2
k ε2

ξij ,

Varθ ij
(tij,w) =

∑
k

w2
k

(
2 + 4

θ2
ij,k

σ 2
k ε2

ξij

)

≤ 1 + 4 sup
k

wk ·
∑

k

wk

θ2
ij,k

σ 2
k ε2

ξij = 1 + 4 sup
k

wk ·Eθ ij
(tij,w).

Due to the previous relations, for any θ ∈ ΘM,N(τ, rε,m,n)

Eθ

(
tχ

2) = 1√
MN

∑
(i,j)∈Aξ ×Bξ

Eθ ij
(tij,w�)

≥ √
MNpq · a(rε) = √

mnpq · a(rε), (5.1)

where the penultimate inequality follows from (2.5). Moreover, for the variance we have

Varθ
(
tχ

2) = 1

MN

∑
(i,j)∈I×J

Varθ ij
(tij,w�)

= 1 + 4

MN

∑
(i,j)∈Aξ ×Bξ

∑
k

(
w�

k

)2 θ2
ij,k

ε2σ 2
k

≤ 1 + 4 sup
k

w�
k

1√
MN

Eθ

(
tχ

2)
. (5.2)

Recall that supk w�
k

rε→0−→ 0 (see Proposition 2.1).

Type I error probability of ψχ2
. Since supk w�

k = o(1), the asymptotic standard normality of tχ
2

under the null
follows from Lemma 3.1 in Ingster and Suslina [17] then, as H large enough,

P0
(
tχ

2
> H

) = Φ(−H) + o(1),

where Φ stands for the c.d.f. of a standard Gaussian random variable.
Maximal type II error probability of ψχ2

uniformly over ΘM,N(τ, rε,m,n). We deduce from (5.2) that Varθ (t
χ2

) =
1 + o(Eθ (t

χ2
)), uniformly over θ ∈ ΘM,N(τ, rε, n,m).

For all θ in ΘM,N(τ, rε,m,n), by Markov’s inequality and relation (5.1),

Pθ

(
tχ

2 ≤ H
) ≤ Pθ

(∣∣tχ2 −Eθ

(
tχ

2)∣∣≥ Eθ

(
tχ

2)− H
)

≤ Varθ (t
χ2

)

(Eθ (t
χ2

) − H)2

≤ 1 + 4 supk w�
kEθ (t

χ2
)/

√
MN

(Eθ (t
χ2

) − H)2
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≤ 1

(1 − c)2Eθ (t
χ2

)2
+ 4 supk w�

k

(1 − c)2
√

MNEθ (t
χ2

)

= o(1),

provided that a(rε)
√

mnpq → +∞ and H ≤ c · a(rε)
√

mnpq for some 0 < c < 1.
Type I error probability of ψ scan.
Applying Markov’s inequality,

P0
(
t scan > K

) ≤
∑

ξ∈TM,N (m,n)

P0

(
1√
mn

∑
(i,j)∈Aξ ×Bξ

tij,w� > K

)

=
(

M

m

)(
N

n

)
P0

(
1√
mn

∑
(i,j)∈Aξ ×Bξ

tij,w� > K

)

≤
(

M

m

)(
N

n

)
exp
(−K2)

E0

(
exp

( ∑
(i,j)∈Aξ ×Bξ

K√
mn

tij,w�

))

≤
(

M

m

)(
N

n

)
exp
(−K2)(

E0

(
exp

(
K√
mn

t11,w�

)))mn

. (5.3)

Set λ = K/
√

mn with K =
√

2(1 + δ) log
((

N
n

)(
M
m

))
, for some small δ > 0 and note that K/

√
mn supk w�

k ≤
Kr

1/(2τ)
ε /

√
mn = o(1) by assumption in our theorem; then, applying Lemma 5.1 we obtain that

E0
(
exp(λt11,w�)

)= exp

(
λ2

2

(
1 + o(1)

))
.

Next, by plugging (E0(exp( K√
nm

t11,w�)))nm = exp(K2

2 (1 + o(1))) into (5.3), we obtain

P0
(
t scan > K

) ≤
(

M

m

)(
N

n

)
exp
(−K2/2

(
1 + o(1)

))= o(1), (5.4)

due to the choice of K =
√

2(1 + δ) log
((

N
n

)(
M
m

))
, for some small δ > 0.

Maximal Type II error probability of ψ scan uniformly over ΘM,N(τ, rε,m,n). For any θ ∈ ΘM,N(τ, rε,m,n),
it exists A ⊂ I and B ⊂ J such that #A = m, #B = n and ξij = 1((i, j) ∈ A × B); using the inequality t scan ≥

1√
mn

∑
(i,j)∈A×B tij,w� , we obtain

Pθ

(
t scan ≤ K

) ≤ Pθ

(
1√
mn

∑
(i,j)∈A×B

tij,w� ≤ K

)

≤ Varθ (1/(
√

mn)
∑

(i,j)∈A×B tij,w�)

(Eθ (1/(
√

mn)
∑

(i,j)∈A×B tij,w�) − K)2
.

Due to (2.5), we have

Eθ

(
1√
mn

∑
(i,j)∈A×B

tij,w�

)
= 1√

mn

∑
(i,j)∈A×B

Eθ ij
(tij,w�) ≥ a(rε)

√
mn.

By assumption (2.9) we have lim infa(rε)
√

mn/K ≥ (1 + δ)−1/2, which implies that, asymptotically, K ≤
a(rε)

√
mn(1 + δ)/(1 + δ̃) for some δ̃ > 0 and then K ≤ ca(rε)

√
mn ≤ cEθ (

1√
mn

∑
(i,j)∈A×B tij,w�) for some

0 < c < 1 if δ is small enough.
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Now, acting as for getting Equation (5.2), we have

Varθ

(
1√
mn

∑
(i,j)∈A×B

tij,w�

)
= 1

mn

∑
(i,j)∈A×B

Varθ ij
(tij,w�)

≤ 1 + 4 supk w�
k

mn

∑
(i,j)∈A×B

Eθ ij
(tij,w�)

≤ 1 + 4 supk w�
k√

mn
Eθ

(
1√
mn

∑
(i,j)∈A×B

tij,w�

)
.

Finally,

Pθ

(
t scan ≤ K

)≤ 1

(1 − c)2a2(rε)mn
+ 4 supk w�

k

(1 − c)2a(rε)mn
= o(1).

5.2. Proof of Theorem 4.1

As the test procedure ψχ2
in (2.6) does not depend on (m,n) the same upper bounds hold for it. The proof is slightly

different for ψ̃ scan
MN .

The type I error probability is bounded from above as in (5.4) for the modified value of K in this theorem:

P0

(
max

(m,n)∈KM,N

t̃ scan
mn > 1

)
≤

∑
(m,n)∈KM,N

P0
(
t scan > K

)

≤
∑

(m,n)∈KM,N

(MN)−(1+δ) exp

(
−δ log

(
M

m

)(
N

n

)(
1 + o(1)

))
,

for 0 < δ < 1 small. By hypothesis, δ log
((

M
m

)) 
 δm log(p−1) � Δm, for large m,M and some Δ > 1, as p → 0
uniformly. Therefore,

P0

(
max

(m,n)∈KM,N

t̃ scan
mn > 1

)
≤

∑
(m,n)∈KM,N

(Δ)−mn(MN)−(1+δ) = o(1).

As for the type II error probability, we first fix (m,n) in KM,N , then fix a matrix ξ in TM,N and then the same proof
in Theorem 2.1 holds.

5.3. Proof of Theorem 3.1

The usual steps for proving the lower bounds are the following. First, we bound from below the minimax total error
probability by reducing the set of parameters. Next, we choose a prior on the reduced set of parameters and bound
the testing risk from below with a Bayesian risk. Finally, this Bayesian risk is large if a χ2-distance between the
likelihoods under the null and under the mixture of alternatives is small.

We follow closely the proof in Butucea and Ingster [4] with important modifications; indeed, the two-sided alterna-
tive involves a Bayesian prior on the sequences {±θ∗

k }k and for the study of the averaged log-likelihood with respect
to this prior, instead of the Laplace transform of a Gaussian, we give in Lemma A.1 the asymptotic behaviour of the
Laplace transform of a random series. The latter is approximately the same as in the Gaussian case in our restricted
range of parameters.

Recall that {θ�
k }k∈Z is the solution of the optimisation problem (2.2) and let us choose a matrix ξ in the set

TM,N(m,n), ξ = 1((i, j) ∈ A × B) where A = Aξ is a set of m rows out of M and B = Bξ a set of n columns
out of N . Denote by

TM,N(τ, rε,m,n) = {θ = [ξij

{±θ�
k

}
k

]
(i,j)∈I×J

, ξ ∈ TM,N(m,n)
}
.

This is the reduced set of parameters, i.e., a subset of the alternative ΘM,N(τ, rε,m,n) in our test.
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A prior measure on the reduced set will choose ξ with equal probability in the set TM,N(m,n); given ξ , the (θij )’s
associated with non-zero ξij are i.i.d. and for (i, j) such that ξij = 1, the prior will choose with equal probability
between θ�

k and −θ�
k , independently for each k. We can write πij,k = 1

2 (δ−θ�
k

+ δθ�
k
), where δ stands for the Dirac

measure, and πij =∏k πij,k . Let us define

π = 1(
M
m

)(
N
n

) ∑
ξ∈TM,N (m,n)

∏
(i,j)∈Aξ ×Bξ

πij

the global prior on θ ’s in TM,N(τ, rε,m,n).
Let us write the likelihood ratio of one active component, i.e., when (i, j) is such that ξij = 1,

dPπij

dP0

({xij,k}k
)=∏

k

exp

(
− θ�

k
2

2ε2σ 2
k

)
cosh

(
xij,k

θ�
k

ε2σ 2
k

)
. (5.5)

Set X = [{xij,k}k](i,j). Then the likelihood ratio with respect to the null hypothesis of our observations becomes:

Lπ(X) = dPπ

dP0

([{xij,k}k
]
(i,j)

)= 1(
M
m

)(
N
n

) ∑
ξ∈TM,N (m,n)

dPξ

dP0
(X),

where

dPξ

dP0
(X) =

∏
(i,j)∈Aξ ×Bξ

dPπij

dP0

({xij,k}k
)
. (5.6)

In order to prove that we cannot distinguish the hypotheses asymptotically, we see that

γ = inf
ψ∈[0,1]

(
w(ψ) + sup

θ∈ΘM,N (τ,rε ,m,n)

Eθ

[
1 − ψ(X)

])

≥ inf
ψ∈[0,1]

(
w(ψ) + sup

θ∈TM,N (τ,rε ,m,n)

Eθ

[
1 − ψ(X)

])

≥ inf
ψ∈[0,1]

(
w(ψ) +

∑
θ∈TM,N (τ,rε ,m,n)

π(θ)Eθ

[
1 − ψ(X)

])

≥ inf
ψ∈[0,1]

(
E0
(
ψ(X)

)+E0
[(

1 − ψ(X)
)
Lπ(X)

])
.

This infimum is attained for the likelihood ratio test ψ�(X) = 1(Lπ(X) > 1). By Fatou lemma, we have

lim infγ ≥ E0
(
lim inf

(
ψ�(X) + (1 − ψ�(X)

)
Lπ(X)

))
,

which implies that γ → 1 if Lπ(X) → 1 in P0-probability. In order to prove this sufficient condition, it is enough to
check that

E0
(
Lπ(X)2)≤ 1 + o(1). (5.7)

First, let us consider E0(L
2
π (X)) and let us see that (5.7) can not be obtained; the explanation is that too many

events with small probability are summed up in the expected value of the square likelihood ratio.
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Non-truncated likelihood. Let us denote by X the random matrix uniformly distributed on TM,N(m,n), i.e. P(X =
ξ) = ((M

m

)(
N
n

))−1. Then, using (5.5) and (5.6), one has

E0
(
L2

π (X)
) = 1((

M
m

)(
N
n

))2E0

(∑
ξ1

∑
ξ2

dPξ1

dP0
(X)

dPξ2

dP0
(X)

)

= 1((
M
m

)(
N
n

))2 ∑
ξ1

∑
ξ2

E0

( ∏
(i,j)∈Aξ1×Bξ1

∏
k

exp

(
− θ�

k
2

2ε2σ 2
k

)
cosh

(
xij,k

θ�
k

ε2σ 2
k

)

×
∏

(u,v)∈Aξ2×Bξ2

∏
k

exp

(
− θ�

k
2

2ε2σ 2
k

)
cosh

(
xuv,k

θ�
k

ε2σ 2
k

))
.

Using Laplace transform of standard Gaussian random variable, note that, if Z ∼N (0,1) and if λ > 0

E
(
cosh(Zλ) exp

(−λ2/2
))= 1 and E

(
cosh2(Zλ) exp

(−λ2))= cosh
(
λ2),

that we apply to xij,k/(εσk). We deduce that

E0
(
L2

π (X)
) = 1((

M
m

)(
N
n

))2 ∑
ξ1

∑
ξ2

∏
(i,j)∈Aξ1∩Aξ2 ×Bξ1∩Bξ2

∏
k

cosh

(
θ�
k

2

ε2σ 2
k

)

= EX1,X2 exp(

(
H(X1,X2)L(X1,X2) log

(∏
k

cosh

(
θ�
k

2

ε2σ 2
k

)))
,

where H(X1,X2) and L(X1,X2) are random variables such that H(ξ1, ξ2) = #Aξ1 ∩ Aξ2 and L(ξ1, ξ2) = #Bξ1 ∩ Bξ2

with ξ1, ξ2 realizations of X1, X2.

At this stage, let us evaluate D := log(
∏

k cosh(
θ�
k

2

ε2σ 2
k

)):

D =
∑

k

log

(
1 + 2 sinh2

(
θ�
k

2

2ε2σ 2
k

))
=
∑

k

log

(
1 + 2

(
θ�
k

2

2ε2σ 2
k

)2(
1 + o(1)

))

=
∑

k

(
θ�
k

4

2ε4σ 4
k

)(
1 + o(1)

)= a2(rε)
(
1 + o(1)

)
, (5.8)

which holds under relation (2.4).
Back to E0(L

2
π (X)), we can write

E0
(
L2

π (X)
) = EX1,X2

(
E
X1
X1,X2

(
exp
(
H(X1,X2)L(X1,X2)D

)))
.

Note that, given X1, H(X1,X2) ∼ HG(M,m,m), L(X1,X2) ∼ HG(N,n,n) and H(X1,X2) and L(X1,X2) are in-
dependent random variables. Then, due to Proposition 20.6, page 173 in [1], there exist two Binomial variables Y1 ∼
B(m,p) and Y2 ∼ B(n,q) such that EX1

X1,X2
(Y1|H(X1,X2)) = H(X1,X2) and E

X1
X1,X2

(Y2|L(X1,X2)) = L(X1,X2),

where E
X1
X1,X2

denotes that conditional expectation w.r.t. X1.
Now, applying twice Jensen’s Inequality and then using the generating function of Binomial random variables, we

deduce

E0
(
L2

π (X)
) = EX1,X2

(
E
X1
X1,X2

(
exp
(
E
X1
X1,X2

(
Y1|H(X1,X2)

)
E
X1
X1,X2

(
Y2|L(X1,X2)

)
D
)))

≤ EX1,X2E
X1
X1,X2

(
exp
(
Y1E

X1
X1,X2

(
Y2|L(X1,X2)

)
D
)|H(X1,X2)

)
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≤ E
(
exp(Y1Y2D)

)
= EE

(
exp(Y1Y2D)|Y1

)
= E

([(
exp(Y1D) − 1

)
q + 1

]n)
= E

(
exp
(
n log

(
1 + (exp(Y1D) − 1

)
q
)))

. (5.9)

Next by applying twice the Mean Value Theorem, using twice the inequality log(1 + x) ≤ x on IR+ and again due
to generating functions of Binomial random variables, we obtain that there exist θ1 ∈]0,1[ and θ2 ∈]0,1[

E0
(
L2

π (X)
) ≤ E

(
exp
(
n log

(
1 + Y1qD exp(θ1Y1D)

)))
≤ E

(
exp
(
nY1qD exp(θ1mD)

))
= [p(exp

(
nqD exp(θ1mD)

)− 1
)+ 1

]m
= exp

(
m log

(
1 + pnqD exp(θ1mD) exp

(
θ2nqD exp(θ1mD)

)))
≤ exp

(
mpnqD exp(θ1mD) exp

(
θ2nqD exp(θ1mD)

))
,

in which the argument of the exponential can not be made arbitrary small.
Truncated likelihood. That is why we have to modify slightly the likelihood ratio, by truncation, as follows:

L̃π (X) = 1(
M
m

)(
N
n

) ∑
ξ∈TM,N (m,n)

∏
(i,j)∈Aξ ×Bξ

∏
k

exp

(
− θ�

k
2

2ε2σ 2
k

)
cosh

(
xij,k

θ�
k

ε2σ 2
k

)
1(Γξ ),

where the event Γξ is defined later on.
The idea is that the random variable in this event is truncated at the values predicted by large deviations and this is

sufficient to diminish the second-order moment of the likelihood ratio.
Let us denote Γ =⋂ξ∈TM,N (m,n)Γξ and Γ C its complement. Then, for some fixed δ > 0, let us consider the event

E = {|Lπ(X) − 1| > δ}
P0(E) = P0(E ∩ Γ ) + P0

(
E ∩ Γ C

)
≤ δ−2

E0
((

Lπ(X) − L̃π (X) + L̃π (X) − 1
)2

1(Γ )
)+ P0

(
Γ C
)

≤ 2δ−2{
E0
((

Lπ(X) − L̃π (X)
)21(Γ )

)+E0
((

L̃π (X) − 1
)21(Γ )

)}+ P0
(
Γ C
)

≤ 2δ−2
E0
((

L̃π (X) − 1
)2)+ P0

(
Γ C
)

≤ 2δ−2[(
E0
(
L̃π (X)2)− 1

)− 2
(
E0
(
L̃π (X)

)− 1
)]+ P0

(
Γ C
)
,

where we used the following equality 1(Γ )Lπ(X) = 1(Γ )L̃π (X). Then, it remains to prove the following lemma to
complete the proof of Theorem 3.1.

Lemma 5.2. Under the assumptions of Theorem 3.1 we have the following:

1. P0(Γ ) → 1.
2. E0(L̃π (X)) → 1.
3. E0(L̃π (X)2) ≤ 1 + o(1).

The proof of Lemma 5.2 is postponed in Section A.1.
In order to finish this part, let us define the event Γξ for some small δ1 > 0 as follows

Γξ =
⋂

δ1m≤h≤m,

δ1n≤l≤n

⋂
V ∈TM,N (h,l):

AV ⊂Aξ ,BV ⊂Bξ

{YV ≤ Thl}, (5.10)
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where⎧⎨
⎩YV = 1

a(rε)
√

hl

∑
(i,j)∈AV ×BV

∑
k(log cosh(uk · xij,k

εσk
) − u2

k

2 + u4
k

4 ), uk = θ�
k /(εσk),

T 2
hl = 2

(
log
((

M
h

)(
N
l

))
(1 + Aε) + log(mn)

)
,

for

Aε = max

{
1

log log(
(
M
h

)(
N
l

)
)
,

1

log((a(rε) supk w�
k)

−1)

}
.

Note that θ�
k is null for k > T and thus the sum over k in YV contains a finite number of non-null elements. Due to

(2.4), recall that we have

∑
k

u4
k = 2a2(rε). (5.11)

We want T 2
hl to be equivalent to 2

(
log
((

M
h

)(
N
l

))+ log(mn)
)
, therefore we should have Aε = o(1). Moreover, the

proof of the first item in Lemma 5.2, requires that

Aε · log

((
M

h

)(
N

l

))
→ ∞ and Aε

/(
a(rε) sup

k

w�
k

)
→ ∞. (5.12)

Let us see that with our choice of Aε , the relations (5.12) as well as Aε = o(1) are satisfied for any rε such that
rε < r̃ε ,

a(rε) · sup
k

w�
k ≤ O(1)a(r̃ε)r̃

1/(2τ)
ε

≤ O(1)a(r̃ε)
1+1/(4τ+4s+1)ε2/(4τ+4s+1)

≤ O(1)
(
a(r̃ε) · ε1/(2τ+2s+1)

)(4τ+4s+2)/(4τ+4s+1) = o(1),

by assumption (3.3). This also implies that Aε = o(1). Moreover,

Aε

/(
a(rε) sup

k

w�
k

)
≥
(

log
((

a(rε) sup
k

w�
k

)−1))−1 ·
(
a(rε) sup

k

w�
k

)−1 → ∞.

Also, Aε · log
((

M
h

)(
N
l

))≥ log
((

M
h

)(
N
l

))
/ log log

((
M
h

)(
N
l

))→ ∞.

Appendix

Lemma A.1. If rε → 0 such that a(rε) · supk w�
k = o(1), then for any λ > 0 such that λ = O(1),

E0(exp

(
λ
∑

k

(
log cosh(uk · η11,k) − u2

k

2
+ u4

k

4

))
= exp

(
λ2a2(rε)

2

(
1 + O

(
a(rε) sup

k

w�
k

)))
.

Proof. Let us see that for bounded λ > 0, for u → 0 and a standard Gaussian random variable η, we have:

E

(
exp

(
λ ·
(

log cosh(u · η) − u2

2
+ u4

4
+ O

(
u6))))= exp

(
λ2u4

4
+ O

(
u6)).
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This proof can be adapted from Gayraud and Ingster [7] (cf. Lemma A.1). Now, we apply this result for each k and
recall that u2

k = a(rε) · w�
k ≤ a(rε) · supk w�

k = o(1) by assumption. Using
∑

k u4
k = 2a2(rε), we get

E0

(
exp

(
λ
∑

k

(
log cosh(uk · η11,k) − u2

k

2
+ u4

k

4

)))
= exp

(
λ2

4

∑
k

u4
k

(
1 + O

(
u2

k

)))

= exp

(
λ2a2(rε)

2

(
1 + O

(
a(rε) · sup

k

w�
k

)))
. �

A.1. Proof of Lemma 5.2

Take a small δ > 0. The detection boundary a(rε) satisfies (3.5), so the most difficult case is when the limit is close
to 1. Therefore, we shall assume that

a2(rε)mn ∼ (2 − δ)
(
m · log

(
p−1)+ n · log

(
q−1)).

This implies

a2(rε) 
 log(p−1)

n
+ log(q−1)

m
. (A.1)

1. We shall prove that P0(Γ
C) → 0. Let us write more conveniently

Γ C =
⋃

ξ∈TM,N (m,n)

⋃
δ1m≤h≤m,

δ1n≤l≤n

⋃
V ⊂ξ :

AV ⊂Aξ ,BV ⊂Bξ

{YV > Thl}

=
⋃

δ1m≤h≤m,

δ1n≤l≤n

⋃
V ∈TM,N (h,l)

{YV > Thl}.

Therefore, we have

P0
(
Γ C
) ≤

∑
δ1m≤h≤m,

δ1n≤l≤n

∑
V ∈TM,N (h,l)

P0
(
YV Thl > T 2

hl

)

≤
∑

δ1m≤h≤m,

δ1n≤l≤n

∑
V ∈TM,N (h,l)

exp
(−T 2

hl

)
E0

(
exp

( ∑
(i,j)∈AV ×BV

ThlYV

))

≤
∑

δ1m≤h≤m,

δ1n≤l≤n

(
M

h

)(
N

l

)
exp
(−T 2

hl

)

×E
hl
0

(
exp

(
Thl

a(rε)
√

hl

∑
k

(
log cosh

(
uk · x11,k

εσk

)
− u2

k

2
+ u4

k

4

)))
.

Using Equation (5.11) and applying Lemma A.1 for λ = Thl/(a(rε)
√

hl) which is O(1), one obtains

E0

(
exp

(
Thl

a(rε)
√

hl

∑
k

(
log cosh

(
uk · x11,k

εσk

)
− u2

k

2
+ u4

k

4

)))
= exp

(
T 2

hl

2hl

(
1 + O

(
a(rε) sup

k

w�
k

)))
.
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Recall that T 2
hl = 2 log

((
M
h

)(
N
l

))
(1 + Aε) + 2 log(mn) where Aε = o(1) by construction. Therefore

P0
(
Γ C
) ≤

∑
δ1m≤h≤m,

δ1n≤l≤n

(
M

h

)(
N

l

)
exp
(−T 2

hl

)(
exp

(
T 2

hl

2hl

(
1 + O

(
a(rε) sup

k

w�
k

))))hl

=
∑

δ1m≤h≤m,

δ1n≤l≤n

exp

(
−T 2

hl

2
+ T 2

hl

2
O
(
a(rε) sup

k

w�
k

)
+ log

((
M

h

)(
N

l

)))

≤ exp

(
− log

((
M

h

)(
N

l

))
· Aε ·

(
1 − O

(
a(rε) sup

k

w�
k

)(
1 + 1

Aε

))

− log(mn)
(

1 − O
(
a(rε) sup

k

w�
k

)))
= o(1),

for large enough m,n,M and N , as we have both Aε · log
((

M
h

)(
N
l

))→ ∞ and Aε · /(a(rε) supk w�
k) → ∞ (see (5.12))

and a(rε) supk w�
k = o(Aε) = o(1).

2. We have

E0
(
L̃π (X)

) = E0

(
1(

M
m

)(
N
n

) ∑
ξ∈TM,N (m,n)

dPξ

dP0
(X)1(Γξ )

)
= Pξ (Γξ ),

which tends to 1 if and only if Pξ (Γ
C
ξ ) → 0. As we can write

Pξ

(
Γ C

ξ

)≤ ∑
δ1m≤h≤m,

δ1n≤l≤n

∑
V ⊂ξ

PV (YV > Thl),

where PV is such that

dPV

dP0
(X) =

∏
(i,j)∈AV ×BV

∏
k

exp

(
−u2

k

2

)
cosh

(
uk

xij,k

εσk

)
= exp

(
YV a(rε)

√
hl − lh

a2(rε)

2

)
.

Then, applying Lemma A.1, one obtains for any positive λ such that λ = O(1),

PV (YV > Thl) = PV

(
YV a(rε)

√
hl > Thla(rε)

√
hl
)

≤ EV

[
exp
(
λYV a(rε)

√
hl
)]

exp
(−λThla(rε)

√
hl
)

= E0
[
exp
(
(λ + 1)YV a(rε)

√
hl
)]

exp

(
−lh

a2(rε)

2
− λThla(rε)

√
hl

)

= exp

(
(λ + 1)2lh

a2(rε)

2

(
1 + o(1)

)− lh
a2(rε)

2
− λThla(rε)

√
hl

)
. (A.2)

The minimum value for the right-hand side of (A.2) is

exp

(
− (Thl − a(rε)

√
hl)2

2

(
1 + o(1)

))

which is achieved for λ = Thl

a(rε)
√

hl
− 1. Due to T 2

hl = 2 log
((

M
h

)(
N
l

))
(1 + Aε) + 2 log(mn) and (A.1), note that λ

satisfies λ = O(1) and that asymptotically
T 2

hl

a2(rε)hl
> 2

2−δ
> 1.
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In conclusion,

Pξ

(
Γ C

ξ

) ≤
∑

δ1m≤h≤m,

δ1n≤l≤n

(
m

h

)(
n

l

)
exp

(
−1

2

(
Thl − a(rε)

√
hl
)2(1 + o(1)

))

≤
∑

δ1m≤h≤m,

δ1n≤l≤n

(
m

h

)(
n

l

)
exp

(
−c(δ)

2
T 2

hl

(
1 + o(1)

))

for some c(δ) > 0 small with δ and where
(
m
h

)(
n
l

)
exp(− c(δ)

2 T 2
hl(1 + o(1))) is bounded by

exp

(
h log

(
me

h

)
+ l log

(
ne

l

)
− c(δ)

2

(
2h log

(
M

h

)
+ 2l log

(
N

l

))
(1 + Aε)

(
1 + o(1)

)− log(mn)

)
.

We see that

h log

(
me

h

)
≤ m log

(
e

δ1

)
, ∀h : δ1m ≤ h ≤ m

and

h log

(
M

h

)
(1 + Aε) ≥ c1δ1m log

(
M

m

)
asymptotically, for some c1 > 0.

The same occurs for terms in l, N and n. Therefore, it implies that asymptotically for some c̃1(δ) > 0 and c̃2(δ) > 0

Pξ

(
Γ C

ξ

)≤ mn exp

(
−c̃1(δ)m log

(
M

m

)
− c̃2(δ)n log

(
N

n

)
− c(δ)

2
log(nm)

)
= o(1).

3. We have, for ξ1 = 1((i, j) ∈ A1 × B1) and ξ2 = 1((i, j) ∈ A2 × B2),

E0
(
L̃2

π (X)
) = 1

(
(
M
m

)(
N
n

)
)2

∑
ξ1

∑
ξ2

g
(
h(ξ1, ξ2), l(ξ1, ξ2)

)
,

where

g
(
h(ξ1, ξ2), l(ξ1, ξ2)

)
=

∏
(i1,j1)∈A1×B1

∏
(i2,j2)∈A2×B2

∏
k

exp

(
− θ�

k
2

ε2σ 2
k

)

·E0

(
cosh

(
xi1j1,k

θ�
k

ε2σ 2
k

)
cosh

(
xi2j2,k

θ�
k

ε2σ 2
k

)
1(Γξ1 ∩ Γξ2)

)

=
∏

(i,j)∈(A1∩A2)×(B1∩B2)

∏
k

exp

(
− θ�

k
2

ε2σ 2
k

)
E0

(
cosh2

(
xij,k

θ�
k

ε2σ 2
k

)
1(Γξ1 ∩ Γξ2)

)

and the function g depends on the sets A1,A2 and B1,B2 only through the number h(ξ1, ξ2) of common rows of A1

and A2 and the number l(ξ1, ξ2) of common columns of B1 and B2. For the sake of simplicity, denote h := h(ξ1, ξ2)

and l := l(ξ1, ξ2). After some combinatorics we can write

E0
(
L̃2

π (X)
) = E

(
g(H,L)

)
,
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where conditionally on ξ1, H and L are independent random variables having hypergeometric distribution
HG(M,m,m) and HG(N,n,n), respectively. Let us see that, for any 0 ≤ h ≤ m and 0 ≤ l ≤ n,

log
(
g(h, l)

) ≤
∑

(i,j)∈(A1∩A2)×(B1∩B2)

log

(∏
k

exp

(
− θ�

k
2

ε2σ 2
k

)
E0

(
cosh2

(
xij,k

θ�
k

ε2σ 2
k

)))

= hl log

(∏
k

exp

(
− θ�

k
2

ε2σ 2
k

)
1

2

(
exp

(
2θ�

k
2

ε2σ 2
k

)
+ 1

))

= hl log

(∏
k

cosh

(
θ�
k

2

ε2σ 2
k

))
= hl · D.

Therefore, E(g(H,L)) ≤ E(eHL·D) for D = a2(rε)(1 + o(1)) (see equation (5.8)).
We shall split E(g(H,L)) into the sum I1 + I2, where

I1 = E
(
g(H,L) · 1(HD < 1)

)
,

I2 = E
(
g(H,L) · 1(HD ≥ 1)

)
.

3.1. For I1, we act exactly as for (5.9); again due to Proposition 20.6 in [1] and given X1, there exist two Binomial
random variables Y1 ∼ B(m,p) and Y2 ∼ B(n,q) such that EX1

X1,X2
(Y1|H) = H and E

X1
X1,X2

(Y2|L) = L; then applying
twice Jensen Inequality and using the generating function of Binomial random variables, we get

I1 ≤ E
(
E
(
eLHD1(HD < 1)|H ))

= E
(
E
X1E

(
e
E
X1
X1,X2

(Y2|L)HD|H )1(HD < 1)
)

≤ E
(
E
(
eY2HD|H )1(HD < 1)

)
≤ E

((
1 + q

(
eHD − 1

))n1(HD < 1)
)

≤ E
(
exp
(
CnqHD

(
1 + o(1)

)))
= E

(
exp
(
CnqE(Y1|H)D

(
1 + o(1)

)))
≤ E

(
exp
(
CnqY1D

(
1 + o(1)

)))= (1 + p
(
eCnqD(1+o(1)) − 1

))m
,

for some constant C > 0. By assumption (3.2) and relations (A.1) and (5.8), Dn 
 log(p−1), which implies that
Dnq 
 (q log(p−1)) and this is an o(1) by assumption (3.1). Then, by assumption (3.4), I1 ≤ exp(CmnpqD(1 +
o(1))) = 1 + o(1).

3.2. The rest of the section is devoted to the proof of I2 = o(1). We shall further split the expected value into the
sum of I21 + I22, where

I21 = E
(
g(H,L) · 1(HD ≥ 1) · 1(L < nδ1)

)
,

I22 = E
(
g(H,L) · 1(HD ≥ 1) · 1(L ≥ nδ1)

)
,

for some fixed δ1 > 0, small enough such that Dnδ1 ≤ log(p−1)/2 and that Dmδ1 ≤ log(q−1)/2.
3.2.1. On the one hand

I21 ≤
∑

D−1<h≤m,0≤l<nδ1

ehlD
PHG(M,m,m)(H = h)PHG(N,n,n)(L = l)

≤
∑

D−1<h≤m,0≤l<nδ1

eh(lD−log(p−1)(1+o(1))),
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as PHG(N,n,n)(L = l) ≤ 1 and by using Lemma 5.3 in Butucea and Ingster [4] for log(PHG(M,m,m)(H = h)) ≤
h log(p)(1+o(1)). Note that in our case, we can apply Lemma 5.3 in Butucea and Ingster [4] due to assumption (3.1).
Now, under the constraints in the sum, lD ≤ Dnδ1 ≤ log(p−1)/2. This implies that h(lD − log(p−1)(1 + o(1))) ≤
−h log(p−1)(1/2 + o(1)) ≤ −D−1 log(p−1)(1/2 + o(1)) 
 −n. Therefore,

I21 ≤ mne−Bn, for some fixed B > 0,

and this is an o(1).
3.2.2. We can also split I22 into the sum of I221 + I222, where

I221 = E
(
g(H,L) · 1(HD ≥ 1,H < mδ1) · 1(L ≥ nδ1)

)
,

I222 = E
(
g(H,L) · 1(HD ≥ 1,H ≥ mδ1) · 1(L ≥ nδ1)

)
.

It is easy to check that I221 = o(1) as we previously did for I21, except that Lemma 5.3 in Butucea and Ingster [4] is
used to control the term PHG(N,n,n)(L = l).

On the other hand, we can write

I222 = E
(
g(H,L)1(H)

)
, where H = {(h, l),mδ1 ≤ h ≤ m,nδ1 ≤ l ≤ n

}
.

I222 is the only term for which the truncation is really required to prove that I222 = o(1). Note that under the event H
we have T 2

hl = (2 + δ)(h/m · m log(p−1) + l/n · n log(q−1)) ≥ δ1T
2
mn.

We divide again the set H in disjoint sets

H1 =
{
(h, l) ∈ H : T 2

hl > 2T 2
mn

hl

mn

}
and H2 =

{
(h, l) ∈H : T 2

hl ≤ 2T 2
mn

hl

mn

}
.

Let us go back to Lπ(X) and rewrite it as follows

= 1(
M
m

)(
N
n

) ∑
ξ∈TM,N (m,n)

exp

( ∑
(i,j)∈Aξ ×Bξ

∑
k

(
log cosh

(
xij,k

εσk

uk

)
− u2

k

2

))

= exp(−a2(rε)mn/2)(
M
m

)(
N
n

) ∑
ξ∈TM,N (m,n)

exp

( ∑
(i,j)∈Aξ ×Bξ

∑
k

(
log cosh

(
xij,k

εσk

uk

)
− u2

k

2
+ u4

k

4

))
.

Now, we give a tighter upper bound for g(h, l) than the one used for I1. Using the same notation as to define YV in

(5.10) and for any matrix ξ , we define the random variable Yξ = 1
a(rε)

√
hl

∑
(i,j)∈Aξ ×Bξ

∑
k(log cosh(

xij,k

εσk
uk) − u2

k

2 +
u4

k

4 ). Then, we write

g(h, l) = e−a2(rε)mn
E0
(
ea(rε)

√
mn(Yξ1 +Yξ2 )1(Γξ1 ∩ Γξ2)

)
≤ e−a2(rε)mn

E0
(
ea(rε)

√
mn(Yξ1 +Yξ2 )1(Yξ1 ≤ Tmn,Yξ2 ≤ Tmn)

)
≤ e−a2(rε)mn+2TmnJ

E0
(
e(a(rε)

√
mn−J )(Yξ1 +Yξ2 )

)
, (A.3)

for some J > 0 that we will choose later on. In order to deal with I222, we keep in mind that we consider only
submatrices ξ1 and ξ2 having h common rows and l common columns, such that (h, l) ∈H. Denote by V the submatrix
of common rows and columns for ξ1 and ξ2, that is

V = 1
(
(i, j) ∈ (Aξ1 × Bξ1) ∩ (Aξ2 × Bξ2)

)
,

and by V1 = ξ1 − V (respectively V2 = ξ2 − V ). Therefore,
√

mn(Yξ1 + Yξ2) = √
mn − hl(YV1 + YV2) + 2

√
hlYV .
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Replace this into the equation (A.3) and get by Lemma A.1

I222 ≤
∑

(h,l)∈H
exp

(
−a2(rε)mn + 2TmnJ + (a(rε)

√
mn − J

)2(1 + hl

mn

))
PHG(M,m,m)(h)PHG(N,n,n)(l)

≤
∑

(h,l)∈H
exp

(
−a2(rε)mn + 2Tmna(rε)

√
mn − T 2

mn

1 + hl/(mn)
− (h log

(
p−1)+ l log

(
q−1))(1 + o(1)

))

≤
∑

(h,l)∈H
exp

(
−(a(rε)

√
mn − Tmn

)2 + T 2
mnhl

mn + hl
− T 2

hl

2

(
1 + o(1)

))
,

for a(rε)
√

mn−J = Tmn/(1+hl/(mn)). Note that, for δ > 0 small enough, there exists δ2 > 0 such that (a(rε)
√

mn−
Tmn)

2 ≥ δ2T
2
mn. Moreover, for (h, l) ∈ H1,

T 2
mnhl

mn + hl
− (h log

(
p−1)+ l log

(
q−1))(1 + o(1)

) ≤ T 2
mnhl

mn + hl
− T 2

hl(1 + o(1))

2

≤ T 2
mn

hl

mn

(
1

1 + hl/(mn)
− 1

)
+ o
(
T 2

mn

)
,

which is negative and asymptotically O(T 2
mn). This implies that I222 = o(1) over the set H1.

Finally, we give a yet slightly different upper bound for g(h, l) in order to deal with I222 when (h, l) belongs to
H2. Again with the submatrix V = 1((i, j) ∈ (Aξ1 × Bξ1) ∩ (Aξ2 × Bξ2)), one has,

g(h, l) ≤ e−a2(rε)mn
E0
(
ea(rε)

√
mn(Yξ1 +Yξ2 )1(YV ≤ Thl)

)
≤ e−a2(rε)hl

E0
(
e2a(rε)

√
hlYV 1(YV ≤ Thl)

)
≤ e−a2(rε)hl+ThlJE0

(
e(2a(rε)

√
hl−J )YV +J (YV −Thl)1(YV ≤ Thl)

)
≤ e−a2(rε)hl+ThlJ+(2a(rε)

√
hl−J )2/2.

Take J = 2a(rε)
√

hl − Thl which is indeed positive for (h, l) in H2 and obtain

g(h, l) ≤ exp

(
−a2(rε)hl + 2a(rε)

√
hlThl − T 2

hl

2

)
.

Moreover, denote D2
hl = h log(p−1) + l log(q−1) and see that D2

mnhl/(mn) ≤ D2
hl . We get

I222 ≤
∑

(h,l)∈H
exp

(
−a2(rε)hl + 2a(rε)

√
hlThl − T 2

hl

2

)
PHG(M,m,m)(h)PHG(N,n,n)(l)

≤
∑

(h,l)∈H
exp

(
−(a(rε)

√
hl − Thl

)2 + T 2
hl

2
− D2

hl

(
1 + o(1)

))

≤
∑

(h,l)∈H
exp

(
−δ2

8
D2

hl + o(1)D2
hl

)
= o(1),

where the last inequality derived from the following relations{
Thl − a(rε)

√
hl ≥ √

2Dhl(1 − √
1 − δ/2) + o(Dhl) ≥

√
2

4 Dhl + o(Dhl),

T 2
hl

2 − D2
hl(1 + o(1)) = D2

hl(Aε + o(1)).
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A.2. Proof of Lemma 5.1

For the sake of simplicity, we omit in this part the indices i and j so that tij,w� and ηij,k are denoted by tw� and ηk ,
respectively.

Under H0, observe that tw� =∑k w�
k(η

2
k − 1), with ηk

i.i.d.∼ N (0,1). Using the fact that E(etη2
k ) = 1

(1−2t)1/2 , for

t ≤ 1
2 , we obtain for λ such that λ supk w�

k = o(1),

E0
(
exp(λtw�)

) =
∏
k∈Z

exp

(
−λw�

k − 1

2
log
(
1 − 2λw�

k

))

= exp

(
λ2
∑

k

(
w�

k

)2(
1 + o(1)

))

= exp

(
λ2

2

(
1 + o(1)

))
,

where the last equality holds since
∑

k(w
�
k)

2 = 1
2 .

A.3. Proof of Proposition 2.1

These computations can be found in Ingster and Suslina [17], but we give the sketch of proof for the convenience of
the reader.

Let us change variables in problem (2.2), by defining vk = θ2
k

σ 2
k

√
2

, for all k ∈ Z. We have {θk}k belongs to Σ(τ, rε)

if and only if {vk}k belongs to Σ̃(τ, rε), where

Σ̃(τ, rε) =
{
{vk}k ∈ l1(Z) : vk ≥ 0; (2π)2τ

∑
k∈Z

|k|2τ σ 2
k vk ≤ 1√

2
;
∑
k∈Z

vkσ
2
k ≥ r2

ε√
2

}
.

The problem (2.2) is equivalent to

√
2

ε2
sup

{wk}k :∑k w2
k=1/2,wk≥0

inf
{vk}k∈Σ̃(τ,rε)

∑
k

wkvk

=
√

2

ε2
sup

{wk}k :∑k w2
k≤1/2,wk≥0

inf
{vk}k∈Σ̃(τ,rε )

∑
k

wkvk

=
√

2

ε2
inf

{vk}k∈Σ̃(τ,rε)

sup
{wk}k :∑k w2

k≤1/2,wk≥0

∑
k

wkvk,

by the minimax theorem on convex sets. Now, use the Cauchy–Schwarz inequality to see that

√
2 sup

{wk}k :∑k w2
k≤1/2,wk≥0

∑
k

wkvk =
(∑

k

v2
k

)1/2

and the equality holds for wk = vk(2
∑

k v2
k )

−1/2. Since we denoted by ε2a(rε) = (
∑

k(v
�
k)

2)1/2 we get w�
k =

v�
k/(

√
2ε2a(rε)), which is equivalent to

w�
k = (θ�

k )2

2σ 2
k ε2a(rε)

, for all k ∈ Z.
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It follows that solving the problem (2.2) reduces to solve the optimization program

inf{vk}k,vk≥0

∑
k

v2
k + λ1

(∑
k

(
2π |k|)2τ

σ 2
k vk − 1√

2

)
− λ2

(∑
k

σ 2
k vk − r2

ε√
2

)
.

By the Lagrangian multipliers rules, one gets for λ1 ∈R and λ2 ∈R the following system of equations⎧⎪⎨
⎪⎩

2vk + λ1
√

2(2π)2τ (|k|2τ σ 2
k ) − λ2

√
2σ 2

k = 0, for all k ∈ Z,√
2(2π)2τ

∑
k vk|k|2τ σ 2

k = 1,√
2
∑

k vkσ
2
k = r2

ε .

Put, for all k ∈ Z, vk = vσ 2
k (1 − (

|k|
T

)2τ )+, where v = λ2√
2

, T = 1
2π

(λ2
λ1

)1/(2τ) and (x)+ = max(0, x).

We evaluate the solution of the previous system as T goes to infinity. Using σk ∼ |k|s for |k| large enough and
some s > 0, the last two equations in the previous system become{

κ2vT 2τ+4s+1 ∼ 1,

κ1vT 4s+1 ∼ r2
ε ,

that gives

T ∼
(

κ1

κ2

)1/(2τ)

r
− 1

τ
ε and v ∼ 1

κ1

(
κ2

κ1

)(4s+1)/(2τ)

r2+(4s+1)/τ
ε .

Note that T → ∞ provided that rε → 0. It further gives

a2(rε)ε
4 =

∑
|k|≤T

(
v�
k

)2 ∼ 2v2T 4s+1κ3 ∼ c(τ, s)2r4+(4s+1)/τ
ε .

Finally, it is straightforward that

sup
k

w�
k ≤ v

a(rε)ε2
max

0≤|k|≤T
σ 2

k

(
1 −

( |k|
T

)2τ)

≤ v

a(rε)ε2
σ 2

T 
 r(4s+2τ+1)/τ−(4s+4τ+1)/(2τ)−(2s)/τ
ε = r1/(2τ)

ε

rε→0−→ 0.
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