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Abstract. We prove that the squared partition function of the two-dimensional critical Ising model defined on a finite, isoradial
graph G = (V,E), is equal to 2|V| times the partition function of spanning trees of the graph Ḡ, where Ḡ is the graph G extended
along the boundary; edges of G are assigned Kenyon’s (Invent. Math. 150 (2) (2002) 409–439) critical weights, and boundary edges
of Ḡ have specific weights. The proof is an explicit construction, providing a new relation on the level of configurations between
two classical, critical models of statistical mechanics.

Résumé. Nous montrons que le carré de la fonction de partition du modèle d’Ising critique en dimension deux, défini sur un graphe
isoradial G = (V,E) fini, est égale à 2|V| fois la fonction de partition des arbres couvrants du graphe Ḡ, où le graphe Ḡ est le graphe
G prolongé le long du bord; les arêtes de G sont munies des poids critiques de Kenyon (Invent. Math. 150 (2) (2002) 409–439), et
les arêtes du bord de Ḡ ont des poids spécifiques. La preuve consiste en une construction explicite, qui donne une nouvelle relation,
au niveau des configurations, entre deux modèles classiques de mécanique statistique au point critique.

MSC: 82B20; 82B27; 05A19

Keywords: Critical two-dimensional Ising model; Critical spanning trees; Isoradial graphs; Partition functions

1. Introduction

Let G = (V,E) be a finite, planar graph satisfying a geometric condition called isoradiality, then every edge e of G is
naturally assigned an angle θe. Consider the Ising model defined on the isoradial graph G, with Baxter’s [1] critical
coupling constants J = (Je)e∈E:

∀e ∈ E, Je = 1

2
log

(
1 + sin θe

cos θe

)
.

The partition function of the Ising model is denoted by ZIsing(G, J), detailed definitions are given in Sections 2.4.1
and 2.4.2. Consider the graph Ḡ obtained from the graph G by extending it along the boundary as in Section 3.2. The
main result of this paper can loosely be stated as follows, a precise statement is given in Theorem 3.2 of Section 3.
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Theorem 1.1. The squared partition function of the critical Ising model defined on the isoradial graph G, is equal to
2|V| times the spanning trees partition function of the extended graph Ḡ, with Kenyon’s [13] critical weights on edges
of G, and specific weights on boundary edges of Ḡ:

ZIsing(G, J)2 = 2|V|
∣∣∣∣ ∑
T∈T r(Ḡ)

( ∏
e=(x,y)∈T∩E

tan θe

)( ∏
(x,y)∈T∩(Ē\E)

τ(x,y)

)( ∏
(u,v)∈T∗∩(Ē

∗\E∗)

τ(u,v)

)
︸ ︷︷ ︸

boundary contributions

∣∣∣∣.

The sum is over oriented spanning trees of the extended graph Ḡ, rooted at a vertex r, such that dual spanning
trees of the dual Ḡ

∗
are oriented towards a root vertex s, see Section 3.3. Weights τ at the boundary are defined in

Equation (3.1).

Remark 1. A version of Theorem 1.1 in the case where the graph G is embedded in the torus rather than the plane,
is proved in the papers [2,7] and [6]. The first two papers start from Fisher’s correspondence [10] between the Ising
model defined on a graph G and the dimer model defined on a non-bipartite, decorated graph GF. The squared
Ising partition function is replaced by the determinant of the dimer characteristic polynomial, and spanning trees are
replaced by cycle rooted spanning forests of the torus. In the paper [7], we prove an explicit mapping from cycle rooted
spanning forests of the torus, to configurations counted by the determinant of the dimer characteristic polynomial. The
paper [6] uses Kac–Ward matrices [19] instead of Fisher’s correspondence. Working with graphs embedded in the
torus has the difficulty of involving the geometry of the torus, but avoids handling problems related to the graph having
a boundary.

In this paper, we address issues related to the boundary of the graph, requiring a number of technical steps. The
approach used to prove Theorem 1.1 is also very different: it neither uses Fisher’s correspondence nor Kac–Ward
matrices. Rather, our starting point is a mapping from the double Ising model defined on a planar graph G, consisting
of two independent Ising models, to a dimer model defined on a related bipartite graph GQ. This is a combination of
a result of [24] and of [28] and [8]; note that a generalization to graphs embedded in surfaces of genus g is proved in
[3]. Note also, that using a different approach [11,17,18,20,28,29], Dubédat [8] relates two independent Ising models,
with one living on the graph G and the second on the dual graph G∗, to the bipartite dimer model on the graph GQ.

The proof of Theorem 1.1 provides an explicit mapping between the critical dimer model on the bipartite graph
GQ and critical spanning trees of the extended graph Ḡ.

Outline of the paper

• Section 2. Definition of the Ising model on a planar graph G. Definition of the dimer model on the bipartite graph
GQ related to the double Ising model. Statement of the result [3,8,24,28] proving that the squared Ising partition
function is equal, up to a constant, to the partition function of the dimer model on the bipartite graph GQ. Definition
of the critical versions of the models on isoradial graphs.

• Section 3. Definition of spanning trees and related notions. Definition of the extended graph Ḡ constructed from G.
Statement of the main result, Theorem 3.2, loosely stated in Theorem 1.1.

Sections 4, 5, 6 and 7 consist of the proof of Theorem 3.2. It provides a mapping between the critical dimer model on
the bipartite graph GQ and critical spanning trees of the extended graph Ḡ. The most important part of the mapping is
in Section 7.

• Section 4. Computation of the dimer partition function of the graph GQ using a refinement of Kasteleyn/Temperley–
Fisher’s method [12,26], due to Kuperberg [16], see also [13]: it is equal to the determinant of a modified Kasteleyn
matrix K.

• Section 5. Interpretation of the Kasteleyn matrix K as the Laplacian matrix of a directed graph �GQ
0 constructed

from the bipartite graph GQ, implying that the determinant of K counts weighted, oriented spanning trees of �GQ
0 .

Transformation of the directed graph �GQ
0 along the boundary into a directed graph �GQ

1 : first step used to handle the
boundary of the graph.
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• Section 6. Instead of considering oriented spanning trees of �GQ
1 , we consider dual spanning trees of the dual

graph GQ
1

∗
. Modification of the graph GQ

1
∗

along the boundary so that it becomes the double graph Ḡ
D

of the
extended graph Ḡ and of its dual Ḡ

∗
: second step used to handle the boundary of the graph. Characterization of

the set of spanning trees T(W2)(Ḡ
D
) of the double graph Ḡ

D
arising as duals of oriented spanning trees of �GQ

1 .

Orientation of spanning trees of T(W2)(Ḡ
D
) towards a root vertex s: definition of the set T s

(W2)(Ḡ
D
). The orientation

plays a key role in the next section, this is the reason why we pass to the dual: the information on the orientation of
dual spanning trees is not available when looking at primal ones.

• Section 7. Heart of the construction. Assignment of a dimer configuration of Ḡ
D
(s) to each oriented spanning tree of

T s
(W2)

(Ḡ
D
): first key step of the construction. The orientation of spanning trees of T s

(W2)
(Ḡ

D
) is key to constructing

the dimer configuration. Partition of the set of spanning trees of T(W2)(Ḡ
D
) according to their underlying dimer

configuration: T(W2)(Ḡ
D
) = ⊔

M∈M(Ḡ
D
(s))

T(W2),M(Ḡ
D
). Characterization of spanning trees of T(W2),M(Ḡ

D
): second

key step of the construction. This allows to compute the weight of this family of trees and prove that it is, up
to a constant, the weight of the corresponding dimer configuration M. Summary and conclusion of the proof of
Theorem 3.2 using the generalized form of Temperley’s bijection [25] of [15].

2. Square of Ising partition function via bipartite dimers, critical case

In this section, we define the two-dimensional Ising model, the bipartite dimer model related to the double Ising model
and the critical versions of the models. In the whole of the paper, we suppose that the graph G = (V,E) is planar, finite,
connected, simple, with vertices of degree at least two.

2.1. Two-dimensional Ising model

Consider a finite, planar graph G = (V,E), together with a collection of positive coupling constants J = (Je)e∈E

indexed by edges of G. The Ising model on G, with coupling constants J, is defined as follows. A spin configuration
σ is a function of the vertices of G taking values in {−1,1}. The probability of occurrence of a spin configuration σ

is given by the Ising Boltzmann measure PIsing, defined by:

PIsing(σ ) = 1

ZIsing(G, J)
exp

( ∑
e=uv∈E

Jeσuσv

)
,

where ZIsing(G, J) = ∑
σ∈{−1,1}V exp(

∑
e=uv∈E Jeσuσv) is the normalizing constant, known as the Ising partition func-

tion.

2.2. Boundary conditions

Suppose that the graph G is embedded in the plane, and also denote by G the embedded version of the graph. The
set of boundary vertices, respectively boundary edges, of the graph G, consists of vertices, respectively edges, of the
boundary of the outer face of G. Let us denote by ∂V the set of boundary vertices of G.

The Ising model defined in Section 2.1 is also known as the Ising model with free-boundary conditions. We now
define the Ising model with plus-boundary conditions. A spin configuration σ is a function of the vertices of G taking
values in {−1,1} with the additional constraint that the value is 1 on boundary vertices. Let us denote by {−1,1}V

(∂V,+)
this set of spin configurations. The probability of occurrence of a spin configuration σ is defined similarly to the free-
boundary case. The normalizing constant Z+

Ising(G, J) is the Ising partition function with plus-boundary conditions, it
is equal to:

Z+
Ising(G, J) =

∑
σ∈{−1,1}V

(∂V,+)

exp

( ∑
e=uv∈E

Jeσuσv

)
.

The Ising partition function with plus-boundary conditions is equal, up to a multiplicative constant, to the Ising
partition function with free-boundary conditions of a related graph, obtained in the following way.
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Let E∂V denote the set of edges of G joining boundary vertices. Note that an edge of E∂V is not necessarily a
boundary edge of the graph G. Define G′ = (V′,E′) to be the graph obtained from G by merging all boundary vertices
and edges of E∂V into a single vertex u0. Then, the graph G′ is again planar. Observing that E \ E∂V = E′, we have:

Z+
Ising(G, J) =

( ∏
e∈E∂V

eJe

) ∑
σ∈{−1,1}V

(∂V,+)

( ∏
e=uv∈E\E∂V

eJeσuσv

)

=
( ∏

e∈E∂V

eJe

) ∑
{σ∈{−1,1}V′ :σu0=1}

( ∏
e=uv∈E′

eJeσuσv

)

= 1

2

( ∏
e∈E∂V

eJe

) ∑
σ∈{−1,1}V′

( ∏
e=uv∈E′

eJeσuσv

)
= 1

2

( ∏
e∈E∂V

eJe

)
ZIsing

(
G′, J

)
,

where in the penultimate line, we have used the fact that the contribution
∏

e=uv∈E′ eJeσuσv is invariant under the
transformation σ ↔ −σ .

The same kind of argument can be used to relate other boundary conditions to free ones. In the sequel, we thus
restrict ourselves to the Ising model with free-boundary conditions, simply referred to as the Ising model. The result
we prove holds for other boundary conditions as long as the related graphs satisfy the assumptions we shall make.

2.3. Square of Ising partition function via bipartite dimers

The goal of this section is to state Theorem 2.1, due to [8,24,28], proving equality, up to an explicit constant, between
the partition function of the double Ising model on a planar graph G and the partition function of the dimer model
on a related bipartite graph GQ. The double Ising model consists of two independent Ising models living on the same
graph G, with the same coupling constants J, implying that its partition function is the square of the partition function
of the Ising model. Theorem 2.1 of this section is actually the genus 0 case of the result of [3] which holds for graphs
embedded in surfaces of genus g.

In the whole of this section, we suppose that the planar graph G is embedded in the sphere, and also denote by G
the embedded graph. We start by defining the bipartite graph GQ.

2.3.1. Quadri-tiling graph
Suppose that the embedding of the dual graph G∗ of G is such that primal and dual edges cross exactly once. The
quad-graph, denoted G	, is the graph whose vertices are vertices of G and vertices of the dual graph G∗. A dual vertex
is then joined to all primal vertices on the boundary of the corresponding face. The embedding of G	 is chosen such
that its edges do not intersect those of G and G∗. Faces of the quad-graph are quadrangles and the diagonals of the
quadrangles consist of a primal edge of G and its corresponding dual edge of G∗, see Figure 1 (left, dotted lines) for
an example.

Consider the graph obtained by superimposing the primal graph G, the dual graph G∗, the quad-graph G	, and by
adding a vertex at the crossing of each primal and dual edge. Then, the dual of this graph, denoted by GQ = (VQ,EQ),
is the quadri-tiling graph of G, see Figure 1 (right, thick full lines) for an example. The graph GQ is bipartite, it
contains:

• Quadrangles, each quadrangle being contained in a quadrangle of the quad-graph G	. In each quadrangle, two
edges cross a primal edge of G and two edges cross a dual edge of G∗.

• External edges, crossing edges of the quad-graph G	.

Faces of the graph GQ are naturally partitioned as follows: quadrangles corresponding to the crossing of primal and
dual edges of G and G∗, faces corresponding to primal vertices of G, and those corresponding to dual vertices of G∗.
Note that all vertices of GQ have degree three.
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2.3.2. Dimer model and square of Ising partition function
Consider an Ising model on the graph G, with coupling constants J = (Je)e∈E. Using the coupling constants J, define
the following positive weight function ν = (νe)e∈EQ on edges of the bipartite graph GQ, see also Figure 2.

νe =
{1 if e is an external edge,

cosh−1(2Je) if e crosses a primal edge e of G,
tanh(2Je) if e crosses the dual edge e∗ of an edge e of G.

(2.1)

The dimer model on GQ with weight function ν, is defined as follows. A dimer configuration of GQ, also known
as a perfect matching, is a subset of edges of GQ such that every vertex is incident to exactly one edge of the subset.
Let us denote by M(GQ) the set of dimer configurations of the graph GQ. The probability of occurrence of a dimer
configuration M is given by the dimer Boltzmann measure Pdimer, defined by:

Pdimer(M) =
∏

e∈M νe

Zdimer(GQ, ν)
,

where Zdimer(GQ, ν) = ∑
M∈M(GQ)

∏
e∈M νe is the normalizing constant, known as the dimer partition function.

The square of the Ising partition function and the dimer partition function are related by the following theorem.

Theorem 2.1 ([3,8,24,28]). Let G be a finite, planar graph embedded in the sphere, and let GQ be the corresponding
bipartite graph. Then,

(
ZIsing(G, J)

)2 = 2|V|
(∏

e∈E

cosh(2Je)

)
· Zdimer

(
GQ, ν

)
.

Fig. 1. Left: a piece of a finite graph G embedded in the sphere (plain full lines), of the dual graph G∗ (grey full lines), of the quad-graph G	
(dotted lines). Right: a piece of the quadri-tiling graph GQ (thick full lines).

Fig. 2. Positive weight function ν on edges of the bipartite graph GQ.
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2.4. Critical versions of the model

In this section, we define the critical version of the Ising model defined on isoradial graphs, and the critical version
of the corresponding bipartite dimer model. We need the following definition. If G is a planar graph, embedded in
the plane, the restricted dual graph of G, denoted G∗, is the dual of the graph G from which are removed: the vertex
corresponding to the outer face and the dual edges corresponding to boundary edges of G.

2.4.1. Isoradial graphs
Isoradial graphs probably first appeared in the work of Duffin [9], see also Mercat [23]. The definition we present here
and the name come from the paper [13] by Kenyon. A planar graph G is isoradial, if it can be embedded in the plane
in such a way that all faces are inscribable in a circle, with all circles having the same radius. The embedding is said
to be regular if all circumcenters are in the closure of the faces.

Let G be a finite, isoradial graph having a regular isoradial embedding. We fix such an embedding, take the common
radius to be 1, and also denote by G the embedded graph. A regular isoradial embedding of the restricted dual G∗, with
radius 1, is obtained by taking as dual vertices the circumcenters of the corresponding faces. An example is provided
in Figure 3 (left: plain and grey lines).

The restricted quad-graph, denoted G	, is the graph whose vertices are vertices of the graph G and of the restricted
dual G∗. A dual vertex of G∗ is joined to all primal vertices on the boundary of the corresponding face, see Figure 3
(left, dotted lines). Note that this definition does not use isoradiality but, when the graphs G and G∗ are isoradially
embedded, faces of the restricted quad-graph are side-length 1 rhombi, or half-rhombi along the boundary of the outer
face.

Every edge e of G is the diagonal of exactly one rhombus, or half-rhombus, of the restricted quad-graph, and we
let θe be the half-angle at the vertex it has in common with e, see Figure 3 (right).

2.4.2. Critical versions of the Ising and dimer models
Consider an Ising model defined on a finite, isoradial graph G with coupling constants J, having a regular isoradial
embedding. We fix such an embedding and for every edge e of G, we let θe be the rhombus half-angle assigned to e.
The Ising model is said to be critical if the coupling constants are equal to:

∀e ∈ E, Je = 1

2
log

(
1 + sin θe

cos θe

)
. (2.2)

These coupling constants were first derived by Baxter [1], using Z-invariance, a generalized form of self-duality and
assumption of uniqueness of the critical point. They have been shown to be critical in the case of infinite periodic
graphs by Li [21] and Cimasoni and Duminil-Copin [4]. This result has recently been extended to the case of general
planar graphs by Lis [22].

Fig. 3. Left: isoradial embedding of a finite planar graph G (plain black lines) and of the restricted dual graph G∗ (grey lines); restricted quad-graph
G	 (dotted lines). Right: half-rhombus angles assigned to edges of G.
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Consider a spherical embedding of the graph G, and let GQ be the corresponding bipartite graph defined in Sec-
tion 2.3.1. Using Equation (2.1), the dimer weights corresponding to the critical Ising weights, are equal to:

∀e ∈ EQ, νe =
{1 if e is an external edge,

cos(θe) if e crosses a primal edge e of G,
sin(θe) if crosses the dual edge e∗ of an edge e of G.

(2.3)

3. Statement of main result

The goal of this section is to state the main result of this paper proving that the square of the critical Ising model
partition function is equal, up to a multiplicative constant, to the partition function of critical spanning trees with
appropriate boundary conditions. In Section 3.1, we define spanning trees, the Laplacian matrix and state the matrix-
tree theorem. Then, in Section 3.2, we consider the isoradial graph G on which the critical Ising model is defined,
extend the graph along its boundary into a graph Ḡ, and explain how the extended graph is embedded in the plane.
Using this embedding we define a weight function on edges of Ḡ and of its dual Ḡ∗, which turns out to be the spanning
trees’ critical weight function of Kenyon [13], with specific boundary conditions. In Section 3.3, we state Theorem 3.2,
the main theorem of the paper.

3.1. Spanning trees, Laplacian matrix, matrix-tree theorem

For the purpose of this section only, we let �G be an arbitrary finite, directed graph; and we let G be an arbitrary
undirected graph. Let r denote a distinguished vertex of G or �G, referred to as the root vertex, or simply root.

An r-rooted oriented spanning tree (rOST) of �G is a connected subset of oriented edges of �G, such that each vertex
of �G has a unique outgoing edge, except the root r which has none. Equivalently, it is a subset of oriented edges, such
that each vertex has a unique outgoing edge, except the root r which has none, and such that its unoriented version
contains no cycle.

We denote by T r(�G) the set of rOSTs of the graph �G. Suppose that a weight function τ is assigned to oriented
edges of �G, meaning that an oriented edge (x, y) has weight τ(x,y). The weighted sum of rOSTs of the graph �G is
denoted Zr

OST(�G, τ ) and referred to as the rOST partition function.

Zr
OST(�G, τ ) =

∑
T∈T r(�G)

∏
e=(x,y)∈T

τ(x,y).

The Laplacian matrix of the directed graph �G, denoted by Δ�G, has lines and columns indexed by vertices of the
graph. Coefficients of the matrix Δ�G are defined by:

(Δ�G)x,y =
⎧⎨
⎩

τ(x,y) if (x, y) is an oriented edge of �G,

−∑
{x′:(x,x′) is an oriented edge of �G} τ(x,x′) if y = x,

0 else.

The following theorem is the version for directed graphs of the classical theorem of Kirchhoff. It is due to Tutte
[27], see also Chaiken [5].

Theorem 3.1 ([27]). Let Δ�G be the Laplacian matrix of the directed graph �G with weight function τ on the edges.

Let Δ
(r)
�G be the matrix Δ�G from which the line and the column corresponding to the root vertex r have been removed.

Then,

Zr
OST(�G, τ ) = ±det

(
Δ

(r)
�G

)
.

Consider an undirected graph G. A spanning tree of G is a connected subset of |V| − 1 edges, or equivalently, a
subset of |V| − 1 edges containing no cycle. An r-rooted oriented spanning tree of G is a spanning tree whose edges
are oriented towards the root vertex r. With such an orientation, every vertex except the root r has exactly one outgoing
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edge. Similarly to the directed case, T r(G) denotes the set of rOSTs of the graph G. Suppose that a weight function τ

is assigned to edges of G, meaning that an edge xy has weight τxy. The spanning tree partition function of the graph
G is the weighted sum of spanning trees of G. Since the graph is undirected, it is equal to the rOST partition function
Zr

OST(G, τ ) for any choice of root vertex r.
To the graph G is naturally associated a directed graph �G, referred to as the directed version of G: it has the same

set of vertices, and two oriented edges (x, y) and (y, x) for every edge xy of G. Then, an r-rooted oriented spanning
tree of G, is also an r-rooted oriented spanning tree of its directed version �G. The weight function τ on edges of G
yields a symmetric weight function, also denoted τ , on the directed version �G, defined by: τ(x,y) = τ(y,x) = τxy. The
Laplacian matrix of the graph G, denoted ΔG, is the Laplacian matrix of its directed version �G; it is symmetric. In this
case, Theorem 3.1 is the classical version of the matrix-tree theorem [14].

A classical fact about spanning trees is that if T is a spanning tree of a graph G embedded in the plane and if T∗
denotes the complement of the edges dual to T, then T∗ is a spanning tree of the dual graph G∗, it is referred to as the
dual spanning tree of a spanning tree of G. If a spanning tree is oriented, by dual spanning tree, we mean the dual of
its unoriented version.

If a graph is partially directed, the above definitions are easily adapted.

3.2. Extended graphs, isoradial embeddings

Let G be a finite, embedded planar graph. A planar embedding of the dual graph G∗ is obtained by assigning a dual
vertex to the outer face of G. The extended dual graph, denoted Ḡ

∗ = (V̄∗, Ē
∗
), is obtained from the dual graph G∗

by splitting the vertex corresponding to the outer face of G into n vertices, where n is the number of boundary edges
of G, and by joining these vertices in a circular way, see Figure 4 (left: grey lines) for an example. The extended graph
Ḡ = (V̄, Ē) is the dual graph of the extended dual, see Figure 4 (left: plain and thick black lines). Let us denote by r
the vertex of Ḡ corresponding to the outer face of the extended dual Ḡ

∗
. Note that the graph G, the extended dual Ḡ

∗
,

and the extended graph Ḡ can be embedded in such a way that they are planar, and such that primal and dual edges
cross at most once.

The extended quad-graph, denoted Ḡ
	

is obtained from the restricted quad-graph G	 by adding the missing half-
quadrangles along the boundary of G; in doing so, vertices of the extended dual graph are also added.

Suppose now that the graph G is finite, isoradial with a regular embedding, and fix such an embedding. Then,
an embedding of the extended quad-graph Ḡ

	
is obtained by adding, in the natural embedding of G	, the missing

half-rhombi along the boundary see Figure 4 (right: dotted lines).
Using this embedding, we now assign half-angles to edges of the extended graph Ḡ that are incident to the vertex r.

Consider an edge e∂ = xr of Ḡ incident to the outer vertex r, then it is the dual of an edge (u, v) of the extended dual Ḡ
∗
,

where u comes before v when going clockwise along the boundary. The half-angle θ∂ assigned to the edge e∂ , is half
the angle ∠(xv, xu) defined by the embedding of the extended quad-graph Ḡ

	
, see Figure 4 (right).

Fig. 4. Left: a planar graph G (plain black lines), the extended dual Ḡ
∗ (grey lines), and the extended graph Ḡ (plain and thick black lines); the

dotted line is a spread out way of representing the vertex r corresponding to the outer face of Ḡ
∗ . Right: extended quad-graph Ḡ

	 (dotted lines) and
half-angles assigned to edges of Ḡ incident to the outer vertex r.
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Remark 2. Note that half-rhombi added to construct the extended quad-graph from the reduced quad-graph in the
isoradial embedding, may overlap. Then, half-angles assigned to edges along the boundary of the extended graph Ḡ
may be negative; note that they may also be larger than π

2 .

3.3. Statement of main result

Let G be a finite, isoradial graph, with a fixed isoradial embedding. Consider the extended dual graph Ḡ
∗

and the
extended graph Ḡ defined in Section 3.2. We now define the weight function τ on edges of Ḡ and Ḡ

∗
. It is defined on

oriented edges, but is non-symmetric only on the boundary of the graphs, implying that only boundary edges of the
graphs are ‘really’ oriented. If uv is a boundary edge of the extended dual graph Ḡ

∗
, then by convention when writing

(u, v), we mean that u comes before v when traveling clockwise along the boundary. The weight function τ is defined
as follows.⎧⎨

⎩
τ(x,y) = τ(y,x) = tan θe if xy is an e edge of G,

τ(x,r) = 2 sin θ∂

2 if xr is an edge of Ḡ incident to r,
τ(r,x) = 0,

(3.1)⎧⎨
⎩

τ(u,v) = τ(v,u) = 1 if uv is the dual of and edge e of G,

τ(u,v) = e−iθ∂ /2 if (u, v) is a boundary edge of Ḡ
∗
,

τ(v,u) = eiθ∂/2 if (u, v) is a boundary edge of Ḡ
∗
.

Note that away from the boundary, this is the spanning trees critical weight function introduced by Kenyon [13].
Fix a root vertex s on the boundary of the extended dual Ḡ

∗
. Given an oriented spanning tree T of Ḡ rooted at r, let

us denote by T∗ the dual spanning tree of Ḡ
∗

oriented towards the vertex s. Let Zr
OST(Ḡ, τ ) be the following weighted

sum over spanning trees of Ḡ:

Zr
OST(Ḡ, τ ) =

∑
T∈T r(Ḡ)

( ∏
e=(x,y)∈T∩E

τ(x,y)

)( ∏
(x,y)∈T∩(Ē\E)

τ(x,y)

)( ∏
(u,v)∈T∗∩(Ē

∗\E∗)

τ(u,v)

)
,

where the sum is over rOSTs of Ḡ. Recall that we have chosen dual spanning trees of rOSTs of Ḡ to be oriented
towards the root vertex s.

Remark 3. Note that dual spanning trees contribute only along the boundary of the extended dual graph Ḡ
∗
. If the

boundary of the extended graph Ḡ
∗

were undirected, we could factor out the contributions of dual spanning trees; but
this is not possible because the boundary of the extended graph Ḡ

∗
is directed.

Theorem 3.2. Consider the critical Ising model defined on a finite isoradial graph G, having a regular embedding,
with critical coupling constants J assigned to edges. Let Ḡ and Ḡ

∗
be the extended versions of the graph G and of its

dual graph, with weight function τ of Equation (3.1) assigned to edges. Then,

(
ZIsing(G, J)

)2 = 2|V|∣∣Zr
OST(Ḡ, τ )

∣∣.
The remainder of the paper consists in the proof of Theorem 3.2. It starts from Theorem 2.1 where the squared

Ising partition function of the planar graph G is shown to be equal to the dimer partition function of the bipartite
graph GQ.

4. Kasteleyn theory for the critical dimer model on the graph GQ

In this section we write an explicit formula for the partition function of the dimer model on the bipartite graph GQ

with weights ν assigned to edges, corresponding to the critical Ising weights. In a way similar to Kenyon [13], we use
the approach of Kuperberg [16], which generalizes the work of Kasteleyn [12], and Temperley and Fisher [26].



Critical Ising model and spanning trees partition functions 1391

4.1. Explicit formula for the dimer partition function

Kasteleyn [12] and independently Temperley and Fisher [26] proved an explicit formula for the partition function of
the dimer model defined on a finite, planar graph G. The set of vertices V can naturally be split into two subsets W∪B,
where W denotes white vertices, B black ones, and vertices in W are only incident to vertices in B. Then, the dimer
partition function is equal to the determinant of a weighted, oriented adjacency matrix of the graph G, whose lines
are indexed by white vertices and columns by black ones. Edges of the graph G are oriented in such a way that all
cycles surrounding inner faces of the graph are clockwise odd, i.e., when traveling clockwise around such a cycle, the
number of co-oriented edges is odd [12].

Instead of an admissible orientation, Kuperberg [16] proves that one can use an appropriate phasing of the edges:
every edge e = wb is assigned a modulus-one, complex number eiφwb , where φwb is referred to as the phase of the
edge e. Let F be an inner face of the graph G, whose boundary vertices are w1, b1, . . . ,wk, bk in clockwise order. The
Kasteleyn curvature at the face F , denoted by C(F), is:

C(F) = (−1)k−1

∏k
j=1 e

iφwj bj∏k
j=1 e

iφwj+1bj

.

The phasing of the edges is flat if, for every inner face F of the graph G, C(F) = 1.
Suppose that edges of the graph G are assigned positive weights (νe)e∈G. Define the Kasteleyn matrix K to be the

following complex valued, adjacency matrix of the graph G:

∀w ∈ W, b ∈ B, Kw,b =
{

eiφwbνe if e = wb is an edge of G,
0 else.

(4.1)

Kuperberg [16] proves that if the phasing of the edges is flat, the dimer partition function is equal to the modulus of
the determinant of the Kasteleyn matrix:

Zdimer(G, ν) = ∣∣det(K)
∣∣.

4.2. Choice of phases

Let G be a finite, planar, embedded graph. Recall that the bipartite graph GQ is constructed from a spherical embedding
of the graph G and of its dual graph G∗. A planar embedding of GQ is obtained by taking a dual vertex of G∗ as the
outer face of GQ, see Figure 5 (thick black lines).

Suppose moreover that the graph G is isoradial with a fixed regular isoradial embedding. Consider the induced
embedding of the extended quad-graph Ḡ

	
of Section 3.2, see also Figure 5 (dotted lines). A near-isoradial embedding

Fig. 5. Near isoradial embedding of the graph GQ.
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of the graph GQ is constructed as follows: draw quadrangles of the bipartite graph GQ in such a way that they are
rectangles included in the rhombi of the extended quad-graph; draw vertices of the rectangles as midpoints of the
sides of the rhombi. An external edge which is not on the boundary of the outer face of GQ has length 0. An external
edge on the boundary of the outer face is drawn so that the face contains the primal vertex in its interior.

Remark 4.

• Away from the boundary, this defines a regular isoradial embedding of the graph GQ with radius 1
2 . Critical dimer

weights on the graph GQ induced by the critical Ising model, are the critical dimer weights defined by Kenyon [13]
for bipartite isoradial graphs.

• Along the boundary, if one draws straight lines to join boundary vertices, then boundary faces are inscribed in a
circle of radius 1

2 , but it might be that the circumcenter is outside of the face (this happens in the lower right corner
of Figure 5). The embedding is thus isoradial, but not regular. What can also happen is that rhombi of the extended
quad-graph Ḡ

	
overlap. In this case, the embedding is not planar. One can nevertheless define the notion of face,

and show that it can be embedded in a circle of radius 1
2 .

The bipartite coloring of the vertices is fixed so that it is as in Figure 5. We now define phases assigned to edges
of GQ. Recall that edges of GQ either belong to quadrangles/rectangles, or are external edges.

1. Each rectangle belongs to a rhombus of the extended quad-graph Ḡ
	
, which contains an edge e of G. An edge

e = wb of the rectangle either crosses the dual edge e∗ of the edge e, in which case we let φwb = 0; or it crosses
the edge e, and we let φwb = π

2 .
2(a). An external edge e = wb which is not on the boundary of GQ crosses an edge shared by two rhombi of the

extended quad-graph. The vertex w belongs to one of the two rhombi, and we let φwb = 3π
2 − θe(w), where θe(w)

is the rhombus half-angle of the edge e(w) of G contained in the rhombus, see Figure 6 (left).
2(b). An external edge e = wb on the boundary of GQ crosses an edge e∂ of the extended graph Ḡ. Moreover, the

vertex w belongs to a quadrangle contained in a rhombus of the extended quad-graph. We let φwb = 3π
2 −

(θe(w) + θ∂), where θe(w) is the rhombus half-angle of the edge e(w) of G contained in the rhombus, and θ∂ is
the half-angle assigned in Section 3.2 to edges of the extended graph Ḡ, incident to the vertex r, see Figure 6
(right). When no confusion occurs, we shall omit the argument w in the notation of θe(w).

Away from the boundary, the choice of phases is, up to a gauge transformation, the complex conjugate of the choice
made in [13].

Lemma 4.1. The phasing of the edges of GQ defined by Points 1 and 2 above is flat.

Proof. We need to check that for every inner face F of GQ, C(F) = 1. Inner faces are of three types, there are
rectangles, faces corresponding to vertices of G and faces corresponding to vertices of the restricted dual G∗. Using
[13], we are left with proving that if F is a face of length 2k, corresponding to a vertex of the primal graph G, and
incident to the boundary, then C(F) = 1. The situation, as well as the labeling of the vertices is represented in Figure 7.

By Points 1, 2(a) and 2(b), the Kasteleyn curvature is:

C(F) = (−1)k−1 e
i[∑k

j=1(3π/2−θej
)−θ∂ ]

ik
= − ike

−i[∑k
j=1 θej

+θ∂ ]

ik
.

Observing that
∑k

j=1 θej
+ θ∂ = π , yields C(F) = 1. �

Fig. 6. Definition of the phase φwb of an external edge wb. Left: wb is not on the boundary of GQ. Right: wb is on the boundary of GQ.
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Fig. 7. Notations for a face F of length 2k, corresponding to a vertex of the primal graph G, incident to the boundary, with k = 4.

Wrapping up, we obtain the following. Let G be an isoradial graph having a regular isoradial embedding. Consider
an Ising model on G, with critical coupling constants J of Equation (2.2). Consider the corresponding dimer model
on the bipartite graph GQ, with the critical dimer weights ν of Equation (2.3). Let K be the Kasteleyn matrix of the
graph GQ, with the above choice of phases: ∀w ∈ WQ, b ∈ BQ,

Kw,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin θe if e crosses the dual edge e∗ of an edge e of G,
i cos θe if e crosses a primal edge e of G,
ei(3π/2−θe(w)) if e is an external edge, not on the boundary of GQ,
ei[3π/2−(θe(w)+θ∂ )] if e is an external edge on the boundary of GQ,
0 otherwise.

(4.2)

Proposition 4.2. The dimer partition function of the graph GQ with critical weight function ν, is equal to:

Zdimer
(
GQ, ν

) = |det K|.

Remark 5. Note that the determinant of K is real. In general, assigning phases to edges might induce a complex phase
factoring out in the determinant. The complex phase is that of any of the dimer configurations. Since the contribution
of the dimer configuration of GQ consisting of all edges crossing dual edges of G is real, we know that the determinant
is real.

5. The Kasteleyn matrix as a Laplacian matrix

In Section 5.1, we compute the sum of the columns of the Kasteleyn matrix K of the graph GQ. Using this information
and a reinterpretation of the vertices of GQ this allows us, in Section 5.2, to interpret the Kasteleyn matrix K as the
Laplacian matrix of a directed graph �GQ

0 constructed from GQ. Using the matrix-tree theorem for directed graphs, we

deduce that the determinant of the matrix K counts oriented spanning trees of the directed graph �GQ
0 . In Section 5.3,

we modify the directed graph �GQ
0 along the boundary. This is key to being able to handle the boundary of the graph.

5.1. Column sum of the Kasteleyn matrix

Consider the bipartite graph GQ. Recall that all vertices of GQ have degree 3; given a white vertex w, let us denote its
three neighbors b1,b2,b3 in counterclockwise order, where wb3 denotes the external edge of GQ, see Figure 8. Let K
be the Kasteleyn matrix of the graph GQ with critical dimer weights ν of Equation (4.2).

Lemma 5.1. For every white vertex w of GQ, the coefficient Kw,b3 of the Kasteleyn matrix is equal to:

Kw,b3 =
{

−Kw,b1 − Kw,b2 − ie−iθe (e−iθ∂ − 1) if w is a boundary vertex of GQ,
−Kw,b1 − Kw,b2 otherwise.

(5.1)
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Fig. 8. Labeling of the neighbors b1,b2,b3 of a white vertex w, when the vertex w is not on the boundary of GQ (left), and when it is (right).

Fig. 9. Left: the directed graph �GQ
0 obtained from the bipartite graph GQ of Figure 5; edges that are dotted are reduced to a point. Right: weights

ρ0 assigned to edges.

Proof. If the vertex w is not on the boundary of GQ, this is a consequence of the fact that constant functions are
discrete holomorphic [13]. A straightforward computation also shows that

∑3
j=1 Kw,bj

= 0. If the vertex w is on the

boundary of GQ, we have:

3∑
j=1

Kw,bj
= sin θe + i cos θe + ei(3π/2−θe−θ∂ ) = ie−iθe

(
1 − e−iθ∂ )

.
�

5.2. Writing the Kasteleyn matrix as a Laplacian matrix

Using Lemma 5.1, we interpret the Kasteleyn matrix of the graph GQ as the Laplacian matrix of a related, directed
graph. Let us order the lines and columns of the matrix K in such a way that if the ith line corresponds to the white
vertex w, then the ith column represents the black vertex b3. The coefficient Kw,b3 becomes a diagonal element, and
we write it as in Equation (5.1). Note that this transformation only changes the determinant by an overall ± sign. Now,
instead of labeling the line by w and the column by b3, we label it by a common vertex, denoted x. Geometrically,
consider the directed graph �GQ

0 obtained from the graph GQ as follows, see also Figure 9.

• Replace edges of quadrangles of GQ by oriented ones, from the white vertex to the black vertex. An oriented edge
(x, y) of a quadrangle is assigned weight ρ0(x,y) = sin θe, if it crosses a dual edge e∗ of an edge e of G; and weight
ρ0(x,y) = i cos θe, if it crosses a primal edge e of G. Note that each quadrangle has two corners with two outgoing
edges, and two corners with two incoming edges.

• Each external edge wb3 is merged into a single vertex x.
• Each vertex x arising from the merging of an edge wb3 on the boundary of the outer face of GQ is called a boundary

vertex of �GQ
0 . It is joined to the vertex r, where recall that the vertex r is the vertex of the extended graph Ḡ

corresponding to the outer face of the extended dual Ḡ
∗
. The oriented edge (x, r) is assigned weight ρ0(x,r) =

ie−iθe (1 − e−iθ∂
). Note that boundary vertices have out-degree 3.
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In accordance with the notation introduced in Section 3.1, we let Δ�GQ
0

be the Laplacian matrix of the directed graph

�GQ
0 with weight function ρ0 assigned to edges. Observing that the Kasteleyn matrix K is exactly the matrix Δ�GQ

0
from

which the line and the column corresponding to the vertex r have been removed we deduce, from Theorem 3.1, the
following proposition.

Proposition 5.2. The dimer partition function of the graph GQ with weight function ν, is equal to the absolute value
of the rOST partition function of the graph �GQ

0 with weight function ρ0:

Zdimer
(
GQ, ν

) = ∣∣Zr
OST

(�GQ
0 , ρ0

)∣∣.
5.3. One more graph transformation

From the directed graph �GQ
0 with weight function ρ0, we construct a directed graph �GQ

1 with weight function ρ on

the edges, such that their respective rOST partition functions are equal. The directed graph �GQ
1 only differs from the

graph �GQ
0 along the boundary. The purpose of this transformation is to have a directed graph with out-degree two at

every vertex, and to have half-quadrangles along the boundary, with one corner and two outgoing edges. This is key
to being able to handle the boundary of the graph. The transformation is defined as follows, see also Figure 10.

• For every boundary vertex x of �GQ
0 arising from the merging of a boundary edge wb3 of GQ, undo the merging

procedure. That is, we replace the vertex x by the two vertices w and b3, add the oriented edge (b3,w) and assign
it weight, ρ(b3,w) = 1. The edge (x, r) exiting the vertex x is drawn to exit the vertex b3, and the edge (b3, r) is

assigned weight, ρ(b3,r) = e−iθ∂ − 1.
• All other vertices, edges and edge-weights are left unchanged: ρ(x,y) = ρ0(x,y).

The next proposition proves that this transformation preserves rOST partition functions.

Proposition 5.3. The rOST partition function of the graph �GQ
1 with weight function ρ is equal to the rOST partition

function of the graph �GQ
0 with weight function ρ0:

Zr
OST

(�GQ
1 , ρ

) = Zr
OST

(�GQ
0 , ρ0

)
.

Proof. The proof consists in providing a weight-preserving mapping between rOSTs of �GQ
0 and rOSTs of �GQ

1 . Recall
that an OST is characterized by the fact that it has one outgoing edge at every vertex except the root r, and that its
unoriented version is connected. We start by exhibiting a mapping between oriented edge configurations of �GQ

0 and
�GQ

1 having one outgoing edge at every vertex except the root, then show that it preserves weights and connectedness.

In the graph �GQ
0 , a boundary vertex x has out-degree three; the two corresponding vertices b3 and w of �GQ

1 each

has out-degree two. As a consequence, an oriented edge configuration of �GQ
0 , resp. �GQ

1 , having one outgoing edge

at every vertex except the root, is locally one of the three configurations A1–A2–A3 of �GQ
0 , resp. B1–B2–B3a–B3b

Fig. 10. From the graph �GQ
0 to the graph �GQ

1 .
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Fig. 11. From rOSTs of �GQ
0 to rOSTs of �GQ

1 .

of �GQ
1 . Consider the mapping between such configurations, which does not change the configuration at non-boundary

vertices, and which acts as in Figure 11 (line A–line B) for boundary vertices.
Let us first prove that the mapping is weight preserving. The mapping leaves edges exiting non-boundary vertices

unchanged, and by definition ρ0 and ρ are equal on such edges, implying that the contributions are equal. It thus
remains to check that the contributions of edges exiting boundary vertices are the same. Let us fix a boundary vertex x

of �GQ
0 and the corresponding boundary vertices w, b3 of �GQ

1 . By definition, the weight function ρ assigns weight 1 to
the edge (b3,w), so that the weight is preserved for Cases 1 and 2. Let us check Case 3. The contribution of the edge
exiting x is:

ρ0(x,r) = ie−iθe
(
e−iθ∂ − 1

)
.

The contribution at w and b3 of the corresponding configurations of �GQ
1 is:

ρ(b3,r)[ρ(w,b1) + ρ(w,b2)] = (
e−iθ∂ − 1

)
(sin θe + i cos θe) = (

e−iθ∂ − 1
)
ie−iθe ,

and the mapping is indeed weight-preserving. We are left with proving that it preserves connectedness. Consider the
unoriented version T of an rOSTs of �GQ

0 , and consider T as a subgraph of �GQ
1 . Then T is a connected subgraph of �GQ

1

spanning all vertices of �GQ
1 , except b3 in Cases 1 and 2, resp. w in Case 3 (otherwise T would contain a cycle in �GQ

0 ).

The configuration of �GQ
1 constructed from T in line B consists of T and an edge connecting b3 to T in Cases 1 and 2,

resp. w to T in Case 3; it is thus connected. The reverse argument also holds. �

From Proposition 5.2 and Proposition 5.3, we deduce the following:

Corollary 5.4. The dimer partition function of the graph GQ with weight function ν, is equal to the absolute value of
the rOST partition function of the graph �GQ

1 with weight function ρ:

Zdimer
(
GQ, ν

) = ∣∣Zr
OST

(�GQ
1 , ρ

)∣∣.
6. Oriented spanning trees of �GQ

1 and of the extended double

In this section, we describe a weight-preserving mapping from rOSTs of the graph �GQ
1 to a family of spanning trees

of the extended double graph Ḡ
D

of G, which we then characterize.
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Fig. 12. Left: the dual graph GQ
1

∗
(black) of �GQ

1 (grey). Right: the extended double graph Ḡ
D of G (black).

6.1. Dual spanning trees of the extended double graph

Consider the dual graph GQ
1

∗
of the undirected version of �GQ

1 , see Figure 12 (left). Even though GQ
1

∗
is not bipartite, its

vertices are naturally split into black and white vertices as follows: •-black: vertices of the primal graph G; �-black:
vertices of the extended dual graph Ḡ

∗
; white: dual vertices of the quadrangles of �GQ

1 .
Recall from Section 3.1 that if T is a spanning tree of a graph, the dual configuration T∗ consisting of the comple-

ment of the edges dual to T, is a spanning tree of the dual graph. As a consequence, there is a one-to-one correspon-
dence between rOSTs of �GQ

1 and dual spanning trees of GQ
1

∗
.

The graph GQ
1

∗
is nearly the graph we are aiming for; we need to make one more transformation so that it becomes

the extended double graph of G, defined as follows. Consider the extended dual graph Ḡ
∗

of G, and the dual graph Ḡ

of Ḡ
∗
. The extended double graph Ḡ

D
of G, consists of the graph Ḡ

∗
and the graph Ḡ, with a white vertex added at the

crossing of each primal and dual edge; one then removes all edges connected to the vertex r of Ḡ corresponding to the
outer face of Ḡ

∗
. An example of extended double graph is given in Figure 12 (right). The construction of the double

graph first appears in the paper of Temperley [25] proving a bijection between spanning trees of the square grid and
perfect matchings of its double graph. This bijection has been generalized to more general planar graphs and oriented
spanning trees by Kenyon, Propp and Wilson [15].

Observe that the extended double graph Ḡ
D

of G is obtained from the dual graph GQ
1

∗
by splitting every boundary

�-black vertex of the extended dual Ḡ
∗
, into a �-black vertex b and a white vertex w, and by adding the edge wb. As

a consequence, to every spanning tree of GQ
1

∗
corresponds a spanning tree of the extended double Ḡ

D
, obtained by

adding the edges arising from the splitting of the boundary �-black vertices. This mapping is weight-preserving if the
new edges are assigned weight 1.

Consider an rOST T of the directed graph �GQ
1 and its dual spanning tree in GQ

1
∗
. Then, the dual spanning tree in Ḡ

D

of T is defined to be the corresponding spanning tree of the extended double graph Ḡ
D

, see Figure 13 for an example.

6.2. Weight preserving mapping

Let us now assign weights ρ∗ to edges of the double graph Ḡ
D

, so that the mapping from rOSTs of �GQ
1 with weight

function ρ, to dual spanning trees in Ḡ
D

with weight function ρ∗, preserves weights.
By construction of dual spanning trees in Ḡ

D
, we know that edges arising from the splitting of boundary �-black

vertices are always present and are assigned weight 1.
Recall that each vertex x of the graph �GQ

1 , except the root r, has two outgoing edges; and that an rOST T of �GQ
1

takes exactly one of the two edges. Then, the dual of the present (respectively absent) edge in T, is absent (respectively
present) in the dual spanning tree in Ḡ

D
, see Figure 14. This yields a one-to-one correspondence between edges of

rOSTs of �GQ
1 and edges of dual spanning trees in Ḡ

D
.
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Fig. 13. An rOST of �GQ
1 (grey) and its dual spanning tree in the extended double Ḡ

D graph (black). By definition of the dual in Ḡ
D, the thicker

edges are always present.

Fig. 14. Possible primal and dual configurations at a vertex x of �GQ
1 . Thick lines represent present edges, thin lines absent ones.

Fig. 15. Definition of weights ρ∗ assigned to edges of the extended double graph Ḡ
D.

Returning to the definition of the weight function ρ, see Section 5.3, this implies that the following weight function
ρ∗ defined on edges of the extended dual Ḡ

D
, preserves weights, see also Figure 15:

ρ∗
wb =

⎧⎪⎨
⎪⎩

sin θe if wb is half a primal edge e of G,
i cos θ if wb is half a dual edge e∗ of an edge e of G,
1 if wb is half a dual edge on the boundary of the extended dual Ḡ

∗
,

e−iθ∂ − 1 if wb is half an edge of Ḡ \ G.

(6.1)

6.3. Characterization of dual spanning trees of the double graph

The next lemma characterizes spanning trees of Ḡ
D

arising as duals of rOSTs of �GQ
1 .

Lemma 6.1. Consider an rOST of �GQ
1 . Then, the restriction around a white vertex w of Ḡ

D
of the dual spanning tree

in Ḡ
D

, is one of the following four configurations (black lines):

1. if the vertex w is not on the boundary of Ḡ
D

(see Figure 16);
2. if the vertex w is on the boundary of Ḡ

D
(see Figure 17).
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Fig. 16. The four possible configurations around a non-boundary white vertex of Ḡ
D.

Fig. 17. The two possible configurations around a boundary white vertex of Ḡ
D.

Conversely, consider a spanning tree of Ḡ
D

satisfying 1 and 2, then the oriented version of its dual spanning tree
in �GQ

1 , oriented towards the root vertex r, is an rOST of �GQ
1 .

Remark 6. Observe that dual spanning trees of Ḡ
D

, arising as duals of rOSTs of �GQ
1 , have two edges incident to every

white vertex w of Ḡ
D

. Note also that the two cases of Point 2 are two of the four cases of Point 1. This is because along
the boundary, there are half-quadrangles with one corner and two outgoing edges.

Proof of Lemma 6.1. Suppose that the vertex w is not on the boundary of Ḡ
D

, the argument being similar in the
boundary case. The vertex w corresponds to a quadrangle of �GQ

1 . Two edges of �GQ
1 exit one corner of the quadrangle

and two the opposite corner. These two corners have no other exiting edges than those of the quadrangle, implying
that the restriction of an rOST T of �GQ

1 to the quadrangle around w is one of the four possible grey configurations of
Point 1. Looking at dual configurations, we obtain the four black configurations of Point 1.

Conversely, suppose we are given a spanning tree of Ḡ
D

such that the restriction around every white vertex satisfies
Points 1 and 2. We need to check that the orientation of its dual spanning tree, induced by the orientation of the edges
of �GQ

1 yields an rOST of �GQ
1 . To prove this, it suffices to show that every vertex of �GQ

1 , except the root r, has exactly
one outgoing edge. This holds as a consequence of our observation on the orientation of edges of the quadrangles. �

Let us denote the conditions of Points 1 and 2 of Lemma 6.1 by (W2): (W2) stands for the fact that white vertices
of Ḡ

D
are restricted to having degree two. Note that not all configurations of degree two at white vertices are licit for

(W2).
It is now convenient to orient spanning trees of the double graph Ḡ

D
towards one of the boundary �-black ver-

tex, denoted by s. Let us denote by T s
(W2)(Ḡ

D
) the set of sOSTs of the double Ḡ

D
which satisfy (W2). Then, as a

consequence of Section 6.1, Section 6.2 and Lemma 6.1, we have the following proposition.

Proposition 6.2. The rOST partition function of the oriented graph �GQ
1 with weight function ρ is equal to the sOST

partition function of the double graph Ḡ
D

with weight function ρ∗, where sOSTs satisfy (W2).

Zr
OST

(�GQ
1 , ρ

) = Zs
OST,(W2)

(
Ḡ

D
, ρ∗).

7. From spanning trees of the extended double to spanning trees of Ḡ

We are now done with modifying the graph along the boundary to be able to handle the boundary. This section
consists in the heart of the explicit construction. In Section 7.1, we assign a dimer configuration of Ḡ

D
(s) to every

sOST of Ḡ
D

satisfying (W2). Note that the orientation of spanning trees of T s
(W2)

(Ḡ
D
) is key to constructing the dimer

configuration. This yields a partition of the set of spanning trees of T s
(W2)

(Ḡ
D
) according to their underlying dimer
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Fig. 18. Left: sOST of T s
(W2)

(Ḡ
D

). Right: corresponding perfect matching MT of Ḡ
D

(s).

configuration: T s
(W2)(Ḡ

D
) = ⊔

M∈M(Ḡ
D
(s))

T s
(W2),M(Ḡ

D
). In Section 7.2, we characterize spanning trees of T(W2),M(Ḡ

D
)

having a fixed underlying dimer configuration M. This important step allows us, in Section 7.3, to compute the weight
of the family of spanning trees T(W2),M(Ḡ

D
), and prove that it is, up to a constant, the weight of the corresponding

dimer configuration M. In Section 7.4, we summarize the proof of Theorem 3.2 and conclude it using the generalized
form of Temperley’s bijection [25] of [15].

7.1. From spanning trees of Ḡ
D

to perfect matchings of Ḡ
D
(s)

Recall that a prefect matching, or dimer configuration of a graph, is a subset of edges such that each vertex of the
graph is incident to exactly one edge of the subset. Let s be the boundary �-black vertex of Ḡ

D
chosen to be the root

in the previous section. Let us denote by Ḡ
D
(s) the graph Ḡ

D
from which the vertex s and all incident edges have been

removed. In accordance with the notation introduced, M(Ḡ
D
(s)) denotes the set of perfect matchings of the graph

Ḡ
D
(s).
The next lemma gives a natural way of obtaining a perfect matching of Ḡ

D
(s) from an sOST of Ḡ

D
satisfying

(W2). An example is provided in Figure 18.

Lemma 7.1. Let T be an sOST of T s
(W2)(Ḡ

D
). Then, the edge configuration MT of Ḡ

D
(s), consisting of edges of T

exiting from black vertices, is a perfect matching of Ḡ
D
(s).

Proof. Let T be an sOST of T s
(W2)(Ḡ

D
). We need to prove that every vertex of Ḡ

D
except the root s is incident to

exactly one edge of MT. By definition of sOSTs, every vertex except the root s has exactly one outgoing edge. In
particular, this is true for all black vertices, which are, by definition, part of MT. Thus every black vertex of Ḡ

D
except

the root is incident to a unique edge of MT.
Moreover, since T satisfies (W2), every white vertex has degree exactly 2, with one incoming edge and one outgoing

edge. Since the graph is bipartite, the edge of T entering the white vertex must exit a black one. By definition, it is
thus part of MT, and we conclude that every white vertex is incident to exactly one edge of MT. �

Given a perfect matching M of M(Ḡ
D
(s)), an sOST T of T s

(W2)(Ḡ
D
) is said to be compatible with M, if MT = M.

Let us denote by T s
(W2),M(Ḡ

D
) the set of sOSTs of T s

(W2)(Ḡ
D
) compatible with a perfect matching M of M(Ḡ

D
(s)).

Then, we have:

Lemma 7.2.

T s
(W2)

(
Ḡ

D) =
⊔

M∈M(Ḡ
D
(s))

T s
(W2),M

(
Ḡ

D)
.



Critical Ising model and spanning trees partition functions 1401

Proof. The fact that T s
(W2)

(Ḡ
D
) is the union of T s

(W2),M(Ḡ
D
) is a consequence of Lemma 7.1. Let us prove that the

union is disjoint. Suppose that there are two distinct matchings M1 and M2 of M(Ḡ
D
(s)), and an sOST T which

belongs to T s
(W2),M1

(Ḡ
D
) ∩ T s

(W2),M2
(Ḡ

D
). Then, by definition of being compatible with M1 and M2, the sOST T must

contain all edges of M1 and all edges of M2. But the two matchings M1 and M2 being distinct, their superimposition
contains a cycle. This yields a contradiction with T being an sOST. �

7.2. Characterization of spanning trees compatible with a matching

By definition, given a perfect matching M of M(Ḡ
D
(s)), the unoriented version of an sOST T of T s

(W2),M(Ḡ
D
) satisfies

the following two conditions: it contains all edges of M, and it satisfies (W2). The next proposition proves that if an
edge configuration satisfies these two conditions, then it is a spanning tree. This is a remarkable fact. Indeed, being a
spanning tree requires not having cycles, a non-local condition. Containing edges of a perfect matching M is a non-
local condition, but it determines only half of the edges. The point of the proposition is to show that the configuration
of the other half of the edges is determined locally.

Proposition 7.3. Let M be a perfect matching of M(Ḡ
D
(s)). Then, an edge configuration containing all edges of M

and satisfying (W2), is the unoriented version of an sOST of T s
(W2),M(Ḡ

D
).

Proof. Let T be an edge configuration containing all edges of M and satisfying (W2). Since the graph Ḡ
D

is bipartite,
each edge of M joins a black and a white vertex. Orient edges of M from the black vertex to the white one.

Since T satisfies (W2), every white vertex w of Ḡ
D

is incident to exactly two edges of T. Exactly one of the two
edges is an edge of M, because M is a perfect matching which only leaves the root vertex s unmatched, and the root
vertex s is black. By our choice of orientation of M, this edge enters the white vertex. Let us orient the second edge
of T incident to w away from w. We have thus defined an oriented version of the edge configuration T such that
every vertex of Ḡ

D
except the root s has exactly one outgoing edge, and such that edges exiting black vertices are

exactly those of M. As a consequence, if T contains no cycle, its oriented version is an sOST satisfying (W2), such
that MT = M, i.e., it is an sOST of T s

(W2),M(Ḡ
D
).

It thus remains to show that T contains no cycle. Consider the oriented version of T defined above and suppose it
contains a cycle, denoted by C. The graph Ḡ

D
being bipartite, vertices of C alternate between black and white. By

our choice of orientation, edges exiting black vertices belong to M, and those exiting white vertices belong to T \ M.
Moreover, since each vertex of Ḡ

D
has exactly one outgoing edge of T, edges of C must be oriented in the same

direction, clockwise or counterclockwise. This implies that edges of the cycle C alternate between edges of M and
edges of T \ M. Note that since the root vertex s has only incoming edges, it cannot belong to the cycle, and since it is
on the boundary of the graph, it cannot be in the interior of the cycle.

As a consequence, the edge configuration M′ consisting of edges of M away from the cycle C, and edges of T \ M

on the cycle C, is a dimer configuration of M(Ḡ
D
(s)). The superimposition of M and M′ contains as single cycle, the

cycle C, and the unmatched vertex s is not in the interior of C. The interior of C is thus covered by doubled edges, so
that it must contain an even number of vertices.

We now prove that the fact that T satisfies (W2) implies that the cycle C must have an odd number of vertices in its
interior, thus yielding a contradiction. We use Euler’s formula to prove this. Without loss of generality, let us suppose
that edges of C are oriented clockwise, and consider the graph Ḡ

D
(C) = (V̄

D
(C), Ē

D
(C)) consisting of the restriction

of Ḡ
D

to C and its interior. We now prove that the number of inner vertices of the graph Ḡ
D
(C) is odd. Let us split

vertices of Ḡ
D
(C) as follows.

- Type 1: white vertices of C preceded and followed by a black vertex of the same type, either �-black or •-black.
Every white vertex of Type 1 is incident to 3 edges and is on the boundary of 2 faces of Ḡ

D
(C), see Figure 19.

- Type 2: white vertices of C preceded by a �-black vertex and followed by •-black vertex. Since the edge configura-
tion T satisfies (W2), only a right turn can occur at such a white vertex, see Figure 20. Every white vertex of Type
2 is thus incident to 3 edges and is on the boundary of one face of Ḡ

D
(C).
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Fig. 19. White vertex preceded and followed by a �-black vertex.

Fig. 20. White vertices preceded by a �-black vertex and followed by •-black vertex

Fig. 21. White vertices preceded by a •-black vertex and followed by �-black vertex.

- Type 3: white vertices of C preceded by a •-black vertex and followed by �-black vertex. By (W2), only a left turn
can occur at such a white vertex, see Figure 21. Every white vertex of Type 3 is thus incident to four edges and is
on the boundary of three faces of Ḡ

D
(C).

- Type 4: white vertices in the interior of Ḡ
D
(C). Every white vertex of Type 4 is incident to 4 edges and is on the

boundary of 4 faces of Ḡ
D
(C).

- Type 5: black vertices in the interior of Ḡ
D
(C).

For every Type i, let ni denote the number of vertices of Type i. The total number |V̄D
(C)| of vertices of the graph

Ḡ
D
(C) is equal to twice the number of boundary white vertices plus the number of inner white and black vertices, that

is: ∣∣V̄D
(C)

∣∣ = 2(n1 + n2 + n3) + n4 + n5. (7.1)

Since the graph Ḡ
D
(C) is bipartite, counting the number of edges |ĒD

(C)| amounts to counting the number of edges
incident to white vertices. By the description of the different types, we have:∣∣ĒD

(C)
∣∣ = 3n1 + 2n2 + 4n3 + 4n4. (7.2)

Faces of the graph Ḡ
D
(C) are bounded by a cycle of length 4, containing exactly two white vertices. Thus, summing

the number of faces that white vertices are on the boundary of, yields twice the number of inner faces |FD
C | of Ḡ

D
(C):

∣∣FD
C

∣∣ = 1

2
(2n1 + n2 + 3n3 + 4n4). (7.3)

Euler’s formula states that |V̄D
(C)| + |FD

C | − |ĒD
(C)| = 1. Plugging Equations (7.1), (7.2), (7.3) yields:

1

2
(n2 − n3) − (n4 − n5) = 1.
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Moreover, since C is a cycle, n2 = n3, implying that: n5 − n4 = 1. Observing that the number of inner vertices of the
graph Ḡ

D
(C) is n4 + n5, we deduce that this number is odd, thus concluding the proof. �

7.3. Weights of spanning trees compatible with a perfect matching

Let M be a perfect matching of M(Ḡ
D
(s)). Using Proposition 7.3, and the definition of the weight function ρ∗, see

Equation (6.1), we now compute the ρ∗-weighted sum ρ∗(T s
(W2),M(Ḡ

D
)) of sOSTs of the extended double graph Ḡ

D
,

satisfying (W2) and compatible with M. Since the graph is bipartite, the contribution is the product of the contribution
of edges incident to white vertices. Recall that they all have degree exactly 2. Given a white vertex w of Ḡ

D
, the edge

entering the white vertex is that of the matching M and is common to all sOSTs of T s
(W2),M(Ḡ

D
), let us denote it by ew.

• If the white vertex w is not on the boundary of Ḡ
D

, the sOST satisfies Point 1 of Lemma 6.1 at w. Having the edge
ew leaves only two possible configurations; and by Proposition 7.3, the two are possible. Thus the contribution is:

ρ∗
ew

(i cos θe + sin θe) = ie−iθeρ∗
ew

. (7.4)

• If the white vertex w is on the boundary of Ḡ
D

, the sOST satisfies Point 2 of Lemma 6.1 at w. There are three cases
to consider. If the edge ew is half the dual edge of Ḡ

∗
arising from the splitting of a boundary �-black vertex, it

contributes 1. By Proposition 7.3, the two configurations of Point 2 are possible. Thus the contribution is:

1 · (1 + e−iθ∂ − 1
) = e−iθ∂ = (−ie−iθ∂ /2)(ie−iθ∂ /2). (7.5)

If the edge ew is the other half dual edge, it contributes 1. By Point 2, only the first configuration is possible, and
by Proposition 7.3, it is indeed possible. Thus, the contribution is:

1 = (−ie−iθ∂ /2)(ieiθ∂ /2). (7.6)

If the edge ew is half the primal edge of Ḡ incident to r, it contributes e−iθ∂ − 1. Only the second configuration of
Point 2 is possible, and by Proposition 7.3 it indeed is. Thus, the contribution is:

e−iθ∂ − 1 = (−ie−iθ∂ /2)(2 sin
θ∂

2

)
. (7.7)

Let us assign the following weight function τ to edges of the extended double graph Ḡ
D
(s), see also Figure 22.

τwb =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin θe if wb is half a primal edge e of G,
i cos θe if wb is half a dual edge e∗ of an edge e of G,
ie−iθ∂ /2 if wb is half a boundary dual edge of Ḡ

∗
, as in Figure 22,

ieiθ∂ /2 if wb is half a boundary dual edge of Ḡ
∗
, as in Figure 22,

2 sin θ∂

2 if wb is half an edge of Ḡ incident to r.

(7.8)

Fig. 22. Definition of the weights τ assigned to edges of the extended double graph Ḡ
D.



1404 B. de Tilière

Observing that non-boundary white vertices of Ḡ
D

are in bijection with edges of G, and that boundary white
vertices of Ḡ

D
are in bijection with edges of Ē \ E, i.e., edges of Ḡ incident to the boundary vertex r, we deduce from

Equations (7.4), (7.5), (7.6), (7.7) and Lemma 7.2, the following proposition.

Proposition 7.4.

1. Given a perfect matching of M(Ḡ
D
(s)), the ρ∗-weighted sum ρ∗(T s

(W2),M(Ḡ
D
)) is equal to:

ρ∗(T s
(W2),M

(
Ḡ

D)) =
(∏

e∈E

ie−iθe

)( ∏
e∈Ē\E

−ie−iθ∂ /2
) ∏

e∈M

τe.

2. The weighted sum of sOSTs of the extended double Ḡ
D

, satisfying (W2) is equal, up to an explicit multiplicative
constant, to the dimer partition function of the graph Ḡ

D
(s), with weight function τ :

Zs
OST,(W2)

(
Ḡ

D
, ρ∗) =

(∏
e∈E

ie−iθe

)( ∏
e∈Ē\E

−ie−iθ∂ /2
)

Zdimer
(
Ḡ

D
(s), τ

)
.

7.4. Concluding the proof of Theorem 3.2

From Theorem 2.1 used with critical coupling constants, we have:

(
ZIsing(G, J)

)2 = 2|V|
(∏

e∈E

cos−1 θe

)
Zdimer

(
GQ, ν

)
.

From Corollary 5.4, we have:

Zdimer
(
GQ, ν

) = ∣∣Zr
OST

(�GQ
1 , ρ

)∣∣.
From Proposition 6.2, we have:

Zr
OST

(�GQ
1 , ρ

) = Zs
OST,(W2)

(
Ḡ

D
, ρ∗).

Combining this with Point 2 of Proposition 7.4, yields:

(
ZIsing(G, J)

)2 = 2|V|
(∏

e∈E

cos−1 θe

)∣∣Zdimer
(
Ḡ

D
(s), τ

)∣∣.
Then by [15], we know that every perfect matching M of M(Ḡ

D
(s)) defines a pair of primal and dual oriented spanning

trees of Ḡ and Ḡ
∗
, where the primal oriented spanning tree is rooted at the vertex r, and the dual one is rooted at the

vertex s. In the bijection, half-edges of Ḡ
D

correspond to oriented edges of the graphs Ḡ and Ḡ
∗
, and weights of

oriented edges are obtained using the bijection. Starting from the weights of Equation (7.8), we nearly have the
weights of Equation (3.1). We need two more observations.

Since edges of G and G∗ are unoriented, for every spanning tree T of Ḡ and dual spanning tree T∗ of Ḡ
∗
, we can

write:(∏
e∈E

cos−1 θe

)
=

( ∏
e=(x,y)∈T∩E

cos−1 θe

)( ∏
e∗=(u,v)∈T∗∩E∗

cos−1 θe

)
.

This amounts to multiplying edge-weights τ of the graph G and of the graph G∗ by cos−1 θe, yielding the 1 and tan θe

of (3.1) rather than cos θe and sin θe of (7.8).
Note that edge-weights of the extended dual graph Ḡ

∗
differ by a constant i. This is because a spanning tree of a

graph contains a fixed number of edges, so that the factor i on dual edges factors out, and does not change the modulus
of the partition function.
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