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Abstract. This paper provides a large deviation principle for non-Markovian, Brownian motion driven stochastic differential

equations with random coefficients. Similar to Gao and Liu (Stoch. Dyn. 6 (2006) 487–520), this extends the corresponding results

collected in Freidlin and Wentzell (Random Perturbations of Dynamical Systems (1984) Springer). However, we use a different

line of argument, adapting the PDE method of Fleming (Appl. Math. Optim. 4 (1978) 329–346) and Evans and Ishii (Ann. Inst.

H. Poincaré Anal. Non Linéaire 2 (1985) 1–20) to the path-dependent case, by using backward stochastic differential techniques.

Similar to the Markovian case, we obtain a characterization of the action function as the unique bounded solution of a path-

dependent version of the Eikonal equation. Finally, we provide an application to the short maturity asymptotics of the implied

volatility surface in financial mathematics.

Résumé. Nous montrons un principe de grandes déviations pour les équations différentielles stochastiques non-markoviennes,

dirigées par un mouvement brownien, et à coefficients aléatoires dépendant de l’ensemble du passé. Comme dans Gao et Liu

(Stoch. Dyn. 6 (2006) 487–520), ceci étend les résultats correspondants dans Freidlin et Wentzell (Random Perturbations of Dyna-

mical Systems (1984) Springer). Cependant, nous utilisons un argument différent, adaptant la méthode d’EDP de Fleming (Appl.

Math. Optim. 4 (1978) 329–346) et Evans et Ishii (Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985) 1–20) au cas des équations

dépendant des trajectoires, en utilisant des techniques d’équations différentielles stochastiques rétrogrades. Comme dans le cas

markovien, nous obtenons une caractérisation de la fonction d’action comme l’unique solution bornée d’une version non marko-

vienne de l’équation eikonale. Enfin, nous proposons une application à l’analyse asymptotique, en maturité courte, de la surface de

volatilité implicite en mathématiques financières.
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1. Introduction

The theory of large deviations is concerned with the rate of convergence of a vanishing sequence of probabilities
(P[An])n≥1, where (An)n≥1 is a sequence of rare events. After convenient scaling and normalization, the limit is
called rate function, and is typically represented in terms of a control problem.

The pioneering work of Freidlin and Wentzell [17] considers rare events induced by Markov diffusions. The tech-
niques are based on the Girsanov theorem for equivalent change of measure, and classical convex duality. An important
contribution by Fleming [13] is to use the powerful stability property of viscosity solutions in order to obtain a sig-
nificant simplified approach. We refer to Feng and Kurtz [12] for a systematic application of this methodology with
relevant extensions.

The main objective of this paper is to extend the viscosity solutions approach to some problems of large deviations
with rare events induced by non-Markov diffusions

Xt = X0 +
∫ t

0
bs(W,X)ds +

∫ t

0
σs(W,X)dWs, t ≥ 0, (1.1)

where W is a Brownian motion, and b,σ are non-anticipative functions of the paths of (W,X) satisfying convenient
conditions for existence and uniqueness of the solution of the last stochastic differential equation (SDE).

We should note that the Large Deviation Principle (LDP) for non-Markovian diffusions of type (1.1) is not new.
For example, Gao and Liu [18] studied such a problem via the sample path LDP method by Freidlin–Wentzell,
using various norms in infinite dimensional spaces. While the techniques there are quite deep and sophisticated,
the methodology is more or less “classical.” Our main focus in this work is to extend the PDE approach of Fleming
[13] in the present path-dependent framework, with a different set of tools. These include the theories of backward
SDEs, stochastic control, and the viscosity solution for path-dependent PDEs (PPDEs), among them the last one
has been developed only very recently. Specifically, the theory of backward SDEs, pioneered by Pardoux and Peng
[25], can be effectively used as a substitute to the partial differential equations in the Markovian setting. Indeed, the
log-transformation of the vanishing probability solves a semilinear PDE in the Markovian case. However, due to the
“functional” nature of the coefficients in (1.1), both backward SDE and PDE involved will become non-Markovian
and/or path-dependent.

Several technical points are worth mentioning. First, since the PDE involved in our problem naturally has the
nonlinearity in the gradient term (quadratic to be specific), we therefore need the extension by Kobylanski [23] on
backward SDEs to this context. Second, in order to obtain the rate function, we exploit the stochastic control repre-
sentation of the log-transformation, and proceed to the asymptotic analysis with crucial use of the BMO properties
of the solution of the BSDE. Finally, we use the notion of viscosity solutions of path-dependent Hamilton–Jacobi
equations introduced by Lukoyanov [24] in order to characterize the rate function as the unique viscosity solution of
a path dependent Eikonal equation.

Another main purpose, in fact the original motivation, of this work is an application in financial mathematics. It has
been known that an important problem in the valuation and hedging of exotic options is to characterize the short time
asymptotics of the implied volatility surface, given the prices of European options for all maturities and strikes. The
need to resort to asymptotics is due to the fact that only a discrete set of maturities and strikes are available. This diffi-
culty is bypassed by practitioners by using the asymptotics in order to extend the volatility surface to the un-observed
regimes, for which we refer to Henry-Labordère [22]. The results available in this literature have been restricted to the
Markovian case, and our results in a sense open the door to a general non-Markovian, path-dependent paradigm.

We finally observe that the sequence of vanishing probabilities induced by non-Markov diffusions can be re-
formulated in the Markov case by using the Gyöngy’s [20] result which produces a Markov diffusion with the same
marginals. However, the regularity of the coefficients of the resulting Markov diffusion σX(t, x) := E[σt |Xt = x] are
in general not suitable for the application of the classical large deviation results.

The paper is organized as follows. Section 2 contains the general setting, and provides our main results. First,
we solve the small noise large deviation problem for the Laplace transform induced by a non-Markov diffusion.
Next, we state the small noise large deviation result for the probability of exiting from some bounded open domain
before some given maturity. We then state the characterization of the rate function as a unique viscosity solution
of the corresponding path-dependent Eikonal equation. Section 3 is devoted to the application to the short maturity
asymptotics of the implied volatility surface. Sections 4, 5 and 6 contain the proofs of our large deviation results, and
the viscosity characterization. Finally the Appendix completes the proof of a lemma.
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2. Problem formulation and main results

Let Ωd := {ω ∈ C0([0, T ],Rd) : ω0 = 0} be the canonical space of continuous paths starting from the origin, B the
canonical process defined by Bt(ω) := ωt , t ∈ [0,1], and F := {Ft , t ∈ [0, T ]} the corresponding filtration. We shall
use the following notation for the supremum norm:

‖ω‖t := sup
s∈[0,t]

|ωs | and ‖ω‖ := ‖ω‖T for all t ∈ [0, T ],ω ∈ Ωd.

Let P0 be the Wiener measure on Ωd . For all ε ≥ 0, we denote by P
ε := P0 ◦ (

√
εB)−1 the probability measure such

that {
Wε

t := 1√
ε
Bt ,0 ≤ t ≤ T

}
is a P

ε-Brownian motion.

Our main interest in this paper is on the solution of the path-dependent stochastic differential equation:

dXt = bt (B,X)dt + σt (B,X)dBt , X0 = x0,P
ε-a.s., (2.1)

where the process X takes values in R
n for some integer n ≥ 1, and its paths are in Ωn := C0([0, T ],Rn).

The supremum norm on Ωn is also denoted ‖ · ‖t , without reference to the dimension of the underlying space. The
coefficients b : [0, T ] × Ωd × Ωn −→ R

n and σ : [0, T ] × Ωd × Ωn −→ R
n×d are assumed to satisfy the following

conditions which guarantee existence and uniqueness of a strong solution for all ε > 0.

Assumption 2.1. The coefficients f ∈ {b,σ } are:

• non-anticipative, i.e. ft (ω, x) = ft ((ωs)s≤t , (xs)s≤t ),
• L-Lipschitz-continuous in (ω, x), uniformly in t , for some L > 0:∣∣ft (ω, x) − ft

(
ω′, x′)∣∣ ≤ L

(∥∥ω − ω′∥∥
t
+ ∥∥x − x′∥∥

t

); t ∈ [0, T ], (ω, x),
(
ω′, x′) ∈ Ωd × Ωn.

Under Pε , the stochastic differential equation (2.1) is driven by a small noise, and our objective is to provide some
large deviation asymptotics in the present path-dependent case, which extend the corresponding results of Freidlin and
Wentzell [17] in the Markovian case. We shall adapt to our path-dependent case the PDE approach to large deviations
of stochastic differential equation as initiated by Fleming [13] and Evans and Ishii [9], see also Fleming and Soner
[14], Chapter VII.

2.1. Laplace transform near infinity

As a first example, we consider the Laplace transform of some path-dependent random variable ξ((ωs)s≤T , (xs)s≤T )

for some final horizon T > 0:

Lε
0 := −ε lnEP

ε[
e−(1/ε)ξ(B,X)

]
. (2.2)

In the following statement L2
d denotes the collection of measurable functions α : [0, T ] −→ R

d such that
∫ T

0 |αt |2 dt <

∞. Our first main result is:

Theorem 2.2. Let ξ be a bounded uniformly continuous FT -measurable r.v. Then, under Assumption 2.1, we have:

Lε
0 −→ L0 := inf

α∈L2
d

�α
0 as ε → 0, where �α

0 := ξ
(
ωα,xα

) + 1

2

∫ T

0
|αt |2 dt,

and (ωα, xα) are defined by the controlled ordinary differential equations:

ωα
t =

∫ t

0
αs ds, xα

t = X0 +
∫ t

0
bs

(
ωα,xα

)
ds +

∫ t

0
σs

(
ωα,xα

)
dωα

s , t ∈ [0, T ].

The proof of this result is reported in Section 4.
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Remark 2.3. Theorem 2.2 is still valid in the context where the coefficient b depends also on the parameter ε, so that
the process X is replaced by Xε defined by:

dXε
t = bε

t

(
B,Xε

)
dt + σt

(
B,Xε

)
dBt , Xε

0 = x0,P
ε-a.s.

Since this extension will be needed for our application in Section 3, we provide a precise formulation. Let Assump-
tion 2.1 hold uniformly in ε ∈ [0,1), and assume further that ε �−→ bε is uniformly Lipschitz on [0,1). Then the
statement of Theorem 2.2 holds with xα defined by:

xα
t = X0 +

∫ t

0
b0
s

(
ωα,xα

)
ds +

∫ t

0
σs

(
ωα,xα

)
dωα

s , t ∈ [0, T ].

This slight extension does not induce any additional technical difficulty in the proof. We shall therefore provide the
proof in the context of Theorem 2.2.

2.2. Exiting from a given domain before some maturity

As a second example, we consider the asymptotic behavior of the probability of exiting from some given subset of Rn

before the maturity T :

Qε
0 := −ε lnPε[H < T ], where H := inf{t > 0 : Xt /∈ O}, (2.3)

and O is a bounded open set in R
n. We also introduce the corresponding subset of paths in Ωn:

O := {ω ∈ Ωn : ωt ∈ O for all t ≤ T }. (2.4)

The analysis of this problem requires additional conditions.

Assumption 2.4. The coefficients b and σ are uniformly bounded, and σ is uniformly elliptic, i.e. a := σσ T is invert-
ible with bounded inverse a−1.

The present example exhibits a singularity on the boundary ∂O because Qε
0 vanishes whenever the path ω is started

on the boundary ∂O . Our second main result is the following.

Theorem 2.5. Let O be a bounded open set in R
n with C3 boundary. Then, under Assumptions 2.1 and 2.4, we have:

Qε
0 −→ Q0 := inf

{
qα

0 : α ∈ L
2
d , xα

T ∧· /∈ O
}
, where qα

0 := 1

2

∫ T

0
|αs |2 ds,

and xα is defined as in Theorem 2.2.

The proof of this result is reported in Section 5.

Remark 2.6.

(i) A similar result of Theorem 2.5 can be found in Gao–Liu [18]. However, our proof has a completely different
flavor, and follows the lines of the simpler and more direct PDE argument.

(ii) The condition on the boundary ∂O can be slightly weakened. Examining the proof of Lemma 5.2, where this
condition is used, we see that it is sufficient to assume that O can be approximated from outside by open bounded
sets with C3 boundary.

Remark 2.7. The result of Theorem 2.5 is still valid in the context of Remark 2.3. This can be immediately verified by
examining the proof of Theorem 2.5.
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2.3. Path-dependent Eikonal equation

We next provide a characterization of our asymptotics in terms of partial differential equations. We refer to Evans
and Ishii [9], Fleming and Souganidis [15], Evans–Souganidis [10], Evans, Souganidis, Fournier and Willem [11],
Fleming and Soner [14], for the corresponding PDE literature with a derivation by means of the powerful theory of
viscosity solutions.

Due to the path dependence in the dynamics of our state process X, and the corresponding limiting system xα ,
our framework is clearly not covered by any of these existing works. Therefore, we shall adapt the notion of viscosity
solutions introduced in Lukoyanov [24].

Denote Ω̂ := Ωd ×Ωn and ω̂ = (ω, x) a generic element of Ω̂ , Θ := [0, T ]× Ω̂ , and Θ0 := [0, T )× Ω̂ . Consider
the truncated Eikonal equation:{−∂tu − FK0(·, ∂ωu, ∂xu)

}
(t, ω̂) = 0 for (t, ω̂) ∈ Θ0, (2.5)

where K0 is a fixed parameter, and the nonlinearity FK0 is given by:

FK0(t, ω̂,pω,px) := bt (ω̂) · px + inf
α∈Rd ,|a|≤K0

{
1

2
|a|2 + a · (pω + σt (ω̂)Tpx

)}
, (2.6)

for all (t, ω̂) ∈ Θ , pω ∈R
d and px ∈R

n. Notice that

FK0(t, ω̂,pω,px) −→ bt (ω̂) · px − 1

2

∣∣pω + σt (ω̂)Tpx

∣∣2 as K0 → ∞,

the equation (2.5) thus leads to a path-dependent Eikonal equation. We note that the truncated feature of the equation
(2.5) is induced by the fact that the corresponding solution will be shown to be Lipschitz under our assumptions.

2.3.1. Classical derivatives
The set Θ is endowed with the pseudo-distance

d
(
θ, θ ′) := ∣∣t − t ′

∣∣ + ∥∥ω̂t∧ − ω̂′
t ′∧

∥∥ for all θ = (t, ω̂), θ ′ = (
t ′, ω̂′) ∈ Θ.

For any integer k > 0, we denote by C0(Θ,Rk) the collection of all continuous functions u : Θ −→ R
k . Notice, in

particular, that any u ∈ C0(Θ,Rk) is non-anticipative, i.e. u(t, ω̂) = u(t, (ω̂s)s≤t ) for all (t, ω̂) ∈ Θ .
We denote Ω̂K as the set of all K-Lipschitz paths. For θ = (t, ω̂) ∈ Θ0, we denote Θ(θ) := ⋃

K≥0 ΘK(θ), where:

ΘK(θ) := {(
t ′, ω̂′) ∈ Θ : t ′ ≥ t, ω̂′

t∧ = ω̂t∧, and ω̂′|[t,T ] is K-Lipschitz
}
.

Definition 2.8. A function ϕ : Θ −→ R is said to be C1,1(Θ) if ϕ ∈ C0(Θ,R), and we may find ∂tϕ ∈ C0(Θ,R),
∂ω̂ϕ ∈ C0(Θ,Rd+n), such that for all θ = (t, ω̂) ∈ Θ :

ϕ
(
θ ′) = ϕ(θ) + ∂tϕ(θ)

(
t ′ − t

) + ∂ω̂ϕ(θ)
(
ω̂′

t ′ − ω̂t

) + ◦ω̂′
(
t ′ − t

)
for all θ ′ ∈ Θ(θ),

where ◦ω̂′(h)/h −→ 0 as h ↘ 0. The derivatives ∂ω and ∂x are defined by the natural decomposition ∂ω̂ϕ =
(∂ωϕ, ∂xϕ)T.

The last collection of smooth functions will be used for our subsequent definition of viscosity solutions.

2.3.2. Viscosity solutions of the path-dependent Eikonal equation
Let Θ0

K := [0, T ) × Ω̂K . The set of test functions is defined for all K > 0 and θ ∈ Θ0
K by:

AKu(θ) :=
{
ϕ ∈ C1,1(Θ) : (ϕ − u)(θ) = min

θ ′∈ΘK

(ϕ − u)
(
θ ′)}, (2.7)

AK
u(θ) :=

{
ϕ ∈ C1,1(Θ) : (ϕ − u)(θ) = max

θ ′∈ΘK

(ϕ − u)
(
θ ′)}. (2.8)



Large deviations for non-Markovian diffusions and a path-dependent Eikonal equation 1201

Definition 2.9. Let u : Θ −→R be a continuous function.

(i) u is a K-viscosity subsolution of (2.5), if for all θ ∈ Θ0
K , we have{−∂tϕ − FK0(·, ∂ω̂ϕ)

}
(θ) ≤ 0 for all ϕ ∈AKu(θ).

(ii) u is a K-viscosity supersolution of (2.5), if for all θ ∈ Θ0
K , we have

{−∂tϕ − FK0(·, ∂ω̂ϕ)
}
(θ) ≥ 0 for all ϕ ∈ AK

u(θ).

(iii) u is a K-viscosity solution of (2.5) if it is both K-viscosity subsolution and supersolution.

2.3.3. Wellposedness of the path-dependent Eikonal equation
We only focus on the asymptotics of Laplace transform. For simplicity, we adopt the following strengthened version
of Assumption 2.1.

Assumption 2.10. The coefficients b and σ are both bounded and satisfy Assumption 2.1.

A natural candidate solution of equation (2.5), with the terminal condition u = ξ , is the dynamic version of the
limit L0 introduced in Theorem 2.2:

u(t, ω̂) := inf
α∈L2

d ([t,T ])

{
ξ t,ω̂

(
ω̂α,t,ω̂

) + 1

2

∫ T

t

|αs |2 ds

}
, (t, ω̂) ∈ Θ, (2.9)

where ω̂α,t,ω̂ := (ωα,t,ω̂, xα,t,ω̂) is defined by:

ωα,t,ω̂
s =

∫ s

0
αt+r dr, xα,t,ω̂

s =
∫ s

0
bt+r

(
ω̂ ⊗t ω̂α,t,ω̂

)
dr +

∫ s

0
σt+r

(
ω̂ ⊗t ω̂α,t,ω̂

)
dωα,t,ω̂

r ,

with the notation (ω̂ ⊗t ω̂′)s := 1{s≤t}ω̂s + 1{s>t}(ω̂t + ω̂′
s−t ), and

ξ t,ω̂
(
ω̂′) := ξ

((
ω̂ ⊗t ω̂′)

T ∧·
)

for all ω̂, ω̂′ ∈ Ω̂.

Theorem 2.11. Let Assumption 2.10 hold true, and let ξ be a bounded Lipschitz function on Ω̂ . Then, for K0 suf-
ficiently large and K ≥ (‖b‖∞ ∨ ‖σ‖∞)(1 + K0), the function u defined in (2.9) is the unique bounded K-viscosity
solution of the path-dependent PDE (2.5).

The proof of this result is reported in Section 6.

3. Application to implied volatility asymptotics

3.1. Implied volatility surface

The Black–Scholes formula BS(K,σ 2T ) expresses the price of a European call option with time to maturity T and
strike K in the context of a geometric Brownian motion model for the underlying stock, with volatility parameter
σ ≥ 0:

B̂S(k, v) := BS(K,v)

S0
:=

{
(1 − ek)+, for v = 0,

N(d+(k, v)) − ekN(d−(k, v)), for v > 0,

where S0 denotes the spot price of the underlying asset, v := σ 2T is the total variance, k := ln(K/S0) is the log-
moneyness of the call option, N(x) := (2π)−1/2

∫ x

−∞ e−y2/2 dy,

d±(k, v) := −k√
v

±
√

v

2
,
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and the interest rate is reduced to zero.
We assume that the underlying asset price process is defined by the following dynamics under the risk-neutral

measure P0:

dSt = Stσt (B,S)dBt , P0-a.s.

so that the price of the T -maturity European call option with strike K is given by E
P0 [(ST − K)+]. The implied

volatility surface (T , k) �−→ Σ(T , k) is then defined as the unique non-negative solution of the equation

N
(
d+

(
k,Σ2T

)) − ekN
(
d−

(
k,Σ2T

)) = Ĉ(T , k) := E
P0

[(
eXT − ek

)+]
,

where Xt := ln (St/S0), t ≥ 0.
Our interest in this section is on the short maturity asymptotics T ↘ 0 of the implied volatility surface Σ(T , k) for

k > 0. This is a relevant practical problem which is widely used by derivatives traders, and has induced an extensive
literature initiated by Berestycki, Busca and Florent [1,2]. See e.g. Henry-Labordère [22], Hagan, Lesniewski and
Woodward [21], Ford and Jacquier [16], Gatheral, Hsu, Laurence, Ouyang and Wang [19], Deuschel, Friz, Jacquier
and Violante [5,6], and De Marco and Friz [4].

Our starting point is the following limiting result which follows from standard calculus:

lim
v→0

v ln B̂S(k, v) = −k2

2
, for all k > 0.

We also compute directly that, for k > 0, we have Ĉ(T , k) −→ 0 as T ↘ 0. Then T Σ(T , k)2 −→ 0 as T ↘ 0, and it
follows from the previous limiting result that

lim
T →0

T Σ(T , k)2 ln Ĉ(T , k) = −k2

2
, for all k > 0. (3.1)

Consequently, in order to study the asymptotic behavior of the implied volatility surface Σ(T , k) for small maturity
T , we are reduced to the asymptotics of T ln Ĉ(T , k) for small T , which will be shown in the next subsection to be
closely related to the large deviation problem of Section 2.2. Hence, our path-dependent large deviation results enable
us to obtain the short maturity asymptotics of the implied volatility surface in the context where the underlying asset
is a non-Markovian martingale under the risk-neutral measure.

3.2. Short maturity asymptotics

Recall the process Xt := ln(St/S0). By Itô’s formula, we deduce the dynamic for the process X:

dXt = −1

2
σX

t (B,X)2 d〈B〉t + σX
t (B,X)dBt , (3.2)

where σX(ω,x) := σ(ω,S0e
x·). For the purpose of the application in this section, we need to convert the short matu-

rity asymptotics into a small noise problem, so as to apply the main results from the previous section. In the present
path-dependent case, this requires to impose a special structure on the coefficients of the stochastic differential equa-
tion (3.2).

For a random variable Y and a probability measure P, we denote by LP(Y ) the P-distribution of Y .
In this section, we shall adopt the simplest

Assumption 3.1. The diffusion coefficient σX : [0, T ] × Ωd × Ωn −→ R is non-anticipative, Lipschitz-continuous,
takes values in [σ ,σ ] for some σ ≥ σ > 0, and satisfies the following small-maturity small-noise correspondence:

LP0(Xε) = LP
ε

(X1) for all ε ∈ [0,1).
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Remark 3.2.
(i) Assumption 3.1 is the simplest sufficient condition which turns the small maturity problem into a small noise

one. Clearly, one could weaken it substantially by allowing for some small perturbations. For simplicity, we refrain
from any further refinement in this direction.

(ii) Assume that σ is independent of ω and satisfies the following time-indifference property:

σX
ct (x) = σX

t

(
xc

)
for all c > 0, where xc

s := xcs, s ∈ [0, T ]. (3.3)

Then, LP0((Xs)s≤ε) = LP
ε
((Xs)s≤1) for all ε ∈ [0,1), which implies that the small-maturity small-noise correspon-

dence holds true.
Notice that Condition (3.3) holds for a large class of path-dependent examples. For instance, given a pair (t, x) ∈

[0, T ] × Ωn, define the trace of x as the image Xt := {y ∈R
d : y = xs for some s ∈ [0, t]}, and let

σX
t (x) := ζ(Xt ), (t, x) ∈ [0, T ] × Ωn,

for some function ζ . Then σX satisfies Condition (3.3). In particular, this example covers the following three cases:

• the homogeneous Markovian case σX
t (x) = σX(xt ),

• the running maximum dependence σX
t (x) = σX(xt ,maxs≤t |xs |),

• the running max/min dependence σX
t (x) = σX(xt ,maxs≤t {a · xs},mins≤t {a · xs}), for some a ∈ R

n.

In view of (3.1) and the small-maturity small-noise correspondence of Assumption 3.1, we are reduced to the
asymptotics of

ε lnEP
ε[(

eX1 − ek
)+]

as ε → 0.

Under Pε the dynamics of X is given by the stochastic differential equation:

dXt = −ε

2
σX

t (B,X)2 dt + σX
t (B,X)dBt , P

ε-a.s.

whose coefficients satisfy the conditions given in Remarks 2.3 and 2.7. Consider the stopping time

Ha,b := inf
{
t : Xt /∈ (a, b)

}
for −∞ < a < b < +∞.

Then, it follows from Theorem 2.5 and Remark 2.7 that

Qε
0 := −ε lnPε[Ha,b ≤ 1] −→ Q0(a, b) as ε ↘ 0,

where Q0(a, b) is defined as in Theorem 2.5 in terms of the controlled function xα of Theorem 2.2:

Q0(a, b) := inf

{
1

2

∫ 1

0
|αs |2 ds : α ∈ L

2
d , xα

1∧· /∈ Oa,b

}
,

where Oa,b := {x : xt ∈ (a, b) for all t ∈ [0,1]}. The rest of this section is devoted to the following result.

Proposition 3.3. limε→0 −ε lnEP
ε [(eX1 − ek)+] = Q0(k) := lima→−∞ Q0(a, k).

Proof.
1. We first show that

lim
ε→0

ε lnEP
ε[(

eX1 − ek
)+] ≤ −Q0(k). (3.4)

Fix some p > 1 and the corresponding conjugate q > 1 defined by 1
p

+ 1
q

= 1. By the Hölder inequality, we estimate
that

E
P

ε[(
eX1 − ek

)+] ≤ E
P

ε [
eX11{X1≥k}

] ≤ E
P

ε [
eqX1

]1/q
P

ε[Ha,k ≤ 1]1/p, for all a < k.
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By standard estimates, we may find a constant Cp such that EP
ε [eqX1 ] ≤ Cp for all ε ∈ (0,1). Then,

ε lnEP
ε[(

eX1 − ek
)+] ≤ ε

q
lnCp + ε

p
lnPε[Ha,k ≤ 1],

which provides (3.4) by sending ε → 0 and then p → 1.
2. We next prove the following inequality:

lim
ε→0

ε lnEP
ε[(

eX1 − ek
)+] ≥ −Q0(k). (3.5)

For n ∈ N, denote fn(x) := (e−n −x)+ + (x −ek)+ for x ∈R. Since fn is convex and eX is Pε-martingale, the process
f (eX) is a non-negative Pε-submartingale. For a sufficiently small δ > 0, set an,δ := ln(e−n − δ) and kδ := ln(ek + δ).
Then, it follows from the Doob inequality that

P
ε[Han,δ,kδ ≤ 1] = P

ε
[
max
t≤1

fn

(
eXt

) ≥ δ
]

≤ 1

δ
E
P

ε[
fn

(
eX1

)]
. (3.6)

We shall prove in Step 3 below that

lim
ε→0

E
P

ε [(e−n − eX1)+]
EPε [(eX1 − ek)+] = 0 for large n. (3.7)

Then, it follows from (3.6), by sending ε → 0, that

−Q0(an,δ, kδ) ≤ lim
ε→0

ε lnEP
ε[(

eX1 − ek
)+]

.

Further, function Q0(a, b) is clearly decreasing in a, and thus

−Q0(kδ) ≤ −Q0(an,δ, kδ) ≤ lim
ε→0

ε lnEP
ε[(

eX1 − ek
)+]

.

It remains to prove that

lim
δ→0

Q0(kδ) ≤ Q(k). (3.8)

It is easy to show that

Q0(b) = inf
α∈L2

d

{
1

2

∫ 1

0
|αs |2 ds + ∞ · 1{maxt≤1 xα

t <b}
}

= inf
α∈L2

d

{
1

2

∫ 1

0
|αs |2 ds + ∞ · 1{maxt≤1 xα

t ≤b}
}
.

Consequently, Q0 is upper semicontinuous, as the infimum of upper semicontinuous functions. This implies (3.8) and
thus (3.5).

3. It remains to prove (3.7). By the assumption σ ≤ σ ≤ σ and the convexity of s �−→ (e−n − s)+ and s �−→
(s − ek)+, it follows from [7] that

E
P

ε [(
e−n − eX1

)+] ≤ E
P

ε[(
e−n − e−(1/2)εσ 2+σB1

)+]
, and

E
P

ε [(
eX1 − ek

)+] ≥ E
P

ε [(
e−(1/2)εσ 2+σB1 − ek

)+]
.

Thus

E
P

ε [(e−n − eX1)+]
EPε [(eX1 − ek)+] ≤ E

P
ε [(e−n − e−(1/2)εσ 2+σB1)+]

EPε [(e−(1/2)εσ 2+σB1 − ek)+] .
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Further, we have

E
P

ε[(
e−n − e−(1/2)εσ 2+σB1

)+] ≤ e−nN
(

1

2
σ
√

ε − n

σ
√

ε

)
,

and, by the Chebyshev inequality,

E
P

ε[(
e−(1/2)εσ 2+σB1 − ek

)+] ≥ λPε
[
e−(1/2)εσ 2+σB1 ≥ ek + λ

] = λN
(

−1

2
σ
√

ε − ln(ek + λ)

σ
√

ε

)
.

Using the estimate N(−x) ∼ 1√
2π

x−1e−x2/2, we obtain that

lim
ε→0

E
P

ε [(e−n − eX1)+]
EPε [(eX1 − ek)+] ≤ C exp

{
− lim

ε→0

1

2ε

(
n2

σ 2
− (ln(ek + λ))2

σ 2

)}
= 0,

whenever n2 > σ 2

σ 2 (ln(ek + λ))2. �

4. Asymptotics of Laplace transforms

Our starting point is a characterization of Y ε
0 in terms of a quadratic backward stochastic differential equation. Let

Y ε
t := −ε lnEP

ε

t

[
e−(1/ε)ξ(B,X)

]
, t ∈ [0, T ], (4.1)

where E
P

ε

t denotes expectation operator under Pε , conditional to Ft .

Proposition 4.1. The processes Y ε is bounded by ‖ξ‖∞, and there exists a process Zε such that the pair (Y ε,Zε) is
the unique solution of the following “quadratic backward stochastic differential equation”:

Y ε
t = ξ − 1

2

∫ T

t

∣∣Zε
s

∣∣2
ds +

∫ T

t

Zε
s · dBs, P

ε-a.s.

Moreover, the process Zε satisfies the “BMO estimate”:

‖Z‖
H

2
BMO(Pε) := sup

t∈[0,T ]

∥∥∥∥EP
ε

t

∫ T

t

∣∣Zε
s

∣∣2
ds

∥∥∥∥
L∞(Pε)

≤ 4‖ξ‖∞. (4.2)

Proof. Since ξ is bounded, we see immediately that Y ε
t ≤ −ε ln(e−(1/ε)‖ξ‖∞) = ‖ξ‖∞ and, similarly Y ε

t ≥ −‖ξ‖∞.
Consequently, the process

pε := e−(1/ε)Y ε = E
P

ε

t

[
e−(1/ε)ξ(B,X)

]
is a bounded martingale. By martingale representation, there exists a process qε , with E

P
ε [∫ T

0 |qε
t |2 dt] < ∞, such that

pε
t = pε

0 + ∫ t

0 qε
s · dBs , for all t ∈ [0, T ]. Then, Y ε solves the quadratic backward SDE by Itô’s formula. The estimate

‖Z‖
H

2
BMO(Pε) follows immediately by taking expectations in the quadratic backward SDE, and using the boundedness

of Y ε by ‖ξ‖∞. �

We note that the norm ‖ · ‖
H

2
BMO(Pε) defined in (4.2) is known as the “BMO” norm (we refer to [3] for more details

on the BMO theory). We next provide a stochastic control representation for the process Y ε . For all α ∈ H
2
BMO, we

introduce

M
ε,α
T := e(1/

√
ε)

∫ T
0 αt ·dBt−(1/(2ε))

∫ T
0 |αt |2 dt.
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Then E
P

ε [Mε,α
T ] = 1, and we may introduce an equivalent probability measure Pε,α by the density dPε,α := M

ε,α
T dPε .

Define:

Y
ε,α
t = E

P
ε,α

t

[
ξ + 1

2

∫ T

t

|αs |2 ds

]
, P

ε-a.s.

Lemma 4.2. We have

Y ε
0 = Y

ε,Zε

0 = inf
α∈H2

BMO(Pε)

Y
ε,α
0 .

Proof. By the martingale representation theorem, there is a process Zε,α such that the pair (Y ε,α,Zε,α) solves the
linear backward SDE

dY
ε,α
t = −Z

ε,α
t · dBt −

(
Z

ε,α
t · αt − 1

2
|αt |2

)
dt, P

ε-a.s.

Since − 1
2z2 = infa∈Rd {−a · z + 1

2a2}, it follows from the comparison of BSDEs (see for example Section 2.2 of [8])
that Y ε,α ≥ Y ε . The required result follows from the observation that the last supremum is attained by a∗ = z, and that
Y ε,Zε = Y ε . �

Proof of Theorem 2.2. First, it is clear that L2
d ⊂ ⋂

ε>0 H
2
BMO(Pε). Let α ∈ L

2
d and any ε > 0 be fixed. Since α is

deterministic, it follows from the Girsanov theorem that

B
∣∣
Pε,α

L= Wε,α
∣∣
P0

, and X
∣∣
Pε,α

L= Xε,α
∣∣
P0

, (4.3)

where, under P0, for t ∈ [0, T ],

W
ε,α
t := √

εBt +
∫ t

0
αs ds,

X
ε,α
t = X0 +

∫ t

0
bs

(
Wε,α,Xε,α

s

)
ds +

∫ t

0
σs

(
Wε,α,Xε,α

s

)
dWε,α

s .

Therefore, we have the following representation:

Y
ε,α
0 = E

P0

[
ξ
(
Wε,α,Xε,α

) + 1

2

∫ T

0
|αt |2 dt

]
. (4.4)

By the given regularities, it is clear that limε→0 Y
ε,α
0 = �α

0 . Then it follows from Lemma 4.2 that

lim
ε→0

Y ε
0 ≤ lim

ε→0
Y

ε,α
0 = �α

0 .

By the arbitrariness of α ∈ L
2
d , this shows that limε→0 Y ε

0 ≤ L0.
To prove the reverse inequality, we use the minimizer from Lemma 4.2. Note that Pε is equivalent to P

ε,Zε
and for

P
ε-a.e. ω, αε,ω := Zε· (ω) ∈ L

2
d . Then we compute that

Y ε
0 = Y

ε,Zε

0 = E
P

ε,Zε
[
ξ(B,X) + 1

2

∫ T

0

∣∣Zε
t

∣∣2
dt

]

≥ L0 +E
P

ε,Zε [
ξ(B,X) − ξ

(
ωZε(ω), xZε(ω)(ω)

)]
≥ L0 −E

P
ε,Zε [

ρ
(∥∥B − ωZε(ω)

∥∥
T

+ ∥∥X − xZε(ω)(ω)
∥∥

T

)]
,
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where ρ is the modulus of continuity of ξ . By definition of ωα , notice that Wε := ε−1/2(B −ωZε
) defines a Brownian

motion under Pε,Zε
. Then it is clear that

lim
ε→0

E
P

ε,Zε [∥∥B − ωZε∥∥
T

] = lim
ε→0

E
P

ε,Zε [√
ε
∥∥Wε

∥∥
T

] = 0.

Furthermore, recall that σ and b are Lipschitz-continuous, it follows from the comparison of SDEs that δt ≤
X − xZε ≤ δt , where δ0 = δ0 = 0, and

dδt = σt (B,X)
√

ε dWε
t − L

(√
ε
∥∥Wε

∥∥
t
+ ‖δ‖t

)(∣∣Zε
t

∣∣ + 1
)
dt,

dδt = σt (B,X)
√

ε dWε
t + L

(√
ε
∥∥Wε

∥∥
t
+ ‖δ‖t

)(∣∣Zε
t

∣∣ + 1
)
dt.

We now estimate δ. The estimation of δ follows the same line of argument. Denote Kt := ∫ t

0 σs(B,X)dWε
s . By

Gronwall’s inequality, we obtain

ε−1/2‖δT ‖ = L
∥∥Wε

∥∥
T

∫ T

0
eL

∫ T
t (|Zε

s |+1) ds
(∣∣Zε

t

∣∣ + 1
)
dt +

∫ T

0
eL

∫ T
t (|Zε

s |+1) ds d‖K‖t

≤ eL
∫ T

0 (|Zε
s |+1) ds

(∥∥Wε
∥∥

T
+ ‖K‖T

)
.

Then,

ε−1/2e−LT
E
P

ε,Zε [‖δT ‖] ≤ E
P

ε,Zε [
eL

∫ T
0 |Zε

s |ds
[∥∥Wε

∥∥
T

+ ‖K‖T

]]
≤ (

E
P

ε,Zε [
e2L

∫ T
0 |Zε

s |ds
])1/2(

E
P

ε,Zε [∥∥Wε
∥∥2

T
+ ‖K‖2

T

])1/2
.

Recall that σt (0, x) is bounded. One may easily check that, for some constant C independent of ε,

E
P

ε,Zε [∥∥Wε
∥∥2

T
+ ‖K‖2

T

] ≤ C.

Moreover, note that

Y ε
t = ξ + 1

2

∫ T

t

∣∣Zε
s

∣∣2
ds − √

ε

∫ T

t

Zε
t dWε

t .

Then, it follows that ‖Z‖
H

2
BMO(Pε,Zε

) ≤ 4‖ξ‖∞, and E
P

ε,Zε [eη
∫ T

0 |Zε
s |2 ds] ≤ C for all ε > 0, for some η > 0 and C > 0

independent of ε, see for example Lemma 9.6.5 on p. 175 of [3]. This implies EP
ε,Zε [e2L

∫ T
0 |Zε

s |ds] ≤ C and thus

E
P

ε,Zε [‖δ‖T

] ≤ C
√

ε, for all ε > 0.

Similarly, EP
ε,Zε [‖δ‖T ] ≤ C

√
ε, and we may conclude that

E
P

ε,Zε [
ρ
(∥∥B − ωZε∥∥

T
+ ∥∥X − xZε∥∥

T

)] −→ 0, as ε ↘ 0,

completing the proof. �

5. Asymptotics of the exiting probability

This section is dedicated to the proof of Theorem 2.5. As before, we introduce the processes:

Y ε
t := −ε lnpε

t , pε
t := P

ε
t [H < T ] for all t ≤ T .
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Unlike the previous problem, the present example features an additional difficulty due to the singularity of the terminal
condition:

lim
t→T

Y ε
t = ∞ on {H ≥ T }.

We shall first show that limε↓0 Y ε
0 ≤ Q0. In light of the arguments in Fleming and Soner [14], Lemma 10.1, p. 283,

we define

δ(x,A) := inf
y∈A

|x − y|, for a set A ⊂R
n.

We first need the following regularity result on the distance function δ. We believe that this should be a standard result,
but we could not find a reference. Thus we shall provide a proof in the Appendix for completeness.

Lemma 5.1. Let O be a bounded open set in R
n with C3 boundary. Then the function δ(·, ∂O) ∈ C2 on {x :

δ(x, ∂O) < η} for some η > 0.

The following lemma is crucial.

Lemma 5.2. There exists a constant K such that for any ε > 0 we have

Y ε
t ≤ Kδ(Xt , ∂O)

T − t
for all t < T and t ≤ H,Pε-a.e.

Proof. First, fix T1 < T . For x ∈R
d , we denote by x1 its first component. Since O is bounded, there exists a constant

μ such that x1 + μ > 0 for all x ∈ O . Define a function:

gε(t, x) := exp

(
−λ(x1 + μ)

ε(T1 − t)

)
, for t < T1, x ∈ cl(O),

where λ is some constant to be chosen later and cl(O) denotes the closure of O . Recall that a = (ai,j )i,j := σσT . By
Itô’s formula, we have P

ε-a.s.,

dgε(t,Xt ) = gε(t,Xt )

ε(T1 − t)2

[
1

2
a

1,1
t (B,X)λ2 − λ

(
X1

t + μ
) − (T1 − t)λb1

t (B,X)

]
dt + dMt,

for some Pε-martingale M . Since a1,1 is uniformly bounded away from zero and b1 is uniformly bounded, the dt-term
of the above expression is positive for a sufficiently large λ = λ∗. Hence, gε(t,Xt ) is a submartingale on [0, T1 ∧ H ].
Also, note that gε(T1,XT1) = 0 ≤ pε

T1
and gε(H,XH ) ≤ 1 = pε

H . Since pε is a martingale, we conclude that

gε(t,Xt ) ≤ pε
t for all t ≤ T1 ∧ H,Pε-a.s.

Denote δ(x) := δ(x, ∂O). Since ∂O is C3, it follows from Lemma 5.1 that there exists a constant η such that on
{x ∈ O : δ(x) < η}, the function d is C2. Now, define

g̃ε(t, x) := exp

(
− Kδ(x)

ε(T1 − t)

)
, for t < T1, x ∈ cl(O),

for some K ≥ λ∗(C+μ)
η

. Clearly, for t ≤ T1 ∧ H and δ(Xt ) ≥ η, we have

g̃ε(t,Xt ) ≤ gε(t,Xt ) ≤ pε
t , P

ε-a.s.

In the remaining case t ≤ T1 ∧ H and δ(Xt ) < η, we will now verify that{
g̃ε(s,Xs)1{δ(Xt )<η}, s ∈ [t,Hη ∧ H ∧ T ]} is a P

ε-submartingale,
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where Hη := inf{s : δ(Xs) ≥ η}. By Itô’s formula, together with the fact that |Dδ(x)| = 1,

dg̃ε(s,Xs) = Kg̃ε(s,Xs)

ε(T1 − s)2

[
K

2
asDδ(Xs) · Dδ(Xs) − ε

T1 − s

2
tr
(
asD

2δ(Xs)
)

− (T1 − s)bs · Dδ(Xs) − δ(Xs)

]
ds + dMs

≥ Kg̃ε(s,Xs)

ε(T1 − s)2

(
K

2
δ − ε

T1 − s

2
|as |

∣∣D2δ(Xs)
∣∣ − (T1 − s)‖bs‖

)
ds + dMs.

Hence, for sufficiently large K = K∗, the dt-term is positive, and g̃ε(s,Xs)1{δ(Xt )<η} is a submartingale for s ∈
[t,Hη ∧ H ∧ T ]. We also verify directly that

g̃ε(Hη ∧ H ∧ T ,XHη∧H∧T )1{δ(Xt )<η} ≤ pε
Hη∧H∧T , P

ε-a.s.

Since pε is a P
ε-martingale, we deduce that g̃ε(t,Xt ) ≤ pε

t for t ≤ T1 ∧ H and δ(Xt ) < η. Thus, we may conclude
that

g̃ε(t,Xt ) ≤ pε
t for all t ≤ T1 ∧ H,Pε-a.s.

Let T1 → T , we finally get

Y ε
t ≤ Kδ(Xt )

T − t
for all t < T and t ≤ H,Pε-a.s. �

Proposition 5.3. limε↓0 Y ε
0 ≤ Q0.

Proof. As in Proposition 4.1, we may show that there exists a process Zε such that for any T1 < T :

Y ε
t = Y ε

T1
− 1

2

∫ T1

t

∣∣Zε
s

∣∣2
ds +

∫ T1

t

Zε
s · dBs, P

ε-a.s.

Define a sequence of BSDEs:

Y
ε,T1
t = Kδ(XT1 ,O

c)

T − T1
− 1

2

∫ T1

t

∣∣Zε,T1
s

∣∣2
ds +

∫ T1

t

Z
ε,T1
t · dBs, P

ε-a.s.

Note that Y ε
T1∧H ≤ Kδ(XT1∧H ,Oc)

T −T1∧H
≤ Kδ(XT1 ,Oc)

T −T1
. By Lemma 5.2 and the comparison result of quadratic BSDE (see

Theorem 2.6 of [23]), we deduce that

Y ε
0 ≤ Y

ε,T1
0 for all T1 < T.

Denote ξ(x) := Kδ(xT1 ,Oc)

T −T1
, and note that Y

ε,T1
0 = −ε lnEP

ε [e−(1/ε)ξ(X)]. Since ξ is bounded and uniformly continu-
ous, it follows from Theorem 2.2 that

lim
ε→0

Y
ε,T1
0 = y

T1
0 := inf

α∈L2

{
1

2

∫ T1

0
α2

t dt + Kδ(xα
T1

,Oc)

T − T1

}
.

Thus, we have

lim
ε↓0

Y ε
0 ≤ inf

α∈L2

{
1

2

∫ T1

0
α2

t dt + Kδ(xα
T1

,Oc)

T − T1

}
≤ inf

α∈L2,xα
T1

/∈O

{
1

2

∫ T

0
α2

t dt

}
.
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Finally, observe that

inf
α∈L2,xα

T1
/∈O

{
1

2

∫ T

0
α2

t dt

}
= inf

α∈L2,xα
T1∧· /∈O

{
1

2

∫ T

0
α2

t dt

}
−→ Q0, as T1 → T .

�

To complete the proof of Theorem 2.5, we next complement the result of Proposition 5.3 by the opposite inequality.

Proposition 5.4. limε↓0 Y ε
0 ≥ Q0.

Proof. We organize the proof in three steps.
1. Define another sequence of BSDEs:

Y
ε,T1,m
t = mδ

(
XT1,O

c
) ∧ Y ε

T1
− 1

2

∫ T1

t

∣∣Zε,T1,m
s

∣∣2
ds +

∫ T1

t

Z
ε,T1,m
t · dBs, P

ε-a.s.

By the comparison result of quadratic BSDEs, we have that Y
ε,T1,m
t ≤ Y ε

t for all t ≤ T1. Then, by the stability of
BSDEs, we know that Y ε,T1,m converges to the solution of the following BSDE as T1 → T :

Y
ε,m
t = mδ

(
XT ,Oc

) − 1

2

∫ T

t

∣∣Zε,m
s

∣∣2
ds +

∫ T

t

Z
ε,m
t · dBs, P

ε-a.s.

Note that Y
ε,m
0 = −ε lnEP

ε [e−(1/ε)mδ(XT ,Oc)]. We may apply Theorem 2.2 and get that

lim
ε↓0

Y ε
0 ≥ lim

ε↓0
Y

ε,m
0 = ym

0 := inf
α∈L2

{
1

2

∫ T

0
α2

s ds + mδ
(
xα
T ,Oc

)}
. (5.1)

2. We now prove that the sequence (ym
0 )m is bounded. Take αt ≡ C · 1. Then

xα
T = x0 +

∫ T

0
(bt + Cσt · 1) dt.

Since b is bounded and σ is positive, when C = C0 is sufficiently large, we will have xα
T /∈ O . Hence, ym

0 ≤ 1
2C2

0T d .
3. In view of (5.1), we now conclude the proof of the proposition by verifying that ym

0 −→ Q0, as m → ∞. Let
ρ > 0. By the definition of ym

0 , there is a ρ-optimal αρ :

ym
0 + ρ >

1

2

∫ T

0

∣∣αρ
t

∣∣2
dt + mδ

(
x

ρ
T ,Oc

)
,

where we denoted xρ := xαρ
. By the boundedness of (ym

0 )m in Step 2, we have δ(x
ρ
T ,Oc) ≤ C

m
. So, there exists a

point x0 ∈ ∂O such that |xρ
T − x0| ≤ C

m
. Define:

α̃t := α
ρ
t + σ−1

t

x0 − x
ρ
T

T
.

Then, xα̃
T = x0 /∈ O . Also, note that σ−1

t
x0−x

ρ
T

T
= o( 1

m
) when m → ∞. Hence,

1

2

∫ T

0

∣∣αρ
t

∣∣2
dt = 1

2

∫ T

0

∣∣∣∣α̃t − σ−1
t

x0 − x
ρ
T

T

∣∣∣∣2

dt ≥ inf
α∈L2,xα

T /∈O

{
1

2

∫ T

0
|αt |2 dt

}
+ o

(
1

m

)
.

Finally, sending m → ∞, we see that limm→∞ ym
0 + ρ ≥ Q0. Since ρ is arbitrary, the proof is complete. �
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6. Viscosity property of the candidate solution

We first cite the result by Lukoyanov (Theorem 2 in [24]).

Theorem 6.1 (Lukoyanov [24]). Assume that

• the generator F and the terminal condition ξ is continuous in all components;
• it holds the estimates:∣∣F(t, ω̂,0)

∣∣ ≤ ρ(t, ω̂),
∣∣F(t, ω̂,pω̂) − F

(
t, ω̂,p′

ω̂

)∣∣ ≤ ρ(t, ω̂)
(∣∣pω̂ − p′

ω̂

∣∣),
where ρ(t, ω̂) := C(1 + ‖ω̂‖t ), C is a constant, and pω̂ := (pω,px);

• for any compact set D ⊂ Ωd+n there is a constant Λ(D) such that

∣∣F(t, ω̂,pω̂) − F
(
t, ω̂′,pω̂

)∣∣ ≤ Λ(D)
(
1 + |pω̂|)√μ

(
t, ω̂, ω̂′),

where μ(t, ω̂, ω̂′) := |ω̂t − ω̂′
t |2 + ∫ t

0 |ω̂s − ω̂′
s |2 ds.

Then the Dirichlet problem of the path-dependent PDE:

−∂tu − F(t,ω,pω) = 0 with uT = ξ,

has a unique continuous viscosity solution.

Clearly our equation (2.5) satisfies the conditions in the above theorem, so uniqueness holds for (2.5) within the
class of continuous functions and, in order to prove Theorem 2.11 it remains to verify that u satisfies the viscosity
properties.

Lemma 6.2. Fix K ≥ 0. There exists a constant C such that for any t ∈ [0, T ] and ω̂1, ω̂2 ∈ Ω̂ ,

sup
α:∫ T

t |α|2s ds≤K

∥∥ω̂α,t,ω̂1 − ω̂α,t,ω̂2∥∥ ≤ C
∥∥ω̂1 − ω̂2

∥∥
t
.

Proof. By the definition of ω̂α,t,ω̂i
(i = 1,2), we know that the components ωα,t,ω̂i

are equal. The difference comes
from the component xα,t,ω̂i

. Denote δxt := ‖xα,t,ω̂1 − xα,t,ω̂2‖2
t . Then, by the definition of xα,t,ω̂i

and the Lipschitz
continuity of b and σ , we obtain that

δxs ≤
∫ s

0
C

(∥∥ω̂1 − ω̂2
∥∥2

t
+ δxr

)
dr + C

(∫ s

0

(∥∥ω̂1 − ω̂2
∥∥

t
+ δxr

)|αr |dr

)2

≤
∫ s

0
C

(∥∥ω̂1 − ω̂2
∥∥2

t
+ δxr

)
dr + 2KC

(∫ s

0

(∥∥ω̂1 − ω̂2
∥∥2

t
+ δxr

)
dr

)
.

Finally, the claim follows from the Gronwall’s inequality. �

Lemma 6.3 (Dynamic programming). Let u be the value function defined in (2.9). Then, for all 0 ≤ t ≤ s ≤ T and
ω̂ ∈ Ω̂ , we have

u(t, ω̂) = inf
α∈L2

d

{
1

2

∫ s

t

|αr |2 dr + ut,ω̂
(
s − t, ω̂α,t,ω̂

)}
, (6.1)

where ut,ω̂(t ′, ω̂′) := u(t + t ′, ω̂ ⊗t ω̂′).
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Proof.
1. By the definition of infimum and that of u, it holds for all α,α′ ∈ L

2
d :

r.h.s. ≤ 1

2

∫ s

t

|αr |2 dr + ut,ω̂
(
s − t, ω̂α,t,ω̂

)

≤ 1

2

∫ s

t

|αr |2 dr + 1

2

∫ T

s

∣∣α′
r

∣∣2
dr + ξ s,ω̃

(
ω̂α′,s,ω̃)

, with ω̃ := ω̂ ⊗t ω̂α,t,ω̂.

Denote α̃r := αr1[t,s)(r)+α′
r1[s,T ](r), and then α̃ ∈ L

2
d . Also note that ω̃ ⊗s ω̂α′,s,ω̃ = ω̂ ⊗ ω̂α̃,t,ω̂ . Further, since α,α′

are arbitrary, we obtain that

r.h.s. ≤ inf
α∈L2

d

{
1

2

∫ T

t

|αr |2 dr + ξ t,ω̂
(
ω̂α,t,ω̂

)} = u(t, ω̂). (6.2)

2. Again by the definition of infimum and that of u, for any ε > 0 there exists α,α′ ∈ L
2
d such that

r.h.s. >
1

2

∫ s

t

|αr |2 dr + ut,ω̂
(
s − t, ω̂α,t,ω̂

) − ε

>
1

2

∫ s

t

|αr |2 dr + 1

2

∫ T

s

∣∣α′
r

∣∣2
dr + ξ s,ω̃

(
ω̂α′,s,ω̃) − 2ε, with ω̃ := ω̂ ⊗t ω̂α,t,ω̂.

It follows that

r.h.s. >
1

2

∫ T

t

|α̃r |2 dr + ξ t,ω̂
(
ω̂α̃,t,ω̂

) − 2ε ≥ u(t, ω̂) − 2ε.

Since ε > 0 is arbitrary, we obtain that r.h.s. ≥ u(t, ω̂). Combing with (6.2), we have (6.1). �

Lemma 6.4. The function u defined in (2.9) is bounded and Lipschitz-continuous.

Proof. Clearly, u inherits the bound of ξ . For t ∈ [0, T ], ω̂1, ω̂2 ∈ Ω̂ , since ξ is bounded, there exists a constant K

such that

u
(
t, ω̂i

) = inf
α∈L2

d

{
1

2

∫ T

t

|αs |2 ds + ξ t,ω̂i (
ω̂α,t,ω̂i )}

= inf
α:∫ T

t |α|2s ds≤K

{
1

2

∫ T

t

|αs |2 ds + ξ t,ω̂i (
ω̂α,t,ω̂i )}

.

It follows from Lemma 6.2 that:∣∣u(
t, ω̂1) − u

(
t, ω̂2)∣∣ ≤ sup

α:∫ T
t |α|2s ds≤K

{∣∣ξ t,ω̂1(
ω̂α

) − ξ t,ω̂2(
ω̂α

)∣∣} ≤ C
∥∥ω̂1

t∧· − ω̂2
t∧·

∥∥. (6.3)

On the other hand, fixing ω̂, it follows from the dynamic programming principle that

u(t + h, ω̂t∧·) − u(t, ω̂) = sup
α∈L2

{
−1

2

∫ t+h

t

α2
s ds − ut,ω̂

(
h, ω̂α,t,ω̂

) + u(t + h, ω̂t∧·)
}

≥ 0, (6.4)

where the last inequality is induced by the constant control α = 0. Moreover, since b and σ are bounded, note that
‖(ω̂ ⊗t ω̂α,t,ω̂)(t+h)∧· − ω̂t∧·‖ ≤ C

∫ t+h

t
(1 + |αs |) ds. Then, using again the dynamic programming principle together

with (6.3), we obtain

u(t + h, ω̂t∧·) − u(t, ω̂) ≤ sup
α∈L2

{∫ t+h

t

(
−1

2
α2

s + C|αs | + C

)
ds

}
≤

(
C2

2
+ C

)
h. (6.5)
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Combining this with (6.3), we see that

∣∣u(
t + h, ω̂1) − u

(
t, ω̂2)∣∣ ≤ ∣∣u(

t + h, ω̂1) − u
(
t + h, ω̂1

t∧·
)∣∣

+ ∣∣u(
t + h, ω̂1

t∧·
) − u

(
t, ω̂1)∣∣ + ∣∣u(

t, ω̂1) − u
(
t, ω̂2)∣∣

≤ C′(∥∥ω̂1
∥∥t+h

t
+ h + ∥∥ω̂1

t∧· − ω̂2
t∧·

∥∥)
≤ 3C′(h + ∥∥ω̂1

(t+h)∧· − ω̂2
t∧·

∥∥)
. �

Now, consider a functional uK :

uK(t, ω̂) := inf‖α‖∞≤K

[
ξ
(
ω̂ ⊗t ω̂α,t,ω̂

) + 1

2

∫ T

t

|αs |2 ds

]
.

Notice that uK ≥ uK−1 ≥ u.

Proposition 6.5. For K sufficiently large, we have u = uK .

Proof. Similar to Lemma 6.4, for each K , one may easily see that uK(t, ·) is uniformly Lipschitz in ω with the same
Lipschitz constant denoted as L. We first claim that there exists αK such that

uK(0,0) = ξ
(
ω̂αK ) + 1

2

∫ T

0

∣∣αK
t

∣∣2
dt. (6.6)

Then for any t and h, one can easily show that

uK

(
t, ω̂αK ) = uK

(
t + h, ω̂αK ) + 1

2

∫ t+h

t

∣∣αK
s

∣∣2
ds.

On the other hand, by the dynamic programming,

uK

(
t, ω̂αK ) ≤ uK

(
t + h, ω̂αK

t∧·
)
.

Then

1

2

∫ t+h

t

∣∣αK
s

∣∣2
ds ≤ uK

(
t + h, ω̂αK

t∧·
) − uK

(
t + h, ω̂αK )

≤ L
∥∥ω̂αK − ω̂αK

t∧·
∥∥

t+h
≤ CL

∫ t+h

t

(
1 + ∣∣αK

s

∣∣)ds,

where C is a common bound for the coefficients b and σ . Since t and h are arbitrary, we get ‖αK‖∞ ≤ C′ for some
constant C′ independent of K . Then uK = uC′ for any K ≥ C′, and thus u = uC′ .

We now prove the existence claim (6.6). Let αK,n be a minimum sequence of controls for uK(0,0), namely

uK(0,0) = lim
n→∞

[
ξ
(
ω̂αK,n) + 1

2

∫ T

0

∣∣αK,n
t

∣∣2
dt

]
. (6.7)

By compactness of ΩK , the sequence {ωαK,n
, n ≥ 1} has a limit ωK ∈ ΩK , after possibly passing to a subsequence:

lim
n→∞

∥∥ωαK,n − ωK
∥∥

T
= 0. (6.8)
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By (6.7) and since ξ is bounded, it is clear that supn

∫ T

0 |αK,n
t |2 dt < ∞. Then without loss of generality we may

assume that {αK,n, n ≥ 1} converges to certain αK weakly in L
2([0, T ]). Then for any t and h,

ωK
t+h − ωK

t = lim
n→∞

[
ωαK,n

t+h − ωαK,n

t

] = lim
n→∞

∫ t+h

t

αK,n
s ds =

∫ t+h

t

αK
s ds.

This implies that ωK = ωαK
. Further, by Gronwall’s inequality, we obtain that

lim
n→∞

∥∥xαK,n − xαK ∥∥
T

= 0. (6.9)

Now by Mazur’s lemma, there exist convex combinations α̃K,n = ∑
i c

n
i αK,mn

i , where mn
i ≥ n, such that {α̃K,n, n ≥

1} converges to αK strongly in L
2([0, T ]). Then by Jensen’s inequality we see that∫ T

0

∣∣αK
t

∣∣2
dt = lim

n→∞

∫ T

0

∣∣α̃K,n
t

∣∣2
dt ≤ lim

n→∞
∑

i

cn
i

∫ T

0

∣∣αK,mn
i

t

∣∣2
dt.

On the other hand, by (6.8), (6.9) and since ξ is Lipschitz continuous, we have

ξ
(
ω̂αK ) = lim

n→∞
∑

i

cn
i ξ

(
ω̂α

K,mn
i
)
.

Then

ξ
(
ω̂αK ) + 1

2

∫ T

0

∣∣αK
t

∣∣2
dt ≤ lim

n→∞
∑

i

cn
i

[
ξ
(
ω̂α

K,mn
i
) + 1

2

∫ T

0

∣∣αK,mn
i

t

∣∣2
dt

]
= uK(0,0),

where the last equality follows from (6.7). This proves the claim. �

Proof of Theorem 2.11. Fix K0 such that u = uK0 . Recall that b and σ are bounded by C. Then, define K :=
C(1 + K0), so that for all ‖α‖∞ ≤ K0 and ω̂ ∈ Ω̂K , we have ω̂α,t,ω̂ ∈ Ω̂K .

We first prove the viscosity subsolution property. Let (t, ω̂) ∈ ΘK , and ϕ ∈ AKu(t, ω̂). By the dynamic program-
ming principle, we have:

u(t, ω̂) = inf
α∈L2

{
1

2

∫ t+h

t

α2
r dr + ut,ω̂

(
h, ω̂α,t,ω̂

)}
for h ≥ 0. (6.10)

Since ϕ ∈AKu(t, ω̂), we have for all ‖α‖∞ ≤ K0:

0 ≤ 1

2

∫ t+h

t

|α|2r dr + ut,ω̂
(
h, ω̂α,t,ω̂

) − u(t, ω̂) ≤ 1

2

∫ t+h

t

|α|2r dr + ϕt,ω̂
(
h, ω̂α,t,ω̂

) − ϕ(t, ω̂).

By the smoothness of ϕ, this provides:

0 ≤ 1

h

∫ h

0

(
∂tϕ + b∂xϕ + 1

2
|α|2 + α · (∂ωϕ + σT∂xϕ

))t,ω̂(
r, ω̂α,t,ω̂

)
dr. (6.11)

By sending h → 0, we obtain

−
(

∂tϕ + b·∂xϕ + inf|α|≤K0

(
1

2
|α|2 + α · (∂ωϕ + σT∂xϕ

)))
(t, ω̂) ≤ 0.

We next prove the viscosity supersubsolution property. Assume not, then there exists ϕ ∈ AK
u(t, ω̂) such that

c := −
(

∂tϕ + b·∂xϕ + inf|α|≤K0

(
1

2
|α|2 + α · (∂ωϕ + σT∂xϕ

)))
(t, ω̂) > 0.
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Without loss of generality, we may assume that ϕ(t, ω̂) = u(t, ω̂). Recall that u = uK0 . Now for any h > 0, by the
dynamic programming,

ϕ(t, ω̂) = u(t, ω̂) = inf‖α‖∞≤K0

[
u

t,ω̂
h

(
ω̂α,tω̂

) + 1

2

∫ t+h

t

|αs |2 ds

]

≥ inf‖α‖∞≤K0

[
ϕ

t,ω̂
h

(
ω̂α,t,ω̂

) + 1

2

∫ t+h

t

|αs |2 ds

]
.

Then,

0 ≥ inf‖α‖∞≤K0

[
ϕ

t,ω̂
h

(
ω̂α,t,ω̂

) − ϕ(t, ω̂) + 1

2

∫ t+h

t

|αs |2 ds

]

= inf‖α‖∞≤K0

∫ h

0

[
∂tϕ + b·∂xϕ + 1

2
|α|2 + α · (∂ωϕ + σT∂xϕ

)]t,ω̂(
s, ω̂α,t,ω̂

)
ds

≥ inf‖α‖∞≤K0

∫ h

0

[
c − C

(∣∣∂tϕ
t,ω̂

(
s, ω̂α,t,ω̂

) − ∂tϕ(t, ω̂)
∣∣ + ∣∣∂ω̂ϕt,ω̂

(
s, ω̂α,t,ω̂

) − ∂ω̂ϕ(t, ω̂)
∣∣)]ds

≥ [
c − ρ

(
(1 + K)h

)]
h,

which leads to a contradiction by choosing h sufficiently small. �

Appendix

Proof of Lemma 5.1. Since O is of C3 boundary, we may consider a ball V0 covering a part of the boundary, on
which there are a local coordinate and a function f1 ∈ C3(Rn−1,R) such that ∂O ∩ V0 = {f (z) := (z, f1(z))}. Let

η := 1

2C0
, where C0 := sup

f (z)∈V0

∥∥∇2f1(z)
∥∥,

where ‖ · ‖ denotes the spectral norm. We may find an open subset V1 ⊂ V0 ∩ {x : δ(x, ∂O) < η} such that

δ(x, ∂O) = min
f (z)∈V0

∣∣x − f (z)
∣∣ = ∣∣x − f

(
z∗(x)

)∣∣, for all x ∈ V1,

where z∗ satisfies the first order condition:

xi − z∗
i + (

xn − f1
(
z∗))∂zi

f1
(
z∗) = 0, for 1 ≤ i ≤ n − 1. (A.1)

Since f1 ∈ C2, we obtain by direct differentiation that

∇z∗ = (
In−1 + ∇f1

(
z∗)∇f1

(
z∗)T − (

xn − f1
(
z∗))∇2f1

(
z∗))−1

,

where the matrix on the right hand side is invertible because (xn − f1(z
∗))∇2f1(z

∗) ≤ 1
2In−1. Finally, by a standard

compactness argument, we may prove that may choose η independent of V0. This shows that z∗ ∈ C1 on a small
neighborhood of the boundary.

Since f1 ∈ C3, we may also prove similarly that z∗ ∈ C2 on a small neighborhood of the boundary. �
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