
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2016, Vol. 52, No. 3, 1474–1513
DOI: 10.1214/15-AIHP684
© Association des Publications de l’Institut Henri Poincaré, 2016

Precise large deviation results for products of random matrices

Dariusz Buraczewskia,1 and Sebastian Mentemeierb,2

aUniwersytet Wrocławski, Instytut Matematyczny, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland. E-mail: dbura@math.uni.wroc.pl
bTU Dortmund, Fakultät für Mathematik, Lehrstuhl IV, Vogelpothsweg 87, 44227 Dortmund, Germany.

E-mail: sebastian.mentemeier@tu-dortmund.de

Received 26 May 2014; revised 16 April 2015; accepted 16 April 2015

Abstract. The theorem of Furstenberg and Kesten provides a strong law of large numbers for the norm of a product of random
matrices. This can be extended under various assumptions, covering nonnegative as well as invertible matrices, to a law of large
numbers for the norm of a vector on which the matrices act. We prove corresponding precise large deviation results, generalizing
the Bahadur–Rao theorem to this situation. Therefore, we obtain a third-order Edgeworth expansion for the cumulative distribution
function of the vector norm. This result in turn relies on an application of the Nagaev–Guivarch method. Our result is then used to
study matrix recursions, arising e.g. in financial time series, and to provide precise large deviation estimates there.

Résumé. Le théorème de Furstenberg et Kesten établit une loi forte des grands nombres pour la norme d’un produit de matrices
aléatoires. Cela peut être étendu sous des hypothèses variées, dans le cas des matrices positives ou inversibles, à une loi des
grand nombres pour la norme d’un vecteur sur lequel les matrices agissent. Dans ce cadre, nous prouvons des résultats de grandes
déviations précis, en généralisant le théorème de Bahadur–Rao à cette situation. Ainsi, nous obtenons une expansion de Edgeworth
au troisième ordre pour la fonction de répartition de la norme du vecteur. Ce résultat se base sur une application de la méthode de
Nagaev–Guivarch. Notre résultat est utilisé ensuite pour étudier des récurrences matricielles, qui apparaissent par exemple dans les
séries temporelles en finance, et pour donner des estimations précises de grandes déviations.
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1. Introduction

Let d ≥ 1, | · | be any norm on Rd and ‖ · ‖ be the corresponding operator norm. Let (An)n∈N be a sequence of
independent identically distributed d×d-matrices such that E log+ ‖A1‖<∞. The Furstenberg–Kesten theorem [15,
Theorem 2] provides us with a strong law of large numbers for the norm of the products Πn :=An · · ·A1, namely

lim
n→∞

1

n
log‖Πn‖ = γ P-a.s.,

with γ = infm∈N m−1E log‖Πm‖ being called the (top) Lyapunov exponent of (An)n∈N. Under different sets of addi-
tional assumptions (to be detailed below) on the law μ of A1, the convergence result has been strengthened towards a
SLLN for the norm of a vector under the action of the random matrices: For example, following [12,19,23,24], assume
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that the support of μ consists of nonnegative matrices and contains a matrix with all entries positive. Then it holds for
all nonnegative vectors x that

lim
n→∞

1

n
Sx

n := lim
n→∞

1

n
log |Πnx| = γ P-a.s. (1.1)

Under a second moment assumption, Hennion [19] proved a CLT, namely that

1√
n

(
Sx

n − nγ
)

converges to a normal law. For related limit theorems for invertible matrices, see [4,27].
Observe that in both cases, the SLLN and the CLT, the limit does not depend on the starting vector x. In contrast

therewith is the result of Kesten [23] about the behavior of the maximum of Sx
n : Assuming in essence that the action

of A1 is both expanding and contracting with positive probability, that is γ < 0 but P(Sx
1 > 0) > 0, Kesten showed

that there is α > 0 and a continuous function r on the unit sphere S, which is strictly positive on nonnegative vectors,
such that

lim
t→∞ eαtP

(
max

n
Sx

n > t
)
= r(x). (1.2)

Here the behavior in the limit depends on the initial value.
We are going to provide a third-order Edgeworth expansion, which gives a rate of convergence for the CLT. We also

provide a formula for the asymptotic variance σ 2 and show that it is positive under a natural nonlattice assumption.
The Edgeworth expansion will as well be the main tool in describing the convergence in the law of large numbers,
i.e. the Furstenberg–Kesten theorem, in more details. In particular, we will discover how fluctuations depend on the
starting vector x as well as on the action of (An)n∈N on the unit sphere, which is given by the Markov chain

Xx
n :=

Πnx

|Πnx| .

What we will prove is a large deviation result similar to the Bahadur–Rao theorem, i.e. for (suitable) q > γ , there is
an explicitly given sequence Jn(q) tending to infinity at an exponential rate, such that

lim
n→∞Jn(q)E

(
rq

(
Xx

n

)
1{Sx

n≥nq}
)= rq(x) (1.3)

for a positive continuous function rq which depends on q , and generalizes the function r(x) of Kesten’s result. This
result is in the scope of large deviation principles for Markov additive processes, see [22,26,31] for related results,
where stronger conditions on Xx

n have to be imposed than those who are satisfied for the chain generated by matrices.
The very recent paper of Guivarc’h [16] provides a local limit theorem, which is proved along similar lines as our
Edgeworth expansion.

As an application of our result, we will shed new light on the classical result of Kesten about random difference
equations: Let M be a random d × d-matrix and B a random vector in Rd . Under weak assumptions on (M,B), there
is a unique solution (in law) to the equation

R
d=MR +B, (1.4)

where
d=means same law. In the case of nonnegative M,B,R, Kesten [23] proved, assuming that M is both contracting

and expanding with positive probability, that for the same α > 0 and r as in (1.2),

lim
t→∞ tαP

(〈R,x〉> t
)=Kr(x), (1.5)

for some K > 0. This result has been extended to the case of invertible matrices in [1,8,17,25,28], where it has always
been an involved question to prove that K is actually positive. In both cases (nonnegative resp. invertible matrices), our
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result will be applied to give an rather elementary proof of the fact that K > 0. Here, the law of the matrix A :=M

will be relevant.

This approach can also be extended to the study of branching equations, i.e.

R
d=

N∑
i=1

MiRi +B, (1.6)

where now N ≥ 2 is a fixed integer, (M1, . . . ,MN) are random matrices and B a random vector, independent of Ri ,
which are i.i.d. copies of R. For random variables R satisfying such an equation, the heavy tail property (1.5) has been
shown to hold in [9,10,30], but the positivity of K remained a partially open question in the latter two articles. Due to
the branching structure of equation (1.6), the combinatorial part of the approach becomes more involved (it has been
worked out in the one-dimensional case in [11]), this is why we decided to postpone it to the separate work [6] and
focus on the application of the large deviations result here, which can be seen more directly in the case of equation
(1.4).

Having thus described the scope of the paper, we are now going to introduce some notations and concepts in order
to state the main results in full detail. Since we want to solve questions concerned with nonnegative matrices as well as
with invertible matrices, we are led to introduce several sets of assumptions (namely those of Kesten [23], Guivarc’h
and Le Page [17] and Alsmeyer and Mentemeier [1]) on the law μ of the random matrix A, with all of them being
sufficient for the announced results to hold. The main focus will be on nonnegative matrices, for which we will provide
details of proofs, while for invertible matrices, we will mainly highlight the differences and refer to the works cited
above.

2. Notations and preliminaries

We start by introducing three sets of assumptions for random matrices. Let d ≥ 1. Given a probability law μ on
the set of d × d-matrices M(d × d,R), let (An)n∈N be a sequence of i.i.d. random matrices with law μ and write
Πn :=An · · ·A1 for the n-fold product. Equip Rd with any norm | · |, write ‖a‖ := supx∈S |ax| for the operator norm
of a matrix a and denote the unit sphere in Rd by S. We write

a · x := ax

|ax| , x ∈ S

for the action of a matrix a on S (as soon as this is well defined). If S is invariant under the action of A1, we introduce
a Markov chain on S by

Xx
n :=Πn · x, x ∈ S.

2.1. Nonnegative matrices: Condition (C)

Denote the cone of vectors with nonnegative entries by Rd≥ and write

S≥ =
{
x ∈Rd≥ : |x| = 1

}
for its intersection with unit sphere. The set of d × d-matrices with nonnegative entries is denoted by M+ and we
write

int(M+)= {
a ∈M(d × d,R) : ai,j > 0 ∀1≤ i, j ≤ d

}
for its interior, which consists of matrices that have all entries positive. A matrix a ∈M+ is called allowable (see
[19]), if every row and every column has a positive entry.

If a is an allowable matrix, then its action on S≥ is well defined, and moreover, the quantity

ι(a) := min
x∈S≥
|ax|> 0.
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Consider now a probability distribution μ on M+. Write [suppμ] for the subsemigroup generated by its support.
We say that μ satisfies condition (C), if:

(1) Every a ∈ [suppμ] is allowable.
(2) [suppμ] ∩ int(M+) �=∅.

In the following, Γ := [suppμ]. Observe that condition (C) holds for Γ if and only if it holds for Γ 
. Refering to the
Perron–Frobenius theorem, every a ∈ int(M+) possesses a unique dominant eigenvalue λa, (i.e. |λa| > |λi | for any
other eigenvalue λi of a) which is positive and algebraically simple, and a corresponding eigenvector va ∈ int(S≥).
For a subsemigroup Γ of allowable matrices, we define the collection of all such (normalized) dominant eigenvectors
by

V (Γ ) := {
va : a ∈ Γ ∩ int(M+)

}
.

It can be shown (see [9, Lemma 4.3]) that V (Γ ) is the unique minimal Γ -invariant subset of S≥, i.e. every closed
Γ -invariant subset of S≥ contains V (Γ ). It is worth mentioning already now, that the Markov chain Xx

n possesses a
unique stationary probability measure, the support of which is given by V (Γ ).

2.2. Invertible matrices: Condition (i–p)

In order to highlight connections, we decided to use the same symbols for objects which play the same role in the
context of invertible matrices as they did for nonnegative matrices. The condition (i–p) (irreducible and proximal),
described below, is due to Guivarc’h, Le Page and Raugi and was studied in detail in several articles by these authors,
the most comprehensive one of which is [17].

Let now μ be a probability measure on the group GL(d,R) of invertible d × d matrices and Γ be the closed
semigroup of GL(d,R) generated by suppμ. A matrix a with an algebraic simple dominant λa is called proximal.
This replaces the notion of a matrix with strictly positive entries, which is always proximal by the Perron–Frobenius
theorem. Then the measure μ is said to satisfy condition (i–p), if

(1) There is no finite union W =⋃n
i=1 Wi of subspaces 0 �= Wi � Rd which is Γ -invariant, i.e. ΓW =W (irre-

ducibility).
(2) Γ contains a proximal matrix (proximality).

We will consider invertible matrices acting on the projective space Pd−1 which is obtained from S by identifying x

with −x, i.e.

Pd−1 � S/± .

Studying the action of the matrices on Pd−1 rather than on S has several technical advantages, for example, the
definition

V (Γ ) := {va ∈ Pd−1 : a ∈ Γ is proximal},
becomes unambiguous. Note that the norm |ax| for x ∈ Pd−1 is well defined, since it does not depend on the choice
of a representant of x in S.

For the case of invertible matrices, we have that

ι(a) := inf
x∈Pd−1

|ax| = ∥∥a−1
∥∥−1

.

2.3. Invertible matrices: Condition (id)

The third set of assumptions, called (id) for irreducible and density, appears first at the end of Kesten’s work [23]
and was elaborated by Alsmeyer and Mentemeier in [1]. In fact, it can be shown to imply condition (i–p). Due to the
stronger assumption that μ is absolutely continuous, it often allows for simpler proofs, this is why we include it as an
extra set of assumptions.
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Let μ be a probability measure on GL(d,R) and (An)n∈N be an i.i.d. sequence with law μ and write Πn :=
An · · ·A1. Then μ is said to satisfy condition (id) if

(1) for all open U ⊂ S and all x ∈ S, there is n ∈N such that P(Πn · x ∈U) > 0, and
(2) there are a matrix a0 ∈GL(d,R), δ, c > 0 and n0 ∈N such that

P(Πn0 ∈ da)≥ c1Bδ(a0)(a)l(da),

where l denotes the Lebesgue measure on Rd2 �M(d × d,R).

The classical example is μ having a density about the identity matrix.
It is shown in [1, Lemma 5.5] that Xx

n is a Doeblin chain under condition (id). The support of its stationary
probability measure is S by [10, Proposition 4.3], therefore we are led to identify V (Γ ) := S in the case of (id).

2.4. Basic properties for all cases

Below, we identify S = S≥ in the case of nonnegative matrices, S = Pd−1 in the case of (i–p)-matrices and S = S in
the case of (id)-matrices. Given a measure μ on matrices, set

Iμ :=
{
s ≥ 0 :

∫
‖a‖sμ(da) <∞

}
.

Then, for s ∈ Iμ, we define an operator in the set C(S) of continuous functions on S by

P sf (x) :=
∫
|ax|sf (a · x)μ(da), (2.1)

and the ‘transposed’ operator by

P s∗f (x) :=
∫ ∣∣a
x

∣∣sf (
a
 · x)

μ(da). (2.2)

Properties of both operators, which will be given in a moment, will be important in our results. Beforehand, we
introduce a function that will turn out to describe the spectral radius of these operators.

On Iμ, define the log-convex function

k(s) := lim
n→∞

(
E‖An · · ·A1‖s

) 1
n = lim

n→∞
(
E

∥∥A
n · · ·A
1
∥∥s) 1

n . (2.3)

Here the second identity holds since ‖a‖ = ‖a
‖ and the (Ai )i∈N are i.i.d. We have the following result:

Proposition 2.1. Assume that μ satisfies (C), (i–p) or (id) and let s ∈ Iμ.

(1) Then the spectral radii 	(P s) and 	(P s∗ ) both equal k(s).
(2) There is a unique normalized function rs ∈ C(S) and a unique probability measure νs ∈P(S) satisfying

P srs = k(s)rs and P sνs = k(s)νs .

(3) The function rs is strictly positive and s̄ :=min{s,1}-Hölder continuous and suppνs = V (Γ ).
(4) If ν∗s is a probability measure satisfying P s∗ ν∗s = k(s)ν∗s , then there is c > 0 such that

rs(x)= c

∫
S

∣∣〈x, y〉∣∣sν∗s (dy).

(5) The function s �→ k(s) is log-convex on Iμ, hence continuous on int(Iμ) with left- and right derivatives.
(6) The function s �→ k(s) is analytic on int(Iμ).
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Source. Claims (1)–(5) were proved in [9, Proposition 3.1] for nonnegative matrices, in [17, Theorems 2.6 and 2.17]
for invertible matrices under condition (i–p) and in [29, Theorem 17.1] under condition (id). The analycity of k(s) in
assertion (6) is proved by using perturbation theory, and was proved first under condition (i–p) in [17, Corollary 3.20],
and subsequently, using the same methods, in [10, Corollary 4.12] under condition (id) and is proved below in Corol-
lary 7.3 for nonnegative matrices. �

Remark 2.2. Given only finiteness of

E
((

1+ ‖A‖s0
)(∣∣log‖A‖∣∣+ ∣∣log ι(A)

∣∣)),
the mapping s �→ k(s) is still differentiable on the closed interval [0, s0], this has been proved in [17, Theorem 3.10]
under condition (i–p) and in [9, Theorem 6.1] for nonnegative matrices.

Proposition 2.1 is crucial in order to define an exponential change of the measure μ: Let Ω =M(d × d,R)N and
(An)n∈N :Ω→Ω the fibered identity. Now introducing for each n the kernel

qs
n(x,a)= |ax|s

kn(s)

rs(a · x)

rs(x)
, (2.4)

we see that for each x ∈ S and n ∈N,∫
qs
n(x,an · · ·a1)μ

⊗n(da1, . . . ,dan)= 1

and the relation

qs
n(x,a)qs

m(a · x,b)= qs
n+m(x,ba). (2.5)

Moreover, for each x ∈ S the sequence qs
n(x, ·)μ⊗n of probability measures is projective, hence by the Kolmogorov

extension theorem, it gives rise to a probability measure Qs
x on Ω , which we call the s-shifted measure. The corre-

sponding expectation symbol is denoted by EQs
x
. Note that (An)n∈N are i.i.d. with law μ for s = 0. We use the symbol

Qx for Q0
x .

With the conventions Qs
x({X0 = x})= 1, we have the Markov chain Xn and the Markov additive process Sn:

Xn :=An ·Xn−1 = AnXn−1

|AnXn−1| ,
Sn := log |An · · ·A1X0| = log |AnXn−1| + Sn−1.

The second identity shows that (Xn,Sn) carries the structure of a Markov Random Walk, i.e. the law of the increments
Sn − Sn−1 depends on the past only via Xn−1.

Writing as before Πn :=An · · ·A1, we have the following fundamental identities, valid for any bounded measurable
function f and n ∈N:

1

k(s)nrs(x)
E

(
f (x,A1, . . . ,An)rs

(
Xx

n

)|Πnx|s
)= EQs

x

(
f (X0,A1, . . . ,An)

)
, (2.6)

1

k(s)nrs(x)
E

(
f

((
Xx

k ,Sx
k

)n

k=0

)
rs

(
Xx

n

)|Πnx|s
)= EQs

x

(
f

(
(Xk,Sk)

n
k=0

))
. (2.7)

The transition operator of (Xn)n∈N is given by

Qsf (x) := 1

rs(x)k(s)
P s(f · rs)(x). (2.8)
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It follows from Proposition 2.1 that Qs has a unique stationary probability measure

πs := rsν
s

νs(rs)

with support V (Γ ). We set

Qs :=
∫

Qs
xπ

s(dx).

2.5. On Sx
n

Each of the assumptions introduced above is sufficient for the announced extension of the Furstenberg–Kesten theorem
to hold:

Proposition 2.3. Assume that μ satisfies (C) or (i–p) or (id). Let s ∈ {0} ∪ int(Iμ) and assume there is 0 < ε < 1 such
that

E‖A‖s+ει(A)−ε <∞. (2.9)

Then it holds that q := EQs S1 = k′(s)/k(s) ∈R, and

lim
n→∞

1

n
log‖Πn‖ = lim

n→∞
Sn

n
= q Qs

x-a.s.

for all x ∈ S .

This is proved in [9, Theorem 6.1] under condition (C), in [17, Theorem 3.10] under condition (i–p) and in [29,
Proposition 20.2] under condition (id). In the last reference, the first identity is not proved, but it follows from the
corresponding result for (i–p).

Remark 2.4. Recall from Proposition 2.1 that k(s) is log-convex. Therefore,

Λ(s) := logk(s)

is convex, and

q = k′(s)
k(s)

=Λ′(s)≥Λ′(0)= k′(0)

k(0)
= γ.

The function

Λ∗(q) := sq −Λ(s)

is the Fenchel–Legendre transform of Λ and nondecreasing on Iμ, see [13, Lemma 2.2.5]. In particular, it is nonneg-
ative on Iμ.

When studying random walks, an important distinction is between so-called lattice types, i.e. whether or not the
random walk takes values only in some lattice cZ for c ≥ 0 . A similar concept applies for Markov random walks,
which are introduced below. The lattice type of Sn only depends on the support of μ, thus we give first a measure-free
definition, which implies the more frequently used subsequent definition, which is relative to the measure Qs .
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Definition 2.5.

(1) We say that Γ resp. μ is arithmetic, if there is t > 0 together with θ ∈ [0,2π) and a function ϑ : S≥ → R such
that

∀a ∈ Γ,∀x ∈ V (Γ ) : exp
(
it log |ax| − iθ + i

(
ϑ(a · x)− ϑ(x)

))= 1. (A)

If no such t exists, then Γ is said to be non-arithmetic.
(2) The Markov random walk (Xn,Sn) is said to be arithmetic under Qs , if there is t > 0 together with θ ∈ [0,2π)

and a function ϑ : S→R such that

EQs exp
(
itS1 − iθ + i

(
ϑ(X1)− ϑ(X0)

))= 1, (2.10)

and non-arithmetic otherwise.

We have the following implications.

Lemma 2.6. If Γ = [suppμ] is arithmetic, then (Xn,Sn) is arithmetic under each Qs with the same t, θ,ϑ . Con-
versely, if (Xn,Sn) is arithmetic under some Qs and the function ϑ is continuous on S , then Γ is arithmetic as well
with the same t, θ,ϑ .

Proof. Recalling that suppπs = V (Γ ), we observe that equation (2.10) is equivalent to

exp
(
it log ax − iθ + i

(
ϑ(a · x)− ϑ(x)

))= 1 for μ-a.e. a ∈ suppμ and πs-a.e. x ∈ V (Γ ),

i.e. for dense subsets of suppμ resp. V (Γ ), which gives the asserted implications. �

It is shown in [18, Proposition 4.6] that under condition (i–p), Γ = [suppμ] is non-arithmetic, while it is shown in
[1, Lemma 5.8], that (Xn,Sn) is non-arithmetic under each Qs under condition (id).

A simple sufficient condition (due to Kesten [23]) for Γ to be non-arithmetic under condition (C) is the following.
Set

S(Γ ) := {
logλa : a ∈ Γ ∩ int(M+)

}
.

Lemma 2.7. Assume that the (additive) subgroup of R generated by S(Γ ) is dense. Then μ is non-arithmetic.

Proof. Supposing that equation (A) holds for some t, θ and ϑ , then we have for any a ∈ Γ ∩ int(M+) that va ∈ V (Γ ),
hence

exp
(
i
[
t log |ava| − θ + (

ϑ(a · va)− ϑ(va)
)]]= ei(t logλa−θ).

Consequently, for any a,h ∈ Γ ∩ int(M+),

logλa − logλh ∈ 2π

t
Z.

But by our assumption, S(Γ ) is not contained in 2π
t
Z for any t > 0; this gives a contradiction. �

Corollary 2.8. If there are a,b ∈ Γ ∩ int(M+) with logλa
logλb

/∈Q, then μ is non-arithmetic.

Now we have enough notation to state our main results.
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3. Statement of main results

We will prove the following analogue of the Bahadur–Rao theorem for products of random matrices. The role of the
cumulant generating function is played here by Λ(s)= logk(s).

Theorem 3.1. Assume that μ satisfies (C) and is non-arithmetic, or that μ satisfies (i–p) or (id). If q = EQs S1 =Λ′(s)
for some s ∈ int(Iμ) and there is 0 < ε < 1 such that (2.9) holds, then

lim
n→∞ sup

x∈S

∣∣√nenΛ∗(q)J (s)E
(
rs

(
Xx

n

)
1{Sx

n≥nq}
)− rs(x)

∣∣= 0,

where

J (s)= sσ
√

2π, with σ 2 =Λ′′(s)= lim
n→∞

1

n
EQs (Sn − nq)2 > 0.

Since the function rs is strictly positive and continuous on the compact set S , hence bounded, this gives in particular
uniform bounds for the large deviation probabilities:

Corollary 3.2. There are 0 < c ≤C <∞ such that for all x ∈ S ,

c ≤ lim inf
n→∞

√
n
(
esq

)n
P
(
Sx

n ≥ nq
)≤ lim sup

n→∞
√

n
(
esq

)n
P
(
Sx

n ≥ nq
)≤ C.

These large deviations results will be used to prove the following result about random difference equations, which
gives an elementary proof that the tail estimates derived e.g. in [1,17,23,25] are precise:

Theorem 3.3. Let M be a random matrix and let B be a random vector in Rd . Write A :=M
 and denote by μ the
law of A. Assume that k′(0) < 0 and that there is α ∈ int(Iμ) with k(α)= 1 and

E‖A‖α+ει(A)−ε <∞, 0 < E|B|α+ε <∞ (3.1)

for some ε > 0. There is a random variable R, unique in distribution, satisfying R
d=MR +B .

(1) Let A be nonnegative, satisfying condition (C) and being non-arithmetic. Assume that suppR∩Rd≥ is unbounded.
Then there is δ > 0 such that for all x ∈ S≥,

lim inf
t→∞ tαP

(〈x,R〉> t
)≥ δ.

(2) Let A ∈ GL(d,R), satisfying (id). Assume that P(Ar +B = r) < 1 for all r ∈ Rd . Then there is δ > 0 such that
for all x ∈ S,

lim inf
t→∞ tαP

(〈x,R〉> t
)≥ δ.

(3) Let A ∈ GL(d,R), satisfying (i–p). Assume that Γ ∗ does not leave invariant any proper closed convex cone in
Rd , and that P(Ar +B = r) < 1 for all r ∈Rd . Then there is δ > 0 such that for all x ∈ S,

lim inf
t→∞ tαP

(〈x,R〉> t
)≥ δ.

In this theorems, we impose the assumptions on the law of A=M
 rather than on the law of M (note nevertheless,
that (C) or (i–p) hold for M
 as soon as they hold for M). The reason is as follows: Let (Mk,Bk)k∈N be a sequence

of i.i.d. copies of (M,B). Then, upon iterating equation (1.4), we obtain R
d=M1 · · ·MnR +∑

k≤n M1 · · ·Mk−1Bk ,
which leads to the study of

〈x,R〉 d=
〈
x,M1 · · ·MnR+

∑
k≤n

M1 · · ·Mk−1Bk

〉
= 〈

M
n · · ·M
1 x,R
〉+ · · · ,

and we are going to show that the first term dominates in order to use Theorem 3.1 to derive estimates.
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Remark 3.4. Let us stress that in (1) we do not assume that B is nonnegative and that the condition suppR ∩ Rd≥
being unbounded is obviously also necessary for the heavy tail property. Thereby, we generalize the result of Kesten,
namely [23, Theorem 3]. A sufficient condition for suppR ∩ Rd≥ being unbounded is B being nonnegative, or M,B

being independent and P(B ∈Rd
>) > 0.

Remark 3.5. The law of the random variable R is given by
∑∞

k=1 M1 · · ·Mk−1Bk , from which we immediately obtain
the estimate (for s ≥ 1)

(
E|R|s)1/s ≤

∞∑
k=1

(
E‖M1 · · ·Mn‖s

)1/s(
E|B|s)1/s =

∞∑
k=1

(
E

∥∥M
1 · · ·M
n
∥∥s)1/s(

E|B|s)1/s
.

This shows that if k(s) < 1 and E|B|s <∞, then readily E|R|s <∞, which shows in particular that under the
assumptions of Theorem 3.3,

lim sup
t→∞

t sP
(〈x,R〉> t

)= 0

for all 0≤ s < α and all x ∈ S .

Remark 3.6. The moment conditions (3.1) are not optimal, precise tail estimates have been obtained under the as-
sumptions

E‖A‖α(
log‖A‖ + ∣∣log ι(A)

∣∣) <∞, 0 < E|B|α <∞,

see [17, Remark after Theorem 5.2] in the case of (i–p) resp. [29, Theorem 13.2] for the case of condition (id).

3.1. Structure of the paper and sketch of proofs

The proof of Theorem 3.1 will rest upon a third-order Edgeworth expansion for the c.d.f.

Fs
n,x(t) :=Qs

x

{
Sn − nq

σ
√

n
≤ t

}
,

which is given in Theorem 8.1.
To prove this intermediate result, we will use the Nagaev–Guivarc’h spectral method as in Hennion and Hervé

[20] and Hervé and Penè [21]: The classical Edgeworth expansion for random walks can be proved using the Fourier
transform of Sn, in particular its behavior at zero. Upon introducing (for suitable z ∈C) the operator Q(z) in C(S) by

Q(z)f (x) := 1

rs(x)k(s)

∫
Γ

|ax|s+zf (a · x)rs(a · x)μ(da)

we have the following fundamental identity for the Fourier transform φn,x of Qs
x{Sn ∈ ·}:

φn,x(t) := EQs
x

(
eitSn

)= EQs
x

(
eitSn1S(Xn)

)=Q(it)n1S(x). (3.2)

This identity is a consequence of the following lemma.

Lemma 3.7. Let A be a random matrix with law μ, and assume that E‖A‖s+�z <∞ for s > 0, z ∈ C. Then the
following identity holds for all f ∈ C(S):

EQs
x

(
ezSnf (Xn)

)=Q(z)nf (x). (3.3)
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Proof. The assumption guarantees that Q(z) is well defined, and all integrals appearing below are finite. We use
induction. For n= 1, this is immediate from the definition of Q(z) and identity (2.7). Suppose (3.2) holds for n ∈N.
Then, using again (2.7) and the fact that the (Ai ) are i.i.d with law μ under P, we obtain

Q(z)n+1f (x) =Q(z)
(
Q(z)nf

)
(x)

=
∫

Γ

rs(a · x)|ax|s+z

rs(x)k(s)
EQs

a·x
(
ezSnf (Xn)

)
μ(da)

=
∫

Γ

rs(a · x)|ax|s+z

rs(x)k(s)

1

rs(a · x)k(s)n
E

(∣∣Πn(a · x)
∣∣s+z

rs
(
Πn · (a · x)

)
f

(
Πn · (a · x)

))
μ(da)

= 1

rs(x)k(s)n+1

∫
Γ

E
(|Πnax|s+zrs(Πna · x)f (Πna · x)

)
μ(da)

= 1

rs(x)k(s)n+1
E

(|Πn+1x|s+zrs(Πn+1 · x)f (Πn+1 · x)
)
μ(da)

= EQs
x

(
ezSn+1f (Xn+1)

)
. �

Observe that Q(0)=Qs and that, given s ∈ int(Iμ), the mapping z �→Q(z) is holomorphic in some domain. We
are going to show that the operator Qs is quasi-compact with a simple dominant eigenvalue θ(0)= 1, and thereupon,
using holomorphic perturbation theory, the decomposition

Qn(z)= θ(z)nM(z)+L(z)n,

for a rank-one projection M and an operator L(z) with spectral radius 	(L(z)) < 	(Q(z)). From this we will finally
deduce that for n→∞,

φn,x(t/
√

n)=Qn(it/
√

n)1S(x)≈ θ(it
√

n),

i.e. behavior at zero of the Fourier transforms is given by small perturbations of the dominant eigenvalue of Qs .
Therefore, we start our investigations by proving spectral properties of Qs and the family Q(z) (in the case of

nonnegative matrices). In Section 4, we prove, continuing [9] and based on the approach in [17], that Qs is quasi-
compact. This property is needed in order to apply a perturbation theorem which proves the decomposition of the
family Q(z) in Section 6. Then we are ready to prove a third-order Edgeworth expansion for F s

n,x in Section 8, which
is used to prove Theorem 3.1 in Section 9. Sections 5 and 7 study the implications of the non-arithmeticity condition,
as well as formulas for σ 2.

Section 10 is concerned with Theorem 3.3. We start by providing an example, namely the ARCH(q)-process, to
which our results apply and continue by giving an outline of the proof of Theorem 3.3, while we postpone the technical
details to the final Section 11.

4. Quasi-compactness of Qs

4.1. Nonnegative matrices

In this section, which is based on the approach of Guivarc’h and Le Page [17] for (i–p), we are going to prove that
for each s ∈ Iμ, the operator Qs is quasi-compact (has a spectral gap) on a subspace of C(S≥), namely the space of
functions that are s̄ :=min{s,1}-Hölder continuous with respect to a particular metric d on S≥. At first, we will recall
the theorem of Ionescu Tulcea and Marinescu, which will be used in order to prove the quasi-compactness. Then we
introduce the particular metric d which will be useful when finally checking the assumptions of this theorem.

We write L(B,B) for the set of all bounded linear operators from B to B. An operator Q ∈ L(B,B) is said to be
quasi-compact if B can be decomposed into two closed Q-invariant subspaces B = E ⊕ F where the spectral radius
	(Q|F ) < 	(Q) while dimE <∞ and each eigenvalue of Q|E has modulus 	(Q).

Subsequently, a convenient way to prove the quasi-compactness of Qs will be to use the following generalization
of the theorem of Ionescu–Tulcea and Marinescu:
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Theorem 4.1 [20, Theorem II.5]. Let (B, [[·]]) be a Banach space and let [·] be a continuous semi-norm on B.
Assume that Q is a bounded operator in B such that

(1) Q{f : [[f ]] ≤ 1} is conditionally compact in (B, [·]),
(2) there exists a constant M such that for all f ∈ B, [Qf ] ≤M[f ],
(3) there exist k ∈N and real numbers r and R with r < 	(Q) and, for all f ∈ B,[[

Qkf
]]≤R[f ] + rk[[f ]].

Then Q is quasi-compact.

Though we have not yet defined the metric d on S≥, let us nevertheless state right now, which Banach space and
what norms we are going to consider. For f ∈ C(S≥), set

[f ] := sup
x∈S≥

∣∣f (x)
∣∣, |f |s := sup

x,y∈S≥
|f (x)− f (y)|

d(x, y)s̄
, [[f ]] := [f ] + |f |s .

We consider the Banach space

B := {
f ∈ C(S≥) : |f |s <∞}= {

f ∈ C(S≥) : [[f ]]<∞}
equipped with the norm [[·]]. Using Theorem 4.1, we are going to prove the following:

Proposition 4.2. Assume that μ satisfies (C) and let s ∈ Iμ. Then Qs ∈ L(B,B), and there is an operator N ∈ L(B,B)

with spectral radius 	(N) < 1, such that(
Qs

)n =M +Nn (4.1)

for all n ∈N, where M is a rank-one projection onto R1S≥ with M(f )(x)= πs(f ) for all f ∈ B and x ∈ S≥.

This will be done by a series of lemmata, which will make use of the particular metric d on S≥, which we are going
to introduce next.

4.1.1. A metric on S≥
Given x �= y ∈ S≥, consider the line L trough these points. Then L∩ ∂Rd≥ consists of two points which we label by a

and b in such a way that if we write x = u1a + u2b and y = v1a + v2b u1, u2, v1, v2 ≥ 0 as convex combinations of
a and b, then u1 > v1, i.e. x lies between a and y. Then the cross-ratio of a, b and x, y is given as

[a, b;x, y] = u2v1

u1v2
.

The formulae

d(x, y) := φ
([a, b;x, y])

for φ(s) := 1−s
1+s

, s ∈ [0,1], defines a bounded distance on the unit sphere. Its properties are summarized in the follow-
ing proposition.

Proposition 4.3. For any norm | · |, d is a metric on S≥ with

• sup{d(x, y) : x, y ∈ S≥} = 1.
• There is C > 0 s.t. d(x, y)≥ C|x − y|.
For a ∈M+, there exists c(a)≤ 1 such that:

(1) d(a · x,a · y)≤ c(a)d(x, y),
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(2) c(a) < 1 if and only if a ∈ int(M+),
(3) if a′ ∈M+, then c(aa′)≤ c(a)c(a′),
(4) c(a
)= c(a).

Source. This is [19, Proposition 3.1]. There, the results are stated relative to the 1-norm ‖x‖1 =∑n
i=1 |xi | on Rd , but

they do in fact hold for any norm on Rd , the main reason being that the cross-ratio is a projective invariant and thus
independent of the shape of the unit sphere, and that all norms on Rd are comparable. �

The crucial properties of the metric d are (1) and (2), saying that the action of nonnegative (positive) matrices is a
(strict) contraction with respect to d .

4.1.2. Checking the assumptions of the Ionescu–Tulcea–Marinescu theorem
Let us first recall the definition of Qs in (2.8), from which we obtain the following formula for its iterates:(

Qs
)n

f (x)= EQs
x

(
f (Xn)

)= E
(
qs
n(x,Πn)f (Πn · x)

)
. (4.2)

In order to prove assumption (1) of Theorem 4.1, we are going to apply the Arzelà–Ascoli theorem. Therefore, we
have to prove equicontinuity of the family {Qsf : [[f ]]<∞}. This will follow from the subsequent estimates for the
kernels qs

n, where it is shown in particular, that the mappings qs
n(·,a) are s̄-Hölder on S≥ for any a ∈M+.

Lemma 4.4. Under the assumptions of Proposition 4.2, there is Cs <∞ such that for all n ∈N, x, y ∈ S≥, a ∈M+

∣∣qs
n(x,a)− qs

n(y,a)
∣∣≤ Cs

‖a‖s
k(s)n

d(x, y)s̄ .

On the other hand, there is cs such that for all allowable a,

qs
n(a) :=

∫
qs
n(x,a)πs(dx)≥ cs

k(s)n
‖a‖s .

Proof. Observe that by Proposition 4.3, any function that is Hölder-continuous on (S≥, | · |) is as well Hölder-
continuous on (S≥, d). Using that thus rs is s̄-Hölder with constant drs and bounded with 0 < d1 ≤ rs(x) ≤ d2 <∞
for all x ∈ S≥, as well as property (2) of Proposition 4.3, we estimate∣∣∣∣ rs(a · x)

rs(x)

|ax|s
k(s)n

− rs(a · y)

rs(y)

|ay|s
k(s)n

∣∣∣∣
≤

∣∣∣∣ 1

rs(x)
− 1

rs(y)

∣∣∣∣ rs(a · x)|ax|s
k(s)n

+ ∣∣|ax|s − |ay|s∣∣ rs(a · x)

rs(y)k(s)n
+ ∣∣rs(a · x)− rs(a · y)

∣∣ |ay|s
k(s)nrs(y)

≤ 1

d2
1

∣∣rs(x)− rs(y)
∣∣d2‖a‖s

k(s)n
+ ∣∣|ax|s − |ay|s∣∣ d2

d1k(s)n
+ drs |x − y|s̄ ‖a‖

s

k(s)nd1

≤
(

Cdrs d2

d2
1

+ Cdrs

d1

) ‖a‖s
k(s)n

d(x, y)s̄ + d2

d1k(s)n

∣∣|ax|s − |ay|s∣∣.
The last term has to be estimated differently for s ≤ 1 and s > 1. If s ≤ 1, then∣∣|ax|s − |ay|s∣∣≤ ∣∣|ax| − |ay|∣∣s ≤ ‖a‖s |x − y|s .

If s > 1, then∣∣|ax|s − |ay|s∣∣≤ ∣∣|ax| − |ay|∣∣ · s ·max
{|ax|s−1, |ay|s−1}≤ s‖a‖|x − y|s̄‖a‖s−1.
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For the second part, recall K = inf{rs(x)/rs(y) : x, y ∈ S≥}> 0, hence

qs
n(a)≥ K

k(s)n

∫
|ax|sπs(dx).

It suffices to prove that g(a) := ∫ |ax|sπs(dx)≥ cs for all nonnegative a with ‖a‖ = 1. On the compact set ‖a‖ = 1,
g attains its infimum. But if there is a0 with

∫ |a0x|sπs(dx)= 0, then

V (Γ )⊂ suppνs = suppπs ⊂ ker(a0).

But since a0 is a nonzero nonnegative matrix, ker(a0)∩ int(S≥)=∅, which gives a contradiction. �

Let us note the following, surprising corollary to Lemma 4.4, which shows that the convergence in (2.3) is expo-
nentially fast.

Corollary 4.5. Under the assumptions of Proposition 4.2, there is cs > 0 (the same as in Lemma 4.4), such that

k(s)n ≤ E‖Πn‖s ≤ 1

cs

k(s)n for all n ∈N.

Proof. The first inequality holds since k(s)= limn→∞(E‖Πn‖s)1/n = infm∈N(E‖Πm‖s)1/m due to submultiplicativ-
ity of the norm (see [15, Theorem 1] for details). The second inequality holds by Lemma 4.4, since Eqs

n(x,Πn)= 1
for all x ∈ S≥. �

Now we are ready to prove the following estimate, from which the validity of assumptions (1) and (3) will follow.

Lemma 4.6. Under the assumptions of Proposition 4.2, there is C > 0 and a sequence D(n) with limn→∞D(n)= 0,
such that for all n ∈N and f ∈ B,∣∣(Qs

)n
f

∣∣
s
≤ C[f ] +D(n)|f |s . (4.3)

Proof. For all f ∈ B, |f |s <∞. For such f , we compute∣∣(Qs
)n

f (x)− (
Qs

)n
f (y)

∣∣ = ∣∣EQs
x
f (Xn)−EQs

y
f (Xn)

∣∣
≤ EQs

x

∣∣f (Πn · x)− f (Πn · y)
∣∣+ ∣∣(EQs

x
−EQs

y
)f (Πn · y)

∣∣
= I+ II.

Considering I,

I≤ |f |sEQs
x
d(Πn · x,Πn · y)s̄ ≤ |f |sd(x, y)s̄EQs

x
c(Πn)

s̄ .

But due to Proposition 4.3, c(a) ≤ 1 for all a ∈M+, and c(a) < 1 for a ∈ int(M+). By (C), we have that
P(lim infn→∞{Πn ∈ int(M+)})= 1 (see [19, Lemma 3.1]), thus c(Πn)→ 0 Qs

x -a.s. by Proposition 4.3(2) and (3) and
the boundedness of c. Moreover, c is continuous on M+ by [19, Lemma 10.8]. Therefore, we can use the dominated
convergence theorem to infer

lim
n→∞D(n) := lim

n→∞EQs
x
c(Πn)

s̄ = 0.

Turning to II, we have, using Lemma 4.4,

II≤ [f ]E∣∣qs
n(x,Πn)− qs

n(y,Πn)
∣∣≤ [f ]Csd(x, y)s̄

k(s)n
E‖Πn‖s ≤ [f ]Cs

cs

d(x, y)s̄EQs 1.
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Combining these estimates, we arrive at∣∣(Qs
)n

f
∣∣
s
≤ Cs

cs

[f ] + |f |sD(n). �

Proof of Proposition 4.2. Now we are ready to show that Theorem 4.1 applies for Q=Qs with B as defined above.
Step 1: Assumption (2) is satisfied for M = 1, since Qs is a Markov operator on (C(S≥), [·]).
Step 2: Assumption (1) holds for Qs , i.e. Qs{f : [[f ]] ≤ 1} is conditionally compact in (B, [·]). This is shown as

follows. Since Qs is a Markov operator, and [[f ]] ≥ [f ], we have that K :=Qs{f : [[f ]] ≤ 1} ⊂ {f ∈ B : [f ] ≤ 1},
thus K is bounded. Using (4.3) with n = 1, we deduce that the family K is equicontinuous. Hence, applying the
Arzelà–Ascoli theorem, K is conditionally compact in C(S≥) with respect to the topology of uniform convergence,
i.e. w.r.t. [·].

Step 3: Next we show that assumption (3) holds for Qs , i.e. there exist k ∈ N and real numbers r and R with
r < 	(Qs) and, for all f ∈ B,[[(

Qs
)k

f
]]≤R[f ] + rk[[f ]].

In particular, Qs ∈ L(B,B).
Observe, that it suffices to provide the estimate for one k ∈ N, it is not necessary to prove a geometric decay rate.

Since the spectral radius r(Qs)= 1, it is enough to show that the inequality holds for some r ′ < 1 in the place of rk ,
because then r := r ′1/k

< 1 satisfies the assumption. Using (4.3) and the fact that Qs is a Markov operator, we deduce
that for any n ∈N,[[(

Qs
)n

f
]] = [(

Qs
)n

f
]+ ∣∣(Qs

)n
f

∣∣
s

≤ [f ] +C[f ] +D(n)|f |s ≤ (1+C)[f ] +D(n)
(|f |s + [f ])

= (1+C)[f ] +D(n)[[f ]]. (4.4)

But D(n) tends to 0, thus we may choose k such that D(k) < 1, and consequently, assumption (3) is satisfied with
R := 1+C and r :=D(k)1/k < 1. Thus Theorem 4.1 applies and gives the quasi-compactness of Qs , i.e. B =E⊕F

for Qs -invariant closed subspaces E and F with dimE <∞ and such that Qs|F has spectral radius strictly smaller
than 1, while each eigenvalue of Qs|E has modulus 1.

Step 4: Next we prove that 1 is a simple eigenvalue, and the only one of modulus one, i.e. dimE = 1. It is shown
in [9, Theorem 4.13], that for every f ∈ C(S≥),

lim
n→∞

(
Qs

)n
f = πs(f ). (4.5)

If now Qsf = λf with |λ| = 1, then necessarily limn→∞ λnf ≡ πs(λf ), which implies λ= 1 and f = const.
Step 5: We infer from equation (4.4) that

lim sup
n→∞

	
(
Qs

)−n(sup
{[[(

Qs
)n

f
]] : [[f ]] = 1

})≤ 1+C.

Therefore, Qs is quasi compact of diagonal type in the sense of [20, Proposition III.1]. Consequently, [20, Lemma
III.3(v)] applies and gives the decomposition (4.1) with M being the projection on E =R1S≥ with M(f )= πs(f )1S≥
for all f ∈ B, and N :=Qs −M . �

4.2. Invertible matrices

As said before, the ideas of the proofs above were developed by Guivarc’h and Le Page for condition (i–p), the result
corresponding to Proposition 4.2 is [17, Corollary 3.19]. There, the distance d(x, y)= |x − y| for x, y ∈ Pd−1 is the
minimal euclidean distance between representants in S.

Under assumption (id), a corresponding decomposition, proved in [10, Proposition 4.3 and Lemma 4.11] holds on
the (larger) space C(S), for (Xn) is a Doeblin chain under each Qs

x .



Precise large deviation results for products of random matrices 1489

5. Non-artihmeticity and its consequences

Subsequently, fix s ∈ Iμ. We will now study implications of the non-arithmeticity and moment assumptions (A) resp.
(2.9) for the family Q(it). Recall from Lemma 3.7 the identity

Q(it)nf (x)= EQs
x

(
eitSnf (Xn)

)= E
(
qs
n(x,Πn)e

it log |Πnx|f (Πn · x)
)
. (5.1)

This section is valid for all types of matrices. Recall that conditions (i–p) and (id) readily imply non-arithmeticity.
Define Bε := {f ∈ C(S) : |f |ε <∞}. Then we are going to prove the following result:

Theorem 5.1. Assume that (Xn,Sn) is non-arithmetic under Qs or that μ is non-arithmetic. Assume that (2.9) holds
for some ε > 0. Then Q(it) ∈ L(Bε,Bε) for all t ∈ R. Moreover, for all t �= 0, the spectral radius 	(Q(it)) < 1 and
thus 1−Q(it) is invertible in L(Bε,Bε).

Considering the spectral radius, we have for all n ∈N and all f ∈ C(S) that∣∣Q(it)nf (x)
∣∣≤ EQs

x

∣∣eitSnf (Xn)
∣∣= EQs

x

∣∣f (Xn)
∣∣= (

Qs
)n|f |(x). (5.2)

Since Bε ⊂ C(S), this readily shows that 	(Q(it)) ≤ 	(Qs) = 1 for all t ∈ R. To arrive at 	(Q(it)) < 1, the main
burden of the proof will be indeed to show that Q(it) ∈ L(Bε,Bε). This will be done by proving an estimate similar
to (4.3). The first step in that direction is provided by the following lemma.

Lemma 5.2. Let a either be an allowable nonnegative matrix or an invertible matrix. Then for all t ∈R, x, y ∈ S and
0 < ε < 1, the following estimate holds true:

∣∣eit log |ax| − eit log |ay|∣∣≤D|t |εd(x, y)ε
( ‖a‖

ι(a)

)ε

(5.3)

for some D > 0.

Recall that in the case of nonnegative matrices, the distance d on S was defined in Section 4.1.1, while d(x, y)

equals the minimum of the euclidean distance of representants of x, y from S in the case of nonnegative matrices.

Proof of Lemma 5.2. We start by noting the some useful inequalities:

1

2

∣∣eit − eis
∣∣= 1

2

∣∣1− ei(s−t)
∣∣≤min

{
1, |t − s|}≤ |t − s|β (5.4)

for all t, s ∈R, β ∈ [0,1]. Next, for all a, b > 0,

|loga − logb| =
∣∣∣∣∫ b

a

1

s
ds

∣∣∣∣≤max

{
1

a
,

1

b

}
|a − b|. (5.5)

Finally, if a is allowable or invertible, then for all x ∈ S , 1
|ax| ≤ 1

ι(a)
. Putting these inequalities together, we conclude,

using Proposition 4.3 as well in the case of invertible matrices,∣∣eit log |ax| − eit log |ay|∣∣ ≤ 2|t |ε∣∣log |ax| − log |ay|∣∣ε
≤ 2|t |ε max

{
1

|ax| ,
1

|ay|
}ε∣∣|ax| − |ay|∣∣ε ≤ 2|t |ε max

{
1

|ax| ,
1

|ay|
}ε

‖a‖ε|x − y|ε

≤ 2|t |εC−1d(x, y)ε
(

sup
z∈S
‖a‖
|az|

)ε

≤ 2|t |εC−1d(x, y)ε
( ‖a‖

ι(a)

)ε

. �

Now we are going to prove an estimate similar to (4.3):
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Lemma 5.3. There is C > 0 and a sequence D(n) with limn→∞D(n)= 0, such that for all n ∈N and f ∈ B,∣∣Q(it)nf
∣∣
ε
≤ C[f ] +D(n)|f |ε. (5.6)

Proof.∣∣Q(it)nf (x)−Q(it)nf (y)
∣∣

= ∣∣EQs
x

(
eitSnf (Xn)

)−EQs
y

(
eitSnf (Xn)

)∣∣
≤ E

(
qs
n(x,Πn)

∣∣f (Πn · x)− f (Πn · y)
∣∣)+ ∣∣E(

qs
n(x,Πn)− qs

n(y,Πn)
)
eitSx

n f (Πn · y)
∣∣

+ [f ]E(
qs
n(y,Πn)

∣∣eitSx
n − eitS

y
n
∣∣)

= I+ II+ III.

Similar to the proof of Lemma 4.6, we obtain the bounds

I≤ |f |εd(x, y)εEQs
x
c(Πn)

ε =:D(n)|f |εd(x, y)ε,

II≤ [f ]Cd(x, y)ε

with limn→∞D(n)= 0.
Using Lemma 5.2, we deduce

III ≤D[f ]|t |εd(x, y)εEQs
y

( ‖Πn‖
ι(Πn)

)ε

≤D′[f ]|t |εd(x, y)εE
(‖Πn‖s+ει(Πn)

−ε
)

≤D′[f ]|t |εd(x, y)ε
(
E‖A1‖s+ει(A1)

−ε
)n

,

where the last expression is finite due to assumption (2.9). �

Proof of Theorem 5.1. Lemma 5.3 together with (5.2) proves that Q(it) is a self-map of Bε . Since 	(Q(it))≤ 1, it
remains to exclude the possibility 	(Q(it))= 1, which we will do by contradiction.

Assuming that the spectral radius 	(Q(it))= 1, one can proceed as in Section 4 in order to show that the Ionescu–
Tulcea–Marinescu theorem applies for Q=Q(it) with

[f ] := sup
x∈S

∣∣f (x)
∣∣, [[f ]]ε := [f ] + |f |ε

and the Banach space

Bε :=
{
f ∈ C(S) : |f |ε <∞}= {

f ∈ C(S) : [[f ]]ε <∞}
equipped with the norm [[·]]ε . The theorem yields that there has to be an eigenvalue with modulus equal to the spectral
radius of Q(it), i.e. with modulus equal to 1.

Hence, suppose there is an eigenfunction f such that Q(it)f = λf with |λ| = 1. Let x0 ∈ S≥ be such that |f (x0)| =
[f ]. Then (5.2) implies that |f |(x0)≤ ((Qs)n|f |)(x0) and hence by (4.5), |f |(x0)≤ πs(|f |). But the right-hand side
is a convex combination of (|f |(x))x∈V (Γ ) (see Proposition 2.1(3)). Consequently, |f | has to be constant on V (Γ ).
Thus, we can assume that f (x)= eiϑ(x) on V (Γ ) for a continuous function ϑ : S→R. Consequently,

EQs
x
eitS1+iϑ(X1) = eiθ+iϑ(x).

But this contradicts the non-arithmeticity of (Xn,Sn) under Qs ; and, since ϑ is continuous, as well the non-
arithmeticity of μ, using Lemma 2.6. �
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Remark. Observe, that we only did prove the estimate[
Q(it)nf

]
ε
≤R[[f ]] +D(n)[f ]ε,

with D(n) tending to 0. From this, property (3) of the Ionescu–Tulcea–Marinescu theorem can be deduced only if
	(Q(it)) = 1, since otherwise, we do not know whether r := D(n)1/n < 	(Q(it)) holds for some n, since we do
not know the rate of convergence for D(n)→ 0. So we do not know yet whether Q(it) is quasi-compact for t �= 0.
Nevertheless, for small t , quasi-compactness will follow from the perturbation theorem below.

6. The perturbation theorem

This section as well is valid for nonnegative and invertible matrices. Recall from Lemma 3.7 the fundamental identity

φn,x(t)= EQs
x

(
eitSn

)=Q(it)n1S(x).

In this section, we are going to apply an holomorphic perturbation theorem for Qs in order to show that (for small t )

Q(it)n = θ(it)nM(it)+Nn(it),

where M(it) is a rank one-projection, which commutes with Nn(it), and 	(N(it)) < 	(Q(it)). Using this decompo-
sition, we will be – roughly speaking – able to replace

φn,x(t/
√

n)≈ θ(t
√

n)

for large n in the proof of the Edgeworth expansion.
Fix the parameter s ∈ int(Iμ) as well as ε such that (2.9) is satisfied. By what has been shown above, Qs ∈

L(Bε,Bε) is quasi-compact with a simple dominant eigenvalue 1. This, and the holomorphicity of the mapping z �→
Q(z), shown below, will be the main ingredients for the application of a perturbation theorem.

6.1. Perturbation theory for Qs

Lemma 6.1. Choose δ > 0 such that (s− δ, s+ δ)⊂ Iμ and s+ δ > ε. Then for all z ∈Hδ := {z ∈C : �z ∈ (−δ, δ)},
the operator Q(z) on Bε , which is given by

Q(z)f (x) := 1

rs(x)k(s)

∫
|ax|s+zf (a · x)rs(a · x)μ(da)= EQs

x

[
ezS1f (X1)

]
,

is well defined. The mapping Q :Hδ→ L(Bε,Bε), z �→Q(z) is holomorphic.

Proof. Recalling that rs is bounded from below and above, it follows that[
Q(z)f

]≤KE‖A‖s+�z <∞, (6.1)

since s +�z ∈ Iμ. Together with Lemma 5.3, this proves that Q(z) ∈ L(Bε,Bε).
Now we can show that z �→Q(z) is weakly holomorphic, i.e. for any f ∈ Bε , ν ∈ B′ε (the dual space of Bε), z �→∫

Q(z)f dν is holomorphic. This readily implies that z �→Q(z) is (strongly) holomorphic, see [33, Theorem V.3.1].
In order to show weak holomorphicity, consider arbitrary f, ν and a closed curve γ ⊂ Bδ(0)⊂C. Then∫

γ

(∫
S

(
Q(z)f

)
(x)ν(dx)

)
dz

=
∫
S

(
1

rs(x)k(s)

∫
f (a · x)rs(a · x)

{∫
γ

e(s+z) ln |ax| dz

}
μ(da)

)
ν(dx)= 0,
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for the innermost function is holomorphic in z. The change of the order of integration is guaranteed by the estimate
(6.1). �

Now we can apply the following perturbation theorem [20, Theorem III.8].

Theorem 6.2. Let G0 := Bδ(0)⊂C and let (Q(z))z∈G0 be a collection of elements of L(Bε,Bε) such that

(H1) z �→Q(z) is holomorphic on G0,
(H2) Q(0) has one dominating simple eigenvalue and 	(Q(0))= 1.

Then there exist G1 := Bδ1(0)⊂C, G1 ⊂G0 and holomorphic mappings

θ :G1→C, r :G1→ Bε, ν :G1→ B′ε, N :G1→ L(Bε,Bε)

such that for all n≥ 1, z ∈G1

Qn(z)= θ(z)nM(z)+L(z)n,

with Q(z)r(z)= θ(z)r(z) and ν(z)Q(z)= θ(z)ν(z). Moreover, for each l0 ∈N there exist constants η1, η2 > 0, c ≥ 0
such that for all z ∈G1,

∣∣θ(z)
∣∣≥ 1− η1 and max

{∥∥∥∥ dl

dzl
L(z)n

∥∥∥∥ : l ≤ l0

}
≤ c(1− η1 − η2)

n.

6.2. The operators R(t)

For the Edgeworth expansion, we will consider a slightly different operator, namely such that S1 becomes centered:
Let q := EQs

S1 denote the stationary drift of S1 under Qs , and define the family (R(t))t∈R of operators by

R(t)f (x) := e−itqQ(it)f (x)= EQs
x

(
eit (S1−q)f (X1)

)
. (6.2)

Upon defining

λ(t) := e−itqθ(it), N(t) := e−itqL(it), Π(t)=M(it), (6.3)

we obtain the following corollary of Lemma 6.1 and Theorem 6.2.

Corollary 6.3. There is δ1 > 0 such that for all t ∈G := (−δ1, δ1),

R(t)n = λ(t)nΠ(t)+N(t)n,

with Π(t)N(t)=N(t)Π(t)= 0. For each l0 ∈N there is η= η(l0) > 0 and c= c(l0) <∞ such that

max

{∥∥∥∥ dl

dzl
N(t)n

∥∥∥∥ : l ≤ l0

}
≤ c(1− η)n. (6.4)

The mappings λ :G→C, Π :G→ L(Bε,Bε) and N :G→ L(Bε,Bε) are C∞, the latter ones in the strong operator
sense.

For all purposes below, we can choose l0 = 3, and may therefore consider η= η(3), c= c(3) fixed.
In order to prove the Edgeworth expansion, we will make as well use of the following result, which is inspired by

[7, Lemma 3.19].

Lemma 6.4. Let K ⊂R \ {0} be compact. Then for each f ∈ Bε , there is 	 < 1 such that for all t ∈K[
R(t)nf

]≤ 	n[f ]. (6.5)
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Proof. Fix f ∈ Bε . For each n ∈N, the mapping

t �→ [
R(t)nf

]1/n =
(

sup
x∈S

∣∣E(
qs
n(x,Πn)e

it (Sx
n−q)f

(
Xx

n

))∣∣)1/n

is continuous. Hence, 	f (t) := lim supn→∞[R(t)nf ]1/n is upper semicontinuous, thus it attains it maximum on the
compact set K , in t0 �= 0, say. But 	f (t0)≤ 	(R(t0))= 	(Q(t0)) < 1, hence the assertion follows. �

7. Taylor expansion of λ(t) and positivity of the asymptotic variance

In this section, which is valid for all types of matrices, we are going to relate the first and second order coefficients of
the Taylor expansion of λ with the expectation (which equals zero in fact) resp. the asymptotic variance of Sn − nq

under Qs
x . Moreover, we are able to prove that the asymptotic variance is positive as soon as μ is non-arithmetic.

Lemma 7.1. Assume that μ satisfies (C), (i–p) or (id), and that s ∈ int(Iμ). Then there is σ ≥ 0 and m3 ∈ R such
that

λ(t)= 1− σ 2

2
t2 − i

m3

6
t3 + o

(
t3),

and

σ 2 = lim
n→∞

1

n
EQs (Sn − nq)2, m3 = lim

n→∞
1

n
EQs (Sn − nq)3. (7.1)

For each x ∈ S , the value

b(x)= lim
n→∞EQs

x
(Sn − nq) (7.2)

is well defined, and the mapping b ∈ Bε . It holds that

b(x)= EQs
x

(
(S1 − q)+ b(X1)

)
. (7.3)

Moreover,

σ 2 = EQs

[(
(S1 − q)+ b(X1)

)2 − b(X1)
2], (7.4)

and

sup
n∈N

∣∣nσ 2 −EQs (Sn − nq)2
∣∣ <∞. (7.5)

To prove Lemma 7.1 we reason as in [21, Lemmas 8.3 and 8.4].

Proof of Lemma 7.1. Step 1. First we prove that λ′(0)= 0.
Differentiating the equation R(t)Π(t)1= λ(t)Π(t)1 in the operator sense and computing its value at 0, we obtain

R′(0)1+R(0)Π ′(0)1= λ′(0)1+Π ′(0)1. (7.6)

Both sides of the above equation are bounded continuous functions, so computing their integral with respect to the
measure π we obtain

π
(
R′(0)1

)+ π
(
Π ′(0)1

)= λ′(0)+ π
(
Π ′(0)1

)
we have

λ′(0)= π
(
R′(0)1

)= iEQs [S1 − q] = 0.
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Step 2. Now we justify, that the function b(x) is well defined as a function in Bε .
Observe first that by Lemma 3.7 with z= 0 and (2.5), we have(

Qs
)n

f (x) = EQs
x

[
f (Xn)

]
= Eqs

n(x,Πn)

∫
Γ

qs
1(Πn · x,a)

(
log

∣∣a(Πn · x)
∣∣− q

)
μ(da)

= E

∫
Γ

qs
n+1(x,aΠn)

(
log |aΠnx| − log |Πnx| − q

)
μ(da)

= EQs
x
(Sn+1 − Sn − q)= EQs

x
[Sn+1] −EQs

x
[Sn] − q. (7.7)

Next by (7.6) for any k we have (recall R(0)=Qs )

i
(
Qs

)k
EQs

x
[S1 − q] + (

Qs
)k+1

Π ′(0)1(x)= (
Qs

)k
Π ′(0)1(x). (7.8)

Hence summing over k = 0,1, . . . , n− 1 we obtain

i

n−1∑
k=0

(
Qs

)k
EQs

x
[S1 − q] +

n−1∑
k=0

(
Qs

)k+1
Π ′(0)1(x)=

n−1∑
k=0

(
Qs

)k
Π ′(0)1(x).

Thus by (7.7)

iEQs
x
[Sn − nq] + (

Qs
)n

Π ′(0)1(x)=Π ′(0)1(x).

Since Π ′(0)1 ∈ Bε ⊂ B, the limit (Qs)nΠ ′(0)1(x) exists by Proposition 4.2 and is equal to π(Π ′(0)1). Deriving
the equation Π2(t)=Π(t) and computing the result at 0 we obtain

π
(
Π ′(0)1

)= 0.

Thus, the limit limEQs
x
[Sn − nq] exists, equals

b(x) := 1

i
Π ′(0)1(x), (7.9)

and thus b is well defined and is an element of Bε , since Π ′(0) maps 1 into Bε . The formula (7.3) follows from (7.8)
for k = 0.

Step 3. Using the above, we obtain the following Taylor expansions, valid for small t :

λ(t)n = 1+ nλ′′(0)
t2

2
+ nλ(3) t

3

6
+ o

(
t3),

πs
(
Π(t)1

)= 1+ d1
t2

2
+ d2

t3

6
+ o

(
t3);

as well as the classical expansion for the characteristic function, i.e.

EQs eit (Sn−nq) = 1−EQs (Sn − nq)2 t2

2
− iEQs (Sn − nq)3 t3

6
+ o

(
t3).

From the fundamental identity,

EQs eit (Sn−nq) = πs
(
R(t)n1

)= λ(t)nπs
(
Π(t)1

)+ πs
(
N(t)n1

)
,

using the bounds (6.4) (with l0 = 3) for N as well, we deduce that

nλ′′(0)+ d1 +O
(
(1− η)n

)=−EQs (Sn − nq)2
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and

nλ(3)(0)+ d2 +O
(
(1− η)n

)=−iEQs (Sn − nq)3.

Hence, the identification of σ 2 and m3 as well as the boundedness assertion follow.
Step 4: Finally, we provide the formula for σ 2. Differentiating R(t)Π(t)1 = λ(t)Π(t)1 twice and integrating

against πs , using πsR(0)= πs , we obtain

πs
(
R′′(0)1

)+ 2πs
(
R′(0)Π ′(0)1

)= λ′′(0),

hence recalling from above that ib(x)=Π ′(0)1(x),

−
∫

EQs
x

(
log‖A1x‖ − q

)2
πs(dx)− 2

∫
EQs

x

[
log

(‖A1x‖ − q
)
b(A1 · x)

]
πs(dx)= λ′′(0),

i.e.

σ 2 = EQs

[
(S1 − q)2 + 2(S1 − q)b(X1)

]
and the result follows by quadratic extension inside the expectation. �

Using the above formula for σ 2, one can show that non-arithmeticity readily implies that σ 2 > 0.

Lemma 7.2. Assume that σ 2 = 0, then

S1 = q − b(X1)+ b(X0) Qs-a.s.,

in particular, (Xn,Sn) is arithmetic under Qs and μ is arithmetic.

Proof. If σ 2 = 0, then it follows from (7.5), that∫
b(x)2πs(dx) =

∫ [
lim

n→∞EQs
x
(Sn − nq)

]2
πs(dx)≤

∫
lim inf
n→∞ EQs

x
(Sn − nq)2πs(dx)

≤ lim inf
n→∞

∫
EQs

x
(Sn − nq)2πs(dx)≤ sup

n∈N
EQs (Sn − nq)2 <∞.

Then we may rewrite the formula from Lemma 7.1 to read

σ 2 = EQs

(
(S1 − q)+ b(X1)

)2 −EQs b(X1)
2 = EQs

(
(S1 − q)+ b(X1)

)2 −EQs b(X0)
2. (7.10)

Using (7.3), we see that

EQs

((
(S1 − q)+ b(X1)

)
b(X0)

)= ∫
b(x)EQs

x

((
(S1 − q)+ b(X1)

))
πs(dx)=

∫
b(x)2πs(dx),

which we use in (7.10) to obtain (through binomial formula) that

0= σ 2 = EQs

(
(S1 − q)+ b(X1)− b(X0)

)2 =
∫

V (Γ )

πs(dx)

∫
suppμ

μ(da)
(
log |ax| − q + b(a · x)− b(x)

)2
.

This gives the assertion; and the arithmeticity of μ follows, since the function b is continuous (see Lemma 2.6). �
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Finally, we note some expressions for derivatives of k.

Corollary 7.3. The function k(s) is C∞ on int(Iμ), and

k′(s)
k(s)

= q = EQs S1,
k(2)(s)

k(s)
= q2 + σ 2.

Proof. Recalling the definition of P s , we see that for ε ∈ (−δ1, δ1),

(
P s+ε

)n
f (x) = rs(x)k(s)nQ(ε)

f

rs
(x)

= k(s)nθ(ε)nrs(x)r(ε)(x)

∫
S≥

f (y)/rs(y)ν(ε)(dy)+ rs(x)k(s)nN(ε)
f

rs
(x).

By Proposition 2.1, P s+ε has a unique strictly positive eigenfunction, which is then given by rs(x)r(ε)(x) and thus
the corresponding eigenvalue equals

k(s + ε)= k(s)θ(ε). (7.11)

By Theorem 6.2, the function θ is holomorphic in a neighbourhood of 0, hence C∞ in 0 and so is k, with k(n)(s)=
k(s)θ(n)(0). Recalling that λ(t)= e−itqθ(it), we obtain

λ′(0)= i
k′(s)
k(s)

− iq, λ(2)(0)=−q2 + 2qθ ′(0)− θ(2)(0)=−q2 + 2q
k′(s)
k(s)

− k(2)(s)

k(s)
.

Since λ′(0)= 0, the assertions follow. �

8. The Edgeworth expansion

In this section we are going to prove a third-order Edgeworth expansion for Sn w.r.t. the measure Qs
x , valid for all

types of matrices. We fix real s ∈ int(Iμ), and denote by q := EQs S1 the stationary drift of (Sn)n∈N. We will use the
operator R(t)f (x)= EQs

x
[eit (S1−q)f (X1)].

Let

Fn,x(t) :=Qs
x

{
Sn − nq√

nσ 2
≤ t

}
be the cumulative distribution function of the standardized version of Sn, and write Φ for the cumulative distribution
function of the standard normal distribution. Then we have the following result.

Theorem 8.1. Assume that μ satisfies (C) and is non-arithmetic, or that (i–p) or (id) holds. Assume moreover that
(2.9) holds for some ε > 0. Then

lim
n→∞ sup

x∈S≥

{√
n sup

u∈R

∣∣∣∣Fn,x(u)−Φ(u)− m3

6σ 3
√

n

(
1− u2)φ(u)+ b(x)

σ
√

n
φ(u)

∣∣∣∣}= 0,

for quantities b(x) ∈R, σ 2 > 0, m3 ∈R as defined in (7.1) and (7.2).

Proof. We proceed as in [21], i.e. we try to follow the standard proof as in the i.i.d. case. Recall that, since we assume
non-arithmeticity, σ 2 > 0 due to Corollary 7.2.



Precise large deviation results for products of random matrices 1497

Step 1. We define the function

Gn(u) :=Φ(u)+ m3

6σ 3
√

n

(
1− u2)φ(u)− b(x)

σ
√

n
φ(u)=Φ(u)− m3

6σ 3
√

n
φ′′(u)− b(x)

σ
√

n
φ(u), u ∈R.

Here Φ denotes the cumulative distribution function, and φ the density function of a standard normal distribution.
One can easily see that the derivative of Gn,

G′n(u)= φ(u)− m3

6σ 3
√

n
φ(3)(u)− b(x)√

n
φ′(u)

has exponential decay both at +∞ and −∞, uniformly in n. Let γn(t) :=
∫

eituG′n(u) du be the Fourier transform of
G′n, then

γn(t)=
(

1+ m3

6σ 3
√

n
(it)3

)
· e−(1/2)t2 +

(
it

b(x)

σ
√

n

)
e−(1/2)t2

.

Denote

γ0,n(t) :=
(

1+ m3

6σ 3
√

n
(it)3

)
· e−(1/2)t2

,

γx,n(t) :=
(

it
b(x)

σ
√

n

)
e−(1/2)t2

,

ϕn,x(t) :=
(
R(t)

)n
(1)(x)= EQs

x

[
eit (Sn−nq)

]
,

m := sup
n∈N

sup
u∈R

∣∣G′n(u)
∣∣ <∞.

By the Berry–Essen inequality (see [14, XVI.(3.13)]) we have that for all T > 0,

sup
u∈R

∣∣Fn,x(u)−Gn(u)
∣∣≤ 1

π

∫ T

−T

∣∣∣∣ϕn,x(t/(σ
√

n))− γn(t)

t

∣∣∣∣dt + 24m

πT
. (8.1)

Next, fix ε > 0, choose a such that 24m
πa

< ε. Then with T = a
√

n, 24m
πT
≤ ε√

n
. We choose δ < min{a, δ1}, where δ1 is

given by Corollary 6.3, i.e. for t ∈ (−δ, δ), the perturbation theory for R(t) holds.
Now we want to estimate the integral in (8.1) by O( ε√

n
). For this purpose we divide the integral into two parts

An =
∫

σδ
√

n≤|t |≤σa
√

n

∣∣∣∣ϕn,x(t/(σ
√

n))− γn(t)

t

∣∣∣∣dt,

Bn =
∫
|t |≤σδ

√
n

∣∣∣∣ϕn,x(t/(σ
√

n))− γn(t)

t

∣∣∣∣dt.

Step 2. We prove that An ≤ ε√
n

for appropriately large n. By Lemma 6.4, we have for u such that δ < |u|< a and

all x the estimate |ϕn,x(u)| = |(R(u))n(1)(x)| ≤ 	n, hence∫
σδ
√

n≤|t |≤σa
√

n

ϕn,x(t/(σ
√

n))

|t | dt =
∫

δ≤|u|≤a

ϕn,x(u)

|u| du≤ C(a, δ)	n.

Moreover∫
σδ
√

n≤|t |≤σa
√

n

|γn(t)|
|t | dt ≤Ce−

√
n.
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Step 3. Now we estimate the last term Bn to be smaller than ε√
n

. By Corollary 6.3 we write for |t |
σ
√

n
< δ (recall

that for such small values, the perturbation theory applies)

ϕn,x

(
t

σ
√

n

)
− γn(t) = λn

(
t

σ
√

n

)
Π

(
t

σ
√

n

)
1(x)+Nn

(
t

σ
√

n

)
1(x)− γ0,n(t)− γx,n(t)

=
(

λn

(
t

σ
√

n

)
− γ0,n(t)

)
+ λn

(
t

σ
√

n

)(
Π

(
t

σ
√

n

)
1(x)− 1− it

b(x)

σ
√

n

)
+ it

b(x)

σ
√

n

(
λn

(
t

σ
√

n

)
− e−(1/2)t2

)
+Nn

(
t

σ
√

n

)
1(x)

= I1(t)+ I2(t, x)+ I3(t, x)+ I4(t, x).

Thus, we have to estimate four expressions. For this purpose we will use the Taylor expansion

λ(u)= 1− σ 2

2
u2 − i

m3

6
u3 + o

(
u3),

given in Lemma 7.1. The function f (u) = logλ(u)+ σ 2

2 u2 then satisfies f (0) = f ′(0) = f ′′(0) = 0 and f (3)(0) =
−im3 and hence

nf

(
t

σ
√

n

)
=−i

m3t
3

6σ 3
√

n
+ o

(
t3/
√

n
)
.

Moreover, by choosing δ small enough (but fixed!), we can achieve that for all u ∈ (−δ, δ),

∣∣f (u)
∣∣≤ 1

4
u2 and

∣∣∣∣m3

6
u3

∣∣∣∣≤ 1

4
u2, hence max

{
n

∣∣∣∣f (
t

σ
√

n

)∣∣∣∣, m3t
3

6σ 3
√

n

}
≤ 1

4
t2.

In particular, with this choice of δ, |λn(t/(σ
√

n))| ≤ e−(1/4)t2
.

Considering now I1(t), we obtain, using the inequality

∣∣eu − 1− v
∣∣≤ (

|u− v| + 1

2
|v|2

)
emax(|u|,|v|), (8.2)

which is valid for all u,v ∈C (see [14, XVI(2.8)]),

∣∣I1(t)
∣∣= e−(1/2)t2

∣∣∣∣exp

(
nf

(
t

σ
√

n

))
− 1+ i

m3t
3

6σ 3
√

n

∣∣∣∣≤ e−(1/2)t2
(

t3o

(
1√
n

)
+ t6O

(
1

n

))
e(1/4)t2

,

from which we infer that∫
|t |≤σδ

√
n

∣∣∣∣I (t)

t

∣∣∣∣dt ≤
(

2
∫ ∞

0

(
t3 + t6)e−(1/4)t2

dt

)
· o(1/

√
n).

To estimate the integral of I2(t) we use the bound on λ from above, a second order Taylor expansion for Π(t) (cf.
Corollary 6.3) and that Π ′(0)1(x)= ib(x) (see (7.9)). Then

∣∣I2(t, x)
∣∣≤ e−(1/4)t2

∣∣∣∣Π(0)1(x)+ t

σ
√

n
Π ′(0)1(x)+O

(
t2

n

)
− 1− it

b(x)

σ
√

n

∣∣∣∣
and consequently∫

|t |≤σδ
√

n

I2(t, x) dt ≤
∫
|t |<σδ

√
n

e−(t2/4)O

(
t2

n

)
dt ≤ C

n
.
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Turning to I3(t, x), we recall from Lemma 7.1, that b ∈ Bε , hence as a continuous function on S , it is bounded.
Then ∣∣I3(t, x)

∣∣≤ t[b]
σ
√

n
e−(1/2)t2

∣∣∣∣exp

(
nf

(
t

σ
√

n

))
− 1

∣∣∣∣≤ t[b]
σ
√

n
e−(1/4)t2

(
m3t

3

6σ 3
√

n
+ o

(
t3/
√

n
))

,

where we used again inequality (8.2). Hence
∫ |I3(t, x)|/t dt =O(1/n).

The integral over I4(t, x) is bounded independently of x and vanishes at an exponential rate in n since ‖N(t)‖ ≤
c(1− η)n by Corollary 6.3. �

9. The Bahadur–Rao theorem for products of random matrices

Now we are ready to prove our main result simultaneously for all types of matrices. We extend the approach for the
one-dimensional case in [13, Theorem 3.7.4]. Recall the definition Λ(s) = logk(s), such that Λ′(s) = EQs S1 =: q
and the Fenchel–Legendre transform of Λ is given byΛ∗(q)= sq −Λ(s).

Theorem 9.1. Assume that μ satisfies (C) and is non-arithmetic; or that (i–p) or (id) hold. Let q = EQs S1 = k′(s)
k(s)

for
some s ∈ int(Iμ) and assume there is 0 < ε < 1 such that (2.9) holds.

(1) Then

lim sup
n→∞

sup
x∈S

sup
d∈[0,∞)

esd

√
nesnq

k(s)n
Qx(Sn ≥ nq + d) <∞. (9.1)

(2) Consequently, there is C <∞ s.t. for all n ∈N and thereupon for each u≥ nq

Qx(Sn > u)≤ Ck(s)n√
nesu

. (9.2)

(3) For each fixed θ ≥ 0 it holds that

lim
n→∞ sup

x∈S
sup

d∈[0,θ
√

n)

∣∣∣∣sσ√2πn
es(nq+d)

k(s)n
ed2/(2σ 2n)EQx

[
rs(Xn)1{Sn≥nq+d}

]− rs(x)

∣∣∣∣= 0. (9.3)

(4) In particular, for all x ∈ S ,

lim
n→∞ sσ

√
2πnenΛ∗(q)EQx

[
rs(Xn)1{Sn≥nq}

]= rs(x). (9.4)

Note that, using just the Chebyshev inequality and the definition of k(s), one obtains in (9.2) the weaker upper
bound

Qx(Sn > u)≤ Ck(s)n

esu
,

where the factor 1/
√

n does not appear.

Proof of Theorem 9.1. All the results will be consequences of a general argument. Fix θ ≥ 0, but let d ≥ 0 be
arbitrary for the time being. Introduce Ψn := sσ

√
n and

J d
n := sσ

√
2πn

esnqesd

k(s)n
= Ψn

√
2πenΛ∗(q)esd

as well as the normalized quantity

Wn := Sn − nq√
nσ

,
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then PQs
x
(Wn ≤ t)= Fn,x(t). We obtain that

1

rs(x)
EQx

(
rs(Xn)1{Sn≥nq+d}

) = EQs
x

(
enΛ(s)−sSn1{Sn≥nq+d}

)
= e−nΛ∗(q)EQs

x

(
e−s(Sn−nq)1{Sn−nq≥d}

)
= e−nΛ∗(q)EQs

x

(
e−ΨnWn1{Wn≥(d)/(

√
nσ)}

)
.

Using the definition of J d
n , we obtain

J d
n

1

rs(x)
EQx

(
rs(Xn)1{Sn≥nq+d}

)
=√2πΨne

sd

∫ ∞
d/(σ
√

n)

e−Ψnt dFn,x(t)

=√2πesdΨne
−ΨntFn,x(t)|∞sd/Ψn

+√2πesd

∫ ∞
sd/Ψn

Ψ 2
n e−ΨntFn,x(t) dt

=−√2πΨnFn,x

(
sd

Ψn

)
+√2πesd

∫ ∞
sd

Ψne
−tFn,x

(
t

Ψn

)
dt

=√2πesd

∫ ∞
sd

Ψne
−t

[
Fn,x

(
t

Ψn

)
− Fn,x

(
sd

Ψn

)]
dt.

Defining h(t) := (1− t2)φ(t) and setting as before

Gn(t) :=Φ(t)+ m3

σ 3
√

n

(
1− t2)φ(t)− b(x)

σ
√

n
φ(t)=Φ(t)+ m3

σ 3
√

n
h(t)− b(x)

σ
√

n
φ(t),

we want to use the Edgeworth expansion from Theorem 8.1 in order to calculate the asymptotics. Therefore,

J d
n

1

rs(x)
EQx

(
rs(Xn)1{Sn≥nq+d}

)
=√2πesd

∫ ∞
sd

e−t sσ
√

n

([
Fn,x

(
t

Ψn

)
−G

(
t

Ψn

)]
−

[
Fn,x

(
sd

Ψn

)
−G

(
sd

Ψn

)])
dt

(=: I d
1 (n, x)

)
+√2πesd

∫ ∞
sd

Ψne
−t

[
Φ

(
t

Ψn

)
−Φ

(
sd

Ψn

)]
dt

(=: I d
2 (n)

)
+ m3

√
2π

σ 3
√

n
esd

∫ ∞
sd

Ψne
−t

[
h

(
t

Ψn

)
− h

(
sd

Ψn

)]
dt

(=: I d
3 (n)

)
− b(x)

√
2π

σ
√

n
esd

∫ ∞
sd

Ψne
−t

[
φ

(
t

Ψn

)
− φ

(
sd

Ψn

)]
dt

(=: I d
4 (n)

)
.

It follows from Theorem 8.1 that

lim
n→∞ sup

x∈S
sup
d≥0

∣∣I d
1 (n, x)

∣∣= 0.

Using mainly that φ and h have bounded derivatives, we are going to show that as well

lim
n→∞ sup

d≥0

∣∣I d
3 (n)

∣∣= lim
n→∞ sup

d≥0

∣∣I d
4 (n)

∣∣= 0. (9.5)
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Finally, considering I d
2 (n), we are going to obtain two different estimates, namely∣∣I d

2 (n)
∣∣≤ e−(d2)/(2σ 2n) ≤ 1, (9.6)

and the refined estimate

lim
n→∞ sup

d∈[0,θ
√

n]

∣∣e(d2)/(2σ 2n)I d
2 (n)− 1

∣∣= 0. (9.7)

Using the estimate (9.6) allows to infer the upper bound (9.1), while the convergence result (9.3) follows by using
estimate (9.7). So it remains to prove equations (9.5)–(9.7).

Step 2: We consider I d
3 and omit I d

4 , which can be treated along similar lines. A simple calculation shows that h

has a continuous derivative h′ with supx∈R |h′(x)| =:M <∞. We compute

∣∣I d
3 (n)

∣∣ = ∣∣∣∣m3
√

2π

σ 3
√

n
esd

∫ ∞
sd

e−t

(∫ t/Ψn

sd/Ψn

h′(r)Ψn dr

)
dt

∣∣∣∣
=

∣∣∣∣m3
√

2π

σ 3
√

n
esd

∫ ∞
sd

e−t

(∫ t

sd

h′
(

r

Ψn

)
dr

)
dt

∣∣∣∣= ∣∣∣∣m3
√

2π

σ 3
√

n
esd

∫ ∞
sd

h′
(

r

Ψn

)∫ ∞
r

e−t dt dr

∣∣∣∣
≤ m3

√
2π

σ 3
√

n
esd

∫ ∞
sd

∣∣∣∣h′( r

Ψn

)∣∣∣∣e−r dr ≤ m3
√

2π

σ 3
√

n
esd

∫ ∞
sd

Me−r dr =M
m3
√

2π

σ 3
√

n
.

Step 3: We are going to prove (9.6) and (9.7). Therefore,

I d
2 (n) = esd

∫ ∞
sd

Ψne
−t

(∫ t/Ψn

sd/Ψn

e−r2/2 dr

)
dt = esd

∫ ∞
sd/Ψn

Ψne
−r2/2

(∫ ∞
Ψnr

e−t dt

)
dr (9.8)

= esd

∫ ∞
sd/Ψn

Ψne
−r2/2e−Ψnr dr = esd

[
−e−Ψnr−r2/2|∞sd/Ψn

−
∫ ∞

sd/Ψn

re−r2/2−Ψnr dr

]
(9.9)

= e−(d2)/(2σ 2n) −
∫ ∞

sd/Ψn

resd−Ψnre−r2/2 dr. (9.10)

For all d ≥ 0, we have

0≤
∫ ∞

sd/Ψn

resd−Ψnre−r2/2 dr ≤
∫ ∞

sd/Ψn

re−r2/2 dr = e−(d2)/(2σ 2n)

and thus (9.6) follows.
Step 4: In order to prove (9.7), let ε > 0 be arbitrary and choose δ such that δ + θδ

σ 2 + δ2

σ 2 < ε. We separate the last
integral in equation (9.10) into∫ sd/Ψn+δ/σ

sd/Ψn

resd−Ψnre−r2/2 dr +
∫ ∞

sd/Ψn+δ/σ

resd−Ψnre−r2/2 dr =:A(n)+B(n)

and see that by the restriction d ≤ θ
√

n, it holds that sd/Ψn ≤ θ/σ and thus

A(n)≤ δ

σ

θ + δ

σ
e−(d2)/(2σ 2n).

Finally,

B(n)≤ e−sδ
√

n

∫ ∞
sd/Ψn+δ/σ

re−r2/2 dr = e−sδ
√

ne−(sd/Ψn+δ/σ )2/2 ≤ e−sδ
√

ne−d2/(2σ 2n).
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Upon choosing n0 such that e−sδ
√

n ≤ δ for all n≥ n0, we obtain that for all n≥ n0, 0≤A(n)+B(n)≤ εe−(d2)/(2σ 2n).
Thus we have proven that for all ε > 0, there is n0 such that for all n≥ n0,∣∣ed2/(2σ 2n)I d

2 (n)− 1
∣∣≤ ε. �

Proof of Theorem 3.1. The main result is given above, while the formulas for σ 2 follow from Lemma 7.1 and
Corollary 7.3. �

10. Tails of stationary solutions of random difference equations

This section is devoted to Theorem 3.3. We start by giving an example for a matrix recursion from financial time
series.

Example 10.1. Consider the ARCH(2) process Yn defined by

Yn = σnεn, σ 2
n = a1Y

2
n−1 + a2Y

2
n−2 + 1,

where εn are i.i.d. standard normal distributed random variables and a1, a2 > 0 with a1 + a2 < 1.
(1) Considering the squared process (Y 2

n )n, we obtain a matrix recursion:(
σ 2

n

Y 2
n−1

)
=

(
a1ε

2
n−1 a2

ε2
n−1 0

)(
σ 2

n−1
Y 2

n−2

)
+

(
1
0

)
=:Mn

�Yn−1 +Bn, (10.1)

where (Mn,Bn)n∈N is an i.i.d. sequence in M+ × Rd≥. The matrix A1 :=M
1 satisfies condition (C) (it suffices to
assume that allowable matrices have full measure), and the moment condition (2.9) is readily checked, since

ι(A1)
2 = min

x∈S≥
‖A1x‖2 = min

x2
1+x2

2=1

x1,x2≥0

(
a1ε

2
0x1 + ε2

0x2
)2 + a2

2x2
1 ≥

(
min

{
a1ε

2
0, a2

})2
.

Consequently, ι(A1)≥min{a1ε
2
0, a2}, which has all negative moments up to order 1/2 since ε1 is a standard normal

random variable. Kesten [23, Theorem 3] gives the following sufficient condition for the existence of α > 0 such that
k(α)= 1: There is s0 > 0 such that

E

[(
min

i

∑
j

(M1)i,j

)s0
]
≥ ds0/2,

where d is the dimension of the matrix (this is not a misprint, Kesten’s condition is stated in terms of the matrix M1).
In our case, we have the estimate

E

[(
min

i

∑
j

(M1)i,j

)s]
= E

[(
min

{
a1ε

2
0 + a2, ε

2
0

})s]≥ as
1E

(
ε2s

0

)
.

Since ε1 is unbounded, the right-hand side tends to infinity as s grows, thus there is α > 0 with k(α) > 0. Finally, the
non-arithmeticity assumption holds since ε has a continuous distribution, and eigenvalues depend continuously on
the entries of a matrix.

(2) Klüppelberg and Pergamenchtchikov showed in [25, Lemma 2.7], that the process (Yn)n has the same distribu-
tion as the process (Xn)n (if started with the same initial value), given by

Xn = a1η1,nXn−1 + a2η2,nXn−2 + η3,n,

where (ηi,n)n are independent sequences of i.i.d standard normal random variables. This leads to the matrix recursion(
Xn

Xn−1

)
=

(
a1η1,n a2η2,n

1 0

)(
Xn−1
Xn−2

)
+

(
η3,n

0

)
=:Mn

�Xn−1 +Bn. (10.2)
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It can be shown that these matrices satisfy assumptions (i–p) as well as (id), and it is proved in [25, Lemma 3.2] that
there exists α > 0 with k(α)= 1.

Further instances of the equation R
d=MR + B , with matrices satisfying the assumptions of Theorem 3.3, appear

e.g. in [2] (GARCH-processes, nonnegative matrices), [32] (multitype branching processes with immigration in ran-
dom environment, nonnegative matrices), [3] (stationary solutions of multivariate generalized Ornstein–Uhlenbeck
processes, invertible matrices), to name just a few. An extension of the methods used below applies to provide exact
tail asymptotics for random variables R which are fixed points of multivariate smoothing transforms, i.e. satisfying

R
d=

N∑
i=1

MiRi +B, (10.3)

where N ≥ 2 is a fixed integer, R and Ri are i.i.d. and independent of the random matrices Ai and the random vector B .
The details are worked out in [6].

Heavy tail properties of such R were studied in [9,10,30] and a result similar to (1.5) was obtained, there α =
max{s > 0 : κ0(s) = 1/N}. Only in the first reference, which studies matrices satisfying (C), it could be shown that
K > 0, in the latter two references, only partial results were obtained.

10.1. Outlining the proof of Theorem 3.3

Now we explain how the proof of Theorem 3.3 is given by a sequence of lemmata, the proofs of which are quite tech-
nical and therefore postponed to the subsequent section, for a better stream of arguments. First, we have to introduce
some notation.

Notation. Given a random element (M,B) ∈M(d × d,R)× Rd , let (Mn,Bn)n∈N be a sequence of i.i.d. copies of
(M,B), defined on a probability space (Ω,F,P). Let X0 :Ω→ S be a random variable and (Px)x∈S be a family
of probability measures on Ω , such that (Mn,Bn)n∈N have the same law as under P, while Px(X0 = x) = 1. Write
�n :=M
n · · ·M
1 , X∗n := �n ·X0, S∗n := log |�nX0|.

As mentioned before, we will apply the results obtained in the previous sections to the matrix A1 :=M
1 . Writing
μ for the law of A1 =M
1 under P, and defining the measures Qx as in Section 2.4, we have the following identities,
valid for all x ∈ S :

Qx

((
X0, (An)n∈N

) ∈ ·)= Px

((
X0,

(
M
n

)
n∈N

) ∈ ·), (10.4)

Qx

(
(Xn,Sn)n∈N ∈ ·

)= Px

((
X∗n, S∗n

)
n∈N ∈ ·

)
. (10.5)

If not explicitly stated otherwise, all appearing quantities below will be defined in terms of the sequences (An)n∈N,
for example k(s). From now on, we fix α > 0 such that k(α)= 1 and set q := Eα

Qs S1. We will assume throughout that
the assumptions of Theorem 3.3 are in force.

Using the identifications from above, the SLLN in Proposition 2.3 yields that

lim
n→∞

1

n
log‖�n‖ = k′(0) < 0 P-a.s.,

which allows to infer that there is a unique solution (in distribution) to the equation R
d= MR + B , see e.g. [5,

Theorem 1.1].
The fundamental idea is to compare the behavior of 〈x,R〉 with that of |�x|. Therefore, we use that for Rk being

i.i.d. copies of R and independent of (Mk,Bk), we have that for all n ∈N,

R
d=M1R1 +B1

d=M1 · · ·MnRn +
∑
k≤n

M1 · · ·Mk−1Bk.
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Consequently, for any x ∈ S,

〈x,R〉 d= 〈x,M1 · · ·MnRn〉 +
∑
k≤n

〈x,M1 · · ·Mk−1Bk〉 ≥ 〈�nx,Rn〉 −
∑
k≤n

∣∣〈�k−1x,Bk〉
∣∣.

We are going to consider sets where first term dominates, while the sum is comparably small. In order to estimate the
scalar product 〈�nx,Rn〉 from below by |�nx|, we will use the following lemma:

Lemma 10.2. Let the assumptions of Theorem 3.3 hold. Then for all D > 0 there are J <∞, κj > 0 and cj > 0,
1≤ j ≤ J , and disjoint subsets Sj ⊂ S, such that

P

(
R

|R| ∈ Sj and |R|> D

cj

)
≥ κj (10.6)

and moreover

Rd ⊂
J⋃

j=1

S∗j , (10.7)

where S∗j are the cones

S∗j :=
{
y ∈Rd : 〈y, x〉 ≥ cj |y| for all x ∈ Sj

}
.

If μ satisfies (C), then the same statement is valid, but for Sj being disjoint subsets of S≥ and with (10.7) replaced by

R≥ ⊂
J⋃

j=1

S∗j .

The proof of the lemma will be given in Section 11.
The lemma now allows for the following comparison: If Rn ∈ Sj and �nx ∈ S∗j , it follows that 〈�nx,Rn〉 ≥

cj |�nx||Rn|.
As the next step, we use this comparison in more detail. Given constants C0, δ > 0 (which will be chosen later), let

D = eC0
∑∞

k=0 e−kδ = eC0/(1− e−δ). Let t ≥ 0 and define nt = �log t/q�.
Vn,t =

{
S∗n ≥ ntq and log |Bk+1| + S∗k ≤ ntq +C0 − (n− k)δ ∀k < n

}
, (10.8)

V
j
n,t = Vn,t ∩

{
�nX0 ∈ S∗j

}∩ {
Rn ∈ Sj and |Rn|> 2

D

cj

}
, (10.9)

Ṽn,t =
⋃
j

V
j
n,t . (10.10)

Then we have the following lemma, the short proof of which we give immediately.

Lemma 10.3. For all t ≥ 0,

P
(〈x,R〉> Dt

)≥ Px

(⋃
n

Ṽn,t

)
.

Moreover, for all n ∈N,

Px(Ṽn,t )≥
(

min
j

κj

)
Px(Vn,t )=: κ0Px(Vn,t ).
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Proof. Recall that Px(X0 = x)= 1. Thus for every n on the set V
j
n,t we have under Px〈

M1 · · ·MnRn +
∑
k≤n

M1 · · ·Mk−1Bk, x

〉
≥ 〈Rn,�nx〉 −

∑
k≤n

∣∣〈Bk,�k−1x〉
∣∣

≥ cj |Rn||�nx| −
∑
k≤n

|Bk||�k−1x|

≥ 2Dentq − ent qeC0
∑
k≤n

e−(n−k)δ

≥ Dt.

To prove the second part of the lemma we use the independence of �n and Rn, the disjointness of Sj and the fact that

R
d=Rn to deduce

Px(Ṽn,t )= Px

(⋃
j

V
j
n,t

)
=

∑
j

Px

(
V

j
n,t

)≥ κ0

∑
j

Px

(
Vn,t ∩

{
�nx ∈ S∗j

})= κ0Px(Vn,t ).
�

The final burden will then be to prove the following lemma:

Lemma 10.4. There is η > 0 and T0 > 0 such that for all t ≥ T0,

Px

(⋃
n

Ṽn,t

)
≥ ηt−α.

In fact, in its proof, we will for each fixed t only consider a subset Kt ⊂ N of integers close to nt := �log t/q�,
with q = EQαS1 > 0. We will choose Kt ⊂ [nt −√nt , nt ] and prove that readily Px(

⋃
k∈Kt

Ṽk,t ) ≥ ηt−α , using the
inclusion–exclusion formula.

Therefore, we will use the following technical result, which finally fixes C0 and δ. It is here where the Bahadur–Rao
theorem enters.

Lemma 10.5. Assume that α ∈ int(Iμ) and that

E‖A‖α+ει(A)−ε <∞, 0 < E|B|α+ε <∞. (10.11)

Then there are constants δ,C0,D1,D2,N0 > 0 such that for all x ∈ S

D1 · k(α)n√
nteαnt q

≤ Px(Vn,t )≤D2 · k(α)n√
nteαnt q

for all �log t/q� = nt > N0 and every nt −√nt ≤ n≤ nt −√nt/2.
For the assertion of this lemma to hold, k(α) = 1 is not necessary, we only need that k′(α) > 0, then still q :=

EQαS1.

Summing up what has been said before, we now are able to prove Theorem 3.3.

Proof of Theorem 3.3. We already mentioned that the assumptions of Theorem 3.3 guarantee the existence and

uniqueness (in distribution) of a solution R to R
d=MR + B , see e.g. [5, Theorem 1.1]. The lower bound for the tail

behavior then follows by combining Lemmas 10.3 and 10.4. �
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11. Proofs

11.1. On the support of R

As mentioned before, in order to prove Lemma 10.2, we have to show that suppR is unbounded in “enough” di-
rections. To make this statement precise, introduce the asymptotic support of R: Consider the compactification
Rd :=Rd ∪ S∞ of Rd , with

Rd � xn converges to y ∈ S∞ = S ⇔ lim
n→∞

xn

|xn| = y and lim
n→∞|xn| =∞.

We will study the set

V (R) :=
{
y ∈ S : ∃(rn)n ⊂ suppR : lim

n→∞
rn

|rn| = y and lim
n→∞|rn| =∞

}
.

Using diagonal sequences, one obtains that the set V (R) is indeed closed and thus, as a subset of S , even compact.
An important result is that the set V (R) is invariant under the action of Γ ∗ = [supp M] on the sphere: Let y ∈ V (R),
with associated sequence rn. Then mrn + b ∈ suppR for all (m, b) ∈ supp(M,B), and still |mrn + b| →∞, with the
ratio |mrn + b|/|mrn| tending to one. Hence,

m · y = lim
n→∞

(
mrn

|mrn| +
b

|mrn|
)
= lim

n→∞
mrn + b

|mrn + b| ,

and thus m · y ∈ V (R).
We have the following result about V (R) for A being nonnegative.

Proposition 11.1. Under the assumptions of Theorem 3.3, let A be nonnegative and satisfy (C).

(1) Assume that B is nonnegative. Then V (R)∩ S≥ �=∅.
(2) If V (R)∩ S≥ �=∅, then readily V (R)∩ int(S≥) �=∅.

Proof. Step 1: If B is nonnegative as well, then suppR ⊂ Rd≥. Moreover, since B �= 0, there is nonzero r ∈ suppR.
But then as well Rr

n :=M1 · · ·Mnr +∑
k≤n M1 · · ·Mk−1Bk ∈ suppR, in particular,

∣∣Rr
n

∣∣≥ |M1 · · ·Mnr| d= |Mn · · ·M1r|.

We assumed that A =M
 satisfies (C); but (C) holds for A if and only if it holds for A
. Hence Proposition 2.3
applies and gives under ∗Qα

r (which denotes the measure constructed in the same manner as Qα
r , but using the law of

A
 =M),

lim
n→∞

Sn

n
= lim

n→∞
1

n
log |Mn · · ·M1r| = k′(α)/k(α) > 0.

But finite marginal distributions of ∗Qα
r and P are equivalent, and thus we have that the sequence (|Mn · · ·M1r|)n is

unbounded, hence suppR is unbounded as well.
Step 2: As shown above, the set V (R) is invariant under Γ ∗. But by [9, Lemma 4.3], V (Γ ∗) is the unique closed

minimal Γ ∗-invariant subset, hence V (R) contains V (Γ ∗). In particular, there is y ∈ int(S≥) with y ∈ V (Γ ∗) ⊂
V (R). �

Proof of Lemma 10.2. We consider separately the three cases of matrices.
Case 1: Assume A is nonnegative and satisfies (C) and that suppR∩Rd≥ is unbounded. Then, by Lemma 11.1, there

is y0 ∈ int(S≥)∩V (R). It holds that minx∈S≥〈x, y0〉 ≥min1≤i≤d(y0)i > 0. Let δ > 0 such that Bδ(y0)∩S≥ ⊂ int(S≥).
Then there is c > 0 such that minx∈S≥ miny∈Bδ(y0)〈x, y〉 ≥ c, and we can set J := 1 and S1 := Bδ(y0).
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Case 2: Assume that A ∈GL(d,R), satisfying (id). Due to the density assumption, which is invariant under taking
the transpose, there is in particular a proximal matrix m ∈ Γ ∗ with attracting eigenvector vm. By [1, Lemma 8.1], the
set V (R) is non-empty, moreover, there are y1, y2 ∈ V (R) such that 〈y1, vm〉> 0 and 〈y2, (−vm)〉> 0. Since V (R) is
Γ ∗-invariant, it follows that mn · y1 and mn · y2 are in V (R) for all n ∈N, hence vm and −vm are in V (R).

Observe that the operator P α∗ , defined in (2.2), leaves Cb(V (R)) invariant. Moreover, due to the density assumption,
the measure ν := (P α∗ )n0 1

2 (δvm + δ−vm) has a density with respect to the volume measure on S, and in particular, gives
mass zero to any hyperspace, and is still supported on (a subset of) V (R) and is symmetric, i.e. ν(A)= ν(−A) for all
A⊂ S. Then one can proceed as in [17, Lemmas 2.7 and 2.8] – these are the counterpart of Lemma 4.4 for invertible
matrices – to show that ((P α∗ )n)ν(1V (R))≥ cκ(α)n = c for some c > 0 and all n ∈N.

Together with the compactness of V (R) this yields that, using Prokhorov’s theorem,

1

n

n−1∑
k=0

(
P α∗

)k
ν

is a weakly compact sequence and therefore has a subsequential limit ν∗α , which is a probability measure on V (R) that
satisfies P α∗ ν∗α = ν∗α .

By Proposition 2.1(3) and (4), it holds for all x ∈ S that

min
x∈S

∫
V (R)

∣∣〈x, y〉∣∣sν∗s (dy)=min
x∈S

1

c
rs(x) := ε > 0.

This shows that for all x ∈ S there is y ∈ V (R) such that 〈x, y〉 ≥ 2−1/sε1/s due to the symmetry of ν∗s . Hence we can
find a partition of V (R) into a finite number of sets (use compactness), such that the assertions of the lemma hold.

Case 3: Assume that A ∈ GL(d,R) satisfies (i–p), and that there is no proper closed convex cone, which is Γ ∗-
invariant. Then it is shown [17, after Theorem 5.1], that V (R) contains the pre-image of V (Γ ∗) under the projection
S→ Pd−1 (this is called Case I there). Using that M= A
 satisfies (i–p) as well, if it is satisfied by A, we use [17,
Theorem 2.17] to infer the existence of a symmetric probability measure ν∗α , which is supported in (a subset of) V (R).
Then we can conclude as above. �

11.2. Auxiliary lemma

Next we are going to prove Lemma 10.5.

Proof of Lemma 10.5. Step 1: Denoting Un,t := {S∗n ≥ ntq} and

Wj,n,t :=
{
S∗j + log |Bj+1|> ntq +C0 − (n− j)δ

}
,

we have that

Px(Vn,t )= Px(Un,t )− Px

(⋃
j<n

(Un,t ∩Wj,n,t )

)
.

Using the Bahadur–Rao type result (9.3), we estimate Px(Un,t ) from below (with d = q(nt − n), θ = q + 1, ϑ1 =
infx,y

r∗α(x)

r∗α(y)
), namely, there is N0 ∈N and ϑ2 > 0, such that for all n≥N0, the following estimate holds:

Px(Un,t )=Qx(Sn > ntq)≥ ϑ1

rα(x)
EQx

[
rα(Xn)1{Sn≥nq+d}

]≥ ϑ2 · k(α)n√
nteαnt q

. (11.1)

Similarly (9.2) provides an upper estimate for P(Un,t ) which in particular proves the upper bound in the lemma.
Therefore it is sufficient to prove that

Px

(⋃
j<n

(Un,t ∩Wj,n,t )

)
≤ ϑ · k(α)n√

nteαnt q
(11.2)
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for some ϑ < ϑ2/2. In fact, we are going to show that ϑ can be made arbitrarily small by choosing C0 large.
Step 2: Let us denote by μA,B the joint law of (A,B). By decomposing the sets Wj,n,t further, depending on the

overshoot of S∗j + log |Bj+1|, we obtain

Px

(⋃
j<n

(Un,t ∩Wj,n,t )

)
≤

∑
j<n

Px(Un,t ∩Wj,n,t )

=
∑
j<n

∑
m≥0

P

(
ent q+C0+m

e(n−j)δ
≤ |Bj+1||�j x|< entq+C0+m+1

e(n−j)δ
and |�nx|> entq

)

≤
∑
j<n

∑
m≥0

∫
P

(
ent q+C0+m

e(n−j)δ
≤ |b||�j x|< entq+C0+m+1

e(n−j)δ
and ‖�n

j+2‖‖a
‖|�j x|> entq

)
μA,B(da, db)

≤
∑
j<n

∑
m≥0

∫
P

(
|�j x| ≥ ent q+C0+m

|b|e(n−j)δ

)
· P

(
‖Πn−j−1‖>

|b|e(n−j)δ

‖a‖eC0+m+1

)
μA,B(da, db).

To estimate further, we have to consider separately the cases where |b| is small resp. large, for we can apply the
Bahadur–Rao estimate only in the first case. More precisely, we split the integral into two integrals over the set

Θ := {|b| ≤ e(nt−j)q+C0−(n−j)δ+m
}

(11.3)

and its complement Θc , respectively.
Step 3: In this step, we estimate

I :=
∑
j<n

∑
m≥0

∫
1Θ(b)P

(
|�j x| ≥ ent q+C0+m

|b|e(n−j)δ

)
· P

(
‖Πn−j−1‖>

|b|e(n−j)δ

‖a‖eC0+m+1

)
μA,B(da, db).

In this step, we also choose δ. C0 will be a free parameter until Step 5, and it is important to notice, that all appearing
constants are independent of C0.

On Θ , eu := exp(nt q+C0+m)
|b| exp((n−j)δ)

≥ exp(jq), thus the estimate (9.2) applies to the first probability in I and yields

P
(|�j x| ≥ eu

)= Px

(
S∗n ≥ u

)=Qx(Sn ≥ u)≤ Ck(α)j√
jeαu

= Ck(α)j |b|αeα(n−j)δ

√
jeα(nt q+C0+m)

, (11.4)

where C is given by Theorem 9.1 and only depends on α.
In order to estimate the second probability in I, we use the Markov inequality with the function x �→ xβ , where we

choose β > 0 such that β < α and k(β) < k(α). This is possible since k′(α) > 0. Then, by Corollary 4.5,

E‖Πn−j−1‖β ≤ 1

cβ

k(β)n−j−1 = 1

cβk(β)
k(α)n−j

(
k(β)

k(α)

)n−j

with cβ > 0 given by Proposition 4.4. We obtain, applying the Markov inequality as described above,

P

(
‖Πn−j−1‖>

|b|e(n−j)δ

‖a‖eC0+m+1

)
≤ E[‖Πn−j−1‖β ]‖a‖βeβ(C0+m+1)

|b|βeβ(n−j)δ

≤ k(α)n−j‖a‖βeβ(C0+m+1)

k(β)cβ |b|βeβ(n−j)δ

(
k(β)

k(α)

)n−j

. (11.5)

Define ξ := α − β > 0. Using the estimates (11.4) and (11.5) in I and simplifying terms, we obtain

I≤
∑
j<n

∑
m≥0

∫
1Θ(b)

Ceβ

cβk(β)

1√
j

k(α)n|b|ξ‖a‖βeξ(n−j)δ

eαnt qeξ(C0+m)

(
k(β)

k(α)

)n−j

μA,B(da, db). (11.6)
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We estimate further by omitting the indicator 1Θ(b), integrating, setting C′ := Ceβ/cβk(β) and using Fubini’s theo-
rem:

I ≤
∑
j<n

∑
m≥0

C′ 1√
j

k(α)neξ(n−j)δ

eαnt qeξ(C0+m)

(
k(β)

k(α)

)n−j

E
(‖A‖β |B|ξ )

= C′k(α)n

eξC0eαnt q

(∑
m≥0

e−ξm

)(∑
j<n

1√
j

(
k(β)eξδ

k(α)

)n−j)
E

(‖A‖β |B|ξ ). (11.7)

Recall that we chose β < α such that k(β) < k(α). Thus, we can choose a (small) δ > 0, such that

eξδk(β) < k(α), (11.8)

and apply Lemma 11.2 (see below) with 	= eξδk(β)/k(α) to infer that the sum over j is bounded by a constant times
1/
√

n. On E(‖A‖β |B|ξ ) we can apply Hölder’s inequality with p1 = α/(α − ξ)= α/β and p2 = α/ξ to infer

I≤ C′k(α)n

eξC0eαnt q

1

1− e−ξ

D3√
n
E‖A‖αE|B|α =: C′′k(α)n√

neξC0eαnt q
≤ C′′′

eξC0
· k(α)n√

nteαnt q

for a finite constant C′′′, which does not depend on n or t or C0. Note that we were allowed to replace n by nt in the
final expression, since nt −√nt ≤ n≤ nt −√nt/2 by assumption.

Step 4: Now, to estimate

II :=
∑
j<n

∑
m≥0

∫
1Θc(b)P

(
|�j x| ≥ ent q+C0+m

|b|e(n−j)δ

)
· P

(
‖Πn−j−1‖>

|b|e(n−j)δ

‖a‖eC0+m+1

)
μA,B(da, db),

we start by applying the Markov inequality with x→ xα resp. x→ xβ with β as above to both probabilities:

P

(
|�j x| ≥ ent q+C0+m

|b|e(n−j)δ

)
≤ E[|�j x|α]|b|αeα(n−j)δ

eα(nt q+C0+m)
≤ k(α)j |b|αeα(n−j)δ

cαeα(nt q+C0+m)
, (11.9)

P

(
‖Πn−j−1‖>

|b|e(n−j)δ

‖a‖eC0+m+1

)
≤ E[‖Πn−j−1‖β ]‖a‖βeβ(C0+m+1)

|b|βeβ(n−j)δ
≤ k(β)n−j‖a‖βeβ(C0+m+1)

cβk(β)|b|βeβ(n−j)δ
, (11.10)

were we used as before Corollary 4.5 to obtain the second inequalities. Hence, with ξ = α − β as before,

II ≤
∑
j<n

∑
m≥0

k(α)neβ

cαcβk(β)eξC0eαnt q
e−ξm

(
eξδk(β)

k(α)

)n−j ∫
1Θc(b)‖a‖β |b|ξμA,B(da, db) (11.11)

≤ Dk(α)n

eξC0eαnt q

(∑
m≥0

e−ξm
∑
j<n

(
eξδk(β)

k(α)

)n−j ∫
1Θc(b)‖a‖β |b|ξμA,B(da, db)

)
(11.12)

with D = eβ/(cαcβk(β)). Recall from (11.3) that the set Θc is defined in terms of m and j , thus in order to resolve
the sums, we first have to deal with the integral. We will apply the Hölder inequality twice. Choose (a small) γ > 1
such that

E‖A‖γα <∞ and E|B|γα <∞ and (still) e
ξδ(1+ γ−1

γ
)
k(β) < k(α). (11.13)

This is possible due to (11.8) and the moment assumptions (10.11). Then, using Hölder first with p1 = γ , p2 =
γ /(γ − 1) and subsequently with p′1 = α/β , p′2 = α/ξ , we obtain

E1Θc(B)‖A‖β |B|ξ ≤ (
P
(
B ∈Θc

))(γ−1)/γ (
E‖A‖γβ |B|γ ξ

)1/γ

≤ (
P
(
B ∈Θc

))(γ−1)/γ (
E‖A‖γα

)β/(αγ )(
E|B|γα

)ξ/(αγ )
. (11.14)
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Now we apply the Markov inequality with x �→ xξ to estimate (P(B ∈Θc)),

P
(|B|> e(nt−j)q+C0−(n−j)δ+m

) ≤ (
E|B|ξ )e−ξq(nt−j)−ξ(C0+m)eξδ(n−j)

≤ (
E|B|ξ )e−ξq

√
nt · 1 · eξδ(n−j), (11.15)

where the last inequality is valid for j ≤ n (only such j appear in the sum) and follows from the condition n <

nt −√nt .
Using (11.15) in (11.14) and this in (11.12), we obtain

II ≤ Dk(α)n

eξC0eαnt q

(∑
m≥0

e−ξm
∑
j<n

(
eξδk(β)

k(α)

)n−j

× (E|B|ε)(γ−1)/γ (E‖A‖γα)β/(αγ )(E|B|γα)ξ/(αγ )

eξq((γ−1)/γ )
√

nt
eξδ((γ−1)/γ )(n−j)

)
(11.16)

= D′k(α)n

eξC0eαnt q

1

eξq((γ−1)/γ )
√

nt

(∑
m≥0

e−ξm
∑
j<n

(
eξδ(1+(γ−1)/γ )k(β)

k(α)

)n−j)
(11.17)

for a finite constant D′, independent of n, t,C0. Recalling (11.13), both sums converge. Finally, up to a constant, the
second quotient can be replaced by 1/

√
nt , and thus we arrive at

II≤ D′′

eξCo

k(α)n√
nteαnt q

. (11.18)

Step 5: Recall that our original aim was to prove (11.2) with an arbitrarily small ϑ . From the previous steps, we
have the estimate

Px

(⋃
j<n

(Un,t ∩Wj,n,t )

)
≤ I+ II≤ C′′′ +D′′

eξC0

k(α)n√
nteαnt q

,

where C′′′ and D′′ are finite constants, independent of C0, which is still a free parameter. Thus, by choosing appro-
priately large C0, we obtain the assertion. �

Lemma 11.2. Let 0 < 	 < 1, then there is D3 <∞ such that for all n ∈N,

n∑
j=0

1√
j
	n−j ≤D3

1√
n
.

Proof. As the first step, we relabel the sum to
∑n

j=0
1√
n−j

	j . Then we split the sum at Jn := 1/2(logn)/ log(	) and

use that 	Jn = 1/
√

n and that n/(n− Jn) converges to 1 as n goes to infinity:

Jn∑
j=0

1√
n− j

	j +
n∑

j=Jn

1√
n− j

	j ≤ 1√
n

(
Jn∑

j=0

√
n

n− Jn

	j

)
+ 	Jn

(
n∑

j=Jn

1√
j
	j−Jn

)

≤ 1√
n

([
sup
n∈N

√
n

n− Jn

] ∞∑
j=0

	j

)
+ 1√

n

( ∞∑
j=0

	j

)
=: D3√

n
.

�

11.3. Finishing the proof

Proof of Lemma 10.4. Step 1: We have to prove that Px(
⋃

n∈N Ṽn,t )≥ ηt−α for some η > 0 and all large t . In order
to do so, we can estimate the probability from below by Px(

⋃
n∈Kt

Ṽn,t ), where Kt can be any subset of N, and may
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depend on t . Applying the inclusion–exclusion formula and Lemma 10.3, we obtain

Px

( ⋃
n∈Kt

Ṽn,t

)
≥

∑
n∈Kt

Px(Ṽn,t )−
∑

n,n′∈Kt :n>n′
Px(Ṽn,t ∩ Ṽn′,t )

≥ κ0

∑
n∈Kt

Px(Vn,t )−
∑

n,n′∈Kt :n>n′
Px(Vn,t ∩ Vn′,t ), (11.19)

where we also used that (Ṽn,t ∩ Ṽn′,t ) ⊂ (Vn,t ∩ Vn′,t ), cf. their definitions in (10.8)–(10.10). In order to make the
second sum small, we will consider the following specific subsets Kt ,

Kt = {kC1 : nt −√nt < kC1 < nt −√nt/2}, (11.20)

where the parameter C1 will be chosen later.
Step 2: In this step, we compute P(Vn, t ∩ Vn′,t ) for n,n′ ∈Kt with n > n′. Let �n

n′+1 =M
n · · ·M
n′+1.

Px

(
Vn,t ∩ V ′n,t

) ≤ P
(|�n′x| ≥ t and |�nx| ≥ t

)
≤
∞∑

m=0

P
(
tem ≤ |�n′x|< tem+1 and

∥∥�n
n′+1

∥∥|�n′x|> t
)

≤
∞∑

m=0

P
(|�n′x| ≥ tem

)
P
(∥∥Π
n−n′

∥∥ > e−m−1). (11.21)

For the first probability, we can apply the estimate (9.2): Rewriting it as Qx(Sn′ > log t +m), we have since n′ ∈Kt

that n′ ≤ nt = �log t/q� and thus u := log t +m≥ n′q . Hence,

P
(|�n′x| ≥ tem

)≤ Ck(α)n
′

√
n′tαeαm

≤ C′·√
nt tαeαm

.

For the second inequality, we used that n′ ∈Kt is comparable to nt .
For the second probability, we use the Markov inequality with x→ xβ , where β < α is such that k(β) < k(α)= 1

(as above), this is possible since k′(α) > 0. Together with Corollary 4.5, we obtain

P
(‖�n−n′ ‖> e−m−1)≤ eβ(m+1)E‖Πn−n′ ‖β ≤ eβc−1

β k(β)n−n′eβm.

Using these estimates in (11.21), we infer

Px(Vn,t ∩ Vn′,t )≤ C′eβ

cβ

k(β)n−n′

√
nt tα

∞∑
m=0

e−(α−β)m ≤ C′′k(β)n−n′

√
nt tα

.

Step 3: Using the previous step and the estimate from Lemma 10.5 (again k(α)= 1) in (11.19), we obtain

Px

( ⋃
n∈Kt

Ṽn,t

)
≥ κ0

∑
n∈Kt

D1√
nteαnt q

−
∑
n∈Kt

∑
n′∈Kt :n′<n

C′′√
nt tα
· k(β)n−n′

≥ |Kt |√
nt tα

(
κ0D1 −C′′

∑
n′∈Kt :n′<n

k(β)n−n′
)

.

Now we use that the cardinality |Kt | ≥
√

nt

2C1
− 1≥

√
nt

4C1
for all sufficiently large t , and that n− n′ ≥ C1 for n,n′ ∈Kt ,

n > n′

Px

( ⋃
n∈Kt

Ṽn,t

)
≥ 1

4C1

(
κ0D1 −C′′k(β)C1

∞∑
j=0

k(β)j

)
1

tα
= 1

4C1

(
κ0D1 − C′′k(β)C1

1− k(β)

)
1

tα
.
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Since k(β) < k(α) = 1, we can now choose C1 such that the term in the brackets becomes positive. Then, for all t

sufficiently large (in particular, such that Kt is nonempty),

Px

( ⋃
n∈Kt

Ṽn,t

)
≥ ηt−α,

with η > 0 being independent of t . �
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