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Abstract. Suppose that (X,Y,Z) is a random walk in Z3 that moves in the following way: on the first visit to a vertex only Z

changes by ±1 equally likely, while on later visits to the same vertex (X,Y ) performs a two-dimensional random walk step. We
show that this walk is transient thus answering a question of Benjamini, Kozma and Schapira. One important ingredient of the
proof is a dispersion result for martingales.

Résumé. Supposons que (X,Y,Z) soit une marche aléatoire dans Z3 qui se déplace de la façon suivante : à la première visite en
un site, seule la coordonnée Z saute de ±1 avec probabilité uniforme, et aux visites suivantes en ce site (X,Y ) effectue un saut
dans l’ensemble {(±1,0), (0,±1)} avec probabilité uniforme. Nous montrons que cette marche est transiente, répondant ainsi à une
question de Benjamini, Kozma et Schapira. Un ingrédient important de la preuve est un résultat de dispersion pour les martingales.
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1. Introduction

In this paper we study the following self-interacting random walk (X,Y,Z) in Z3. On the first visit to a vertex only Z

changes by ±1 equally likely, while on later visits to the same vertex (X,Y ) performs a two-dimensional random walk
step, i.e. it changes by (±1,0) or (0,±1) all with equal probability. This walk was conjectured in [7] to be transient.

This model fits into the wider class of excited random walks which were first introduced by Benjamini and Wilson
[8]. They study walks that on the first visit to a vertex in Zd have a bias in one direction while on later visits they
make a simple random walk step. There has been a lot of active research in this type of model; see the recent survey
[12] and the references therein.

Another process of this flavour was analysed in [17]; suppose that μ1,μ2 are two zero-mean measures in R3 and
consider any adapted rule for choosing between μ1 and μ2. By adapted rule, we mean that the next choice every time
depends on the history of the process up to this time. In [17] it was proved that if the support of each measure spans
the whole space (and 2 + β moment, for some β > 0), then for any adapted rule, the resulting walk in R3 is transient.
In [18] transience and recurrence properties and weak laws of large numbers were also proved for specific choices of
one-dimensional measures; for instance when μ1 is the distribution of simple random walk step and μ2 the symmetric
discrete Cauchy law.

A larger class of such processes are the so-called self-interacting random walks, which are not Markovian, since the
next step depends on the whole history of the process up to the present time. For instance the edge or vertex reinforced
random walks have attracted a lot of attention, see e.g. [2,4,10,15,16,19–21].
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Theorem 1.1. Let Wt = (Xt , Yt ,Zt ) be a random walk in Z3 such that on the first visit to a vertex only Zt changes
to Zt ± 1 equally likely, while on later visits to a vertex (Xt , Yt ) makes a two-dimensional simple random walk step.
Then W is transient, i.e. ‖Wt‖ → ∞ as t → ∞ almost surely.

We now give a quick overview of the proof of Theorem 1.1. By conditioning on all the jumps of the
two-dimensional process (X,Y ) and looking at the process Z only at the times when (X,Y ) moves, we obtain a
martingale M . Then we need to obtain estimates for the probability that M is at 0 at time n so that when multiplied
by 1/n it should be summable. In Section 2 we state and prove a proposition that gives estimates for a martingale to
be at 0 at time n when it satisfies certain assumptions. We now state a simpler form of this proposition.

Corollary 1.2. Let M be a martingale satisfying almost surely

E
[
(Mk+1 − Mk)

2 | Fk

] ≥ 1 and |Mk+1 − Mk| ≤ (logn)a,

for all k ≤ n and some a < 1. Then there exists a positive constant c, such that

P(Mn = 0) ≤ exp
(−c(logn)1−a

)
.

We remark that related results were recently proved by Alexander in [1] and by Armstrong and Zeitouni in [3].
In order to prove Corollary 1.2 we follow the approach used in Theorem 1.2 of [11] to bound the probability that

Mn = 0. However in [11] it was assumed that the conditional variance of each martingale difference is bounded above
and below by two constants; this assumption is not satisfied in our application, so we must allow greater variability of
the conditional variance. The critical regime to obtain any defocusing estimate requires the ratio of the maximal and
minimal conditional variance to be bounded by (logn)a with a < 1; Lemma 1.3 below shows that one cannot allow
a = 1. Note that in [11], Theorem 1.2, a power law upper bound was proved for P(Mn = 0); such a bound does not
hold under the weaker assumptions of our Corollary 1.2.

The approach is based on considering the rectangles as in Figure 1, where the widths decay exponentially and
tk = n − n/2k for k < log2(n). It is clear that {Mn = 0} only if the graph of M hits all the rectangles. Note that it
suffices to show that for most rectangles, conditionally on hitting them, the probability that the graph of M does not
hit the next one is lower bounded by c/(logn)a . This is the content of Proposition 2.1 in Section 2. In order to control
the probabilities mentioned above, we also have to make sure that the two-dimensional process visits enough new
vertices in most intervals [tk, tk+1]. This is the content of Proposition 3.4 that we state and prove in Section 3.

Fig. 1. The rectangles [tk, n] × [−hk,hk] and the graph of M .
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In Section 4 we prove the following lemma, which shows that there is no dispersion result in the case a = 1, with
general hypotheses like in Corollary 1.2.

Lemma 1.3. There exists a positive constant c, such that for any n, there exists a martingale (Mk)k≤n sastisfying
almost surely

E
[
(Mk+1 − Mk)

2 | Fk

] ≥ 1 and |Mk+1 − Mk| ≤ logn,

for all k ≤ n, yet

P(Mn = 0) ≥ c.

Notation. For functions f,g we write f (n) � g(n) if there exists a universal constant C > 0 such that f (n) ≤ Cg(n)

for all n. We write f (n) � g(n) if g(n) � f (n). Finally we write f (n) � g(n) if both f (n) � g(n) and f (n) � g(n).
We write B(x, r) to denote the ball in the L1-metric centered at x of radius r . Note also that in the rest of the paper
we use c for a constant whose value may change from line to line.

2. Martingale defocusing

In this section we state and prove a dispersion result for martingales. Then in Section 3 we use it to prove our main
result, Theorem 1.1 when a = 1/2.

We call the quadratic variation of a martingale M , the process (Vt )t≥1 defined by

Vt =
t∑

�=1

E
[
(M� − M�−1)

2 | F�−1
]
.

Proposition 2.1. Let ρ > 0 be given. There exists a positive constant c and n0 ≥ 1 such that the following holds for
any a ∈ (0,1). Suppose that M is a martingale with quadratic variation V and suppose that (Gk)k is an i.i.d. sequence
of geometric random variables with mean 2 satisfying

|Mk+1 − Mk| ≤ Gk ∀k. (2.1)

For each 1 ≤ k < log2(n) we let tk = n − n/2k and

Ak = {
Vtk+1 − Vtk ≥ ρ(tk+1 − tk)/(logn)2a

}
.

Suppose that for some N ≥ 1 and 1 ≤ k1 < · · · < kN < log2(n)/2, it holds

P

(
N⋂

i=1

Aki

)
= 1. (2.2)

Then we have for all n ≥ n0

P(Mn = 0) ≤ exp
(−cN/(logn)a

)
.

Remark 2.2. We note that the choice of mean 2 for the geometric random variables in (2.1) is arbitrary. Any other
value would be fine as well.

Proof of Corollary 1.2. If we divide the martingale M by (logn)a , then it satisfies the hypotheses of Proposition 2.1
with N = log2(n)/2, and hence the statement of the corollary follows. �

Before proving Proposition 2.1 we state and prove a preliminary result that will be used in the proof later.
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Lemma 2.3. There exists ρ > 0 such that the following holds. Suppose that M is a martingale satisfying assumption
(2.1) of Proposition 2.1. Let m < � and h > log(�−m+1) be given and let τ = min{t ≥ m: |Mt −Mm| ≥ h}. Suppose
that P(V� − Vm ≥ h2/ρ) = 1. Then we have almost surely

P(τ ≤ � | Fm) ≥ 1

2
.

Proof. It is well known that the process (M2
t −Vt ) is a martingale. Since τ ∧� ≥ m is a stopping time, by the optional

stopping theorem we get

E
[
M2

τ∧� − Vτ∧� | Fm

] = M2
m − Vm. (2.3)

Now we claim that

E
[
M2

τ∧� − M2
m | Fm

]
� h2. (2.4)

Indeed we can write

E
[
M2

τ∧� − M2
m | Fm

] = E
[
(Mτ∧� − M(τ−1)∧� + M(τ−1)∧� − Mm)2 |Fm

]
≤ 2E

[
(Mτ∧� − M(τ−1)∧�)

2 |Fm

] + 2h2,

where the last inequality follows from the definition of τ . In order to bound the first term in the right hand side above,
we use (2.1) and the fact that τ ≥ m. This way we get

|Mτ∧� − M(τ−1)∧�| ≤ max
m≤t≤�

|Gt |.

So we now obtain

E
[
(Mτ∧� − M(τ−1)∧�)

2 |Fm

]
�

(
log(� − m + 1)

)2
,

which proves our claim (2.4), using also the hypothesis h > log(�−m+1). Since by assumption we have P(V� −Vm ≥
h2/ρ) = 1, we obtain that almost surely

E[Vτ∧� − Vm | Fm] ≥ E
[
(V� − Vm)1(τ ≥ �) |Fm

] ≥ h2

ρ
P(τ ≥ � |Fm).

This together with (2.3) and (2.4) and by taking ρ sufficiently small proves the lemma. �

We are now ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1. We will argue as in [11], by saying that in order for Mn to be at 0, the graph of M , i.e. the
process ((t,Mt ))t≤n, has to cross the space–time rectangles Hk as in Figure 1, for all k = 1, . . . , log2(n), which are
defined by

Hk := [tk, n] × [−hk,hk] with hk := ρ

√
tk+1 − tk

(logn)2a
. (2.5)

We now define

σk = inf
{
t ≥ tk: |Mt | ≥ hk

}
.

For each k ≤ log2(n)/2 such that P(Ak) = 1 we can apply Lemma 2.3 with m = tk , � = tk+1 and h = 2hk if n is
sufficiently large so that h > log(� − m + 1). We thus deduce that for ρ sufficiently small and for all n > n0 we have
almost surely

P(σk ≤ tk+1 |Ftk ) ≥ 1

2
. (2.6)
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Next we claim that a.s. conditionally on Fσk
the martingale has probability of order 1/(logn)a , to reach level

±hk(logn)a/ρ2 before returning below level ±hk/
√

2 = ±hk+1 (if at least one of these events occurs before time n).
Indeed assume for instance that Mσk

≥ hk . Then the optional stopping theorem shows that on the event Ek = {Mσk
≥

hk} ∩ {σk ≤ n} we have

hk ≤ Mσk
= E[MT1∧T2∧n | Fσk∧n], (2.7)

where

T1 := inf
{
t ≥ σk: |Mt | ≥ hk(logn)a/ρ2}

and

T2 := inf
{
t ≥ σk: |Mt | ≤ hk/

√
2
}
.

We deduce from (2.7) that on Ek

hk ≤ E
[
MT11(T1 < T2 ∧ n) | Fσk

] + hk(logn)a

ρ2
P(n < T1 ∧ T2 |Fσk

) + hk√
2
.

Then by using again the bound (2.1) we get that on Ek

E
[
MT11(T1 < T2 ∧ n) | Fσk

] ≤ hk(logn)a

ρ2
P(T1 < T2 ∧ n |Fσk

) +E

[
max

tk≤t≤n
Gt

]
≤ hk(logn)a

ρ2
P(T1 < T2 ∧ n |Fσk

) + c1 log(n − tk + 1),

where c1 is a positive constant. It follows that if n is large enough, then on Ek

P(T1 ∧ n < T2 | Fσk
) � 1

(logn)a
.

Similarly we get the same inequality with the event {Mσk
≥ hk} replaced by {Mσk

≤ −hk}, and hence we get that
almost surely

P(T1 ∧ n < T2 | Fσk
)1(σk ≤ n) � 1

(logn)a
1(σk ≤ n), (2.8)

which proves our claim. We now notice that on the event {tk ≤ T1 ≤ n} we have by Doob’s maximal inequality

P

(
sup

i≤n−tk

|Mi+T1 − MT1 | ≥ hk(logn)a/
(
2ρ2) |FT1

)
� n − tk

(hk(logn)a/ρ2)2
< c1, (2.9)

where c1 is a constant that we can take smaller than 1 by choosing ρ small enough. Note that we used again (2.1) in
order to bound the L2 norm of the increments of the martingale M .

Next we define a sequence of stopping times, which are the hitting times of the space–time rectangles (Hk) defined
in (2.5). More precisely, we let s0 = 0 and for i ≥ 1 we let

si = min
{
t > si−1: (t,Mt ) ∈ Hi

}
.

Thus for each k ≤ log2(n)/2 such that P(Ak) = 1 by using (2.6), (2.8) and (2.9), we get that on the event {sk−1 ≤ n}

P(sk > n |Fsk−1) � 1

(logn)a
.
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Using the assumption that the event
⋂N

i=1 Aki
happens almost surely we obtain

P(Mn = 0) ≤ P(sk1 , . . . , skN
≤ n) ≤

(
1 − c

(logn)a

)N

≤ exp
(−cN/(logn)a

)
,

for a positive constant c, and this concludes the proof. �

3. Proof of transience

In this section we prove Theorem 1.1. We first give an equivalent way of viewing the random walk W . Let ξ1, ξ2, . . .

be i.i.d. random variables taking values (0,0,±1) equally likely. Let ζ1, ζ2, . . . be i.i.d. random variables taking values
(±1,0,0), (0,±1,0) all with equal probability, and independent of the (ξi)i . Assume that (W0, . . . ,Wt ) have been
defined, and set

rW (t) = #{W0, . . . ,Wt }.
Then

Wt+1 =
{

Wt + ξrW (t) if rW (t) = rW (t − 1) + 1,
Wt + ζt−rW (t) otherwise.

To prove Theorem 1.1 it will be easier to look at the process at the times when the two-dimensional process moves.
So we define a clock process (τk)k≥0 by τ0 = 0 and for k ≥ 0,

τk+1 = inf
{
t > τk: (Xt+1, Yt+1) 
= (Xt , Yt )

} = inf
{
t > τk: t − rW (t) = k

}
.

Note that rW (0) = 1 and τk < ∞ a.s. for all k. Observe that by definition the process Ut := (Xτt+1, Yτt+1) is a 2d-
simple random walk, and that rW (τt ) = τt − t + 1. Note that

Zt =
rW (t)−1∑

i=1

〈
ξi, (0,0,1)

〉
.

We set Ft = σ(ξ1, . . . , ξτt−t ), so that Zτt is Ft -measurable for all t .
We call Q the law of the process U . We denote by PU(·) the law of the process W conditionally on the whole

process U , or in other words on the whole sequence (ζi)i≥1. Note that this defines a regular conditional probability,
since the process W is measurable with respect to a countably generated σ -algebra. For more on regular conditional
probabilities see for instance [9], Section 5.1.3. We write P =Q× PU for the law of the overall process W .

We now let

Mt = Zτt , ∀t,

i.e. we observe the process Z only at the times when the two-dimensional process moves. In the following claim we
show that it is a martingale.

Claim 3.1. Let Mt = Zτt . Then Q-a.s. we have that (Mt) is an (Ft )-martingale under PU .

Proof. We already noticed that Mt is adapted to Ft for all t . Now since the ξi ’s are i.i.d. and have mean 0 it follows
from Wald’s identity that

EU [Zτt+1 |Ft ] = EU

[
Zτt +

τt+1−t−1∑
i=τt−t+1

〈
ξi, (0,0,1)

〉 ∣∣∣∣Ft

]
= Zτt

and this finishes the proof. �
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Remark 3.2. We note that the jumps of the martingale are stochastically dominated by geometric random variables.
More precisely, we can couple the process M (or W ) with a sequence (Gt )t≥0 of i.i.d. geometric random variables
with parameter 1/2, such that

|Mt+1 − Mt | ≤ Gt for all t ≥ 0. (3.1)

Before proceeding, we give some more definitions. For t ≥ 0, set

rU (t) = #{U0, . . . ,Ut },
i.e. rU (t) is the cardinality of the range of the two-dimensional process up to time t . We also set for t ≥ 0

Vt :=
t∑

�=1

EU

[
(M� − M�−1)

2 | F�−1
]
.

Claim 3.3. Suppose that U� is a fresh site, i.e. U� /∈ {U0,U1, . . . ,U�−1}. Then

EU

[
(M�+1 − M�)

2 |F�

] ≥ 2.

Proof. For all � we can write

M�+1 − M� =
τ�+1−�−1∑
i=τ�−�+1

〈
ξi, (0,0,1)

〉
.

When U� is a fresh site, then it follows that τ�+1 − τ� ≥ 2, and hence by the optional stopping theorem we deduce

EU

[
(M�+1 − M�)

2 |F�

] ≥ 1

and this finishes the proof.
�

Before proving Theorem 1.1 we state a proposition that we prove later, which combined with the above claim
guarantees that the quadratic variation V of the martingale M satisfies assumption (2.2) of Proposition 2.1. The
following proposition only concerns the 2d-simple random walk.

Proposition 3.4. For k ≥ 1 we let tk = n − n/2k and for ρ > 0 define

K = {
1 ≤ k ≤ (logn)3/4: rU (tk+1) − rU (tk) ≥ ρ(tk+1 − tk)/ logn

}
.

Then there exist positive constants α, c and ρ∗ such that for all ρ < ρ∗

P
(
#K ≤ ρ(logn)3/4 | Un = 0

)
� exp

(−c(logn)α
)
.

Proof of Theorem 1.1. Let K and ρ be as in Proposition 3.4. Note that K is completely determined by the 2d-walk.
Setting A = {#K ≥ ρ(logn)3/4} we then have

P(Un = Mn = 0) = E
[
1(Un = 0)PU(Mn = 0)1(A)

] +E
[
1(Un = 0)PU(Mn = 0)1

(
Ac

)]
. (3.2)

On the event A, using Claim 3.3 we get that there exist k1, . . . , kρ(logn)3/4 ∈ K such that

PU

(
ρ(logn)3/4⋂

i=1

Aki

)
= 1,
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where the events (Ai) are as defined in Proposition 2.1. We can now apply this proposition (with a = 1/2) to obtain

PU(Mn = 0)1
(
#K ≥ ρ(logn)3/4) � exp

(−c(logn)1/4).
Therefore from (3.2) we deduce

P(Un = Mn = 0) � 1

n
exp

(−c(logn)1/4) + 1

n
exp

(−c(logn)α
)
,

where α is as in Proposition 3.4. Since this last upper bound is summable in n, this proves that 0 is visited only
finitely many times almost surely. Exactly the same argument would work for any other point of Z3, proving that W

is transient. �

Before proving Proposition 3.4 we state and prove a standard preliminary lemma and a corollary that will be used
in the proof.

Lemma 3.5. Let U be a simple random walk in Z2 starting from 0 and c a positive constant. Then there exists c′ > 0
such that for all t satisfying log(n/t) ≤ c(logn)3/4 we have

P

(
#{U0, . . . ,Un} ∩B(0,

√
t) ≥ 2ct

(logn)1/16

)
� exp

(−c′(logn)1/16).
Proof. We start by noting that if t > n logn, then the probability in question is 0. So we can assume that t ≤ n logn.

To prove the statement we first decompose the path into excursions that the random walk makes across B(0,2
√

t)\
B(0,

√
t) before time n. More precisely define σ0 = 0, and for i ≥ 0,

σ ′
i = inf

{
k ≥ σi : Uk /∈ B(0,2

√
t)

}
,

σi+1 = inf
{
k ≥ σ ′

i : Uk ∈ B(0,
√

t)
}
.

Let

N := max{i: σi ≤ n},
be the total number of excursions before time n, and for each i ≤ N , let

Ri := #{Uσi
, . . . ,Uσ ′

i
},

be the number of points visited during the ith excursion. Of course we have

#{U0, . . . ,Un} ∩B(0,
√

t) ≤
N∑

i=1

Ri. (3.3)

Note that every time the random walk is on the boundary of the ball B(0,2
√

t), it has probability of order
1/(log(n/t) + log logn) to hit the boundary of the ball B(0,

√
n(logn)2) before hitting B(0,

√
t) (see for instance

[13], Proposition 4.4.2 and Theorem 4.4.4). If T is the first exit time from B(0,
√

n(logn)2), then

P(T ≤ n) � e−c(logn)4
, (3.4)

where c is a positive constant. On the event {T ≥ n}, it is easy to see that N is dominated by a geometric random
variable with mean of order log(n/t) + log logn. We thus get

P
(
N ≥ (

log(n/t) + log logn
)
(logn)1/16)

≤ P(T ≤ n) + P
(
N ≥ (

log(n/t) + log logn
)
(logn)1/16, T ≥ n

)
� exp

(−c(logn)4) + exp
(−c(logn)1/16) � exp

(−c(logn)1/16). (3.5)
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Since we have E[σ ′
i − σi | Xσi

] � t almost surely, by using the Markov property we can deduce

P
(
σ ′

i − σi ≥ t (logn)1/16) ≤ exp
(−c(logn)1/16).

Moreover, it follows from [6], Lemma 4.3, and the fact that logn � log t that

P

(
#{Uσi

, . . . ,Uσi+t (logn)1/16} ≥ t

(logn)7/8

)
≤ exp

(−c(logn)1/16).
Combining the last two inequalities, we get that for any i,

P

(
Ri ≥ t

(logn)7/8

)
≤ 2 exp

(−c(logn)1/16),
where c is a positive constant. Using the assumption that log(n/t) ≤ c(logn)3/4 together with (3.3) and (3.5) concludes
the proof of the lemma. �

Corollary 3.6. Let U be a simple random walk in Z2 started from 0 and c a positive constant. Let t ≤ n satisfying
log(n/(n − t)) ≤ c(logn)3/4 and ε < 1/32. Then there exists a positive constant c′ such that

P

(
#{U0, . . . ,Un} ∩B

(
0, (logn)ε

√
n − t

) ≥ 4c(n − t)

(logn)(1/16)−2ε

∣∣∣ Un = 0

)
� exp

(−c′(logn)1/16).
Proof. First we use the rough bound:

#{U0, . . . ,Un} ∩B
(
0, (logn)ε

√
n − t

) ≤ #{U0, . . . ,Un/2} ∩B
(
0, (logn)ε

√
n − t

)
+ #{Un/2, . . . ,Un} ∩B

(
0, (logn)ε

√
n − t

)
.

We now note that if A is an event only depending on the first n/2 steps of the random walk, then we have

P(A | Un = 0) = P(Un = 0 | A)P(A)

P(Un = 0)
� P(A), (3.6)

where the last inequality follows from the local central limit theorem [13], Theorem 2.1.1. By reversibility we obtain

P

(
#{Un/2, . . . ,Un} ∩B

(
0, (logn)ε

√
n − t

) ≥ 2c(n − t)

(logn)(1/16)−2ε

∣∣∣ Un = 0

)
= P

(
#{U0, . . . ,Un/2} ∩B

(
0, (logn)ε

√
n − t

) ≥ 2c(n − t)

(logn)(1/16)−2ε

∣∣∣ Un = 0

)
. (3.7)

The statement now readily follows by combining Lemma 3.5 with (3.6) and (3.7). �

Proof of Proposition 3.4. Let us consider the events

Ak :=
{
rU (tk+1) − rU (tk) ≥ ρ

tk+1 − tk

logn

}
,

with ρ > 0 some constant to be fixed later. Let also ε < 1/48. For all k = 1, . . . , (logn)3/4 we define

Bk =
{

#{U0, . . . ,Utk } ∩B
(
0, (logn)ε

√
n − tk

) ≤ 8(tk+1 − tk)

(logn)(1/16)−2ε

}
and

B̃k := Bk ∩ {
Utk ∈ B(0,

√
n − tk)

}
.
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We also set

Gk = σ(U0, . . . ,Utk ),

and note that B̃k ∈ Gk .

Claim 3.7. For all ρ sufficiently small and any k ≤ (logn)3/4 we have almost surely

P
(
Ac

k | Gk

)
1(B̃k) � 1

(logn)ε
1(B̃k).

Proof. To prove the claim we use two facts. On the one hand it follows from [5], Theorem 1.5, that if ρ is small
enough, then a.s.

P

(
#{Utk+1, . . . ,Utk+1} ≤ 2ρ

tk+1 − tk

logn

∣∣∣ Gk

)
≤ exp

(−c(logn)1/6).
Moreover, on the event {Utk ∈ B(0,

√
n − tk)}, with probability at most exp(−c(logn)2ε) the random walk exits the

ball B(0, (logn)ε
√

n − tk) before time tk+1. Therefore we obtain on the event {Utk ∈ B(0,
√

n − tk)} that

P

(
#{Utk+1, . . . ,Utk+1} ∩B

(
0, (logn)ε

√
n − tk

) ≤ 2ρ
tk+1 − tk

logn

∣∣∣ Gk

)
� exp

(−c(logn)2ε
)
. (3.8)

Suppose now on the other hand that a point is at distance at least r = O(
√

t) from Utk . Then it is well known (see for
instance [13], Proposition 4.4.2 and Theorem 4.4.4) that the probability that the walk hits it during the time interval
[tk, tk + t] is O(log(

√
t/r)/ log

√
t). If we apply this with t = tk+1 − tk , r = √

n − tk/ logn, and use that #B(0, r) � r2,
then by counting the points that are at distance r and use the assumption that k ≤ (logn)3/4 we deduce that

E
[
#{U0, . . . ,Utk } ∩ {Utk+1, . . . ,Utk+1} ∩B

(
0, (logn)ε

√
n − tk

) | Gk

]
1(B̃k)

�
(

tk+1 − tk

(logn)2
+ (tk+1 − tk) log logn

(logn)17/16−2ε

)
1(B̃k)

� tk+1 − tk

(logn)1+ε
1(B̃k). (3.9)

We now have almost surely

P(Ak | Gk)1(B̃k)

≥ P

(
#{Utk+1, . . . ,Utk+1} ∩B

(
0, (logn)ε

√
n − tk

)
> 2ρ

tk+1 − tk

logn

∣∣∣ Gk

)
1(B̃k)

− P

(
#{U0, . . . ,Utk } ∩ {Utk+1, . . . ,Utk+1} ∩B

(
0, (logn)ε

√
n − tk

) ≥ ρ
tk+1 − tk

logn

∣∣∣ Gk

)
1(B̃k)

≥
(

1 − exp
(−c(logn)1/6) − c1

(logn)ε

)
1(B̃k),

where the last inequality follows from (3.8), (3.9) and Markov’s inequality. �

Next, let us write Q(·) = P(· | Un = 0) and Ãk = Ak ∩ {Utk+1 ∈ B(0,2
√

n − tk)}. Then we have almost surely

Q(Ak | Gk)1(B̃k) ≥ Q(Ãk | Gk)1(B̃k) � P(Ãk | Gk)1(B̃k) ≥ p1(B̃k), (3.10)

where the penultimate inequality follows by the local central limit theorem [13], Theorem 2.1, as in (3.6) and the last
inequality from Claim 3.7 and the fact that

P
(
Utk+1 ∈ B(0,2

√
n − tk) | Utk ∈ B(0,

√
n − tk)

) ≥ 2p > 0.



Martingale defocusing and transience of a self-interacting random walk 1019

Then we introduce the process (Mk)k≤(logn)3/4 , defined by M1 = 0 and for k ≥ 2,

Mk :=
k−1∑
�=1

{
1(A� ∩ B̃�) − Q(A� | G�)1(B̃�)

}
.

Note that by construction it is a (Gk)-martingale, under the measure Q. Since the increments of this martingale are
bounded, it follows from Azuma–Hoeffding’s inequality that for any κ > 0, there exists a positive constant c such that

P
(|M(logn)3/4 | ≥ κ(logn)3/4 | Un = 0

)
� exp

(−c(logn)3/4). (3.11)

As a consequence of Corollary 3.6 we get that

1 − P

( ⋂
k≤(logn)3/4

Bk

∣∣∣ Un = 0

)
� exp

(−c(logn)1/16). (3.12)

Claim 3.8. There exists a positive constant c such that

P

(
(logn)3/4∑

k=1

1
(
Utk ∈ B(0,

√
n − tk)

) ≤ c(logn)3/4
∣∣∣ Un = 0

)
≤ exp

(−c(logn)3/4).
Proof. By using reversibility and the local central limit theorem again, it suffices in fact to show the result without
conditioning on Un = 0, and replacing the times tk by n − tk . In other words, it suffices to prove that

P

(
(logn)3/4∑

k=1

1
(
U2k ∈ B

(
0,2k/2)) ≤ c(logn)3/4

)
≤ exp

(−c(logn)3/4), (3.13)

for some c > 0. This is standard, but for the sake of completeness we give a short proof now. We will prove in fact a
stronger statement. Call

vk := inf
{
t ≥ 0: Ut /∈ B

(
0,2k/2)}.

Obviously it is sufficient to prove (3.13) with the events {vk > 2k} in place of {U2k ∈ B(0,2k/2)}. Set Hk =
σ(U0, . . . ,Uvk

). Then it is well known that we can find a constant α > 0, such that a.s. for any k,

P
(
vk+1 > 2k+1 | Hk

) ≥ α.

Then by considering the martingale

M ′
k :=

k∑
�=1

(
1
(
v� > 2�

) − P
(
v� > 2� | H�−1

))
,

and using the Azuma–Hoeffding inequality the desired estimate follows. So the proof of the claim is complete. �

By taking ρ and κ sufficiently small and using (3.10), (3.11), (3.12) and Claim 3.8 finishes the proof of the propo-
sition. �

4. Example

In this section we construct the martingale of Lemma 1.3. Before doing so, we recall a self-interacting random walk
(X,Y,Z) in Z3 which was mentioned in [7] and is closely related to the random walk of Theorem 1.1; on the first visit
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to a vertex only (X,Y ) performs a two-dimensional step, while on later visits to the same vertex only Z changes by
±1 equally likely. Our proof in this case does not apply, or at least another argument is required. Indeed, by looking
again at the process Z at the times when (X,Y ) moves, we still obtain a martingale, but we do not have a good control
on the jumps of this martingale. In particular, up to time n, they could be of size of order logn, which might be a
problem as Lemma 1.3 shows.

Proof of Lemma 1.3. Define M0 = 0. Let (Si
k)k,i be independent (over i) simple random walks on Z and let (S̃i

k)k,i

be independent (over i) random walks with jumps that take values ±[logn] equally likely and start from 0. Let k∗ be
the first integer such that n/2k∗ ≤ (logn)2. We now let

Mk = S1
k for k ≤ n/2.

We define t1 by

n − t1 = n

2
+ inf

{
t ≥ 0:

∣∣Mn/2 + S̃1
t

∣∣ ≤ logn
}
.

If t1 ≥ 0, then we let

Mk+n/2 = Mn/2 + S̃1
k for 0 ≤ k ≤ n

2
− t1.

If t1 < 0, then we let

Mk+n/2 = Mn/2 + S̃1
k for 0 ≤ k ≤ n

2
.

Suppose that we have defined t� > 0, we now define t�+1 inductively. We let

Mk+n−t� = Mn−t� + S�+1
k for 0 ≤ k ≤ t�

2

and we also define t�+1 by

n − t�+1 = n − t�

2
+ inf

{
t ≥ 0:

∣∣Mn−t�/2 + S̃�+1
t

∣∣ ≤ logn
}
.

If t�+1 ≥ 0, then we let

Mk+n−t�/2 = Mn−t�/2 + S̃�+1
k for 0 ≤ k ≤ t�

2
− t�+1.

If t�+1 < 0, then we let

Mk+n−t�/2 = Mn−t�/2 + S̃�+1
k for 0 ≤ k ≤ t�

2
.

In this way we define the times t� for all � ≤ k∗, unless there exists � such that t� < 0, in which case we set tm = 0
for all � + 1 ≤ m ≤ k∗. If tk∗ > 1 and |Mn−tk∗ | 
= 0, then at time n − tk∗ + 1 the martingale makes a jump of size
±|Mn−tk∗ | equally likely. If |Mn−tk∗ | = 0, then with probability 1/(logn)2 it jumps to ±[logn], while with probability
1 − 1/(logn)2 it stays at 0. From time n − tk∗ + 2 until time n at every step with probability 1/(logn)2 it jumps to
±[logn], while with probability 1 − 1/(logn)2 it stays at its current location.

By the definition of the martingale it follows that it satisfies the assumptions of the lemma. It only remains to check
that there exists a positive constant c such that P(Mn = 0) > c. We define the event

E = {
M� = 0, for all � ∈ {

(n − tk∗ + 1) ∧ n, . . . , n
}}

.

We now have

P(Mn = 0) ≥ P(t1 > 0, . . . , tk∗ > 0,Mn−tk∗ = 0,E) + P(t1 > 0, . . . , tk∗ > 0,Mn−tk∗ 
= 0,E). (4.1)
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By the definition of the times ti , it follows that ti+1 ≤ ti/2, and hence we deduce that ti ≤ n/2i , which implies that
tk∗ ≤ n/2k∗ ≤ (logn)2. We now obtain

P(E | t1 > 0, . . . , tk∗ > 0,Mn−tk∗ 
= 0) �
(

1 − 1

(logn)2

)(logn)2

,

(4.2)

P(E | t1 > 0, . . . , tk∗ > 0,Mn−tk∗ = 0) ≥
(

1 − 1

(logn)2

)(logn)2

.

Using the estimate for a simple random walk (see for instance [14], Theorem 2.17) that if h > 0, then

Ph(Sk > 0,∀k ≤ n) � h√
n
,

we get for a positive constant c1 that

P(t�+1 > 0 | t� > 0) = 1 − P

(
inf

{
t ≥ 0:

∣∣Mn−t�/2 + S̃�+1
t

∣∣ ≤ logn
} ≤ t�

2

∣∣∣ t� > 0

)
≥ 1 − c1

logn
.

Hence from (4.1) and (4.2) together with the above estimate and the fact that k∗ � logn, we finally conclude

P(Mn = 0) �
(

1 − c1

logn

)c2 logn

·
(

1 − 1

(logn)2

)(logn)2

≥ c3 > 0

and this finishes the proof of the lemma. �
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