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Abstract. The Brownian web is a random variable consisting of a Brownian motion starting from each space–time point on the
plane. These are independent until they hit each other, at which point they coalesce. Tsirelson mentions this model in (Scaling
Limit, Noise, Stability (2004) Springer), along with planar percolation, in suggesting the existence of a two-dimensional black
noise. A two-dimensional noise is, roughly speaking, a random object on the plane whose distribution is translation invariant and
whose behavior on disjoint subsets is independent. Black means sensitive to the resampling of sets of arbitrarily small total area.

Tsirelson implicitly asks: “Is the Brownian web a two-dimensional black noise?.” We give a positive answer to this question,
providing the second known example of such after the scaling limit of critical planar percolation.

Résumé. La toile brownienne est une collection de mouvements browniens issus de tout point du plan, indépendants jusqu’ à
l’instant où ils se rencontrent, à la suite de quoi ils coalescent. Tsirelson mentionne ce modèle dans (Scaling Limit, Noise, Stability
(2004) Springer), avec la percolation planaire, comme modèles possibles de bruit noir bidimensionnel. Un bruit bidimensionnel est,
en gros, un objet aléatoire dans le plan dont la distribution est invariante par translation et dont le comportement sur des ensembles
disjoints est indépendant. Noir signifie sensible au re-échantillonage d’ensembles dont l’aire totale est arbitrairement petite.

Tsirelson demande implicitement : « La toile brownienne est-elle un bruit noir bidimensionnel ? ». Nous répondons positivement
à cette question, en donnant le deuxième exemple connu d’un tel bruit après la limite d’échelle de la percolation critique planaire.

MSC: 60G20
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1. Introduction

In this paper we study a stochastic object called the Brownian web. We research this object in the context of the theory
of classical and non-classical noises, developed by Boris Tsirelson (see [13] for a survey). Our main result is that,
in the terminology of this theory, the Brownian web is a two-dimensional noise, and we then demonstrate that this
noise is black. Roughly speaking, the Brownian web is a random variable which assigns to every space–time point
in R×R a standard Brownian motion starting at that point. The motions in each finite subcollection are independent
until the first time that one hits another and from thereon those two coalesce, continuing together. This object was
originally studied more then twenty-five years ago by Arratia [1], motivated by a study of the asymptotics of one-
dimensional voter models, and later by Tóth and Werner [9], motivated by the problem of constructing continuum
“self-repelling motions,” by Fontes, Isopi, Newman and Ravishankar [3], motivated by its relevance to “aging” in the
statistical physics of one-dimensional coarsening, and by Norris and Turner [6] regarding a scaling limit of a two-
dimensional aggregation process. A rigorous notion of the Brownian web in our context can be found in [11] for the
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case of coalescing Brownian motions on a circle. The above also provide their own constructions of the Brownian
web.

The Brownian web functions as an important example in the theory of classical and non-classical noises. In this
theory a noise is a probability space equipped with a collection of sub-σ -fields indexed by the open rectangles (possi-
bly infinite) of Rd . (Throughout, all σ -fields will be assumed to contain all sets of probability zero.) The sub-σ -field
associated to a rectangle is intended to represent the behavior of a stochastic object within that rectangle. The σ -fields
must satisfy the following three properties:

• the σ -fields associated to disjoint rectangles of Rd are independent,
• translations on R

d act in a way that preserves the probability measure,
• the σ -field associated to a rectangle is generated by the two σ -fields associated to two smaller rectangles which

partition it.

Two natural examples of noises are the Gaussian white noise and the Poisson noise. These noises are called classical,
or white, meaning that resampling of a small portion of Rd doesn’t change the observables of the process very much.

The foundational result of Tsirelson and Vershik [10] showed that there exist non-classical noises. Indeed they
showed the existence of non-classical noises that are as far from white as could be, and these are called black. The
defining property of a black noise is that all its observables are sensitive, i.e. for any particular observable, resampling
a small scattered portion of the noise renders that observable nearly independent of its original value. (For a thorough
discussion of black and white, classical and non-classical noises see [13].)

In [12], Tsirelson gives several examples of one-dimensional noises, and shows (Theorem 7c2) that the Brown-
ian web, when considered as a time-indexed random process, is a (one-dimensional) black noise. He suggests the
Brownian web and critical planar percolation as possible sources for the discovery of two-dimensional black noises.

Following a result by Benjamini, Kalai and Schramm about the sensitivity of local events in [2], and using a
result in [8], Tsirelson shows that if a scaling limit for critical planar percolation were a noise, then this noise would
necessarily be black. Such a limit was later demonstrated by Schramm and Smirnov [7], giving the first example of a
two-dimensional black noise. Here we give only the second known example of a two-dimensional black noise through
the following theorem:

Theorem 1.1. The Brownian web is a two-dimensional black noise.

Of the three properties required for a process to be a noise, the first two, i.e. translation invariance and independence
on disjoint domains, hold trivially for the Brownian web. Furthermore, once we have shown that the Brownian web is
a two-dimensional noise it will follow that it is a two-dimensional black noise, through a general argument.

The main difficulty in proving Theorem 1.1 is to show that the σ -field associated to any rectangle is generated
by the two σ -fields associated to any two rectangles that partition it. The key step towards this result is to show the
special case when the large rectangle is the whole plane, and the smaller rectangles that partition it are the upper and
lower half-planes.

Theorem 1.2. In the Brownian web, the σ -field associated to the whole plane is generated by that associated to the
upper half-plane and that associated to the lower half-plane.

The rest of the paper goes as follows: in Section 2 we define the Brownian web formally; in Section 3 we restate
Theorem 1.2 as Theorem 3.1; we then reduce this theorem to a convergence result for an auxiliary process which
we prove in Section 4. In Section 5 we extend Theorem 1.2 to hold for the σ -fields associated to horizontal strips as
well; in Section 6 we extend further to all rectangles. In addition we define noises properly and conclude by proving
Theorem 1.1. Section 7 is devoted to remarks and open problems.

2. Definition of the Brownian web

The Brownian web is the continuum scaling limit of a system of independent-coalescing random walks (see [11]).
Constructing the continuum version raises several technical difficulties addressed in [3,6,9]. Different authors have
introduced different state spaces in order to the give the Brownian web a unique distribution on each of those spaces
(see Theorem 2.1 of [3], and Theorem 5.1 of [6]). Nonetheless, all the definitions share the following defining property.
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Fig. 1. Some trajectories of the Brownian web. A particular trajectory is marked.

Definition 2.1. Denote S = {(s, t) ∈ R
2 : s ≤ t}.

• A Brownian web on a probability space Ω induces a (jointly) measurable mapping φ : Ω × S × R → R,
(ω, (s, t), x) �→ φs,t (x) (suppressing ω in the notation).

• On every finite collection of starting points (s1, x1), (s2, x2), . . . , (sn, xn), the collection of processes φs1,·(x1),

φs2,·(x2), . . . , φsn,·(xn) forms a system of n independent-coalescing Brownian motions.
• There exists a countable subset S ⊆ R

2 such that the collection {φs,t (x) : s, t ∈ S} generates the entire σ -field of
the Brownian web.

A system of n independent-coalescing Brownian motions is a finite collection of stochastic processes (X1,X2,

. . . ,Xn) such that each Xi starts at some point xi at some time si , and (X1,X2, . . . ,Xn) are independent until the
first time T at which Xi(T ) = Xj(T ) for some i �= j . From this time onwards Xi(T ) and Xj(T ) coalesce and continue
with the rest of the Xk (for k �= i, j ) as a system of n − 1 independent-coalescing Brownian motions.

To observe that the last property is indeed a property of the Brownian web, see for example equation (2.6) in [9].
In this equation we can see that Λ (which is the same as our φ) can be recovered from the countable collection
Fn = Λ(sn,tn). There {(sn, tn) : n ∈N} is some ordering of D × D where D ⊆R

2 is the collection of diadic rationals.
For the equivalent construction in [3], item (2) of Theorem 2.1 guarantees that the third property in our definition

holds.
Several trajectories of a Brownian web can be seen in Figure 1.

3. Recovering the web from half-planes

In this section we introduce three σ -fields generated by the Brownian web and use them to restate Theorem 1.2 as
Theorem 3.1.

Write X(s,x) for the random trajectory t �→ φs,t (x). The value of this process at time t is X(s,x),t and we will
simplify the notation to Xt when s and x are clear from the context. Write X for the collection of all trajectories,
that is {X(s,x) : (s, x) ∈ R

2}. Let F be the σ -field generated by X . By the third property in Definition 2.1, F is also
generated by {X(s,x) : (s, x) ∈ S} where S ⊆R

2 is some countable subset.
We further introduce F+ and F−, the σ -fields generated by the web on the upper and lower half-planes respectively.

Formally,

Definition. For any path f we write R+(f ) for f stopped at the first time it is outside the upper half-plane.
R+(X(s,x)) is therefore the trajectory of the web φ started at the point (s, x) and stopped at the first time it is
outside the upper half-plane (if (s, x) is outside the upper half-plane, f is stopped immediately). We define F+ to be
the σ -field generated by the collection of paths {R+(X(s,x)) : (s, x) ∈R

2}, and define F− analogously.
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Note that F+ and F− are independent by the definition of a system of n independent-coalescing Brownian motions.
For σ -fields Fa , Fb , Fc we write Fa = Fb ⊗ Fc when Fa is generated by Fb and Fc (up to sets of measure 0),

and Fb and Fc are independent. We are now ready to restate Theorem 1.2.

Theorem 3.1. F =F− ⊗F+.

The difficulty is to show that F ⊆ F− ⊗ F+, because the reverse inclusion follows directly from the definitions.
To avoid having to state results as “for all X ∈ X . . . ,” here and for the rest of the paper we consider the trajectory
starting at an arbitrary start point (s0, x0), and write Xt = X(s0,x0),t .

F is generated by such processes, so using the third property in Definition 2.1 our theorem reduces to the following
lemma.

Lemma 3.2. X is F− ⊗F+-measurable.

To prove this we must show that X can be recovered using trajectories starting in the upper half-plane which stop
when they hit 0, and trajectories starting on the lower half-plane which stop when they hit 0.

To do so, we might have liked to recover X (starting on, say, the upper half-plane) by following it until it hits 0,
then by following its continuation within the lower half-plane. However, this is impossible since when trajectories of
Brownian motion cross 0 they do so infinitely often within a finite period of time.

We introduce in Section 3.1 a process Xε , for each ε > 0, which is an approximation of X in the sense that Xε

converges to X (in probability) as ε → 0. We use Xε to show that X is is F− ⊗ F+-measurable.
Observe that here and in the rest of the paper we treat s0 and x0 as fixed and so rates of convergence may very well

depend on their value.

3.1. The perturbed process

From our arbitrary X we now construct Xε , a “perturbed” version of X, which depends also on ψt , some Brownian
motion independent of φ (measurable with respect to G, say, where G is independent of F ).

In the definition of Xε we give the word “follows” two distinct meanings. We say Xε follows φ on [s, u] if
Xε

t = φs,t (X
ε
s ) for t ∈ [s, u]. That is if the trajectory of Xε follows the trajectory of the web starting from point Xε

s at
time s and up to time u. We say Xε follows ψ on [s, u] if Xε

t = Xε
s + ψt − ψs for t ∈ [s, u].

Definition 3.3. The perturbed process Xε starts at the same time and position as X, i.e. at (s0, x0), and alternates
between two states. In state Sφ it follows φ while in state Sψ it follows ψ . The process starts in state Sφ and the
transition from state Sφ to state Sψ occurs when Xε hits 0, while the transition from state Sψ to state Sφ occurs when
Xε hits ±ε. See Figure 2 for an illustration of sample paths of X and Xε .

The following lemma specifies in what sense the perturbed process is an approximation of the trajectory of the
web. Here and in the rest of the paper the convergence is uniform on compacts in probability.

Lemma 3.4. Xε P→ X as ε → 0.

That is to say, for all δ > 0, u > s0

P
(∣∣X(t) − Xε(t)

∣∣ > δ for some t ∈ [s0, u]) → 0 as ε → 0.

Lemma 3.2 reduces to Lemma 3.4.

Proof of reduction. Xε is F− ⊗F+ ⊗G-measurable, so we use Lemma 3.4 to conclude that X is also F− ⊗F+ ⊗G-
measurable. However, since X is actually independent of G we can use a basic result on tensor products of Hilbert
spaces (for example Equation (2c8) of [14]) to conclude that X is in fact F− ⊗F+-measurable. �

We devote the following section to the proof of Lemma 3.4.
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Fig. 2. A sample of a web trajectory and the corresponding perturbed processes. The top left image depicts the perturbed process, with state Sψ

in bold. The top right image depicts the original web trajectory. The bottom right image illustrates both processes together, showing the segments
where they coalesce.

4. Convergence of the perturbed process

In this section we prove that Xε P→ X as ε → 0. This statement depends only on the joint distribution of X and Xε .
We therefore define Y(ε) = Y = (Xε,X) (generally suppressing the ε dependence in the notation). Let us describe
the distribution of Y as a two-dimensional random process.

We classify the behavior of the process into three states according to the behavior of Xε with respect to X.

• If Xε is in state Sφ and is coalesced with X we say Y is in state S1D
φ .

• If Xε is in state Sφ and is not coalesced with X we say Y is in state S2D
φ .

• If Xε is in state Sψ we say Y is in state S2D
ψ .

Y starts at point (x0, x0) at time s0 in state S1D
φ . From S1D

φ , Y can only transition to S2D
ψ . This transition occurs when

Y hits the origin, as the coalesced X and Xε will continue together until they leave their current half-plane. From
S2D

ψ , Y can only transition to S2D
φ . This transition occurs when Xε leaves the (−ε, ε) interval (i.e. Y hits either of the

x = ±ε lines). From S2D
φ , Y can either transition to S1D

φ if X and Xε coalesce (i.e. Y hits the line x = y) or transition

to S2D
ψ if Xε hits 0 (i.e. Y hits the x = 0 line). States and possible transitions of Y are summarized in Figure 3.

The form of the labels given to the states is justified by the following.

Observation. In S1D
φ , Y follows the law of a (time scaled) one-dimensional Brownian motion on the line x = y. In S2D

φ

and S2D
ψ , Y follows the law of a two-dimensional Brownian motion.

Additionally observe that by the scale-invariance of Brownian motion, the distribution of the sample paths of
Y(ε)/ε is independent of ε (modulo time scaling).
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State Illustration Law Next Trans. cond.

Xε

S1D
φ Equal S2D

ψ Hits 0

S2D
φ Indep.

S2D
ψ Hits 0

S1D
φ Hits X

S2D
ψ Indep. S2D

φ Hits ±ε

Y = (x, y)

S1D
φ Equal S2D

ψ x = y = 0

x = Xε

y = X

S2D
φ Indep.

S2D
ψ x = 0

S1D
φ x = y

S2D
ψ Indep. S2D

φ x = ±ε

Fig. 3. Illustrated states and transitions of Y .

Define Aδ = {(x, y) : |x − y| = δ}. To prove Lemma 3.4 we use the following property of Y :

Lemma 4.1. For given P > 0, δ > 0 the probability that Y hits Aδ before it hits (P,P ) is o(1) as ε → 0.

Recall that Y starts in state S1D
φ , with X equal to Xε . (If x0 = 0 then Y immediately transitions to state S2D

ψ .)
We delay the proof of Lemma 4.1 to Section 4.1.
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Proof of Lemma 3.4. Lemma 3.4 is equivalent to: for all δ > 0, u > s0

P
(
Yt ∈ {

(x, y) : |x − y| < δ
}

for all t ∈ [s0, u]) → 1 as ε → 0.

The above statement can be rephrased as

For all δ > 0, u > s0, the probability that before time u, Y has hit Aδ is o(1) as ε → 0.

We prove this as follows. For any η > 0, choose P so that the probability that standard Brownian motion travels
from 0 to P in time less than u − s0 is less than η. Apply Lemma 4.1 to choose ε0 such that, for all ε < ε0, the
probability that Y(ε) hits Aδ before (P,P ) is less than η. Then the probability that Y(ε) hits Aδ before (P,P ) or
takes less time than u − s0 to reach (P,P ) is less than 2η. Thus the probability that Y(ε) hits Aδ before time u is less
than 2η. �

4.1. Excursions of Y

In this section we prove the following, which is slightly stronger than Lemma 4.1.

Lemma 4.2. For given P > 0, δ > 0 the probability that Y hits Aδ before it hits (P,P ) is O( 1
log 1/ε

).

The random set {t ≥ s0 : Yt = (0,0)} is almost surely infinite and discrete. We can therefore order this set, writing
T0 for its smallest element, T1 for the next, and so on.

Let U ⊂ R
2 and write Hi for the event {Yt ∈ U for some t ∈ [Ti, Ti+1]}. Observe that since our process starts and

ends every time interval of the form [Ti, Ti+1] at (0,0) (and in state S2D
ψ ) the events {Hi : i ≥ 0} are independent and

have the same probability. We call this probability “the probability that an excursion hits a set U .”
Our approach to proving Lemma 4.2 is, to demonstrate that,

P
(
an excursion hits (P,P )

) � P (an excursion hits Aδ) as ε → 0.

This is realized through the next pair of lemmas whose proofs we delay until Section 4.2.

Lemma 4.3. For given δ > 0, P (an excursion hits Aδ) is O(ε).

Lemma 4.4. For given P > 0, P (an excursion hits (P,P )) is Ω(ε log 1/ε).

Proof of Lemma 4.2. Before time T0, Y is in state S1D
φ and so the probability that Y hits Aδ before it hits (P,P ) is 0.

After time T0, Y consists of a sequence of excursions, each of which satisfies exactly one of the following conditions

• the excursion hits Aδ (with probability O(ε)),
• the excursion does not hit Aδ but does hit (P,P ) (with probability Ω(ε log 1/ε) − O(ε), which is itself

Ω(ε log 1/ε)),
• the excursion does not hit Aδ or (P,P ).

The excursions are independent, so the probability that Y hits Aδ before (P,P ) is

O(ε)

Ω(ε log 1/ε) + O(ε)
= O

(
1

log 1/ε

)
. �

4.2. Proofs of the excursion lemmas

In this section we give the proof of Lemmas 4.3 and 4.4. For convenience we rotate (and scale) Y = (Xε,X), defining

Z(ε) = Z = (
Z1,Z2) = 1

2

(
Xε + X,Xε − X

)
.
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Observe that when Y is in S1D
φ , Z follows the law of a standard one-dimensional Brownian motion on the x-axis.

The condition that Y hits Aδ is equivalent to Z2 hitting ±δ/2. Like Y , Z has the following “scale invariance” property:
the distribution of sample paths of Z(ε)/ε is independent of ε (modulo time scaling).

Proof of Lemma 4.3. Consider the process Y between times T0 and T1. Once Y arrives at S1D
φ it can never hit Aδ

before hitting (0,0). Thus our goal is to show that with probability at least 1−O(ε), Y arrives in S1D
φ before hitting Aδ .

Next, we observe the following two auxiliary claims:

Claim 1. Whenever Z2 = 0 the probability that subsequently Y arrives at S1D
φ before Z2 hits ±ε/2 is at least a

constant (independent of ε).

Claim 2. Whenever Z2 = ±ε/2 then there is probability equal to ε/δ of Z2 hitting ±δ/2 before it hits 0.

Claim 1 follows from scale invariance, while Claim 2 is a standard martingale result on Brownian motion (observ-
ing that on the relevant time interval Z2 is a standard Brownian motion).

The reduction of Lemma 4.3 to those two claims is similar to the proof of Lemma 4.2. Claims 1 and 2 imply that
between a time when Z2 = 0 and the next time that Z2 = 0 after having hit ±ε/2,

P(Y hits Aδ)

P(Y arrives at S1D
φ )

≤ (1 − C)(ε/δ)

C
= O(ε),

where C is the constant of Claim 1. As the behavior of Y is independent on those intervals, we deduce Lemma 4.3.
�

Proof of Lemma 4.4. We bound below the probability that an excursion hits (P,P ), i.e. Z hits (P,0) before
returning to (0,0). We do this by considering the probability that the excursion takes the following form: Z travels
from (0,0) to the line segment Q = [0, ε] × {ε}, then hits the horizontal axis for the first time in [ε,1] × {0}, then
travels to (P,0), before returning to (0,0).

After a stopping time at which Y = Z = (0,0) there is a positive probability K that Z hits Q before returning
to (0,0). By scale invariance K is independent of ε.

Consider Z after hitting some point in Q. We now bound the hitting density of this process on the horizontal axis.
Regardless of the point in Q, this density for points on [ε,1] × {0} is at least

1

πε

1

1 + (x/ε)2
dx.

This follows directly from the classical result that the hitting density on a line of the two-dimensional Brownian
motion is a Cauchy distribution (see for example Theorem 2.37 of [5]).

On hitting a point (x,0) for x ∈ [ε,1] the process transitions from state S2D
φ to state S1D

φ . When in state S1D
φ ,

Z behaves as a one-dimensional Brownian motion on the horizontal axis until it hits (0,0). By the same martingale
argument which justifies Claim 2, the probability of subsequently hitting (P,0) before (0,0) is x/P . Integrating this
against the hitting density we get that the probability that Z started from some point in Q hits the horizontal axis in
[ε,1] × {0} and then travels to (P,0) before returning to (0,0) is at least

1

πP

∫ 1

ε

x/ε

1 + (x/ε)2
dx = ε

2πP
log

(
1 + (1/ε)2

2

)
, which is Ω(ε log 1/ε). �

5. Recovering the web from strips

The next step towards proving Theorem 1.1 is to show that the σ -field associated to a horizontal strip is generated
by those σ -fields associated to any two substrips which partition the larger strip. To do so, we follow closely the of
Section 3.
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In the same way we defined F+ and F−, we introduce a σ -field Fy,z for each y < z ∈ [−∞,∞], generated by the
web in the horizontal strip (−∞,∞) × (y, z). Formally,

Definition 5.1. For any path f we write Ry,z(f ) for f stopped at the first time it is outside (−∞,∞) × (y, z), i.e.
Ry,z(f )(t) = f (t ∧ Tf ) where Tf = inf{t : f (t) /∈ (y, z)} (as in Section 3, if f starts outside (−∞,∞) × (y, z), it is
stopped immediately). We define Fy,z to be the σ -field generated by the collection of paths {Ry,z(X) : X ∈ X }. The
association of strips (−∞,∞) × (y, z) to σ -fields Fy,z we call the horizontal factorization of the Brownian web.

With these definitions, F of Section 3 is F−∞,∞, F+ is F0,∞ and F− is F−∞,0. Note that Fw,x and Fy,z are
independent if the intervals (w,x) and (y, z) are disjoint.

Theorem 5.2. Fx,z =Fx,y ⊗Fy,z for all x < y < z.

The Brownian web is translation invariant. Thus without loss of generality we can limit ourselves to x = a, y = 0,
z = b in the above theorem, for arbitrary fixed a and b. This reduces the theorem to

Fa,b =Fa,0 ⊗F0,b.

In the rest of this section we therefore write R(·) for Ra,b(·).
Given the definition of Fa,b and since X is arbitrary, Theorem 5.2 is a consequence of the following.

Lemma 5.3. R(X) is Fa,0 ⊗F0,b-measurable.

Similarly to Section 3, R(Xε) is constructed from trajectories that are Fa,0, F0,b and G-measurable only. Formally,
R(Xε) is Fa,0 ⊗ F0,b ⊗ G-measurable. Thus as in the reduction of Lemma 3.2 to Lemma 3.4, Lemma 5.3 follows
from

Lemma 5.4. R(Xε)
P→R(X) as ε → 0.

We could show this convergence result directly by an extension of the argument we used for the half-planes in

Section 3. However, knowing that Xε P→ X is nearly enough, and all that is required in addition is that this convergence
is preserved by R(·). For this we use the following straightforward result in classical analysis.

Lemma 5.5. If Tf is not a local extremum of the path f , then the map f �→R(f ) is continuous at f in the topology
of uniform convergence on compacts.

Proof of Lemma 5.4. We know from Lemma 3.4 that Xε P→ X. In addition X is a Brownian motion so almost
surely satisfies the condition of Lemma 5.5, i.e. “TX is not a local extremum of the path X.” We conclude that

R(Xε)
P→ R(X) by the continuous mapping theorem (see for example [15], Theorem 2.3, p. 7). �

6. Conclusions about the noise

We conclude by supplying a formal framework for the statement of Theorem 1.1 followed by its proof. The follow-
ing definition of noise is a straightforward extension of that due to Tsirelson (Definition 3d1 of [13]) to multiple
dimensions.

A d-dimensional noise consists of a probability space (Ω,F ,P), sub-σ -fields FR ⊂ F given for all open d-
dimensional rectangles R ⊂R

d , and a measurable action (Th)h of the additive group of Rd on Ω , having the following
properties:

(a) FR ⊗FR′ = FR′′ whenever R and R′ partition R′′, in the sense that R ∩ R′ = ∅ and the closure of R ∪ R′ is the
closure of R′′,
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(b) Th sends FR to FR+h for each h ∈R
d ,

(c) F is generated by the union of all FR .

Recall that for σ -fields Fa , Fb , Fc we write Fa = Fb ⊗ Fc when Fa is generated by Fb and Fc (up to sets of
measure 0), and Fb and Fc are independent. When d = 1 our definition coincides with that of Tsirelson. In that case,
R ranges over all open intervals and condition (a) translates to F(s,t) ⊗F(t,u) =F(s,u) whenever s < t < u.

As conditions (b) and (c) are immediate for the horizontal factorization of the Brownian web, Theorem 5.2 imme-
diately implies the following:

Proposition. The horizontal factorization of the Brownian web is a (one-dimensional) noise.

Recall that the horizontal factorization of the Brownian web is an association of a σ -field to any horizontal strip (see
Definition 5.1). Observe that the association arises from considering trajectories of the Brownian web stopped at the
first time they are outside a particular strip. Similarly, we can associate a σ -field to any vertical strip, or indeed to any
rectangle. The former association is the vertical factorization of the Brownian web and the latter the two-dimensional
factorization.

We can extend existing results to derive the following:

Proposition. The Brownian web factorized on two-dimensional rectangles is a two-dimensional noise.

That is, when a rectangle is partitioned horizontally or vertically into two smaller rectangles, the σ -field of the
larger is generated by the σ -fields of the two smaller. To see this holds for a rectangle partitioned by a horizontal split
observe that this is a consequence of our result restricted to a finite time interval. The see it holds for a vertical split,
observe that this is a straightforward modification of the earlier result that the vertical factorization of the Brownian
web is a noise (see, for example, [12]).

Furthermore, by a general result of Tsirelson (see [14], Theorem 1e2), a two-dimensional noise is black when one
of its one-dimensional factorizations is black. As the vertical factorization of the Brownian web is black (see [13]),
we deduce Theorem 1.1.

7. Remarks and open problems

In this paper we present the second known example of a two-dimensional black noise, after the scaling limit of critical
planar percolation, as proved by Schramm and Smirnov [7].

Let us illustrate some similarities and differences between our proof and the proof in [7]. Here as in [7] the challenge
is to show that a certain object is a noise, while its blackness follows from an observation of Tsirelson. In both proofs
the noise property is obtained by showing that the perturbation introduced when resampling a neighbourhood of the
interface between the two domains, can be made arbitrarily small.

However, a major difference between the setups is that while all observables in our proof are described in terms
of coalescing Brownian motions, in [7] the observables are intangible, being defined only through scaling limits
of discrete models. Since our proof involves no scaling limit argument we are able to take advantage of standard
techniques for dealing with Brownian motion, allowing a more straightforward presentation.

They also remark that σ -fields can be associated to a larger class of domains than just rectangles in a way that still
allows the σ -field of a larger domain to be recovered from the σ -fields of two smaller domains that partition it. Here
we call this procedure “extending the noise.” In particular, in Remark 1.8 the authors refer to the work of Garban,
Pete and Schramm (Remark 8.5 of [4]) in mentioning that this can be done for the scaling limit of site percolation
on the triangular lattice, as long as border between those domains has Hausdorff dimension less than 5/4, and cannot
be done if the border has Hausdorff dimension greater then than 5/4. Consequently, the noise of the scaling limit of
site percolation on the triangular lattice can be extended to the class of all domains whose boundaries have Hausdorff
dimension less than 5/4. This raises the following question:

Open Problem 1. To what class of two-dimensional domains can the Brownian web noise be extended?
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We expect the answer to be more sophisticated than for percolation, since the Brownian web is not rotationally in-
variant. This suggests that Hausdorff dimension is not a sufficient measurement to determine from which subdomains
the Brownian web can be reconstructed. In some sense it is easier to reconstruct the Brownian web from vertical strips
than it is from horizontal strips.

Given that we now have a second example of a two-dimensional black noise, one may also ask the following:

Open Problem 2. Are there black noises in three dimensions and higher?

Readers may wish to note that in [14] Tsirelson extends the concept of a noise to a much more abstract and general
setting. This allows results on noises to be formulated and proved without having an explicit underlying geometric
base. However, our methods here which are concrete and geometric in nature are more conveniently described in terms
of the earlier formulation.
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