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Abstract. We give a dual representation of minimal supersolutions of BSDEs with non-bounded, but integrable terminal conditions
and under weak requirements on the generator which is allowed to depend on the value process of the equation. Conversely, we
show that any dynamic risk measure satisfying such a dual representation stems from a BSDE. We also give a condition under
which a supersolution of a BSDE is even a solution.

Résumé. Nous donnons une représentation duale des sur-solutions minimales d’équations différentielles stochastiques rétrogrades
avec des conditions terminales intégrables mais non nécessairement bornées, et de faibles hypotheses sur le générateur qui peut de
plus dépendre de la valeur processus de l’équation même. Réciproquement, nous montrons que toute mesure de risque dynamique
satisfaisant une telle représentation duale provient d’une EDSR. Nous donnons aussi une condition sous laquelle une sur-solution
d’EDSR est en fait une solution.

MSC: 60H20; 60H30
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1. Introduction

Since their introduction by Pardoux and Peng [15], non-linear Backward Stochastic Differential Equations (BSDEs)
have found numerous applications in mathematical finance. For instance, they are used to constructively describe the
optimal solution of some utility maximization problems, see [11]. Through the g-expectations of Peng [16], BSDEs
offer a framework to study non-linear expectations and time consistent dynamic risk measures as described by Rosazza
Gianin [19] and Delbaen, Peng and Gianin [4]. Mainly driven by its financial applications, the study of BSDEs has
been extended in various ways beyond the question of existence and uniqueness of solutions. Many authors have been
interested in questions such as numerical approximation, structural and path properties of BSDE solutions, see for
instance the survey of El Karoui, Peng and Quenez [9] for an overview. The subject of this paper is to study BSDEs
by convex duality theory.

Deviating from the usual quadratic growth or Lipschitz assumptions on the generator of the BSDE, Drapeau,
Heyne and Kupper [6] show existence of the minimal supersolution of a BSDE. They study the properties of minimal
supersolutions and give the link to cash-subadditive risk measures of El Karoui and Ravanelli [8]. Our main objectives
are, on the one hand, to derive a dual representation of minimal supersolutions of BSDEs, and, on the other hand, to
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study conditions under which an operator satisfying such a representation is the minimal supersolution or a solution
of a BSDE.

Dual representation of solutions of BSDE with quadratic growth in the control variable, linear growth in the value
process and bounded terminal condition are by now well understood, see for instance [1] and [8].

In this work we give the dual representation of the minimal supersolution functional of a BSDE in the framework of
Drapeau, Heyne and Kupper [6]. The H1–L∞ duality turns out to be the right candidate to constitute the basis of our
representation. As a starting point, we consider the set of essentially bounded terminal conditions. In this case, we ob-
tain a dual representation of the minimal supersolution at time 0 and a pointwise robust representation in the dynamic
case. We show that when the generator of the equation is decreasing in the value process, the minimal supersolution
defines a time consistent cash-subadditive risk measure. It allows for a dual representation on the space of essentially
bounded random variables, which agrees with the representation of El Karoui and Ravanelli [8] obtained for BSDE
solutions. Our dual representation is obtained by showing that the representation of El Karoui and Ravanelli [8] can
be restricted on a smaller set. Then we can use truncation and approximation arguments to obtain the representation
in the general case, due to monotone stability of minimal supersolutions. A direct consequence of our representation
is the identification of BSDEs solution and minimal supersolution in the case of linear growth generators. Note that
our truncation technique appears already in the work of Delbaen et al. [4] where it is used to construct a sequence
of μ-dominated risk measures. Furthermore, prior to us Barrieu and El Karoui [1] and Bion-Nadal [2] already used
the BMO-martingale theory in the study of financial risk measures, but in different settings from ours. Using standard
convex duality arguments such as the Fenchel–Moreau theorem and the properties of the Fenchel–Legendre transform
of a convex functional, we extend our dual representation to the set of random variables that can be identified to
H1-martingales. Notice that this representation is obtained in the static case.

Our representation results can be seen as extensions of the dual representation of the minimal super-replicating
cost of El Karoui and Quenez [7] to the case where we allow for a non-linear cost function in the dynamics of the
wealth process.

The second theme of this work is to give conditions based on convex duality under which a dynamic cash-
subadditive risk measure with a given representation can be seen as the solution, or the minimal supersolution of
a BSDE. The cash-additive case has been studied by Delbaen, Hu and Bao [5]. Their results are based on m-stability
of the dual space, some supermartingale property and Doob–Meyer decomposition of the risk measure. We shall show
that in the cash-subadditive case, discounting the risk measure yields similar results, hence showing an equivalent
relationship between existence of the minimal supersolution and the dual representation.

The rest of the paper is structured as follows: The next section is dedicated to the setting of the probabilistic
framework of our study. We also introduce the notation and gather some results on minimal supersolution of BSDEs.
Our representation results are stated and proved in Section 3. The question of deriving a BSDE from the representation
is dealt with in the last section.

2. Minimal supersolution of convex BSDEs

Given a fixed time horizon T > 0, let (Ω,F, (Ft )t∈[0,T ],P ) be a filtrated probability space. We assume that the
filtration (Ft ) is generated by a d-dimensional Brownian motion W and it satisfies the usual conditions. We further
assume that FT = F . The set of Ft measurable random variables is denoted by L0

t where random variables are
identified in the P -almost sure sense. For 1 ≤ p < ∞, we denote by L

p
t the set of random variables in L0

t which
are p-integrable and set Lp = L

p
T , and L∞ is the set of essentially bounded random variables in L0

T . Statements
concerning random variables or processes like inequalities and equalities are to be understood in the P -almost sure or
P ⊗ dt -almost sure sense, respectively. The set of stopping times with values in [0, T ] is denoted by T . We consider
the sets of processes

S := {
Y : Ω × [0, T ] →R;Y is adapted and càdlàg

}
,

L :=
{
Z : Ω × [0, T ] → Rd;Z is predictable, and

∫ T

0
‖Zs‖2 ds < +∞

}
,

Hp :=
{
X ∈ S: X is a continuous martingale with sup

t∈[0,T ]
|Xt | ∈ Lp

}
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and

BMO := {
M: M ∈H1 such that ‖M‖BMO < ∞}

,

where ‖M‖BMO := supτ∈T ‖E[〈M〉T − 〈M〉τ | Fτ ]1/2‖∞. The set H1+ denotes the set of non-negative martingales in
H1. Further, let L∞+ and L∞++ be the sets of non-negative and strictly positive random variables in L∞, respectively.
Notice that Xt = E[XT | Ft ] for all 0 ≤ t ≤ T and every X ∈ H1. Therefore, H1 will be identified with the set of
random variables X ∈ L1, satisfying supt∈[0,T ] |E[X | Ft ]| ∈ L1. The dual of the Banach space H1 can be identified
with BMO, see [13], Theorem 2.6.

We further consider the sets

Q :=
{
q ∈ L: exp

(∫ T

0
qu dWu − 1

2

∫ T

0
‖qu‖2 du

)
∈ L∞

}
,

D :=
{
β : Ω × [0, T ] → R;β predictable,

∫ T

0
β−

u du ∈ L∞ and
∫ T

0
β+

u du < ∞
}
.

In our setting, the dual variables will appear to be closely related to the sets D and Q. The idea of defining the set Q
with stochastic exponentials in L∞ is motivated by the fact that the representation will rely on the H1–L∞ duality. For
q ∈Q, we denote by Qq the probability measure whose density process is given by the stochastic exponential Mq :=
exp(

∫
qu dWu − 1

2

∫
q2
u du) and for β ∈ D we denote by D

β
s,t := exp(− ∫ t

s
βu du), 0 ≤ s ≤ t ≤ T , the discounting

factors with respect to β . In the case where β ∈ D+ := {β ∈ D: β ≥ 0}, the measures with density M
q
t D

β

0,t was
referred to by El Karoui and Ravanelli [8] as subprobability measures.

A generator is a jointly measurable function g : Ω ×[0, T ]×R×Rd → (−∞,+∞] where Ω ×[0, T ] is endowed
with the predictable σ -field, and such that (y, z) �→ gt (ω, y, z) is P ⊗ dt -almost surely lower semicontinuous. We
denote by g∗ the pointwise Fenchel–Legendre transform of g, that is

g∗
t (ω,β, q) = sup

(y,z)∈R×Rd

{−yβ + qz − gt (ω, y, z)
}
, (β, q) ∈ R×Rd,

where the scalar product between two vectors q, z ∈ Rd is denoted by qz := q ·z. For any (β, q) ∈ R×Rd , the process
g∗(β, q) is predictable, see [18], Proposition 14.40.

Following [6], a supersolution of the BSDE with terminal condition X ∈ L0 and driver g is defined as a couple
(Y,Z) ∈ S ×L such that{

Ys − ∫ t

s
gu(Yu,Zu)du + ∫ t

s
Zu dWu ≥ Yt , for every 0 ≤ s ≤ t ≤ T ,

YT ≥ X.
(2.1)

The following equivalent formulation of (2.1) will sometimes be useful: a pair (Y,Z) is a supersolution if and only if
there exists a càdlàg, increasing and adapted process K with K0 = 0 such that

Yt = X +
∫ T

t

gu(Yu,Zu)du + (KT − Kt) −
∫ T

t

Zu dWu, for every 0 ≤ t ≤ T . (2.2)

The control process Z of a supersolution (Y,Z) is said to be admissible if the continuous local martingale
∫

Z dW is
a supermartingale. Given a driver g we define

A(X) := {
(Y,Z) ∈ S ×L: (Y,Z) fulfills (2.1) and Z is admissible

}
, X ∈ L0.

A supersolution (Ȳ , Z̄) ∈A(X) is said to be minimal if Ȳ ≤ Y for every (Y,Z) ∈A(X). A generator g is said to be

(POS) positive, if g ≥ 0;

(DEC) decreasing, if g(y, z) ≤ g(y′, z) whenever y ≥ y′;
(CONV) convex, if (y, z) �→ g(y, z) is convex;

(LSC) lower semicontinuous, if (y, z) �→ g(y, z) is lower semicontinuous.
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Theorem 2.1. Let g be a driver satisfying (CONV), (LSC) and (POS). For any X ∈ X := {X ∈ L0: X− ∈ L1} such
that A(X) �=∅, there exists a unique minimal supersolution (Ȳ , Z̄) ∈ A(X) which satisfies

Ȳt = ess inf
{
Yt : (Y,Z) ∈ A(X)

}
for all t ∈ [0, T ].

Proof. See Appendix. �

For a generator g which satisfies (CONV), (LSC) and (POS) we define the operator E : X → S ∪ {∞} as

E : X �−→
{

Ȳ if A(X) �=∅,
+∞ else,

where Ȳ is defined in Theorem 2.1 and depends on X. We conclude this section by the following structural properties
and stability results for E .

Proposition 2.2. Let g satisfying (CONV), (LSC) and (POS), let X,X′ ∈ L0 and m ∈ R. It holds

(i) Monotonicity: if X′ ≤ X then E(X′) ≤ E(X);
(ii) Convexity: E0(λX + (1 − λ)X′) ≤ λE0(X) + (1 − λ)E0(X

′), for all λ ∈ (0,1);
(iii) Cash-subadditivity: if g is (DEC) and m ≥ 0, then E0(X + m) ≤ E0(X) + m;
(iv) Cash-additivity: if g : (y, z) �→ g(z), then: E0(X + m) = E0(X) + m;
(v) Normalization: for every y ∈R such that g(y,0) = 0 it holds E0(y) = y.

Furthermore, for any sequence of random variables (Xn) ⊆ L0 such that infn Xn ∈ L1, it holds

(vi) Monotone convergence: limE0(Xn) = E0(X) whenever (Xn) is increasing and converges P -a.s. to X ∈ L0;
(vii) Fatou: E0(lim infXn) ≤ lim infE0(Xn).

As a restriction on L1 the operator E0 is L1-lower semicontinuous.

Proof. See Appendix. �

3. Dual representation

3.1. The bounded case

The following proposition provides the dual representation of g-expectations, see also [9], Proposition 3.3. Note that
such a representation was already obtained in [8] in the more general quadratic case, where the value function of the
BSDE was written as a supremum over a set of measures with uniformly integrable densities. Here, we show that
under the linear growth assumption the representation can be restricted to a set of measures with densities in L∞.

Proposition 3.1. Let X ∈ L∞ and f be a driver satisfying (CONV), (LSC) and (POS), as well as the linear growth
condition

f (y, z) ≤ a + b|y| + c‖z‖, a, b, c > 0.

Then the solution (Y,Z) of the BSDE

Yt = X +
∫ T

t

fu(Yu,Zu)du −
∫ T

t

Zu dWu, t ∈ [0, T ], (3.1)

admits the dual representation

Yt = ess sup
(β,q)∈D×Q

EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf

∗
u (βu, qu)du

∣∣∣Ft

]
, t ∈ [0, T ]. (3.2)
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Before going through the proof, let us provide the following well known lemma, see [8].

Lemma 3.2. Let f : R×Rd → (−∞,∞] be a function satisfying (LSC), (CONV) as well as

∣∣f (y, z)
∣∣ ≤ a + b|y| + c‖z‖, (y, z) ∈ R×Rd

for some positive constants a, b and c. Then, f admits for all (y, z) ∈R×Rd the dual representation

f (y, z) = max
β∈R,q∈Rd

{−βy + qz − f ∗(β, q)
} = −β̄y + q̄z − f ∗(β̄, q̄) (3.3)

for some |β̄| ≤ b and ‖q̄‖ ≤ c.

Proof. We shortly present the argument. First, the dual representation of f is a consequence of the Fenchel–Moreau
theorem, since the growth condition implies that f is proper. Second, the growth condition on f implies f ∗(β, q) ≥
−βy +qz−f (y, z) ≥ −a −βy +qz−b|y|− c‖z‖ for all (y, z) ∈ R×Rd . In particular f ∗(β, q) ≥ −a +m|β|(|β|−
b)+ n‖q‖(‖q‖− c) for every n,m ∈ N, showing that f ∗(β, q) = ∞ for all b < |β| or c < ‖q‖. Hence, the supremum
in (3.3) can be restricted to |β| ≤ b and ‖q‖ ≤ c. Finally, f ∗ being lower semicontinuous and having a domain
contained in a compact set, the supremum is therefore a maximum. �

Proof of Proposition 3.1. First notice that by Lemma 3.2, f is globally Lipschitz due to the boundedness of q̄ and β̄ .
This ensures existence and uniqueness of a strong solution for the BSDE with bounded terminal condition, see [15].
Let (β, q) ∈ D × Q. With the same arguments as in [8,9], using Itô’s formula applied to D

β
t,uYu between t and T

where (Y,Z) is the solution of the Lipschitz BSDE with bounded terminal condition (3.1), it holds

Yt = D
β
t,T X −

∫ T

t

D
β
t,u

(−βuYu + quZu − fu(Yu,Zu)
)

du −
∫ T

t

D
β
t,uZu dWQq

u

= EQq

[
D

β
t,T X −

∫ T

t

D
β
t,u

(−βuYu + quZu − fu(Yu,Zu)
)

du

∣∣∣Ft

]

for all (β, q) ∈D ×Q. Since −βuYu + quZu − fu(Yu,Zu) ≤ f ∗
u (βu, qu), it follows

Yt ≥ ess sup
(β,q)∈D×Q

EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf

∗
u (βu, qu)du

∣∣∣Ft

]
. (3.4)

For the other inequality, since f satisfies the conditions of Lemma 3.2, for all (ω, t) ∈ Ω × [0, T ] the subgradients
∂f (ω, t, Yt ,Zt ) with respect to (Yt ,Zt ) are non-empty for all (ω, t) ∈ Ω × [0, T ]. Therefore, by means of [18],
Theorem 14.56, we can apply a measurable selection theorem, see for instance [17], Corollary 1C, to assert the
existence of a predictable R×Rd -valued process (β̄, q̄) such that

f (Y,Z) = −β̄Y + q̄Z − f ∗(β̄, q̄), P ⊗ dt-a.s., (3.5)

and |β̄| ≤ b and ‖q̄‖ ≤ c. Hence,

Yt = EQq̄

[
D

β̄
t,T X −

∫ T

t

D
β̄
t,uf

∗
u (β̄u, q̄u)du

∣∣∣Ft

]
. (3.6)

But even though q̄ is bounded it is not guaranteed that the density of Qq̄ belongs to L∞. Thus, we introduce the
following localization by defining

σn := inf

{
s > 0:

∣∣∣∣
∫ s

0
q̄u dWu

∣∣∣∣ ≥ n

}
∧ T , n ∈N,
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and put q̄n := q̄1[0,σ n] ∈ Q and β̄n := β̄1[0,σ n] ∈ D. Then, since ‖q̄u‖ ≤ c, the density process of Qq̄n
is bounded and

the sequence of positive random variables (D
β̄n

0,T dQq̄n
/dP) converges P -almost surely to D

β̄

0,T dQq̄/dP . Further-
more, for any p > 1 it holds

E

[∣∣∣∣dQq̄n

dP

∣∣∣∣
p]

= E

[
exp

(∫ T

0
pq̄n

u dWu − 1

2

∫ T

0

∥∥pq̄n
u

∥∥2 du + p(p − 1)

2

∫ T

0

∥∥q̄n
u

∥∥2 du

)]
(3.7)

≤ exp

(
p(p − 1)

2
c2T

)
.

Hence (D
β̄n

0,T dQq̄n
/dP) is uniformly integrable. Therefore, since X is bounded it holds

lim
n→∞EQq̄n

[
D

β̄n

t,T X | Ft

] = EQq̄

[
D

β̄
t,T X | Ft

]
.

Let us show that

lim
n→∞EQq̄n

[∫ T

t

D
β̄n

t,uf
∗
u

(
β̄n

u , q̄n
u

)
du

∣∣∣Ft

]
= EQq̄

[∫ T

t

D
β̄
t,uf

∗
u (β̄u, q̄u)du

∣∣∣Ft

]
. (3.8)

For almost all ω ∈ Ω and t ≤ u ≤ T , by definition of β̄n and q̄n, it holds (β̄n
u (ω), q̄n

u(ω)) = (β̄u(ω), q̄u(ω)) for n

large enough. Hence, the sequence (D
β̄n

t,uf
∗
u (β̄n

u , q̄n
u)) converges P ⊗ dt -almost surely to D

β̄
t,uf

∗
u (β̄u, q̄u). Since the

processes β̄ and q̄ are bounded, by Equation (3.5) and the linear growth assumption on f , we can find two positive
numbers C1 and C2 such that

∫ T

0

∣∣f ∗
u (β̄u, q̄u)

∣∣du ≤ C1

∫ T

0
|Yu|du + C2

∫ T

0
‖Zu‖du. (3.9)

It is known that if X is bounded and f is Lipschitz, then the solution (Y,Z) of the BSDE is such that Y is bounded and∫
Z dW is in BMO, see for instance [14] and [1], Proposition 7.3.3 Equation (3.9) and BMO ⊆Hp for all 1 ≤ p < ∞,

see [13], together with Hölder’s inequality imply

E

[(
dQq̄n

dP

∫ T

0

∣∣f ∗
u

(
β̄n

u , q̄n
u

)∣∣du

)2]

≤ C̃1E

[(
dQq̄n

dP

)2]
+ C̃2E

[(
dQq̄n

dP

)4]1/2

E

[(∫ T

0
‖Zu‖2 du

)2]1/2

≤ C,

where C is a positive real number independent of n. Recalling that Dβn
is bounded, we get the required uniform

integrability to derive (3.8). Now, from Equation (3.6), we obtain

Yt = EQq̄

[
D

β̄
t,T X −

∫ T

t

D
β̄
t,uf

∗
u (β̄u, q̄u)du

∣∣∣Ft

]

= lim
n→∞EQq̄n

[
D

β̄n

t,T X −
∫ T

t

D
β̄n

t,uf
∗
u

(
β̄n

u , q̄n
u

)
du

∣∣∣Ft

]

≤ ess sup
(β,q)∈D×Q

EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf

∗
u (βu, qu)du

∣∣∣Ft

]
.

Together with Equation (3.4), this concludes the proof. �

3Notice that in [1], the generator does not depend on y, but the same proof carries over to the general case as mentioned in [8].
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Remark 3.3. Equation (3.6) enables us already to obtain the representation of the g-expectation with respect to mea-
sure with square integrable densities. This is a well-known result. The role of the subsequent localization procedure
is to prove that the representation can, in fact, be written with respect to measures with bounded densities. This turns
out to be important for the representation in the non-bounded case, since we work on the H1–L∞ duality.

Considering a more general driver, we can build on the result above to represent the minimal supersolution func-
tional defined on the set of essentially bounded random variables.

Theorem 3.4. Let g be a driver satisfying (CONV), (LSC) and (POS). Then, the operator E0 : L∞ →R∪ {∞} admits
the dual representation

E0(X) = sup
(β,q)∈D×Q

{
EQq

[
D

β

0,T X
] − α0,T (β, q)

}
, (3.10)

where the penalty function α is given by

αt,s(β, q) := EQq

[∫ s

t

D
β
t,ug

∗
u(βu, qu)du

∣∣∣Ft

]
, (β, q) ∈D ×Q (3.11)

for every 0 ≤ t ≤ s ≤ T .
In addition, for any t ∈ [0, T ], and X ∈ L∞ such that E0(X) < ∞,

Et (X) = ess sup
(β,q)∈D×Q

{
EQq

[
D

β
t,T X | Ft

] − αt,T (β, q)
}
. (3.12)

Proof. First inequality: Let X be a bounded terminal condition. If A(X) �= ∅, then we fix a supersolution (Y,Z) ∈
A(X). Let t ∈ [0, T ] and (β, q) ∈D ×Q. Let us define the localizing sequence of stopping times (τn) by

τn := inf

{
s > t :

∣∣∣∣
∫ s

t

Zu dWu

∣∣∣∣ > n

}
∧ T , n ∈N.

We apply Itô’s formula to Ȳu = D
β
t,uYu for u ≥ t . Since (Y,Z) satisfies the equivalent formulation (2.2), there exists a

non-decreasing process K such that

dȲu = −βuD
β
t,uYu du + D

β
t,u

(
Zu dWu − gu(Yu,Zu)du − dKu

)
.

Hence, K being non-decreasing, it follows

Ȳτn − Ȳt ≤
∫ τn

t

D
β
t,u

(−βuYu + quZu − g(Yu,Zu)
)

du +
∫ τn

t

D
β
t,uZu dWQq

u .

Applying Girsanov’s theorem, it follows that
∫ ·∧τn

t
D

β
t,uZu dW

Qq

u is a Qq -martingale between t and T . Taking con-
ditional expectation on both sides, using the definition of g∗, the facts that Yτn ≥ E[X | Fτn ] and g ≥ 0, we are led
to

Yt ≥ EQq

[
D

β
t,τn

E[X |Fτn ] −
∫ τn

t

D
β
t,ug

∗
u(βu, qu)du

∣∣∣Ft

]
.

Since X is bounded, taking the limit on the right hand side we obtain by dominated convergence

Yt ≥ EQq

[
D

β
t,T X −

∫ T

t

D
β
t,ug

∗
u(βu, qu)du

∣∣∣Ft

]
,

so that taking the supremum with respect to β and q and by the fact that Y was chosen arbitrary, we have

Et (X) ≥ ess sup
(β,q)∈D×Q

EQq

[
D

β
t,T X −

∫ T

t

D
β
t,ug

∗
u(βu, qu)du

∣∣∣Ft

]
. (3.13)
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If A(X) =∅, then Equation (3.13) is obvious.
Second inequality: Let n ∈N, and define

gn(y, z) := sup
{|β|≤n;‖q‖≤n}

{−βy + qz − g∗(β, q)
}
.

For every n ∈ N, the function gn satisfies the assumptions of Proposition 3.1. Namely, gn is proper, has linear growth
in y and z and satisfies (CONV), (LSC) and (POS). Moreover, the sequence (gn) is non-dereasing and by the Fenchel–
Moreau theorem, it converges pointwise to g. By Proposition 3.1, the solution (Y n,Zn) of the BSDE with generator
gn and terminal condition X has the dual representation

Yn
t = ess sup

(β,q)∈D×Q
EQq

[
D

β
t,T X −

∫ T

t

D
β
t,ug

n,∗
u (βu, qu)du

∣∣∣Ft

]
.

Let us denote by (Ȳ n, Z̄n) the minimal supersolution4 of the BSDE with driver gn and terminal condition X. Since
for every n ∈N we have gn ≤ g, it holds gn,∗ ≥ g∗, and, by minimality of Ȳ n we have Ȳ n

t ≤ Yn
t . Thus, for all n ∈N

Ȳ n
t ≤ ess sup

(β,q)∈D×Q
EQq

[
D

β
t,T X −

∫ T

t

D
β
t,ug

∗
u(βu, qu)du

∣∣∣Ft

]
. (3.14)

If t = 0, taking the limit as n goes to infinity and using the monotone stability of minimal supersolutions of BSDEs,
see Theorem A.1, we obtain

E0(X) ≤ sup
(β,q)∈D×Q

EQq

[
D

β

0,T X −
∫ T

0
D

β

0,ug
∗
u(βu, qu)du

]
.

Therefore Equation (3.10) holds true. If t ∈ [0, T ] and E0(X) < ∞, then it holds, by monotonicity, limn Ȳ n
0 < ∞.

Hence, taking the limit in Equation (3.14), by Theorem A.1 we have

Et (X) ≤ ess sup
(β,q)∈D×Q

EQq

[
D

β
t,T X −

∫ T

t

D
β
t,ug

∗
u(βu, qu)du

∣∣∣Ft

]
,

which ends the proof. �

In the next corollary, we extend the result of Theorem 3.4 by giving conditions under which the representation is
valid on the whole space L∞ even in the dynamic case.

Corollary 3.5. Let g be a driver satisfying (CONV), (DEC), (LSC) and (POS). Then either Et (X) ≡ +∞ for all
X ∈ L∞, t ∈ [0, T ], or E : L∞ → S admits the dual representation

Et (X) = sup
(β,q)∈D+×Q

{
EQq

[
D

β
t,T X | Ft

] − αt,T (β, q)
}
, X ∈ L∞, t ∈ [0, T ], (3.15)

where the penalty function α is defined in Theorem 3.4.

Proof. If for every X ∈ L∞ the set A(X) is empty, then the domain of E is empty. On the other hand, if there exists
ξ ∈ L∞ such that A(ξ) �= ∅, then A(X) �= ∅ for all X ∈ L∞. In fact, using −‖ξ‖∞ ≤ ξ we have A(−‖ξ‖∞) �= ∅

and by (DEC), see the arguments of the proof of Proposition 2.2, we have A(−‖ξ‖∞ + c) �= ∅ for all c ≥ 0. Hence
A(X) �=∅ for all X ∈ L∞, since X ≤ ‖X‖∞ and A(‖X‖∞) �=∅ for all X ∈ L∞.

The rest of the proof is similar to that of Theorem 3.4. Because g satisfies (DEC), the domain of g∗ is concentrated
on R+ ×Rd , so that the representation can be restricted to D+ ×Q. �

4As explained in Remark 3.6 we cannot ensure at this point that Yn = Ȳ n.
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Remark 3.6. For a given BSDE, it is not a priori clear that the minimal supersolution solution and the solution agree,
since the measure induced by the process K appearing in the definition of the minimal supersolution can be singular
to the Lebesgue measure. Proposition 3.1 and Corollary 3.5 show that if the terminal condition is bounded and the
generator is of linear growth both in y and z, then the minimal supersolution of a BSDE coincides with its solution.
In particular, E(X) is a continuous process, compare [6], Proposition 4.4.

3.2. The extension to H1

The goal of this section is to extend the dual representation of E0 to the space H1. We define

SQ = {
M ∈ L∞++: E[M] ≤ 1

}
.

We denote by E∗
0 the convex conjugate of E0, defined as

E∗
0 (M) := sup

X∈H1

{
E[MX] − E0(X)

}
, M ∈ L∞.

The following lemma is a consequence of the Fenchel–Moreau theorem and the structural properties of E0.

Lemma 3.7. Let g be a driver satisfying (CONV), (DEC), (LSC), (POS) and such that E0 is proper.5 Then, the operator
E0 :H1 →]−∞,∞] is σ(H1,L∞)-lower semicontinuous, and admits the dual representation

E0(X) = sup
M∈SQ

{
E[MX] − E∗

0 (M)
}
, X ∈H1. (3.16)

Proof. E0 is proper, convex since g fulfills (CONV), and σ(L1,L∞)-lower semicontinuous by [6], Theorem 4.9, and
therefore, since H1 ⊆ L1, it is σ(H1,L∞)-lower semicontinuous. By the Fenchel–Moreau theorem, it follows

E0(X) = sup
M∈L∞

{
E[MX] − E∗

0 (M)
}
, X ∈ H1. (3.17)

A standard argument shows that we can restrict the previous supremum from L∞ to SQ. On the one hand, let M ∈ L∞
with E[M] > 1 and ξ0 ∈ H1 such that E0(ξ0) < ∞. By cash-subadditivity, see Proposition 2.2, it holds

E∗
0 (M) ≥ sup

n∈N
{
E

[
M(ξ0 + n)

] − E0(ξ0 + n)
}

≥ sup
n∈N

{
n
(
E[M] − 1

)} + E[Mξ0] − E0(ξ0) = +∞.

On the other hand, let M ∈ L∞ \ L∞+ and ξ0 ∈ H1 such that E0(ξ0) < ∞. There is X̄ ∈ H1+ such that E[MX̄] < 0
since L∞+ is the polar cone of H1+. By monotonicity of E0, we have E0(−nX̄ + ξ0) ≤ E0(ξ0). Hence,

E∗
0 (M) ≥ sup

n∈N
{
nE[−MX̄] + E[Mξ0] − E0(−nX̄ + ξ0)

}

≥ sup
n∈N

{
nE[−MX̄]} + E[Mξ0] − E0(ξ0) = +∞.

Therefore, we have

E0(X) = sup
M∈L∞+ : E[M]≤1

{
E[MX] − E∗

0 (M)
}
.

5E0 is proper for instance if there exists y0 ∈R with g(y0,0) = 0. In fact, in that case, the pair (y0,0) is in A(y0) and therefore E0(y0) ≤ y0 < ∞.

And by (POS), E0(X) ≥ E[X] > −∞ for all X ∈ H1.



Dual representation of minimal supersolutions of convex BSDEs 877

Now, let M ∈ L∞+ such that E[M] ≤ 1, and for all λ ∈ (0,1), we put Mλ = (1 − λ)M + λ. Then, Mλ ∈ SQ. Since for
any X ∈ H1 we have E0(X) ≥ E[X], it follows from the definition of E∗

0 that E∗
0 (1) ≤ 0 so that by convexity, it holds

lim supλ→0 E∗
0 (Mλ) ≤ E∗

0 (M). Let X ∈H1, applying dominated convergence theorem to (MλX) implies

E[MX] − E∗
0 (M) ≤ lim inf

λ→0

{
E

[
MλX

] − E∗
0

(
Mλ

)}
.

Hence, E0(X) ≤ supM∈SQ{E[MX] − E∗
0 (M)}. The other inequality follows by sets inclusion. Thus, Equation (3.16)

holds true. �

We observe that there is a relationship between the sets SQ and D+ ×Q, and the dual representation of E0.

Remark 3.8. Any element of SQ may be parametrized by elements of D+ × Q and vice versa. Indeed, for ev-
ery M ∈ SQ, since M/E[M] is a strictly positive random variable with expectation 1, there exists a unique pro-
cess q ∈ Q such that M

q
T = M/E[M], with M

q
t = exp(

∫ t

0 qu dWu − 1
2

∫ t

0 ‖q‖2
u du) and taking β ∈ D+ such that

exp(− ∫ T

0 βs ds) = E[M] ∈ (0,1], we have M = exp(− ∫ T

0 βs ds)M
q
T . Conversely, given (β, q) ∈ D+ × Q, it holds

exp(− ∫ T

0 βs ds) exp(
∫ T

0 qu dWu − 1
2

∫ T

0 ‖q‖2
u du) ∈ SQ. This underlines the importance of working with probability

measures with bounded densities in the previous section.

Remark 3.9. To every M ∈ SQ corresponds a unique q ∈Q. Hence, for all X ∈ L∞, Corollary 3.5 yields

E0(X) = sup
(β,q)∈D+×Q

{
E

[
dQq

dP
D

β

0,T X

]
− EQq

[∫ T

0
D

β

0,ug
∗
u(βu, qu)du

]}

= sup
M∈SQ

sup
{β∈D+: D

β
0,T =E[M]}

{
E[MX] − EQq

[∫ T

0
D

β

0,ug
∗
u(βu, qu)du

]}

= sup
M∈SQ

{
E[MX] − αmin(M)

}
,

for the penalty function

αmin(M) := inf
{β∈D+: D

β
0,T =E[M]}

EQq

[∫ T

0
D

β

0,ug
∗
u(βu, qu)du

]
(3.18)

defined on SQ.

We may now present the main result of this section, the extension to H1 of the dual representation Theorem 3.5.

Theorem 3.10. Let g be a driver satisfying (CONV), (DEC), (LSC) and (POS) and such that E0 is proper. Then the
operator E0 : H1 →]−∞,+∞] admits the dual representation

E0(X) = sup
(β,q)∈D+×Q

{
EQq

[
D

β

0,T X
] − α0(β, q)

}
, X ∈H1, (3.19)

where

α0(β, q) := EQq

[∫ T

0
D

β

0,ug
∗
u(βu, qu)du

]
, (β, q) ∈D+ ×Q. (3.20)

Proof. Due to Lemma 3.7 and Remark 3.9, it suffices to show that E∗
0 = αmin on SQ, where αmin is the penalty

function defined by Equation (3.18).
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First inequality. For all X ∈H1, it holds

E0(X) ≥ sup
(β,q)∈D+×Q

EQq

[
D

β

0,T X −
∫ T

0
D

β

0,ug
∗
u(βu, qu)du

]
. (3.21)

In fact, let X ∈ H1. If A(X) = ∅, then the result is trivial. Suppose that A(X) �= ∅, and take (Y,Z) ∈ A(X). Let
(β, q) ∈D+ ×Q, arguing exactly like in the first part of the proof of Theorem 3.4 we obtain a localizing sequence of
stopping times (τn) such that

Y0 ≥ EQq

[
D

β

0,τn
E[X | Fτn] −

∫ τn

0
D

β

0,ug
∗
u(βu, qu)du

]
for all n ∈ N. (3.22)

Since X ∈ H1, the sequence of martingales (Nn) given by Nn
t := E[E[X | Fτn] | Ft ] = E[X | Fτn∧t ] is in H1, and

is such that (supt∈[0,T ] |Nn
t |)n is uniformly integrable. Therefore, by [3], Theorem 4.9, see also [13], Lemma 2.5,

(Nn) admits a subsequence again denoted by (Nn) which converges weakly in H1. Thus, the sequence of products
(D

β

0,τnN
n
T ) converges weakly in H1 to D

β

0,T X, since (D
β

0,τn) is bounded by 1. Now, as a consequence of the bound-

edness of the martingale M
q
t = E[dQq/dP | Ft ], the function X �→ E[Mq

T X] from H1 to R is linear and continuous,
and therefore σ(H1,BMO)-continuous. Hence, taking the limit on both sides of Equation (3.22) leads to

Y0 ≥ EQq

[
D

β

0,T X −
∫ T

0
D

β

0,ug
∗
u(βu, qu)du

]
.

This implies, by means of Remark 3.9, that

E0(X) ≥ sup
M∈SQ

{
E[MX] − αmin(M)

}
,

that is, for every M ∈ SQ we have αmin(M) ≥ E[MX] − E0(X) so that taking the supremum with respect to X ∈H1,
we obtain by definition of E∗

αmin(M) ≥ E∗
0 (M).

Second inequality. The main argument for the second inequality is to show that the penalty function αmin defined
by Equation (3.18) is minimal, that is,

E∗
L∞(M) := sup

X∈L∞

{
E[MX] − E0(X)

} = αmin(M), M ∈ SQ.

In fact, that would imply

E∗
0 (M) ≥ E∗

L∞(M) = αmin(M),

where the first inequality is obtained by sets inclusion. To that end, it suffices to show that for every c ≥ 0 the set
{M ∈ SQ: αmin(M) ≤ c} is convex and closed in L1, since by convexity, it would then be σ(L1,L∞)-closed and
therefore σ(L∞,L∞)-closed.

Convexity: Let λ ∈ [0,1], M1,M2 ∈ SQ and qi ∈ Q such that M
qi

T = Mi/E[Mi], i = 1,2. Put Mλ = λM1 + (1 −
λ)M2. For a given ε > 0, there exists βi ∈ D+ such that D

βi

0,T = E[Mi] and

ε + αmin
(
Mi

) ≥ E
Qqi

[∫ T

0
D

βi

0,ug
∗(βi

u, q
i
u

)
du

]
.

Applying Itô’s formula to log(λM
q1

t D
β1

t + (1 − λ)M
q2

t D
β2

t ) such as in the proof of [5], Lemma 2.1, we have

λM
q1

t D
β1

0,t + (1 − λ)M
q2

t D
β2

0,t = exp

(∫ t

0
qλ
u dWu − 1

2

∫ t

0

∥∥qλ
u

∥∥2 du −
∫ t

0
βλ

u du

)
= M

qλ

t D
βλ

0,t



Dual representation of minimal supersolutions of convex BSDEs 879

and D
βλ

0,T = E[Mλ], with

qλ
t = λM

q1

t D
β1

0,t q
1
t + (1 − λ)M

q2

t D
β2

0,t q
2
t

λM
q1

t D
β1

0,t + (1 − λ)M
q2

t D
β2

0,t

, βλ
t = λM

q1

t D
β1

0,t β
1
t + (1 − λ)M

q2

t D
β2

0,t β
2
t

λM
q1

t D
β1

0,t + (1 − λ)M
q2

t D
β2

0,t

.

This follows from the facts that M
qλ

T E[Mλ] = Mλ = M
qλ

T D
βλ

0,T and Mqλ
> 0. Therefore, joint convexity of g∗ and

the definition of (βλ, qλ) lead us to

2ε + λαmin
(
M1) + (1 − λ)αmin

(
M2) ≥ E

[∫ T

0

(
λM

q1

u D
β1

0,u + (1 − λ)M
q2

u D
β2

0,u

)
g∗

u

(
βλ

u, qλ
u

)
du

]

= E
Qqλ

[∫ T

0
D

βλ

0,ug
∗
u

(
βλ

u, qλ
u

)
du

]
.

Therefore, taking first the infimum for β ∈ D+ such that D
β

0,T = E[Mλ] on the right hand side, and then the limit on
the left hand side as ε goes to 0 we have

λαmin
(
M1) + (1 − λ)αmin

(
M2) ≥ αmin

(
Mλ

)
.

Closedness: Let c ≥ 0 and (Mn) be a sequence in SQ converging to M ∈ SQ in L1 and such that αmin(M
n) ≤ c

for every n ∈ N. Let us show that αmin(M) ≤ c. For all n ∈ N let qn be such that M
qn

T = Mn/E[Mn] and q be such

that M
q
T = M/E[M]. Let ε > 0 be fixed. For every n ∈ N, there exists βn ∈ D+ such that D

βn

0,T = E[Mn] and

ε + αmin
(
Mn

) ≥ EQqn

[∫ T

0
D

βn

0,ug
∗
u

(
βn

u, qn
u

)
du

]
.

Since (Mn) converges to M in L1, the sequence (E[Mn]) converges to E[M], with E[Mn] > 0 and E[M] > 0.
Therefore, (M

qn

t ) converges to M
q
t in L1 for all t ∈ [0, T ]. We also introduce the martingales Mn

t := E[Mn | Ft ] and
Mt := E[M | Ft ], t ∈ [0, T ]. We choose a fast subsequence (Mn,m) such that P(|Mn,m

T − MT | ≥ 1) < 2−n/m and for
all m ∈ N, define the stopping time

τm := inf
{
t ∈ [0, T ]: ∣∣Mn,m

t − Mt

∣∣ ≥ m for some n
}
.

Then, (τm) is a localizing sequence of stopping times since

P
(
τm = T

) ≥ 1 − P
(∣∣Mn,m

T − MT

∣∣ ≥ 1 for some n
) − P

(|MT | ≥ m − 1
)

≥ 1 − 1

m
− E[|MT |]

m − 1
−→ 1.

For every m, the sequence (M
n,m
τm − Mτm) is bounded, therefore (M

n,m
τm ) converges to (Mτm) in L2. It follows by

Burkholder–Davis–Gundy and Doob’s inequalities that there exists a positive constant C such that

E

[∫ τm

0

∣∣Mn,m
0 qn,m

u M
qn,m

u − M0quM
q
u

∣∣2 du

]
= E

[〈
Mn,m − M

〉2
τm

]

≤ CE
[(

sup
t∈[0,τm]

∣∣Mn,m
t − Mt

∣∣)2] −→
n→∞ 0.

Thus, up to a subsequence, (qn,mMqn,m
1[0,τm]) converges P ⊗dt-a.s. to qMq1[0,τm]. But since the sequence of strictly

positive martingales (Mqn,m
) converges P ⊗ dt-a.s. to Mq > 0, it follows that

lim
n→∞qn,m1[0,τm] = q1[0,τm] P ⊗ dt-a.s.
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Since (τm) converges P -a.s. to T we obtain, by a diagonalization argument, another subsequence again denoted
(qn) which converges P ⊗ dt -a.s. to q . As for the convergence of the sequence (βn), since (exp(− ∫ T

0 βn
u du)) =

(E[Mn]) converges to E[M], it follows that the sequence (
∫ T

0 βn
u du) converges to − log(E[M]), and (E[∫ T

0 βn
u du])

is uniformly bounded. Hence, we can apply a compactness argument, see for instance [3], Theorem 1.4, applied on
the product space, to obtain a sequence (β̃n) in the asymptotic convex hull of (βn) which converges P ⊗ dt to a
positive predictable process β . In addition, D

β

0,T = E[M] since the sequences (
∫ T

0 βn
u du) and (

∫ T

0 β̃n
u du) converge to

the same limit. Now applying Fatou’s lemma, convexity and lower-semicontinuity of g∗ lead us to

ε + lim inf
n→∞ αmin

(
Mn

) ≥ E

[∫ T

0
lim inf
n→∞ M

qn

u D
βn

0,ug
∗
u

(
βn

u, qn
u

)
du

]

≥ E

[∫ T

0
lim inf
n→∞ M

qn

u D
β̃n

0,ug
∗
u

(
β̃n

u , qn
u

)
du

]
= E

[∫ T

0
M

q
uD

β

0,ug
∗
u(βu, qu)du

]
≥ αmin(M).

Once again the result is obtained by letting ε tend to 0. �

We recover the robust representation of coherent (cash-subadditive) risk measures.

Corollary 3.11. Under the assumptions of Theorem 3.10, if the generator g is positive homogeneous in the sense that

g(λy,λz) = λg(y, z) for all λ > 0 and (y, z) ∈ R×Rd ,

then E0 is also positive homogeneous and the dual representation of E0 reduces to

E0(X) = sup
(β,q)∈D+×Q

EQq

[
D

β

0,T X
]
, X ∈H1.

Proof. Let λ be strictly positive, and (E0(λX),Z) the minimal supersolution in A(λX). By positive homogeneity
of g, we have (E0(λX)/λ,Z/λ) ∈ A(X), therefore E0(λX) ≥ λE0(X). Using the same reasoning on A(X) we have
E0(λX) ≤ λE0(X), hence E0 is positive homogeneous.

The representation (3.11) follows from Theorem 3.10 since the convex conjugate of the positive homogeneous
function g is the indicator of a closed convex set (i.e. it is either 0 or ∞). �

Let us conclude this section with an example.

Example 3.12. Let X be any random variable in H1. Consider the BSDE

dYt = −g(Yt ,Zt )dt + Zt dWt, YT = X (3.23)

with generator g defined on R×Rd by

g(y, z) :=
⎧⎨
⎩

z2/y if y > 0, z ∈ Rd ,
0 if y ≤ 0, z = 0,
+∞ if y ≤ 0, z ∈Rd \ {0}.

The function g satisfies the conditions of Theorem 3.10. Therefore, the minimal supersolution Eg(X) of Equation
(3.23) admits the dual representation (3.19). Moreover, defining

K :=
{
(β, q) ∈ D+ ×Q: β ≥ 1

4
‖q‖2

}
,

one can check that g∗ takes the value 0 on K and +∞ on the complement of K. Thus,

Eg

0 (X) = sup
(β,q)∈K

EQq

[
D

β

0,T X
]
.
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4. Cash-subadditive risk measures and BSDE

The operator E0 studied in the previous section can be seen as a risk measure. In fact, when the generator does not
depend on y, the functional ρ defined by ρ(X) := E0(−X) is a convex risk measure in the sense of Föllmer and
Schied [10], and u(X) := −E0(−X) defines a monetary utility function. If the generator g does depend on y and
satisfies (DEC), then ρ is instead a cash-subadditive risk measure as defined in [8]. In particular, for all m ≥ 0 holds
ρ(X − m) ≤ ρ(X) + m.

In this section we start with a cash-subadditive risk measure satisfying a given robust representation and show, in
Theorem 4.5, that such a risk measure must be the minimal supersolution of a BSDE. Thus, we are given a dynamic
cash-subadditive risk measure6 of the form

φt (X) := ess sup
(β,q)∈D+×Q

EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf (βu, qu)du

∣∣∣Ft

]
, t ∈ [0, T ], (4.1)

where X is a random variable in H1 and f : R × Rd → (−∞,∞] a given proper function. A function f is said to
be

(NORM) null at the origin if, f (0,0) = 0.

Remark 4.1. Since D
β
s,tD

β
t,u = D

β
s,u, the penalty function α defined by Equation (3.11) satisfies the following cocycle

property introduced in [2] for monetary convex risk measures:

αs,u(β, q) = αs,t (β, q) + EQq

[
D

β
s,tαt,u(β, q) |Fs

]
for every (β, q) ∈ D+ ×Q. (4.2)

In the cash-additive case, the cocycle property takes the form

αs,u(q) = αs,t (q) + EQq

[
αt,u(q) |Fs

]
.

Hence, the characterization of time-consistency in terms of the cocycle property given by [2], Theorem 3.3, shows
that when g does not depend on y, E is time-consistent even if the normalization condition g(0) = 0 is not assumed,
compare [6], Proposition 3.6.

In what follows we use the notation of the previous section. In particular, for any q ∈ Q we denote by Mq the
martingale density process of the probability measure Qq with respect to the reference measure P . We follow a
method already put forth in [5] in the cash-additive case. The main idea is the following:

Proposition 4.2. For any X ∈ H1 and for each (β, q) ∈D+ ×Q the process

ϕ(X) :=
(

D
β

0,tφt (X) −
∫ t

0
D

β

0,uf (βu, qu)du

)
t∈[0,T ]

is a Qq -supermartingale.

Proof. Let 0 ≤ s ≤ t ≤ T . We start by showing that the set

{
EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf (βu, qu)du

∣∣∣Ft

]
: (β, q) ∈ D+ ×Q

}

is directed upward. Let (β1, q1), (β2, q2) ∈D+ ×Q. Let us define the stopping time

τ := inf
{
s > t : L1

s < L2
s

}
,

6Actually, this is only a risk measure up to a transformation as explained above.
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with Li
t := E

Qqi [Dβi

t,T X − ∫ T

t
D

βi

t,uf (βi
u, q

i
u)du | Ft ], i = 1,2, and put q̂ := q11[0,τ ] + q21(τ,T ] and β̂ :=

β11[0,τ ] + β21(τ,T ]. We have (β̂, q̂) ∈ D+ × Q and, by definition, L̂t ≥ max{L1
t ,L

2
t }, with L̂t := EQq̂ [Dβ̂

t,T X −∫ T

t
D

β̂
t,uf (β̂u, q̂u)du |Ft ].

Therefore, by [10], Theorem A.32, there exists a sequence (βn, qn) ⊆D+ ×Q such that

φt (X) = lim
n→∞EQqn

[
D

βn

t,T X −
∫ T

t

D
βn

t,uf
(
βn

u, qn
u

)
du

∣∣∣Ft

]
.

In addition, this convergence is monotone. Therefore, φt (X) is integrable, and it is also Qq -integrable for every q ∈Q
since dQq/dP ∈ L∞. Hence, for any (β, q) ∈D+ ×Q, it holds

EQq

[
ϕt (X) | Fs

]

= EQq

[
D

β

0,t lim
n→∞EQqn

[
D

βn

t,T X −
∫ T

t

D
βn

t,uf
(
βn

u, qn
u

)
du

∣∣∣Ft

] ∣∣∣Fs

]

− EQq

[∫ t

s

D
β

0,uf (βu, qu)du

∣∣∣Fs

]
−

∫ s

0
D

β

0,uf (βu, qu)du

= lim
n→∞D

β

0,sEQq

[
EQqn

[
D

β
s,tD

βn

t,T X −
∫ T

t

D
β
s,tD

βn

t,uf
(
βn

u, qn
u

)
du −

∫ t

s

Dβ
s,uf (βu, qu)du

∣∣∣Ft

] ∣∣∣ Fs

]

−
∫ s

0
D

β

0,uf (βu, qu)du,

where the second equation follows by dominated convergence theorem. We put β̄n = β1[0,t] + βn1(t,T ] and q̄n =
q1[0,t] + qn1(t,T ]. It follows that

EQq

[
ϕt (X) | Fs

] = D
β

0,s lim
n→∞EQq̄n

[
D

β̄n

s,T X −
∫ T

s

Dβ̄n

s,uf
(
β̄n

u , q̄n
u

)
du

∣∣∣Fs

]
−

∫ s

0
D

β

0,uf (βu, qu)du

≤ D
β

0,sφs(X) −
∫ s

0
D

β

0,uf (βu, qu)du = ϕs(X),

where the inequality follows by definition of φ(X) and the fact that (β̄n, q̄n) ∈ D+ ×Q. �

Next we give two consequences of the previous result.

Corollary 4.3. Let X ∈ H1, suppose in addition that φ0(X) admits a subgradient (β, q) ∈D+ ×Q, i.e. (β, q) is such
that φ0(X) = EQq [Dβ

0,T X − ∫ T

0 D
β

0,uf (βu, qu)du]. Then for each t ∈ [0, T ] we have

φt (X) = EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf (βu, qu)du

∣∣∣Ft

]
, (4.3)

that is, (β, q) is a subgradient of φt (X). Moreover, the process
(

D
β

0,tφt (X) −
∫ t

0
D

β

0,uf (βu, qu)du

)
t∈[0,T ]

is a Qq -martingale.

Proof. Let (β, q) ∈ D+ ×Q be such that

φ0(X) = EQq

[
D

β

0,T X −
∫ T

0
D

β

0,uf (βu, qu)du

]
.
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By the previous proposition and the choice of (β, q) we have for any t ∈ [0, T ]

EQq

[
D

β

0,tφt (X) −
∫ t

0
D

β

0,uf (βu, qu)du

]
≤ φ0(X) = EQq

[
D

β

0,T X −
∫ T

0
D

β

0,uf (βu, qu)du

]
,

from which ensues

EQq

[
D

β

0,tφt (X)
] ≤ EQq

[
D

β

0,T X −
∫ T

t

D
β

0,uf (βu, qu)du

]

= EQq

[
D

β

0,t

(
D

β
t,T X −

∫ T

t

D
β
t,uf (βu, qu)du

)]
.

Since we have

φt (X) ≥ EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf (βu, qu)du

∣∣∣Ft

]
,

and 0 < D
β

0,t < ∞ we conclude that

φt (X) = EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf (βu, qu)du

∣∣∣ Ft

]
Qq -a.s.

From Equation (4.3) we have, for all t ∈ [0, T ],

D
β

0,tφt (X) −
∫ t

0
D

β

0,uf (βu, qu)du = EQq

[
D

β

0,T X −
∫ T

0
D

β

0,uf (βu, qu)du

∣∣∣Ft

]
Qq -a.s.

�

Corollary 4.4. Assume that the function f satisfies (NORM). Then, for every X ∈ H1 the process (φt (X))t∈[0,T ] is
a P -supermartingale and admits a Doob–Meyer decomposition of the form φ(X) = φ0(X) + M − A where A is a
càdlàg adapted and increasing process with A0 = 0 and M a continuous local martingale.

Proof. The P -supermartingale property of φ(X) follows from Proposition 4.2 and the fact that f (0,0) = 0. Let us
show that φ(X) has a càdlàg modification which is still a P -supermartingale. Let t ∈ [0, T ], since φ(X) is a P -
supermartingale, for all s ∈ [t, T ] ∩Q we have E[φs(X) | Ft ] ≤ φt (X). Hence, by Fatou’s lemma and due to the fact
that our filtration satisfies the usual conditions we obtain the inequality φ+

t (X) ≤ φt (X), where

φ+
t (X) := lim

s↓t,s∈Qφs(X).

On the other hand by continuity of martingales we have, for all (β, q) ∈ D+ ×Q,

φ+
t (X) ≥ EQq

[
D

β
t,T X −

∫ T

t

D
β
t,uf (βu, qu)du

∣∣∣Ft

]
P -a.s.,

so that taking the supremum with respect to β,q yields φ+
t (X) ≥ φt (X) P -a.s., thus we have φ+(X) = φ(X) P -a.s.

We conclude by [12], Proposition 1.3.14, that φ(X) has a càdlàg modification which is again a supermartingale. This
path regularity of φ(X) ensures that it admits a Doob–Meyer decomposition. �

Now we want to link the dynamic risk measure defined by Equation (4.1) to a BSDE. In that regard, we assume
that f is (CONV) and (LSC), and we denote by g the function defined on R×Rd by

g(y, z) := sup
β≥0;q∈Rd

{−βy + qz − f (β, q)
}
.

The function g is (DEC) and if f is (NORM) then g is (POS).
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Theorem 4.5. Assume that the function f satisfies (CONV), (LSC) and (NORM). For all X ∈ H1, there exists a unique
predictable d-dimensional process Z such that (φ(X),Z) is the minimal supersolution of the BSDE with generator g

and terminal condition X.

Proof. Supersolution property: Let X ∈H1. We start by proving that there exists Z such that (φ(X),Z) is a superso-
lution of the BSDE with generator g and terminal condition X. By Corollary 4.4 there exist processes A and M such
that φt (X) = φ0(X) + Mt − At , and by martingale representation there exists a process Z ∈ L such that

φt (X) = φ0(X) +
∫ t

0
Zu dWu − At . (4.4)

By definition of φ(X) and Equation (4.4),
∫ t

0 Zu dWu ≥ E[X | Ft ] − φ0(X). Thus,
∫

Z dW is a supermartingale as

a local martingale bounded from below by a martingale. Let (β, q) ∈ D+ ×Q. Applying Itô’s formula to D
β

0,tφt (X)

leads us to

d
(
D

β

0,tφt (X)
) = −βtD

β

0,tφt (X)dt + D
β

0,t dφt (X)

= −βtD
β

0,tφt (X)dt + D
β

0,t (−dAt + Zt dWt)

= −βtD
β

0,tφt (X)dt + D
β

0,t (−dAt + Ztqt dt) + D
β

0,tZt dW
Qq

t .

Therefore,

d

(
D

β

0,tφt (X) −
∫ t

0
D

β

0,uf (βu, qu)du

)

= D
β

0,t

(−βtφt (X)dt − dAt + Ztqt dt − f (βt , qt )dt
) + D

β

0,tZt dW
Qq

t . (4.5)

By the Qq -supermartingale property proved in Proposition 4.2, we have

dAt ≥ (−βtφt (X) + qtZt − f (βt , qt )
)

dt.

Since β and q were taken arbitrary, it holds

dAt ≥ g
(
φt (X),Zt

)
dt. (4.6)

Hence Equation (4.4) gives, for all 0 ≤ s ≤ t ≤ T ,

φs(X) −
∫ t

s

g
(
φu(X),Zu

)
du +

∫ t

s

Zu dWu ≥ φt (X),

which shows that (φ(X),Z) is an admissible supersolution.
Minimality: Showing that the process φ(X) is minimal is done using exactly the same arguments as those used to

prove Equation (3.21) in the second step of the proof of Theorem 3.10 and the first part of the proof of Theorem 3.4.
Replacing 0 by t and the expectation by the conditional expectation in the proof of Equation (3.21) does not affect
the reasoning. Recalling that since g is (CONV), (DEC) and (POS) the minimal supersolution is unique concludes the
proof. �

Theorem 4.6. Assume that the function f satisfies (CONV), (LSC) and (NORM). Let X ∈ H1, if φ0(X) admits a
subgradient (β, q) ∈D+ ×Q then the minimal supersolution (φ(X),Z) is actually a solution.

In addition, for P ⊗ dt -almost all (ω, t) ∈ Ω ×[0, T ], (βt , qt ) ∈ ∂g(ω, t, φt (X),Zt ), subgradient of g with respect
to (φt (X),Zt ).
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Proof. Let X ∈ H1 and (β, q) ∈ D+ × Q be a subgradient of φ0(X). Then, by Corollary 4.3 and the decomposition
appearing in Equation (4.5), we have

dAt = (−βtφt (X) + qtZt − f (βt , qt )
)

dt.

Definition of g and Equation (4.6) give

g
(
φt (X),Zt

)
dt ≥ (−βtφt (X) + qtZt − f (βt , qt )

)
dt = dAt ≥ g

(
φt (X),Zt

)
dt.

Then, dAt = g(φt (X),Zt )dt , showing that (β, q) ∈ ∂g(φ(X),Z) P ⊗ dt -a.s. Equation (4.4) yields

φt (X) = X −
∫ T

t

g
(
φu(X),Zu

)
du +

∫ T

t

Zu dWu.

Hence (φ(X),Z) is a solution. �

We conclude by the following complete characterization of the minimal supersolution suggested by Corollary 3.5
and Theorem 4.5.

Theorem 4.7. Assume that the function g satisfies (CONV), (DEC) and (POS), g∗satisfies (NORM). If X ∈ L∞, then
the following are equivalent:

(i) There exists a predictable d-dimensional process Z such that (E(X),Z) is the minimal supersolution of the BSDE
with terminal condition X and driver g.

(ii) The functional E admits the representation

Et (X) = ess sup
(β,q)∈D+×Q

EQq

[
D

β
t,T X −

∫ T

t

D
β
t,ug

∗(βu, qu)du

∣∣∣Ft

]
, t ∈ [0, T ].

Appendix: Some properties of the minimal supersolution operator

The aim of this appendix is to present the proofs of some properties of the minimal supersolution used in the paper.

Proof of Proposition 2.2. See [6], Proposition 3.2 and Theorems 4.9 and 4.12, but for the sake of readability we give
the details for the points (iii), (iv) and (v).

As for (iii), let m ∈ R with m ≥ 0 and X ∈ X . Since X + m ≥ X, if A(X) = ∅ then A(X + m) = ∅. In that case
E0(X + m) = ∞ = E0(X). If A(X) �=∅, let (Y,Z) ∈ A(X). For all 0 ≤ s ≤ t ≤ T , since g fulfills (DEC), we have

Ys + m −
∫ t

s

gu(Yu + m,Zu)du +
∫ t

s

Zu dWu ≥ m + Ys −
∫ t

s

gu(Yu,Zu)du +
∫ t

s

Zu dWu ≥ m + Yt .

Thus, (Y + m,Z) ∈ A(X + m), which implies E0(X + m) ≤ Y0 + m. Taking Y = E(X), we have E0(X + m) ≤
E0(X) + m showing the cash-subadditivity.

As for (iv), if g does not depend on y, one can show that E0 is additionally cash-superadditive, that is, E0(X +m) ≥
E0(X)+m for m ≥ 0. Indeed, using the same argument we have A(X) �=∅ implies A(X +m) �=∅ and (Y −m,Z) ∈
A(X) for all (Y,Z) ∈ A(X + m). Then, if g does not depend on y, it follows that E0(X + m) = E0(X) + m for all
m ∈ R+. Thus, E0(X) + m = E0(X) + m+ − m− = E0(X + m+) − m− = E0(X + m + m−) − m− = E0(X + m) for
all m ∈ R.

As for (v), if g(y,0) = 0, we have (y,0) ∈ A(y), and therefore E0(y) ≤ y. If g is (POS), for all (Y,Z) ∈ A(y), the
supermartingale property of Y and the terminal condition yield Y0 ≥ E[YT ] ≥ y. Hence, E0(y) ≥ y. �

Next, we recall the proofs of the existence, uniqueness and monotone stability of the minimal supersolution with
respect to the generator. These results were already obtained in [6]. Here we argue that their proofs are also valid, up
to a slight change, if we replace the assumption (DEC) by (CONV) on the generators.
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Recall that for X ∈ X := {X ∈ L0: X− ∈ L1}, the condition (POS) ensures that the value process Y of a supersolu-
tion (Y,Z) ∈A(X) is a supermartingale such that

Yt ≥ −E
[
X− | Ft

]
for all t ∈ [0, T ], (A.1)

see [6], Lemma 3.3.

Sketch of the proof of Theorem 2.1. The uniqueness of Z̄ follows by the supermartingale property of Ȳ and the
martingale representation theorem. The existence is proved by constructing, through concatenations, a sequence of
supersolutions (Y n,Zn) whose value processes (Y n) decrease to the process ess inf{Yt : (Y,Z) ∈ A(X)}. By a com-
pactness argument, a subsequence in the asymptotic convex hull of (Zn) which converges strongly to a process Z̄ can
be selected. The proof is completed by showing that there is a modification Ȳ of ess inf{Yt : (Y,Z) ∈ A(X)} such the
candidate (Ȳ , Z̄) is actually an admissible supersolution. In the case where g does not satisfy (DEC) but (CONV), this
is done as in the proof of the next theorem. �

Theorem A.1. Let X ∈ X be a terminal condition, and let (gn) be an increasing sequence of generators, which
converge pointwise to a generator g. Suppose that each generator is defined on R × Rd and fulfills (CONV), (LSC)
and (POS) and denote by Ȳ n the value process of the minimal supersolution of the BSDE with generator gn. Then
limn→∞ Ȳ n

0 = E0(X). If, in addition, limn→∞ Ȳ n
0 < ∞, then for all t ∈ [0, T ] the set A(X) is non-empty and (Ȳ n

t )

converges P -a.s. to Et (X).

Proof. By monotonicity, see Proposition 2.2, the sequence (Ȳ n
0 ) is increasing. Set Y0 = limn→∞ Ȳ n

0 , if Y0 = ∞ there
is nothing to prove. Else, we put Yt := limn Ȳ n

t , t ∈ [0, T ]. It follows from the supermartingale property of Ȳ n and the
monotone convergence theorem that Y is a càdlàg supermartingale. Using the arguments of the proof of Theorem 2.1,
we construct a candidate control Z as pointwise limit of convex combinations (Z̃n) of (Z̄n), where (Ȳ n, Z̄n) is the
minimal supersolution of the BSDE with generator gn. It remains to verify that (Y,Z) ∈A(X). Fatou’s lemma gives

Ys −
∫ t

s

gu(Yu,Zu)du +
∫ t

s

Zu dWu ≥ lim sup
k→∞

(
Ys −

∫ t

s

gk
u(Yu,Zu)du +

∫ t

s

Zu dWu

)
.

And for every k ≤ n, denoting by λn
i the convex weights of the convex combination Z̃n, using (CONV) we have

Ys −
∫ t

s

gk
u(Yu,Zu)du +

∫ t

s

Zu dWu ≥ lim sup
n

(
Ỹ n

s −
∫ t

s

gk
u

(
Ỹ n

u , Z̃n
u

)
du −

∫ t

s

Z̃n
u dWu

)

≥ lim sup
n

Mn∑
i=n

λn
i

(
Y i

s −
∫ t

s

gk
(
Y i

u,Z
i
u

)
du +

∫ t

s

Zi
u dWu

)

≥ lim sup
n

Mn∑
i=n

λn
i

(
Y i

s −
∫ t

s

gi
(
Y i

u,Z
i
u

)
du +

∫ t

s

Zi
u dWu

)

≥ Yt . (A.2)

As to the admissibility of Z, by means of Equations (A.1) and (A.2), we have
∫ t

0
Zu dWu ≥ −E

[
X− |Ft

] − Y0

so that
∫

Z dW is a supermartingale as a local martingale bounded from below by a martingale. Thus, Z is admissi-
ble. �

Acknowledgements

We thank the anonymous referees for valuable comments and suggestions.



Dual representation of minimal supersolutions of convex BSDEs 887

References

[1] P. Barrieu and N. El Karoui. Pricing, hedging and optimally designing derivatives via minimization of risk measures. In Volume on Indifference
Princing 144–172. R. Carmona (Ed.). Princeton Univ. Press, Princeton, 2007.

[2] J. Bion-Nadal. Dynamic risk measures: Time consistency and risk measures from BMO martingales. Finance Stoch. 12 (2) (2008) 219–244.
MR2390189

[3] F. Delbaen and W. Schachermayer. A compactness principle for bounded sequences of martingales with applications. In Proceedings of the
Seminar of Stochastic Analysis, Random Fields and Applications 137–173. Progress in Probability 45. Birkhäuser, Basel, 1996. MR1712239

[4] F. Delbaen, S. Peng and E. Rosazza Gianin. Representation of the penalty term of dynamic concave utilities. Finance Stoch. 14 (2010)
449–472. MR2670421

[5] F. Delbaen, Y. Hu and X. Bao. Backward SDEs with superquadratic growth. Probab. Theory Related Fields 150 (1–2) (2011) 145–192.
MR2800907

[6] S. Drapeau, G. Heyne and M. Kupper. Minimal supersolutions of convex BSDEs. Ann. Probab. 41 (6) (2013) 3697–4427. MR3161467
[7] N. El Karoui and M.-C. Quenez. Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim.

33 (1) (1995) 29–66. MR1311659
[8] N. El Karoui and C. Ravanelli. Cash sub-additive risk measures and interest rate ambiguity. Math. Finance 19 (2009) 561–590. MR2583520
[9] N. El Karoui, S. Peng and M. C. Quenez. Backward stochastic differential equations in finance. Math. Finance 1 (1) (1997) 1–71. MR1434407

[10] H. Föllmer and A. Schied. Stochastic Finance. An Introduction in Discrete Time, 2nd edition. De Gruyter Studies in Mathematics 27. Walter
de Gruyter, Berlin, 2004. MR2169807

[11] Y. Hu, P. Imkeller and M. Müller. Utility maximization in incomplete markets. Ann. Appl. Probab. 15 (3) (2005) 1691–1712. MR2152241
[12] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer, New

York, 1991. MR1121940
[13] N. Kazamaki. Continuous Exponential Martingales and BMO. Lecture Notes in Mathematics 1579. Springer, Berlin, 1994. MR1299529
[14] M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 (2)

(2000) 558–602. MR1782267
[15] E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. System Controll Lett. 14 (1990) 55–61. MR1037747
[16] S. Peng. Backward SDE and related g-expectation. In Backward Stochastic Differential Equations (Paris, 1995–1996) 141–159. Pitman

Research Notes in Mathematics Series 364. Longman, Harlow, 1997. MR1752680
[17] R. T. Rockafellar. Integral functionals, normal integrands and measurable selections. In Nonlinear Operators and the Calculus of Varia-

tions 157–207. J. Gossez, E. Lami Dozo, J. Mawhin and L. Waelbroeck (Eds). Lecture Notes in Mathematics 543. Springer, Berlin, 1976.
MR0512209

[18] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, Berlin, 1998. MR1491362
[19] E. Rosazza Gianin. Risk measures via g-expectations. Insurance Math. Econom. 39 (1) (2006) 19–34. MR2241848

http://www.ams.org/mathscinet-getitem?mr=2390189
http://www.ams.org/mathscinet-getitem?mr=1712239
http://www.ams.org/mathscinet-getitem?mr=2670421
http://www.ams.org/mathscinet-getitem?mr=2800907
http://www.ams.org/mathscinet-getitem?mr=3161467
http://www.ams.org/mathscinet-getitem?mr=1311659
http://www.ams.org/mathscinet-getitem?mr=2583520
http://www.ams.org/mathscinet-getitem?mr=1434407
http://www.ams.org/mathscinet-getitem?mr=2169807
http://www.ams.org/mathscinet-getitem?mr=2152241
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=1299529
http://www.ams.org/mathscinet-getitem?mr=1782267
http://www.ams.org/mathscinet-getitem?mr=1037747
http://www.ams.org/mathscinet-getitem?mr=1752680
http://www.ams.org/mathscinet-getitem?mr=0512209
http://www.ams.org/mathscinet-getitem?mr=1491362
http://www.ams.org/mathscinet-getitem?mr=2241848

	Introduction
	Minimal supersolution of convex BSDEs
	Dual representation
	The bounded case
	The extension to H1

	Cash-subadditive risk measures and BSDE
	Appendix: Some properties of the minimal supersolution operator
	Acknowledgements
	References

